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Abstract— Applications of simultaneous and proportional
control for upper-limb prostheses typically rely on supervised
machine learning to map muscle activations to prosthesis
movements. This scheme often poses problems for individuals
with limb differences, as they may not be able to reliably
reproduce the training activations required to construct a
natural motor mapping. We propose an unsupervised myocon-
trol paradigm that eliminates the need for labeled data by
mapping the most salient muscle synergies in arbitrary order
to a number of predefined prosthesis actions. The paradigm is
coadaptive, in the sense that while the user learns to control
the system via interaction, the system continually refines the
identification of the user’s muscular synergies. Our evaluation
consisted of eight subjects without limb-loss performing target
achievement control tasks of four actions of the hand and
wrist. The subjects achieved comparable performance using the
proposed unsupervised myocontrol paradigm and a supervised
benchmark method, despite reporting increased mental load
with the former.

I. INTRODUCTION

Simultaneous and proportional (SP) myocontrol represents
a promising methodology to control dexterous prosthetic
hands naturally and intuitively. In this paradigm, regression
models map muscular contractions directly to continuous
motor commands for the degrees of freedom (DoFs) of the
prosthesis [1]. The models are typically obtained via super-
vised machine learning, in which muscular data acquired
from the subject’s forearm is associated during a training
phase with the desired motor commands.

Producing accurately labeled data can be challenging,
especially for subjects with limb differences who stand
to gain the most from this technology. Their impairment
not only poses difficulties in precisely reproducing specific
muscular activations, but also makes it impossible to verify
whether the activations they produce actually correspond to
the desired motor commands. Standard labeling protocols,
therefore, resort to collecting labels using the contralateral
hand as guidance or by pairing the desired motor commands
with a visual stimulus [2]. These procedures typically require
supervision from trained clinicians, are time-consuming, and
are often perceived as mentally demanding by the target
users.

A form of myocontrol that can learn motor mappings
without labeled training data would be a desirable alterna-
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tive to standard supervised myocontrol (SM). Existing ap-
proaches to such unsupervised myocontrol (UM) build upon
evidence that the human motor system produces movements
by jointly activating groups of muscles [3]. These muscle
synergies function as high-level motor commands that can
be combined to produce more fine-grained motor control.
Lin et al. [4] achieved quasi-unsupervised myocontrol of
the DoFs of the wrist through a principled calibration
protocol. First, they collected unlabeled calibration surface
electromyography (SEMG) by asking the subjects to selec-
tively move the desired DoFs of the wrist. Then, they used
a nonnegative matrix factorization (NMF) algorithm with
sparsity constraints to express the calibration SEMG as the
activity of minimally-overlapping muscle synergies. Finally,
they assigned muscle synergies to DoFs by observing which
synergy was most active while activating each DoF. The
work by Yeung et al. [5] extends the calibration procedure
described above, accounting for the evolution of muscle
synergies over time due to the subject’s familiarization with
the myocontrol system and the displacement of electrodes,
among other factors. They accommodate for those changes
by employing an adaptive version of NMF with sparsity
constraints and a forgetting mechanism that progressively
discounts the contribution of old input samples. The method
automatically triggers unsupervised model updates when
model degradation is detected during normal operation. Both
approaches allowed performance comparable to a SM bench-
mark in target-reaching tasks involving a cursor on a screen.

The semi-unsupervised calibration procedure used by the
previous works requires subjects to repeat the same muscular
activations in an open-loop. This is done so that an individual
synergy can be isolated and mapped to the DoF of the
prosthesis that physiologically corresponds to the muscular
activation. As mentioned, this can be unpractical for subjects
with limb differences, who may not be able to precisely and
repeatably control each DoF of their phantom limb. In these
cases, it would be preferable to control hand movements via
an abstract motor mapping, that is, by muscular activations
that may not be physiologically related to those movements.
In this manner, subjects could control their prosthesis using
the muscular patterns that they can elicit best.

Numerous works on motor learning have demonstrated the
human capacity to learn abstract motor mappings through
closed-loop interaction with a myocontrol system [6]. Ison
and Artemiadis [7] demonstrated that humans can learn non-
trivial motor mappings between the combined activity of
biomechanically independent muscles and the position of
a cursor on a screen. Their research also showed that the
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learned motor skills are retained over time and can generalize
to different myocontrol tasks, such as controlling the position
of a robot’s end-effector on a plane. Pistohl et al. [8] showed
that abstract motor mappings can be effectively used to con-
trol myoelectric hands. Their approach arbitrarily maps the
activity of a specific muscle to the control of an action of the
hand and relies on the subject to learn to use that mapping.
However, this motor learning may be complicated if the
muscles used in the motor mapping are biomechanically
coupled [9], as is the case in the human forearm. To control
myoelectric hands it may thus be advantageous to define
abstract motor mappings based on automatically extracted
muscle synergies rather than individual muscle activations.

In this work, we introduce a novel coadaptive UM
paradigm that integrates incremental extraction of muscle
synergies and adaptation to an abstract motor mapping that is
based on those synergies. The system adaptively decomposes
muscular control inputs into sparse muscle synergies using
a purposedly designed incremental NMF algorithm with
sparsity constraints and a forgetting mechanism to discount
the contribution of old input samples. Although derived
independently, our formulation is similar (but not equal)
to the NMF algorithm used by Yeung et al. [5], which
was published during our paper’s final redaction. In contrast
to their approach, this algorithm is used to implement an
abstract motor mapping between the synergies’ activations
and a set of desired actions of the hand or wrist that may
not be physiologically related to those activations. A virtual
hand on a monitor visualizes the model’s prediction in real-
time and closes the control loop with the subject. Subjects
are instructed to learn to perform the desired actions with
the virtual hand, starting from eliciting arbitrary muscular
contractions. This paradigm involves coadaptation between
subjects and myocontrol model. Subjects aim to elicit more
distinctive muscular patterns whilst the model incrementally
decomposes those patterns into sparse muscle synergies.
Conveniently, this paradigm does not require any initial
calibration of the myocontrol system, is easily understood by
the subjects, and encourages them to explore their muscular
space to identify distinctive muscular patterns for myocon-
trol. We compare the proposed UM paradigm to a state-of-
the-art SM in a series of target achievement control (TAC)
tests and via a questionnaire.

The remainder of this paper is organized as follows. In
section II, we describe our UM method and its experimental
evaluation. The corresponding results are then described in
section III. A discussion of the results follows in section IV
and the paper is concluded in section V.

II. MATERIALS AND METHODS
A. Coadaptive unsupervised myocontrol paradigm

We present a UM paradigm that adaptively extracts sparse
muscle synergies, implements an abstract motor mapping
based on those synergies, and leverages closed-loop adap-
tation to that mapping. Figure 1 provides an overview of
this paradigm. The resulting myocontrol model uses the
activation of the detected muscle synergies to control an
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Fig. 1: Proposed unsupervised myocontrol paradigm (UM). While
the subjects learn to control the artificial hand by interacting with
the system, their muscular activity is adaptively decomposed in
sparse muscle synergies. The activation levels of these synergies
are used to activate a predefined set of hand actions based on an
abstract motor mapping. The detected control action is fed back
to the user via a skin-colored hand on a monitor. During the TAC
tasks, the subject has to match the target action of the hand shown
in gray on the monitor.

arbitrary set of actions of the hand and wrist simultaneously
and proportionally.

Incremental extraction of sparse muscle synergies: Be-
cause the subjects’ adaptation to the myocontrol model
causes changes in their muscular synergies, we require a
factorization algorithm that can incrementally extract and
update the decomposition of the input signals. To this end,
we formulate incremental sparse nonnegative matrix factor-
ization (ISNMF) with forgetting, which is an incremental
version of NMF with additional sparsity constraints and a
mechanism to discount the contribution of old input samples.

Standard NMF decomposes a nonnegative data matrix V'
of s n-dimensional samples as V' ~ W H, where factors W
and H are restricted to be nonnegative. The n x r matrix W
contains the basis vectors, whereas the r X s encoding matrix
H contains for each sample the activations of the bases as
to reconstruct V' as accurately as possible.

This problem can be solved incrementally by updating
the bases and encoding matrices when new data becomes
available. At the m-th update, the old data matrix V =
[Vl Vm’l] is extended with the new data samples
V'™, and the encoding matrix H = [H'! H™ 1 is ex-
tended with randomly initialized encoding coefficients H™.
The basis matrix W™ and the new encoding coefficients
H'™ can then be found by minimizing the objective function
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where 1 € (0,1] is a forgetting factor that exponentially
discounts old input samples, and 8 > 0 and v > 0 determine
the regularization strength for the encoding and the basis



matrices. With ||-||» and |-|[; we denote the Frobenius
and the elementwise L; norms. Furthermore, we assume
that the former encoding blocks H! to H™ ! would not
change much and therefore do not optimize these. This
approximation constrains the number of parameters that need
to be optimized at each update and has other computational
benefits [10, 11].

The problem can be solved incrementally following the
procedure in algorithm 1 based on multiplicative updates,
analogous to the derivation presented in other related
work [10, 11]. Model updates are performed in constant
time and memory by storing the model state into constant-
sized history matrices instead of retaining old data samples.
Encodings of new data samples in the updated synergy space
can be obtained by repeatedly applying the rule on line 17.
Among the algorithm’s hyperparameters, r represents the
desired number of NMF components, while the tolerance
€ > 0 and the maximum number of iterations ¢,,x > 0 are
used for the stopping condition of the iterative optimization.
The elements of W' and H™ are initialized randomly
to max(0, NV (V™ 1)), with V™ being the average value
of the new data samples and N representing the normal
distribution. Subscripts ij indicate the element at the i-th
row and the j-th column of the corresponding matrix.

Algorithm 1: ISNMF

Input: stream S of n-dim nonnegative samples
Parameters: 7, 3, v, [, €, tmax

1m<+0
2 A<+ [0]
3 B+ [0],,,

4 while true do

5 m+—m+1

nxXr

6 V™ ¢ n x k matrix with k& new samples from S
7 if m =1 then

8 W™ « n x r strictly positive random matrix
9 else

10 W™ wml

11 end

12 H™ <« r x k strictly positive random matrix

13 ep — ||IV™ — WmHmH?;

14 t<0

15 repeat

16 t—t+1
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18 Wi« Wi (/LWmB(thleHm)ﬁgwm)U
19 e |V —WTH™|,

20 until |e; —e;_1]/eg < € or t >ty

21 A+ pA+VTH™T
22 B+ puB+H™H™
23 end

Adaptive abstract motor mapping: The proposed UM
system periodically computes the encoding of a new mus-

cular input and regards its components as primitive motor
commands. These components are normalized to the range
[0,1] by dividing them by their historical 95-th percentile
computed incrementally and bounded above by 1. Each of
the resulting control signals is associated with one of a
predefined set of hand actions, where the order depends on
the random initialization of W' and the subsequent incre-
mental updates. We refer to this association as an abstract
motor mapping, because it is not based on a physiological
correspondence between muscle activity and action of the
hand. Since multiple control signals may be nonzero at the
same time, this allows simultaneous and proportional control
of the hand.

Adaptation to the motor mapping: The control loop is
closed by rendering the predicted action on a virtual hand
on a screen in real-time. Subjects are induced to learn the
abstract motor mapping implemented by the myocontrol
model through simple instructions. First, they are told which
basic actions the virtual hand can perform. Second, they are
informed that those actions can be controlled by performing
possibly different actions with their own (phantom) limb.
Finally, they are asked to identify which actions of their
hand precisely control the basic actions of the virtual hand,
starting by performing random actions and observing the
virtual hand’s reaction. The proposed myocontrol paradigm
is coadaptive because subjects and myocontrol model syner-
gistically try to generate distinctive muscular commands and
adaptively discriminate sparse muscle synergies from them.

B. Experiment: evaluation of unsupervised myocontrol

We compared the proposed unsupervised myocontrol ap-
proach to a state-of-the-art supervised one in a series of TAC
tests.

Farticipants: Eight non-disabled subjects participated in
the experiment. The study was conducted at the German
Aerospace Center according to the WMA Declaration of
Helsinki and approved by the Institution’s internal committee
for personal data protection.

Experiment setup: One Myo armband by Thalmic Labs
provided 200Hz 8-channels SEMG measurements of the
forearm muscles of the subjects’ right arm. Limbs move-
ments were restricted by padding the hand with two thick
gloves and securing the limb to an orthotic splint of the
hand and wrist. Moreover, subjects were asked to lay their
elbow on a table before them and to avoid rotating their wrist
during the experiment. A monitor displayed a skin-colored
virtual hand that showed the myocontrol model’s prediction
in real-time and a gray hand that provided reference actions
during the experiment. The experimental setup can be seen
in Figure 1.

Data processing and myoelectric control: The stream of
SEMG measurements was band-pass filtered online using a
second-order Butterworth filter with cutoff frequencies of
10Hz and 90Hz. Then, the envelope of each channel was
computed as the root mean square of the signal over the last
200 ms and used as input signal for both tested myocontrol
paradigms.



Four basic actions of the hand and wrist were selected for
myocontrol in this experiment. They were a power grasp, a
pointing with the index finger, a wrist flexion, and a wrist
extension. The number of basic actions corresponded with
the maximum number of distinct muscle synergies that could
be extracted reliably from the SEMG data measured with our
setup. The actions were chosen based on their relevance in
activities of daily living and because they are challenging in
realistic myocontrol settings.

Based on preliminary tests, the hyperparameters of the
ISNMF algorithm were set to r = 4, § = v = 30, u =
0.95, € = 1le — 5, and tmax = 200. The synergy model was
updated at f, = 0.2Hz using the k samples available from
the previous update. New encodings were computed at f, =
20 Hz and used to predict the desired action.

We compared UM to an existing supervised SM approach
that uses ridge regression with random Fourier features
(RFFRR). This approach, based on nonlinear regression,
provided state-of-the-art performance in a variety of SP
myocontrol applications including prosthetic control [12].
The interested reader is referred to [12] for details about
the method. We set the bandwidth and dimensionality of the
RFF mapping respectively to 1 and 300, the regularization
parameter of the regressor to 1, and the prediction frequency
to f, = 20Hz.

C. Experiment protocol

All subjects tested both UM and SM, in randomized
order, performing two types of exercises. The first type was
aimed at updating the myocontrol models, and denoted as
coadaptation round for UM or calibration round for SM.
The second type consisted of TAC tasks aimed at testing the
models. For each condition, three coadaptation or calibration
rounds were alternated with three TAC tests involving basic
actions to allow subjects to reach comparable familiarization
with the system; two TAC tests involving combinations of
basic actions concluded the sequence of exercises. In the
following, we will refer to the coadaptation (for UM) or
calibration (for SM) rounds as C, to the TAC tests on basic
actions as TB, and to the TAC tests on combined actions
as TC. The sequence of exercises performed by the subjects
for both UM and SM was, therefore: C1, TB1, C2, TB2, C3,
TB3, TC1, TC2.

The unsupervised model was randomly initialized at the
beginning of the experiment and progressively updated
throughout the following coadaptation rounds. They con-
sisted of 300s long sessions allocated for the UM model
to update the abstract motor mapping and for the subject to
adapt to it. The supervised model was initialized to provide
null predictions and updated in the subsequent calibration
rounds. In each calibration round, labeled training data was
obtained while asking subjects to hold each basic action and
a resting hand gesture for 5s. The model could be updated
with more training data for the actions that were deemed not
controllable.

In the TAC tasks, the myocontrolled virtual hand had to
be matched with the target action displayed by the reference

virtual hand. A task would be considered successful if
the subject managed to keep the predicted DoFs within a
euclidean distance of d < 0.15 from the target action for
at least a continuous 1s before the 10s maximum task
duration. During the TAC tests, the automatic updates of the
unsupervised model were suspended for better comparability
with the supervised strategy. The same TAC tests were
performed for both conditions. The TAC tests involving
basic actions included 16 tasks, corresponding to the four
basic actions presented at two intensity levels, 50 % and
100 %, and repeated twice in random order. Those involving
combined actions included eight tasks, corresponding to the
four possible combinations of basic actions of the hand and
the wrist, repeated twice in random order.

D. Performance evaluation

The performances achieved by UM and SM in the TAC
tests were compared based on standard metrics. Success rate
(SR) is the percentage of successful tasks in one TAC, time to
complete the task (TCT) is the time to successfully complete
one task, number of overshoots (NO) is the number of times
the predicted actions approached the target and then moved
away from it, mean error in target (MET) is the average
euclidean distance between predicted and target action after
reaching the target for the first time, and path efficiency (PE)
is the ratio between the length of the optimal path and the
predicted path from the rest action to the target action.

Moreover, subjects self-assessed performance of the my-
ocontrol models at the end of each TAC in terms of mental
effort, physical effort, and frustration. The ratings were
reported on visual analog scales (VASs) ranging from “low”,
corresponding to 0%, to “high”, corresponding to 100 %.
Subjects also assessed their satisfaction with the coadaptation
rounds of UM in terms of mental effort, physical effort, and
frustration level in the same questionnaire. As this is an initial
study on the proposed UM paradigm with a limited number
of subjects, we lack the statistical power for meaningful
significance tests and instead report the individual data points
when possible.

III. EXPERIMENTAL RESULTS

Figure 2(a) shows the success rate achieved during each
TAC test. Subjects reached comparable success rates around
50% with UM and SM in all TAC tests involving basic
actions. Controlling combined hand actions proved consid-
erably more difficult, especially with SM. Only one subject
managed to complete about 10 % of the combined actions
with SM, while approximately half the subjects obtained suc-
cess rates between 10 % to 50 % with UM. This discrepancy
may have to do with the fact that the linear ISNMF method
interpolates more predictably than RFFRR in parts of the
input space that were unseen during the training phase. The
comparison between UM and SM is not investigated further
due to the very lacking performance of the latter.

Figure 2(b-e) focuses on the tasks on basic actions that
were completed successfully and characterizes how quickly
and accurately they were executed. Trends of the median
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Fig. 2: Myocontrol performance in the TAC tests. (a) Success rate achieved during the TAC tests. (b-e) Performance achieved in tasks
on basic actions that were completed successfully. Each of the points displayed within the boxplots represents the average of a statistic

achieved by one subject during the tasks of the corresponding TAC.

[0 Supervised myocontrol 7] Unsupervised myocontrol

70
60

50

Q

o
S

40

2

IS
S
3

30

Frustration [%]

w
=]
=

Mental demand [%]

Physical demand [%]

20

N
N

10

TB3 TB3 TB3

Fig. 3: Self-assessed myocontrol performance. Mental and physical
demand, and frustration with the myocontrol model during the last
TAC on basic actions, TB3.

value and the spread of every metric suggest that subjects
familiarized themselves with SM during the first TAC test
and reached comparable performance to UM during the fol-
lowing ones. Presumably, a similar familiarization effect was
not observed for UM because subjects had gained proficiency
with the system already during the first coadaptation phase.
During the last TAC test on basic actions, TB3, subjects
completed the tasks in about 3.5s with either myocontrol
paradigm. On average, each target action was overshot two
times with SM and one time with UM, indicating that the
latter allowed slightly better control while approaching the
target action. Nevertheless, the magnitude of the overshoots
was small for both approaches. The median value of the
MET, around 0.012 for SM and 0.08 for UM, was only
about 5% of the maximum possible MET. A median path
efficiency around 40 % for SM and 50 % for UM, indicates
that target actions were reached with comparably efficient
movements. The small difference in path efficiency reflects
the slightly more frequent overshoots with SM.

Despite performing equivalently well with either my-
ocontrol paradigm, subjects deemed UM more mentally
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Fig. 4: Questionnaire unsupervised coadaptation rounds. Mental
and physical demand, and frustration level related to the calibration
rounds of SM and the coadaptation rounds of UM.

challenging, as shown in Figure 3. Most subjects reported
mental loads between 10 % and 30 % for SM and between
30% and 60 % for UM. Nonetheless, the level of physical
effort and frustration with the myocontrol system were more
comparable for the two approaches.

Figure 4 characterizes the coadaptation rounds of UM
in terms of mental demand, physical demand, and overall
frustration level, as compared to the standard calibration
procedure used for SM. Most subjects found coadaptation
rounds considerably more mentally challenging than cali-
bration rounds. The physical demand and frustration levels
were also slightly higher for the coadaptive procedure. These
results could be explained by the subjects having to learn
new abstract motor mappings, the longer duration of the
calibration procedure, or the model adaptation not fully
meeting the subjects’ expectations.

IV. DISCUSSION

The results of our experiment show that subjects can learn
abstract motor mappings controlled by sparse muscle syner-
gies extracted online. By the end of the first coadaptation
round, most subjects had managed to control all the basic



actions of the virtual hand independently. This indicates that
the ISNMF algorithm adaptively identified a set of muscle
synergies in the input signals that were distinctive enough
to control the virtual hand’s basic actions precisely. It also
confirms that subjects quickly learned the abstract motor
mapping implemented by the myocontrol algorithm, i.e., they
identified which actions of their restricted hand controlled the
desired actions of the virtual hand.

We note that our coadaptive UM paradigm induced sub-
jects to autonomously, and perhaps subconsciously, explore
their own muscular space. This could be especially beneficial
for individuals with limb differences, allowing them to inde-
pendently discover muscular activations that they can elicit
comfortably and repeatably enough for use in myoelectric
control. In future work, we hope to experimentally confirm
these benefits for individuals with limb differences.

Some subjects complained about not being able to control
one of the virtual actions independently of the others, despite
trying numerous control inputs. This is reflected in the non-
decreasing frustration about the coadaptation phase reported
in the questionnaire (Figure 4). We argue that this problem
relates to adopting a unique set of hyperparameters for the
ISNMF algorithm for all the subjects. Although they had
been optimized on preliminary tests, stronger regularization
and forgetting could have been helpful for some subjects.
Future investigation will include strategies to automatically
tune those hyperparameters during the experiment based on
codependencies between the extracted muscle synergies.

Our experiment also shows that abstract motor mappings
based on adaptively extracted muscle synergies enable fully
unsupervised SP myocontrol of artificial hands. The ap-
proach performed equivalently well as state of the art SM
with a physiologically-inspired motor mapping (Figure 2),
and the two paradigms generated comparable frustration
levels in the subjects (Figure 3). Nonetheless, the mental
effort required for UM was higher than for SM (Figure 3).
Presumably, this is because all subjects were non-disabled;
they had to learn the abstract motor mappings used in UM
while they were already familiar with the physiologically-
inspired mapping used in SM. We would expect to see higher
levels of mental effort for subjects with limb differences
when using SM.

V. CONCLUSIONS

To avoid the need for labeled training data for simultane-
ous and proportional myocontrol, we proposed an unsuper-
vised and coadaptive myocontrol paradigm. Our myocon-
trol system incrementally refines the recognition of sparse
muscle synergies from SEMG measurements and maps them
arbitrarily to a set of hand actions. At the same time,

the user interacts with the system in a closed-loop and
learns to control this abstract motor mapping by producing
more distinctive muscular patterns. In a series of TAC tests
with eight non-disabled subjects, this unsupervised myocon-
trol paradigm performed as well as a supervised reference
method in terms of task success rate, completion time, and

path efficiency, despite coming at a higher self-reported
mental load. This demonstrates the capacity of humans to

learn to control abstract motor mappings based on adaptively
extracted muscle synergies and supports the feasibility of
using the proposed UM paradigm for prosthetic control.
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