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Abstract. Assembling DNA fragments based on their overlaps remains
the main assembly paradigm with long DNA fragments sequencing tech-
nologies, independently of the aim to resolve only one or several haplo-
types. Since an overlap can be seen as a succession relationship between
two oriented fragments, the directed graph structure has emerged as an
appropriate data structure for handling overlaps. However, this graph
paradigm does not appear to take benefit of the reverse symmetry of
the orientated fragments and their overlaps, which is a result of blind
DNA double-strand sequencing. Thus, the bi-directed graph paradigm
was introduced in 1995 towards reducing the graph size by handling the
reverse symmetry, and becomes since then the main graph paradigm
used in assembly/scaffolding methods. Nevertheless, the available graph
paradigms have never been contrasted before, and no implementations
have been described. Here we make a complete review on the existing
overlap graph paradigms. Furthermore, we present suitable data struc-
tures that are theoretically compared in terms of time and memory con-
sumption in the context of the design of some basic graph algorithms.
We also show that each one of the paradigms can be switched to another
by slightly modifying their data structures.

Keywords: Graph · Reverse symmetry · Overlap-Layout-Consensus

1 Introduction

Double-stranded DNA molecules still cannot be entirely sequenced. In fact, every
sequencing technology (sequencer) generates a tremendous amount of overlap-
ping genomic fragments. Each fragment, known as a read, is sequenced from one
of the two complementary strands. Yet, the sequencers do not provide the one
from which a read has been sequenced. Furthermore, only keeping the original
reads’ sequences can result in a loss of strand pieces during the assembly stage
that aims to reconstruct the longest true fragment of one strand. Thus, it may
be necessary to reverse-complement the sequence of some reads: this implies
considering the reads on the complementary strand and may allow assembling
longer strand pieces. However, as both strands are sequenced in blind, previ-
ous remark involves considering two orientations for each read. Arbitrarily, a
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read is defined being in forward orientation (denoted by subscribe f) when its
sequence is unchanged comparing to the one in the input data, while it is de-
fined being in reverse orientation (denoted by subscribe r) when its sequence is
reverse-complemented.

Assembly paradigms evolve according to the available data. One of the most
famous paradigms is Overlap-Layout-Consensus (OLC). It is well adapted for
long fragments and small dataset (order of thousand fragments), as in the case
of Sanger sequencing (input data for e.g. Celera [14], ARACHNE [2] and Min-
imus [18] assembly methods), and more recently such as Oxford Nanopore (ONT)
or Pacific Biosciences (PacBio) fragments (input data for e.g. FALCON [4],
Canu [10] and hifiasm [3]). OLC first computes pairwise alignment for all the
reads to find overlaps between them (sufix-prefix alignments). Both orientations
(forward/reverse) for each read are considered. Let R be the set of oriented reads
and let r ∈ R. Denote by r its reverse complement. If r overlaps a read q ∈ R,
then q overlaps r (i.e. each overlap has a reverse too). Finally, the assembly stage
aims to order the oriented reads based on their overlaps.

A graph structure is well suited to handle the overlap information. The lit-
erature outlines three overlap graph paradigms, reviewed in Section 2. For each
one, we propose in Section 3 one or several data structures particularly conve-
nient to manage the reverse symmetry. In Section 4, we analyse their memory
consumption and their impact on the design of some fundamental graph algo-
rithms, as well as the corresponding time consumption. Although our three data
structures belong to the same time and memory complexity class, we observe
particular cases where one of them outperforms the others.

2 Graph Paradigms

In the following we use the notations and definitions summarised in Table 1.

Table 1. List of symbols and their description.

Raw
Raw reads set
(reads with their original sequences)

Rev = {r | r ∈ Raw}
Reverse reads set
(reads with their sequence reverse-complemented)

R = Raw ∪Rev
The entire set of oriented reads
(forward and reverse reads)

O ⊂ R×R Overlaps set
(pairs of oriented reads)

G = (V,E)
Graph symbol
where V is the set of vertices and E the set of edges

N,N−, N+ Set of neighbours, predecessors and successors
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Table 2 outlines the notations we use and the main properties of each paradigm.
Figure 1 summarises overlaps visualisation according to each graph paradigm.

Table 2. Overview of graph paradigms.

Year Graph paradigm Graph type |V | |E|

1991 [9] Oriented fragments based (DG) directed 2× |Raw| |O|

1995 [13] Oriented walk based (BG) bi-directed |Raw| 1
2
× |O|

2005 [15] Tail-head fragments based (UG) undirected 2× |Raw| |Raw|+ 1
2
× |O|

DG BG UG

Fig. 1. Overlap cases visualisation. u and v denote the identifiers of two reads. Each
vertical dashed line separates two graph paradigms. Each colour is associated with an
overlap case (and its reverse). The blue colour corresponds to the overlap (uf , vf ) (and
its reverse (vr, ur)) — the green to the overlap (vf , uf ) (and (ur, vr)) — the orange to
the overlap (uf , vr) (and (vf , ur)) — the violet to the overlap (vr, uf ) (and (ur, vf )).
The first column represents the overlap cases for the DG paradigm (c.f. Section 2.1).
The BG paradigm is represented by the two columns in the middle. The first one gives
the bi-directed view while the second one gives the undirected graph view, where the
edge’s attributes correspond to or and rel boolean values (c.f. Section 2.2). The last
column depicts the overlaps in the UG paradigm: the plain edges are overlap-edges
while the dotted edges are read-edges (c.f. Section 2.3).
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2.1 Directed Graph (DG): Oriented Fragments Based

In this graph paradigm there are two vertices for each read, one for the forward
orientation, and one for the reverse orientation. Each overlap (r, q) in the overlaps
set O is associated with an oriented edge from r to q. Moreover, (r, q) ∈ O ⇐⇒
(q, r) ∈ O (and hence there exists an edge from q to r). As a consequence, this
paradigm is defined as an oriented fragments based one, because each vertex
represents a read for a fixed orientation. The first column in Figure 1 shows how
overlaps are visualised in this paradigm.

First mentioned in 1991 by Kececioglu [9], the directed graph structure raises
as the more natural one to handle the oriented reads and their overlaps. Later,
it was also used by Chin et al. [4], Kamath et al. [8], Andonov et al. [1], Shafin
et al. [17] and Cheng et al. [3] in their respective assembly methods.

2.2 Bi-directed Graph (BG): Oriented Walk Based

In order to avoid creating two vertices for each read (and thus creating two
edges for each overlap), the bi-directed graph structure for storing overlaps was
first employed by E. W. Myers in 1995 [13]. The key idea is to represent each
read with only one vertex and to keep the strict necessary overlap information
between two reads on the edge connecting two vertices. This structure was also
used by Sommer et al. [18], Hernandez et al. [7] and Salmela et al. [16].

In memory, the bi-directed graph is undirected. Let (u, v) ∈ E be an edge,
and without loss in generality suppose that u identifier is smaller than this one
of v. This edge has two attributes:

oruv =

{
0 if the orientations of u and v are the same in the overlap
1 otherwise

and

reluv =

{
0 if uf overlaps vf or uf overlaps vr

1 otherwise

This paradigm is defined as an oriented walk graph based. Indeed, given a vertex
enriched by an orientation value, it is necessary to verify for each of its oriented
neighbours if they are the successors or predecessors (determined by reluv). Also,
the reluv attribute depends on the vertex with the smaller identifier.

The second column of Figure 1 shows how each overlap case is visualised in
this graph, both for bi-directed and undirected views.

2.3 Undirected Graph (UG): Tail-Head Fragments Based

A new undirected graph structure was presented by E. W. Myers in 2005 [15]:
one read is represented here by its tail and its head. This representation was also
described in the Mäkinen et al.’s book [12] and in Li [11].
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Both the tail and the head are vertices, and there is one edge from the tail to
the head. Passing through the tail first and then the head corresponds to choose
the read in forward orientation, while traversing the head first and then the tail
corresponds to choose it in its reverse orientation. This new type of edges are
called read-edges, at the opposite of overlap-edges that correspond to overlaps.
A valid walk in this graph must alternate between read-edges and overlap-edges,
starting from and finishing by a read-edge.

The last column of Figure 1 shows overlaps visualisation in this graph.

3 Graph Implementations

For each graph paradigm in Section 2 we propose at least one implementation
in Sections 3.1 to 3.3.

In the sequel, let consider that all overlaps in O are kept, and that any of the
reads in Raw is involved in at least one overlap. Assume also that min

r∈Raw

rrid = 0

and max
r∈Raw

rrid = |Raw| − 1 hold, where rrid denotes the identifier of read r.
These assumptions permit to easily build an index set with read identifiers and
an index set for the overlaps in the interval J0, |O| − 1K.

The aim here is to find implementations that respect the requirements below:

1. Querying requirements
– given an oriented read, getting all oriented reads overlapping it
– given two oriented reads, answering true if and only if they overlap

2. Dynamic requirements
– adding a read/overlap
– deleting a read/overlap

Given all reads, all the overlaps can be represented in a squared sparse matrix
(of size R2). Sparse matrix compression by row or by column is known for effi-
ciently storing the matrix and enabling fast overlap existence querying. Finally,
they enable fast edges iteration, but does not satisfy efficiently requirements 2
and can not be immediately adapted for handling overlaps reverse symmetry.

Thus, we decide to implement the paradigms with adjacency list structures
as they appear to be better suited to dynamically adding vertices and edges,
even if they use a large amount of RAM due to the neighbour lists’ pointers.

3.1 Directed Graph (DG): Oriented Fragments Based

For each read r ∈ Raw, there are two vertices vf , vr ∈ V in the directed graph.
Remind that each read identifier rrid corresponds to a unique integer identifier.
Therefore, the index of vf equals to 2× rrid and this of vr equals to 2× rrid +1.

The first idea is to directly build the two adjacency lists: one for the predeces-
sors, another one for the successors. They contain the index of each predecessor,
respectively of each successor vertices — as in the standard directed graph im-
plementation. They also contain the edges’ indices.
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However, the above strategy does not take benefits from the reverse sym-
metry. The following proposals demonstrate that the needed memory can be
approximately divided by two.

Only Oriented Fragments’ Successors Directed Graph (DGS) This im-
plementation is defined as above, except the predecessor lists are omitted. Indeed,
the reverse symmetry allows retrieving the predecessors at a low algorithmic cost.
Let v ∈ V be a vertex. Then for each (v, u) ∈ E, u is in the successor list of v. By
reverse symmetry, (v, u) ∈ E ⇐⇒ (u, v) ∈ E: so the reverse of the successors
of the reverse vertex are the predecessors of the vertex.

Forward Fragments Directed Graph (DGF) DGF implementation requires
both the predecessor and the successor lists, but they are needed for the forward
reads only. In fact, the lists are not required for the reverse reads. Thus, it is
sufficient to build a vertices index in the range 0 to |Raw| − 1. For each vertex,
neighbour lists give the neighbours’ indices and their orientation (a boolean
value). They also provide edges’ indices, as for DGS.

Figure 2 reports how overlaps are represented. To save space, the edges’
indices are omitted.

Fig. 2. Forward fragments directed graph implementation. Each mathematical formula
provides the overlap case and its reverse symmetric under parenthesis. The predecessor
(left) and the successor (right) lists for the forward orientation are visualised below.
They contain the couples index-orientation of the predecessors/successors. Index of u
equals 0, index of v equals 1. Forward/reverse orientation is represented by 0/1.

The reverse symmetry allows retrieving the predecessors and the successors
of the reverse reads at a low algorithmic cost (c.f. Table 4). Let v ∈ V be a
vertex such that its orientation is reverse. Then for each (v, u) ∈ E, u is in
the successor list of v (which is in forward orientation). By reverse symmetry,
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(v, u) ∈ E ⇐⇒ (u, v) ∈ E: so the reverse of the successors of the reverse vertex
are the predecessors of the vertex. Retrieving the successors follows the same
logic: the reverse of the predecessors of the reverse vertex are the successors of
the vertex.

To conclude, DGS consumes one pointer less than DGF. Furthermore, the al-
gorithmic cost because of the memory reduction related to the reverse symmetry
is subtly different: for DGS an additional cost is necessary when the predecessors
have to be returned for an oriented vertex (forward or reverse) while for DGF it
is necessary when either the predecessors or the successors have to be returned
for the vertex with reverse orientation. In practice, DGS should be preferred as
there is no additional cost until the successors of oriented vertices have to be
returned.

3.2 Bi-directed Graph (BG): Oriented Walk Based

Undirected Bi-directed Graph (BGU) For each read there is one vertex
(that represents an unoriented read or a not-yet oriented read as it depends on
the walk, see Section 2.2). The two boolean edge’s attributes or and rel allow
to differentiate an overlap from its reverse, while they are associated to only one
edge.

Figure 3 reports how overlaps are represented. To save space, the edges’
indices are omitted.

Fig. 3. Bi-directed graph implementation. Each mathematical formula provides the
overlap case and its reverse symmetric under parenthesis. The neighbour lists for the
unoriented vertices are visualised below. Each tuple in the lists contains: first the
neighbour index (an integer), then the or and finally the rel edge attributes (booleans).
Index of u equals 0, index of v equals 1: so for each edge (u, v), its attribute reluv
indicates whether uf overlaps vf or uf overlaps vr.

The four combinations of edges’ attributes or and rel enable the representa-
tion of all the overlap cases and their reverse without redundancy. To verify the
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reverse symmetry, it is sufficient (and easier) to choose an orientation of u and
to calculate the overlap case with the edges’ attributes.

It is possible to take benefits from the undirected graph structure and reduce
by two the memory consumption of the edges indices. In fact, the index of the
edge e can be written eind = 2 × e′ind + r, where r ∈ {0; 1}. In the neighbour
lists, e′ind replaces eind. Therefore, the orientation of the smaller vertex index
(say u) is used to retrieve the original edge index during a walk in the graph. If
the considered overlap uses uf then eind = 2×e′ind, otherwise eind = 2×e′ind+1.

Bi-directed Graph to Directed Graph (From BGU to DGF) Each neigh-
bour list can be split into two parts (that requires to allocate fix memory size
before): the first part corresponds to the predecessors, while the second one to
the successors, and both are described only for the forward reads. Thus, or and
rel edges attributes disappear, and each tuple in the neighbour lists contains
first the index of the neighbour and its orientation as in DGF. Finally, the edges
indices must be calculated to retrieve the definition in DGF.

3.3 Undirected Graph (UG): Tail-Head Fragments Based

For each read r ∈ Raw, there are two vertices vt, vh ∈ V in the undirected
graph. Assume that the index of vh equals to 2× rrid and this one of vt equals
to 2× rrid + 1. The undirected graph may follow the standard implementation.

However, a valid walk in UG alternates between read-edges and overlap-edges
(see Figure 1 and Section 2.3). Thus, it is possible to break the undirected graph
paradigm by replacing the index of each vertices’ neighbour by its extremities
(ut 
 uh). Interestingly, the transformation of the neighbour lists results in DGS
implementation (ut is equivalent to ur, uh is equivalent to uf ).

4 Memory & Algorithmic Costs

Here we report and compare the memory and the algorithmic cost of imple-
mentations DGS, DGF (Section 3.1) and BGU (Section 3.2). The complexity
analysis and the complete algorithms can be found in our working paper [6].

Table 3 shows that BGU is better in terms of memory because it consumes
half as many pointers as DGS and DGF (the latters differ by one pointer).

In the sequel, ov = o−v + o+v , where o−v and o+v correspond to the number of
reads that overlap, respectively are overlapped by, v. Moreover, z denotes the
read with the largest index.

Iterating over the overlaps of an oriented read (i.e. iterating over the neigh-
bours of a vertex — enriched by an orientation for DGF and BGU) is the most
fundamental algorithm. According to Table 4, DGS and DGF are much better
than BGU for this task. The weakness of DGS comparing to DGF appears when
the predecessors are required. But DGS outperforms DGF for the successors.

Concerning the algorithms for structure dynamics, the cost of adding a vertex
in the graph is equivalent for all of them. In contrast, DGS is the best for adding
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Table 3. Memory consumption (in octets) of the implementations. P is the memory
size of a memory address.

DGS (2× |Raw|+ 1)× P + |O| ×
(⌈

1 + log2|Raw|
8

⌉
+

⌈
log2 |O|

8

⌉)
DGF 2× (|Raw|+ 1)× P + |O| ×

(⌈
1 + log2|Raw|

8

⌉
+

⌈
log2 |O|

8

⌉)
BGU (|Raw|+ 2)× P + |O| ×

(⌈
log2|Raw|

8

⌉
+

⌈
log2 |O| − 1

8

⌉)
+

⌈
|O|
8

⌉

Table 4. Algorithmic costs of iterating over the neighbours for DGS, DGF and BGU.

Iterate over the predecessors Iterate over the successors
Best Worst Average Best Worst Average

DGS 5× o−v + 2 o+v

DGF o−v + 1 4× o−v + 3 2.5× o−v + 2 o+v + 1 4× o+v + 3 2.5× o+v + 2

BGU 3× ov 6× ov 4.75× ov 3× ov 6× ov 4.75× ov

Table 5. Algorithmic costs of adding a vertex or an edge for DGS, DGF and BGU.

Add a vertex Add an edge
Best Worst Average Best Worst Average

DGS 5 8

DGF 5 6 10 8

BGU 3 9

Table 6. Average algorithmic costs of deleting an edge for DGS, DGF and BGU.

DGS 3×
(⌈

o+u
2

⌉
+

⌈
o−v
2

⌉)
+ 13− 1

o+u
− 1

o−v

DGF 3

2
×

(⌈
o−u
2

⌉
+

⌈
o+u
2

⌉
+

⌈
o−v
2

⌉
+

⌈
o+v
2

⌉)
+ 13− 2×

(
1

ou
+

1

ov

)
BGU 3×

(⌈ou
2

⌉
+

⌈ov
2

⌉)
+ 11− 1

ou
− 1

ov

an edge (see Table 5). Finally, DGS is better than DGF which is better than
BGU for deleting an edge (Table 6) while BGU is much better than DGF and
DGS for deleting a vertex (Table 7). BGU is the best for this task thanks to the
undirected graph structure.
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Table 7. Approximated average cost for deleting a vertex for DGS, DGF and BGU.

10× ov +
10×Raw − 5

2×Raw
× oz + 3×

 ∑
u∈N−

v

⌈
o+u
2

⌉
+

∑
w∈N+

v

⌈
o−w
2

⌉
+
6×Raw − 3

2×Raw
×

 ∑
x∈N−

z

⌈
o+x
2

⌉
+

∑
y∈N+

z

⌈
o−y
2

⌉
15

2
× ov +

6×Raw − 3

2×Raw
× oz +

3

2
×

∑
u∈N−

v ∪N+
v

(⌈
o−u
2

⌉
+

⌈
o+u
2

⌉)

+
6×Raw − 3

4×Raw
×

∑
x∈N−

z ∪N+
z

(⌈
o−x
2

⌉
+

⌈
o+x
2

⌉)

5× ov +
3×Raw − 3

Raw
× oz + 3×

∑
w∈Nv

⌈ow
2

⌉
+

3×Raw + 3

2×Raw
×

∑
y∈Nz

⌈oy
2

⌉

5 Conclusion & Discussion

The Overlap-Layout-Consensus paradigm to assemble the genomes is based on
pairwise comparisons of all the reads to find suffix-prefix alignments that are
denoted by overlaps. As these overlaps correspond to succession relationships
between the reads, a graph structure should be adapted to store them, by taking
benefits from the fact that a read is associated with its reverse. In this paper, our
will is to clarify and to formalise the graph structures that have been described
and suggested in the fragment assembly’s literature.

Three overlap graph paradigms have emerged. While the directed graph high-
lights visually the double strand sequencing, its weakness is that it requires two
vertices for each read [9]. The bi-directed graph has been introduced in 1970 [5]
but has been firstly employed to store overlaps by E. W. Myers [13]. The key
idea is to aggregate the two orientations of a read into only one vertex, and two
overlaps into only one edge. Finally, the undirected graph paradigm associates
one vertex for each of the two extremities of a read in order to simplify the graph
traversal [15]. The edges set is partitioned into two parts: the set of read-edges
(there is an edge between the two vertices associated to the extremities of a
read) and the set of overlap-edges.

Since just counting the number of vertices and the number of edges of the
paradigms’ visualisations is not sufficient, here we propose and compare several
implementations. DGS, DGF and BGU data structures are based on adjacency
lists, as they allow adding and deleting elements more efficiently than for com-
pressed sparse matrix.

Furthermore, we describe how the bi-directed graph paradigm can be trans-
formed to the directed paradigm by simple adaptations of BGU to DGF. We
also show that jumping the read-edges in the undirected graph is equivalent to
implement DGS.
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Finally, if memory is the major issue, then the BGU implementation should
be preferred. Otherwise, DGS is recommended for iterating over the neighbours,
for adding and deleting edges, while BGU is preferable for deleting vertices.
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