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Abstract

The Floating Frame of Reference formulation was chosen to include the Beam Advanced Model in DLR’s Ver-
satile Aeromechanics Simulation Tool. During the development and concurrent testing of the model in the
field of helicopter rotor dynamics, some particular shortcomings have become apparent. These mainly -
but not exclusively - concern inertial loads affecting the flexible motion of beams. This paper treats the
related physical phenomena, and proposes enhancements to the model which remedy the deficiencies of
the baseline method. Particular attention is given to the introduction of rotational shape functions to ac-
count e.g. for the propeller moment and the consideration of an accelerated Floating Frame of Reference to
address the blade attachment's radial offset from the rotor center in the centrifugal field. Furthermore, the
application of external loads (e.g. airloads) away from the beam’s nodes or off the beam axis is addressed
as a prerequisite for independent structural and aerodynamic discretization. Finally, the modal reduction
under centrifugal loading is considered. The individual model upgrades are verified based on analytical ref-
erence results of appropriate rotor dynamics test cases. The enhancements are necessary for simulating
flexible helicopter rotor blades within a Multi Body System - a feature required for sophisticated simula-
tion scenarios in which the limitations of conventional rotor models (e.g. constant rotational hub speed)
are exceeded.
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Symbols Indices, accentuations, and operators
A (m?) area Oo undeformed
a (m/s?) translatory acceleration (75 value at 75% rotor radius
D (Nms) damping matrix of FE system 0O centrifugal
e (m) hinge offset from rotor center (e external
Fe (N) centrifugal force Of flexible motion
Fe (N) external force ()9 gyroscopic
g (m/s?) acceleration due to gravity Og gravity
I (=) identity matrix OF rigid translatory motion
lij (div.) cross sectional mass moment of ()flex due to deformation
order /j = 00,10,01,20,02,11 Ofree reduced to the free DoF
in € and m, respectively Opre undeformed (e.g. pre-twist)
Jor (kgm?)  coupling: rigid rot. - flexible Oref reference or nominal value
Joo (kgm?) rigid rotational inertia tensor Orot rotational
Joor (=) matrix to remove locked DoF ()tra translatory
K (Nm) stiffness matrix of FE system Ov inertial
Kf.. (Nm) extended stiffn. mat. (free DoF) o rigid rotational motion
M¢r (kgm?)  mass matrix of FE system X (frame)  quantity X expressed in specified
M¢  (Nm) moment due to centrifugal forces frame (instead of the FFR)
Me  (Nm) external moment X7 transpose of a matrix X
M9  (Nm) gyroscopic moment X time derivative of X
M, (Nm) propeller moment X' spatial derivative of X
m (kg) mass X quantity X relative to the FFR
mgr  (kg) rigid translatory mass matrix X cross product operator for vector X
n (=) chosen number of eigenmodes
ny (=) number of FE system’s DoF
Q (div.) right hand side load terms
f (=) flexible position states 1. INTRODUCTION
n (1/s) flexible velocity states, r; =
St (rad) rot. shape function matrix The structural modeling and analysis of helicopters
Stra (m) transl. shape function matrix with a multitude of flexible components is a de-
S (kgm)  coupling: rigid translatory - flex. manding task. Arotor blade, for example, is exposed
S, (kgm) coupling: rigid transl. - rigid rot. to large centrifugal loads. Furthermore, its rigid flap,
T (=) rot. matrix: FFR to marker frame lead-lag and torsion motion as well as the associ-
T (=) rot. matrix analogous to T, but for ated flexible modes are coupled not only through
nodal states instead of 3D vector the acting airloads, but also by kinematic, elastic,
Tere (=)  rotation matrix from FFR to ERF and gyroscopic effects. Conventionally, rotor blades
Thex (=) flexible rotation matrix are modeled based on the theory of beams rotat-
Took (=) rotation matrix: ERF to marker ing at a certain rotor speed with invariant bound-
frame (undeformed) ary conditions. While these models provide results
i (m) location relative to FFR of sufficient accuracy for many applications, some
Uy (m) axial elongation specific use cases reqyire more sophisticated struc-
(m3)  volume tural models. These include, for instance, the de-
y (m/s) translatory velocity tailed simulation of the rotor blade attachment con-
uj (=) FE system’s it eigenvector taining hinges, rigid connections, flexible elements,
X (m)  axial coordinate springs and dampers as well as the resolution of
n (m)  vertical coordinate structural couplings between the arbitrarily mov-
9 (°)  twist angle ing fuselage, the drivetrain, and the rotor blades.
¢ (m) lateral coordinate On top of that, arbitrary system configurations such
o (kg/m?) mass density as helicop’Fers, muI‘Fi-rotor vehic!es, anq wind tur-
Q (rad/s) rotor speed bines require versatile configuration options. An ap-
. proach to address these issues is the Multi Body Sys-
w (rad/s) angular velocity MBS del
w; (rad/s) FE system’s /" eigenfrequency tem ( ) model.

In DLR's Versatile Aeromechanics Simulation Tool
(VAST)! the structural core of the aeromechanic



model is comprised of an MBS. It includes an exact
formulation of the non-linear rigid body kinematics.
The MBS isimplemented in C++ with a class architec-
ture based on structures of arrays to allow “single-
instruction-multiple-data” optimizations; it features
container classes for bodies, joints and force ele-
ments. The MBS formalism is based on a set of min-
imal states which are comprised of the joint states
and the states representing flexible body deforma-
tion. This method yields ordinary differential equa-
tions (ODE) of motion which are coupled to those of
aerodynamics, control, and further models by the
VAST solver. The ODE formalism requires the Jaco-
bians of the bodies’ velocities v, angular velocities w,
and flexible velocities r;; with respect to the minimal
states of the whole MBS. These Jacobians are calcu-
lated using automatic differentiation in VAST!!, This
not only improves the maintainability of the code,
but also substantially simplifies the inclusion of new
flexible body models.

1.1. Beam Advanced Model

One such model is the Beam Advanced Model
(BAM)E3l which is integrated in VAST's MBS to accu-
rately simulate modern rotor blades with complex
properties. The key innovation of this model is the
introduction of four additional degrees of freedom
(DoF) on top of the standard three translatory and
three rotational nodal DoF. These four additional
DoF represent the spatial derivatives of the axial
elongation and twist with respect to the element's
longitudinal axis (duy/dx, d¥/dx, see Figure[T).

Figure 1: Coordinate directions (x, &, ), axial elon-
gation uy, and flexible twist ¥

Each of these DoF is computed at the rightmost lo-
cation of the element to the left of a given node
and at the leftmost location of the element to the
node’s right!®4, Considerations of these additional
DoF in the finite element formulation enable high-
fidelity simulations of abrupt changes in geometri-
cal and physical parameters without the need for
fine discretization. BAM therefore offers improved
performance for simulating complex beams com-
pared to traditional models. The accuracy of BAM

simulations has been demonstrated for modern ro-
tor blade designs, e.g. the Blue Edge™ blade with
forward and backward swept portions 34,

The original BAM formulation directly handles the
effects of centrifugal and gyroscopic loads through
additional terms in the element's stiffness and
damping matrices!®. As discussed in the following
sections, the present implementation employs BAM
in a generalized framework, enabling the consider-
ation of centrifugal and gyroscopic loads with arbi-
trary motion at the blade connection. To this end,
the aforementioned BAM-specific terms were re-
moved from the element matrices and replaced by
the generalized terms developed in the following.

1.2. Floating Frame of Reference

BAM has already been integrated in the comprehen-
sive rotor code HOST in a prototypical fashion based
on decoupled dynamic equations for the rigid and
flexible body motions. ™ For the integration of BAM
in the MBS of VAST, in contrast, the well-established
Floating Frame of Reference (FFR) formulation® has
been chosen. In the FFR approach, the elastic posi-
tion states rj and velocity states rj; = r; describe the
body deformation with respect to the body refer-
ence frame. This frame, in turn, is moving arbitrarily
(“floating”) relative to the inertial frame by v and w,
which are both 3D vectors. They represent the rigid
body portion of motion with mass matrix mgg, in-

ertia tensor Jgg, and coupling matrix §T, see upper
part of Equation [T}

The Finite Element (FE) system describes the body's
flexible motion and is composed of multiple ele-
ments. The second order differential equation of
the FE system has been converted to first order form
(lower part of Equation , in which the mass My,
stiffness K¢¢, and damping D¢ matrices are found.
K¢f is composed of both the structural stiffness and
geometric stiffening terms.

The rightmost entries S and Jgf in the upper part of
Equation [1] constitute coupling terms between the
rigid body motion and the flexible motion. The right
hand side includes gravity Qg, inertial loads Q,, and
external loads Q. acting on the rigid translatory mo-
tion (superscript R), the rigid rotational motion (su-
perscript ) and the flexible motion (superscript f).
Note that the loads caused by discrete translatory
or rotational springs or dampers, as they are used
in rotor models, are part of Qe.

The FFR-based integration of FE beam models in
MBS has already been addressed in the literature,
for example inl, However, during the implementa-
tion and concurrent testing of this formulation using
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BAM elements in VAST, some particular issues have
become apparent, primarily related to the afore-
mentioned special requirements of helicopter rotor
dynamics. These issues mainly - but not exclusively
- concern inertial loads Q? acting on flexible motion.
The issues and their solutions will be presented in
the following.

2. CONFIGURATION

Before treating the details of the FE beam ele-
ment model, its configuration shall be addressed.
To model the dynamic behavior of the beam, its
inertial properties - commonly referred to as iner-
tia shape integrals - need to be calculated. As for-
mulated in® and!, inertia shape integrals are in-
tegrals over the volume V of the mass density p,
weighted by different combinations of the 3D loca-
tion & of the volume increment relative to the FFR
and the translatory shape function matrix Sia =
Sira (@) evaluated at this location, for example

@ Jor = / 0iSuadV.
\s

The tilde symbol denotes the cross product opera-
tor according to

arbs — azbo
(3) axb=|azby—aibs| =ab
aiby — asby
0 —as do bl
=1 a 0 -a by |,
—do ai 0 b3

while the bar (e.g. on ) indicates that the quantity
is given relative to the FFR. Furthermore, if not indi-
cated by a dedicated superscript X (frame) a||vectors
X are expressed in the coordinates of the FFR. Note
that the reference system (relative to what?) and the
coordinate system (expressed in which frame?) of a
vectorial quantity have to be distinguished.

The BAM configuration does not provide the 3D dis-
tribution of p, but rather the mass per length /opp =
[4pdA = m', as well as the pre-evaluated cross sec-

tional moments /1o = [, p§ dAand lo1 = [, pndA,

0 % Q%R QR QF
0 w Q Q° QY
U {a ] TS o T
rr —Drr n Q7 Qf Qf

where £ and 7 are the local lateral and vertical coor-
dinates, respectively, spanning the cross section A
(area with green edge in Figure[2).

Figure 2: Schematic of 1D integration along the
beam axis

The location of the volume increment is depicted
as a yellow dot in the zoomed-in cross section view
of Figure [2| Its 3D position vector & can be split
up into that of the cross sectional reference loca-
tion U, and the location within the cross section
iia relative to the reference. i, in turn, has a rigid
portion &y and a flexible portion {sey. According to
0 = Uy + Oa, the integral can be split up:

@) Jor = / { / p(Um/\/JrUA)dA} S, dx
X A

)’%Stra dX

Therein, x denotes the beam element’s axial direc-
tion. Since &, is constant throughout the cross sec-
tion, it can be taken outside of the area integral.
In the coordinates of the Element Reference Frame
(ERF), the vector from the reference location to the
volume increment reads U/(L\ERF) = (0,&,m)". Ac-
cordingly, the auxiliary cross sectional integral X



can be reformulated:

(5) X:/pamdAJr/p-TT-aﬁ\ERF)dA
A A
0
=Om-m +T7 - | o
lo1

Notes on the coordinate transformation between
the ERF and the FFR (U4 = TT. U/(L\ERF)) are given
in Appendix[A.1] The transformations of all other in-
ertia shape integrals from 3D to 1D form are pre-
sented in Appendix[A.2] The added value is the ex-
pression of all inertial properties needed in Equa-
tion[T|based on the commonly used cross sectional
beam properties m’ (0" order mass moment), 110,
lo1 (1%t order mass moments), and /og, /g and /11
(2" order mass moments).

3. ROTATIONAL SHAPE FUNCTIONS

According to the theory inf® and!/, the inertial loads
QF affecting flexible motion read

(6) Qc = Q;tra = —/ pStTra (Wi + 2ad) dV.
v

Since S5 only includes the three rows for transla-
tory deflections, but not those for rotational deflec-
tions, this formulation does not account for the di-
rect effect of inertial loads on the flexible rotation
of the beam'’s nodes. However, in helicopter rotor
analysis, there is (at least) one very important ef-
fect of inertial loads on flexible rotation: the pro-
peller moment2, which is illustrated in Figure [3|
The cross section of a 1D-beam may have differ-
ent inertial properties in the two cross sectional di-
rections. For example, the lead-lag inertia per unit
length of a typical rotor blade cross section is larger
than its flap inertia per unit length. In this case, for
a rotating blade, the centrifugal forces F¢ generate
the propeller moment M, which tends to orient the
section flat in the rotor plane of rotation. To model
this effect for a 1D-beam, the rotational shape func-
tion matrix S;ot must be taken into account. Anal-
ogous to the translatory matrix Sira, Srot has three
rows, corresponding to rotations about x, &, and 7.

The incremental moment d M¢ about the beam axis
X, caused by the centrifugal force acting on a mass
increment dm, is

(7)) dM® = —ia X (w X (w x @) dm.

The effect on flexible rotation results from multipli-
cation with the rotational shape function matrix. Us-
ing dm = pdV, the additional inertial loads term

ﬁpre

.......... - >
»

plane of
rotation

Figure 3: Propeller moment M, due to pre-twist
Bpre; NO deformation shown, i.e. Vgex = 0°

affecting flexible motion in integral form is
®) Qli = [ She-tax (wx (wx ) dv
1%

Analogously, the gyroscopic moments
9) dM9 = 210, x (w x i) dm

cause the inertial loads
(10) Qi’,?ot = —2/ PSS\, - g x (w x i) dV
1%

on the flexible DoF. Tests with structures similar to
rotor blades have revealed that the order of magni-

tude of QC’fot is negligible compared to Qc',fot- Sim-

ilar to the inertia shape integrals, the terms Q;tra,
Qc',fot, and Qc’fot are volume integrals including the
density p. Their conversion to 1D integrals based on
2D cross sectional configuration parameters is pre-
sented at the end of Appendix[A.2]

The refined implementation of inertial loads affect-
ing flexible motion is assessed via computations
based on the HART Il rotor blade configurationt¥,
Figure |4] depicts the equilibrium flexible tip twist
V1iex(tip) at nominal rotor speed in vacuo, depend-
ing on the blade collective pitch angle Yy 75; the



index 75 denotes the pitch reference of 75% rotor
radius. Results are shown for three variants of the
inertial loads calculation:

+ Baseline: Qf = QF .., Equation|g]

+ Upgrade 1:Qf, = Qf .+ Q[ % + Q1% Equa-
tions [6] [8] and [T0] but using the undeformed
rotation T = Tgrr to transform inertial prop-
erties into the FFR.

Upgrade 2: Like upgrade 1, but the flexible de-
formation is considered when transforming in-
ertial properties into the FFR: T = Tiex * TERF-
Details on this transformation are given in Ap-
pendix This upgrade is important to ac-
count for the spring-like effect of the propeller
moment: The flexible twist causes a restoring
propeller moment, as illustrated in Figure[5]

1.0

0.5 A

00 EXER O N RN RN NN NN NN N
__ -05 A e eeeBaseline
° = = Upgrade 1
;;_ -1.0 ~ —— Upgrade 2
3 -15
s

-2.0 ~

-2-5 T T T T

-10 10 30 50 70 90

Blade collective pitch angle 9, ;5 (°)

Figure 4: Equilibrium flexible tip twist Fex(tip) of
the HART Il rotor blade (stiff root attachment) due
to the propeller moment at nominal rotor speed
Q = 109rad/s in vacuo, calculated using VAST

As expected, the baseline implementation does
not model the propeller moment; no significant
Vtiex(tip) is observed. With upgrade 1, Fqex(tip) is
negative for roughly 0° < ¥pe75 < 90°, with a
maximum magnitude at ¥pe75 ~ 45°. Since the
propeller moment tends to orient the blade flat in
the rotor plane of rotation, Py ex(tip) opposes Ppre, 75.
The magnitude of this flexible twist is overpredicted
for 0° < PYpe75 < 45° and underpredicted for
45° < Ypre,75 < 90° because the acting inertial
loads are still based on the undeformed configura-
tion. Therein, the outboard blade sections are more
inclined with respect to the plane of rotation than
in the deformed configuration. Upgrade 2 resolves
this issue by calculating the inertial loads in the de-
formed state, i.e. Tfex (rotation matrix represent-
ing Usex) is taken into account. Details on consider-

Figure 5: Propeller moment M,, due to flexible twist.
Root section lies flat in the plane of rotation; tip sec-
tion is inclined by ¥ relative to e = 0°

ation of Tgex during the calculation of Qi are pre-
sented in Appendix|A.2] Note that the flexible twist
of upgrade 2 in Figure[4]is solely attributed to iner-
tial loads and does not include the influence of the
aerodynamic pitching moment. Therefore, the flexi-
ble tip twist of —0.27° (upgrade 2) at ¥ pre,75 = 3.8°
is of smaller magnitude than that of a trimmed wind
tunnel setup 1% (9, (tip) = —1.09°), see Table[1]

Table 1: Comparison of Yy ex(tip) for Ypre,75 = 3.8°;
VAST calculations in vacuo (no airloads)

trim incl. VAST VAST VAST
airloads™ paseline upgrade1 upgrade 2
—1.09° 0.00° —-0.29° —0.27°

Figure[g]shows the Campbell diagram of the HART I
rotor blade using the three implementations de-
scribed above. The only difference between the vari-
ants is observed for the first torsional mode T1. Re-
markably, upgrade 1 does not change the torsion
eigenfrequency compared to the baseline. Both the
baseline and upgrade 1 show the same eigenfre-
quency increase with rising rotor speed, which is
attributed to the geometric stiffening. The corres-
ponding terms are part of the stiffness matrix K¢y.
Aside from this geometric stiffening, the change of
the propeller moment M, with ¥fex causes a fur-
ther increase in the effective stiffness of the torsion
mode. This is the spring-like effect of the propeller
moment presented in Figure[5] The feature required
to model this effect is upgrade 2, which considers
the dependency of inertial loads on deformation.
Accordingly, the T1 eigenfrequency increase is even
larger with upgrade 2. It should be noted that this
further eigenfrequency increase is only observable
in the Campbell diagram if the derivative Q" /0 is
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Figure 6: Campbell diagram of the HART Il rotor
blade (stiff root attachment), calculated using VAST

interpreted as a stiffness term in the modal analysis,
as explained in detail in Section 6]

The results of the HART Il rotor blade in Figure
and Figure[6are plausible. However, no experimen-
tal measurements of the eigenfrequencies of the ro-
tating blade were available for validation. To ver-
ify the model, a simpler configuration was analyzed
for which the exact reference results were deter-
mined analytically. The verification is presented in

Appendix[A.3]

4. ACCELERATED FFR

The inertial load terms Equation [6] and Equation
include the centripetal acceleration @i = w X
(w x @) which is the most dominant inertial load oc-
curing in rotor dynamics and therefore very impor-
tant. The vector i denotes the location of a particle
relative to the FFR. When testing a rotor blade which
was attached at a hinge offset e (i.e. the FFR was
located outside the rotor center; see Figure [7), the
centrifugal loads were underpredicted because in

such a configuration, the hinge offset causes a cen-
tripetal acceleration w x (w x e) of the FFR which
is missing in the baseline dynamic Equation (1| The
reason why it is missing is the choice of the coordi-
nate system to express v, which is the FFR itself. An
equilibrium with 2 = w = const. implies v = 0,

and consequently the term ST v in the bottom row
of Equation [T| vanishes. Therefore, if the FFR's cen-
tripetal acceleration is not explicitly respected in Q
(as done in this work; see further below), the cen-
trifugal loads are underpredicted if the FFR is lo-
cated outside the center of rotation. Note that in®!,

Figure 7: FFR located outside the center of rotation

in contrast to this work, v was chosen to be ex-
pressed in the coordinates of the inertial system, so
that in the above described equilibrium condition,
its derivative resembles the Eulertermv = w x v =
w X (w X e), which is exactly the centripetal acceler-
ation of the FFR. So in®l, this portion of the centrifu-
gal loads is part of the left hand side of the dynamic
equation.

To conform to the architectural requirements in the
VAST-MBS, however, v shall be expressed in the FFR
coordinates. Accordingly, the translatory accelera-
tion a must be added to the inertial loads on the
right hand side to appropriately model cases like the
one shown in Figure[7} The modified terms are:

(1) Qi,t,az—/psjra(a+wwa+2wu*)dv
14

(12) Qi’,ifotz—/vpsl)t-UAx (a+@@a) dv

For conversion to 1D integrals see Appendix
Note that a only includes accelerations arising from
the states of the MBS, not from the state derivatives.
The term w X (w X e) is one example for such an
acceleration. The motion of all preceding bodies in
the kinematic tree of the MBS (e.g. helicopter fuse-
lage and rotor hub) - defined by the MBS’ minimal
states - is evaluated in VAST to compute a. The left
hand side of the MBS’ dynamic equation, in contrast,
is not needed to calculate a.

The enhanced implementation including a is veri-
fied in Appendix [A.4} based on analytical reference



results of the axial tip displacement of an aluminum
beam attached to a rotating hub with offset e.

5. EXTERNAL LOADS APPLICATION

Besides the inertial loads @, further load terms ap-
pear on the right hand side of Equation [1} These
are gravitational loads Q4 and external loads Qe.
The effect of gravity g on flexible motion is simply
expressed by Qf = ST g with S as given in Equa-
tion [29] of Append|x- A.2| Since S includes the trans-
latory shape functions only, gravity so far only af-
fects the translatory flexible DoF. A direct effect of
gravity on rotational flexible DoF, which is expected
when the mass axis has an offset from the beam
axis, is not modeled yet. However, in most simula-
tion scenarios of helicopter rotor dynamics, gravity
loads play a minor role so that this effect is not con-
sidered relevant. A remark on wind turbine applica-
tions will be given in the outlook, Section 8

Describing the term Q7 based on discrete exter-
nal loads F. and M,, in contrast, is more demand-
ing. These loads may be applied at a marker within

external loads marker

“rigid lever” typ—>.
connection point—— _

FFR

Figure 8: Schematic of external loads application

an element (i.e. not at a node of the FE system)
and/or with an offset iy from the beam axis, see
Figure[8] Such a case can occur, for example, when
the structural and aerodynamic discretizations of a
rotor blade differ from one another. Since external
loads - e.g. airloads - may depend on the motion
(position, orientation, velocity, angular velocity) of
the marker on which they act, their application re-
quires two calculations which must be consistent,
i.e. based on the same transformations:

1. Evaluate the kinematics of the marker based
on that of the flexible beam: A loads marker
as shown in Figure [8| is configured and han-
dled the following way in VAST. On the nearest

element of the FE system, a connection point
is defined on the beam axis such that || is
minimal. The offset vector s is considered
invariant, so the loads marker moves as if it
was connected by a “rigid lever” to the con-
nection point. The connection point, in turn,
moves in space according to the FFR motion
(rigid body part) and the flexible motion of the
beam (e.g. flexible displacement Jex). The lat-
ter is evaluated based on the states rj and r,
of the beam, along with the shape function
evaluations Sira(X), Srot(X) at the location x of
the connection point. For instance, the flexible
translatory displacement reads

(13) UerX(X) = Stra(X) < n.

In VAST, Equation|13]is evaluated element-wise,
i.e. the element’s shape function is multiplied
with only those nodal states that belong to the
element. The loads marker position relative to

the FFR is & = g + Unex + Uoff- The rota-
tion from the FFR to the marker frame is com-
pOSGd of T = TerX . Tmark . TERF: where

T mark is the rotation from the ERF to the loads
marker frame in the undeformed configuration
and Ty is @ matrix representing the flexible
rotations Syot(X) - 1.

. Project the loads onto the nodal deflections:

The force acting at the connection pointis iden-
tical to that acting at the external loads marker.
The effective moment at the connection point,
in contrast, additionally includes the influence
of the force's lever arm (superscript *):

(14) M: = Mo + loir X Fe

The nodal loads QZ are obtained by multiplica-
tion with the shape functions of the elements:

(15) Qe tra — Stra
(16) Qe rot — rot M*

Note that the loads F. and M} are expressed
in the coordinates of the FFR, which requires
a preceding transformation (multiplication by
TT) if the loads were expressed in the exter-
nal loads marker frame. Details on coordinate
transformations are provided in Appendix[A.1]
In VAST, Equations [T5| and are evaluated
only for the finite element which is affected by
Fe and M. Accordingly, Q% .., and Qf ., are
then placed in the appropriate segment of Qg
in Equation[T]belonging to this element.



The application of external loads is verified based
on analytical reference calculations in Appendix[A.5|
Both the effect of eccentric forces and the applica-
tion of forces within an element, i.e. between the
nodes, are addressed.

6. MODAL REDUCTION

The goal of modal reduction is to limit the kinemat-
ics of the system to pre-defined modes. The number
of states is reduced and the differential equations
become numerically less “stiff”. This allows the us-
age of standard solvers like Runge-Kutta with rea-
sonable time steps. For a flexible system without
damping, the eigenvalue problem is given by

(17) (KFree - W?Mfree> Usree,i = 0.

The subscript “free” indicates that the matrices or
vectors are reduced to the number of free DoF.
The locked DoF of the boundary conditions are re-
moved, e.g. Mfee = J},-Mrrdpor. JooF contains
rows of the identity matrix for the free DoF and rows
of zeros for the locked degrees of freedom. The
boundary conditions are customizable. For a hinge-
less rotor blade, for instance, a clamped boundary
condition of the first node with respect to the FFR is
used. The extended stiffness matrix Kf .. includes

free
the free stiffness matrix Keee = J0 cKrrdpor as
well as an additional Jacobian which is explained fur-

ther below.

w; is one of the FE system’s eigenfrequencies, and
Usree,i 1S the eigenvector of the free DoF correspon-
ding to w;. Only the first n eigenmodes i = 1...n
of the FE system are used to describe its motion,
while n is configurable. n modal coordinates imply
n position level states and n velocity level states. Ac-
cordingly, the 2n flexible states are factors scaling
the eigenvectors u; = JpoF Usree,; to Obtain the FE
system’s deflections r; and deflection velocities .
The flexible part of Equation[1|- i.e. the lower half
- is projected onto the modal base and the modal
coordinates replace the flexible states (r, rj)) in the
solution process.

When calculating the modal reduction, the motion
of the FFR must be taken into account, since it ac-
tively affects the system’s eigenfrequencies. There-
fore, an addition to the stiffness matrix K¢ee in the
form of a derivative of the inertial loads Q is con-
sidered.

First, the FE system is brought to an equilibrium
state under the interial loads Q, resulting from the
motion of the FFR. Consequently, the stiffness ma-
trix Ky¢ is calculated, potentially including geomet-
ric stiffening terms. Furthermore, the inertial loads

on free flexible motion chﬁee = JL QF are de-
rived with respect to the free flexible position level
states 1 free = JgoF r by means of finite differences.
The resulting Jacobian is superimposed onto the
stiffness matrix in Equation The negative sign is
attributed to the fact that the stiffness term —K¢¢ 1

also appears with negative sign in Equation ]

(18) K;ﬁree = Kfree — 8(’?C,free/arhfree

In other words, the dependency of the flexible iner-
tial right hand side on the flexible displacements is
interpreted as an additional stiffness for the modal
reduction. This step is necessary, for example, to ob-
tain correct lead-lag eigenmodes of rotor blades, be-
cause the direction of the centrifugal force vector on
amass increment of the blade changes immediately
when the blade lags. Without the consideration of
8Qc,free/8r|,free, the lead-lag eigenfrequency would
be too high, since the stiffening effect would be simi-
lar to that of the flap modes for which the centrifugal
force vector does not change its direction when the
blade flaps. So Q" ..../0r free provides a negative

) " ) v.free
stiffness in this case.

A comparison between eigenfrequencies of the
modal reduction based on Ky only, and the mod-
ification based on K% . according to Equation
is given in Table [2] It lists the eigenfrequencies of
the first six modes of the HART Il rotor blade with
stiff root attachment at nominal rotor speed 2,¢f =

109 rad/s.

Table 2: Normalized eigenfrequencies w;/Qef of
the HART Il rotor blade (stiff root attachment) at
nominal rotor speed 2 = 109rad/s. In red: over-
/ underpredicted values

stiffness for modal reduction
mode Ky only  Kj . (Equation|[18)

L 127 078 (1)
o 1.12 1.10
2 2.86 2.85
1 3.96 4.04 (1)
L2 468 457 (1)
F3  5.16 5.16

The eigenfrequencies of the modified implemen-
tation resemble those of “upgrade 2" in Fig-
ure E] at Q/Qes = 1. Without consideration of
8Q£,free/6r|vfree, the lead-lag eigenfrequencies - es-
pecially that of L1 - are significantly overpredicted; a
value of w1 /Qef = 1.27 characterizes a very stiff-
in-plane rotor, while the HART Il rotor is of the soft-
in-plane type. The explanation based on the cen-
trifugal force vector has already been given above.



In contrast to the lead-lag modes, the first torsion
mode T1 is underpredicted if only Kgee is consid-
ered for modal reduction. The reason is the miss-
ing spring-like effect of the propeller moment (see
Section which is included in 8Q" ¢../1 free. The
flap modes F1, F2 and F3 are barely affected by the
added Jacobian in Equation The very small de-
creases of the F1 and F2 eigenfrequencies can be ex-
plained by secondary lead-lag contributions in these
modes.

It should be mentioned that the dependency on ve-
locity level states 8Q;free/8r||,free is not considered
because it would need to be interpreted as damp-
ing, which is neglected in the modal reduction cal-
culation. Therefore, if precise eigenfrequencies and
damping characteristics are to be calculated (e.g. in
a Campbell diagram), a VAST-wide modal analysis is
performed, in which the complete differential equa-
tions of the MBS are linearized including all damping
and right hand side terms.

7. CONCLUSION

The FFR-based integration of FE bodies in the MBS
of VAST is completed in its first version using BAM fi-
nite elements. During implementation and concur-
rent testing, enhancements were added to make
the simulation model suitable for rotorcraft appli-
cations. These enhancements include:

+ the configuration of inertial properties based
on 2D cross sectional data instead of the 3D
density distribution,

+ the introduction of rotational shape functions
to account e.g. for the propeller moment,

* the consideration of an accelerated FFR to ad-
dress the blade attachment’s radial offset from
the rotor center in the centrifugal field,

+ the handling of external loads (e.g. airloads)
that are applied away from the beam'’s nodes
or the beam axis to allow for independent
structural and aerodynamic discretization, and

+ the dependency of inertial loads on flexible
position level states as an additional stiffness
which is considered during modal reduction.

The modifications were verified against analytical
reference results for appropriate rotor dynamics
test cases. Plausible tip twist and Campbell diagram
results were presented for the HART Il rotor blade.
This paper therefore provides necessary modifica-
tions to make the well-known FFR formulation ca-
pable of simulating helicopter rotor blades as FE
beams in an MBS environment.

8. OUTLOOK

Because the test cases studied in this paper only
feature clamped beam attachments, the coupling
between the rigid body motion and the flexible mo-
tion of the body has not yet been verified. This cou-
pling is modeled by the matrices S and Jgr, which
are so far solely based on translatory shape func-
tions Sgra. Currently, the consideration of rotational
shape functions Syot in S, in Jor, and in the FE sys-
tem’s mass matrix M¢y is being investigated. Since S
also affects gravitational loads Qf, the modification
of S is also expected to be relevant for wind turbine
simulations, where gravity causes a major cyclic ex-
citation on the turbine’s blades.

In the near future, in addition to the static and fre-
quency domain analyses presented in this paper,
comprehensive tests based on time domain sim-
ulations such as wind tunnel trim calculations or
transient responses are planned. To address non-
linear effects of deformation (e.g. part of the Cori-
olis coupling between flap and lead-lag motion),
the substructuring approach will be employed, i.e.
the rotor blade will be segmented into multiple lin-
ear FE bodies. Code refactoring and performance
improvements are also included in the short-term
agenda.

In the mid-term, the VAST-MBS will be extended
to model closed-loop structures such as dual load
paths, which occur e.g. when the blade root pitch ac-
tuation is explicitly modeled and/or the rotor blade
has a bearingless attachment.

The long-term added value of modeling rotor blades
as FE beams within the VAST-MBS is the ability to
accurately and efficiently simulate

+ flexible rotor blades with complex geometrical
and structural properties as well as arbitrary
boundary conditions,

« complete structural systems with flexible ro-
tors coupled to moving and/or vibrating vehi-
cles and drive systems, and

+ dedicated multi body structures for the blade
attachmentincluding hinges, rigid connections,
flexible elements, springs and dampers.
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A. APPENDICES

A.1. Coordinate Transformations

Throughout this paper, transformations are needed
which rotate vectors or matrices from the FFR into
a specific frame or vice verca, i.e. the transforma-
tions change the coordinate system in which a quan-
tity is expressed. If not indicated explicitly, quanti-
ties are expressed in the FFR by convention. 3D vec-
tors v(mak) and 3 x 3 matrices M(M2K) that are ex-
pressed in a specific marker frame - indicated by su-
perscript (mark) - are obtained as follows from the
FFR-expressed quantities

(19) vimek) — 1.y

20) MM —T. M. TT,

where T is a 3 x 3 rotation matrix. The other way
around, FFR-expressed quantities are obtained as

22) M=TT . mmak) . T

T may be composed of several subsequent rota-
tions. For example, in Figure [8] the rotation from
the FFR to the marker frame is composed of T =
Ttiex - Tmark - TeErE. The individual rotations are ex-
plained in Section[5

Since the individual entries of the nodal states r; and
r belonging to an element can be associated with
the three spatial directions, a rotation matrix T can
be defined in analogy to T which transforms the el-
ement's nodal states from the FFR to the ERF. For
instance, T is used along with T to rotate the shape
function matrices - which are originally defined in
the ERF - into the FFR:

(23) Sgra = TT-SERP .
(24) Syor = TT-SERP .



A.2. 1D Inertia Shape Integrals

This detailed derivation of 1D inertia shape integrals is given here. In[® and !/, the 3D inertia shape integrals
over the body volume V are derived, based on density p and translatory shape function matrices S;,. These
integrals are computed for the whole FE system with its n, flexible DoF and are expressed in the coordinates
of the FFR. The dynamic Equation[T]of the FE body includes most of the integrals, which read:

(25) mgpp = /Vp 1dV 3 x3 rigid translatory mass matrix

(26) Jgo = /Vp i’ idv 3x3 rigid rotational inertia tensor

(27) §t = /Vp iadv 3x3 rigid transl./rigid rot. coupling matrix
(28) Mg = /Vp StTra Stra dV ny X ny mass matrix of the FE system

(29) S = /VpStra dv 3% n, rigid transl./flex. coupling matrix
(30) Jor = /Vp {1 Sra dV 3xn, rigid rot./flex. coupling matrix

The aim is to obtain the inertia shape integrals via 1D integration using pre-evaluated 2D cross-sectional in-
tegrals as the configuration input. Note that the integration space itself always represents the undeformed
beam and does not change due to deformation. Figure[2]shows the schematic of a beam with the vectors
and rotations described in the following. The vector i from the FFR to a particle of the beam, expressed in
the FFR, is obtained as follows:

Eﬂex
31) 0= T+ Tiar - (sﬁrEfF) : r,(ERF)) +Tae - 0550 with
Gm A

o = undeformed position on the beam axis, expressed in the FFR

TERF = matrix to rotate a vector from the ERF to the FFR

sgrEaRF) = translatory shape function matrix, expressed in the ERF
r,(ERF) = element-related position-level states, expressed in the ERF

Ufex = flexible deformation, expressed in the FFR
ilm = deformed position on the beam axis, expressed in the FFR

Uy = offset from beam axis within the cross section, expressed in the ERF

a4 = offset from beam axis within the cross section, expressed in the FFR

The reformulation of the rigid translatory mass matrix is trivial. Itis obtained by integrating the cross-section
moment /oo along the beam. | denotes the identity matrix.

(32) mRR:/pIdV:I-//,odAdx
14 xJA
——

loo



The inertia tensor is reformulated as follows. Note that the vector i, from the FFR to the origin of the local
coordinate system is constant during the integration over A, so it can be taken outside of the integral.

—_ ~ ~ ~ ~ — N T —_— N
(33) Jggz/pUTUdV://pUTUdAdX://p(Um+UA) (bm + 04) dAdx
14 x JA x JA

:/ /pﬁ;ﬁmdA+/p(ﬁ;ﬁA+ﬁ;ﬁm)dA+/pﬁ}ﬁAdA} dx
x LJA A A

:/ ﬁ;ﬁm/pdA+ﬁ;/pﬁAdA+/pﬁ1dAﬁm+/pﬁ;ﬁAdA dx
X JA A A A

loo

If the vector {4 is expressed in the ERF, it reads UE\ERF) = (0,¢, 'r/)T since the plane A is perpendicular to

the beam axis. Accordigly, the local inertia per length is

£€+n° 0 0 loo+ 1oz 0 0
~(EREVT =~
(34) / pitERF) " GERF A = / ol o0 n?  —€En|dA= 0 lop  —

A A 0 —¢n £ 0 - I20
with oo = [, p€2dA, loo = [, pn? dA, and . Furthermore, the matrix

0 —-n ¢ 0  —lo1 o

(35) / piteRF) dA = / oln o olda=(1:. 0 0

A A £ 0 0 —lo 0 0

is identified, containing the 1% order cross-section moments /1o = [, p§dAand /oy = [, pndA.

The inertia shape integrals are expressed in the FFR. In general, the given cross-section moments are ex-
pressed in a different, local coordinate system indicated by superscript('oca') which requires a coordinate
transformation including two steps: The matrix Tgrr describes the orientation of the ERF relative to the
FFR in the undeformed FE system, while the rotation T, accounts for the changed orientation of the local
system relative to the ERF due to deformation (cf. Figure [2). The necessity of considering Tyex during the
transformation of the inertia shape integrals was identified in the test cases reported in Section[3] Therein,
the implementation including Ty is denoted “Upgrade 2,” while “Upgrade 1" does not include the rotation
Tex. The total rotation from the FFR to the local deformed coordinate system is described by the matrix
T = T#ex - Tere. The FFR-expressed vectors and matrices are obtained as follows. Further information on
coordinate transformations is given in Appendix[A.1]

0 (local)

(36) / piadA=T" | lo

A lo1

) 0 —loy It (local)

(37) / plisdA=T"-| lo: 0 0 T

A o 0 0

- /20 n /02 0 0 (local)
(38) / piy iadA=TT. 0 o T

A

0 - I20



Now the coupling matrix §t between translatory and rotational motion shall be addressed. It is sufficient
to transform the term S; = fv p i dV to 1D from; the cross product operation (tilde) is trivial.

(39) gt:/,oUdV://pUdAdX://p(Um—I—UA)dAdX
V_ x JA x JA

. 0
:/ Um-/pdA—l-/pUAdA dX:/ Um~/oo+/,0-TT~ £ dA| dx
X JA A X A n
——
L loo
I 0
:/ Um-/oo+TT' l10 dx
x lo1

Again, the vector (0, /10, /01)T has been transformed from the deformed local frame to the FFR by T,

The rest of the inertia shape integrals includes the translatory shape function matrix S,. In the case of
beams, the evaluation of the shape function only depends on the distance x along the beam axis. That
means that the terms Sy, and StTraStra can always be taken outside of the integration over the cross section.
This simplifies the expressions for Mss, S and Jgr (the latter given in Equation of Section :

(40) Mff:/pStTraStradV:/ SiaStra - / pdA| dx
4 X JA

loo

(41) §:/pstrad\/:/ Stra - / pdA| dx
v X JA
N——

loo

Although it is not an “inertia shape integral”, the inertial flexible right hand side Qf contains mass integrals,
and shall be expressed in 1D form analogously. Note that the angular velocity w of the FFR is constant over
the whole integration domain. For a beam model, the shape function matrix S, does not vary across the
beam section so it can be taken outside of the area integral below. Details on the translatory and rotational
part Qf = Q;tra + Q;rot are treated in Section (3| The translatory acceleration a of the FFR is explicitly
considered in Section Considering il = ey, the translatory inertial loads term can be reformulated as
follows:

(42) QC,tra:—/Vpsjra(a+wwa+2wﬁ)d\/
:—/{Sga/p(aerwUJrQwﬁ)dA] dx
X A

:—/ {sga (a/,odA—l—(D&'J/pUdA—l—QcD/pu;dA)}dx
X A A A

0
f' i ~ o~ —_ ~
cf. Equation§] / Slala-loo+@@ |Gm-loo+TT | l1i0 || + 2 btiex oo | | dx
X IOl



Again, the vector (0, /10, lm)T containing the cross-section moments has been transformed from the local
deformed frame to the FFR by T

The rotational part Q;rot = Qc’,fot + QC”?Ot is derived for centrifugal (superscript ¢) and gyroscopic (super-

script g) loads separately. Note that & = U, + s, and w = (wx, Wy, wZ)T. The effect of centrifugal loads
on the flexible rotational DoF is:

(43) Qc’,fot = /\/pSI)t [—0a X (2+w x (w x 0))] dV
:—/Sgt/,o-UAx(a—kwx(wa)) dAdx
X A
:—/Sl)t/,o[UAx(a—i—wx(wxUm))—i—UAx(wx(waA))] dAdx
X A

:—/S&(/pﬂMMx@+wx@ux%D+/ﬁ-hx@nﬂwmedA(M
X A A

triple cross product

To isolate cross-sectional moments (which are expressed in terms of p and 4 only) in the second cross-
sectional integral above, the triple cross product must be evaluated. Note that the vectors w and &4 must be

expressed in the same frame; the FFRis chosen here. The first entry of ii4 only vanishes if {4 is expressed in

the ERF: UE\ERF) =(0,&m)". In contrast, for Gs = (x,y, z)' as used below, x # 0 is possible. Accordingly,

the evaluation of the triple cross product yields

wyw;z (y2 = 22) + (w2 — w?) ¥z + wywzxy — Wxwyxz
@4) a x (wx (wx b)) = | wxw; (22 = x2) + (w2 — w2) XZ + WxWyyZ — WyW,Xy
wxwy (X2 = ¥2) + (W2 — W2) XY + WyWw XZ — Wywyz

The FFR-transformed matrix of the second order cross-sectional moments in its general form is

L Ixy  Ixz y2+ 22 —xy —xz
@as) {Ixy 1y lyz | = / p| —xy x2+z2 —yz |dA
[ P A —xz —yz X2+ y?

and can be obtained by rotating the ERF-oriented matrix of the second order cross-sectional moments:

/XX /xy /xz /20 + /02 0 0
@e) [y 1, | =TT"- 0 lop  — T
Ixz Iyz I22 0 - I20

The integrated and p-weighted triple cross product is then obtained as

Wywz (Izz = lyy) — (W2 — W2) lyz — Wiz lxy + Wty lxz
mn/whx@x@meM: Witz (hoc = [22) = (W5 = WZ) ez = Wity lyz + Wywzlxy
A

wxwy (lyy = ho) = (W3 — w2) Iy — wywzlxz + wxtwzly,



Finally, the centrifugal loads acting on flexible rotational motion are obtained:

dx

0
(48) Qc’,fot = —/SrTOt T | /o] x (a4 wx (WX bm)) + ...
X lo1
_ _ 2 _ 2 _
wywz (Izz = lyy) — (W2 = w3) lyz — Wiz lxy + Wty xz
oA [ wawy (e — 152) — éwg —W2) lyr — WxWylys + Wywylyy
wxwy (lyy = ho) = (W2 — w2) Ly — Wywzlxz + wtzly,

For the effect of gyroscopic loads on the flexible rotational DoF, it is assumed that i/ = e, = const. over

the section A, which is an acceptable simplification.
f.g __ T _ -
(49) Q. 7ot = —2/Srot/ p-lax (wx i) dAdx
X A

2/SLt/p~UAdA><(w><u*)dx
X A

0
2 s
X

l10
A.3. Verification of the Propeller Moment

T
rot

T

dx

X (w % )
lo1

The configuration used to verify the propeller mo-
ment is illustrated in Figure The “beam” con-

Figure A.1: Beam configuration for verifying the pro-
peller moment

sists of 4 quasi-massless and torsionally soft FE ele-
ments (grey part of the beam), which together have
the torsional stiffness k. The fifth and last element is
a quasi-rigid cuboid of size a-a-c with homogeneous
mass density p (blue part of the beam). Note that the
beam axis x is not kinked, i.e. the cuboid's longitu-
dinal x-axis coincides with one of its shorter dimen-
sions a and not with the longer side c. The beam is
clamped to a hub rotating at constant speed €2 and
has an undeformed inclination of . Due to the
propeller moment acting on the cuboid, the beam
is elastically twisted by 6fex < 0. The parameters of
the beam configuration are listed in Table[A.T]

Table A.1: Parameters of the beam in Figure[A.1]

Q 100rad/s
Opre 1°

2750 Nm/rad
10m

0.1m

1.0m

1000 kg/m?3

T O v Pxx

The propeller moment acting on the cuboid with in-
clination 8 = Bpre + Ofiex IS

(50) M, =—Q?- (I, —1,,) - sin(8) - cos(8),

where the mass moments of inertia are /,,
m/12 (a® + ¢?) and 1, = m/12 (a° + a°) with
m = p a’ c. This term can, for example, be identified
in the torsional differential equation in® and is ex-
plicitly called “propeller moment”in®l, The torsional
stiffness of the rotating beam in equilibrium coun-
teracts the propeller moment, i.e. Oxex = M,/k.
Since & < 1°, the simplifications sin(6) ~ 6 and
cos(f) = 1 are justifiable so that

2

(51) eflex == (Izz - Iyy) : (epre + eflex) .
This yields

—02?

== (l,,-1,,)6
(52) Ofiex = —- ( w)bore _ g 750

1+ QTZ (IZZ - Iyy)

In VAST, an equilibrium calculation is performed for
this beam which is configured using BAM elements.



Table compares the resulting flexible tip twist
for the three implementation variants described in
Section [3] with the analytical solution. As expected,

Table A.2: Equilibrium flexible twist 85y of the beam
in Figure[A.T)with the parameters of Table[A.T]

VAST VAST VAST
Analytical baseline upgrade1 upgrade 2
—0.75° 0° —2.83° —0.74°

the baseline implementation does not account for
the effect at all. Since upgrade 1 constantly applies
the propeller moment at 8 = 6 regardless of Oy,
the resulting s« is strongly overpredicted in magni-
tude, which even results in a negative overall inclina-
tion 8 < 0 which is of course unphysical. Only when
the dependence of inertial loads on deformation is
respected (upgrade 2) is the result correct within
the accuracy expected from the numerics and dis-
cretization.

To address the frequency-domain behavior of the
beam, the restoring propeller moment can be inter-
preted as an additional stiffness (cf. Section @) for
which again the small angle assumption for 8 is ap-
plied:

(53) kp = OM,/00 = Q% (I, — 1))

The expected eigenfrequency of the torsional oscil-
lation is

K+ kp

/XX

(54) w=

with e = m/12 (c? + a2). Tablepresents the
eigenfrequencies of the first torsion mode T1 of
the beam for the non-rotating case and for Q2 =
100 rad/s. The analytical results are based on Equa-
tion while the computational eigenfrequencies
are obtained during modal reduction according to
Section [6] In the non-rotating case, all results are
identical which confirms consistency of the analyt-
ical and computational structural models (without
inertial loads). At Q = 100rad/s, a T1 eigenfre-
quency of 18.19Hz is expected analytically. How-
ever, for both the baseline model and upgrade 1,
only a slight increase in eigenfrequency compared
to the non-rotating case is observed. The large part
of the eigenfrequency increase is introduced by up-
grade 2, since only this update models the spring-
like behavior of the propeller moment, i.e. the addi-
tional stiffness according to Equation[53] The small
increases in eigenfrequency from €2 = Orad/s to
Q = 100rad/s observed from the baseline model

and upgrade 1 are attributed to geometric stiffen-
ing effects, which are not considered in the analyti-
cal calculation. Also for upgrade 2 at 2 = 100 rad/s,
such additional stiffening is observed since the sim-
ulated eigenfrequency of 18.33 Hz is slightly higher
than the analytical reference value.

Table A.3: T1 eigenfrequency of the beam in Fig-
ure[A.T|with the parameters of Table[A.T} also includ-
ing the non-rotating case 2 = Orad/s

Q Orad/s 100rad/s
Analytical 9.10Hz 18.19Hz
VAST baseline 9.10Hz 9.37Hz
VAST upgrade 1 9.10Hz 9.37Hz
VAST upgrade2 9.10Hz 18.33Hz

These comparisons of equilibrium flexible twist and
torsion eigenfrequency demonstrate the distinct ef-
fects of upgrades 1 and 2 and successfully verify the
implementation with upgrade 2 based on analyti-
cal reference results. The baseline method needs to
be enhanced by both upgrades to obtain a model
which accurately predicts the torsion dynamics of
beams similar to rotor blades.

A.4. Verification of Inertial Loads with
Accelerated FFR

The enhanced implementation of inertial loads Q/
according to Equation[T1]and Equation[12]includes
the translatory acceleration a of the FFR. It is verified
based on the configuration shown in Figure[A.2] The

deformed Ax

Figure A.2: Beam configuration to verify the effect of
centrifugal loads for an accelerated FFR

aluminum beam (density p, Young's modulus E) is
clamped to a rotating rigid hub (angular speed Q)
at radius e; the overall radius is R. The parameters
are listed in Table The incremental centrifugal
force in the beam at radius x (measured from the



Table A.4: Parameters of the beam in Figure[A.2]

Q 100rad/s

e 1Im

R 3m

p 2700kg/m?3
E 70-10°N/m?

rotor center) is
(55) dFx(x) = Q% x-dm=Q%-x-pAdx

where A is the beam's cross section area. Accord-
ingly, the equilibrium tensile force in the beam is

R
(56) FX(X)Z/ Q2. X-pAdX

X
= 2AQ? (R?=x?).
The axial strain distribution e¢(x) = o/E =

Fy/ (E A)isintegrated over the flexible beam to cal-
culate the tip displacement Ax:

R
(57) Ax:/ e(X)dX

:plAQ2/RR2—X2dX
2EA .
R
P, X2
2 E [R X=3 .
p2[2 4 e,
S E [SR +e 3 R
TebleBd ) 5. 103 m

The same beam is configured in VAST-MBS using
20 equal BAM elements. The equilibrium is calcu-
lated numerically and the resulting tip displacement
is compared to the analytical solution in Table [A.5
Both the baseline and the corrected implementa-
tion are tested. As expected, the corrected variant
yields the correct tip displacement, while the base-
line implementation yields the displacement which
would be obtained fore = Omand R = 2m, i.e.
at the same rotor speed but without FFR accelera-
tion a. Strictly speaking, this test only confirms the
correctness of the inertial loads' effect on the trans-
latory displacements, Equation However, since
the same centrifugal loads are involved in the ef-
fect on rotational displacements, Equation|12]is also
considered verified.

A.5. Verification of External Loads Application

The application of external loads according to Sec-
tion [5] is verified based on equilibrium calculations

Table A.5: Equilibrium tip displacement Ax of the
beam in Figure[A.2]with baseline and corrected term
Q;tra compared to analytical results

Analytical (param.: Table/A.4) 1.8000-10 °m
VAST corrected, Equation 1.7991-1073m
VAST baseline, Equation 6| 1.0286-10 3m
Analytical (e =0m, R =2m) 1.0286-10"3m

of a simple beam composed of 5 identical elements.
The beam has a radius of R = 10m, a quadratic
cross-section of side length a = 0.1m, Young's
modulus £ = 210 - 10° N/m?, and a Poisson’s ratio
of v = 0.3. The beam is loaded by discrete forces.

Figure shows a test case in which an eccentric
force F, = 1000 N is applied at the beam tip with a
lateral offset of y(F,) = 1 m. The tip force causes a

Figure A.3: Eccentric tip force

bending deformation of the beam axis, which would
also occur for a centered applied force. Due to the
small resulting tip twist angle of 6y, ~ 0.5° (calcu-
lated further below), the simplification cos (0ip) ~
1 is justified. Accordingly, the calculation assumes
an unchanged force F; acting in the z-direction of
the FFR. The bending in z-direction is described by

M) F(R—x)
El El
with / = a*/12 = 8.3-107° m*. Twofold integration

under consideration of boundary conditions z(0) =
Z'(0) = 0 yields the cubic bending line

(58) Z"(x) =

Fz 2 3
59 () = =5 <R-X2—);> ,

which evaluates to z(R) = 0.19 m at the tip. The nu-
merical results of the VAST equilibrium calculation
are compared to the above calculated analytical re-
sults in Figure|A.4l Therein, x is the undeformed ra-
dial coordinate.

On top of the bending deformation, due to eccen-
tric application of F, a torsion moment M, = F -
y(Fz) = 1000 Nm arises which is constant along the
radius x. This causes a linear twist distribution with
tip deflection

My R

cJ 0.0088rad = 0.504

(60) 8(R) =
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015 + VAST
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Figure A.4: Cubic bending line of beam in Figure[A.3]

where G = 0.5E/(1+v)and J = 2.25 - (a/2)*
(torsion constant for quadratic cross sections!14),
The analytical twist distribution is shown in Fig-
urefA.5|along with the numerical results.

—— analytical
+ VAST

0.008 A

0.006 A

0 (rad)

0.004 A~

0.002 H~

0.000 A

x (m)

Figure A.5: Linear twist distribution of beam in Fig-

urelA3

The numerical results of both bending line and twist
distribution match perfectly with the analytical ref-
erence results. Consequently, this test case verifies
the effect of eccentric forces on the beam deforma-
tion.

Figuredepicts a test with two axial forces Fy =
100 - 10 N; one acting at the tip and one acting at
the middle of the beam, within element 3. Accord-

7Z X
A
V.

Figure A.6: Axial forces within an element and at the
tip

ingly, the cross sections in the left half of the beam
are loaded by 2 F,, while those on the right half are
loaded by F,. The displacements in the middle and
at the tip are calculated as follows, while the dis-
placement distribution in between is linear.

61) Ax(R/2) = 25 (RI2) 426, 104 m
EA
_ £ (R/2)
62) Ax(R)=Ax(R/2) + A
=7.14-10"*m

The analytical and numerical results of elongation
vs. undeformed radius are compared in Figure
Although no node is located at a radius of x = bm
(this is the middle of element 3), the numerical re-
sult of the elongation correlates very well with the
analytical prediction. In particular, the kink is well
reproduced. Accordingly, this test case verifies the
external force application within an element, i.e. be-
tween the nodes.

analytical
0.0006 4 < VAST
E 0.0004
x
<
0.0002 A
0.0000 A
T T T T T T
0 2 4 6 8 10
x (m)

Figure A.7: Elongation distribution of beam in Fig-
ureAd
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