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Abstract. This paper presents an approach for approximating the reach-
able space of robotic manipulators based on convex polytopes. The pro-
posed approach predicts the reachable space over a given time horizon
based on the robot’s actuation limits and kinematic constraints. The
approach is furthermore extended to integrate the robot’s environment,
assuming it can be expressed in a form of linear constraints, and to ac-
count for the robot’s link geometry.
The accuracy of the proposed method is evaluated using simulations
of robot’s nonlinear dynamics and it is compared against the cartesian
space limits, usually provided by manufacturers in standard datasheets.
The accuracy analysis results show that the proposed method has good
performance for the time horizons up to th≤250ms, encapsulating most
of the simulated robot’s reachable space while maintaining comparable
volume. For a 7 dof robot, the method has an average execution time
of 50ms, independent of the horizon time, potentially enabling real-time
applications.

Keywords: Reachability analysis · Convex polytopes · Collaborative
robotics.

1 Introduction
Collaborative robots, designed for safe physical interaction with humans, have a
great potential to find their way in many spheres of industry, research and poten-
tially become a part of our everyday lives. Apart from replacing rigid and danger-
ous manipulators in the industrial applications, their main potential is creating
new robotic assistance scenarios leveraging high degree of physical human-robot
interaction. Such scenarios demand not only many safety guarantees, but a high
degree of operator’s situation awareness both in terms of robot’s behaviour and
its physical abilities in real-time.

A metric unifying the robot’s physical abilities and its movement capacity,
important for safety and performance analysis, is called the robot’s reachable
space [1]. It represents the space of reachable robot’s positions (ex. end-effector
cartesian positions) for a certain time horizon, given different assumptions on
its physical abilities. As robotic systems are highly non-linear and featuring
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complex dynamics, the true reachable space of robots is very complex to charac-
terise and calculate. Therefore, approximation techniques are necessary in order
to yield practical solutions. Pereira and Athhoff[6] have developed an interval
analysis based approach, later improved by Shrepp et al.[7], to approximate the
human arm reachable space, modeled as a serial robotic manipulator, using a
set of spheres and cylinders. However, in many cases the approximation of the
reachable space using these shapes is impractical due to their non-linear nature.

In this paper, an approximation approach of the robot’s reachable space us-
ing convex polytopes is proposed, leveraging several of their key characteristics.
Convex polytopes can be represented as a set of linear inequalities Ax ≤ b,
which may be directly used with different optimisation techniques. Additionally,
this set of linear inequalities can be intuitively extended with different envi-
ronmental and user defined constraints. Since the reachable space is often low
dimensional (≤3D) these polytopes can be easily visualised, having the struc-
ture of a triangulated mesh, and potentially provide a human operator with
valuable information about the robot’s capacity. Furthermore, operations over
polytopes such as Minkowski sum and intersection are well defined and efficient
to calculate, enabling for the intuitive extension of the proposed method to ac-
count for robot’s link geometry. Finally, the efficiency of polytope enumeration
techniques for low dimensional polytopes has a potential to make this metric
real-time capable.

Even though convex polytopes are widely used to characterise different met-
rics of robot’s physical abilities[9]: force, acceleration and velocity, to the best of
our knowledge they have not yet been used to characterise the reachable space of
a robotic manipulator. The proposed approach is partially inspired by the works
of Long et al. [5] on the constrained manipulability (velocity) polytopes.

Depending on whether the application requires an under or over approxima-
tion, or perhaps time-efficiency, the evaluation metrics of the accuracy of the
reachable space approximation will differ significantly. In this paper, in addition
to the execution time analysis, three accuracy measures are chosen to enable the
evaluation of the proposed approach’s performance and study its limitations.

The paper has the following structure. In the chapter 2 the formal definition
of the approach is introduced, followed by the chapter 3, describing the procedure
of benchmarking and the accuracy analysis. In the chapter 4, the results of the
accuracy and execution time analysis of the approach are given and the chapter
5 discusses the main limitation as well as potential applications.

2 Convex polytope of reachable space
Robot dynamics in joint space can be expressed as

M(q)q̈ + C(q, q̇)q̇ + τg(q)︸ ︷︷ ︸
τd

= τ (1)

where M is the mass matrix, C is coriolis matrix and τg is the gravity vector.
τ is the applied joint torque vector and τd is the equivalent joint torque vector
due to the coriolis and gravity effects.
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For a robot with n actuated degrees of freedom (DOF), the robot’s joint
torque τ , velocity q̇ and joint angles q are n-dimensional vectors, limited by the
robot’s hardware1

τ ∈ [τmin, τmax] , q̇ ∈ [q̇min, q̇max] , q ∈ [qmin, qmax] (2)

For a given moment in time k and for given robot configuration qk, the affine
relationship between joint torques τ and accelerations q̈k can be expressed as

q̈k =M−1(qk)(τ − τd) =M−1
k (τ − τd) (3)

Considering fixed joint acceleration q̈k during given horizon length th, an
approximation of the robot’s joint velocity q̇k+1 and position qk+1, at the end of
horizon, can be calculated using numerical integration (forward Euler method)

q̇k+1 =M−1
k th(τ − τd) + q̇k, qk+1 =M−1

k

t2h
2
(τ − τd) + q̇kth + qk (4)

This linear numerical integration (4) considers the robot’s dynamics (1), and
the applied joint torque τ , fixed during the horizon time th. Such assumption is
reasonable only for short horizon times th which in term represents a limitation
of the proposed method.

The relationship between the m-dimensional task space velocity and accel-
eration of certain frame on the robot (for example end-effector frame) and the
n-dimensional joint space equivalents is defined through the corresponding jaco-
bian matrix J(q) and its time derivative J̇(q).

ẋk = J(qk)q̇k = Jkq̇k, ẍk = Jkq̈k + J̇kq̇k (5)

Finally, given the horizon of interest th, the predicted cartesian position xk+1

can then be expressed as

xk+1 = ẍk
t2h
2

+ ẋkth +xk

= JkM
−1
k

t2h
2
τ −JkM−1

k

t2h
2
τd︸ ︷︷ ︸

∆xk,dyn

+J̇kq̇k
t2h
2

+ ẋkth︸ ︷︷ ︸
∆xk,vel

+xk

︸ ︷︷ ︸
x∗

k+1

(6)

Where the x∗
k+1=∆xk,dyn+∆xk,vel+xk is a predicted position vector based

on the joint configuration qk , joint velocity q̇k (or cartesian velocity ẋk=J q̇k)
and the joint torque τd in the current time-step k, while the first term describes
the influence of the applied joint torques τ .

The convex polytope of reachable cartesian space Px can then be defined as
a set of all the possible cartesian positions xk+1 at the end of the horizon th,
achieved by any combination of joint torques τ within robot’s physical limita-
tions (2), given the robot’s current state q̇k, qk and τd .
1 There is a coupling between the velocity and torque limits of an actuator related
to its power. Yet, it is common practice to consider a subset of these limits such as
torque and velocity can be chosen independantly one from the other.
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Fig. 1. Three images on the left show the comparison of the size of the reachable
space polytope Px of a Franka Emika Panda3robot’s end-effector for 3 horizons (left
to right) th = 0.05, 0.15 and 0.25s, for the same configuration. Whereas the three
figures on the right show the constraining effect of the joint position limits on the
Px for a fixed horizon time (th=0.15s). Third image from the right shows the robot
in its initial position q = [0, 0, 0,−π/2, 0, 3π/5, 0], close to the center of the joint
ranges. In the second image form the right, the robot’s joints q1 and q3 at their limits,
q = [0,−1.59, 0,−2.9, 0, 3π/5, 0, 0]. On the last image, robot’s joints q0 and q2 are at
their limits q = [−2.72, 0,−2.72,−π/2, 0, 13π/5, 0, 0], preventing the robot to rotate
around the z axis in one direction.

Fig. 2. Three images on the left show the shifting effect on the reachable space polytope
Px produced by certain cartesian velocity at the beginning of the horizon, from left
to right: ẋk = [0, 0, 0], [0, 1, 0] and [0, 0,−1]m/s. Three images on the right show the
reducing effect on the polytope Px by three different carried object masses (left to right)
mo = 0, 2 and 5kg. Horizon used is th=0.15s and the robot is in initial configuration.

Px = {xk+1 ∈ Rm | xk+1 = JkM
−1
k

t2h
2
τ + x∗

k+1,

τ ∈ [τmin, τmax] ,

M−1
k th(τ − τd) + q̇k ∈ [q̇min, q̇max] ,

M−1
k

t2h
2
(τ − τd) + q̇kth + qk ∈ [qmin, qmax]}

(7)

Figures 1 and 2 showcase the influences of different horizon lengths th, robot
constraints and robot movement (q̇k, τd) on the shape of Px. Chapter 2.4 de-
scribes an approach to enumerate the reachable space polytope.

2.1 Influence of the carried object

If the robot is carrying a payload, an object with a mass mo and inertia io
attached to its end-effector, this object will have an influence on the robot’s dy-
namics, modifying the mass matrix M , coriolis matrix C and the gravity vector
τg [4]. The augmented dynamical model of the robot will have reduced acceler-
ation capabilities due to the added effort necessary for the object’s movements.
3 More information about the Panda robot at https://frankaemika.github.io/docs/

https://frankaemika.github.io/docs/
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Fig. 3. Resulting reachable space polytope Px for a Franka Emika Panda robot’s end-
effector when integrating the environmental constraints, horizon time used is th=0.15s.
Environment is defined as z ≥ 0.5m and y ≥ −0.2m.

The figure 2 shows the influence of different object masses mo, on the result-
ing reachable space polytope Px for the Franka Emika Panda robot.

2.2 Integration of the environment

If the robot’s environment can be defined as a set of convex inequalities

Aex ≤ be (8)

these constraints can be directly transformed to the constraints of the joint
torque τ using the equation (6)

Aexk+1 = AeJkM
−1
k

t2h
2
(τ − τd) +Aex

∗
k+1 ≤ be (9)

and then included in the Px calculation (7)

Px = {xk+1 ∈ Rm | xk+1 = JkM
−1
k

t2h
2
τ + x∗

k+1,

τ ∈ [τmin, τmax] ,

M−1
k th(τ − τd) + q̇k ∈ [q̇min, q̇max] ,

M−1
k

t2h
2
(τ − τd) + q̇kth + qk ∈ [qmin, qmax] ,

AeJkM
−1
k

t2h
2
(τ − τd) +Aex

∗
k+1 ≤ be }

(10)

Figure 3 showcases the influence of the environmental constraints on the
shape of the Px.

2.3 Integration of robot’s link geometry

If the robot link li is considered to be a straight line, to calculate the predicted
reachable space of a robot’s link li the polytope Px can be calculated at the start
Pxs and the end Pxe of the line li. Finally the reachable space of this idealised
robot link li can then be calculated as the convex-hull (CH) of the polytopes
Pxs and Pxe

Pxli = CH (Pxs, Pxe) (11)
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Fig. 4. First four images show the construction of the reachable space polytope of
the panda robot’s link 3, Pxl3. From left to right they show, robot’s link 3 as a line
segment (in red) with polytopes Pxs and Pxe, their convex-hull, an example of the
enveloping space L3 of the link 3 (in red), and the final polytope Pxl3 calculated as a
convex hull of the reachable space polytopes of each one of the 8 vertices (shown in
yellow) of L3. Last two images further show an example of 4 enveloping spaces Li for
each one of the robot’s links, and their reachable space polytopes Pxli. Robot is in its
initial configuration, and the horizon time used is 150ms.

If, instead of a straight line, a space captured by a robot’s link li can be
expressed as a convex set of constraints or a polytope

Li =
{
xl | Alxl ≤ bl

}
(12)

the reachable space polytope Pxli can be extended to account for this link ge-
ometry by first finding the vertices of the polytope L, followed by computing the
reachable space polytope Px for each one of the k vertices, and finally computing
their convex hull.

Pxl,i = CH (Px1, . . . ,Pxk) (13)

By evaluating the polytope Pxli for each robot’s link one can obtain an
efficient approximation of the envelope of the reachable space of the entire robot,
as shown on figure 4.

2.4 Enumerating reachable space polytope

The reachable space polytope Px belongs to the family of over-determined prob-
lems

Px = {x ∈ Rm | x = Pτ , Aτ ≤ b }, τ ∈ Rn, n ≥ m (14)

where the inequality constraint Aτ ≤ b encapsulates all the robot constraints (2)
as well as the environmental constraints (9), and the matrix JkM−1

k
t2h
2 becomes

the projection matrix P . Vector τ corresponds to the joint torque vector and
the vector x corresponds to the difference xk+1−x∗

k+1.
In order to fully define and simplify this formulation, the set of all the vertices

(V-representation) or all the half-spaces (H-representation) of this polytope has
to be found. Vertex representation of a polytope is a list of all of its vertices vi and
is commonly used for visualisation purposes V={v0,v1,v2, . . . }, while half-space
representation is defined as a list of inequalities Hx ≤ d, each corresponding to
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one of the polytope facets. This matrix inequality equation is more suitable for
applications involving different optimisation strategies.

The reachable space polytope (14) is a particular case of the projection of
a high-dimensional polytope onto a lower dimensional space. Therefore, the set
of constraints Aτ ≤ b form a H-representation of a polytope Pτ in the n-
dimensional joint torque space.

Pτ = {τ ∈ Rn | Aτ ≤ b } (15)

This polytope is then projected using the projection matrix P into the m-
dimensional cartesian space, usually much lower dimensional, forming the reach-
able space polytope Px.

Px = {x ∈ Rm | x = Pτ , τ ∈ Pτ } (16)

The most straight forward way of approaching the enumeration of this poly-
tope is to first enumerate the vertices of the polytope Pτ , project them to the
cartesian space using the projection matrix P , followed by a Convex-Hull algo-
rithm to extract the real vertices vi of the polytope Px from the projected points
and its half-space representation.

In order to avoid enumerating all the vertices of the high-dimensional joint
torque polytope Pτ , as the most complex operation of this polytope enumeration,
Iterative convex hull method [10] (ICHM) is used, allowing to directly enumerate
low-dimensional cartesian polytope Px. This iterative method is based on suc-
cessively applying Linear programming (LP) and Convex-Hull (CH) algorithms
and is able to find both vertex and half-space representation of this polytope at
the same time. ICHM algorithm is defined for a family of sets:

{ x ∈ Rm | Ax = By, Cy ≤ d }, y ∈ Rn, m ≤ n (17)

Therefore the usage of the ICHM algorithm for enumerating the reachable
space polytope is rather straight forward, by setting its matrix A to identity
A = Im×m, matrix B becomes the projection matrix P , the inequality constraint
Cy ≤ d then becomes the set of the constraints Aτ ≤ b.

3 Analysing the approximation accuracy

Defining metrics of interest for accuracy analysis is highly dependent of the
applications these methods will be used on. If the application requires an under-
approximation of the reachable set or an over-approximation, the metrics of
interest will not be the same. In this paper, the algorithms accuracy is anal-
ysed using three different quantitative metrics, each one providing an insight in
different characteristics and limitations of the method.

Additionally as this approximation method has a potential to be used for
real-time applications, execution time analysis is performed as well.

In the extent of the proposed experiments, the considered reachable space is
the reachable space of the robot’s end effector.
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Fig. 5. Images show the steps (left to right) of the nonlinear simulation procedure on a
simplified 2 link planar robot. First the polytope Px of the end-effector is determined.
For each vertex of the Px, joint torque τ generating the vertex is applied to the robot
simulation (figures 2 and 3). All the robot’s end-effector positions in all the simulation
time steps ∆t are saved for further analysis.

3.1 Metrics definition

To analyse the approximation accuracy of the reachable space polytope Px, a
simple discrete non-linear robot dynamics simulation, subject to the constraints
(2) is employed. Simulation is carried out by discretizing the equation (1) to
determine the instantaneous joint acceleration q̈k and followed by its numerical
integration to determine joint velocity q̇k+1 and position qk+1 in the step k+1.

q̈k =M−1(qk) (τ − C(qk, q̇k)q̇k + τg(qk))
q̇k+1 = q̈k∆t+ q̇k

qk+1 = q̈k
∆t2

2
+ q̇k∆t+ qk

(18)

Where ∆t is a fixed simulation sampling time. The cartesian position in each
step xk is then calculated by evaluating the robot’s forward kinematics

xk = fDK(qk). (19)

Each simulation roll-out considers a fixed joint torque vector τ and simulates
the robot dynamics through the horizon time th performing N = th/∆t steps.

Each vertex vi of reachable space polytope Px, calculated for a joint position
qk and a horizon th, is generated by a joint torque vector τi, belonging to a
subset of vertices of the joint torque polytope Pτ .

To evaluate the accuracy of the proposed method, the difference in reached
space produced by the constant liner model (polytope Px) and time varying non-
linear model of the robot is evaluated, for the same set of applied joint torques.
The applied joint torques chosen for the experiments are the joint torques τi
generating the vertices vi of the reachable space polytope Px calculated by the
linear model.

As shown on figure 5, for each of the nv vertices vi of the polytope Px the
simulation (18) is performed and all the cartesian positions xk of the robot in
each of the N = th/∆t sample times are retained for the further analysis.

X = {x0,0 . . . x0,N︸ ︷︷ ︸
τ0

, x1,0 . . . x1,N︸ ︷︷ ︸
τ1

, . . . , xnv,0 . . . xnv,N︸ ︷︷ ︸
τnv

}
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+= = =

Fig. 6. Depiction of the defined quantitative metrics for a simple 2 link planar robot.

First metric, m1, is defined as a ratio of number of the simulated cartesian
robot positions xk ∈ X inside the polytope Px with respect to the overall number
of simulated positions.

m1 =
|X ∩ Px|
|X |

=
|X ∩ Px|
N · nv

(20)

The metric m1 gives an insight on how well the polytope Px encapsulates the
real reachable space determined with simulations. This metric might be used to
asses the confidence in the polytope Px for safety applications, the closer this
metric is to 1, the less chance that the robot can exit the space bounded by Px.

The second metric, m2, is defined as the ratio of the volumes of the polytope
Px and the convex hull CH of the points xk ∈ X ∩ Px,

R1 = CH(X ∩ Px)

representing a subset of the points reached by the robot in the simulations found
inside of the polytope Px .

m2 =
V ol{R1}
V ol{Px}

(21)

The metric m2 gives an insight on how much volume of the polytope Px is
actually attainable by the robot, with respect to the simulations. This metric is
designed to asses the quality of the approximation, if the score on this metric is
low, this means that the large part of the Px is not actually reachable.

The third metric, m3, is defined as the ratio of the volumes of the polytope
Px and the convex hull CH of all the points xk ∈ X ,

R2 = CH(X )

reached by the robot in the simulations.

m3 =
V ol{Px}
V ol{R2}

(22)

The metric m3 gives insight about the ratio of the volumes of the polytope Px
and the simulated reachable space of the robot CH(X ). This metric is designed
to asses the quality of the volume of the Px as a metric. The further this metric
from 1 the less confidence one has in the volume of the Px.
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Fig. 7. Comparison of the end-effector reachable space approximation using the convex
polytope Px (blue) and the cube Cx (orange) for the Franka Emika Panda robot with
the horizon time th=200ms. They are both evaluated in robot’s initial position and the
figures show two different views.

3.2 Benchmark comparison

To benchmark the accuracy of convex polytope approach Px, it is compared with
the coarse approximation of the robot’s end-effector reachable space using fixed
cartesian velocity ẋ and acceleration ẍ limits specified by robot manufacturer.

ẍ ∈ [ ẍmin, ẍmax], ẋ ∈ [ ẋmin, ẋmax] (23)

The cartesian space limitations (23) assume that the robot’s acceleration ẍ
and velocity ẋ capacity is constant, which is a not true since the robot’s capacity
depends highly on robot’s joint configuration q and velocity q̇ [2][9]. However,
they are very convenient and widely used in many applications. A simple convex
space Cx (cube in 3d) of reachable end-effector positions given the cartesian space
limitations (23) can be calculated

Cx = { xk+1 ∈ Rm | xk+1 = ẍk
t2h
2

+ ẋkth + xk

ẍk ∈ [ ẍmin, ẍmax]

ẍkth ∈ [ ẋmin, ẋmax] }

(24)

Figure 7 shows the visual comparison of the two approaches: Px and Cx
calculated for one pose of the Franka Emika Panda robot.

4 Results
The proposed analysis of the reachable space polytope accuracy is illustrated
on the simulation of the collaborative robotic manipulator Franka Emika Panda
with 7 degrees of freedom. Robot modeling and kinematics as well as simulations
of robot dynamics are built using the python implementation of the robotics-
toolbox[3] package.

The evaluation of the reachable space polytope Px and Cx is carried out us-
ing the ICHM algorithm’s efficient python implementation within the pycapac-
ity[8] package. The ICHM’s approximation accuracy used for all the evaluations
is δ=1mm.

Eight different horizon lengths th are chosen for the experiments

th = [0.05s, 0.15s, 0.25s, 0.5s, 0.75s, 1.0s, 1.5s, 2.0s]
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Fig. 8. Execution time of the polytope Px enumeration using ICHM algorithm. Average
and standard deviation calculated over 1000 executions for each of the 8 horizon lengths.

and the simulation sample time has been set to ∆t=5ms.
The proposed method implementation as well as the code used for the ex-

periments is fully open-source and can be found in the gitlab repository4. The
gitlab repository additionally contains a Robot operating system (ROS) imple-
mentation of the proposed method for more interactive evaluation.

All the simulations are run on a computer with 1.90GHz Intel i7-8650U pro-
cessor and 32Gb of RAM memory.

4.1 Execution time

Figure 8 shows the polytope Px execution time averaged over 1000 random robot
configurations for each of the 8 horizon lengths. From the figure it can be seen
that the execution time is relatively consistent through all the horizon lengths,
with the average value of around 50ms. The constant execution time is expected
because the horizon length th does not have a big influence on the geometrical
complexity of the polytope (number of vertices and faces) but its scale, and the
scale itself does have a big influence the execution time.

Figure 9 shows the ICHM execution time for the 8 horizon lengths with dif-
ferent numbers of environmental constraints Aex ≤ be. All the environmental
constraints are generated randomly and all the results are averaged over 1000
random robot configurations for each horizon length th and all 4 different num-
bers of environmental constraints: 0 (no environment constraints), 10, 100, 500
and 1000. Results show that up to 10 added environmental constraints the ex-
ecution time of the method does not change significantly, having the average
execution time around 50ms. With 100 environmental constraints the average
execution time increases around 20% to around 70ms, for 500 the average exe-
cution is 100ms and with 1000 constraints the average execution time more than
doubles, to 150ms.

The execution time analysis of the ICHM algorithm has shown that the
average polytope Px enumeration takes between 50 and 150ms, which opens
many doors for potential real-time applications.

The average execution time of the nonlinear simulation for th=50ms and
∆t=5ms is around 60s, and it grows to about 240s for th=2s. The cube Cx
average execution time stays constant for all horizon lengths at around 2ms.
4 https://gitlab.inria.fr/auctus-team/people/antunskuric/reachable_space/

https://gitlab.inria.fr/auctus-team/people/antunskuric/reachable_space/
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Fig. 9. Average execution time and standard deviation calculated over 1000 executions
for each of the 8 horizon lengths, with different number of added environmental con-
straints, ranging from 0 to 1000.

4.2 Accuracy analysis

Figure 10 shows the evolution of the three metrics m1, m2 and m3 with respect
to the horizon length th for the Px and Cx, averaged over 100 random robot
configurations.

The first graph on the figure 10 shows the metric m1. It can be seen that
the ratio of simulated robot positions xk ∈ X inside the polytope Px decreases
with the increasing horizon length th, while it increases for the Cx. For larger
horizon lengths the robot is able to move far from the initial joint configuration
q at the beginning of the horizon, making the assumption of linearity of the
robot model, made for calculating Px, largely inaccurate. The approach Cx, on
the other hand, improves with the increase in horizon length, since the space
bounded by the cube Cx increases linearly with the horizon length th, at some
point it encapsulates the whole workspace of the robot. However, it can be seen
that even though the ratio m1 decreases, the polytope Px still contains the most
(≥60%) of the simulated robot’s reached positions xk ∈ X . Finally, it can also be
seen that the variance of the m1 increases considerably, lowering the confidence
of the polytope Px for longer horizons.

Evolution of the metric m2 is shown on the middle graph of the figure 10 .
It can be seen that the volume of all the reached robot positions inside polytope
Px and Cx decreases considerably with the increase of the horizon time th. For
the horizon times under th ≤ 0.25s the majority (≥50%) of the reachable space
polytope Px has been reached by the robot simulations. However for the longer
horizon times th ≥ 0.5s the reached volume ratio m2 drops under 20% of the
total volume of the Px. In the case of Cx, the majority (≥50%) of the volume of
the Cx is never reached by the robot for all tested horizon lengths th.

The right graph of the figure 10 shows the evolution of the metric m3. The
graph shows that the volume of the polytope Px and the cube Cx becomes several
times higher than the volume of the R2 with the increase in the horizon time th.
For the horizon time of th=2s the average volume of Px is 12 times larger than
the volume of R2 and the volume Cx is more than 50 times larger than R2. At
the same time the average reached volume R1 inside the Px and Cx consists of
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Fig. 10. Accuracy measures calculated for Px and Cx, averaged over 100 random poses
of the Franka Emika panda robot for each of 8 horizon lengths.

under 10% of their volume (metric m2), which potentially makes both polytope
Px and Cx impractical for many of applications.

However, for the shorter horizon times th ≤ 0.25s the ratiom3 is very close to
1 for Px, which means that the reachable space polytope’s Px volume corresponds
well to the actual reached volume of the robot R2.

Overall, this numerical analysis shows that the reachable space approxima-
tion based on the convex polytope Px works reasonably well for low horizon
times th ≤ 250ms, while for the longer horizon times th > 250ms the assumption
of the linearity of the system produces a large error in the reachable space esti-
mation, producing the polytope Px with volume several times higher than the
real reachable space of the robot (shown by the metric m3), most of which is not
reachable by the robot at all (showed by the metricm2). Finally, the results show
that the polytope Px, even though a coarse approximation, has better perfor-
mance across all the defined metrics then the Cx based on the constant cartesian
limits, at the same time having smaller average volume for the all the horizon
times. These results remind, once again, that robot’s cartesian capacity is not
constant and by modeling their evolution, even in a coarse manner, a substantial
improvement in the estimation accuracy can be reached.

5 Discussion

Approximating the reachable space of the robot using convex polytopes Px is
an efficient and relatively fast way of gaining information about the potential
robot’s position for the horizon of interest. Even though this approximation
approach is neither an under or an over approximation of the true reachable
space of the robot, as shown in the numerical analysis, for shorter horizon times
th ≤ 250ms this metric is reasonably precise. Due to its efficiency, easy and
intuitive integration of different environmental constraints, possibility to consider
the robot’s link geometry and the fact that its output has the form of a convex
set of inequality constraints (convex polytope Px), it has a potential to be a
useful tool for robot performance and safety analysis. However there are several
important limitations of this approach.
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5.1 Main limitations

First of all, the reachable space of a robot is highly non-convex and non-linear.
As shown in the numerical analysis section 4, approximating this space with
convex polytopes is relatively precise only for small horizon times th ≤ 250ms.

Secondly, robot dynamics is highly non-linear and time variant as well. When
calculating the reachable space polytope Px, as formulated in section 2, the robot
model is linearised in the robot’s joint configuration qk and velocity q̇k at the
beginning of the horizon and this linearised model is considered constant during
the horizon length. The consideration of constant robot model and its linearity,
is only valid for small robot displacements around the current robot state, which
is again a strong assumption and only valid for short horizon times.

Finally, the polytope formulation from the section 2, considers only con-
stant joint torques τ applied to the robot during the whole horizon length th.
The polytope Px calculates the joint torque vectors τ that will produce the
largest possible displacements in cartesian space given the robot and environ-
ment constraints. This calculation is based on the robot’s linearised model at
the beginning of the horizon, which in term, once again, limits the precision
of the approximation to the small displacements around the initial robot state,
preventing longer horizon lengths th, as confirmed in the analysis section 4.

5.2 Potential applications

One promising field of applications for the polytope based reachable space metric
is the human-robot interaction domain. The polytope is essentially a triangu-
lated mesh and can be easily visualised, which could be an easy and intuitive
way to give insight to the human operators about robot’s real-time capabilities.
It has a potential to be used for the haptic control applications, as human oper-
ators might not be always aware of how close the robot is to the limitation of its
capabilities or what is the possible space the robot can be in while teleoperating.
Furthermore, this metric could be potentially used to to increase human opera-
tors awareness about the robot’s state during the co-manipulation by visualising
the polytope Px in real-time and even potentially increase the interaction safety.

The numerical analysis has shown that for shorter horizon times th ≤ 250ms
the volume of the polytope Px is comparable to the volume of the simulated
reached space R2, as shown on the figure 10. The volume of the Px could po-
tentially be used as a performance metric for robotic workspace analysis and for
applications such as robot design.

Finally, as the polytope Px can be represented as a set of convex inequalities
Hx ≤ d, this metric could potentially be used as a set of constraints for robot
control. For example in case of the Model Predictive Control (MPC) where, in
many cases, robot’s dynamics is already considered linear and constant during
given horizon time, which corresponds well with the assumptions of the polytope
Px formulation.
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6 Conclusion

In this paper a convex polytope based robot’s reachable space approximation
metric is introduced. The metric predicts the robot’s reachable space for a given
time horizon based on the robot’s actuation capabilities and its kinematic con-
straints. The proposed metric can intuitively integrate the environmental con-
straints as well as the robot’s link geometry. With the execution time of around
50ms, for standard 7dof collaborative robot, it has a potential to be used for
real-time applications.

However, the metric relies on a linearised robot model, which limits its use
to shorter horizon times. The analysis has shown that the accuracy of the ap-
proximation decreases significantly for horizon times longer than 250ms.
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