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Abstract

While legged robots hold many advantages over wheeled robots, especially regarding
dynamic capabilities and mobility, they often suffer from lower energy efficiency and
reliability due to the use of more actuators. Many classic approaches to quadruped
design rely on designs with 12 actuated degrees of freedom - three in each leg - which
allows the feet to be freely placed with respect to the body. One obvious solution to
this problem is a reduction in the number of actuators, but this usually comes at the
cost of functionality reduction. In terms of simple locomotion, however, the robot’s
center of mass can be sufficiently moved by freely placing each foot with respect
to the world, thus changing the robot’s contact points. It should then be possible
to achieve locomotion with free foot placement using only six actuated degrees of
freedom if the existing functions are appropriately combined and/or reduced. The
aim of this thesis is therefore to design a full quadruped kinematic structure with
only six actuators which is capable of simple locomotion through free placement of
its feet. A review of existing literature regarding legged locomotion and reduced-DoF
quadrupeds is performed to form a basis for new concepts, and a novel kinematic
structure is proposed which relies on two types of leg couplings to reduce the degrees
of freedom. A kinematic analysis then provides representations of the model in terms
of forward, inverse and differential kinematics, and a control algorithm with position
error feedback is proposed for task-space trajectory following. The proposed model is
implemented in Creo Parametric and simulated with the help of the LucaDynamics
library in MATLAB. A few tests are performed in the simulated environment which
show that the proposed robot is indeed capable of stable static walking with free
placement of all four feet, with the task-space position errors remaining very low for
all tested trajectories and no indications of singular or near-singular poses.





Contents

Nomenclature vi

1. Introduction 1

2. System Design and Analysis 4
2.1. Goals & Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Design Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1. Pantograph Leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2. Kinematic Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3. Proposed Design Concept . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. Kinematic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1. Forward Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2. Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3. Differential Kinematics . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.4. Inverse Kinematics Control . . . . . . . . . . . . . . . . . . . . . . 41

3. Testing and Results 44
3.1. Model Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2. MATLAB Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1. Forward/Inverse Kinematics Solvers . . . . . . . . . . . . . . . . 46
3.2.2. Trajectory Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3. Inverse Kinematics Controller . . . . . . . . . . . . . . . . . . . . 50

3.3. Static Walking Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1. Forward Static Walking Test . . . . . . . . . . . . . . . . . . . . . 51
3.3.2. Diagonal Static Walking Test . . . . . . . . . . . . . . . . . . . . . 53
3.3.3. Rotation Static Walking Test . . . . . . . . . . . . . . . . . . . . . 55

4. Conclusion and Outlook 58

Bibliography 60

A. Common Drive Quadrupeds 62

B. Joint DoF Tables 64

C. Joint State Vector 68

D. Differential Kinematics Representation 71

E. CAD Model 72

i



Contents

F. Model Parameter Values 75

G. Compensated Joint Variables 76

H. Inverse Kinematics Control Algorithm 78

ii



List of Tables

2.1. DH parameters for the pantograph legs . . . . . . . . . . . . . . . . . . . 24
2.2. DH parameters for the adjacent leg couplings . . . . . . . . . . . . . . . 27
2.3. DH parameters for the opposite leg coupling between legs 1 and 3 . . . 29
2.4. DH parameters for the opposite leg coupling between legs 2 and 4 . . . 31

3.1. Forward Static Walking Test Parameters . . . . . . . . . . . . . . . . . . . 51

B.1. Joint types and DoF for the single-leg mechanism in Fig. 2.7 . . . . . . . 64
B.2. Joint types and DoF for the single-leg mechanism in Fig. 2.8 . . . . . . . 65
B.3. Joint types and DoF for the four-leg mechanism in Fig. 2.9 . . . . . . . . 65
B.4. Joint types and DoF for the four-leg mechanism with adjacent leg cou-

plings in Fig. 2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.5. Joint types and DoF for the four-leg kinematically reduced mechanism

in Fig. 2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.6. Joint types and DoF for the final four-leg mechanism in Fig. 2.15 . . . . 67

F.1. DH parameter values used for the experimental implementation . . . . 75

G.1. Joint variables & their compensated forms for the forward kinematics
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

iii



List of Figures

2.1. A pantograph, where motions at point D are amplified into motions at
point F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. The three-dimensional Cartesian motion PANTOMEC, introduced by
Hirose (1984). Vertical motions at R result in vertical motions of P, while
horizontal motions at Q result in horizontal motions at P. . . . . . . . . 7

2.3. Actuator arrangements introduced by Yoneda (2007) . . . . . . . . . . . 8
2.4. Motion behavior of a planar coupled drive mechanism . . . . . . . . . . 8
2.5. Examples of quadruped designs featuring common drives for DoF re-

duction 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6. A simple parallelogram seen in the pantograph mechanism . . . . . . . 10
2.7. Pantograph leg with 2 DoF foot motion . . . . . . . . . . . . . . . . . . . 12
2.8. Pantograph leg with 3 DoF foot motion . . . . . . . . . . . . . . . . . . . 12
2.9. Four pantograph legs mounted to a floating base body . . . . . . . . . . 13
2.10. Pantograph leg quadruped after first kinematic reduction . . . . . . . . 14
2.11. Unconstrained body rotation about zb . . . . . . . . . . . . . . . . . . . . 16
2.12. Pivot axes shifted to coincide at center point . . . . . . . . . . . . . . . . 17
2.13. Side view of the proposed opposite leg coupling mechanism (a: active

joint, p: passive joint) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.14. Geometric analysis of the opposite leg coupling mechanism . . . . . . . 19
2.15. Fully reduced kinematic model with 6 actuated degrees of freedom . . 19
2.16. Coordinate frame placement for the pantograph legs . . . . . . . . . . . 22
2.17. Kinematic chain for the pantograph leg with closed loop present . . . . 23
2.18. Kinematic chain for the pantograph leg after cutting the loop . . . . . . 24
2.19. Coordinate frame placement for the adjacent leg couplings . . . . . . . . 25
2.20. Kinematic chain for the adjacent leg couplings before and after cutting

the closed loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.21. Coordinate frame placement for the opposite leg coupling between legs

1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.22. Coordinate frame placement for the opposite leg coupling between legs

2 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.23. Kinematic chain for the opposite leg coupling between legs 1 and 3 . . 28
2.24. Kinematic chain for the opposite leg coupling between legs 1 and 3 after

cutting the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.25. Kinematic chain for the opposite leg coupling between legs 2 and 4 . . 30
2.26. Kinematic chain for the opposite leg coupling between legs 2 and 4 after

cutting the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.27. Schematic view of the simple inverse kinematics control algorithm . . . 42

3.1. Rendered image of the quadruped CAD model . . . . . . . . . . . . . . 45

iv



List of Figures

3.2. Evolution of swing foot and base frame position errors for a simple joint
trajectory computed with the numerical inverse kinematic solver . . . . 47

3.3. Evolution of the actuated joint positions for a simple joint trajectory
computed with the numerical inverse kinematics solver . . . . . . . . . 48

3.4. A simple cosine function foot trajectory . . . . . . . . . . . . . . . . . . . 49
3.5. Stability margin and CoM shift direction calculation . . . . . . . . . . . 50
3.6. Evolution of active joint positions for forward static walking test . . . . 52
3.7. Evolution of task space errors and condition number of the active joint

Jacobian for forward static walking test . . . . . . . . . . . . . . . . . . . 52
3.8. Center of mass trajectory for each step in the forward walking test . . . 53
3.9. Evolution of active joint positions for diagonal static walking test . . . . 54
3.10. Evolution of task space errors and condition number of the active joint

Jacobian for diagonal static walking test . . . . . . . . . . . . . . . . . . . 54
3.11. Center of mass trajectory for each step in the diagonal walking test . . . 55
3.12. Evolution of active joint positions for rotation static walking test . . . . 56
3.13. Evolution of task space errors and condition number of the active joint

Jacobian for rotation static walking test . . . . . . . . . . . . . . . . . . . 56
3.14. Center of mass trajectory for each step in the rotation walking test . . . 57

A.1. 3-active DoF quadruped proposed by Yoneda et al. (2001) . . . . . . . . 62
A.2. 5-active DoF quadruped proposed by Yoneda (2007) . . . . . . . . . . . 62
A.3. 9 DoF quadruped proposed by Zhang, Shen, and Hong (2020) . . . . . . 63

E.1. Front view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
E.2. Side view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
E.3. Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
E.4. Isometric view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

v



Nomenclature

Abbreviations and acronyms
CoM Center of Mass
DH Denavit-Hartenberg
DoF Degree of Freedom
w.r.t With respect to

Symbols
q̇ Joint velocity vector
A(q) Homogeneous transformation matrix
In n× n identity matrix
J(q) Jacobian matrix
pi

k Position of frame k with respect to frame i
q Joint state vector
Ri

k Rotation of frame k with respect to frame i
Ti

k(q) Forward kinematic transformation from frame i to k

vi



1
Introduction

Recent developments in mobile robotics have led to an increasing interest in their
real-world applications, ranging from factory logistics to planetary exploration. While
a majority of traditional research in the field focused on locomotion using wheels or
tracks, the topic of legged locomotion has gained significant traction in recent years
due to its advantages in terms of mobility and dynamic performance in unstructured
environments. Quadrupeds in particular are an area of high interest due to their ability
to statically balance and perform a range of different static and dynamic locomotion
gaits. Nevertheless, they generally suffer from lower energy efficiency compared to
their wheeled counterparts, a problem which is compounded by their use of more
actuators to achieve their highly dynamic capabilities. From a locomotion standpoint,
the number of actuated degrees of freedom used in many modern quadrupeds exceeds
what is necessary for simple movement of the center of mass, with many utilizing
twelve motors. Essentially, quadrupeds with a reduced number of actuators should
still be capable of basic locomotion, albeit with fewer dynamic capabilities. Aside from
savings in weight and energy, a reduction in complexity is also a common approach
for increasing reliability in legged robots, since the addition of redundancies is clearly
counterproductive. This has led to a wide range of research aiming to answer the
many questions regarding design of efficient, reliable and robust legged robots which
can be practically implemented in real-world scenarios.
Overall, the field of legged robotics is still relatively young, with some of the first
large-scale research being performed by Marc Raibert and his team at MIT’s Leg Labo-
ratory in the 1980s. Their work formed a scientific basis for the design and analysis of
legged machines which are capable of balancing, walking, jumping and running, and
has since inspired an ever-growing interest in dynamic legged robot locomotion. In
Raibert’s book Legged Robots That Balance, which outlined the results of this research,
two serious reasons for studying legged locomotion were presented. The first was mo-
bility, namely the ability to navigate difficult terrains where existing wheeled vehicles
cannot go, and the second was the decoupling of body path from feet paths, which
allows a payload attached to the body to traverse a smooth path despite variations in
the terrain (Raibert 1986). These two reasons remain important today, with many of
the proposed use cases for legged robots involving environments with unstructured
or unknown terrains, for example in planetary exploration and terrestrial disaster
recovery.
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Chapter 1. Introduction

Many researchers have further explored the principles of legged locomotion, with
a particular focus on quadrupeds. Shigeo Hirose developed a series of quadruped
robots at the Tokyo Institute of Technology, know as TITAN, which were used to
explore various principles of quadruped locomotion and make developments such as
fusion gait control for stable motion (Yoneda and Hirose 1992) and locomotion on steep
slopes and staircases (Hirose et al. 1991; Hirose, Yoneda, and Tsukagoshi 1997). Hirose
and his colleagues also proposed some higher efficiency leg actuation techniques such
as the gravitationally decoupled actuator (Hirose 1984) and the coupled drive (Hirose
and Sato 1989), and defined more efficient walking postures for quadrupeds (Arikawa
and Hirose 2007).
Most of the quadrupeds developed over the years, especially those in more recent
times, have been based on variations of a kinematic structure which consists of 12 ful-
ly-actuated degrees of freedom, and allows for a wide range of dynamic capabilities.
The standard configuration for such robots is biologically inspired, with each leg con-
sisting of a joint for hip abduction/adduction (HAA), a joint for hip flexion/extension
(HFE) and a joint for knee flexion/extension (KFE), giving each foot the capability
to move freely in three dimensional space relative to the main body. Quadrupeds
with such "dog-like" designs, which can be referred to as classical quadrupeds, have
been used prolifically in the past decade to research various techniques of improving
energy efficiency and robustness, especially through the introduction of series elastic-
ities. One example of such robots is StarlETH, designed at the Swiss Federal Institute
of Technology to study "fast, efficient and versatile motion" (Hutter et al. 2012). The
design features torque-controlled highly compliant series elastic actuators in which
the springs decouple the motors from the joints, providing robustness against impact
forces and energy storage for improved efficiency and making the system suitable for
highly dynamic movements. Similar features can be seen in ANYmal, the successor to
StarlETH, with higher joint mobility being its biggest advantage (Hutter et al. 2016),
and in the MIT Cheetah 3, which features high-bandwidth proprioceptive actuators to
allow it to handle and react to unexpected disturbances "without the need for external
sensors or prior environment knowledge" (Bledt et al. 2018). At the Instituto Italiano
di Tecnologia (IIT), a series of hydraulically actuated quadrupeds was designed using
the same classical quadruped morphology, showing progressive improvements in ro-
bustness and efficiency through optimization of parameters in the hydraulic actuators
(Semini et al. 2017).
Although these types of fully-actuated 12 degree of freedom quadrupeds have many
advantages in terms of dynamic capabilities and mobility, limitations in power storage
technology mean that the usage of many heavy actuators can be quite impractical.
Research on the topic of reduced-DoF quadrupeds has produced a wide variety of
interesting contributions and results, with many different structures being proposed
over the years. A first important consideration when exploring such reductions is the
obvious impact on system mobility and function. Kaneko, Abe, and Tachi (1986) de-
fined some basic quadruped walking functions ranging from level 1 (one-dimensional
walking on flat planes) to level 5 (free selection of foot placement within the movable
space) and investigated the number of degrees of freedom necessary to achieve these
different levels, showing that the highest level can theoretically be attained with a
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minimum of six degrees of freedom. Yoneda et al. (2001) defined similar but sim-
pler function levels, leaving out the body leveling function since it is not necessary
to achieve walking. They proposed a quadruped design featuring only four actuated
degrees of freedom which is capable of function level 4 behavior (omnidirectional body
movement with arbitrary swing leg selection and placement), as well as a 3-active DoF
mechanism capable of level 2 walking (movement along a curved path). The number
of degrees of freedom necessary to achieve various different quadruped functions was
further investigated by Yoneda (2007) along with various lower-energy actuation tech-
niques, which were demonstrated in the design of a minimal 3-actuator quadruped, an
omnidirectional 5-actuator model and a 9-actuator model capable of dynamic walking
and trotting.
While much of this research has aimed to improve energy efficiency through either
system compliance or kinematic reductions, some has combined the two strategies by
investigating reduced-DoF models with elastic actuation. The quadruped BERT from
the German Aerospace Center (DLR) is one example where elastic actuation is utilized
in a reduced-DoF kinematic model to investigate walking and balancing on uneven
terrains (Seidel et al. 2020). The quadruped consists of only 8 actuated DoF, with the
structure resembling the standard 12 DoF model but with the hip adduction/abduction
joints removed, leaving each leg only free to move within the saggital plane. As with
all other reduced-DoF models, this reduction restricts the mobility of the robot, making
changes in the body’s yaw angle impossible without slipping of the feet.
Although many solutions have been proposed to the questions of quadruped efficiency,
dynamic mobility and complexity, there remains room for more contributions in the
form of novel kinematic structures which reduce the degrees of freedom of quadrupeds
while maintaining useful functionalities. The work of this thesis therefore focuses on
the design of a kinematic structure for a reduced degree of freedom quadruped crawler
which utilizes only six actuators to attain free foot placement in three dimensions. With
these six actuators, the robot is able to fully define the positions of its feet and body to
achieve a static walking gait, which is verified with a detailed kinematic analysis and
a handful of simulated walking tests.

3



2
System Design and Analysis

In this chapter, the kinematic design for a novel 6-actuated DoF quadruped is presented
with a discussion of the background and underlying concepts which inspired the
different components. An analysis of the forward and inverse kinematics as well as
the differential kinematics is then performed in order to derive a suitable inverse
kinematic algorithm for controlling the robot in simulation and testing its ability to
achieve the desired goals.

2.1. Goals & Requirements

As with any system design, an important step in the development of a novel kinematic
structure for a reduced degree of freedom quadruped is the formalization of the goals
and requirements that should be met to consider the solution a success. Specifically, the
work presented in this thesis is based on one primary goal, subject to a few additional
goals and requirements, which are given as follows:

• Degrees of Freedom - The primary design goal relates to the relationship be-
tween the number of actuated degrees of freedom and the total number of avail-
able degrees of freedom in the system during certain motion tasks. Unlike some
reduced-DoF quadrupeds which have their foot motions restricted to a particular
plane or hyperplane, the new quadruped has the goal of being capable of free
placement of each of its feet relative to the ground in 3-dimensional space, sub-
ject to defined joint limitations. Looking back to the classical quadruped design
approach, this capability is easily achieved with its 12 actuated degrees of free-
dom, however some important insight comes from analyzing the total available
degrees of freedom in a given pose. This can be computed by the difference be-
tween the number of system degrees of freedom and the number of constraints
introduced on the system. Feet which make contact with the ground are com-
monly represented as virtual ball joints with assumed no-slip conditions, which
introduces three constraints on the positional degrees of freedom of each contact
foot. Assuming a single foot is lifted from the ground to perform a step, the
available degrees of freedom for the classical quadruped can be computed as
follows:

4



2.2. Design Concept

12 Actuated DoF +6 Floating Base DoF −3 DoF ×3 Contact Points = 9 DoF

The presence of 9 available degrees of freedom shows that the classical quadruped
can not only achieve the 3 DoF motion in its lifted foot, but also has 6 additional
degrees of freedom which are commonly associated with the floating base, i.e.
three positional and three orientational degrees of freedom. In other words, a
lifted foot can be arbitrarily placed relative to the body while the additional
degrees of freedom are exploited to change the position and orientation of the
floating base body. However, since fully defining a foot’s position only requires
three degrees of freedom, any additional degrees of freedom can be viewed as
redundant and unnecessary for the task of foot placement, therefore the number
of required actuated degrees of freedom for a system without the redundant
degrees of freedom can be computed as follows:

3 DoF +3 DoF ×3 Contact Points −6 Floating Base DoF = 6 Actuated DoF

The goal therefore is to design a reduced kinematic structure for a quadruped
which consists of only six actuated degrees of freedom that are able to fully
define the system’s motions and achieve free placement of each foot relative to
the ground.

• Locomotion capabilities - The ability to lift and freely place a single foot is of
course an important aspect to getting a quadruped moving, but successful loco-
motion requires the robot to follow a defined gait, or pattern of feet placement,
which shifts the center of mass relative to the world in a desired direction. One
of the most simple defined gaits is the static walking or crawling gait, which
involves moving only one foot at a time, maintaining at least three ground con-
tact points at all times. In order to maintain static stability, the center of mass
must always remain within the support polygon formed by the three ground
contact points. If one defines locomotion as the repeated changing of the robot’s
ground contact points to shift the center of mass from one position to another,
the proposed quadruped should be capable of achieving at least a static walking
gait with its six actuated degrees of freedom.

• Representation of Feet - The four feet should be represented as points with no
area, meaning that at any given time, each foot can only make a single contact
with the ground, regardless of leg orientation. The point-like foot representation
plays an important role in modeling of the system’s constraints, since contacts
with the ground can be expressed as a restriction of the three translational de-
grees of freedom of the corresponding foot point, with the orientational degrees
of freedom left unconstrained. This allows for the virtual ball-joint representation,
which is a common approach used in virtually all notable quadruped designs.

2.2. Design Concept

Keeping the system goals and requirements in mind, several ideas were explored
which ultimately led to a formalized design concept for a new quadruped kinematic
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Chapter 2. System Design and Analysis

structure. The proposed design concept features classic pantograph legs, with their
parallel geometry exploited to obtain good range of motion in the feet using smaller
motions at the driving joints. Two types of novel coupling mechanisms are introduced,
one between the adjacent legs and the other between opposite legs, which are based on
the common drive and coupled drive concepts and serve to reduce the required number
of actuators while preserving the desired motion capabilities. This section provides
a look into each of the concepts on which the proposed design is based as well as
the procedural process utilized to combine the different concepts and thus reduce the
kinematic structure to the desired number of actuated degrees of freedom.

2.2.1. Pantograph Leg

In order to come up with ideas for a new quadruped which is capable of achieving the
stated goals, it was useful to first analyze and take inspiration from existing solutions
to similar problems. One feature which has appeared in several legged robots is the
pantograph, a mechanical structure which consists of four rigid linkages connected
by pin joints to form a parallelogram. Kinematically the pantograph behaves like
a simple two-bar linkage with two planar degrees of freedom, but the addition of
a parallel branch facilitates flexibility in how the actuation of the two degrees of
freedom can be achieved. In the classic two-bar linkage example, each joint is typically
directly actuated, which can introduce a large amount of inertia due to the mass of
the motor mounted at the second joint. In contrast, the two degrees of freedom in
the pantograph structure can be easily controlled by placing both motors at the base
and directly driving the two parallel branches, making the mechanism generally more
energy efficient, a highly appealing feature for legged robots. Another interesting
feature provided by the pantograph mechanism is best seen in its original use as a
copying device for drawings in the 17th century (Stewart 1965). As shown in Figure 2.1,
if the point A represents a rotational joint about a fixed body, then the linear motions
at point F directly imitate the linear motions at point D, with a certain degree of
amplification. A small range of motion at point D could therefore be used for driving
the point F with a much larger range of motion.

Figure 2.1.: A pantograph, where motions at point D are amplified into motions at point F
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Although the classic pantograph is a planar mechanism, the addition of rotation about
a vertical axis allows the pantograph mechanism’s mobility to be transferred from
planar motion to three-dimensional motion, as originally introduced by Hirose (1984)
and shown in Figure 2.2. A leg designed using this structure is therefore capable of
free placement of its foot point in space as well as a typically large range of motion,
both of which are desired in legged locomotion.

Figure 2.2.: The three-dimensional Cartesian motion PANTOMEC, introduced by Hirose (1984).
Vertical motions at R result in vertical motions of P, while horizontal motions at Q result in
horizontal motions at P.

2.2.2. Kinematic Couplings

Many approaches to quadruped design feature legs which are kinematically indepen-
dent from one another, whereby each leg requires its own independent actuators to
control its motion relative to the robot body. Referring again to the classical quadruped
model, each of the four legs features three independently actuated degrees of freedom,
giving the entire system 12 actuated degrees of freedom. In order to achieve the goal
of independent foot motion in three degrees of freedom using only six actuators, it is
clear that each of the legs cannot be driven by independent actuators, but rather must
rely on some form of kinematic couplings, allowing the actuated degrees of freedom
to be shared between the legs. The design concept proposed in this thesis is based
primarily on the coupled drive and common drive actuator arrangements, which were dis-
cussed in detail in terms of their application in quadrupeds by Yoneda (2007). A brief
look into each of these concepts is provided here with discussion of their usefulness
in the proposed design.

Coupled Drive

The coupled drive actuator arrangement, shown in Fig. 2.3a, is a concept which was
originally proposed by Hirose and Sato (1989) as a method for reducing the total weight
of multi-DoF walking robots. The concept involves a single point on a mechanism
being driven jointly by two different actuators such that the total force requirements

7



Chapter 2. System Design and Analysis

(a) Coupled drive (b) Common drive

Figure 2.3.: Actuator arrangements introduced by Yoneda (2007)

of the individual actuators is reduced. This allows for smaller, lighter weight actuators
to be used for producing the same total forces on the point being driven. The method
was implemented, for example, by Hirose et al. (2009) in a wall climbing robot in order
to increase its actuation index, a measure of how much of the total installed actuator
power is available for use for a particular motion. Besides its proposed use in legged
robots, this actuator arrangement can also be seen in the widely-known Stewart-Gough
platform, where three pairs of coupled linear drives control the six degrees of freedom
of a rigid platform (Stewart 1965). An interesting feature of this actuation concept can
be seen by analyzing the simple planar case with two linear actuators. If both linear
actuators are driven in sync with one another, the end effector point moves linearly
along the x-axis as seen in Fig. 2.4a. On the other hand, a differential motion between
the actuators causes the end effector point to move along the y-axis, shown in Fig.
2.4b. It is therefore clear that this sort of actuator arrangement is capable of producing
the same two translational degrees of freedom at the end effector as a simple planar
two-bar linkage, but using linear actuation as opposed to rotational, which allows for
the possibility of higher force output and better energy efficiency due to lower inertia
at the end effector.

(a) Uniform motion (b) Differential motion

Figure 2.4.: Motion behavior of a planar coupled drive mechanism
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Common Drive

In classical quadrupeds, the motion of each leg during swing stage is controlled using
an independent set of actuators which are decoupled from those of the grounded legs.
In this case, even the non-swing legs have their own available degrees of freedom
which can be exploited to manipulate the position and orientation of the floating
base body. In a static walking locomotion task, only the swing leg requires actuated
degrees of freedom, namely three, to achieve free motion in the world, therefore the
actuated degrees of freedom in the non-swing legs can be seen as redundancies. This
idea inspired the so-called common drive concept, shown in Fig. 2.3b and discussed in
detail by Yoneda et al. (2001). Instead of producing the motions of a swing leg relative
to the main body, the motions can instead be produced relative to one or more of
the non-swing legs by means of kinematic coupling between the respective legs. This
allows for a reduction in the total number of required actuators, but usually at the
expense of some functionality. A few examples of proposed quadrupeds featuring the
common drive technique can be seen in Fig. 2.5, where a common approach between
them is the placement of an active joint in the center body that produces a differential
twisting motion between the front and back leg pairs. This single active degree of
freedom is capable of producing a lifting motion for any of the four legs, with the
swing leg selection being dictated by the location of the robot’s center of mass. In
kinematic designs such as these, the ground contacts play a critical role in defining
the motions of a swing leg relative to the world, and removal of one or more of the
contacts can result in an under-constrained system which is no longer capable of the
desired functionalities.

(a) 3-active DoF quadruped
proposed by Yoneda et al.
(2001)

(b) 5-active DoF quadruped
proposed by Yoneda (2007)

(c) 9 DoF quadruped proposed
by Zhang, Shen, and Hong
(2020)

Figure 2.5.: Examples of quadruped designs featuring common drives for DoF reduction 1

2.2.3. Proposed Design Concept

The proposed design concept is based largely on a combination of the previously
discussed components into a unique structure for which the defined system goals and
requirements from Chapter 2.1 are met. The four legs are modeled as identical pan-
tograph structures to allow free placement of the feet, and two types of leg couplings

1Enlarged figures are provided in Appendix A
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are used to integrate a form of the common drive concept for achieving the desired
motions with a reduced number of actuators.
To aid in the explanation of the features and functionalities of the pantograph leg
mechanism, it is first convenient to provide some naming conventions for some of its
parts. Referring to Fig. 2.6, names are given to each of the links in the leg, based roughly
on biological leg part names (i.e. thigh & shank). Continuing the biological-based
naming convention, the joint at the base of the thigh can be called the hip and the joint
connecting the thigh and shank can be called the knee. Finally, the joint connecting
the thighlink and shanklink is named the driving joint, since it can be used to directly
control the foot motion using the aforementioned principle.

Figure 2.6.: A simple parallelogram seen in the pantograph mechanism

System Constraints

Throughout the design process, the number of available degrees of freedom, defined
by Eq. 2.2.1, had to remain an important consideration since the number of actuated
degrees of freedom should always be greater or equal to the number of available
degrees of freedom to prevent having an under-constrained system. This of course re-
quires explicit knowledge of the constraints which are present in a kinematic structure
and is of particular importance when dealing with a mixture of active and passive
joints, since all the passive joints should be constrained to the active ones to have a
fully-defined system.

System DoF− System Constraints = Available DoF (2.2.1)

In simpler kinematic structures, the constraints can often be easily recognized with
some basic knowledge of geometry. Take for example the pantograph mechanism,
which is used for the quadruped’s legs. Knowing that a parallelogram consists of
four joint angles which are always equal, as seen in Fig. 2.6, the constraint equations
are simply defined by a = b = c = d. Since there are a total of four 1-DoF joints in
the parallelogram, the number of available degrees of freedom can be calculated as
4 system DoF− 3 constraints = 1 DoF, meaning that arbitrary selection of one of the
parallelogram joints as an active joint would fully define the system. Unfortunately
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in more complex systems, not all constraints are so easily recognized based on the
geometry, which means a more general approach to defining certain types of con-
straints can prove useful. Specifically, the constraints that appear in the mechanisms
discussed here are introduced through closed-chains. An approach for representing
these constraints in kinematic terms is presented in detail in Chapter 2.3, so for now
it is assumed that the number of constraints is explicitly known when analyzing the
following kinematic structures.

Single Pantograph Leg

In order to explain the employed kinematic couplings in a concise manner, a useful
approach is to start by analyzing a basic single-leg model and build up to a four-leg
model, then introduce the couplings and their role in kinematic reduction. Imagine a
single pantograph leg, with the axis of the hip joint rotated 90 degrees such that it is
orthogonal to the ground plane and to the other joint axes. This rotated hip joint can
then be renamed as the pivot joint. If a coupled drive actuation technique is employed
with this pantograph as shown in Fig. 2.7, with joints j7 and j10 being actuated, the
driving point at j8 can be moved with two degrees of freedom corresponding to
side-to-side motion about joint j1 and forward-backward motion about joint j4. The
number of available degrees of freedom can be confirmed as 2 using Eq. 2.2.1, where
the total number of system DoF is 17 and the number of system constraints is 15
(17− 15 = 2 DoF).2 As previously discussed, the parallel geometry of the pantograph
mechanism exhibits the trait that any motions at the driving point within the plane of
the pantograph are linearly mapped and amplified at the foot point. This mapping is
described by Eq. 2.2.2, where vd,x and v f ,x represent the linear velocities of the driving
point and the foot point in the xw direction. The mapping between the driving point
and foot point for motions in the yw direction is described by Eq. 2.2.3, where θ denotes
the angle between the thigh and shank.

v f ,x =
lshank

lthighlink
vd,x (2.2.2)

v f ,y =
lthigh + lshank cos θ

lthigh − lshanklink + lthighlink cos θ
vd,y (2.2.3)

While this configuration allows the foot to move side-to-side and forward/backward,
the up-down motion is still needed to achieve free foot placement in 3 dimensions. This
degree of freedom can be provided by keeping the new pivot joint j1 and reintroducing
the original hip joint as j2, shown in Fig. 2.8. By actuating the hip joint, the up/down
motion can be directly controlled. Combined with the two prismatic coupled drive
joints j8 and j11, the foot point can then be moved in 3-dimensional space. The available
degrees of freedom can again be confirmed using Eq. 2.2.1, where the number of
system degrees of freedom is equal to 18 and the number of system constraints is
equal to 15, yielding 18− 15 = 3 DoF.3

2Joint degrees of freedom provided in Table B.1 of Appendix B
3Joint degrees of freedom provided in Table B.2 of Appendix B
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Figure 2.7.: Pantograph leg with 2 DoF foot motion

The kinematic structure in Fig. 2.8 only represents a single pantograph leg with the
assumption that both the pantograph pivot joint and the two coupled drive prismatic
actuators are connected to a fixed ground. This is obviously not the case in quadruped
robots, where the legs are mounted to a floating base body and the only direct con-
tacts with the fixed ground are through the feet. This manipulator structure, however,
provides a good framework for expansion to the case of four identical legs connected
to a floating base body, which is discussed in the following section.

Figure 2.8.: Pantograph leg with 3 DoF foot motion
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Four Pantograph Legs

Looking again to the single leg example in Fig. 2.8, the pivot joint j1 is connected to
a fixed ground, as are the two coupled drive ball joints j7 and j10, allowing control of
the driving point’s position relative to the fixed ground with the actuated joints j8 and
j11. Shifting to the four-legged case, the fixed ground can be replaced by a floating
base body to which all four leg pivot joints as well as the coupled drive ball joints
are connected, as shown in Fig. 2.9. This model represents a basic construction of
a quadruped using the described pantograph leg mechanisms before any kinematic
reductions are applied. Each leg has three independent actuators, one at the hip joint
and two in the coupled drive prismatic joints, bringing the total number of actuators
in the system to 12. In models containing a floating base, the standard method of
representation involves placing six "virtual" joints between the fixed ground frame
and a reference frame on the robot’s body, in this case represented by frames w and
b, respectively. Since contact occurs solely through the feet points, these contacts are
typically modeled as virtual ball joints, which introduce 3 constraints on the trans-
lational degrees of freedom. With this knowledge in mind, it can be shown that the
current kinematic structure exhibits the same number of available degrees of freedom
as classical quadrupeds. Assuming three feet are grounded during static walking, the
total number of system constraints can be computed as 69 while there are 78 total
system degrees of freedom4, so the available degrees of freedom can be computed as
9 using Eq. 2.2.1. This was seen previously to also be the case in classical quadruped
models. Considering the goal of reducing the actuated degrees of freedom to six, this
model is obviously not a solution since at least 9 actuators would be needed to control
the available degrees of freedom, but it presents a starting point for the introduction
of kinematic couplings which can reduce the degrees of freedom.

Figure 2.9.: Four pantograph legs mounted to a floating base body

4Joint degrees of freedom provided in Table B.3 of Appendix B
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Adjacent Leg Couplings

The first of the aforementioned couplings comes from the realization that the two
prismatic coupled drive actuators are only needed by a leg when it is in swing stage,
as they simply control the side-to-side and forward/backward motion of the respective
foot. These actuators can therefore be shared between the neighboring legs in such
a way that they control the linear distance between the two legs’ driving points. For
each leg, one of the coupled drive branches can therefore be removed completely, and
the remaining branch can be connected to the adjacent leg’s driving point, as seen in
Fig. 2.10. These couplings can be referred to as the adjacent leg couplings. In order to
implement such couplings in a mechanically feasible manner, the degrees of freedom
between the coupled driving points must be noted. It is known that the position of
each driving point is capable of moving with three degrees of freedom relative to the
floating base, so there are a total of six degrees of freedom between the two points.
These six degrees of freedom can be practically compensated in the coupling branch
by using ball joints to connect each end with its corresponding leg, but together with
the actuated prismatic joint, the branch then has a total of 7 degrees of freedom. Each
ball joint has a degree of freedom corresponding to a twisting motion about aligned
axes, so one joint can be effectively replaced with a universal joint to eliminate this
non-unique degree of freedom.

Figure 2.10.: Pantograph leg quadruped after first kinematic reduction

Imagine then that a particular leg is in swing stage and both of its neighbor legs are
in contact with the ground. The two adjacent leg couplings connected to either side
of the swing leg’s driving point can be used to control its position relative to the two
neighbor legs’ driving points. This reduced model has 54 system degrees of freedom
and 45 constraints during static walking, so using Eq. 2.2.1 it can be seen that the
total available degrees of freedom is 9.5 Since the model has only 8 actuated degrees

5Joint degrees of freedom provided in Table B.4 of Appendix B

14



2.2. Design Concept

of freedom, the system is under-constrained and an additional joint would need to
be actuated for it to become fully-constrained and controllable. It is therefore clear
that the integration of further constraints and/or kinematic reductions is necessary to
achieve only 6 actuated DoF.

Opposite Leg Couplings

With the adjacent leg couplings implemented, the new kinematic model has a total
of 8 active joints, which means that two more must be removed in order to achieve
the desired six. Since the coupled drive actuators have already been reduced, it makes
sense that the remaining four active hip joints could be a point of interest for the next
kinematic reduction or introduction of constraints.
Notice first the specific functions provided by the four hip joints. With each of the
hip joints independently actuated, they control the lifting motions of their respective
feet relative to the floating base. The hip joint opposite of the swing leg can therefore
be kept stationary such that the floating base maintains its position and orientation
during the lifting of the swing leg. Enumerating the legs in a clockwise direction with
i, i + 1, i + 2 and i + 3, it can be seen that the hip joints of opposing legs i and i + 2
are aligned such that the lifting of foot i or i + 2 results in a seesaw-like pose about
an axis formed between feet i + 1 and i + 3. In this pose, it is possible for either foot
i or i + 2 to be the swing foot, depending on the position of the quadruped’s center
of mass. Since only the leg in swing stage requires a lifting function and its opposite
leg remains grounded, the two actuated hip joints of the opposite legs can be reduced
into a single actuated degree of freedom. This degree of freedom then produces a
differential motion between the opposite legs, with the swing leg’s lifting defined w.r.t.
its opposite leg instead of the floating base.
This reduction can be applied to both pairs of opposite legs, bringing the total degrees
of freedom in the hips from 4 to 2. The elimination of independent degrees of freedom
leads to a reduction of the available independent functions, which in this case happens
to be the floating base orientation about xb and yb, since the coupling of the opposite
hips prevents keeping the floating base independently stationary. The function for
swing leg selection, which is nothing more than position selection of the center of mass,
can then be achieved with a combination of other functions, as originally discussed by
Yoneda (2007).
Before introducing a practical way of implementing the opposite leg couplings, it
is important to again use Eq. 2.2.1 to determine the number of available degrees of
freedom and ensure that it does not exceed the desired number of actuators, namely
six. The new couplings simply introduce 2 more constraints to the system, so the
number of constraints becomes 47 during static walking while the number of system
degrees of freedom remains unchanged at 54. The total number of available degrees of
freedom is therefore 7, making the system under-constrained when only 6 degrees of
freedom are actuated. To make the system fully-constrained, it is therefore necessary
to either introduce one more constraint or actuate an additional joint. In this case, the
former option is the clear answer since the system should remain at six actuated joints.
Viewing the current model from the top, as shown in Fig. 2.11, one feature can be seen
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which yields itself perfectly to further constraining. Assuming that the positions of all
four feet are grounded in a particular configuration and the six actuated joints are kept
stationary, it can be seen that each of the adjacent leg couplings forms a quasi five-bar
linkage with its respective legs and the floating base body, denoted by l1 . . . l5. Each of
these five-bar linkages consists of four passive joints j1, j2, j3 and j5, and one actuated
joint, j4. Since there are only three constraints due to planar loop closure, the number
of available degrees of freedom is 2 and the loop can be considered under-constrained
when only one joint is actuated. This unconstrained degree of freedom allows the
floating base body to rotate freely about the floating base frame axis zb, resulting in an
infinite number of possible body configurations for a given set of actuated joint states.

(a) (b)

Figure 2.11.: Unconstrained body rotation about zb

A simple solution for making these loops fully-constrained is to reduce them into
four-bar linkages where only one available degree of freedom exists and is actuated by
the prismatic joint. Since the four pivot joints are parallel at all times, their axes can be
shifted to a coinciding central point, as shown in Fig. 2.12. The adjacent leg couplings
together with the legs now form quasi four-bar linkages represented by links l1 . . . l4
which are fully constrained since 4 system DoF− 3 constraints = 1availableDoF which
is actuated by the prismatic joint. With the original floating base body replaced by
a single central pivot axis at j1, the floating base frame b can be fixed instead to the
first leg, with the other three legs capable of pivoting relative to the first leg. In other
words, the first leg’s pivot joint is removed and the other three legs’ pivot joints are
aligned with zb. This kinematic structure preserves the original motion capabilities
of the pivot joints since they are not eliminated or reoriented, but rather just shifted,
so no reduction in functionality occurs. Checking once again the available degrees
of freedom in the system during static walking with Eq. 2.2.1, the result is 6 degrees
of freedom since the total number of system degrees of freedom is now 53 and the
number of constraints is 47.6 The system is therefore now fully constrained with 6
actuated degrees of freedom.

6Joint degrees of freedom provided in Table B.5 of Appendix B
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Figure 2.12.: Pivot axes shifted to coincide at center point

With the system fully constrained, a mechanically feasible solution for implementing
the opposite leg couplings must be introduced, where the goal is for each pair of
opposite hip joints to have their motions linearly coupled. The central pivot joint
between the hip joints changes the angle between their axes of rotation, so the coupling
of these joints is not as simple as it would be if the hip joint axes were always parallel.
However, the linear distance between each hip joint and the central pivot axis remains
constant, meaning that the central axis can be used as the actuation point for the hip
joints. By fixing a linear actuator vertically along the central axis and connecting rigid
links between each of the opposite thighs and the end of the actuator, its linear motion
can produce an equal lifting effect in both legs, as shown in Fig. 2.13 It is then only
needed to add an additional passive rotational joint between the linear actuator’s end
and the connected rigid link, to allow the legs to still rotate about the central pivot
axis.

Figure 2.13.: Side view of the proposed opposite leg coupling mechanism (a: active joint, p:
passive joint)

Assuming the length of the linear actuator is known, algebraic derivation of the joint
angles for all the passive joints within the two symmetrical loops is possible with a
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basic geometrical analysis of the coupling mechanism. Referring to Fig. 2.14, the values
of a and b can first be determined by Eq. 2.2.4 and Eq. 2.2.5.

a =
√

l2
2 + l2

3 (2.2.4)

b =
√
(l1 − l6)2 + l2

a (2.2.5)

Using the law of cosines, it is then possible to determine both ϑ2a and ϑ2b, which are
summed together to get ϑ2.

ϑ2a = cos−1
(

b2 + (l1 − l6)2 − l2
a

2b(l1 − l6)

)
(2.2.6)

ϑ2b = cos−1

(
a2 + b2 − l2

5
2ab

)
(2.2.7)

ϑ2 = ϑ2a + ϑ2b (2.2.8)

The value of ϑ1 can then be determined using the law of sines.

ϑ1 = sin−1
(

b sin ϑ2b
l5

)
(2.2.9)

Finally, the values of ϑ3a and ϑ3b can be determined by the values calculated in Eq.
2.2.6, 2.2.7 and 2.2.8, then summed together to get ϑ3.

ϑ3a = π − ϑ2a (2.2.10)

ϑ3b = π − ϑ1 − ϑ2b (2.2.11)

ϑ3 = ϑ3a + ϑ3b (2.2.12)

Since the two sides of the coupling mechanism are symmetrical, the passive joint
angles on both sides are equal and no further calculations are necessary to determine
their values. Since the rotational joint axes on each side of the symmetrical mechanism
are aligned, each side can be viewed as a planar mechanism. The central pivot axis
then allows rotation between the two planes, meaning that the rotational joint added
to the end of the linear actuator is geometrically constrained to the pivot axis. With the
inclusion of this additional constraint, the entire coupling mechanism has 8 degrees
of freedom and 7 constraints, therefore it can be considered fully-constrained when
the single linear degree of freedom is actuated. The opposite coupling mechanism
is then integrated by placing one on the top side of the pivot axis to couple legs 1
and 3, and the other on the bottom side to couple legs 2 and 4. The final kinematic
structure can be seen in Fig. 2.15. Since the opposite couplings introduce additional
degrees of freedom and constraints, the total available degrees of freedom can again
be check with Eq. 2.2.1. With 65 system degrees of freedom and 59 constraints during
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Figure 2.14.: Geometric analysis of the opposite leg coupling mechanism

static walking, the total available degrees of freedom still stands at 6, meaning that the
system is fully-defined with the current number of actuators.7

Figure 2.15.: Fully reduced kinematic model with 6 actuated degrees of freedom

2.3. Kinematic Analysis

While the previous section outlined the general design process which led to the pro-
posed kinematic model, a more concrete kinematic analysis is necessary to confirm the

7Joint degrees of freedom provided in Table B.6 of Appendix B
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expected motion behaviors of the system and to design an adequate control scheme
for testing the robot in a simulation environment. This section provides a schematic
representation of the model using coordinate frames which is then used to derive
representations of the forward and inverse kinematics problems. The model is then
further represented in terms of differential kinematics so that an inverse kinematics al-
gorithm can be implemented for executing closed-loop kinematic control, with desired
task-space trajectories given as input and actuator velocities computed as output.

2.3.1. Forward Kinematics

The first step in kinematic modeling and analysis of the proposed design is to define
a formal representation of its kinematic structure, which can be viewed as a chain of
rigid bodies connected to one another by different types of joints. The position and
orientation of each of these rigid bodies in space can be described using standard
x-y-z coordinate frames, where each rigid body, or link, is assigned a single coordinate
frame and referenced with respect to its parent link’s frame. It is convenient to place
the coordinate frames on each of the rigid bodies using a predefined convention such
that the relevant parameters are easy to define and understand, therefore a modified
version of the Denavit-Hartenberg (DH) convention used by Craig (2005) is adopted.
As proposed by Denavit and Hartenberg (1955), the original DH convention involves
a few key rules regarding where the origin of a coordinate frame should be located
and how the x- and z-axes should be oriented. Namely, zi should be placed along the
axis of joint i + 1 and the origin of frame i, denoted by Oi, should be located at the the
intersection of axis zi with the common normal to zi−1 and zi. Four parameters known
as the DH parameters are then used to represent the transformation between frames
i − 1 and i. The angle between axes xi−1 and xi about zi−1 is denoted by parameter
ϑi, the distance between Oi−1 and Oi along zi−1 by parameter di, the angle between
axes zi−1 and zi about xi by parameter αi, and the distance between Oi−1 and Oi
along xi by parameter ai. The modified version simply places the coordinates of frame
Oi along joint axis i instead of i + 1 such that a transformation between coordinate
frames Oi−1 and Oi is represented by the homogeneous transformation matrix in Eq.
2.3.1, where cϑ represents cos(ϑ) and sϑ represents sin(ϑ). The parameters ϑi and di
remain the same as in the original convention, but αi represents the angle between
axes zi−1 and zi about xi−1 and ai represents the distance between Oi−1 and Oi along
xi−1. This modified version of DH convention is chosen over the classic DH convention
because it places the coordinate frames in such as way that more closely resembles the
RPY coordinate frame transformations used by URDF, which is eventually utilized to
simulate the proposed model.

Ai−1
i =


cϑi −sϑi 0 ai−1

sϑi cαi−1 cϑi cαi−1 −sαi−1 −disαi−1

sϑi sαi−1 cϑi sαi−1 cαi−1 dicαi−1

0 0 0 1

 (2.3.1)

The forward kinematics problem involves computation of the pose of a coordinate
frame, usually the last frame in a kinematic chain, with respect to a reference frame
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when all of the joint states are known. The forward kinematics equation for a particular
kinematic chain can be defined by simply post-multiplying the transformation matrices
corresponding to each coordinate frame along the chain, as follows:

Ai
n = Ai

i+1Ai+1
i+2 . . . An−1

n (2.3.2)

Looking again at the final proposed kinematic model in Fig. 2.15, the representation
of the kinematic structure with coordinate frames and derivation of the forward kine-
matics equations are broken down into smaller subsections of the system for simplicity.
Specifically, the representation and forward kinematics derivation starts with the float-
ing base and legs, followed by the adjacent and opposite leg couplings. It is important
to note that the forward kinematics of the system is only derived to the extent nec-
essary for representation of the inverse kinematics problem, since the derivation of
joint configurations from given task-space configurations is of more interest in motion
planning.

Floating Base & Legs

The coordinate frame representation starts with defining a fixed reference frame, often
called the inertial frame or world frame, which is placed arbitrarily in the world. In
the case of walking robots, motion is defined by movement relative to the ground, so
the world frame Ow can logically be placed somewhere on the surface of the ground
plane, with zw pointing upwards, orthogonal to the ground. As opposed to the stan-
dard fixed-base manipulator representation, legged robots are usually modeled with
a floating base which has six degrees of freedom relative to the world frame. To repre-
sent this, a coordinate frame is fixed to the floating base and six virtual passive joints
are placed between the world frame and the base frame frame. The transformation
between world frame w and floating base frame b is then represented by a single trans-
formation matrix which defines orientation using RPY angles and translation in all
three dimensions relative to the world frame. This matrix is given by Eq. 2.3.3, where
ϕ, ϑ and ψ denote the rotations of frame b about axes zw, yw and xw, respectively, and
x, y and z denote the translations of frame b along axes xw, yw and zw.

Tw
b =


cϕcϑ cϕsϑsψ − sϕcψ cϕsϑcψ + sϕsψ x
sϕcϑ sϕsϑsψ + cϕcψ sϕsϑcψ − cϕsψ y
−sϑ cϑsψ cϑcψ z

0 0 0 1

 (2.3.3)

Most quadrupeds have a clearly defined central body to which all the legs are attached,
and the base coordinate frame is typically attached to the center of this body. The
proposed quadruped differs in that no clearly defined central body exists, and instead
the base frame is connected to the central pivot shaft, which is rigidly fixed to the first
leg’s pivot link. The axis zb is aligned with the central pivot axis, and xb is aligned so
that it points in the direction of the first leg’s hip joint. Fig. 2.16a shows the placement
of all the coordinate frames for the first leg and Fig. 2.16b shows the placement for the
other three legs, where n ∈ 1, 2, 3, 4 denotes the leg number. The representation for all
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the legs is therefore the same, except that the first frame pn of legs 2, 3 and 4 is the
pivot frame, which is a child of the base frame b on leg 1.

(a) First leg (b) Other legs

Figure 2.16.: Coordinate frame placement for the pantograph legs

In contrast to the simple serial kinematic chains of classical robotic manipulators, the
proposed quadruped has a complex kinematic chain which consists of many branches,
making the representation of the forward kinematics more complicated. Classical
serial manipulators typically have a single end-effector frame which is the target
frame for derivation of the forward kinematics. In contrast, in quadrupeds such as
the one proposed, the four feet are simultaneously considered as forward kinematic
targets since it is the positions of the feet which are of interest in locomotion tasks. In
addition, the floating base body is sometimes considered as a forward kinematic target
when the pose of the body is of interest. In the proposed quadruped, the existence
of several closed chains further complicates the representation with DH convention
and the derivation of the forward kinematic equations due to the recursive nature
of the method. Fortunately, accounting for these closed chains is quite simple. Each
of the closed chains can be virtually opened so that the rigid body tree consists of
purely open chains. These open chains can be easily represented with DH convention,
then constraint equations can be introduced to represent the closing conditions for
each loop. It is important to note that a closed-form solution to the constraints is not
guaranteed and the forward kinematics solution for parallel mechanisms can often
be quite ambiguous since some arbitrary set of joint variables could be infeasible or
correspond to multiple possible poses.
The kinematic chain for the pantograph leg is shown in Fig. 2.17 where it can be
seen that a closed loop exists between frames jn and jn + 2. The existence of this loop
presents two possible paths from the base frame b to the foot frame jn + 3 when
deriving the forward kinematics equations, one following the upper branch denoted
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by

Tb
jn+3 = Ab

jn Ajn
jn+1Ajn+1

jn+2Ajn+2
jn+3 (2.3.4)

and the other following the lower branch denoted by

Tb
jn+3 = Ab

jn Ajn
jn+1′A

jn+1′

jn+2′A
jn+2′

jn+2 Ajn+2
jn+3 (2.3.5)

Figure 2.17.: Kinematic chain for the pantograph leg with closed loop present

The method for representing the closed chain as open chains begins by selecting the
passive joint jn + 2 to be the cutting joint since it is the point where the upper and
lower branches rejoin into a single branch. The connection at joint jn + 2 is removed
and a new coordinate frame jn + 3′ is attached to the end of link jn + 2′ as shown in
Fig. 2.18, resulting in an open chain with two branches. Since the position of frames
jn + 2 and jn + 3′ and the orientation of their z-axes should be aligned at all times, the
following constraints are imposed between them:Rjn+2

jn (pjn
jn+2 − pjn

jn+3′) =
[
0 0 djn+2,jn+3′

]T

zjn
jn+2 = zjn

jn+3′

(2.3.6)

where Rjn+2
jn denotes the orientation of frame jn with respect to frame jn + 2, pjn

jn+2

and pjn
jn+3′ denote the positions of frames jn + 2 and jn with respect to frame jn and

djn+2,jn+3′ is the fixed offset between frames jn + 2 and jn + 3′ along axis zjn+2. Since
the loop is a planar parallelogram, it is also known that djn+2,jn+3′ = 0. The kinematic
transformation for the branch from jn to jn + 2 is then denoted as follows:

Tjn
jn+2(q

′) = Ajn
jn+1Ajn+1

jn+2 (2.3.7)

where the state vector is represented by q′ = {ϑjn + 1}. The transformation for the
branch from jn to jn + 3′ is then denoted as follows:
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Tjn
jn+3′(q

′′) = Ajn
jn+1′A

jn+1′

jn+2′A
jn+2′

jn+3′ (2.3.8)

where the state vector is represented by q′′ = {ϑjn+1′ ϑjn+2′}. The DH parameters for
both branches are provided in Table 2.1.

Figure 2.18.: Kinematic chain for the pantograph leg after cutting the loop

Link ai αi di ϑi
(pn) 0 0 0 ϑpn

jn ajn π/2 0 ϑjn
jn + 1 ajn+1 0 0 ϑjn+1
jn + 2 ajn+2 0 0 0
jn + 1′ ajn+1′ 0 0 ϑjn+1′

jn + 2′ ajn+2′ 0 0 ϑjn+2′

jn + 3′ ajn+3′ 0 0 ϑjn+3′

jn + 3 ajn+3 0 0 0
Table 2.1.: DH parameters for the pantograph legs

It should be noted that the constraints in Eq. 2.3.6 present six equalities which must
hold true for any given joint state vector q, but some of these equalities can become
dependent for simple geometries, e.g. planar structures, reducing the number of con-
straint equations and making a solution easier to find. Since the closed chain in the
proposed leg mechanism is planar, the orientation constraints and the z-positional
constraint are satisfied independently from q, reducing the number of independent
constraint equations to the two corresponding to px and py.
It should be noted that the kinematic chains for all four legs are identical aside from
the exclusion of the pivot joint frame pn in the first leg. For the three legs with the
pivot frame, the transformation tree begins with the base frame b, then continues as
normal with frame pn.
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Adjacent Leg Couplings

The next component of the model for which coordinate frames must be assigned and
the forward kinematic equations derived is the adjacent leg coupling. Just as with the
pantograph legs, the adjacent leg couplings form closed loops in the kinematic chain
which must be virtually cut open to form an open chain tree. Constraint equations
are then introduced to represent the loop closing conditions. As already discussed in
Chapter 2.2.3, a single coupling exists for each adjacent leg pair with connections at the
driving point on the thighlink of each leg. If leg n is an arbitrarily chosen leg and leg
n + 1 is the clockwise neighboring leg, the adjacent leg couplings can be represented
identically in both directions (n to n+ 1 or n+ 1 to n), therefore a common approach is
chosen for all couplings with their kinematic chains defined as starting from leg n and
ending at leg n + 1. The coordinate frames can then be assigned using the modified
DH convention as shown in Fig. 2.19, with all four couplings being identical aside
from the exclusion of the pivot joint frame pn in the first leg.

Figure 2.19.: Coordinate frame placement for the adjacent leg couplings

The closed kinematic chain for the adjacent leg couplings can then be represented
as shown in Fig. 2.20. The passive joint k′n+1 + 1 can be chosen to be the cutting
joint, and a new frame kn + 6 is added such that the loop is transformed into two
open-chain branches. Using the DH parameters provided in Table 2.2, the forward
kinematic equations can be derived for the two resulting branches, with the first branch
transformation derived as follows:

Tb
kn+6(q

′) = Ab
pn Apn

jn Ajn
jn+1′A

jn+1′

kn
Akn

kn+1Akn+1
kn+2Akn+2

kn+3Akn+3
kn+4Akn+4

kn+5Akn+5
kn+6 (2.3.9)

with the joint vector denoted by q′ = {ϑpn , ϑjn , ϑjn+1′ , ϑkn+1, ϑkn+2, dkn+3, ϑkn+4, ϑkn+5,
ϑkn+6}. The second branch transformation can then be derived as follows:
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Tb
k′n+1+1(q

′′) = Ab
pn+1

Apn+1
jn+1

Ajn+1
jn+1+1′A

jn+1+1′

k′n+1
A

k′n+1
k′n+1+1 (2.3.10)

where the joint vector is denoted by q′′ = {ϑpn+1 , ϑjn+1 , ϑjn+1+1′}.

Figure 2.20.: Kinematic chain for the adjacent leg couplings before and after cutting the closed
loop

It is then necessary to introduce constraint equations for the closing conditions of
the loop, which are shown in Eq. 2.3.11. Just as before, there are six total equalities
to be satisfied, however since the kinematic structure of this loop is not planar and
contains many non-parallel joints, no clear reduction is possible and all six equalities
can be seen as independent and necessary for solving the forward kinematics. There
are therefore six independent constraint equations for each adjacent leg coupling.Rkn+6

b (pb
kn+6 − pb

k′n+1+1) =
[
0 0 0

]T

zb
kn+6 = zb

k′n+1+1

(2.3.11)

Opposite Leg Couplings

The final component in the proposed design which needs to have coordinate frames
assigned is the opposite leg coupling. There are two such couplings, one on the top of
the pivot shaft connecting legs 1 and 3, and the other inverted on the bottom connecting
legs 2 and 4. These couplings again form closed loops in the kinematic chain which
must be cut open to derive the open chain forward kinematics for each branch, with
constraint equations introduced to represent the closing conditions. Specifically, each
of the couplings contains two separate closed loops, but the couplings are virtually
identical except for the exclusion of the pivot frame in the first leg of the top coupling.
The coordinate frames for the top coupling can be assigned based on the modified
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Link ai αi di ϑi
(pn) 0 0 0 ϑpn

jn ajn π/2 0 ϑjn
jn + 1′ ajn+1′ 0 0 ϑjn+1′

kn akn π/2 0 π/2
kn + 1 akn+1 0 0 ϑkn+1
kn + 2 0 −π/2 0 ϑkn+2
kn + 3 0 π/2 dkn+3 0
kn + 4 0 0 dkn+4 ϑkn+4
kn + 5 0 π/2 0 ϑkn+5
kn + 6 0 π/2 0 ϑkn+6
pn+1 0 0 0 ϑpn+1

jn+1 ajn+1 π/2 0 ϑjn+1

jn+1 + 1′ ajn+1+1′ 0 0 ϑjn+1+1′

k′n+1 ak′n+1
−π/2 0 π/2

k′n+1 + 1 ak′n+1+1 0 0 π/2
Table 2.2.: DH parameters for the adjacent leg couplings

DH convention as shown in Fig. 2.21, while the coordinate frame assignment for the
bottom coupling can be seen in Fig. 2.22.
For the opposite leg coupling between legs 1 and 3, the closed kinematic chain is then
represented as shown in Fig. 2.23. It can be seen that two closed loops exist, so both
must be virtually cut, resulting in four open chain branches. Choosing the cutting
joints to be at the two passive joints j1 + 1′′ and j3 + 1′′, two new frames f + 2 and
f + 3′ are added to the ends of the cut branches and the new open chain is represented
as shown in Fig. 2.24.
The forward kinematic transformations for the four branches are then given as follows:

Tb
j1+2′′(q

′) = Ab
j1Aj1

j1+1′′A
j1+1′′

j1+2′′ (2.3.12)

Tb
f+2(q

′′) = Ab
f A f

f+1A f+1
f+2 (2.3.13)

Tb
j3+2′′(q

′′′) = Ab
p3

Ap3
j3

Aj3
j3+1′′A

j3+1′′

j3+2′′ (2.3.14)

Tb
f+3′(q

′′′′) = Ab
f A f

f+1′A
f+1′

f+2′A
f+2′

f+3′ (2.3.15)

where the joint state vectors are given by q′ = {ϑj1}, q′′ = {d f , ϑ f+1}, q′′′ = {ϑp3 , ϑj3}
and q′′′′ = {d f , ϑ f+1′ , ϑ f+2′}. The DH parameters are provided in Table 2.3.
The positional and orientational constraint equations can then be introduced for the
two loops as follows: R f+2

b (pb
f+2 − pb

j1+2′′) =
[
0 0 0

]T

zb
f+2 = zb

j1+2′′

(2.3.16)
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Figure 2.21.: Coordinate frame placement for the opposite leg coupling between legs 1 and 3

Figure 2.22.: Coordinate frame placement for the opposite leg coupling between legs 2 and 4

Figure 2.23.: Kinematic chain for the opposite leg coupling between legs 1 and 3
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Figure 2.24.: Kinematic chain for the opposite leg coupling between legs 1 and 3 after cutting
the loop

R f+3′
p3 (pp3

f+3′ − pp3
j3+2′′) =

[
0 0 0

]T

zp3
f+3′ = zp3

j3+2′′

(2.3.17)

Link ai αi di ϑi
j1 aj1 π/2 0 ϑj1

j1 + 1′′ aj1+1′′ 0 0 π/2
j1 + 2′′ aj1+2′′ 0 0 −π/2

f 0 0 d f 0
f + 1 a f+1 π/2 0 ϑ f+1
f + 2 a f+2 0 0 0

p3 0 0 0 ϑp3

j3 0 π/2 0 ϑj3
j3 + 1′′ aj3+1′′ 0 0 π/2
j3 + 2′′ aj3+2′′ 0 0 −π/2
f + 1′ 0 0 0 ϑ f+1′

f + 2′ a f+2′ π/2 0 ϑ f+2′

f + 3′ a f+3′ 0 0 0
Table 2.3.: DH parameters for the opposite leg coupling between legs 1 and 3

For the opposite leg coupling between legs 2 and 4, the closed kinematic chain is shown
in Fig. 2.25. The structure is almost identical to that of the coupling between legs 1
and 3 and also contains two closed loops which must be cut open, resulting in four
kinematic branches. With the passive joints j2 + 1′′ and j4 + 1′′ chosen as the cutting
joints, the frames f ′ + 2 and f ′ + 3′ are added to the ends of the cut branches and the
resulting kinematic chain is shown in Fig. 2.26. The forward kinematic equations for
the four branches are then represented as follows:
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Tb
j2+2′′(q

′) = Ab
p2

Ap2
j2

Aj2
j2+1′′A

j2+1′′

j2+2′′ (2.3.18)

Tb
f ′+2(q

′′) = Ab
p2

Ap2
f ′ A

f ′

f ′+1A f ′+1
f ′+2 (2.3.19)

Tb
j4+2′′(q

′′′) = Ab
p4

Ap4
j4

Aj4
j4+1′′A

j4+1′′

j4+2′′ (2.3.20)

Tb
f ′+3′(q

′′′′) = Ab
p2

Ap2
f ′ A

f ′

f ′+1′A
f ′+1′

f ′+2′A
f ′+2′

f ′+3′ (2.3.21)

where the joint state vectors are denoted by q′ = {ϑp2 ϑj2 , q′′ = {ϑp2 d′f ϑ f ′+1},
q′′′ = {ϑp4 ϑj4} and q′′′′ = {ϑp2 d′f ϑ f ′+1′ ϑ f ′+2′ . The DH parameters are provided in
Table 2.4.

Figure 2.25.: Kinematic chain for the opposite leg coupling between legs 2 and 4

Figure 2.26.: Kinematic chain for the opposite leg coupling between legs 2 and 4 after cutting
the loop

The constraint equations can then be introduced for the two loops in the same way as
for the coupling between legs 1 and 3 as follows:R f ′+2

p2 (pp2
f ′+2 − pp2

j2+2′′) =
[
0 0 0

]T

zp2
f ′+2 = zp2

j2+2′′

(2.3.22)

R f ′+3′
p4 (pp4

f ′+3′ − pp4
j4+2′′) =

[
0 0 0

]T

zp4
f ′+3′ = zp4

j4+2′′

(2.3.23)
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Link ai αi di ϑi
p2 0 0 0 ϑp2

j2 aj2 π/2 0 ϑj2
j2 + 1′′ aj2+1′′ 0 0 −π/2
j2 + 2′′ aj2+2′′ 0 0 0

f ′ 0 π d f ′ 0
f ′ + 1 a f ′+1 −π/2 0 ϑ f ′+1
f ′ + 2 a f ′+2 0 0 0

p4 0 0 0 ϑp4

j4 0 π/2 0 ϑj4
j4 + 1′′ aj4+1′′ 0 0 −π/2
j4 + 2′′ aj4+2′′ 0 0 0
f ′ + 1′ 0 0 0 ϑ f ′+1′

f ′ + 2′ a f ′+2′ −π/2 0 ϑ f ′+2′

f ′ + 3′ a f ′+3′ 0 0 0
Table 2.4.: DH parameters for the opposite leg coupling between legs 2 and 4

For both opposite leg couplings, there exist some notable geometrical features which
allow for the constraint equations to be reduced. First it can been seen that just as with
the pantograph legs, all the joints within each coupling have parallel axes, aside from
the central pivot joints pn and the top/bottom pivot joints f + 1′, f ′+ 1′. Looking again
at the coupling between legs 1 and 3 in Fig. 2.21, both the central and the top pivot
frames, p3 and f + 1′, have their z-axes aligned and are referenced with respect to the
base frame b. Due to the planar closed loop consisting of joints with axes orthogonal
to the pivot axis, it is known that the joint values ϑp3 and ϑ f+1′ must be equal at all
times, so the equality ϑp3 = ϑ f+1′ can be introduced as a constraint and the closed
loop can then be viewed as a planar mechanism which is decoupled from its rotation
about the pivot axis. Viewing each loop as purely planar, the orientation constraints
in Eqs. 2.3.16 and 2.3.17 are satisfied at all times, thus they are dependent and can be
ignored. This leaves only the three positional constraints representing each loop, for
which py is also dependent due to the planar geometry, leaving only two independent
position constraints for each loop corresponding to px and pz. Together with the pivot
joint equality, the opposite leg coupling between legs 1 and 3 is therefore represented
by five constraint equations.

Looking then at the coupling between legs 2 and 4 in Fig. 2.22, the same geometric
principles hold for decoupling of the planar loop and the rotation about the pivot axis,
with the pivot joint equality constraint represented by ϑp4 = ϑ f ′+1′ . The orientation
constraints as well as the positional constraints corresponding to py from Eq. 2.3.22 and
2.3.23 are again dependent and can be ignored, leaving only the positional constraints
corresponding to px and pz. Together with the pivot axis equality, the total number of
constraint equations for the coupling between legs 2 and 4 is therefore also five.
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Forward Kinematics Summary

Each of the subsections of the system has now been represented by means of coordi-
nate frames using a modified DH convention, and all closed chains have been virtually
cut open, with constraint equations introduced for representing the closing conditions.
This results in a tree which begins at the world frame w and moves along several differ-
ent serial branches to their open chain ends. While normally the constraint equations
would be solved for a reduced number of independent joint variables in order to obtain
a full forward kinematics solution, the number of independent constraint equations
and forward kinematic transformations present in the proposed design makes this
process quite complicated. Additionally, the scope of this work does not require such a
solution since the ultimate goal is to demonstrate the robot’s ability to achieve desired
task space trajectories, a problem which can be solved instead with inverse kinemat-
ics. It is however necessary for the forward kinematic transformations and constraint
equations to be defined for each open chain branch since these are required for the
inverse kinematics, which relies on numerical optimization of a system of equations,
as is discussed in the next section.

2.3.2. Inverse Kinematics

While the forward kinematics equations presented in Chapter 2.3.1 provide mappings
between the joint values and the position and orientation of each branch’s end frame,
the computation of joint values given the pose of a particular end frame is of more
interest. Motion control schemes for legged locomotion typically involve providing
desired foot and/or body trajectories which are used to compute the necessary joint
states to be commanded by the controller, which is a problem solved using inverse
kinematics. It is common practice for quadruped designs to consist of four independent
and identical legs which are connected to a central floating base body, meaning that
the computation of the inverse kinematics can be performed for each leg to indepen-
dently solve for the positions of each foot relative to the body. Moreover, the kinematic
structure for such quadrupeds is typically quite simple, allowing for straightforward
analytical computation of the inverse kinematics based on knowledge of the geome-
try. The kinematic leg couplings present in the proposed quadruped complicate the
process of defining the inverse kinematics in an analytical way, since the legs are not
kinematically independent from one another and the many passive joints in the system
depend on the closed-loop and ground contact constraint equations to be fully de-
fined. Additionally, the non-linear nature of the forward kinematics equations means
that a closed-form solution may not always exist or may be difficult to find (Siciliano
et al. 2009). For these reasons, it is easier to adopt a numerical approach for solving
the inverse kinematics problem, where the target equations are reformulated as an
optimization problem to find suitable joint values. Specifically, non-linear least squares
fitting is an optimal optimization method due to the non-linearity of the functions and
is set up as follows:
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q∗ = arg min
q

m

∑
i=1
∥ei(q)∥2 (2.3.24)

where q denotes the joint state vector, ei(q) denotes a target error function which is
to be minimized and m is the number of individual error functions to be minimized
simultaneously. The optimization goal is therefore to determine the values for q which
result in a minimization of the sum of squared error functions.
Before setting up the optimization problem, it is important to know the size of q, as the
number of independent equations to solve for should be equal to the number of joint
variables to have a fully-determined system of equations. Including the six virtual
floating base joints, there are 65 total joints, however the kinematic representation
ignores the joints at the closed chain cutting points for the planar loops, leaving a total
of 57 joints, so q ∈ R57×1. A detailed list of all of the joint variables included in q is
provided in Appendix C. In order to create a fully-determined system of equations to
solve for, there must then be at least 57 independent equations which represent the
entire kinematics of the system, all of which have already been defined in Chapter
2.3.1.
The first set of equations represent the positions of the four feet w.r.t the world frame.
This is a primary goal in the inverse kinematics problem since locomotion tasks require
computation of the joint values from desired foot position values. The equations defin-
ing the foot position values can be extracted from the homogeneous transformation
matrices, represented as follows:

Tw
jn+3(q) =

[
Rw

jn+3(q) pw
jn+3(q)

0T 1

]
∀n ∈ {1, 2, 3, 4} (2.3.25)

where Rw
jn+3 denotes the rotation of frame jn + 3 w.r.t. frame w and pw

jn+3(q) denotes
the position of frame jn + 3 w.r.t. frame w. The desired foot positions w.r.t. the world
frame can then be represented by xn ∈ R3×1. For some given xn, it is desired that
the error between xn and pw

jn+3(q) is zero, or as close to zero as possible, so the foot
position equations can naturally be reformulated into 12 error functions represented
as follows:

e f 1(q) = pw
j1+3(q)− x1 (2.3.26)

e f 2(q) = pw
j2+3(q)− x2 (2.3.27)

e f 3(q) = pw
j3+3(q)− x3 (2.3.28)

e f 4(q) = pw
j4+3(q)− x4 (2.3.29)

The next set of equations represent the position of the base frame b w.r.t. the world
frame w as defined by Eq. 2.3.3 and are formulated in the same way as the foot
position equations. If xb is used to represent the desired base frame position and pw

b to
represent the translational part of the transformation matrix from frame w to b, then 3
more error functions can be defined as:
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eb(q) = pw
b (q)− xb (2.3.30)

Another two error functions can be obtained from a reformulation of the pivot joint
equalities which were introduced to simplify the representation of the opposite leg
couplings into planar mechanisms. These are defined as follows:

ep1(q) = ϑ f+1′ − ϑp3 (2.3.31)

ep2(q) = ϑ f ′+1′ − ϑp4 (2.3.32)

The remaining equations must represent the constraints which were introduced in
Chapter 2.3.1 for each of the formerly closed kinematic chains. The first set comes
from the closed loop in the pantograph legs, defined by Eq. 2.3.6. It was previously
determined that only the positional constraints corresponding to px and py are inde-
pendent and necessary, so 8 error functions for the four pantographs can be represented
as follows:

el1(q) =
[

ex(q)
ey(q)

]
= Rj1+2

j1
(q)

([
pj1

j1+2,x(q)

pj1
j1+2,y(q)

]
−
[

pj1
j1+3′,x(q)

pj1
j1+3′,y(q)

])
(2.3.33)

el2(q) =
[

ex(q)
ey(q)

]
= Rj2+2

j2
(q)

([
pj2

j2+2,x(q)

pj2
j2+2,y(q)

]
−
[

pj2
j2+3′,x(q)

pj2
j2+3′,y(q)

])
(2.3.34)

el3(q) =
[

ex(q)
ey(q)

]
= Rj3+2

j3
(q)

([
pj3

j3+2,x(q)

pj3
j3+2,y(q)

]
−
[

pj3
j3+3′,x(q)

pj3
j3+3′,y(q)

])
(2.3.35)

el4(q) =
[

ex(q)
ey(q)

]
= Rj4+2

j4
(q)

([
pj4

j4+2,x(q)

pj4
j4+2,y(q)

]
−
[

pj4
j4+3′,x(q)

pj4
j4+3′,y(q)

])
(2.3.36)

where no modifications to the originally provided constraint equations are neces-
sary since they already represent the position errors between coordinate frames. The
second set of constraint equations comes from the closed loop in the adjacent leg
couplings, defined by Eq. 2.3.11. In this case, it was determined that all six constraints
are independent and necessary to define the loops, therefore 24 error functions can be
represented as follows:
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ea1,p(q) = Rk1+6
b (q)

(
pb

k1+6(q)− pb
k′2+1(q)

)
(2.3.37)

ea1,o(q) = zb
k1+6(q)− zb

k′2+1(q) (2.3.38)

ea2,p(q) = Rk2+6
b (q)

(
pb

k2+6(q)− pb
k′3+1(q)

)
(2.3.39)

ea2,o(q) = zb
k2+6(q)− zb

k′3+1(q) (2.3.40)

ea3,p(q) = Rk3+6
b (q)

(
pb

k3+6(q)− pb
k′4+1(q)

)
(2.3.41)

ea3,o(q) = zb
k3+6(q)− zb

k′4+1(q) (2.3.42)

ea4,p(q) = Rk4+6
b (q)

(
pb

k4+6(q)− pb
k′1+1(q)

)
(2.3.43)

ea4,o(q) = zb
k4+6(q)− zb

k′1+1(q) (2.3.44)

The last set of constraint equations comes from the two opposite leg couplings, each
of which has two closed loops. The constraint equations for the opposite coupling
between legs 1 and 3 are given by Eq. 2.3.16 and 2.3.17, while the constraint equations
for the opposite coupling between legs 2 and 4 are given by Eq. 2.3.22 and 2.3.23. Just as
with the pantograph leg loops, it was determined that each of the opposite leg coupling
loops can be viewed as planar, so only the positional constraints corresponding to px
and pz are independent and necessary. The constraint equations for the four opposite
coupling loops can therefore be reformulated into 8 error functions as follows:

eo1 =

[
ex,o1(q)
ez,o1(q)

]
= R f+2

b (q)

([
pb

f+2,x(q)
pb

f+2,z(q)

]
−
[

pb
j1+2′′,x(q)

pb
j1+2′′,z(q)

])
(2.3.45)

eo2 =

[
ex,o2(q)
ez,o2(q)

]
= R f+3′

p3 (q)

([
pp3

f+3′,x(q)
pp3

f+3′,z(q)

]
−
[

pp3
j3+2′′,x(q)

pp3
j3+2′′,z(q)

])
(2.3.46)

eo3 =

[
ex,o3(q)
ez,o3(q)

]
= R f ′+2

p2 (q)

([
pp2

f ′+2,x(q)
pp2

f ′+2,z(q)

]
−
[

pp2
j2+2′′,x(q)

pp2
j2+2′′,z(q)

])
(2.3.47)

eo4 =

[
ex,o4(q)
ez,o4(q)

]
= R f ′+3′

p4 (q)

([
pp4

f ′+3′,x(q)
pp4

f ′+3′,z(q)

]
−
[

pp4
j4+2′′,x(q)

pp4
j4+2′′,z(q)

])
(2.3.48)

With each of the individual target error functions defined, they can then be compiled
into a single system of equations which is represented as follows:
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e(q) =



e f 1(q)
e f 2(q)
e f 3(q)
e f 4(q)
eb(q)
ep1(q)
ep2(q)
el1(q)
el2(q)
el3(q)
el4(q)

ea1,p(q)
ea1,o(q)
ea2,p(q)
ea2,o(q)
ea3,p(q)
ea3,o(q)
ea4,p(q)
ea4,o(q)
eo1(q)
eo2(q)
eo3(q)
eo4(q)



(2.3.49)

This system of error functions can then be passed to the non-linear least squares
optimization problem from Eq. 2.3.24 to compute numerical solutions for q. It is
important to note that numerical optimization methods such as this one do not always
result in unique solutions due to the possible existence of multiple local minima.
To further ensure that solutions obtained for q are valid and physically feasible, the
initial guess for q should be chosen wisely and joint limits can be introduced to the
optimization problem to represent physical constraints of the system.

2.3.3. Differential Kinematics

While the forward and inverse kinematics problems provide functional relationships
between the joint states and the end effector (feet and base) poses, motion control
schemes typically rely instead on velocity or acceleration mappings, which can be
defined with differential kinematics. The Jacobian matrix, represented by J(q), is a
joint state-dependent matrix which provides a direct mapping from joint velocities to
end effector velocities at a given configuration. This mapping is denoted as follows:

ve = J(q)q̇ (2.3.50)

where q̇ represents the joint velocity vector and ve represents the end effector linear
and rotational velocity in the form ve =

[
ṗe ωe

]T. Since this velocity mapping takes
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the form of a linear equation, it can be seen that when the Jacobian matrix is square
and non-singular, the joint velocities can also be uniquely computed from given end
effector velocities by simple inversion of J(q) as follows:

q̇ = J−1(q)ve (2.3.51)

For fully-actuated serial manipulators, the formulation for differential kinematics can
be quite straightforward, with a single Jacobian matrix of dimension 6× n mapping
the joint velocities to a single end effector’s velocities, where n denotes the number of
joints in the kinematic chain. In the proposed quadruped, however, the formulation of
the differential kinematics is complicated by the parallel structure and the presence of
many passive joints. Since velocities cannot be commanded to the passive joints, the
inverse differential kinematics problem should not compute velocities for the entire
set of joints, but rather only for a subset consisting of the six active joints. A mapping
between the active joint velocities and the passive joint velocities is then necessary and
can be derived using the same system constraints which were defined in Chapter 2.3.1
and used in 2.3.2 to fully constrain the passive joints.
A general method for formulating the differential kinematics problem for parallel
mechanisms was outlined by Lynch and Park (2017), where a so-called constraint Jaco-
bian derived from the Jacobians defined by the constraint equations is introduced and
used for computing both the active and passive joint velocities separately. Specifically,
the method provides a way of formulating a square and invertible Jacobian matrix for
computing the active joint velocities as well as a configuration-dependent mapping
from active to passive joint velocities. It can first been seen that the closed-loop con-
straint equations, originally expressed in terms of each branch’s end-effector frame
position and orientation, can equally be expressed in terms of end-effector frame lin-
ear and rotational velocity using the Jacobian matrices for the branches. For example,
a closed loop represented by the constraint equation Ta(θa) = Tb(θb) would be ex-
pressed as follows:

Ja(θa)θ̇a = Jb(θb)θ̇b (2.3.52)

where simple algebraic rearrangement yields:

Ja(θa)θ̇a − Jb(θb)θ̇b = 0 (2.3.53)

which can also be represented as:

[
Ja(θa) −Jb(θb)

] [θ̇a
θ̇b

]
= 0 (2.3.54)

In the case that multiple constraint equations exist, they can simply be stacked verti-
cally, forming a system of constraint equations expressed in terms of configuration-de-
pendent Jacobians and joint velocities. Looking again at the previous example, if an
additional constraint equation represented by Tc(θc) = Td(θd) is introduced, the new
formulation is given by:
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[
Ja(θa) −Jb(θb) 0 0

0 0 Jc(θc) −Jd(θd)

] 
θ̇a
θ̇b
θ̇c
θ̇d

 = 0 (2.3.55)

For the proposed design, all of the constraint equations were collected in Chapter 2.3.2
and it was seen that most of the closed loops resulted in reduced sets of indepen-
dent constraints due to their geometrical features. In order to compile the constraint
equations into a form such as that of Eq. 2.3.55, it is therefore necessary to isolate
the independent equations from their Jacobian matrix representations since the Jaco-
bian matrix, like the transformation matrix, represents six degrees of freedom (three
positional and three orientational) in its complete form.
The first of the closed-loop constraint equation sets comes from the pantograph struc-
ture in the four legs, which was shown previously to be planar, with only the positional
constraints corresponding to px and py being independent. If the Jacobian matrix is
expressed by:

J =
[

JP
JO

]
(2.3.56)

where JP =
[
JPx JPy JPz

]T
represents the individual joints’ contributions to the linear

velocities at the end effector and JO =
[
JOx JOy JOz

]T
represents their contributions

to the angular velocities at the end effector, then the constraint equations for the
pantograph closed loops expressed in terms of the Jacobians can be formulated as
follows: 

p̃0

(
Jj1

j1+2(q)− Jj1
j1+3′(q)

)
p̃0

(
Jj2

j2+2(q)− Jj2
j2+3′(q)

)
p̃0

(
Jj3

j3+2(q)− Jj3
j3+3′(q)

)
p̃0

(
Jj4

j4+2(q)− Jj4
j4+3′(q)

)

 q̇ = 0 (2.3.57)

where Ji
j represents the Jacobian matrix for the kinematic branch ending with frame j,

expressed in frame i, and

p̃0 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
(2.3.58)

allows the selection of only the first and second rows of each set of Jacobian constraint
equations, which correspond to the linear velocities of the each end frame in xjn and
yjn .
The next set of closed-loop constraint equations comes from the four adjacent leg
couplings, which were shown before to each introduce six independent equations.
This means that no isolation of rows from the Jacobians is necessary and the constraint
equations can therefore be expressed in terms of the Jacobians as follows:
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
Jb

k1+6(q)− Jb
k′2+1(q)

Jb
k2+6(q)− Jb

k′3+1(q)

Jb
k3+6(q)− Jb

k′4+1(q)

Jb
k4+6(q)− Jb

k′1+1(q)

 q̇ = 0 (2.3.59)

The last set of closed-loop constraint equations comes from the two opposite leg
couplings, each of which was shown previously to consist of two separate closed loops
which are represented as planar for the purpose of deriving the inverse kinematics.
This representation depends on the introduction of two joint equalities for the aligned
pivot joints, however the differential kinematics representation can be formulated
without the need for these equalities. The opposite coupling between legs 1 and 3
begins with frame b and its first closed loop consists of only joints with parallel
axes, so the representation of its closing conditions with two independent constraint
equations (corresponding to linear motion in xb and zb) remains unchanged from the
inverse kinematics representation. The second closed loop in the coupling between
legs 1 and 3 has the same planar structure as the first loop, but includes a single pivot
joint in each branch, both of which are aligned such that they create motion in yb
at the respective branch’s end frame. All three of the positional constraint equations
are therefore independent, but the orientational constraints can be seen as dependent
since the orientation of each branch’s end frame is fully defined by its position relative
to frame b. The same logic applies to the two closed loops in the opposite coupling
between legs 2 and 4, with the reference frame for both loops being frame p2 instead of
frame b. Each of the opposite leg couplings therefore yields five constraint equations,
all of which can be expressed in terms of their Jacobian matrices as follows:

p̃1

(
Jb

f+2(q)− Jb
j1+2′′(q)

)
p̃2

(
Jb

f+3′(q)− Jb
j3+2′′(q)

)
p̃1

(
Jp2

f ′+2(q)− Jp2
j2+2′′(q)

)
p̃2

(
Jp2

f ′+3′(q)− Jp2
j4+2′′(q)

)

 q̇ = 0 (2.3.60)

where the pre-multiplied matrices p̃1 and p̃2 facilitate selection of the corresponding
independent rows of the Jacobian matrices and are defined as:

p̃1 =

[
1 0 0 0 0 0
0 0 1 0 0 0

]
(2.3.61)

p̃2 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (2.3.62)

Aside from the closed-loop constraint equations, the contact points between the feet
and the ground must also be represented by constraint equations in the differential
kinematics problem. In the inverse kinematics representation, the positions of all four
feet are provided to the numerical solver in the form of error "constraint" equations,
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however static walking tasks involve ground contact of only three feet at any given
time, thus the position of the swing foot, pw

jn+3, is not truly a constraint but rather a
goal which should be provided to the system as input. The same is true about the
position of the base frame, pw

b , which was also provided to the inverse kinematics
solver as an error "constraint". These six variables are therefore left out of the matrix
of constraint equations in the differential kinematics representation and instead set
aside for use later as system inputs. The formulation of the ground contact constraints
then depends on which foot is chosen as swing foot, with the other three maintaining
constant contact with the ground and thus having zero velocity. The nine positional
constraints of the contact feet can therefore be expressed in terms of the Jacobians of
their respective branches as follows:p̃2Jw

jr+3(q)
p̃2Jw

js+3(q)
p̃2Jw

jt+3(q)

 q̇ = 0 (2.3.63)

where {r, s, t} is the set of feet which are in contact with the ground.
All of the defined constraint equations can then be stacked into a single matrix H(q),
which is named the constraint Jacobian, and the resulting linear equation is given by:

H(q)q̇ = 0 (2.3.64)

where H(q) ∈ R51×57 and q̇ ∈ R57×1. It is then possible to rearrange the joint variables
such that the active and passive joints are separated by simply changing the order of
the columns in the constraint Jacobian together with their corresponding rows in q̇.
This rearranged representation is given by:

[
Ha(q) Hp(q)

] [q̇a
q̇p

]
= 0 (2.3.65)

which can equivalently represented as:

Ha(q)q̇a + Hp(q)q̇p = 0 (2.3.66)

where Ha(q) ∈ R51×6, Hp(q) ∈ R51×51, q̇a ∈ R6×1 and q̇p ∈ R51×1. It can be seen that
the matrix Hp(q) is square, so if it also has full rank and is non-singular, it can be
inverted and Eq. 2.3.66 can be reformulated as:

q̇p = −H−1
p (q)Ha(q)q̇a (2.3.67)

This equation provides a unique solution for the passive joint velocities q̇p if the actu-
ated joint velocities q̇a are known. It is therefore still necessary to compute the actuated
joint velocities for some given end effector velocities, which can be denoted by the vec-
tor Vs. Recalling that the swing foot and base frame positions were set aside from the
constraint Jacobian formulation to be used as system inputs, the linear velocities of
these two frames can be directly stacked to form Vs ∈ R6×1. It is then desired to derive
the Jacobian matrix corresponding to the active joint velocities, Ja(q) ∈ R6×6, which
satisfies the forward differential kinematics equation Vs = Ja(q)q̇a. Looking back to
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Eq. 2.3.67, each row i of the mapping −H−1
p (q)Ha(q) can be denoted by gT

i (q) ∈ R1×6,
and the equation can be reformulated to represent a mapping between the active joint
velocities and all joint velocities by inserting row vectors eT

i (q) for i = 1, ..., 6 into the
rows corresponding to the actuated joints, where e(q) is the identity matrix I6. This
new mapping can be denoted by G(q) ∈ R57×6 and yields the following equation,
with the full representation of the mapping provided in Appendix D.

q̇ = G(q)q̇a (2.3.68)

Considering that the vector Vs denotes the stacked linear velocities of the swing foot
frame and the base frame, the Jacobian matrix in the full forward differential kinemat-
ics equation Vs = J(q)q̇ must be represented by the stacked positional contribution
rows of the Jacobian matrices corresponding to the kinematic chains of the swing foot
and base frame, with the full equation then given as:

Vs =

[
p̃2Jw

jn+3(q)
p̃2Jw

b (q)

]
q̇ (2.3.69)

It is then possible to substitute Eq. 2.3.68 into Eq. 2.3.69 as follows:

Vs =

[
p̃2Jw

jn+3(q)
p̃2Jw

b (q)

]
G(q)q̇a (2.3.70)

where a representation for Ja(q) can be given by:

Ja(q) =

[
p̃2Jw

jn+3(q)
p̃2Jw

b (q)

]
G(q) (2.3.71)

Since the actuated joint Jacobian Ja(q) is square, if it has full rank and is non-singular,
it can be inverted to obtain the inverse differential kinematics equation as follows:

q̇a = Ja(q)−1Vs (2.3.72)

This equation can be used to obtain unique solutions for the six actuator velocities
given some desired reference velocities of the swing foot and base frame, with the
passive joint velocities derived by simply plugging the actuator velocities into Eq.
2.3.67. It is important to note that in some cases the active joint Jacobian Ja(q) could
become singular, leading to singularities and making inversion and computation of
q̇a impossible, but the implementation of physical joint limits can easily prevent the
system from going near singular poses.

2.3.4. Inverse Kinematics Control

With the inverse differential kinematics equation derived in the previous chapter,
it is possible to compute actuator velocities from given swing foot and base frame
linear velocities at an instance in discrete time. Since the goal is to show that a static
walking gait with arbitrary foot placement is feasible, a simple inverse kinematic
controller can be introduced which takes a desired trajectory for the swing foot and

41



Chapter 2. System Design and Analysis

base frames as input and computes the joint positions and velocities at each time
step using the inverse differential kinematics evaluation from the previous time step.
Because the computations are performed in discrete time, it is possible for drift to
occur, whereby some error between the computed positions of the end effector frames
and their desired positions exists. The size of this error depends largely on the size
of the discrete time steps and the given reference velocities, namely larger time steps
and reference velocities generally lead to larger errors (Siciliano et al. 2009). The error
equation can be represented by:

e = xd − k(q) (2.3.73)

where xd ∈ R6×1 denotes the desired position of the swing foot and the base frame,
and k(q) represents the forward kinematics computation for the swing foot and base
frame given some joint configuration q. This error should be taken into account by
the inverse kinematics algorithm in such a way that the system is asymptotically
stable, i.e. the error tends towards zero over the reference trajectory, so the following
representation is adopted:

q̇a = J−1
a (q)(ẋd + Ke) (2.3.74)

where K ∈ R6×6 denotes a positive-definite gain matrix whose eigenvalues determine
how fast the error e converges to zero, namely larger values lead to faster convergence,
with an upper limit determined by the discrete step size. A schematic view of the
inverse kinematic algorithm is shown in Fig. 2.27, where it can be seen that the dif-
ferential kinematics computations discussed in the previous section for deriving both
the constraint Jacobian mapping between q̇a and q̇ and the actuated joint Jacobian
J−1

a (q) are necessary for calculating the relevant parameters. Since the differential
kinematics solver produces joint velocities q̇ as output, an integration step is included
to derive the joint positions q which are used in evaluation of the next time step. This
integration is performed in discrete time as follows:

q(tk+1) = q(tk) + q̇(tk)∆t (2.3.75)

where ∆t denotes the length of each discrete time step and q̇(tk) is computed via
inverse differential kinematics.

Figure 2.27.: Schematic view of the simple inverse kinematics control algorithm
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It can be seen that the first iteration of the control loop already requires the joint state
q to be defined in order to compute Ja(q), G(q) and k(q). These initial values can be
conveniently calculated using the numerical inverse kinematics solver from Chapter
2.3.2. It then only remains to select appropriate values for the gain matrix K which
lead to convergence of the position error and thus stable feedback control. In the case
of this discrete time model, the values can be simply selected experimentally based on
the chosen time step.
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3
Testing and Results

This chapter outlines a software implementation of the proposed quadruped which
was utilized to perform several tests in a simulated environment and collect data
which is presented and discussed. Specifically, a CAD model of the quadruped was
created in Creo Parametric and exported to URDF using Automatic Model Generation,
then an inverse kinematic control algorithm was implemented in Matlab using the
LucaDynamics library and a few static walking tests were performed to show that the
desired system goals have been achieved.

3.1. Model Generation

The first step in implementation of the proposed design was to set up a CAD model
which could realistically represent the kinematic structure and provide insight into its
physical limitations. This was done using PTC Creo Parametric 7, which serves as the
standard CAD modeling software at DLR’s Robotics and Mechatronics Center (RMC).
The software offers the ability to create so-called motion skeletons, which function as
basic representations of kinematic structures using 2D sketches connected by motion
joints. This feature allowed for quick modeling of the proposed concepts and testing of
their motions before proceeding to a more detailed solid modeling approach. Once the
final proposed model was implemented in the form of a motion skeleton, simple solid
parts were designed to represent each of the links and assembled onto the motion
skeleton model. For the purpose of testing the overall kinematic structure, the precise
values of the link lengths were not critical, so they were initially selected arbitrarily.
Coordinate frames were then attached to each of the model’s parts according to the
modified DH convention discussed and shown in Chapter 2.3.1. A rendered view of
the solid 3D Creo model can be seen in Fig. 3.1, with additional views provided in
Appendix E. Additionally, a full table of the DH parameter values used in the model
is provided in Appendix F.
The next step was to export the Creo model to URDF using Automatic Model Gen-
eration, a tool developed at the RMC for rapid conversion of Creo configuration files
into URDF or SDF files which can be used for simulation and control purposes. A few
manual modifications to the resulting URDF file were then necessary to represent the
model as desired. These changes included:
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1. Addition of a world reference link

2. Addition of a ground link represented by a rectangular box visual geometry
object

3. Change of joint type between ground link and Basis link from "fixed" to "floating"

4. Removal of joint connections for all closed-chain cutting joints

5. Addition and labeling of TCP links/joints for all branches

Figure 3.1.: Rendered image of the quadruped CAD model

3.2. MATLAB Implementation

With the URDF file modified to match the desired robot representation, it was then
possible to implement the inverse kinematic control algorithm in MATLAB with the
help of LucaDynamics, a compact MATLAB library developed at the RMC which per-
forms computations for quantities used in rigid body robotics such as homogeneous
transformations, Jacobian matrices and mass/Coriolis matrices. The library also fea-
tures a 3D visualization tool similar to RViz from ROS which can be used to simulate
the URDF file in different published joint configurations. As mentioned previously, the
inverse kinematic control algorithm requires an initial joint state for its first iteration
which can be computed using the numerical inverse kinematics solver, so this was
naturally the chosen starting point for the implementation in MATLAB.
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3.2.1. Forward/Inverse Kinematics Solvers

A function was first created for symbolically computing the forward kinematic trans-
formations for each of the open-chain branches in the kinematic tree using the modified
DH convention with the parameters from Chapter 2.3.1 and Appendix F. A separate
inverse kinematics function was then created which takes the resulting symbolic for-
ward kinematic transformations along with the desired feet and base positions and an
initial guess for the joint states as input arguments. This function then computes and
compiles the relevant error functions and utilizes MATLAB’s nonlinear least-squares
solver lsqnonlin to calculate a solution for the joint states.
It was desired that the joint configuration corresponding to the default URDF robot
pose shown in Fig. 3.1 be considered the home configuration, where all joint state
values are equal to zero, so as to provide an easy-to-define starting pose. Since many
of the joint values according to the modified DH convention are not equal to zero
in this configuration, it was necessary to compensate these variables in the symbolic
forward kinematics function with the true joint values obtained from the URDF file.
These compensated values are provided in Appendix G. With the joints compensated,
it was then possible to test the inverse kinematic solver’s ability to admit feasible
solutions using a simple algorithm given as follows:

Algorithm 3.1.: Simple inverse kinematics path following

Require: H: symbolic forward kinematic transformations, q: initial guess for q, pinitial:
initial feet and base position, pend: final feet and base position, h: foot lifting height,
T: total time, dt: timestep

1: function generateTrajectory(pinitial, pend, h, T, dt)
2: return t, p ▷ t: time vector, p: feet/base position trajectory

3: for length of t do
4: function inverseKinematics(p, q, H)
5: collect error functions fe
6: q← lsqnonlin( fe, q) ▷ q: nonlinear least squares solution

7: compute swing foot position H f ▷ using LucaDynamics
8: e ← p− H f ▷ error between desired & actual foot position
9: save q and e for plotting

Because the solver is only used for computing the initial joint configuration for inverse
kinematic control, it was tested on only a basic single-leg lifting task. The robot was
commanded to start in its home configuration, lift its first foot and move it vertically
to a given height, then place it back in the original position, with the robot base
position staying stationary. To measure the accuracy of the resulting joint trajectories,
the Euclidean distance error between the desired and actual swing foot position was
computed for each time step. Likewise, the same measurement was computed for the
base frame position. Fig. 3.2 shows the evolution of the swing foot and base frame
position errors for the given trajectory, where it can be seen that the swing foot error
remains quite small throughout the computed trajectory, reaching a maximum value of
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only 0.032 cm but remaining below 0.01 cm for the majority of the computed trajectory.
The base frame error, on the other hand, reached a maximum of only 0.006 cm and
remained at virtually zero for most of the trajectory. Additionally, it can be seen in Fig.
3.3 that the resulting actuated joint trajectories follow smooth and continuous paths,
further proving that the proposed system is at least capable of continuous motion along
the arbitrarily provided trajectory. It must be noted however that the numerical inverse
kinematics solver is not guaranteed to result in a feasible solution and might depend
heavily on the provided initial joint conditions to reach a local minimum. The inverse
kinematics solution also does not distinguish between active and passive joints, instead
computing position values for all joints simultaneously, which in practical terms is
not useful unless all the joints are individually actuated. This approach therefore does
not help in proving that control of the system is possible with only the six actuated
joints, but gives some useful insight into the feasibility of its motion with all of the
introduced constraints.

Figure 3.2.: Evolution of swing foot and base frame position errors for a simple joint trajectory
computed with the numerical inverse kinematic solver

3.2.2. Trajectory Planner

An important part of quadruped locomotion is the ability to define desired trajectories
which should be followed by the feet and/or body, namely reference positions and
velocities parameterized by time. The level of complexity in chosen planning methods
for such trajectories varies greatly, with each depending on the specific locomotion
task for which it is used. For example, Wang et al. (2017) proposed a planning method
which minimizes fluctuations of the center of mass in the z direction and Chen, Li, and
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Chapter 3. Testing and Results

Figure 3.3.: Evolution of the actuated joint positions for a simple joint trajectory computed
with the numerical inverse kinematics solver

Huang (2014) proposed swing leg and center of mass trajectories for stable crawling
based on Double-Support Triangle (DST) theory. Since the focus of this thesis is on
the kinematic design, namely the capability of the proposed model to achieve a basic
static crawl, a complicated method for stable center of mass trajectory planning is not
necessary or of interest. It is however still necessary to define a method for defining
simple point-to-point trajectories for the feet and base which can be provided to the
inverse kinematic control algorithm to compute the required actuator velocities and
produce walking motions.
A simple trajectory planner based on the one used by Ma, Tomiyama, and Wada (2005)
was therefore employed, with individual trajectories being defined by a cosine function
with maximum height h which connects a start position pstart to an end position pend
on the ground plane. The reference positions and velocities are computed as follows:

pre f =


pstart,x−pend,x

2 cos
(

π
T t
)

pstart,y−pend,y
2 cos

(
π
T t
)

h
2

(
1− cos

(2π
T t
))
+

1
2
(pstart + pend)

ṗre f =

−1
2 (pstart,x − pend,x)

π
T sin

(
π
T t
)

−1
2

(
pstart,y − pend,y

)
π
T sin

(
π
T t
)

h π
T sin

(2π
T t
)


(3.2.1)

where T denotes the total time of the desired motion and t is a vector of time stamps.
For the purpose of demonstrating simple static walking, it was also sufficient to use
this same method for planning the trajectories of the robot’s base frame, with the value
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3.2. MATLAB Implementation

of h simply being set to zero so that the body only moves along the x − y plane. A
visual representation of the type of trajectory used here can be seen in Fig. 3.4.

Figure 3.4.: A simple cosine function foot trajectory

The static walking locomotion gait involves moving a single foot at a time, with the
remaining three feet remaining planted on the ground. The contact points of these
three feet form the support polygon, which determines a region of static stability for
the center of mass. As was discussed previously, the proposed design features common
drive actuation whereby the selection of the swing foot is determined by the location
of the center of mass, therefore for certain desired leg lifting tasks it is necessary
for the center of mass to be shifted within the respective support polygon. Having
the center of mass situated inside a support polygon is alone not enough to ensure
successful motion since a position very close to the support line could result in low
stability. It is therefore a common approach to use a measure of the stability margin,
which is based on the distance of the center of mass from the support line, when
determining movements of the center of mass. A planning method was implemented
in MATLAB which calculates the Euclidean distance from the center of mass to the
support line, determines if the CoM is within the support polygon, then calculates a
vector orthogonal to the support line pointing in the direction of increasing stability.
The robot’s base frame is then moved in this direction until the desired margin of
stability is reached. This scheme is executed before each foot placement task, with the
support polygon determined by the desired swing leg.
Referring to Fig. 3.5, the margin of stability is computed as follows:

margin = |
mpCoM,x − pCoM,y + c

√
m2 + b2

| (3.2.2)

where

m =
pB,y − pA,y

pB,x − pA,x

c = pA,y −mpA,x

and where pCoM, pA and pB denote the positions of CoM, A and B w.r.t. the world.
To determine whether the CoM is within the support polygon, a strategy was employed
which first computes the areas of the four triangles formed by connecting points A, B, C
and CoM. The center of mass is then located within the support polygon formed
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(a) CoM within the support polygon (b) CoM outside the support polygon

Figure 3.5.: Stability margin and CoM shift direction calculation

by points A, B and C only if AreaA,B,CoM + AreaA,C,CoM + AreaB,C,CoM = AreaA,B,C.
Finally, the direction vector is computed based on whether or not the CoM is within
the support polygon. Referring again to Fig. 3.5, the angle ϑ is first computed as
follows:

ϑ = cos−1
(

margin
∥pCoM − pA∥

)
(3.2.3)

If the CoM lies within the support polygon, the direction vector is computed by:

direction =

[
cos(2π − ϑ) − sin(2π − ϑ)
sin(2π − ϑ) cos(2π − ϑ)

]
∗ pA

CoM (3.2.4)

If the CoM lies outside the support polygon, the direction vector is computed by:

direction =

[
cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

]
∗ pCoM

A (3.2.5)

This scheme provides a way for determining the necessary direction to shift the base
frame before a leg can be lifted and was integrated into the inverse kinematic control
algorithm to produce several test motions, as discussed further in the next section.

3.2.3. Inverse Kinematics Controller

In Chapter 2.3.4, it was seen that a simple inverse kinematic control algorithm with
position error feedback can be used to compute joint velocities for the six actuators,
given a reference trajectory for the swing foot and base frame. With the trajectory
planner presented in the previous section, it was then possible to implement the
control algorithm in MATLAB with the help of the LucaDynamics library, which was
used for computing all of the homogeneous transformation matrices and Jacobian
matrices, as well as the center of mass position. The resulting implementation allows
for any arbitrary foot stepping order to be provided along with the desired step length
and direction of each step w.r.t. the world frame. The algorithm then loops through
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each desired step, generates a corresponding motion trajectory, and computes the
joint velocities using the differential kinematics approach from Chapter 2.3.3. Various
metrics are also collected throughout the process to quantify the results and to run
simulations in LucaDynamics’ lightweight visualizer. A pseudo-code representation
of the implemented approach is provided in Appendix H

3.3. Static Walking Tests

With the proposed trajectory planner and inverse kinematic control algorithm fully
implemented in MATLAB, it was possible to perform a series of tests to demonstrate
the behavior of the system in simulation and to quantify the results with some collected
metrics. Specifically, three different static walking tasks were simulated with the center
of mass and contact feet position data tracked throughout each task. Additionally, the
Euclidean distance error between the actual and reference swing foot and base frame
positions was collected to demonstrate the accuracy of the admitted results. Finally,
the condition number for inversion was computed at each time-step for the actuated
joint Jacobian matrix to show that no singular or near-singular poses occurred during
the commanded locomotion tasks.

3.3.1. Forward Static Walking Test

The first of the tests involved commanding the robot to walk in a straight line in the
world frame x direction using a 3-4-2-1 step pattern. Each step consisted of two phases:
shifting of the base frame to achieve the desired stability margin, and movement of
the selected swing leg along the commanded trajectory. For the test, the following
parameters were chosen arbitrarily:

Test Parameter Value
step length 0.1 m

total step/shift time 2 s
time-step 0.01 s

desired stability margin 0.04 m
Table 3.1.: Forward Static Walking Test Parameters

The position error gain matrix K was chosen experimentally to achieve a balance
between being too small and leading to larger errors, and being too large for the given
discrete time-steps, thus leading to instability of the error system. A good balance
was found with K = 20 ∗ I6, where I6 denotes the 6× 6 identity matrix. The resulting
actuated joint trajectories were found to follow continuous paths as shown in Fig.
3.6 and displayed no unreasonably sudden changes in value. The evolution of the
Euclidean distance errors between the actual and reference task space positions is
displayed in Fig. 3.7a, where it can be seen that both errors remained extremely small
for all phases in the static walk. Specifically, the swing foot error stayed below a
maximum value of 0.014 cm while the base frame error never exceeded 0.004 cm,
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showing that the accuracy of the actual task-space trajectory was quite high. The
condition number of the active joint Jacobian matrix was also computed for each
time-step and is shown in Fig. 3.7b, where it can be seen that the matrix remained
reliably well-conditioned throughout the commanded trajectories, fluctuating within
a range of 11.5 to 15. It can therefore be presumed that the system did not move near
any singular poses, since the condition number would become extremely large in the
vicinity of one.

Figure 3.6.: Evolution of active joint positions for forward static walking test

(a) (b)

Figure 3.7.: Evolution of task space errors and condition number of the active joint Jacobian
for forward static walking test

In order to confirm that static walking stability was maintained, the center of mass
position was tracked and plotted for each of the gait phases as seen in Fig. 3.8. For
each of the pre-step phases, it can be seen that the center of mass is shifted within the
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support polygon in a direction orthogonal to the support line, and during all of the
step phases the center of mass position successfully stays within the support zone.

(a) (b)

(c) (d)

Figure 3.8.: Center of mass trajectory for each step in the forward walking test

3.3.2. Diagonal Static Walking Test

The second test also commanded the robot to follow a straight-line motion with a
3-4-2-1 step pattern, but in a direction rotated π/4 radians counter-clockwise from the
first test, which can be referred to as the diagonal direction. The parameters chosen for
the test were the same as those given by Table 3.1 for the first test and the same position
error gain matrix was used. Once again, the resulting joint trajectories maintained
smooth and continuous paths, with all joints staying within reasonable limits, as seen
in Fig. 3.9. The evolution of the resulting Euclidean distance errors can be seen in Fig.
3.10a, with the values again staying quite small. Specifically, the error for the swing
foot position stayed below 0.013 cm and the error for the base frame did not go above
0.003 cm. Fig. 3.10b shows the evolution of the actuated joint Jacobian’s condition
number, which again exhibited quite well-conditioned behavior for the entire walking
task, staying within a range of 10.5 to 14.5.
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Figure 3.9.: Evolution of active joint positions for diagonal static walking test

(a) (b)

Figure 3.10.: Evolution of task space errors and condition number of the active joint Jacobian
for diagonal static walking test
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Again, the center of mass position was tracked for each phase in the walking test and
is visualized in Fig. 3.11. Just as with the first test, the center of mass successfully
shifted into the support polygon before each step and remained in the support zone
for the duration of all the swing stages.

(a) (b)

(c) (d)

Figure 3.11.: Center of mass trajectory for each step in the diagonal walking test

3.3.3. Rotation Static Walking Test

The final test which was performed involved commanding the robot to rotate π/8
radians clockwise with a 1-2-3-4 stepping pattern. The individual foot trajectories
were computed in the same way as before, but with their end positions determined
by rotating the vector positions of the feet −π/8 about the world frame z axis. Again,
the same parameters given in Table 3.1 as well as the same gain matrix K were used.
The resulting joint trajectories again exhibited smooth, continuous behavior as seen in
Fig. 3.12. The task space errors also remained within a very similar range of values as
the previous test, with the foot error not exceeding 0.013 cm and the base frame error
not exceeding 0.002 cm, as seen in Fig. 3.13a. The condition number also maintained a
healthy range of well-conditioned values between 11.5 and 14, as shown in Fig. 3.13b.
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Figure 3.12.: Evolution of active joint positions for rotation static walking test

(a) (b)

Figure 3.13.: Evolution of task space errors and condition number of the active joint Jacobian
for rotation static walking test
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Finally, just as with the previous two tests, the center of mass position successfully
shifted into the support polygon before each step and remained in the stability zone
during all four swing stages, as seen in Fig. 3.14. The results for all three tests were
very similar, with the actuated joint Jacobian being well-conditioned throughout all the
trajectories and the task-space position errors remaining extremely low for the chosen
gain matrix values. This shows that the computed joint trajectories result in task-space
trajectories which very accurately follow the desired reference values. Furthermore,
the well-conditioned nature of the actuated joint Jacobian matrix indicates that the
system does not go near any singular poses, since the condition number would become
extremely large in the vicinity of one.

(a) (b)

(c) (d)

Figure 3.14.: Center of mass trajectory for each step in the rotation walking test
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4
Conclusion and Outlook

The goal of this thesis was to design a novel quadruped kinematic structure which
allows for lifting and placing of each of the four feet freely in three dimensions using
only six actuated degrees of freedom. A solution was proposed which features pan-
tograph legs connected by a central pivot axis and two types of kinematic couplings
between the adjacent and opposite leg pairs. A kinematic analysis was performed
on the system, where it was shown that its parallel rigid body structure can be rep-
resented as a serial rigid body tree, with the introduction of constraint equations to
represent the closing conditions of each parallel loop. It was shown that the inverse
kinematics problem can be solved numerically using nonlinear least squares optimiza-
tion, with the cost function represented by a system of the constraint equations. These
constraint equations were further represented in terms of differential kinematics in
order to derive an inverse kinematics control algorithm which accepts base frame and
swing foot linear velocities as input and produces corresponding velocities for the six
actuators. The proposed model was implemented in Creo Parametric and exported to
URDF, then MATLAB implementations of the inverse kinematics solver and control
algorithm were used to verify the behavior of the system by testing a few different
motions and gait patterns in simulation. The control algorithm was shown to produce
smooth joint trajectories for all tested walking patterns, and the swing foot and base
frame position errors remained extremely small, showing that the computed joint tra-
jectories were quite accurate. The center of mass was successfully shifted within the
support polygon before each walking step and remained in the support zone through-
out all swing stages, showing that static stability can be maintained during crawling.
Additionally, the active joint Jacobian matrix was shown to remain well-conditioned
throughout the tested trajectories, meaning that no singular or near-singular poses
were experienced.
Although it was proven that the desired motions are possible in simulation, the pro-
posed model depends on the assumption of no-slip conditions, with the ground con-
tacts being modeled as ball joints. In reality, foot slipping is a possibility and depends
on both the forces experienced between the feet and the ground and their friction
coefficients. Since the kinematic representation of the model depends heavily on ideal
no-slip contacts with the ground, the presence of slipping could result in undesired
and/or uncontrollable motions. It would therefore be of high interest for future work
regarding the proposed model to involve analysis of the ground contact forces, partic-
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ularly the tangential forces, to determine if slipping is likely to occur in reality.
In addition, this work focused solely on the kinematics of the proposed system and
did not go as far as deriving the dynamic representation. It was assumed that simply
keeping the center of mass within the support polygon would result in stability during
static walking, but given large enough motion velocities, the dynamic properties such
as Coriolis and inertial forces could have a negative effect on the stability. On the
other hand, there is also the potential of exploiting these dynamic effects to improve
the efficiency of the robot’s motions, especially through the implementation of joint
elasticities which store and release energy, lessening the power requirements from
the motors. A next step in development of the proposed concept would therefore be
expansion to a dynamic model in order to properly account for all forces acting on the
system in the simulation. It would then be possible to better analyze the stability of
the chosen walking gaits and to investigate the effects elasticities would have on the
system.
Lastly, the geometrical parameters of the implemented solution were chosen arbitrarily
for the purpose of basic demonstration of the kinematic structure, but may not be
optimal with regards to torques/forces experienced at the passive joints and motors.
Further analysis is required to determine if the chosen parameters result in a good
balance between motor size/weight and torque requirements for the expected motions.
Furthermore, a useful approach could be to determine optimal parameter values with
the help of a numerical optimization problem which aims to minimize, for example,
the required actuator torques.
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A
Common Drive Quadrupeds

The following three figures are expanded versions of the sub-figures in Fig. 2.5.

Figure A.1.: 3-active DoF quadruped proposed by Yoneda et al. (2001)

Figure A.2.: 5-active DoF quadruped proposed by Yoneda (2007)
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Figure A.3.: 9 DoF quadruped proposed by Zhang, Shen, and Hong (2020)
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B
Joint DoF Tables

Joint Type DoF
j1 Revolute 1
j2 Revolute 1
j3 Revolute 1
j4 Revolute 1
j5 Revolute 1
j6 Ball 3
j7 Prismatic 1
j8 Universal 2
j9 Ball 3
j10 Prismatic 1
j11 Universal 2

Total 17
Table B.1.: Joint types and DoF for the single-leg mechanism in Fig. 2.7
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Joint Type DoF
j1 Revolute 1
j2 Revolute 1
j3 Revolute 1
j4 Revolute 1
j5 Revolute 1
j6 Revolute 1
j7 Ball 3
j8 Prismatic 1
j9 Universal 2
j10 Ball 3
j11 Prismatic 1
j12 Universal 2

Total 18
Table B.2.: Joint types and DoF for the single-leg mechanism in Fig. 2.8

Joint Type DoF

×4 legs

j1 Revolute 1
j2 Revolute 1
j3 Revolute 1
j4 Revolute 1
j5 Revolute 1
j6 Revolute 1
j7 Ball 3
j8 Prismatic 1
j9 Universal 2
j10 Ball 3
j11 Prismatic 1
j12 Universal 2

− Floating
Base

6

Total 78
Table B.3.: Joint types and DoF for the four-leg mechanism in Fig. 2.9
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Appendix B. Joint DoF Tables

Joint Type DoF

×4 legs

j1 Revolute 1
j2 Revolute 1
j3 Revolute 1
j4 Revolute 1
j5 Revolute 1
j6 Revolute 1
j7 Ball 3
j8 Prismatic 1
j9 Universal 2

− Floating
Base

6

Total 54
Table B.4.: Joint types and DoF for the four-leg mechanism with adjacent leg couplings in Fig.
2.10

Joint Type DoF

×4 legs

j2 Revolute 1
j3 Revolute 1
j4 Revolute 1
j5 Revolute 1
j6 Revolute 1
j7 Ball 3
j8 Prismatic 1
j9 Universal 2

×3 legs j1 Revolute 1

− Floating
Base

6

Total 53
Table B.5.: Joint types and DoF for the four-leg kinematically reduced mechanism in Fig. 2.12
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Joint Type DoF

×4 legs

j2 Revolute 1
j3 Revolute 1
j4 Revolute 1
j5 Revolute 1
j6 Revolute 1
j7 Ball 3
j8 Prismatic 1
j9 Universal 2

×3 legs j1 Revolute 1

×2 couplings

j10 Prismatic 1
j11 Revolute 1
j12 Revolute 1
j13 Revolute 1
j14 Revolute 1
j15 Revolute 1

− Floating
Base

6

Total 65
Table B.6.: Joint types and DoF for the final four-leg mechanism in Fig. 2.15
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C
Joint State Vector

The joint state vector q is of dimension R57×1 and is made up of variables defined in
the DH parameters tables, plus the six virtual floating base joint variables. The full
state vector is represented as follows:

q =



qb
ql1
qac1
ql2
qac2
ql3
qac3
ql4
qac4
qoc1
qoc2



(C.0.1)

where:

qb =



q1
q2
q3
q4
q5
q6

 =



xb
yb
zb
ϕb
ϑb
ψb

 (C.0.2)

ql1 =


q7
q8
q9
q10

 =


ϑj1

ϑj1+1
ϑj1+1′

ϑj1+2′

 (C.0.3)
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qac1 =



q11
q12
q13
q14
q15
q16

 =



ϑk1+1
ϑk1+2
dk1+3
ϑk1+4
ϑk1+5
ϑk1+6

 (C.0.4)

ql2 =


q17
q18
q19
q20
q21

 =


ϑp2

ϑj2
ϑj2+1
ϑj2+1′

ϑj2+2′

 (C.0.5)

qac2 =



q22
q23
q24
q25
q26
q27

 =



ϑk2+1
ϑk2+2
dk2+3
ϑk2+4
ϑk2+5
ϑk2+6

 (C.0.6)

ql3 =


q28
q29
q30
q31
q32

 =


ϑp3

ϑj3
ϑj3+1
ϑj3+1′

ϑj3+2′

 (C.0.7)

qac3 =



q33
q34
q35
q36
q37
q38

 =



ϑk3+1
ϑk3+2
dk3+3
ϑk3+4
ϑk3+5
ϑk3+6

 (C.0.8)

ql4 =


q39
q40
q41
q42
q43

 =


ϑp4

ϑj4
ϑj4+1
ϑj4+1′

ϑj4+2′

 (C.0.9)

qac4 =



q44
q45
q46
q47
q48
q49

 =



ϑk4+1
ϑk4+2
dk4+3
ϑk4+4
ϑk4+5
ϑk4+6

 (C.0.10)
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Appendix C. Joint State Vector

qoc1 =


q50
q51
q52
q53

 =


d f

ϑ f+1
ϑ f+1′

ϑ f+2′

 (C.0.11)

qoc2 =


q54
q55
q56
q57

 =


d f ′

ϑ f ′+1
ϑ f ′+1′

ϑ f ′+2′

 (C.0.12)
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D
Differential Kinematics Representation

G(q) =



gT
1 (q)

...
gT

12(q)
eT

1
gT

13(q)
...

gT
22(q)
eT

2
gT

23(q)
...

gT
32(q)
eT

3
gT

33(q)
...

gT
42(q)
eT

4
gT

43(q)
...

gT
45(q)
eT

5
gT

46(q)
...

gT
48(q)
eT

6
gT

49(q)
...

gT
51(q)



(D.0.1)
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E
CAD Model

Figure E.1.: Front view

Figure E.2.: Side view
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Figure E.3.: Top view
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Appendix E. CAD Model

Figure E.4.: Isometric view
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F
Model Parameter Values

Parameter Value (m)
ajn 0.05

ajn+1 0.24
ajn+2 0.08
ajn+1′ 0.06
ajn+2′ 0.08
ajn+3′ 0.18
ajn+3 0.18
akn 0.08

akn+1 0.015
dkn+4 0.035

ak′n 0.08
ak′n+1 0.015
ajn+1′′ 0.015
ajn+2′′ 0.01
a f+1 0.01
a f+2 0.07433
a f+2′ 0.01
a f+3′ 0.07433
a f ′+1 0.01
a f ′+2 0.07433
a f ′+2′ 0.01
a f ′+3′ 0.07433

Table F.1.: DH parameter values used for the experimental implementation
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G
Compensated Joint Variables

Joint Variable Compensated Form
q3 q3 + 0.26
q8 q8 − π/2
q9 q9 − π/2
q10 q10 + π/2
q12 q12 + π/4
q13 q13 + 0.1
q15 q15 + 3π/4
q16 q16 + π/2
q17 q17 − π/2
q19 q19 − π/2
q20 q20 − π/2
q21 q21 + π/2
q23 q23 + π/4
q24 q24 + 0.1
q26 q26 + 3π/4
q27 q27 + π/2
q28 q28 − π

q30 q30 − π/2
q31 q31 − π/2
q32 q32 + π/2
q34 q34 + π/4
q35 q35 + 0.1
q37 q37 + 3π/4
q38 q38 + π/2
q39 q39 − 3π/2
q41 q41 − π/2
q42 q42 − π/2
q43 q43 + π/2
q45 q45 + π/4
q46 q47 + 0.1
q48 q48 + 3π/4

76



q49 q49 + π/2
q50 q50 + 0.06
q51 q51 − 0.737815
q52 q52 + π

q53 q53 − 0.737815
q54 q54 + 0.06
q55 q55 + 0.737815
q56 q56 + 3π/2
q57 q57 + 0.737815

Table G.1.: Joint variables & their compensated forms for the forward kinematics function
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H
Inverse Kinematics Control Algorithm

Algorithm H.1.: Inverse Kinematics Control

Require: q: initial joint positions, dq: initial joint velocities, p reference trajectory po-
sitions, dp: reference trajectory velocities, t: time vector, dt: timestep, K: position
error gain matrix, f oot: desired swing foot

1: for all i in t do
2: Compute all H and J ▷ using LucaDynamics algorithm
3: e← p(i)− x f ,b ▷ x f ,b is the actual foot & base frame position
4: dx_d ← dp(i) + K ∗ e
5: function diffKin(H, J, dx_d, f oot)
6: Transform Jacobians into respective frames
7: Compile constraint Jacobian J_temp
8: Separate J_temp by active/passive joints (H_a and H_p)
9: J_con ← −(H_p)−1H_a

10: Reintroduce active variable rows to J_con
11: J_a ← [J f oot; Jbase] ∗ J_con ▷ compute active joint Jacobian
12: Transform dx_d into end-effector frames (v_ f )
13: dq_a ← (J_a)−1 ∗ v_ f ▷ compute active joint velocities
14: dq ← J_con ∗ dq_a ▷ map to all joint velocities
15: return q_dot
16: q ← q + dq ∗ dt ▷ update joint state values
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