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Abstract

The Floating Frame of Reference formulation was chosen to include the Beam Advanced Model in DLR’s Ver-satile Aeromechanics Simulation Tool. During the development and concurrent testing of the model in thefield of helicopter rotor dynamics, some particular shortcomings have become apparent. These mainly –but not exclusively – concern inertial loads affecting the flexible motion of beams. This paper treats therelated physical phenomena, and proposes enhancements to the model which remedy the deficiencies ofthe baseline method. Particular attention is given to the introduction of rotational shape functions to ac-count e.g. for the propellermoment and the consideration of an accelerated Floating Frame of Reference toaddress the blade attachment’s radial offset from the rotor center in the centrifugal field. Furthermore, theapplication of external loads (e.g. airloads) away from the beam’s nodes or off the beam axis is addressedas a prerequisite for independent structural and aerodynamic discretization. Finally, the modal reductionunder centrifugal loading is considered. The individual model upgrades are verified based on analytical ref-erence results of appropriate rotor dynamics test cases. The enhancements are necessary for simulatingflexible helicopter rotor blades within a Multi Body System – a feature required for sophisticated simula-tion scenarios in which the limitations of conventional rotor models (e.g. constant rotational hub speed)are exceeded.
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NOTATION

Abbreviations
1D 1-dimensional3D 3-dimensionalBAM Beam Advanced ModelDoF Degrees of FreedomERF Element Reference FrameFE Finite ElementFFR Floating Frame of ReferenceFi i th blade flap mode, i = 1; 2; 3; :::Li i th blade lead-lag mode, i = 1; 2; 3; :::MBS Multi Body SystemODE Ordinary Differential EquationsTi i th blade torsion mode, i = 1; 2; 3; :::VAST Versatile Aeromechanics Simulation Tool



Symbols
A (m2) area
a (m=s2) translatory acceleration
Df f (Nms) damping matrix of FE system
e (m) hinge offset from rotor center
F c (N) centrifugal force
Fe (N) external force
g (m=s2) acceleration due to gravity
I (�) identity matrix
Ii j (div:) cross sectional mass moment oforder i j = 00; 10; 01; 20; 02; 11in � and �, respectively
�J�f (kgm2) coupling: rigid rot. – flexible
�J�� (kgm2) rigid rotational inertia tensor
JDoF (�) matrix to remove locked DoF
Kf f (Nm) stiffness matrix of FE system
K�

free (Nm) extended stiffn. mat. (free DoF)
Mf f (kgm

2) mass matrix of FE system
Mc (Nm) moment due to centrifugal forces
Me (Nm) external moment
Mg (Nm) gyroscopic moment
Mp (Nm) propeller moment
m (kg) mass
mRR (kg) rigid translatory mass matrix
n (�) chosen number of eigenmodes
nr (�) number of FE system’s DoF
Q (div:) right hand side load terms
rI (�) flexible position states
rII (1=s) flexible velocity states, rII = _rI
Srot (rad) rot. shape function matrix
Stra (m) transl. shape function matrix
�S (kgm) coupling: rigid translatory – flex.
~�St (kgm) coupling: rigid transl. – rigid rot.
T (�) rot. matrix: FFR to marker frame
T (�) rot. matrix analogous to T, but fornodal states instead of 3D vector
TERF (�) rotation matrix from FFR to ERF
T
ex (�) flexible rotation matrix
Tmark (�) rotation matrix: ERF to markerframe (undeformed)
�u (m) location relative to FFR
ux (m) axial elongation
V (m3) volume
v (m=s) translatory velocity
ui (�) FE system’s i th eigenvector
x (m) axial coordinate
� (m) vertical coordinate
# (�) twist angle
� (m) lateral coordinate
� (kg=m3) mass density

 (rad=s) rotor speed
! (rad=s) angular velocity
!i (rad=s) FE system’s i th eigenfrequency

Indices, accentuations, and operators
()0 undeformed
()75 value at 75% rotor radius
()c centrifugal
()e external
()f flexible motion
()g gyroscopic
()g gravity
()R rigid translatory motion
()
ex due to deformation
()free reduced to the free DoF
()pre undeformed (e.g. pre-twist)
()ref reference or nominal value
()rot rotational
()tra translatory
()v inertial
()� rigid rotational motion
X(frame) quantity X expressed in specifiedframe (instead of the FFR)
XT transpose of a matrix X
_X time derivative of X
X 0 spatial derivative of X
�X quantity X relative to the FFR
~X cross product operator for vector X

1. INTRODUCTION

The structural modeling and analysis of helicopterswith a multitude of flexible components is a de-manding task. A rotor blade, for example, is exposedto large centrifugal loads. Furthermore, its rigid flap,lead-lag and torsion motion as well as the associ-ated flexible modes are coupled not only throughthe acting airloads, but also by kinematic, elastic,and gyroscopic effects. Conventionally, rotor bladesare modeled based on the theory of beams rotat-ing at a certain rotor speed with invariant bound-ary conditions. While these models provide resultsof sufficient accuracy for many applications, somespecific use cases require more sophisticated struc-tural models. These include, for instance, the de-tailed simulation of the rotor blade attachment con-taining hinges, rigid connections, flexible elements,springs and dampers as well as the resolution ofstructural couplings between the arbitrarily mov-ing fuselage, the drivetrain, and the rotor blades.On top of that, arbitrary system configurations suchas helicopters, multi-rotor vehicles, and wind tur-bines require versatile configuration options. An ap-proach to address these issues is theMulti Body Sys-tem (MBS) model.
In DLR’s Versatile Aeromechanics Simulation Tool(VAST) [1], the structural core of the aeromechanic



model is comprised of an MBS. It includes an exactformulation of the non-linear rigid body kinematics.TheMBS is implemented in C++with a class architec-ture based on structures of arrays to allow “single-instruction-multiple-data” optimizations; it featurescontainer classes for bodies, joints and force ele-ments. The MBS formalism is based on a set of min-imal states which are comprised of the joint statesand the states representing flexible body deforma-tion. This method yields ordinary differential equa-tions (ODE) of motion which are coupled to those ofaerodynamics, control, and further models by theVAST solver. The ODE formalism requires the Jaco-bians of the bodies’ velocities v , angular velocities!,and flexible velocities rII with respect to theminimalstates of the whole MBS. These Jacobians are calcu-lated using automatic differentiation in VAST [2]. Thisnot only improves the maintainability of the code,but also substantially simplifies the inclusion of newflexible body models.

1.1. Beam Advanced Model

One such model is the Beam Advanced Model(BAM) [3], which is integrated in VAST’s MBS to accu-rately simulate modern rotor blades with complexproperties. The key innovation of this model is theintroduction of four additional degrees of freedom(DoF) on top of the standard three translatory andthree rotational nodal DoF. These four additionalDoF represent the spatial derivatives of the axialelongation and twist with respect to the element’slongitudinal axis (dux=dx , d#=dx , see Figure 1).
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Figure 1: Coordinate directions (x; �; �), axial elon-gation ux , and flexible twist #
Each of these DoF is computed at the rightmost lo-cation of the element to the left of a given nodeand at the leftmost location of the element to thenode’s right [3,4]. Considerations of these additionalDoF in the finite element formulation enable high-fidelity simulations of abrupt changes in geometri-cal and physical parameters without the need forfine discretization. BAM therefore offers improvedperformance for simulating complex beams com-pared to traditional models. The accuracy of BAM

simulations has been demonstrated for modern ro-tor blade designs, e.g. the Blue Edge™ blade withforward and backward swept portions [3,4].
The original BAM formulation directly handles theeffects of centrifugal and gyroscopic loads throughadditional terms in the element’s stiffness anddamping matrices [3]. As discussed in the followingsections, the present implementation employs BAMin a generalized framework, enabling the consider-ation of centrifugal and gyroscopic loads with arbi-trary motion at the blade connection. To this end,the aforementioned BAM-specific terms were re-moved from the element matrices and replaced bythe generalized terms developed in the following.

1.2. Floating Frame of Reference

BAMhas already been integrated in the comprehen-sive rotor codeHOST in a prototypical fashion basedon decoupled dynamic equations for the rigid andflexible body motions. [5] For the integration of BAMin the MBS of VAST, in contrast, the well-establishedFloating Frameof Reference (FFR) formulation [6] hasbeen chosen. In the FFR approach, the elastic posi-tion states rI and velocity states rII = _rI describe thebody deformation with respect to the body refer-ence frame. This frame, in turn, is moving arbitrarily(“floating”) relative to the inertial frame by v and !,which are both 3D vectors. They represent the rigidbody portion of motion with mass matrix mRR, in-ertia tensor �J�� , and coupling matrix ~�STt , see upperpart of Equation 1.
The Finite Element (FE) system describes the body’sflexible motion and is composed of multiple ele-ments. The second order differential equation ofthe FE systemhas been converted to first order form(lower part of Equation 1), in which the massMf f ,stiffnessKf f , and dampingDf f matrices are found.
Kf f is composed of both the structural stiffness andgeometric stiffening terms.
The rightmost entries �S and �J�f in the upper part ofEquation 1 constitute coupling terms between therigid body motion and the flexible motion. The righthand side includes gravityQg , inertial loadsQv , andexternal loadsQe acting on the rigid translatorymo-tion (superscript R), the rigid rotational motion (su-perscript �) and the flexible motion (superscript f ).Note that the loads caused by discrete translatoryor rotational springs or dampers, as they are usedin rotor models, are part ofQe .
The FFR-based integration of FE beam models inMBS has already been addressed in the literature,for example in [7]. However, during the implementa-tion and concurrent testing of this formulation using
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BAM elements in VAST, some particular issues havebecome apparent, primarily related to the afore-mentioned special requirements of helicopter rotordynamics. These issues mainly – but not exclusively– concern inertial loadsQf
v acting onflexiblemotion.The issues and their solutions will be presented inthe following.

2. CONFIGURATION

Before treating the details of the FE beam ele-ment model, its configuration shall be addressed.To model the dynamic behavior of the beam, itsinertial properties – commonly referred to as iner-tia shape integrals – need to be calculated. As for-mulated in [6] and [7], inertia shape integrals are in-tegrals over the volume V of the mass density �,weighted by different combinations of the 3D loca-tion �u of the volume increment relative to the FFRand the translatory shape function matrix Stra =
Stra(�u) evaluated at this location, for example

�J�f =

∫
V
�~�uStra dV:(2)

The tilde symbol denotes the cross product opera-tor according to

a � b =

a2b3 � a3b2
a3b1 � a1b3
a1b2 � a2b1

 = ~ab(3)

=

 0 �a3 a2
a3 0 �a1
�a2 a1 0

b1
b2
b3

 ;

while the bar (e.g. on �u) indicates that the quantityis given relative to the FFR. Furthermore, if not indi-
cated by a dedicated superscriptX(frame), all vectors
X are expressed in the coordinates of the FFR. Notethat the reference system (relative to what?) and thecoordinate system (expressed in which frame?) of avectorial quantity have to be distinguished.
The BAM configuration does not provide the 3D dis-tribution of �, but rather the mass per length I00 =∫
A � dA = m0, as well as the pre-evaluated cross sec-
tional moments I10 = ∫

A �� dA and I01 =
∫
A �� dA,

where � and � are the local lateral and vertical coor-dinates, respectively, spanning the cross section A(area with green edge in Figure 2).
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Figure 2: Schematic of 1D integration along thebeam axis
The location of the volume increment is depictedas a yellow dot in the zoomed-in cross section viewof Figure 2. Its 3D position vector �u can be splitup into that of the cross sectional reference loca-tion �um, and the location within the cross section
�uA relative to the reference. �um, in turn, has a rigidportion �u0 and a flexible portion �u
ex. According to
�u = �um + �uA, the integral can be split up:

�J�f =

∫
x

{∫
A
� ^(�um + �uA) dA

}
Stra dx(4)

=

∫
x

~XStra dx

Therein, x denotes the beam element’s axial direc-tion. Since �um is constant throughout the cross sec-tion, it can be taken outside of the area integral.In the coordinates of the Element Reference Frame(ERF), the vector from the reference location to the
volume increment reads �u

(ERF)
A = (0; �; �)T. Ac-cordingly, the auxiliary cross sectional integral X



can be reformulated:
X =

∫
A
��um dA+

∫
A
� � TT � �u

(ERF)
A dA(5)

= �um �m0 + T
T �

 0
I10
I01


Notes on the coordinate transformation betweenthe ERF and the FFR (�uA = TT � �u

(ERF)
A ) are givenin Appendix A.1. The transformations of all other in-ertia shape integrals from 3D to 1D form are pre-sented in Appendix A.2. The added value is the ex-pression of all inertial properties needed in Equa-tion 1 based on the commonly used cross sectionalbeam properties m0 (0th order mass moment), I10,

I01 (1st order mass moments), and I20, I02 and I11(2nd order mass moments).
3. ROTATIONAL SHAPE FUNCTIONS

According to the theory in [6] and [7], the inertial loads
Qf

v affecting flexible motion read
Qf

v = Qf
v ;tra = �

∫
V
�STtra (~!~!�u + 2~! _�u) dV:(6)

Since Stra only includes the three rows for transla-tory deflections, but not those for rotational deflec-tions, this formulation does not account for the di-rect effect of inertial loads on the flexible rotationof the beam’s nodes. However, in helicopter rotoranalysis, there is (at least) one very important ef-fect of inertial loads on flexible rotation: the pro-peller moment [8,9], which is illustrated in Figure 3.The cross section of a 1D-beam may have differ-ent inertial properties in the two cross sectional di-rections. For example, the lead-lag inertia per unitlength of a typical rotor blade cross section is largerthan its flap inertia per unit length. In this case, fora rotating blade, the centrifugal forces F c generatethe propeller momentMp which tends to orient thesection flat in the rotor plane of rotation. To modelthis effect for a 1D-beam, the rotational shape func-tion matrix Srot must be taken into account. Anal-ogous to the translatory matrix Stra, Srot has threerows, corresponding to rotations about x , �, and �.
The incremental moment dMc about the beam axis
x , caused by the centrifugal force acting on a massincrement dm, is

dMc = ��uA � (! � (! � �u)) dm:(7)
The effect on flexible rotation results from multipli-cationwith the rotational shape functionmatrix. Us-ing dm = � dV , the additional inertial loads term
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Figure 3: Propeller moment Mp due to pre-twist
#pre; no deformation shown, i.e. #
ex = 0 �

affecting flexible motion in integral form is
Qf ;c

v ;rot = �

∫
V
�STrot � �uA � (! � (! � �u)) dV:(8)

Analogously, the gyroscopic moments
dMg = �2 �uA � (! � _�u) dm(9)

cause the inertial loads
Qf ;g

v ;rot = �2

∫
V
�STrot � �uA � (! � _�u) dV(10)

on the flexible DoF. Tests with structures similar torotor blades have revealed that the order of magni-
tude ofQf ;g

v ;rot is negligible compared toQf ;c
v ;rot. Sim-

ilar to the inertia shape integrals, the terms Qf
v ;tra,

Qf ;c
v ;rot, andQf ;g

v ;rot are volume integrals including thedensity �. Their conversion to 1D integrals based on2D cross sectional configuration parameters is pre-sented at the end of Appendix A.2.
The refined implementation of inertial loads affect-ing flexible motion is assessed via computationsbased on the HART II rotor blade configuration [10].Figure 4 depicts the equilibrium flexible tip twist
#
ex(tip) at nominal rotor speed in vacuo, depend-ing on the blade collective pitch angle #pre;75; the



index 75 denotes the pitch reference of 75% rotorradius. Results are shown for three variants of theinertial loads calculation:
• Baseline:Qf

v = Qf
v ;tra, Equation 6.

• Upgrade 1:Qf
v = Qf

v ;tra+Qf ;c
v ;rot+Qf ;g

v ;rot, Equa-tions 6, 8, and 10, but using the undeformedrotation T = TERF to transform inertial prop-erties into the FFR.
• Upgrade 2: Like upgrade 1, but the flexible de-formation is considered when transforming in-ertial properties into the FFR:T = T
ex �TERF.Details on this transformation are given in Ap-pendix A.2. This upgrade is important to ac-count for the spring-like effect of the propellermoment: The flexible twist causes a restoringpropeller moment, as illustrated in Figure 5.

Figure 4: Equilibrium flexible tip twist #
ex(tip) ofthe HART II rotor blade (stiff root attachment) dueto the propeller moment at nominal rotor speed

 = 109 rad=s in vacuo, calculated using VAST
As expected, the baseline implementation doesnot model the propeller moment; no significant
#
ex(tip) is observed. With upgrade 1, #
ex(tip) isnegative for roughly 0 � < #pre;75 < 90 �, with amaximum magnitude at #pre;75 � 45 �. Since thepropeller moment tends to orient the blade flat inthe rotor plane of rotation,#
ex(tip) opposes#pre;75.The magnitude of this flexible twist is overpredictedfor 0 � < #pre;75 < 45 � and underpredicted for
45 � < #pre;75 < 90 � because the acting inertialloads are still based on the undeformed configura-tion. Therein, the outboard blade sections are moreinclined with respect to the plane of rotation thanin the deformed configuration. Upgrade 2 resolvesthis issue by calculating the inertial loads in the de-formed state, i.e. T
ex (rotation matrix represent-ing #
ex) is taken into account. Details on consider-
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Figure 5: Propeller momentMp due to flexible twist.Root section lies flat in the plane of rotation; tip sec-tion is inclined by #
ex relative to #pre = 0 �

ation of T
ex during the calculation of Qf
v are pre-sented in Appendix A.2. Note that the flexible twistof upgrade 2 in Figure 4 is solely attributed to iner-tial loads and does not include the influence of theaerodynamic pitching moment. Therefore, the flexi-ble tip twist of�0:27� (upgrade 2) at #pre;75 = 3:8 �

is of smaller magnitude than that of a trimmedwindtunnel setup [10] (#
ex(tip) = �1:09�), see Table 1.

Table 1: Comparison of #
ex(tip) for #pre;75 = 3:8 �;VAST calculations in vacuo (no airloads)
trim incl. VAST VAST VASTairloads [10] baseline upgrade 1 upgrade 2
�1:09� 0:00� �0:29� �0:27�

Figure 6 shows the Campbell diagram of the HART IIrotor blade using the three implementations de-scribed above. The only difference between the vari-ants is observed for the first torsional mode T1. Re-markably, upgrade 1 does not change the torsioneigenfrequency compared to the baseline. Both thebaseline and upgrade 1 show the same eigenfre-quency increase with rising rotor speed, which isattributed to the geometric stiffening. The corres-ponding terms are part of the stiffness matrix Kf f .Aside from this geometric stiffening, the change ofthe propeller moment Mp with #
ex causes a fur-ther increase in the effective stiffness of the torsionmode. This is the spring-like effect of the propellermoment presented in Figure 5. The feature requiredto model this effect is upgrade 2, which considersthe dependency of inertial loads on deformation.Accordingly, the T1 eigenfrequency increase is evenlarger with upgrade 2. It should be noted that thisfurther eigenfrequency increase is only observablein the Campbell diagram if the derivative @Qf
v=@rI is
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Figure 6: Campbell diagram of the HART II rotorblade (stiff root attachment), calculated using VAST

interpreted as a stiffness term in themodal analysis,as explained in detail in Section 6.
The results of the HART II rotor blade in Figure 4and Figure 6 are plausible. However, no experimen-talmeasurements of the eigenfrequencies of the ro-tating blade were available for validation. To ver-ify the model, a simpler configuration was analyzedfor which the exact reference results were deter-mined analytically. The verification is presented inAppendix A.3.
4. ACCELERATED FFR

The inertial load terms Equation 6 and Equation 8include the centripetal acceleration ~!~!�u = ! �
(! � �u)which is themost dominant inertial load oc-curing in rotor dynamics and therefore very impor-tant. The vector �u denotes the location of a particlerelative to the FFR. When testing a rotor blade whichwas attached at a hinge offset e (i.e. the FFR waslocated outside the rotor center; see Figure 7), thecentrifugal loads were underpredicted because in

such a configuration, the hinge offset causes a cen-tripetal acceleration ! � (! � e) of the FFR whichis missing in the baseline dynamic Equation 1. Thereason why it is missing is the choice of the coordi-nate system to express v , which is the FFR itself. Anequilibrium with 
 = ! = const: implies _v = 0,and consequently the term �ST _v in the bottom rowof Equation 1 vanishes. Therefore, if the FFR’s cen-tripetal acceleration is not explicitly respected inQf
v(as done in this work; see further below), the cen-trifugal loads are underpredicted if the FFR is lo-cated outside the center of rotation. Note that in [6],
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Figure 7: FFR located outside the center of rotation
in contrast to this work, v was chosen to be ex-pressed in the coordinates of the inertial system, sothat in the above described equilibrium condition,its derivative resembles the Euler term _v = !�v =
!�(! � e), which is exactly the centripetal acceler-ation of the FFR. So in [6], this portion of the centrifu-gal loads is part of the left hand side of the dynamicequation.
To conform to the architectural requirements in theVAST-MBS, however, v shall be expressed in the FFRcoordinates. Accordingly, the translatory accelera-tion a must be added to the inertial loads on theright hand side to appropriatelymodel cases like theone shown in Figure 7. The modified terms are:

Qf
v ;tra = �

∫
V
�STtra (a + ~! ~! �u + 2 ~! _�u) dV(11)

Qf ;c
v ;rot = �

∫
V
�STrot � �uA � (a + ~! ~! �u) dV(12)

For conversion to 1D integrals see Appendix A.2.Note that a only includes accelerations arising fromthe states of theMBS, not from the state derivatives.The term ! � (! � e) is one example for such anacceleration. The motion of all preceding bodies inthe kinematic tree of the MBS (e.g. helicopter fuse-lage and rotor hub) – defined by the MBS’ minimalstates – is evaluated in VAST to compute a. The lefthand side of theMBS’ dynamic equation, in contrast,is not needed to calculate a.
The enhanced implementation including a is veri-fied in Appendix A.4, based on analytical reference



results of the axial tip displacement of an aluminumbeam attached to a rotating hub with offset e.
5. EXTERNAL LOADS APPLICATION

Besides the inertial loadsQv , further load terms ap-pear on the right hand side of Equation 1. Theseare gravitational loads Qg and external loads Qe .The effect of gravity g on flexible motion is simplyexpressed by Qf
g = �ST g with �S as given in Equa-

tion 29 of Appendix A.2. Since �S includes the trans-latory shape functions only, gravity so far only af-fects the translatory flexible DoF. A direct effect ofgravity on rotational flexible DoF, which is expectedwhen the mass axis has an offset from the beamaxis, is not modeled yet. However, in most simula-tion scenarios of helicopter rotor dynamics, gravityloads play a minor role so that this effect is not con-sidered relevant. A remark on wind turbine applica-tions will be given in the outlook, Section 8.
Describing the term Qf

e based on discrete exter-nal loads Fe and Me , in contrast, is more demand-ing. These loads may be applied at a marker within
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Figure 8: Schematic of external loads application
an element (i.e. not at a node of the FE system)and/or with an offset �uo� from the beam axis, seeFigure 8. Such a case can occur, for example, whenthe structural and aerodynamic discretizations of arotor blade differ from one another. Since externalloads – e.g. airloads – may depend on the motion(position, orientation, velocity, angular velocity) ofthe marker on which they act, their application re-quires two calculations which must be consistent,i.e. based on the same transformations:
1. Evaluate the kinematics of the marker basedon that of the flexible beam: A loads markeras shown in Figure 8 is configured and han-dled the following way in VAST. On the nearest

element of the FE system, a connection pointis defined on the beam axis such that j�uo� j isminimal. The offset vector �uo� is consideredinvariant, so the loads marker moves as if itwas connected by a “rigid lever” to the con-nection point. The connection point, in turn,moves in space according to the FFR motion(rigid body part) and the flexible motion of thebeam (e.g. flexible displacement �u
ex). The lat-ter is evaluated based on the states rI and rIIof the beam, along with the shape functionevaluations Stra(x), Srot(x) at the location x ofthe connection point. For instance, the flexibletranslatory displacement reads
�u
ex(x) = Stra(x) � rI:(13)

In VAST, Equation 13 is evaluated element-wise,i.e. the element’s shape function is multipliedwith only those nodal states that belong to theelement. The loads marker position relative tothe FFR is �u = �u0 + �u
ex + �uo� . The rota-tion from the FFR to the marker frame is com-posed of T = T
ex � Tmark � TERF, where
Tmark is the rotation from the ERF to the loadsmarker frame in the undeformed configurationand T
ex is a matrix representing the flexiblerotations Srot(x) � rI.

2. Project the loads onto the nodal deflections:The force acting at the connection point is iden-tical to that acting at the external loadsmarker.The effective moment at the connection point,in contrast, additionally includes the influenceof the force’s lever arm (superscript �):
M�

e = Me + �uo� � Fe(14)
The nodal loadsQf

e are obtained by multiplica-tion with the shape functions of the elements:
Qf

e;tra = S
T
tra � Fe(15)

Qf
e;rot = S

T
rot �M

�

e(16)
Note that the loads Fe and M�

e are expressedin the coordinates of the FFR, which requiresa preceding transformation (multiplication by
TT) if the loads were expressed in the exter-nal loads marker frame. Details on coordinatetransformations are provided in Appendix A.1.In VAST, Equations 15 and 16 are evaluatedonly for the finite element which is affected by
Fe and M�

e . Accordingly, Qf
e;tra and Qf

e;rot arethen placed in the appropriate segment of Qf
ein Equation 1 belonging to this element.



The application of external loads is verified basedon analytical reference calculations in Appendix A.5.Both the effect of eccentric forces and the applica-tion of forces within an element, i.e. between thenodes, are addressed.
6. MODAL REDUCTION

The goal of modal reduction is to limit the kinemat-ics of the system to pre-definedmodes. The numberof states is reduced and the differential equationsbecome numerically less “stiff”. This allows the us-age of standard solvers like Runge-Kutta with rea-sonable time steps. For a flexible system withoutdamping, the eigenvalue problem is given by(
K
�

free � !2
i Mfree

)
ufree;i = 0:(17)

The subscript “free” indicates that the matrices orvectors are reduced to the number of free DoF.The locked DoF of the boundary conditions are re-moved, e.g. Mfree = JTDoFMf f JDoF. JDoF containsrows of the identitymatrix for the free DoF and rowsof zeros for the locked degrees of freedom. Theboundary conditions are customizable. For a hinge-less rotor blade, for instance, a clamped boundarycondition of the first node with respect to the FFR isused. The extended stiffness matrix K�

free includesthe free stiffness matrix Kfree = JTDoFKf f JDoF aswell as an additional Jacobianwhich is explained fur-ther below.
!i is one of the FE system’s eigenfrequencies, and
ufree;i is the eigenvector of the free DoF correspon-ding to !i . Only the first n eigenmodes i = 1:::nof the FE system are used to describe its motion,while n is configurable. n modal coordinates imply
n position level states and n velocity level states. Ac-cordingly, the 2n flexible states are factors scalingthe eigenvectors ui = JDoF ufree;i to obtain the FEsystem’s deflections rI and deflection velocities rII.The flexible part of Equation 1 – i.e. the lower half– is projected onto the modal base and the modalcoordinates replace the flexible states (rI; rII) in thesolution process.
When calculating the modal reduction, the motionof the FFR must be taken into account, since it ac-tively affects the system’s eigenfrequencies. There-fore, an addition to the stiffness matrix Kfree in theform of a derivative of the inertial loads Qf

v is con-sidered.
First, the FE system is brought to an equilibriumstate under the interial loadsQf

v , resulting from themotion of the FFR. Consequently, the stiffness ma-trix Kf f is calculated, potentially including geomet-ric stiffening terms. Furthermore, the inertial loads

on free flexible motion Qf
v ;free = JTDoFQ

f
v are de-rived with respect to the free flexible position levelstates rI;free = JTDoF rI bymeans of finite differences.The resulting Jacobian is superimposed onto thestiffness matrix in Equation 18. The negative sign isattributed to the fact that the stiffness term�Kf f rIalso appears with negative sign in Equation 1.

K
�

free = Kfree � @Qf
v ;free=@rI;free(18)

In other words, the dependency of the flexible iner-tial right hand side on the flexible displacements isinterpreted as an additional stiffness for the modalreduction. This step is necessary, for example, to ob-tain correct lead-lag eigenmodes of rotor blades, be-cause the direction of the centrifugal force vector onamass increment of the blade changes immediatelywhen the blade lags. Without the consideration of
@Qf

v ;free=@rI;free, the lead-lag eigenfrequency wouldbe too high, since the stiffening effect would be simi-lar to that of the flapmodes forwhich the centrifugalforce vector does not change its direction when theblade flaps. So @Qf
v ;free=@rI;free provides a negativestiffness in this case.

A comparison between eigenfrequencies of themodal reduction based on Kfree only, and the mod-ification based on K�

free according to Equation 18,is given in Table 2. It lists the eigenfrequencies ofthe first six modes of the HART II rotor blade withstiff root attachment at nominal rotor speed
ref =
109 rad=s.

Table 2: Normalized eigenfrequencies !i=
ref ofthe HART II rotor blade (stiff root attachment) atnominal rotor speed 
 = 109 rad=s. In red: over-/ underpredicted values
stiffness for modal reductionmode Kfree only K�

free (Equation 18)
L1 1:27 0:78 (#)F1 1:12 1:10F2 2:86 2:85T1 3:96 4:04 (")L2 4:68 4:57 (#)F3 5:16 5:16

The eigenfrequencies of the modified implemen-tation resemble those of “upgrade 2” in Fig-ure 6 at 
=
ref = 1. Without consideration of
@Qf

v ;free=@rI;free, the lead-lag eigenfrequencies – es-pecially that of L1 – are significantly overpredicted; avalue of !L1=
ref = 1:27 characterizes a very stiff-in-plane rotor, while the HART II rotor is of the soft-in-plane type. The explanation based on the cen-trifugal force vector has already been given above.



In contrast to the lead-lag modes, the first torsionmode T1 is underpredicted if only Kfree is consid-ered for modal reduction. The reason is the miss-ing spring-like effect of the propeller moment (seeSection 3), which is included in @Qf
v ;free=@rI;free. Theflap modes F1, F2 and F3 are barely affected by theadded Jacobian in Equation 18. The very small de-creases of the F1 and F2 eigenfrequencies can be ex-plained by secondary lead-lag contributions in thesemodes.

It should be mentioned that the dependency on ve-locity level states @Qf
v ;free=@rII;free is not consideredbecause it would need to be interpreted as damp-ing, which is neglected in the modal reduction cal-culation. Therefore, if precise eigenfrequencies anddamping characteristics are to be calculated (e.g. ina Campbell diagram), a VAST-wide modal analysis isperformed, in which the complete differential equa-tions of theMBS are linearized including all dampingand right hand side terms.

7. CONCLUSION

The FFR-based integration of FE bodies in the MBSof VAST is completed in its first version using BAM fi-nite elements. During implementation and concur-rent testing, enhancements were added to makethe simulation model suitable for rotorcraft appli-cations. These enhancements include:
• the configuration of inertial properties basedon 2D cross sectional data instead of the 3Ddensity distribution,
• the introduction of rotational shape functionsto account e.g. for the propeller moment,
• the consideration of an accelerated FFR to ad-dress the blade attachment’s radial offset fromthe rotor center in the centrifugal field,
• the handling of external loads (e.g. airloads)that are applied away from the beam’s nodesor the beam axis to allow for independentstructural and aerodynamic discretization, and
• the dependency of inertial loads on flexibleposition level states as an additional stiffnesswhich is considered during modal reduction.

The modifications were verified against analyticalreference results for appropriate rotor dynamicstest cases. Plausible tip twist and Campbell diagramresults were presented for the HART II rotor blade.This paper therefore provides necessary modifica-tions to make the well-known FFR formulation ca-pable of simulating helicopter rotor blades as FEbeams in an MBS environment.

8. OUTLOOK

Because the test cases studied in this paper onlyfeature clamped beam attachments, the couplingbetween the rigid body motion and the flexible mo-tion of the body has not yet been verified. This cou-pling is modeled by the matrices �S and �J�f , whichare so far solely based on translatory shape func-tions Stra. Currently, the consideration of rotationalshape functions Srot in �S, in �J�f , and in the FE sys-tem’smassmatrixMf f is being investigated. Since �Salso affects gravitational loadsQf
g , the modification

of �S is also expected to be relevant for wind turbinesimulations, where gravity causes a major cyclic ex-citation on the turbine’s blades.
In the near future, in addition to the static and fre-quency domain analyses presented in this paper,comprehensive tests based on time domain sim-ulations such as wind tunnel trim calculations ortransient responses are planned. To address non-linear effects of deformation (e.g. part of the Cori-olis coupling between flap and lead-lag motion),the substructuring approach will be employed, i.e.the rotor blade will be segmented into multiple lin-ear FE bodies. Code refactoring and performanceimprovements are also included in the short-termagenda.
In the mid-term, the VAST-MBS will be extendedto model closed-loop structures such as dual loadpaths, which occur e.g. when the blade root pitch ac-tuation is explicitly modeled and/or the rotor bladehas a bearingless attachment.
The long-termadded value ofmodeling rotor bladesas FE beams within the VAST-MBS is the ability toaccurately and efficiently simulate

• flexible rotor blades with complex geometricaland structural properties as well as arbitraryboundary conditions,
• complete structural systems with flexible ro-tors coupled to moving and/or vibrating vehi-cles and drive systems, and
• dedicated multi body structures for the bladeattachment including hinges, rigid connections,flexible elements, springs and dampers.
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A. APPENDICES

A.1. Coordinate Transformations

Throughout this paper, transformations are neededwhich rotate vectors or matrices from the FFR intoa specific frame or vice verca, i.e. the transforma-tions change the coordinate system inwhich a quan-tity is expressed. If not indicated explicitly, quanti-ties are expressed in the FFR by convention. 3D vec-
tors v (mark) and 3� 3matricesM(mark) that are ex-pressed in a specificmarker frame – indicated by su-perscript (mark) – are obtained as follows from theFFR-expressed quantities

v (mark) = T � v(19)
M

(mark) = T �M � TT;(20)
where T is a 3 � 3 rotation matrix. The other wayaround, FFR-expressed quantities are obtained as

v = T
T � v (mark)(21)

M = T
T �M(mark) � T:(22)

T may be composed of several subsequent rota-tions. For example, in Figure 8, the rotation fromthe FFR to the marker frame is composed of T =
T
ex �Tmark �TERF. The individual rotations are ex-plained in Section 5.
Since the individual entries of the nodal states rI and
rII belonging to an element can be associated withthe three spatial directions, a rotation matrix T canbe defined in analogy to T which transforms the el-ement’s nodal states from the FFR to the ERF. Forinstance, T is used along withT to rotate the shapefunction matrices – which are originally defined inthe ERF – into the FFR:

Stra = T
T � S

(ERF)
tra � T(23)

Srot = T
T � S

(ERF)
rot � T(24)



A.2. 1D Inertia Shape Integrals

This detailed derivation of 1D inertia shape integrals is given here. In [6] and [7], the 3D inertia shape integralsover the body volume V are derived, based on density � and translatory shape functionmatricesStra. Theseintegrals are computed for thewhole FE systemwith its nr flexible DoF and are expressed in the coordinatesof the FFR. The dynamic Equation 1 of the FE body includes most of the integrals, which read:
mRR =

∫
V
� I dV 3� 3 rigid translatory mass matrix(25)

�J�� =

∫
V
� ~�uT ~�u dV 3� 3 rigid rotational inertia tensor(26)

~�St =

∫
V
� ~�u dV 3� 3 rigid transl./rigid rot. coupling matrix(27)

Mf f =

∫
V
�STtra Stra dV nr � nr mass matrix of the FE system(28)

�S =

∫
V
�Stra dV 3� nr rigid transl./flex. coupling matrix(29)

�J�f =

∫
V
� ~�u Stra dV 3� nr rigid rot./flex. coupling matrix(30)

The aim is to obtain the inertia shape integrals via 1D integration using pre-evaluated 2D cross-sectional in-tegrals as the configuration input. Note that the integration space itself always represents the undeformedbeam and does not change due to deformation. Figure 2 shows the schematic of a beam with the vectorsand rotations described in the following. The vector �u from the FFR to a particle of the beam, expressed inthe FFR, is obtained as follows:

�u = �u0 +

�u
ex︷ ︸︸ ︷
T
T
ERF �

(
S
(ERF)
tra � r

(ERF)
I

)
︸ ︷︷ ︸

�um

+T
T
ERF � �u

(ERF)
A︸ ︷︷ ︸

�uA

with(31)

�u0 = undeformed position on the beam axis, expressed in the FFR
T
T
ERF = matrix to rotate a vector from the ERF to the FFR

S
(ERF)
tra = translatory shape function matrix, expressed in the ERF
r
(ERF)
I = element-related position-level states, expressed in the ERF
�u
ex = flexible deformation, expressed in the FFR
�um = deformed position on the beam axis, expressed in the FFR

�u
(ERF)
A = offset from beam axis within the cross section, expressed in the ERF

�uA = offset from beam axis within the cross section, expressed in the FFR
The reformulation of the rigid translatorymassmatrix is trivial. It is obtained by integrating the cross-sectionmoment I00 along the beam. I denotes the identity matrix.

mRR =

∫
V
� I dV = I �

∫
x

∫
A
� dA︸ ︷︷ ︸
I00

dx(32)



The inertia tensor is reformulated as follows. Note that the vector �um from the FFR to the origin of the localcoordinate system is constant during the integration over A, so it can be taken outside of the integral.
�J�� =

∫
V
� ~�uT ~�u dV =

∫
x

∫
A
�~�uT ~�u dA dx =

∫
x

∫
A
� ^(�um + �uA)

T
^(�um + �uA) dA dx(33)

=

∫
x

[∫
A
�~�uTm ~�um dA+

∫
A
�
(
~�uTm ~�uA + ~�uTA ~�um

)
dA+

∫
A
�~�uTA ~�uA dA

]
dx

=

∫
x

~�uTm ~�um

∫
A
� dA︸ ︷︷ ︸
I00

+ ~�uTm

∫
A
�~�uA dA+

∫
A
�~�uTA dA ~�um +

∫
A
�~�uTA ~�uA dA

 dx

If the vector �uA is expressed in the ERF, it reads �u
(ERF)
A = (0; �; �)T since the plane A is perpendicular tothe beam axis. Accordigly, the local inertia per length is

∫
A
�~�u

(ERF)
A

T
~�u
(ERF)
A dA =

∫
A
�

�2 + �2 0 0
0 �2 �� �
0 �� � �2

 dA =

I20 + I02 0 0
0 I02 �I11
0 �I11 I20

(34)

with I20 =
∫
A � �

2 dA, I02 = ∫
A � �

2 dA, and I11 =
∫
A � � � dA. Furthermore, the matrix

∫
A
�~�u

(ERF)
A dA =

∫
A
�

 0 �� �
� 0 0
�� 0 0

 dA =

 0 �I01 I10
I01 0 0
�I10 0 0

(35)

is identified, containing the 1st order cross-section moments I10 = ∫
A � � dA and I01 =

∫
A � � dA.

The inertia shape integrals are expressed in the FFR. In general, the given cross-section moments are ex-
pressed in a different, local coordinate system indicated by superscript(local) which requires a coordinatetransformation including two steps: The matrix TERF describes the orientation of the ERF relative to theFFR in the undeformed FE system, while the rotationT
ex accounts for the changed orientation of the localsystem relative to the ERF due to deformation (cf. Figure 2). The necessity of considering T
ex during thetransformation of the inertia shape integrals was identified in the test cases reported in Section 3. Therein,the implementation includingT
ex is denoted “Upgrade 2,” while “Upgrade 1” does not include the rotation
T
ex. The total rotation from the FFR to the local deformed coordinate system is described by the matrix
T = T
ex �TERF. The FFR-expressed vectors and matrices are obtained as follows. Further information oncoordinate transformations is given in Appendix A.1.

∫
A
��uA dA = T

T �

 0
I10
I01

(local)

(36)
∫
A
�~�uA dA = T

T �

 0 �I01 I10
I01 0 0
�I10 0 0

(local)

� T(37)
∫
A
�~�uTA ~�uA dA = T

T �

I20 + I02 0 0
0 I02 �I11
0 �I11 I20

(local)

� T(38)



Now the coupling matrix ~�St between translatory and rotational motion shall be addressed. It is sufficientto transform the term �St =
∫
V � �u dV to 1D from; the cross product operation (tilde) is trivial.

�St =

∫
V
� �u dV =

∫
x

∫
A
� �u dA dx =

∫
x

∫
A
� (�um + �uA) dA dx(39)

=

∫
x

�um �

∫
A
� dA︸ ︷︷ ︸
I00

+

∫
A
� �uA dA

 dx =

∫
x

�um � I00 +

∫
A
� � TT �

0
�
�

 dA

 dx

=

∫
x

�um � I00 + T
T �

 0
I10
I01

 dx

Again, the vector (0; I10; I01)T has been transformed from the deformed local frame to the FFR by TT.
The rest of the inertia shape integrals includes the translatory shape function matrix Stra. In the case ofbeams, the evaluation of the shape function only depends on the distance x along the beam axis. Thatmeans that the termsStra andSTtraStra can always be taken outside of the integration over the cross section.This simplifies the expressions forMf f , �S and �J�f (the latter given in Equation 4 of Section 2):

Mf f =

∫
V
�STtra Stra dV =

∫
x

STtraStra �
∫
A
� dA︸ ︷︷ ︸
I00

 dx(40)

�S =

∫
V
�Stra dV =

∫
x

Stra �
∫
A
� dA︸ ︷︷ ︸
I00

 dx(41)

Although it is not an “inertia shape integral”, the inertial flexible right hand sideQf
v contains mass integrals,and shall be expressed in 1D form analogously. Note that the angular velocity ! of the FFR is constant overthe whole integration domain. For a beam model, the shape function matrix Stra does not vary across thebeam section so it can be taken outside of the area integral below. Details on the translatory and rotationalpart Qf

v = Qf
v ;tra + Qf

v ;rot are treated in Section 3. The translatory acceleration a of the FFR is explicitlyconsidered in Section 4. Considering _�u = _�u
ex, the translatory inertial loads term can be reformulated asfollows:

Qf
v ;tra = �

∫
V
�STtra (a + ~! ~! �u + 2 ~! _�u) dV(42)

= �

∫
x

[
S
T
tra

∫
A
� (a + ~! ~! �u + 2 ~! _�u) dA

]
dx

= �

∫
x

[
S
T
tra

(
a

∫
A
� dA+ ~! ~!

∫
A
� �u dA+ 2 ~!

∫
A
� _�u dA

)]
dx

cf. Equation 5
= �

∫
x

STtra
a � I00 + ~! ~!

�um � I00 + T
T �

 0
I10
I01

+ 2 ~! _�u
ex I00

 dx



Again, the vector (0; I10; I01)T containing the cross-section moments has been transformed from the localdeformed frame to the FFR by TT.
The rotational partQf

v ;rot = Qf ;c
v ;rot+Qf ;g

v ;rot is derived for centrifugal (superscript c ) and gyroscopic (super-script g) loads separately. Note that �u = �um + �uA, and ! = (!x ; !y ; !z)
T. The effect of centrifugal loadson the flexible rotational DoF is:

Qf ;c
v ;rot =

∫
V
�STrot [��uA � (a + ! � (! � �u))] dV(43)

= �

∫
x
S
T
rot

∫
A
� � �uA � (a + ! � (! � �u)) dA dx

= �

∫
x
S
T
rot

∫
A
� [�uA � (a + ! � (! � �um)) + �uA � (! � (! � �uA))] dA dx

= �

∫
x
S
T
rot

∫
A
� � �uA dA� (a + ! � (! � �um)) +

∫
A
� � �uA � (! � (! � �uA))︸ ︷︷ ︸triple cross product

dA

 dx

To isolate cross-sectional moments (which are expressed in terms of � and �uA only) in the second cross-sectional integral above, the triple cross productmust be evaluated. Note that the vectors! and �uAmust beexpressed in the same frame; the FFR is chosen here. The first entry of �uA only vanishes if �uA is expressed inthe ERF: �u(ERF)A = (0; �; �)T. In contrast, for �uA = (x; y ; z)T as used below, x 6= 0 is possible. Accordingly,the evaluation of the triple cross product yields

�uA � (! � (! � �uA)) =

!y!z

(
y2 � z2

)
+
(
!2
z � !2

y

)
yz + !x!zxy � !x!yxz

!x!z

(
z2 � x2

)
+
(
!2
x � !2

z

)
xz + !x!yyz � !y!zxy

!x!y

(
x2 � y2

)
+
(
!2
y � !2

x

)
xy + !y!zxz � !x!zyz

 :(44)

The FFR-transformed matrix of the second order cross-sectional moments in its general form isIxx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 =

∫
A
�

y2 + z2 �xy �xz
�xy x2 + z2 �yz
�xz �yz x2 + y2

 dA(45)

and can be obtained by rotating the ERF-oriented matrix of the second order cross-sectional moments:Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 = T
T �

I20 + I02 0 0
0 I02 �I11
0 �I11 I20

 � T(46)

The integrated and �-weighted triple cross product is then obtained as
∫
A
� � �uA � (! � (! � �uA)) dA =

!y!z (Izz � Iyy )�
(
!2
z � !2

y

)
Iyz � !x!z Ixy + !x!y Ixz

!x!z (Ixx � Izz)�
(
!2
x � !2

z

)
Ixz � !x!y Iyz + !y!z Ixy

!x!y (Iyy � Ixx)�
(
!2
y � !2

x

)
Ixy � !y!z Ixz + !x!z Iyz

 :(47)



Finally, the centrifugal loads acting on flexible rotational motion are obtained:

Qf ;c
v ;rot = �

∫
x
S
T
rot

TT �

 0
I10
I01

� (a + ! � (! � �um)) + :::(48)

:::+

!y!z (Izz � Iyy )�
(
!2
z � !2

y

)
Iyz � !x!z Ixy + !x!y Ixz

!x!z (Ixx � Izz)�
(
!2
x � !2

z

)
Ixz � !x!y Iyz + !y!z Ixy

!x!y (Iyy � Ixx)�
(
!2
y � !2

x

)
Ixy � !y!z Ixz + !x!z Iyz

 dx

For the effect of gyroscopic loads on the flexible rotational DoF, it is assumed that _�u = _�u
ex = const. overthe section A, which is an acceptable simplification.
Qf ;g

v ;rot = �2

∫
x
S
T
rot

∫
A
� � �uA � (! � _�u) dA dx(49)

= �2

∫
x
S
T
rot

∫
A
� � �uA dA� (! � _�u) dx

= �2

∫
x
S
T
rot

TT �

 0
I10
I01

� (! � _�u)

 dx

A.3. Verification of the Propeller Moment

The configuration used to verify the propeller mo-ment is illustrated in Figure A.1. The “beam” con-

𝛀

𝜃pre + 𝜃flex

𝜃pre

𝜃pre

𝑅

𝑐
𝑎

𝒌

𝑥
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Figure A.1: Beam configuration for verifying the pro-peller moment
sists of 4 quasi-massless and torsionally soft FE ele-ments (grey part of the beam), which together havethe torsional stiffness k . The fifth and last element isa quasi-rigid cuboid of size a�a�c with homogeneousmass density � (blue part of the beam). Note that thebeam axis x is not kinked, i.e. the cuboid’s longitu-dinal x-axis coincides with one of its shorter dimen-sions a and not with the longer side c . The beam isclamped to a hub rotating at constant speed 
 andhas an undeformed inclination of �pre. Due to thepropeller moment acting on the cuboid, the beamis elastically twisted by �
ex < 0. The parameters ofthe beam configuration are listed in Table A.1.

Table A.1: Parameters of the beam in Figure A.1

 100 rad=s
�pre 1 �

k 2750Nm=rad
R 10m
a 0:1m
c 1:0m
� 1000 kg=m3

The propeller moment acting on the cuboid with in-clination � = �pre + �
ex is
Mp = �
2 � (Izz � Iyy ) � sin(�) � cos(�);(50)

where the mass moments of inertia are Izz =
m=12

(
a2 + c2

) and Iyy = m=12
(
a2 + a2

) with
m = � a2 c . This term can, for example, be identifiedin the torsional differential equation in [11] and is ex-plicitly called “propellermoment” in [9]. The torsionalstiffness of the rotating beam in equilibrium coun-teracts the propeller moment, i.e. �
ex = Mp=k .Since � < 1 �, the simplifications sin(�) � � and
cos(�) � 1 are justifiable so that

�
ex =
�
2

k
(Izz � Iyy ) � (�pre + �
ex) :(51)

This yields
�
ex =

�
2

k (Izz � Iyy ) �pre

1 + 
2

k (Izz � Iyy )
= �0:75�:(52)

In VAST, an equilibrium calculation is performed forthis beam which is configured using BAM elements.



Table A.2 compares the resulting flexible tip twistfor the three implementation variants described inSection 3 with the analytical solution. As expected,
Table A.2: Equilibrium flexible twist �
ex of the beamin Figure A.1 with the parameters of Table A.1

VAST VAST VASTAnalytical baseline upgrade 1 upgrade 2
�0:75� 0� �2:83� �0:74�

the baseline implementation does not account forthe effect at all. Since upgrade 1 constantly appliesthe propeller moment at � = �pre regardless of �
ex,the resulting �
ex is strongly overpredicted inmagni-tude, which even results in a negative overall inclina-tion � < 0 which is of course unphysical. Only whenthe dependence of inertial loads on deformation isrespected (upgrade 2) is the result correct withinthe accuracy expected from the numerics and dis-cretization.
To address the frequency-domain behavior of thebeam, the restoring propeller moment can be inter-preted as an additional stiffness (cf. Section 6), forwhich again the small angle assumption for � is ap-plied:

kp = @Mp=@� = 
2 (Izz � Iyy )(53)
The expected eigenfrequency of the torsional oscil-lation is

! =

√
k + kp

Ixx
(54)
with Ixx = m=12

(
c2 + a2

). Table A.3 presents theeigenfrequencies of the first torsion mode T1 ofthe beam for the non-rotating case and for 
 =
100 rad=s. The analytical results are based on Equa-tion 54, while the computational eigenfrequenciesare obtained during modal reduction according toSection 6. In the non-rotating case, all results areidentical which confirms consistency of the analyt-ical and computational structural models (withoutinertial loads). At 
 = 100 rad=s, a T1 eigenfre-quency of 18:19Hz is expected analytically. How-ever, for both the baseline model and upgrade 1,only a slight increase in eigenfrequency comparedto the non-rotating case is observed. The large partof the eigenfrequency increase is introduced by up-grade 2, since only this update models the spring-like behavior of the propeller moment, i.e. the addi-tional stiffness according to Equation 53. The smallincreases in eigenfrequency from 
 = 0 rad=s to

 = 100 rad=s observed from the baseline model

and upgrade 1 are attributed to geometric stiffen-ing effects, which are not considered in the analyti-cal calculation. Also for upgrade 2 at
 = 100 rad=s,such additional stiffening is observed since the sim-ulated eigenfrequency of 18:33Hz is slightly higherthan the analytical reference value.

Table A.3: T1 eigenfrequency of the beam in Fig-ure A.1with the parameters of Table A.1, also includ-ing the non-rotating case 
 = 0 rad=s


 0 rad=s 100 rad=s

Analytical 9:10Hz 18:19HzVAST baseline 9:10Hz 9:37HzVAST upgrade 1 9:10Hz 9:37HzVAST upgrade 2 9:10Hz 18:33Hz

These comparisons of equilibrium flexible twist andtorsion eigenfrequency demonstrate the distinct ef-fects of upgrades 1 and 2 and successfully verify theimplementation with upgrade 2 based on analyti-cal reference results. The baseline method needs tobe enhanced by both upgrades to obtain a modelwhich accurately predicts the torsion dynamics ofbeams similar to rotor blades.
A.4. Verification of Inertial Loads with

Accelerated FFR

The enhanced implementation of inertial loads Qf
vaccording to Equation 11 and Equation 12 includesthe translatory acceleration a of the FFR. It is verifiedbased on the configuration shown in Figure A.2. The
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𝑥

Figure A.2: Beam configuration to verify the effect ofcentrifugal loads for an accelerated FFR
aluminum beam (density �, Young’s modulus E) isclamped to a rotating rigid hub (angular speed 
)at radius e; the overall radius is R. The parametersare listed in Table A.4. The incremental centrifugalforce in the beam at radius x (measured from the



Table A.4: Parameters of the beam in Figure A.2

 100 rad=s
e 1m
R 3m
� 2700 kg=m3

E 70 � 109N=m2

rotor center) is
dFx(x) = 
2 � x � dm = 
2 � x � �A dx(55)

where A is the beam’s cross section area. Accord-ingly, the equilibrium tensile force in the beam is
Fx(x) =

∫ R

x

2 �X � �A dX(56)

=
�

2
A
2

(
R2 � x2

)
:

The axial strain distribution �(x) = �=E =
Fx= (E A) is integrated over the flexible beam to cal-culate the tip displacement �x :

�x =

∫ R

e
�(X) dX(57)

=
�

2

1

E A
A
2

∫ R

e
R2 �X2 dX

=
�

2


2

E

[
R2X �

X3

3

]R
e

=
�

2


2

E

[
2

3
R3 + e

(
e2

3
� R2

)]
Table A.4
= 1:8 � 10�3m

The same beam is configured in VAST-MBS using20 equal BAM elements. The equilibrium is calcu-lated numerically and the resulting tip displacementis compared to the analytical solution in Table A.5.Both the baseline and the corrected implementa-tion are tested. As expected, the corrected variantyields the correct tip displacement, while the base-line implementation yields the displacement whichwould be obtained for e = 0m and R = 2m, i.e.at the same rotor speed but without FFR accelera-tion a. Strictly speaking, this test only confirms thecorrectness of the inertial loads’ effect on the trans-latory displacements, Equation 11. However, sincethe same centrifugal loads are involved in the ef-fect on rotational displacements, Equation 12 is alsoconsidered verified.
A.5. Verification of External Loads Application

The application of external loads according to Sec-tion 5 is verified based on equilibrium calculations

Table A.5: Equilibrium tip displacement �x of thebeam in Figure A.2 with baseline and corrected term
Qf

v ;tra compared to analytical results
Analytical (param.: Table A.4) 1:8000 � 10�3mVAST corrected, Equation 11 1:7991 � 10�3mVAST baseline, Equation 6 1:0286 � 10�3mAnalytical (e = 0m, R = 2m) 1:0286 � 10�3m

of a simple beam composed of 5 identical elements.The beam has a radius of R = 10m, a quadraticcross-section of side length a = 0:1m, Young’smodulus E = 210 � 109N=m2, and a Poisson’s ratioof � = 0:3. The beam is loaded by discrete forces.
Figure A.3 shows a test case in which an eccentricforce Fz = 1000N is applied at the beam tip with alateral offset of y(Fz) = 1m. The tip force causes a

1 2 3 4 5

𝑥

𝑦

𝑧

𝑭𝒛

Figure A.3: Eccentric tip force
bending deformation of the beam axis, which wouldalso occur for a centered applied force. Due to thesmall resulting tip twist angle of �tip � 0:5 � (calcu-
lated further below), the simplification cos

(
�tip

)
�

1 is justified. Accordingly, the calculation assumesan unchanged force Fz acting in the z -direction ofthe FFR. The bending in z -direction is described by
z 00(x) =

My (x)

E I
=

Fz � (R � x)

E I
(58)
with I = a4=12 = 8:�3�10�6m4. Twofold integrationunder consideration of boundary conditions z(0) =
z 0(0) = 0 yields the cubic bending line

z(x) =
Fz

E I

(
R �

x2

2
�

x3

6

)
;(59)

which evaluates to z(R) = 0:19m at the tip. The nu-merical results of the VAST equilibrium calculationare compared to the above calculated analytical re-sults in Figure A.4. Therein, x is the undeformed ra-dial coordinate.
On top of the bending deformation, due to eccen-tric application of Fz , a torsion momentMx = Fz �
y(Fz) = 1000Nm ariseswhich is constant along theradius x . This causes a linear twist distribution withtip deflection

�(R) =
Mx � R

G J
= 0:0088 rad = 0:504�(60)
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Figure A.4: Cubic bending line of beam in Figure A.3

where G = 0:5E= (1 + �) and J = 2:25 � (a=2)4(torsion constant for quadratic cross sections [12]).The analytical twist distribution is shown in Fig-ure A.5 along with the numerical results.
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Figure A.5: Linear twist distribution of beam in Fig-ure A.3
The numerical results of both bending line and twistdistribution match perfectly with the analytical ref-erence results. Consequently, this test case verifiesthe effect of eccentric forces on the beam deforma-tion.
Figure A.6 depicts a test with two axial forces Fx =
100 � 103N; one acting at the tip and one acting atthe middle of the beam, within element 3. Accord-
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Figure A.6: Axial forces within an element and at thetip

ingly, the cross sections in the left half of the beamare loaded by 2Fx , while those on the right half areloaded by Fx . The displacements in the middle andat the tip are calculated as follows, while the dis-placement distribution in between is linear.
�x(R=2) =

2Fx � (R=2)

E A
= 4:76 � 10�4m(61)

�x(R) = �x(R=2) +
Fx � (R=2)

E A
(62)

= 7:14 � 10�4m

The analytical and numerical results of elongationvs. undeformed radius are compared in Figure A.7.Although no node is located at a radius of x = 5m(this is the middle of element 3), the numerical re-sult of the elongation correlates very well with theanalytical prediction. In particular, the kink is wellreproduced. Accordingly, this test case verifies theexternal force application within an element, i.e. be-tween the nodes.
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Figure A.7: Elongation distribution of beam in Fig-ure A.6
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