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The capabilities of the Rapid Tow Shearing (RTS)
process are explored to reduce the well-known
imperfection sensitivity of axially-compressed cylin-
drical shells. RTS deposits curvilinear carbon fibre
tapes with a fibre-angle-thickness coupling that
enables the in-situ manufacturing of embedded rings
and stringers. By blending the material’s elastic
modulus and wall thickness smoothly across the
cylindrical surface, the load paths can be redistributed
favourably with a minimal-design approach that
contains part count and weight while ameliorating
imperfection sensitivity. A genetic algorithm that
incorporates realistic manufacturing imperfections
and axial stiffness constraints is used to maximise
the 99.9% reliability load of straight-fibre (SF) and
RTS cylinders. The constraints ensure that reliability
does not come at the expense of stiffness. The first-
order second-moment method is used to calculate
statistical moments that enable an estimate of the
99.9% reliability load. Due to the fibre-angle-thickness
coupling of RTS, buckling data are normalised by
mass and thickness. Compared to a quasi-isotropic
laminate, which corresponds to the optimal eight-
layer design for a perfect cylinder, the optimised
SF and RTS laminates have a 6% and 8% greater
99.9% normalised reliability load. By relaxing the
axial stiffness constraint, the performance benefit
can be increased such that SF and RTS cylinders
exceed the 99.9% normalised reliability load of an
eight-layer quasi-isotropic laminate by 23% and 37%,
respectively. Both improvements (constrained and
unconstrained) stems largely from a reduction in the
variance of the buckling-load distribution, thereby
demonstrating the potential of fibre-steered cylinders
in reducing the imperfection sensitivity of cylindrical
shells.
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1. Introduction
Thin-walled cylinders are highly-efficient monocoque shells utilised within the aerospace, civil
and energy sectors, amongst others. However, the designers of axially-compressed thin-walled
shells must contend with the disparity between theory and experiment as collapse due to the
loss of stability often occurs at levels well below the predicted buckling load. Von Kármán
and Tsien [1] demonstrated that the post-buckling of a cylinder is dominated by an unstable
equilibrium path stemming from a sub-critical bifurcation and, therefore, the cylinder is sensitive
to imperfections in the pre-buckling regime. The sensitivity to imperfections was quantified
by Koiter [2] in his PhD thesis, whereby small geometric imperfections (of the order of a
wall-thickness) were shown to reduce the buckling load dramatically.

The buckling phenomenon can be understood qualitatively from an energy perspective. When
a cylinder is compressed, the strain energy of the system increases through the addition of
membrane energy. The system is initially stable in this unbuckled state representing a global
energy minimum. As the strain energy of the system increases, the energy landscape evolves
and a new global minimum, corresponding to a buckled shape, is more energetically favourable.
Interestingly, even when the cylinder is still nominally in the pre-buckling state, there exists
another disconnected (in axial load vs axial compression space) equilibrium state, with just a
small energy barrier separating the two regimes. A transition over this so-called mountain-pass
point [3] represents the lowest energy pathway that exchanges membrane energy for bending
energy and induces buckling. Physically, the mountain pass point materialises as a single dimple
on the cylinder surface. Due to the rotational invariance of an isotropic cylinder, the initiation of a
single dimple can occur at any circumferential location and is strongly dependent on the precise
nature of existing initial imperfections. This phenomenon is described as ‘spatial chaos’ [4–9] due
to its analogy to temporal chaos whereby initial conditions drastically affect loading trajectories
through time.

To overcome the aforementioned sensitivity to initial imperfections of axially-compressed
isotropic shell, stiffening elements (stringers and rings) are often used. Stiffened, a.k.a. semi-
monocoque, shells reduce imperfection sensitivity by breaking the cylinder surface into effective
curved panels [10]. This can be explained as follows. Firstly, the reinforcement adds stiffness,
which increases the energy required for initiation of lateral deflection and for the loss of stability.
Secondly, in addition to retarding the onset of a buckle, stiffeners cause a transition of the
critical buckling mode to intra-panel buckling, i.e. the panel traps the lateral buckling mode.
The latter mode is not only geometrically confined but, more importantly, inherently super-
critical and, hence, less sensitive to imperfections. The use of stringers and rings in cylindrical
shells is standard practice in thin-walled structural design as, for given load carrying capability,
semi-monocoque shells are lighter than their unstiffened counterparts. However, the integration
of stiffening elements is resource intensive. Typically, two stages are required to combine the
outer skin and the stiffeners, increasing time-to-manufacture and cost, and increasing locations
of possible failure (e.g. stiffener debonding or cracks in weld lands). Despite these drawbacks, the
uncertainty of imperfection-sensitive monocoque cylinders leads designers to choose stiffened
shells. However, recent advances in modern composite manufacturing techniques offer the
opportunity to design inherently imperfection-insensitive cylinders. These advanced manufactu-
ring techniques create Variable Angle Tow (VAT) composite parts, where fibre paths are
curvilinear, in contrast to straight in their straight-fibre (SF) equivalent. By arranging fibre paths
in a curved way, the stiffness field, and therefore load path, of an axially-compressed cylinder is
not uniform across the surface. This non-uniformity breaks the symmetry of the problem very
much like stiffeners do, with similarly positive consequences.

Of all possible VAT technologies, the present work focuses on using Rapid Tow Shearing
(RTS)—a derivative of Continuous Tow Shearing with greater deposition rate—developed by
Kim et al. [11] to overcome the manufacturing defects commonly encountered in Automated
Fibre Placement (AFP). AFP, the most common VAT manufacturing technique, developed in the
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Figure 1: Variable Angle Tow shearing techniques: (a) Automated Fibre Placement (AFP) and (b)
Rapid Tow Shearing (RTS). AFP bends the tow along the designed tow path, potentially causing
fibre buckling and straightening on the inside and outside of the tow, respectively. RTS shears
the tow with respect to the designed tow path, increasing the local thickness and decreasing local
width. RTS can tessellate adjacent tows whereas AFP cannot.

1980s [12], places curvilinear fibre paths through in-plane bending of a fibre tow as shown in
Figure 1a. As the distance of each fibre in the tow to the central reference path is different, fibre
buckling and straightening can occur on the concave and convex side of the tow, respectively [13],
as shown in Figure 1a. The mismatch in curvature also eliminates the ability to tessellate adjacent
tows, leading to gaps and overlaps that are known to play a significant part in the failure of
AFP components [14]. In contrast to AFP, RTS (shown in Figure 1b) shears tows in the plane of
placement, creating a uniform radius of curvature across the tape and enabling perfect tessellation
of adjacent tows.

In addition to the defect-free manufacturing ability of RTS, it has an interesting geometric
feature: fibre-angle-thickness coupling. As a tow is sheared, the local thickness increases
perpendicular to the fibre path according to a secant relationship such that the local thickness
of the kth RTS lamina in a stack is given by

tk =
tk0

cos(θk)
, (1.1)

where tk is the local sheared lamina’s thickness, tk0 is the nominal thickness of the unsheared
lamina and θk is the local lamina shearing angle. The limit to the shearing angle is set by defect-
free manufacturing constraints to be 70◦ [15]. The thickness build-up adds another dimensionality
to the design of fibre-reinforced cylinders; embedded stiffeners can now be created by shearing
the tow periodically, opening up the possibility to embed hoops, stringers, orthogrids and isogrids
within the structure during manufacturing.

Previous numerical [16,17] work has shown that RTS-designed cylinders exhibit reduced
sensitivity to geometric imperfections compared to straight-fibre cylinders. To corroborate these
results, an RTS and a quasi-isotropic (QI) cylinder were manufactured and tested in axial
compression [18]. In the experiment, the RTS cylinder had a 10% greater buckling load than
the QI cylinder [18]. Furthermore, finite element (FE) simulations indicate that, if manufacturing
imperfections had been equal across both cylinders, the RTS cylinder would have a 10% greater
mass-specific buckling load than the QI cylinder. The present work builds on this previous
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research by optimising towards an imperfection-insensitive cylinder through robust optimisation
and stiffness tailoring.

Optimisation studies of fibre angles for variable-stiffness plates have demonstrated significant
weight-savings due to enhanced mechanical properties in pre- and post-buckling [19–21];
reducing stress concentrations around cutouts [22]; and improving buckling of sandwich
panels [23]. Variable-stiffness cylinders have been optimised for bending [24,25], buckling [26,27],
and fundamental vibration frequency [28] using linear analyses. However, limited work has
investigated the optimisation of fibre angle of variable-stiffness cylinders to maximise the
nonlinear buckling load in the presence of geometric imperfections. As imperfections are known
to reduce the load-carrying capacity of cylindrical shells, an optimisation that accounts for
imperfections whilst maximising buckling load could lead to a more imperfection-insensitive
design.

For example, Lindgaard et al. [29] optimised the fibre angles of a straight-fibre cylinder for
nonlinear buckling whilst considering a superposition of eigenmodes as imperfections. The
researchers considered this imperfection signature to be the ‘worst’ as it is “an imperfection shape
which yields the lowest limit load” [29]. However, the ‘worst’ imperfection is known to be the
single dimple [3] as it is the lowest energy pathway between pre-buckling and post-buckling
regimes. However, both single dimple and eigenmode-affine imperfections are not necessarily
realistic imperfections in composite cylinder manufacture, as composite cylinders are typically
dominated by low-order periodic modes [30,31].

As imperfections in thin-walled cylinders are stochastic, Bolotin [32] suggested the use
of probabilistic analyses to capture the variability of buckling response. A Fourier series
representation of measured geometric imperfections is often used as these have been shown to
capture the features of realistic imperfection signatures [33]. However, to accurately model a
realistic imperfection requires a significant number of Fourier coefficients which can be untenable
for a probabilistic methods, such as Monte Carlo analysis. Elishakoff [34] suggested a semi-
analytical framework to overcome the computational cost of Monte Carlo analysis referred to as a
First-Order Second-Moment (FOSM) method. By using a first-order approximation of the Taylor
series expansion of the reliability function to estimate first- and second-moment statistics (mean
and variance, respectively), the reliability function can be approximated [35–37]. In this way the
computational cost of reliability-based, probabilistic analyses is reduced and can be implemented
in an optimisation.

To the authors’ knowledge, limited work has been conducted on the optimisation of straight-
fibre or tow-sheared composite layups to maximise a conservative buckling estimate of imperfect-
geometry cylinders with realistic imperfections, i.e. a buckling load in the left tail of the predicted
buckling load distribution. The present manuscript addresses this gap within the literature by
optimising the fibre angles for maximal 99.9% reliability load of straight-fibre and tow-sheared
cylinders with realistic geometric imperfections derived from a data set of measured composite
cylinders [35]. Furthermore, a constraint is applied to ensure that the axial stiffness of the cylinder
is comparable to a defined baseline cylinder design.

The remainder of paper is structured as follows. Section 2 details the nomenclature and theory
of the RTS manufacturing technique. Section 3 describes the FOSM methodology, including
estimations of mean and variance, and description of imperfection signatures. Section 4 covers the
formulation of the optimisations for the SF and RTS cylinders. Section 5 details the results of the
optimisations for the SF and RTS cylinders. Conclusions and areas of future work are summarised
in Section 6.

2. RTS nomenclature
To define an RTS lamina, we adapt Gürdal and Olmedo’s [38] well-known nomenclature, such
that a fibre path is defined by

ϕ⟨T0|T1⟩n, (2.1)
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Figure 2: (a) Coordinate system to define cylinder geometry and boundary conditions used for
the FE analyses. Fibre angles are measured counter-clockwise from the global x-axis. Point A
corresponds to a multi-point constraint between a reference point at the centroid of the top end of
the cylinder and all nodes at the top edge of the cylinder. Five degrees of freedom are constrained
at A and only the axial direction, ux, is free to enforce a displacement, −∆. Point B is a multi-point
constraint between a bottom central reference point and all bottom-edge nodes. All six degrees
of freedom are constrained at B. The reaction force of the cylinder is measured at B. (b) A single
tow-sheared lamina with the nomenclature as defined in Equation (2.1).

where ϕ defines the direction of the tow-placement head (the steering direction), T0 defines the
initial shearing angle offset from ϕ, T1 defines the shearing angle in the middle of a shearing
period, and n is the shearing periodicity. A T0 → T1 → T0 cycle is one period and it is assumed
that the variation in fibre angle between T0 and T1 is linear. The direction of the tow-placement
head, ϕ, is nominally measured clockwise from the global x-axis (here taken to be the axis of the
cylinder), T0 and T1 are nominally measured counter-clockwise from the ϕ axis. For SF laminates,
fibre angles are measured counter-clockwise from the global x-axis. The coordinate system used
herein is shown in Figure 2a.

An application of the nomenclature is shown in Figure 2b for a 90⟨0|45⟩2 lamina. The cross-
section shows that the shearing process creates embedded stiffeners perpendicular to the ϕ

direction as a result of the RTS shearing-thickness coupling. In this instance, two embedded
stringers are created due the periodicity n= 2. By combining ϕ= 0◦ and ϕ= 90◦ plies in a
laminate, orthogrid-like structures can be manufactured.

3. First-order second-moment methodology
The following exposition of the FOSM methodology is succinct and the reader is referred
to [34,35,37] for further examples and details. The FOSM methodology enables the calculation of
statistical moments (mean and variance) by approximating an objective function, g(x)—evaluated
at a realisation x of the random vector X with probability density function fX—by a Taylor series
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expanded about the mean vector µ of X,

g(x) = g(µ) +

N∑
i=1

∂g(µ)

∂xi
(xi − µi) +

1

2

N∑
i=1

N∑
j=1

∂2g(µ)

∂xi∂xj
(xi − µi)(xj − µj) + ..., (3.1)

where µi is the ith component of the mean vector. In a FOSM analysis, the Taylor series is
truncated after the first-order derivative term, such that g(x)≈ g(µ).

Equation (3.1) describes the Taylor series expansion of g(x), which, we note, is a randomly
distributed function, owing to the random distribution of X. For the present analysis, we do
not seek an accurate evaluation of the entire distribution of g(x) but rather of points on its
tails defining a certain cumulative probability of occurrence. To evaluate specific point of the
distribution (say, at a cumulative frequency of 0.01% or 99.9%), approximations of the first and
second statistical moments (mean and variance, respectively) can be used. These calculations are
discussed in the following subsections.

For Gaussian distributions that are, by definition, fully described by their mean and variance,
this method gives exact results. If the distribution is non-Gaussian then the higher-order moments
of skewness and kurtosis are generally required to approximate a point within the distribution
accurately. Here, by using FOSM, we implicitly make the assumption that the distribution of g(x),
i.e. the distribution of buckling loads, follows a normal distribution. For subcritical buckling, the
distribution of limit loads generally follows extreme value distributions [8,39], but the assumption
of normality is often one chosen in the literature for simplicity. In addition, throughout the
optimisation process, tow-steered cylinder designs with low variance are automatically chosen as
these designs satisfy the objective function of reduced imperfection sensitivity. This leads to the
result that Monte Carlo simulations of optimised imperfection-insensitive designs are generally
well approximated by a Gaussian distribution.

In conclusion, by means of the FOSM method and based on the assumption of a normally
distributed g(x), the 99.9% reliability point, g99.9, can be calculated using the relationship
between the mean value, µg , the standard deviation, σg , and a reliability factor, b, such that

g99.9 = µg − b · σg , (3.2)

The following subsections describe the calculation of the mean (µg) and variance (σ2
g ) of g(x).

(a) Mean value of objective function
The mean value of the objective function, µg , is found from the expectation operator E of the
objective function

µg =E
(
g(X)

)
=

∫∞
−∞

g(x)fX(x)dx. (3.3)

Inserting the truncated first-order approximation of Equation (3.1) into Equation (3.3) leads to
the approximation

µg ≈
∫∞
−∞

[
g(µ) +

N∑
i=1

∂g(µ)

∂xi
(xi − µi)

]
fX(x)dx= g(µ). (3.4)

(b) Variance of objective function
The variance, σ2

g , of g(x) is next calculated. In closed-form, the variance of the objective function
is

σ2
g =E

(
[g(X)− µg]

2

)
=

∫∞
−∞

[g(X)− µg]
2fX(x)dx, (3.5)

which, is equivalent to

σ2
g =

∫∞
−∞

g(X)2fX(x)dx − µ2
g , (3.6)
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where the mean value of the objective function, µg , is calculated from Equation (3.4). When
expanded in a first-order Taylor series, the variance is approximated as

σ2
g ≈

∫∞
−∞

[
g(µ) +

N∑
i=1

∂g(µ)

∂xi
(xi − µi)

]2
fX(x)dx− µ2

g . (3.7)

After simplification, Equation (3.7) reduces to

σ2
g =

N∑
i=1

N∑
j=1

∂g(µ)

∂xi

∂g(µ)

∂xj
cov
(
Xi, Xj

)
. (3.8)

Equation (3.4) together with Equation (3.8) enable the calculation of a high-reliability
evaluation of the objective function g(x), as expressed in Equation (3.2). The implementation of
the FOSM methodology within an optimisation framework is detailed more fully in Section 4.
Before continuing to the optimisation framework it is crucial to consider the variables that
comprise the random vector X, i.e. the random variables that describe the imperfection signature.

(c) Imperfection signatures
The imperfection signatures used within the optimisations are from a measured set of six
composite cylinders [35]. The measured imperfections are decomposed into Fourier coefficients,
Amn and Bmn, that are used to describe the imperfection field f(x, s) where (x, s) is the
cylindrical coordinate system of Figure 2a, with s=Θr. The axial and circumferential coordinates,
x and s, respectively, are scaled to the domain [−π, π], with a double half-wave cosine function

f(x, s) =

∞∑
m,n

λmn

[
Amn cos(mx) cos(ns) +Bmn cos(mx) sin(ns)

]
, (3.9)

where Amn and Bmn are defined as

Amn =
1

π2

∫∫π
−π

f(x, s) cos(mx) cos(ns)dxds , (3.10)

Bmn =
1

π2

∫∫π
−π

f(x, s) cos(mx) sin(ns)dxds, (3.11)

with

λmn =


0.25 for m= n= 0

0.5 for m> 0, n= 0, or m= 0, n > 0

1 for m> 0, n > 0

.

Two other approaches, double full-wave and double half-wave sine, are methods of
approximating the cylinder surface but have ill-defined boundaries. At the boundaries of the
double full-wave approach, the surface suffers from the Runge’s phenomenon [40,41] whereby
high-order functions exhibit spurious oscillations at the edges that are not representative of
the imperfection field. When implementing the double half-wave sine approach, the opposite
problem occurs—the approximation is unable to capture imperfections at the cylinder top and
bottom edges as sin mπx

L = 0 for x= 0 and x=L where x is the coordinate along the cylinder
length.

Equation (3.9) assumes an infinite number of axial (m) and circumferential (n) wave numbers
are summed. A limit is typically imposed so that the double half-wave cosine approximation is

f(x, s)≈
w1∑

m=0

w2∑
n=0

λmn

[
Amn cos(mx) cos(ns) +Bmn sin(mx) cos(ns)

]
, (3.12)

where w1 and w2 are the maximum number of axial and circumferential wave numbers,
respectively. Kriegesmann et al. [30] suggested using a phase shift approach for cylinders as it
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allows for a one-to-one mapping between an imperfection signature and the Fourier coefficients.
The new formulation of the half wave cosine phase shift is

f(x, s)≈
w1∑

m=0

w2∑
n=0

λmn

[
ζmn cos

(
mπ

x

L

)
· cos

(ny
r

− ϕmn

)]
, (3.13)

where ζmn and ϕmn are described by the relationships

ζmn =
√

A2
mn +B2

mn, (3.14)

ϕmn = arctan

(
Bmn

Amn

)
for Amn > 0, (3.15)

ϕmn = arctan

(
Bmn

Amn

)
+ π for Amn < 0, (3.16)

ϕmn = sgn
(
Bmn

)
· π
2

for Amn = 0. (3.17)

For the data set considered, w1 and w2 are 10 and 20, respectively, representing N = (10 +

1) · (20 + 1) · 2 = 462 different variables to describe the imperfections of a cylinder. The 462

coefficients are realisations x of the correlated random variables X that are used within the
FOSM approach such that x = [ζ0,0, ζ0,1, ..., ζ10,20, ϕ0,0, ϕ0,1, ..., ϕ10,20]

T. The implementation
of 462 correlated random variables in calculation of derivatives in Equation (3.8) would be
computationally expensive as cov(Xi, Xj)∈RN×N . To reduce the computational cost, the
correlated random variables are transformed into uncorrelated random variables, as discussed
in the next subsection.

(d) Data transformation
To simplify the derivatives needed to calculate the mean and variance of the objective function,
the vector X can be transformed with the Mahalanobis transformation [42]. The following
description is brief and the reader is directed to References [37] and [35] for further details. The
Mahalanobis transformation is defined as

X =Σ
1
2 z + µ and z =Σ− 1

2 (X − µ), (3.18)

where the matrix Σ is the variance-covariance matrix‡ of X and z is a uncorrelated random
vector with mean of 0 and standard deviation of 1. Given a dataset of κ measurements of the
uncorrelated random vector x ∈RN , the variance-covariance matrix Σ is estimated by

Σ(Xi, Xj)≃
1

κ− 1

κ∑
k=1

(x(k)i − µ)(x(k)j − µ)T, (3.19)

where x(k) is the kth measurement of the random vector x and the mean vector, µ, is estimated by

µ≃ 1

κ

κ∑
i=1

x(i). (3.20)

The computed Σ and µ in Equations (3.19) and (3.20) are estimations of the realisations x in
Equations (3.4) and (3.8). As the number of measurements, κ, increases to infinity, the estimations
tend to the approximations of Equations (3.4) and (3.8).

Having defined Σ, it is not generally possible to calculate Σ
1
2 with a Cholesky decomposition,

as the matrix Σ is usually singular due to the number of measurements, κ, being smaller than the
number of random variables, N . In the case considered herein, we have k= 6 measured cylinders

‡For reference of a matrix to a rational power, the reader is referred to Reference [37]
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with a total of N = 462 random variables. To overcome this problem, the spectral decomposition
of Σ

1
2 , defined by B, is determined as

Σ
1
2 = B = QD

1
2 , (3.21)

where Q ∈RN×r is a matrix with columns containing the eigenvectors of Σ, [q1, ...,qr], and D ∈
Rr×r is a matrix with only diagonal elements containing the eigenvalues of Σ, diag(σ2

1 , ..., σ
2
r ).

The Mahalanobis transformation is now

X = Bz + µ and z = B−1(X − µ), (3.22)

where the matrix B ∈RN×r , vector z ∈Rr , and r= κ− 1 is the number of eigenvectors and
eigenvalues of Q and D, respectively.

Hence, by using the Mahalanobis transformation, the 462 correlated random variables (Fourier
coefficients) are decomposed into 5 principal, uncorrelated imperfection modes, greatly reducing
the number of partial derivatives computed in the FOSM analysis.

(e) Implementation of transformed data into the reliability equation
The transformation and normalisation of the random vector about its mean is of particular
importance when Equation (3.2) is considered with Equations (3.4) and (3.8) substituted so that

g99.9 ≈ g(µ)− b ·

√√√√ N∑
i=1

N∑
j=1

∂g(µ)

∂xi

∂g(µ)

∂xj
cov
(
Xi, Xj

)
, (3.23)

where g(µ) is the objective function evaluated at the mean imperfection. Following the
Mahalanobis transformation, the vector X has a variance of 1 and is uncorrelated, simplifying
Equation (3.23) to

g99.9 ≈ g(µ)− b ·

√√√√ r∑
i=1

(
∂g(µ)

∂xi

)2

. (3.24)

The derivative of the objective function with respect to the ith imperfection is evaluated
numerically with a central difference scheme

∂g(µ)

∂xi
=

g(Xi+∆zi)− g(Xi−∆zi)

2∆zi
, (3.25)

where g(Xi±∆zi) is the buckling load of the cylinder with the imperfection signature calculated
from the ith imperfection from the transformed dataset where ∆zi = 1.5 is the finite-difference
step size (as calculated from a sensitivity study by Kriegesmann [43]). So, for instance, the
calculation of the first imperfection signature with i= 1 is

X1±∆z1 =


B(X1, X1) . . . B(X1, Xr)

...
. . .

...
B(XN , X1) . . . B(XN , Xr)



±1.5

0

0

0

0

+


µ1

...
µN

 (3.26)

where the vector X1±∆z1 contains the transformed, uncorrelated ζmn and ϕmn variables that are
used to describe the imperfection signature.

4. Optimisation formulation
Primarily, the objective of the optimisation is to converge on cylinder layups that maximise the
buckling load. However, as the RTS process has an angle-to-thickness coupling, as discussed in
Section 2, an RTS laminate has a thickness equal to or greater than the unsheared, straight-fibre
equivalent. Thus, the mass of an RTS cylinder with shearing will be greater than an SF laminate.
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To remove the influence of mass on the buckling load, the mass-specific buckling load can be
calculated as P̃ = P/m where P is the buckling load and m is the mass of the cylinder. Nominally,
the buckling load of a cylinder [44] given by

P =
2πrt2√
3(1− ν2)

(4.1)

shows there is quadratic relationship between buckling load and thickness—that is P ∝ t2. As
m∝ t, there is still a first-order relationship between mass-specific buckling load and thickness:
P̃ ∝ t. Therefore the mass-specific buckling load is normalised by thickness so that

P̂ =
P̃

t̄
(4.2)

where P̂ is the thickness-normalised buckling load and t̄ is the average thickness of the laminate.
In this way, the RTS laminates and SF laminates can be compared directly as the influence of
thickness has been removed.

The layup of the SF cylinder to be optimised is a double angle-ply laminate. Two angles are
used in the eight-layer laminate as it enables a comparison to the RTS laminate, a double ply-pair
eight-layered laminate. The RTS laminate is a double ply-pair laminate to compare to a previously
manufactured RTS cylinder [18]. The SF layup is

[±α1,±α2]s, (4.3)

such that the formulation of the straight-fibre optimisation is

max
x

P̂ 99.9(x) · d(x)

Variables x= [α1, α2]

s.t. 0≤ αi ≤ 90 (i= 1, 2)

d(x) =min
(
1, ESF/EQI

)3
,

(4.4)

where ESF and EQI are the axial stiffness of the SF and QI cylinder, respectively calculated as

E =
PL

2πrt̄u
, (4.5)

where P is the buckling load, L is the length of the cylinder, r its radius, t̄ its average
wall thickness and u the applied displacement at the onset of buckling. The 99.9% thickness-
normalised buckling load, P̂ 99.9, is calculated from a variation on Equation (??) so that

P̂ 99.9 = P̂µ − b · P̂σ, (4.6)

where b is the chosen reliability limit of 99.9% (which is b= 3.0902), P̂µ is the thickness-
normalised buckling load with the mean imperfection signature and P̂σ is the standard deviation
of the thickness-normalised buckling loads calculated as

P̂σ =

√√√√ r∑
i=1

(
∂P̂µ

∂xi

)2

(4.7)

where ∂P̂µ

∂xi
is the ith numerical derivative of the mean thickness-normalised buckling load with

the imperfection field Xi as described in Equation (3.26).
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The layup of the RTS cylinder to be optimised is

[ϕ1 ± ⟨T01 |T11⟩
n1 , ϕ2 ± ⟨T02 |T12⟩

n2 ]s, (4.8)

where ϕ, T0, T1, and n have their previous meanings as described in Section 2. The optimisation
is formulated for the RTS cylinder as follows

max
x

P̂ 99.9(x) · d(x)

Variables x= [ϕ1, T01 , T11 , n1, ϕ2, T02 , T12 , n2]

s.t. ϕi = {0, 90} (i= 1, 2)

0≤ Tji ≤ 70 (j = 0, 1, i= 1, 2)

when ϕi = 0, ni = 0, 1, 2, ..., 10 (i= 1, 2)

when ϕi = 90, ni = 0, 1, 2, ..., 18 (i= 1, 2)

d(x) =min
(
1, ERTS/EQI

)3

(4.9)

where ERTS is the axial stiffness for the RTS cylinder and all other variables have their previous
meanings. The fibre angles for the SF and RTS cylinder are always integer values to reflect the
accuracy of the RTS method [15].

A genetic algorithm (GA) is used to optimise both straight-fibre and RTS cylinders. The
optimisation of fibre angles of composite laminates is known to be a non-convex design problem:
results are sensitive to starting points and convergence is not guaranteed [45]. By defining
the composite structure with lamination parameters instead of fibre angles the design space
can be transformed into a convex design problem under certain conditions [46–49]. A second
optimisation step is then required to translate the lamination parameters into a manufacturable
layup of fibre angles. For only two unique layers in the laminate stacking sequence (balanced
and symmetric layup), the lamination parameter approach is not expected to be faster than an
optimisation based on fibre angles directly. Hence, this work conducts the optimisation in fibre
angle design space. For verification of the GA, the SF optimised result is compared against an
exhaustive search. In addition, the genetic algorithm was verified with benchmark functions to
ensure adequate convergence. Both SF and RTS optimisations have a population of 30 and run for
30 generations. For each generation, the number of elite children is 2, the crossover and mutant
fractions were 70% and 30% of the remaining population, respectively, reflecting similar values
to literature [50].

(a) Geometrically-nonlinear imperfect-geometry buckling analyses
The values of P̂ and E are calculated using the commercial FE solver ABAQUS [51]. S4R elements
with enhanced hourglassing control are used with the mesh size informed by a convergence
study. For a discussion on the discretisation of fibre angles and thicknesses for RTS structures,
the reader is directed to [52]. The optimisation is carried out on SF- and RTS-designed cylinders
with geometry and material properties as listed in Table 1. For all analyses, wagon-wheel type
boundary conditions are used, shown in Figure 2a. The wagon-wheel boundary conditions are
implemented with a multi-point constraint between a central control node and the circumferential
nodes on the top or bottom of the cylinder. The top reference node is constrained in five degrees
of freedom, with the axial direction (x-axis) left free for application of the axial displacement,
ux =−∆. The bottom reference node is constrained in all six degrees of freedom and the reaction
force, F , from the applied displacement, is measured at the reference point. Wagon-wheel type
boundary conditions are a standard approach of modelling cylinder buckling in an FE setting [53].

The buckling load of the cylinders with geometric imperfections is calculated using
a geometrically nonlinear Static, General analysis in ABAQUS. For each analysis the
imperfection signatures are implemented in the FE environment through the construction of
an orphan mesh based on the number of circumferential and axial nodes. The step size of the
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Table 1: Geometry of cylinder and material properties of carbon fibre pre-preg IM7/8552 [54]. The
nominal thickness t0 refers to all eight plies at the unsheared thickness.

r L t0 E11 E22 ν12 G12 G13 G23 ρ

(mm) (mm) (mm) (MPa) (MPa) - (MPa) (MPa) (MPa) (g/mm3)
300 1040 1.048 138171 9722 0.356 4900 4900 3352 1.57× 10−3
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Figure 3: Step size study for 50 random RTS laminates by comparing normalised buckling load
and computational time. Normalisation of the buckling load is done with respect to the 1× 10−15

step size, taken to be most accurate. Data points for load and analysis time represent the arithmetic
mean of 50 laminates. Error bars indicate maximum and minimum data points.

incremental-iterative Newton solver is monitored until the solver fails to converge, indicating a
limit point instability. The numerical convergence of an imperfect-geometry cylinder is driven
primarily by the minimum step size allowed within the Newton solver: the smaller the allowable
step size the closer the solver approaches the limit point instability. However, the smaller
the allowable step size, the longer the analysis takes. We therefore seek a trade-off between
computational accuracy and time. A step-size study is carried out on 50 random RTS laminates
to ensure that the selected step size is sufficient to calculate the buckling load accurately whilst
balancing computational time.

The results of the step size study are presented in Figure 3, where the normalisation of the
buckling load is done with respect to the ‘most accurate’ results as calculated by the 1× 10−15

step-size analysis. From Figure 3 it is clear that the step size 1× 10−3 represents a reasonable
trade-off between computational time and accuracy. Thus, this value is used in all further
geometrically nonlinear analyses. Quantitatively, the analyses with a step size of 1× 10−3 have a
normalised mean buckling load of 0.999 with a standard deviation of 0.003†.

In total, 11 geometrically nonlinear analyses are conducted to calculate P̂ 99.9 based on the
κ= 6 imperfection signatures of the measured composite cylinders [35]. The κ= 6 measured
imperfections are decomposed into mean vector (µ) and variance-covariance matrix (Σ). These
data are decomposed into 5 principal imperfection modes using the Mahalanobis transformation
and the B matrix. Each analysis has a different imperfection signature, created by Equation (3.13).
To compute the variance using central finite differences, 10 nonlinear analyses are required

†Only 2 of the 50 laminates tested in the 1 × 10−3 step-size analysis were less than 0.995 of the 1 × 10−15 step size
analysis.
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(forward and backward finite difference steps for each principal imperfection mode). In addition,
one analysis is required for the mean imperfection vector. Python [55] scripting is used to pre-
process input files, such as defining element-by-element fibre angles, post-process results, and
execute the genetic algorithm.

5. Optimisation results
The optimisation was first run on the SF laminate. The P̂ 99.9 values for ply angle combinations
are compared to a QI laminate, with a percentage change calculated with respect to the thickness-
normalised 99.9% buckling load, ∆P̂ 99.9

QI , defined as

∆P̂ 99.9
QI = 100 ·

P̂ 99.9
lam − P̂ 99.9

QI

P̂ 99.9
QI

, (5.1)

where the subscripts lam and QI refer to the laminate considered and QI laminate, respectively.
The QI laminate is chosen as the reference for comparison because it has been shown to be

the best straight-fibre laminate for perfect-geometry cylinder buckling [56]. The eight-layer QI,
however, is not the overall optimal QI layup due to the deleterious influence of anisotropy [57],
as when compared to a homogeneous and specially orthotropic 48-layered QI laminate (i.e. no
anisotropy) with identical overall thickness, the eight-layer laminate has 89% of the buckling
load of the 48-layer one. (The thickness of each ply in the 48-layer QI laminate was scaled to equal
the wall thickness of the eight-layer QI.) Nevertheless, given the manufacturing implications of
laminating a 48-layer cylinder, the eight-layer QI is taken to be the optimal straight-fibre laminate
for perfect cylinder buckling herein. As both an eight-layer QI and eight-layer RTS cylinder have
been manufactured and tested [18], we limit the number of plies to be eight to enable comparison
between the laminates in this study.

(a) SF results
The solution converged upon by the solver is described in Table 2 as the laminate SF1 and has
a [±21,±66]s layup. SF1 has a 5% greater P̂ 99.9 but a 7% lower P̂µ when compared to the QI
laminate, indicating that the greater P̂ 99.9 is due to a reduced standard deviation, P̂σ . This is
indeed the case, with SF1 having a 54% lower standard deviation than the QI laminate. It appears
that in this optimisation, the solver favoured layups with lower standard deviation rather than
greater P̂µ. The preference for decreased variance is driven by the high reliability requirement of
99.9% and the b= 3.0902 factor used in calculating P̂ 99.9. For example, a decrease in 1kN/kg.mm
in P̂σ increases P̂ 99.9 by 3.1kN/kg.mm. To explore the design landscape further, and verify the
optimisation result, it is informative to perform an exhaustive search of the laminate design space
[±α1,±α2]s. We explore the SF design space with an exhaustive search as it is not possible with
the RTS laminates due to the high-dimensionality of the RTS layup.

(b) SF exhaustive search
An exhaustive search of the design landscape for the SF layup [±α1,±α2]s for α1, α2 ∈
[0, 2, 4, ..., 90] is conducted. First, the thickness-normalised linear buckling load, P̂p, of the design
landscape is investigated, as shown in Figure 4. The maximal P̂p is 50.1kN/kg.mm in the
laminate [±36,±90]s, which is 14.5% lower when compared to the eight-layer QI with a P̂p =

58.6kN/kg.mm. The large valley in the centre of the response surface is attributed to a change in
buckling mode shape between a doubly periodic and axisymmetric mode. The response surface
has similarities to the unsymmetric laminate [±β1,±β2] investigated by Hühne [58]. For the
material system and geometry of cylinder investigated by Hühne, he found the optimal layup
for perfect-geometry buckling load to be [±20,±35]. However, for imperfect-geometry buckling,
Hühne found the optimal layup to be [±25, 902].
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Table 2: Data of SF and RTS optimisations. Converged result for RTS and SF optimisations are
RTS1 and SF1, respectively. SF2 is the maximum P̂ 99.9 from the exhaustive search for the SF
laminate. SF3 is the maximum fitness value from the exhaustive search for the SF laminate. RTS2
is the maximum P̂ 99.9 from the RTS optimisation. RTSman is the manufactured cylinder from
Ref. [18]. Fit is the fitness value of the layup as calculated from Fit = P̂ 99.9 · d(x) where d(x) is
calculated from the axial stiffness constraint of Equations (4.4) and (4.9). Thickness-normalised
results for the 99.9% reliability limit, mean imperfection signature and standard deviation are
described by the superscripts 99.9, µ, and σ, respectively. Axial stiffness, E, is calculated from
Equation (4.5) and percentage change, ∆P̂ 99.9

QI , is calculated from Equation (5.1).

ID Layup
Fit P̂ 99.9 P̂µ P̂σ E ∆P̂ 99.9

QI
(kN/kg.mm) (GPa) (%)

QI [±45, 0, 90]s 37.7 37.7 47.4 3.13 52.7 -
SF1 [±21,±66]s 39.6 39.6 44.1 1.45 54.8 5.04
SF∗

2 [±35, 902]s 14.7 46.8 50.3 1.16 35.9 23.0
SF3 [±22,±66]s 40.1 40.1 44.8 1.50 53.2 6.37

RTS1 [90± ⟨69|67⟩15, 0± ⟨11|35⟩10]s 40.6 40.6 43.1 0.82 53.4 7.69
RTS∗2 [90± ⟨58|67⟩9, 0± ⟨64|64⟩0]s 27.0 47.7 51.8 1.33 43.6 37.4

RTSman [0± ⟨20|25⟩2, 90± ⟨35|25⟩9]s 36.3 40.3 46.5 2.01 50.9 6.36
∗ No axial stiffness constraint
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Figure 4: Landscape of the perfect-geometry, thickness-normalised buckling loads P̂p for
[±α1,±α2]s where α1, α2 ∈ [0, 2, 4, ..., 90]. Blue dot is the global maximum P̂p = 50.1kN/kg.mm
for the layup [±36, 902]s.

To investigate the imperfect-geometry response of the present structure, a search was
conducted with respect to P̂ 99.9 for the [±α1,±α2]s with α1, α2 ∈ [0, 5, ...90]. The design
landscape is shown in Figure 5 with the global maximum, SF2, shown by the red dot and SF1
shown by the blue dot. The landscape is coarser than Figure 4 as the number of FE analyses
to calculate a central difference P̂ 99.9 for 2◦ increment across [±α1,±α2]s is 23276 compared to
3971 for a 5◦ increment. An initial coarse-mesh analysis sweep of the landscape enabled a finer
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Figure 5: Coarse and fine mesh design landscape of the 99.9% reliability thickness-normalised
buckling loads, P̂ 99.9, for [±α1,±α2]s where α1, α2 ∈ [0, 5, ..., 90]. Red dot is the global maximum
P̂ 99.9 = 46.8kN/kg.mm for the layup [±35, 902]s. Cyan dot is optimiser solution SF1 with P̂ 99.9 =

39.6kN/kg.mm for the layup [±21,±66]s. Cyan and red dots refer to axial stiffness constraint and
no axial stiffness constraint solutions, respectively.

mesh analysis around the global optimum. The global maximum P̂ 99.9 is a [±35, 902]s laminate
with a P̂ 99.9 = 46.8kN/kg.mm, 23% greater than the QI laminate and 18.2% greater than SF1.
The optimiser did not find laminate SF2 as it does not meet the axial stiffness constraint and
is therefore penalised during the optimisation. As shown in Table 2, the fitness value of SF2 is
14.7kN/kg.mm due to the lower axial stiffness of the design and the heavy penalisation due the
constraint d(x).

The fitness response surface is depicted in Figure 6 for both a coarse initial mesh and finer
mesh in the region of interest. The large valley shown for α1, α2 ≥ 35◦ is due to the axial stiffness
constraint reducing the fitness of the design. The loss in axial stiffness occurs as the fibres
are orientated circumferentially rather than axially. In the analysis of the fitness function, two
optima were found based on the coarseness of the fibre angle distribution for the [±α1,±α2]s
layup. The first optimum found in the coarse mesh, a [±20,±65]s layup, has a fitness value of
39.1kN/kg.mm. The second optimum found in the finer mesh, SF3, a [±22,±66]s layup, has
a fitness value of 40.1kN/kg.mm. For layups that have an axial stiffness equal to or greater
than the QI, the fitness values are equal to the P̂ 99.9 of that laminate. The P̂ 99.9 of SF3 is
1.3% greater than the P̂ 99.9 of SF1, the design found by the optimiser, indicating that the
optimisation algorithm converged close to the optimal design. Whilst the convergence of the
SF optimisation does not guarantee convergence for the RTS optimisation, it indicates that the
optimiser successfully converges towards high-reliability, thickness-normalised buckling loads.
With the SF design landscape explored and optimisation scheme verified, the RTS results are
discussed next.

(c) RTS results
The solution converged upon by the RTS solver, RTS1, is a [90± ⟨69|67⟩15, 0± ⟨11|35⟩10]s
laminate with a P̃ 99.9 = 40.6kN/kg.mm, 7.69% greater than the eight-layer QI laminate and 1.2%

greater than SF3. The optimiser has again converged on a laminate that minimises variance with
P̂σ = 0.82kN/kg.mm for RTS1 being 73% lower than the eight-layer QI laminate and 43% lower
than SF1. The orthogrid-type structure produced by RTS1 is similar to other RTS laminates that
have high buckling loads [16] and the manufactured and tested RTS laminate, RTSman [18]. The
inner plies have shallow shearing angles, create embedded hoops and have an average thickness
of 8% greater than the nominal ply thickness. It is interesting to note the high shearing angles
of the first ply-pair of RTS1—the average thickness of the outer plies is 164% greater than the
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Figure 6: Coarse and fine mesh design landscape of the fitness (Fit) values Fit = P̂ 99.9 · d(x)
for [±α1,±α2]s where α1, α2 ∈ [0, 5, ..., 90] and d(x) is the axial stiffness constraint described in
Equations (4.4) and (4.9). Magenta dot and star represent the global maximum Fit for the coarse
and fine mesh respectively. Maximum course mesh Fit = 39.1kN/kg.mm with layup [±20,±65]s.
Maximum fine mesh Fit = 40.1kN/kg.mm with layup [±22,±66]s. Cyan dot is optimiser solution
SF1 with Fit = 39.6kN/kg.mm for the layup [±21,±66]s.

nominal thickness. However, despite the increase in average thickness, the thickness-normalised
reliability buckling load is still greater than the QI laminate and SF laminates within the axially-
constrained optimisation. As the difference between T0 and T1 is small, it appears that the
optimiser has resulted in a uniformly thick outer ply-pair to increase its contribution to the second
moment of area.

It is worth noting that some laminates within the optimisation have greater P̂ 99.9 then the
optimised results, but are penalised due to the axial stiffness constraint. The RTS cylinder with
the greatest P̂ 99.9, RTS2 with layup [90± ⟨58|67⟩9, 0± ⟨64|64⟩0]s, has P̂ 99.9 = 47.7kN/kg.mm,
which is 37.4% greater than the eight-layer QI cylinder. The ⟨64|64⟩0 lamina is a sheared, straight-
fibre layer that has a thickness 128% greater than the nominal thickness. RTS2 has a lower fitness
value than RTS1, as the axial stiffness is 17% lower than the eight-layer QI cylinder. However,
it worth mentioning that for the SF and RTS cylinders without axial stiffness constraint, i.e. SF2
and RTS2, the RTS design achieves a better compromise between increased 99.9% reliability load
and axial stiffness. While RTS2 improves on the QI 99.9% reliability load by 37.4% it only has a
17.3% reduction in axial stiffness, whereas SF2 loses 31.9% of its axial stiffness compared to the
QI laminate for a 23.0% improvement in 9.9% reliability load. Hence, the greater design space of
tow steering provides the RTS design greater flexibility to obtain high imperfect buckling loads
with stiff axial response.

The manufactured RTS cylinder, RTSman has similarP̂ 99.9 and E values to the optimiser-found
solution, RTS1. RTSman was a laminate design with a high fitness value in a dynamic-imperfection
optimisation [17] based on a random combination of the first twenty eigenmodes of the QI
cylinder. In each generation, the weighting of eigenmodes was changed to ‘dynamically’ vary
the imperfection and incorporate a first-order robustness analysis. The optimisation function
maximised the imperfect-geometry buckling load of the RTS laminates with the eigenmode-
affine imperfection signature. Despite the higher-order QI eigenmodes not being representative
of composite cylinders, which are actually dominated by low-order modes [35], the dynamic
optimisation converged on a relatively robust layup that has a high P̂ 99.9, albeit with a slightly
lower E as this was set to 90% of the QI stiffness during this optimisation.

To investigate the trade-off between P̂ 99.9 and E further, RTS and SF data from both
optimisations are plotted on a single plot, as shown in Figure 7. The green lines represent the
QI data for P̂ 99.9 (y-axis) and E (x-axis), respectively. Of the laminates analysed, there are many
layups that have greater P̂ 99.9 than the eight-layer QI cylinder, but have lower axial stiffness.
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Figure 7: Data from RTS (blue) and SF (red) optimisations. QI data are shown as green lines for
P̂ 99.9 (y-axis) and E (x-axis), respectively. Layups tabulated in Table 2 are plotted with different
markers. Note the optimisation analyses found solutions that have P̂ 99.9 and E greater than the
eight-layer QI. Boxed region is shown on the right-hand side as zoomed-in figure.

Many SF and RTS laminates have a greater E than the QI cylinder, but often to the detriment of
P̂ 99.9. Only 13 of the 1261 layups investigated have a greater P̂ 99.9 and E than the eight-layer QI
cylinder, indicating that a trade-off is necessary to achieve one over the other. Indeed, the results
suggest a Pareto front generated by the data, as shown by the dotted black line in Figure 7, which
indicate possible optimal combinations of P̂ 99.9 and E.

6. Conclusion
On account of the susceptibility of thin-walled cylinders to buckle prematurely due to initial
imperfections, VAT composites have been investigated as a potential avenue for alleviating
imperfection sensitivity. Whilst previous research has optimised the layup of variable-stiffness
cylinders for perfect-geometry buckling, the present research offers a novel methodology by
including realistic imperfections within the optimisation and optimising the fibre angles for
imperfect-geometry buckling load. The imperfections included in the optimisation are taken
from a measured data set and are therefore realistic manufacturing imperfections. To offer a
statistically significant estimation of robustness, the first-order second-moment methodology of
estimating the probability distribution of buckling loads as a function of this measured data set
was implemented within the optimisation. Using the Mahalanobis transformation and spectral
decomposition, it was possible to reduce the number of analyses needed considerably to calculate
statistical features of the estimated distribution. The 99.9% reliability point on the estimated
reliability curve was optimised, as it represents a realistic lower-bound for cylinder design (1 in
1000 failure rate). Due to the fibre-angle-thickness coupling of RTS laminates the 99.9% buckling
load was normalised by mass and thickness to allow for a fair comparison with constant-thickness
designs. Furthermore, an axial stiffness constraint was included within the optimisation to ensure
that the optimised buckling load of a design is not to the detriment of other mechanical properties.
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Both SF and RTS cylinders were optimised to maximise P̂ 99.9 and compared against an
eight-layer QI cylinder. For the straight-fibre optimisation, the optimiser converged on SF1, a
[±21,±66]s layup that has a 5% greater P̂ 99.9 than the nominal eight-layer QI laminate. An
exhaustive search across the [±α1,±α2]s landscape found that the optimum P̂ 99.9 with axial
stiffness constraint is a [±22,±66]s laminate that has a 6% greater P̂ 99.9 than the QI laminate.
Without an axial stiffness constraint, the SF laminate with the greatest P̂ 99.9 is a [±35,±90]s layup
that has a 23% greater P̂ 99.9 but a 32% lower E than the QI laminate. For the RTS laminates, the
optimiser converged on RTS1, a [90± ⟨69|67⟩15, 0± ⟨11|35⟩10]s layup that has a 8% greater P̂ 99.9

than the eight-layer QI cylinder. Another laminate, RTS2 with layup [90± ⟨58|67⟩9, 0± ⟨64|64⟩0]s,
has a 37% greater P̂ 99.9 but 17% lower E than the QI laminate.

Despite the convergence on high-reliability laminates, some limitations of the present work
offer interesting avenues for further research. To address the time and computational cost
of numerous analyses, it is suggested that surrogate modelling [59] would be an efficient
methodology to pursue. Presently, the 99.9% reliability point has been used in the objective
function with the assumption of normally distributed imperfect buckling loads. Further research
into other reliability points (95%, 99%) could be of interest for less safety-critical structures and, if
appropriate, assuming different distributions. For example, extreme value distributions generally
govern the statistics of subcritical buckling phenomena [8]. Finally, the highly-reliable SF and RTS
laminates optimised herein present promising layups that could be manufactured to verify their
performance.
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