
1.  Introduction
Extratropical marine boundary layer (MBL) clouds typically occupy the postfrontal sector of synoptic systems 
when passing over the ocean surface (e.g., Field & Wood, 2007; Rémillard & Tselioudis, 2015). Their pres-
ence substantially enhances regional albedo, and such clouds are challenging to faithfully represent in numerical 
models, whether for forecasting weather or projecting climate change (e.g., Bodas-Salcedo et al., 2016; Forbes 
& Ahlgrimm, 2014; Tselioudis et al., 2021). Common during winter and its shoulder seasons, cold air outbreaks 
(CAOs) pose a particular challenge (e.g., Abel et al., 2017; Field et al., 2017) as they form highly reflective, 
nearly overcast cloud decks, typically organized in roll-like structures that contain both water and ice, which 
generally break up into less reflective, open-cellular cloud fields farther downwind (e.g., Brümmer, 1999; Pithan 
et al., 2019).

Abstract  Recent aircraft measurements over the northwest Atlantic enable an investigation of how 
entrainment from the free troposphere (FT) impacts cloud condensation nucleus (CCN) concentrations in the 
marine boundary layer (MBL) during cold-air outbreaks (CAOs), motivated by the role of CCN in mediating 
transitions from closed to open-cell regimes. Observations compiled over eight flights indicate predominantly 
far lesser CCN concentrations in the FT than in the MBL. For one flight, a fetch-dependent MBL-mean CCN 
budget is compiled from estimates of sea-surface fluxes, entrainment of FT air, and hydrometeor collision-
coalescence, based on in-situ and remote-sensing measurements. Results indicate a dominant role of FT 
entrainment in reducing MBL CCN concentrations, consistent with satellite-observed trends in droplet number 
concentration upwind of CAO cloud-regime transitions over the northwest Atlantic. Relatively scant CCN may 
widely be associated with FT dry intrusions, and should accelerate cloud-regime transitions where underlying 
MBL air is CCN-rich, thereby reducing regional albedo.

Plain Language Summary  Cloud droplets form on a subset of atmospheric particles, referred to 
as cloud condensation nuclei (CCN). The number concentration of CCN affects the brightness and horizontal 
extent of clouds. Satellite measurements indicate cloud droplet number concentrations drop off sharply as 
wintertime marine cold-air outbreak clouds flow eastward, helping to reduce the brightness and horizontal 
extent of the clouds. We use aircraft measurements from several flights where cold continental air flowing 
over the northwest Atlantic to estimate the CCN budget in the near-surface turbulent air. We show that CCN 
concentrations in the immediately overlying air, the free troposphere (FT), are usually far less than in the 
marine boundary layer (MBL). Through additional analysis of one flight, we show that mixing of FT air is 
the primary factor reducing CCN concentrations in the MBL prior to rain formation, thereby contributing to a 
reduction in cloud brightness and extent.
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MBL clouds are sensitive to the number concentration of aerosol available as cloud condensation nuclei (CCN). 
Greater CCN concentrations can enhance cloud albedo when (a) distributing the same cloud condensate over 
more numerous, smaller droplets (Twomey, 1974), (b) suppressing precipitation formation, leading to greater 
areal cloud cover (Albrecht, 1989) and thicker clouds (Pincus & Baker, 1994), and (c) affecting cloud mesoscale 
structure (e.g., Wang & Feingold, 2009). On the other hand, smaller droplets fall more slowly in updrafts and 
can boost entrainment of overlying dry air, reducing cloud thickness and counteracting albedo-enhancing effects 
(Ackerman et al., 2004; Bretherton et al., 2007). The collisions between hydrometeors that drive precipitation 
formation in warm clouds also reduce CCN number concentrations and can drive a positive feedback loop in 
which fewer CCN promote further precipitation formation in warm stratocumulus (Yamaguchi et al., 2017). Such 
a feedback loop is also implicated in mixed-phase CAO observations (e.g., Abel et al., 2017) and simulations 
(Tornow et al., 2021), and is hypothesized to explain horizontal gradients in cloud droplet number concentrations 
off the mid-Atlantic coast of the US (Dadashazar et al., 2021).

Unique to CAOs are extreme surface heat fluxes aided by the warm temperatures of the Gulf Stream (Liu 
et al., 2014; Seethala et al., 2021) that typically drive rapid MBL deepening despite strong large-scale subsidence 
(Papritz et al., 2015; Papritz & Spengler, 2017), thereby copiously entraining free tropospheric (FT) air. The 
MBL air, because it advects off the industrialized, urban eastern US seaboard, can be highly polluted (Sorooshian 
et al., 2020), setting up a large potential influence for the FT air. Other sinks and sources in each airmass may 
include new particle formation (e.g., McCoy et al., 2021; Zheng et al., 2021) and long-range transport of direct 
emissions, such as biomass burning (e.g., Zheng et al., 2020).

In previous work, simulated MBL clouds in a northwest Atlantic CAO case study were found sensitive to ideal-
ized FT-MBL differences in CCN concentration (Tornow et al., 2021). Here we use observations of CAOs in that 
region to assess actual FT-MBL CCN differences and the role that entrainment of FT air plays in the MBL CCN 
budget as it evolves downwind. This wider analysis is enabled by recent in-situ and remote-sensing observations 
collected on multiple research flights during the Aerosol Cloud Meteorology Interactions over the Western Atlan-
tic Experiment (ACTIVATE; Sorooshian et al., 2019). In the following we first present evidence from multiple 
flights that the FT predominantly dilutes MBL CCN before heavy precipitation develops. We then quantify the 
MBL CCN budget for one case study, revealing the dominant role of FT dilution on MBL CCN evolution upwind 
of heavy precipitation.

2.  CCN Gap Between FT and MBL
Before surveying the measurements across several flights, we first provide a composite demonstration of in-situ 
and remote sensing data gathered during one research flight (RF14) in Figure 1. In situ legs are classified by 
their cloud-relative vertical position and projected into a quasi-Lagrangian framework (methods in Section S1 
in Supporting Information S1). The processed CCN measurements for RF14 seen in Figure 2 demonstrate the 
analysis approach subsequently applied to all flights. The differences between “clear, near-surface” and “clear, 
below-cloud” samples are smaller than the variability within each group, consistent with relatively well-mixed 
conditions within a turbulent MBL. Upwind of the cloud edge, entrainment of FT air can only reduce the MBL 
CCN, since the FT concentrations (at SS = 0.3%–0.6%) are relatively stable at 50–200 cm −3, much less than 
MBL concentrations of 1,000–3,000 cm −3. The CCN gap between FT and MBL progressively narrows as MBL 
concentrations decrease downwind of the cloud edge, consistent with dilution via strong FT entrainment. At all 
downwind distances sampled during this flight, FT concentrations are well exceeded by those in the MBL.

Another prominent feature in Figure 2 is a decrease in CCN spectral width downwind: upwind of cloud forma-
tion (ΔL ≈ −300 km) nearly twice the particles are available for activation as SS increases from 0.3% to 0.6%, 
whereas downwind (ΔL ≈ 200 km) only ∼20% more particles are available when doubling SS.

To assess whether the FT commonly dilutes MBL CCN in northwest Atlantic CAOs, we compare MBL and FT 
CCNSS = 0.43% (hereafter just “CCN”) concentrations versus ΔL in Figure 3a. FT concentrations are predominantly 
exceeded by those in the MBL with rare exceptions. Some instances, such as those corresponding to RF17 and 
RF18, may be associated with crosswind flight paths subject to variability in upwind conditions (Figure S8 in 
Supporting Information S1). Owing to the northerly winds that day, air sampled farther offshore traveled longer 
over the ocean prior to cloud formation, and the indication in Figure 3 that the FT served briefly as a CCN source 
from both flights that day may be attributable to spatiotemporal variability neglected in our approach.

Writing – review & editing: F. Tornow, 
A. S. Ackerman, A. M. Fridlind, B. 
Cairns, E. C. Crosbie, S. Kirschler, R. H. 
Moore, D. Painemal
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Because supersaturations in CAO convection can be expected to exceed 0.43%, we also evaluate how particles 
activating at greater supersaturations affect the FT–MBL differences. For condendation nuclei (CN) larger than 
or equal to 10 nm, which include sizes far smaller than are likely activated in MBL clouds, qualitatively similar 
gaps are seen in Figure 3b.

We also find that the FT–MBL CCN gap generally narrows downwind of cloud formation because of decreasing 
MBL concentrations (open symbols tend to lie to the left of closed symbols), consistent with RF14 (Figure 2). 
Meanwhile, FT concentrations generally lack systematic trends with downwind distance and are characterized by 
a much smaller absolute dynamic range (cf. Figure 2).

In summary, in situ observations collected over several CAO events consistently indicate a predominance of 
CCN-poor conditions in the FT and a CCN gap between FT and MBL that progressively narrows downwind.

3.  Impact of FT Entrainment on MBL CCN
In Section 2 we aggregated transits across the MBL top to assess FT-MBL CCN differences for several flights. 
Since RF14 is a particularly long flight with multiple transits, we can further estimate for that flight the relative 
contribution of FT entrainment to MBL CCN evolution downwind. To do so, we estimate budget terms based on 
in-situ and remote sensing observations (Section 3.1) and evaluate their evolution with fetch (Section 3.2).

3.1.  CCN Budget Terms

3.1.1.  Entrainment

The MBL entrainment rate is notoriously challenging to quantify, so much that its determination was a primary 
objective of a field campaign targeting subtropical stratocumulus (e.g., Faloona et al., 2005; Stevens et al., 2003). 
As will be seen below, the entrainment term not only dominates the MBL CCN budget upwind of strong precip-
itation, but the magnitude of its uncertainty is also much greater than that for other budget terms. We address 
that uncertainty here by deriving two independent estimates of entrainment rate and its dependence on downwind 
fetch. As a primary method that is used in the CCN budget, we exploit the fetch-dependent difference between 

Figure 1.  ACTIVATE Falcon flight track during RF14 on 1 March 2020 (top left and right), King-Air HSRL-2 remote-sensing measurements (top and middle left), 
Falcon in situ measurements of aerosol particle size distribution (PSD) and cloud condensation nuclei (CCN) concentrations at 0.43% supersaturation (bottom left), and 
GOES-16 visible image (right) with approximate wind direction inferred from roll orientation (cyan line), cloud edge (white line), and King-Air Research Scanning 
Polarimeter (RSP) measurement extent (gray on either side of the flight track).
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CO trace gas measured in the FT and MBL to estimate entrainment rates by using a mixed-layer approach (e.g., 
Fridlind et al., 2012; Lilly, 1968) that we apply to a horizontally translating quasi-Lagrangian MBL. As a second 
method for comparison with the CO-derived entrainment rates, we combine retrievals of cloud top height from 
Geostationary Operational Environmental Satellites GOES-16 observations (Minnis et al., 2008), constituting a 
Lagrangian counterpart to the analysis by Painemal et al. (2017), with subsidence rates from reanalysis (European 
Center for Medium Range Weather Forecast Reanalysis fifth Generation, ERA5; Hersbach et al., 2020) along 
Lagrangian trajectories computed from ERA5 horizontal winds.

To compute the actual entrainment term for the MBL CCN budget, we multiply the CO-derived entrainment rate 
by the corresponding measured FT–MBL difference in CCNSS = 0.43%. The details of our entrainment calculations 
are described further in Section S1.3.1 in Supporting Information S1.

3.1.2.  Hydrometeor Collisions

We approximate loss of (activated) CCN from hydrometeor collision through a combination of more continuous 
remote sensing measurements and more detailed in-situ measurements. More specifically, we use hydrometeor 
particle size distributions (PSDs) measured in situ to stochastically reconstruct PSD profiles within the cloudy 
MBL that vary with fetch owing to the progressive deepening of the MBL depth and corresponding increase in 
LWP, as well decreasing droplet concentration Nd in response to a progressively increasing rate of hydrometeor 
collisions. Loss rates are computed using a simplified stochastic collection equation (cf. Wood, 2006), which we 
simply treat as the loss rate for CCN. To fill in gaps in our fetch-dependent CCN budget, we use LWP retrievals 
from the Research Scanning Polarimeter (RSP) to constrain our reconstruction profiles, which are available at 
0 < ΔL < 100 km (shaded gray in Figure 4), well upwind of the cloud transition seen in Figure 1. To extend 
our budget further downwind than afforded by RSP retrievals, we also use retrievals from the satellite-borne 
Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite acquired 1 hr before the flight to 

Figure 2.  Cloud condensation nuclei (CCN) at selected supersaturations (by color) in cloud-free legs on RF14 versus downwind distance, ΔL, derived via a projection 
of leg geolocation from cloud edge in the direction of the large-scale horizontal wind (shown in Figure 1). Leg types distinguished per legend. Gray shading spans free 
tropospheric (FT) class “clear, above-cloud” and marine boundary layer (MBL) class “clear, below-cloud.” Red bars span middle half of in-cloud droplet concentration 
Nd from FCDP, with median indicated.
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extend our approximation. The details of our collisional loss calculations are described further in Section S1.3.2 
in Supporting Information S1.

3.1.3.  Surface Source

We estimate a MBL-mean sea-salt surface source following Wood et  al.  (2017), as originally formulated by 

Clarke et al. (2006): 𝐴𝐴 𝑁̇𝑁surf =
𝐹𝐹𝐹𝐹

3.41
𝑠𝑠

𝐻𝐻
 , in which F = 132 m −3 (m s −1) −2.41, near-surface wind speed us is taken from 

the ERA5 winds, and H from a polynomial fit to cloud top height as measured by the High Spectral Resolution 
Lidar HSRL-2, as described further in Section S1.3.1 in Supporting Information S1.

3.2.  Budget Results

FT entrainment rates based on CO measurements in the MBL and FT (Figure S2 in Supporting Information S1) 
are substantial, reaching up to 12 cm s −1 for 0 < ΔL < 100 km (Figure 4a). These CO-based estimates over-
lap remarkably well with our independent estimates obtained from GOES-16 retrievals in combination with 
ERA5 winds. These entrainment rates are also comparable to those from large-eddy simulation of a CAO in the 
same region and season, which reach peak rate of 10 cm s −1 just before the rain onset (cf. Figure 2 of Tornow 
et al., 2021).

Entrainment rate estimates along Lagrangian trajectories intersecting the flight track that were repeated hourly 
reveal substantial variability across the range of fetch (Figure S3c in Supporting Information S1). Whether using 
measurements obtained from a platform moving much faster than the MBL, with the aircraft speed of ∼100 m s −1 
and horizontal winds in the MBL of ∼25 m s −1, or using instantaneous measurements (e.g., from MODIS on a 
polar-orbiting satellite), we inherently assume stationary conditions, a simplifying assumption that can introduce 

Figure 3.  Free tropospheric (FT) versus marine boundary layer (MBL) concentration of cloud condensation nuclei (CCN) at 0.43% supersaturation (left) and of CN 
greater than or equal to 10 nm diameter (right) colored by research flight (per legend) and interpolated at 25-km intervals across available ΔL. Filled and open circles 
show the relative position up- and downwind, respectively, to the cloud edge.
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Figure 4.
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substantial uncertainties in our semi-Lagrangian framework. Nonetheless, entrainment rates derived from our 
best estimate of a true Lagrangian framework are comparable with those computed from the same inputs in our 
quasi-Lagrangian framework for RF14, as seen in Figure S3c in Supporting Information S1. Thus we expect that 
the quasi-Lagrangian transformation is generally sufficient to provide a plausible dependence of fetch-dependent 
dilution of MBL CCN by FT entrainment across the collection of flights, consistent with our interpretation of 
Figures 2 and 3.

Results in Figure 4b indicate that the observed evolution in MBL CCN concentration (∼−240 cm −3 hr −1) is 
primarily explained by FT entrainment (∼−180  cm −3 hr −1), while hydrometeor collisions are less important 
(∼−25 cm −3 hr −1) and surface production is quite modest (∼5 cm −3 hr −1). These relative contributions to the CCN 
budget are consistent with the aforementioned northwest Atlantic CAO simulations that used idealized aerosol 
in the absence of in-situ measurements (cf. Figure 6 of Tornow et al., 2021). Constraining the PSD profiles with 
collisional loss rates with MODIS retrievals of LWP (dashed lines in Figure 4), a growing role for hydrometeor 
collisions is indicated approaching the cloud-regime transition, resulting from the presence of larger drops as well 
as frozen hydrometeors (riming), which start to dominate the CCN budget at ΔL > 200 km.

4.  Discussion
It is unsurprising that such substantial entrainment rates occur in the early stage of marine CAOs, an environment 
where the MBL can deepen rapidly owing to enormous surface fluxes, despite large-scale subsidence (e.g., Figure 
S3b in Supporting Information S1); aside, we note both MBL deepening and subsidence contribute to entrain-
ment. What is surprising is the consistently large FT-MBL gaps in CCN concentrations, which facilitate strong 
CCN dilution of the MBL from entrainment.

An obvious question arises: where did such relatively clean FT air originate? Seven-day back-trajectories arriving 
at 2 and 3 km altitude for RF14 (Figure S9 in Supporting Information S1) indicate a northwest origin, respectively 
starting near Alaska and the north Pacific and reaching ∼6 km altitude before subsiding. Such a pattern matches 
the flow of FT dry intrusions (e.g., Jaeglé et al., 2017; Raveh-Rubin, 2017) that frequently descend into the post-
frontal sector of extratropical cyclones downwind of the US east coast where CCN-rich boundary layer air moves 
offshore. Remote regions, such as the Southern Ocean, also experience FT dry intrusions (Raveh-Rubin, 2017) 
but there it is unclear whether the FT is comparably CCN-poor relative to the MBL; we note that Antarctic air 
during winter has few aerosol sources compared to the open ocean (Papritz et al., 2015). For an MBL that is 
CCN-poor, from a lack of aerosol sources within the (continental) boundary layer upwind, or for overlying FT air 
that is CCN-rich, whether from advected pollutants (e.g., Zheng et al., 2020) or aerosol nucleation (cf. McCoy 
et  al.,  2021; though least likely in winter months), CCN concentrations in the FT could approach or exceed 
those in the MBL, weakening MBL dilution or even buffering microphysically induced reductions in MBL CCN 
concentrations.

Our analysis points to CCN dilution via FT entrainment as a plausible leading explanation for satellite-observed 
Nd gradients close to the US East Coast during winter (Painemal et al., 2021). Such Nd gradients are particu-
larly strong during CAOs (Dadashazar et  al.,  2021), coincident with greater than usual growth in cloud top 
height. Dadashazar et al. (2021) furthermore suggest a similar FT–MBL CCN difference from aerosol extinction 
retrievals. Our findings are also consistent with CAO simulations (Tornow et al., 2021), which yield comparable 
entrainment rates and relative roles of FT entrainment and hydrometeor collisional loss upwind of intense precip-
itation. A characteristic timescale H/we at which entrainment equilibrates the MBL with the FT is ∼3 hr for much 
of the fetch (Figure 4b), an order of magnitude faster than in subtropical stratocumulus (Diamond et al., 2018), 
highlighting the rapidity at which the MBL is mixed with FT air upwind of strong precipitation in CAOs. Once 

Figure 4.  Estimated entrainment rates (top) and quasi-Lagrangian marine boundary layer (MBL) CCN budget terms (bottom) versus ΔL (as in Figure 2) for RF14. 
Entrainment rates were derived from a mixed-layer framework (blue) with shaded uncertainties (+/− one standard error) and from geostationary CTH retrievals along 
ERA5 trajectories (magenta) where intersecting the flight track (see also Figure S3 in Supporting Information S1 for more details); Symbols in the top panel indicate 
median values and error bars span 5th to 95th percentiles of entrainment rates that we obtain from an array of trajectories, as described in Section S1.3.1 in Supporting 
Information S1. Gray shading indicates distance range of budget analysis using Research Scanning Polarimeter (RSP). Budget terms include free tropospheric 
(FT) entrainment (orange), hydrometeor collisions (green) and contribution of riming (pink), surface source (red), their sum (light blue), and measured change of 
CCNSS = 0.43% (dark blue with white stripe). For entrainment, surface, and collision terms, uncertainties are shown (+/− one standard error). Collision rates using MODIS 
LWP retrievals (dashed lines) extend those from RSP. Inset: budget terms averaged over shaded area with uncertainties (+/− one standard error). The black, dot-dashed 
line shows characteristic entrainment timescale, computed as τ = H/we per Diamond et al. (2018).
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downwind of precipitation (i.e., farther offshore than reached in RF14), entrainment typically declines, associ-
ated with a plateauing and then declining MBL depth. At this later stage, MBL CCN concentrations are found to 
approach or even be exceeded by (relatively steady) FT concentrations, as observed near Graciosa Island (Tomlin 
et al., 2021), mainly caused by rapid CCN loss during formation of intense precipitation within the MBL as indi-
cated by previous CAO observations (Abel et al., 2017) and simulations (Tornow et al., 2021), allowing the FT 
to act as CCN buffer to the MBL (Wood et al., 2017).

The MBL CCN budget analysis is subject to some potential weaknesses beyond those already described. First, 
we use CCN at a fixed SS = 0.43%, whereas collisional loss applies to aerosol particles activated over a range of 
supersaturations. Second, the ERA5 reanalysis is known to overestimate zonal winds in the region but values are 
expected to be within 10% (Belmonte Rivas & Stoffelen, 2019; Seethala et al., 2021). Third, we neglect chemical 
sources of CCN at any given SS, such as new particle formation (although MBL total aerosol surface areas are 
unfavorable) and aqueous-phase processes that allow dissolved aerosol particles to activate at lower SS in subse-
quent cloud cycles (e.g., Wang et al., 2021). Fourth, a chain of assumptions is required to construct MBL cloud 
profiles for collision-coalescence calculations. The sizable error bars in Figure 4 are intended to encapsulate these 
uncertainties.

Finally, CCN dilution from FT entrainment should serve to accelerate precipitation formation and the associated 
transition toward broken cloud fields of cellular convection. Compared to transition-accelerating CCN loss from 
riming (e.g., Tornow et al., 2021), which is highly uncertain owing in large part to poorly known ice formation 
pathways (Korolev et al., 2020; Korolev & Leisner, 2020), our analysis indicates CCN dilution to be common in 
CAOs downwind of non-pristine regions and upwind of intense precipitation. Cloud-climate feedbacks in Earth 
system model results may be sensitive to precipitation formation in such CAOs (McCoy et al., 2020), indicating 
a need to capture such aerosol entrainment regionally in order to faithfully simulate cloud regime transitions.

5.  Conclusions
A quasi-Lagrangian analysis of recent measurements collected from eight aircraft flights under cold-air outbreak 
(CAO) conditions during the ACTIVATE field campaign supports the following conclusions:

1.	 �CCN concentrations in the MBL at supersaturations of 0.3%–0.6%, as well as condensation nuclei larger 
than 10 nm, are predominantly far greater than in the FT upwind of intense precipitation in CAOs over the 
northwest Atlantic.

2.	 �Based on the research flight that reached farthest downwind, a budget analysis of CCN concentration in the 
MBL computed from available in-situ and remote-sensing measurements identifies MBL dilution from rapid 
entrainment of FT air as the primary sink of CCN upwind of cloud-regime transitions.

3.	 �The budget analysis indicates a characteristic timescale at which entrainment equilibrates the MBL aerosol 
with the FT aerosol of ∼3 hr, which is roughly an order of magnitude faster than found in subtropical strato-
cumulus owing to rapid MBL deepening under strong subsidence in CAOs.

4.	 �CCN dilution from FT entrainment should accelerate precipitation formation and cloud closed-to-open cell 
transitions, reducing regional albedo in CAOs fed by similar FT air masses that are often associated with dry 
intrusions.

Data Availability Statement
All data are available at https://www-air.larc.nasa.gov/cgi-bin/ArcView/activate.2019. The R code written to 
evaluate data is available upon request.
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