広島大学学術情報リポジトリ Hiroshima University Institutional Repository

Title	Carbon and oxygen isotopic paleoceanography of the Indian and South Atlantic Oceans: Paleoclimate and paleo-ocean circulation
Author(s)	SETO, Koji
Citation	Journal of science of the Hiroshima University. Series C, Earth and planetary sciences , 10 (3) : 393 - 485
Issue Date	1995-08-07
DOI	
Self DOI	10.15027/53150
URL	https://ir.lib.hiroshima-u.ac.jp/00053150
Right	
Relation	

Carbon and oxygen isotopic paleoceanography of the Indian and South Atlantic Oceans – Paleoclimate and paleo-ocean circulation –

By

Koji SETO

With 7 Tables, 69 Text-figures and 1 Appendix

(Received, May 31, 1995)

Abstract: Ocean circulation is intimately associated with continental arrangement and global climate. The purposes of this study are to reconstruct the water mass structure and the deep ocean circulation in the Indian and South Atlantic Oceans during the Cenozoic.

Oxygen and carbon isotopes were studied in Cenozoic sediments at six sites (Sites 752, 754, 756, 757, 758, and 762) in ODP (Ocean Drilling Program) Legs 121 and 122 in the northeastern Indian Ocean. These isotopic records are related to global events occurring in middle Miocene, the Eocene / Oligocene boundary, middle to late Eocene, and the Paleocene / Eocene boundary. To compile those records along with a number of published isotopic data from the Indian and South Atlantic Oceans, adjustments to isotopic ratios have been calculated for different foraminiferal species, and benthic and planktonic foraminiferal isotopic data converted into δ values of dissolved inorganic carbon (DIC) of marine water. The general trends of oxygen and carbon isotopic values show an increase to the south.

Averaged values in one million year intervals of oxygen and carbon isotopes were calculated for each ODP and DSDP (Deep Sea Drilling Project) site, and the time and spatial distributions of the oxygen and carbon isotopic values were examined from the estimated paleodepth. In the Paleocene ocean, the vertical distribution of isotopic ratios is uniform. However, notable negative shift in oxygen isotopic the remarkable in the Miocene are recognized at about 1500m paleodepth in the northeastern Indian Ocean. The source of the water masses are assumed to be as follows: AABW (Antarctic Bottom Water) or proto-AABW formed in the Southern Ocean (Atlantic sector) throughout the Cenozoic. In the Paleocene, another water mass may have formed at low latitudes including the Tethyan Sea, and this water may could have been warm and highly saline, judging from oxygen isotopic ratios. This water mass corresponds to WSDW (Warm Saline Deep Water), which have encounterd Proto-AABW at mid latitudes during the early Paleogene. This water mass rapidly reduced in size with the closing of the Tethyan Sea at the Paleocene / Eocene boundary, but still continued to 50 Ma in the Indian Ocean and to 40 Ma in the South Atlantic Ocean. AAIW (Antarctic Intermediate Water) developed from the Oligocene (30 Ma) in the Indian Ocean. Proto-NADW (Proto-North Atlantic Deep Water) distinctly developed from the late Pliocene (3 Ma).

Contents

- I. Introduction
- II. The isotopic record in ODP Legs 121 and 122
 - A. Samples
 - B. Methods
 - C. Results
- III. Stable isotopic paleoceanography in the South Atlantic and Indian Oceans
 - A. Compiled data
 - B. General trends of isotopic record in the northern Indian Ocean
 - C. Correlation of oxygen and carbon isotopes between the Indian Ocean and the South Atlantic Ocean
 - D. General trends in the isotopic record
 - E. Distribution of oxygen and carbon isotopic values

IV. Paleoceanographic reconstruction of the Indian and South Atlantic Oceans

A. Paleo-ocean circulation viewed from carbon and oxygen isotopic ratios

- B. Isotopic structure of the water column
- C. Source of deep water
- D. Reconstruction of paleocirculation
- VI. Concluding Remarks

I. Introduction

It is generally believed that ocean circulation is intimately associated with global climate and continental arrangement. In order to reconstruct of paleoclimate and paleoceanography, oxygen and carbon isotopic analyses have been measured in deep sea sediments, as those isotopes are can be used to estimate paleotemperature and tracer of ocean circulation. Urey (1947) first pointed out that the oxygen isotopic composition of fossils can be used to determination paleotemperature. and the first paleotemperature determinations were published from belemnite shells of the Peedee Formation (Urey et al., 1951). Epstein et al. (1951) empirically determined the relationship between the oxygen isotopic composition of mollusk-shells and growth temperature as a temperature scale. This scale was adjusted by Craig (1965) and Horibe and Oba (1969). Woodruff and -Savin (1989) showed that the distribution pattern of fossil for a miniferal δ^{13} C values during the Holocene is similar to the δ^{13} C pattern of dissolved inorganic carbon (DIC) in the modern ocean which is related to deep water formation (Kroopnick, 1985). Based on this evidence, they proposed the existence of Tethyan Indian Saline Water (TISW), which flowed from the Tethys into the northern Indian Ocean.

Cenozoic oxygen and carbon isotopic records at many DSDP (Deep Sea Drilling Project) and ODP (Ocean Drilling Program) sites have been published (Shackleton et al., 1984; Oberhansli et al., 1984; Poore and Matthews, 1984; Vincent et al., 1985; Oberhansli, 1986; Miller et al., 1989; Stott at al., 1990; Kennett and Stott, 1990; Stott and Kennett, 1990; Barrera and Huber, 1990; 1991; Katz and Miller, 1991; Woodruff et al., 1990; Boersma and Mikkelsen, 1990; Woodruff and Chamber, 1991; Vincent et al., 1991; Zachos et al., 1992a; 1992b; Rea et al., 1991).

A continuous record of post late Maastrichtian sediments were also recovered from various water depths in the Broken and Ninetyeast Ridge (Leg 121) and the Exmouth Plateau (Leg 122) in the northeastern Indian Ocean. In this area, the isotopic studied using foraminiferal tests have been made by Vincent et al. (1985), Oberhansli (1986), Rea et al. (1991), Seto et al. (1991), and Nomura et al. (1992).

Fig. 1. Location of DSDP and ODP sites examined in this study.

Fig. 2. Bathymetric map and single-channel seismic-reflection profile (RC2708 line 20) across Broken Ridge showing locations of ODP Leg 121 sites at Broken Ridge.

However, these studies mainly focused on the Neogene, and few Paleogene isotope data have been published. Therefore, In this study, oxygen and carbon isotope changes after the late Maastrichtian at six sites (Sites 752, 754, 756, 757, 758, and 762) within Legs 121 and 122 have been examined. These records record global events such as the sharp increase in δ^{18} O values near the middle Miocene and the Eocene / Oligocene boundary, the increase of δ^{18} O values in the Eocene (Miller et al., 1987), the chron-6 shift and the chron-16 shift of δ^{13} C values (Vincent et al., 1980; 1985), and the drastic change of δ^{13} C values across the Paleocene / Eocene boundary. These events resulted from climate change and/or changes in ocean circulation.

The purposes of this study are to reconstruct the water-mass structure and the ocean circulation of the deep sea during the Cenozoic in the Indian and South Atlantic Oceans, including the Southern Ocean which should be the main source region of deep water during the Cenozoic.

II. The isotopic record in ODP Legs 121 and 122

A. Samples

Sediment samples for isotope analysis were obtained from ODP Sites 752 and 754 (Broken Ridge), Sites 756, 757, and 758 (Ninetyeast Ridge), and Site 762 (Exmouth Plateau), in the northeast Indian Ocean (Fig. 1). Initial description of these sites have been made by Peirce, Weissel, et al. (1989) and Haq, B. U., von Rad, U., et al. (1990).

Site 752 (30° 53.475' S, 93°34.652' E) is located near the northern edge of Broken Ridge with a present water depth of 1086 m (Fig 2). A 436-m-long section of sediments from the Pleistocene through to the upper Maastrichtian was recovered. Hole 752A was cored with an advanced hydraulic piston corer (APC) and an extended core barrel (XCB), until refusal at 308 m below seafloor (mbsf). Average core recovery of all core was 70.6%, but recovery for Cores 121-752-1H to 121-752A-11H and Cores 121-752A-26X to 121-752A-33X were 95.8% and 82.2%, respectively. Hole 752B was cored using a rotary core barrel (RCB) to a total depth of 436 mbsf, with an average recovery of 71% over the cored Neogene and late Oligocene sediments were interval. composed of foraminiferal ooze and nannofossil foraminiferal or foraminiferal - nannofossil ooze. The Paleogene and late Maastrichtian sediments are light green or gray nannofossil calcareous chalk with fine laminations and bioturbation (Fig. 3). The lithology above the Cretaceous / Tertiary boundary at 358.75 mbsf is dark green volcanic ash

395

Fig. 3. Lithostratigraphy and Sample horizons at Site 752. See legend of Fig. 4.

layers (Rea et al., 1990). A middle Eocene angular unconformity is marked by coarse-grained sediments with molluscan shell fragments (Peirce, Weissel, et al., 1989: Rea et al., 1990) and foraminifer including small numbers of inner neritic species such as *Amphistegina* (Peirce, Weissel, et al., 1989). An unconformity within the nannofossil foraminiferal or foraminiferal - nannofossil ooze was recognized during the late Eocene to late Oligocene. Sediment samples examined in this study include Samples 121-752A-

Fig. 4. Lithostratigraphy and Sample horizons at Site 754.

13X-1 through 121-752A-33X-3 (113.6-301.97; 63 samples) from the early Eocene to middle Paleocene in Hole 752A, Samples 121-752A-5R-3 through 121-752A-19R-3 (300.5-435.09 mbsf; 38 samples) from the early Paleocene to late Maastrichtian sediments (including the Cretaceous / Tertiary boundary) in Hole 752C. The location of these samples is shown in Fig 3.

Site 754 (30°56.439'S, 93°33.991' E) is located on the central part of Broken Ridge at a present water depth of 1075m, which is the shallowest among the sites of this study (Fig. 2). Hole 754A was cored using the APC, XCB, and Navidrill (NCB) systems to a depth of 172 mbsf. Although average core recovery was 75.5%, Cores 121-754A-1H through 121-754A-13X were almost completely recovered. Pleistocene through late Oligocene and late Eocene sediments consist of white nannofossil - foraminiferal or foraminiferal nannofossil ooze and white - yellowish brown nannofossil ooze, which are unconformably underlain by early Maastrichtian light gray to greenish gray calcareous chalk with planar and cross-bedded laminae (Fig. 4). An angular unconformity caused by uplift during the middle Eocene was recorded (Fig. 2). A late Eocene to late Oligocene unconformity was recognized in the nannofossil-foraminiferal or foraminiferal - nannofossil ooze. At Site 754, sediment samples used in this study were Samples 121-754A-1H-1

Fig. 5. Bathymetric map and seismic-reflection profile across Sites 756, 757, and 758 at Ninetyeast Ridge.

through 121-754A-13X-3 (0.7-116 mbsf; 29 samples) spanning the Neogene to Late Oligocene (Fig. 4).

Site 756 (27°21.330'S, 87°35.805' E) is located near the crest of southern end of Ninetyeast Ridge at a present water depth of 1518m (Fig. 5). Pleistocene through late Eocene sediments (228-m-thick) were recovered at this site 756. Hole 756B was cored with the APC to 104 mbsf. Hole 756C was washed to 101 mbsf with the XCB system to 150 mbsf (80.7% recovery). Pleistocene to late Eocene sediments consist of nannofossil ooze with foraminifer overlying basaltic basement. At Site 756, 33 sediment samples were analyzed comprising Samples 121-756B-1H-1 through 121-756B-11H-1 (0.7-101.3 mbsf) from the Neogene and Oligocene at Hole 756B, and Sample 121-756C-4X-1 through 121-756C-7X-5 from the early Oligocene and late Eocene at Hole 756C (Fig. 6).

Site 757 (27°21.330'S, 87°35.805' E) is near the crest of central part of Ninetyeast Ridge at a present water depth of 1652m (Fig. 5). Hole 757B was drilled to a depth of 375 m by the APC and XCB systems and recovered a section ranging from Pleistocene to late Paleocene, including the basement, with an average recovery, of 72.6%. Pleistocene through middle Eocene sediments consist of mainly nannofossil ooze, and early Eocene calcareous ooze and chalk overlying pre-Eocene volcanic ash and basement (Fig. 7). At Site 757, 55 Pleistocene to late Paleocene sediment samples were analyzed comprising Samples 121-757B-1H-2 through 121-757B-24X-4 (2.03-216.78 mbsf), (Fig. 7).

Fig. 6. Lithostratigraphy and Sample horizons at Site 756. See legend of Fig. 4.

Fig. 7. Lithostratigraphy and Sample horizons at Site 757. See legend of Fig. 4.

Site 758 (5°23.049'S, 90°21.673' E) is located on the southeast side of Ninetyeast Ridge at a present water depth of 2922 m (Fig. 5), which is the deepest among Leg 121 sites. Hole 758A was cored with the APC and XCB systems to refusal at 422 mbsf, and with the RCB to a total depth of 677 mbsf. Average core recovery is 67.1%, but Cores 121-758A-1H through 121-758A-13X were completely recovered. Holocene to middle Miocene sediments are composed of nannofossil ooze with foraminifer, and the upper sediment units include terrigenous clay. Middle Miocene to Campanian sediments are mainly nannofossil and calcareous chalk, and occur across the unconformity that spans nearly the entire Eocene (Fig. 8). At Site 758, 58 sediment samples were analyzed (Samples 121-758A-1H-1 through 121-758A-31X-3, 0.75-292.65 mbsf) from the Pleistocene to late Eocene and Paleocene (Fig. 8).

Site 762 (19°53.23'S, 112°15.24' E) is located on the western part of the central Exmouth Plateau at a present water depth of 1371 m (Fig. 9). Hole 762C was drilled to a total depth of 940m by the XCB system, and recovered sediments from the Berriasian to Pleistocene (average recovery of 69.4%). The upper 182 m of foraminiferal-nannofossil and nannofossil ooze of late Oligocene and Neogene age is

Fig. 8. Lithostratigraphy and Sample horizons at Site 758. See legend of Fig. 4.

underlain by nannofossil ooze and chalk of early Santonian to late Oligocene age (Fig. 10). At Site 762, 31 sediment samples were analyzed (Samples 122-762C-23X-1 through 122-762C-35X-1, 370.19-479.18 mbsf) from the early Eocene and late Paleocene (Fig. 10).

B. Methods

The sediment samples were processed by two methods. Loose sediments were washed with 63 μ m sieve, whereas slightly consolidated sediments were treated with <3% hydrogen peroxide solution, and then washed on a 63 μ m sieve (Nomura, 1991a; 1991b).

For stable isotope analysis, the benthic genus *Cibicidoides* has been measured in many oceanographic studies (Miller et al., 1989; Woodruff et al., 1990; Hodell et al., 1991; Barrera and Huber, 1991, amongst others). δ^{13} C values of *Cibicidoides* are closely correlated with those of dissolved HCO3⁻ in sea water at the sediment-water interface (Duplessy et al., 1984; Shackleton et al., 1984; Berger and Vincent, 1986; Savin and Woodruff, 1990). Because of microhabitat effects, infaunal taxa such as a *Oridorsalis* and

Fig. 9. Bathymetric map and seismic-reflection profile showing locations of ODP Leg 122 sites at Exmouth Plateau.

Fig. 10. Lithostratigraphy and Sample horizons at Site 762. See legend of Fig. 4.

Uvigerina are less well correlated with $\delta^{13}C$ values of dissolved HCO3⁻ than epifaunal taxa such as a Cibicidoides (Belanger et al., 1981: Ganssen and Sarthein, 1983: Zahn et al., 1986; Savin and Woodruff, 1990; Woodruff and Savin, The species of Cibicidoides, however, are not 1989) common over a long stratigraphic range. For isotopic measurements, several species of the genus Cibicidoides were have been analyzed (e.g., Miller et al., 1989) or various species (e.g., Woodruff et al., 1990) at one examination. For example, the interspecific difference between Cibicidoides kullenbergi and C. lamontdohertyi is -0.22±0.12‰ according to Woodruff et al. (1990). Therefore monospecies such as Oridorsalis umbonatus (which show consistent occurrence over a long range) are more useful for an isotopic study than the genus Cibicidoides. In this study, benthic foraminifer Oridorsalis umbonatus (Pleistocene to middle Eocene), Anomalinoides danicus (middle Eocene to middle Paleocene), Nuttallides truempyi (early Eocene to late Paleocene), and Stensioina beccariiformis (Paleocene to Maastrichtian) were mainly selected for stable isotopic analysis. They have been used in many other isotopic study by Vincent et al. (1985), Kennett and Stott (1990), Katz and Miller (1991), and others. To compare the isotopic values of these epifaunal species, Cibicidoides wuellerstorfi, C. mundulus, and C. velascoensis were measured. Groidinoides soldanii was also measured to correlate with data of Rea et al. (1991). Planktonic foraminifera Subbotina spp. (*S*. triangularis, S. triloculinoides and/or S. linaperta) were mainly used for stable isotope analysis from the Paleocene to Eocene. Globorotalia pseudobulloides and Rugoglobigerna pennyi were used for the Cretaceous / Tertiary boundary.

Benthic foraminifera for analysis were >380 μ m in this study, and three isotopic measurements were made on a single specimen in each sample. When there were few specimens >380 μ m in size, approximately 5-10 specimens in the 150-380 µm size fraction were analyzed. The differences between the averaged values of a single specimen per sample and values of 5-10 specimens were -0.041±0.182 for 818O and -0.019±0.129 for δ^{13} C (N=27) in Stensioina beccariiformis, -0.115±0.194 for $\delta^{18}\mathrm{O}$ and 0.014±0.143 (N=22) in Nuttallides truempyi. Approximately 5 specimens (180-350 µm size fraction) of the planktonic foraminifera Subbotina spp. and approximately 8 specimens (127-228 µm size fraction) of Globorotalia pseudobulloides and Rugoglobigerna pennyi were used for isotopic analysis. Other planktonic foraminifera were used according to various size fractions (Appendix A).

Specimens were put in a stainless-steel thimble and immersed in methyl alcohol. After the tests were disaggregated with a thin needle. They were ultrasonically cleaned. Stable isotope analyses were made using a Finnigan-MAT 250 mass spectrometer modified for ultra-small sample analysis, at the Shizuoka University. Oxygen and carbon isotope measurements were performed using the procedure of Wada et al. (1984; 1991). Carbonate specimens were reacted saturated phosphoric acid, mixed solution of in pyrophosphoric acid and few metaphosphoric acid (Wada et al., 1982), at 60.00°C. After the resulting CO₂ gas was purified in a glass-line, it was analyzed. The value thus obtained was converted into a value against a PDB standard by using NBS 20. The converted values are -4.18‰ for δ^{18} O and -1.07% for δ^{13} C, which is Craig's value of NBS 20 (in Blattner and Hulston, 1978). The precision for the isotope analysis is 0.02% for δ^{13} C and 0.05% for δ^{18} O. Minimum volume of CO₂ gas for isotopic analysis is 2µl.

C. Results

Results of isotopic analysis of benthic and planktonic foraminifera from Sites 752, 754, 756, 757, 758, and 762 are presented in Appendix A.

1. Site 752

At Site 752, oxygen and carbon isotopes were analyzed for five species; Oridorsalis umbonatus, Anomalinoides danicus, Nuttallides truempyi, Stensioina beccariiformis, and Cibicidoides velascoensis, and five planktonic foraminiferal species; Acarinina primitiva, Morozovella marginodentata, Subbotina spp., Globorotalia pseudobulloides, and Rugoglobigerina penny. However, analysis of O. umbonatus could only be made in Sample 121-752A-21X-1, 70-75cm (191.10 mbsf) from the late Paleocene, and values -0.221‰ (oxygen isotope) and 1.613‰ (carbon isotope).

Anomalinoides danicus

Isotopes were analyzed for Samples 121-752A-13X-1,70-75cm to 121-752A-32X-5,70-75cm (113.60-295.40 mbsf) from the late Paleocene to early Eocene. Rare occurrences of *A. danicus* from Samples 121-752A-23X-1, 54-56cm to 121-752A-27X-3, 70-75cm (210.34-252.10 mbsf) from the upper Paleocene provide a few isotope data in this section. The isotopic records of *A. danicus* are plotted as a function of depth (mbsf) in Fig. 11.

Oxygen isotopes: Averaged δ^{18} O values of A. danicus between 295.40 and 252.1 mbsf gradually increase by 0.64‰, from -1.011 to -0.390‰. Between 239.77 and 192.60 mbsf in the upper Paleocene, δ^{18} O values are constant at about -0.6‰. Near the Paleocene/Eocene boundary, two oxygen isotopic ratios of 191.1 mbsf and 181.4 mbsf exhibit relatively high values of -0.389 and -0.189‰, respectively. δ^{18} O values from 174.85 to 113.60 mbsf in the lower Eocene show wide fluctuations, but gradually decrease by about 0.4‰ from -0.6 to -1.0‰. During this period, the difference between the maximum (-0.561‰) and minimum (-1.420‰) values of δ^{18} O reaches 0.86‰. δ^{18} O values at 152.40 mbsf and 123.30 mbsf are remarkably low (-1.420 and -1.371‰, respectively).

Carbon isotopes: Averaged δ^{13} C values between 295.40 and 200.8 mbsf in the Paleocene gradually increase by 0.85‰, from 1.433 to 2.315‰. The δ^{13} C value at 200.8 mbsf is highest among the values of *A. danicus* at Site 752. δ^{13} C values at 289.40 and 252.10 mbsf are distinctively low. δ^{13} C values decrease by about 1.9‰ in the section between 200.80 and 155.40 mbsf, across the Paleocene / Eocene boundary. In the lower part of this section, δ^{13} C values dramatically decrease until a level slightly below the Paleocene / Eocene boundary. From 155.40 to 113.60 mbsf in the lower Eocene, δ^{13} C values are constant (about 0.2‰), with slight fluctuations value (max. 0.395 and min. -0.746‰). The pattern of fluctuation in δ^{13} C is similar to that of the oxygen isotopic record. δ^{13} C values at 152.40 mbsf and 123.30 mbsf are extremely low (-0.746 and -0.648‰, respectively), similar to δ^{18} O values.

Nuttallides truempyi

Two to five individuals were examined, because a single individual is too small $(153-380\mu m \text{ diameter})$ for isotopic analysis. However, measurements using a single individual were possible for the interval from 200.80 to 203.80 mbsf. However the difference in values between the measured individuals is small, and thus the results of both methods (using an individual and a few individuals) are almost the same. At this site, isotopic records were obtained from Samples 121-752A-13X-1, 70-75cm to 121-752A-26X-1, 97-100cm (113.60-239.77 mbsf) covering the upper Paleocene and lower Eocene. The isotopic records of *N. truempyi* are shown in Fig. 12.

Oxygen isotopes. N. truempyi δ^{18} O values decrease

Fig. 11. Oxygen and carbon isotope records of benthic foraminifer *Anomalinoides danicus* at Site 752.

Site752

Fig. 12. Oxygen and carbon isotope records of benthic foraminifer *Nuttallides truempyi* at Site 752.

gradually by 0.2‰ from 239.77 to 181.40 mbsf in the upper Paleocene, and decrease more rapidly by 0.6‰ (-0.506 to -1.094‰) from 181.4 to 113.60 mbsf. δ^{18} O values of 174.85 mbsf (below the Paleocene / Eocene boundary) and 118.02 mbsf (above the P/E boundary) show remarkably little deviating from the general decreasing trend. The latter, in particular, records the lowest values (-1.971 ‰) among the *N. truempyi*data.

Carbon isotopes: δ^{13} C values increase from 239.77 to 210.34 mbsf in the upper Paleocene, peaking at 210.34 mbsf (1.873‰). From 210.34 to 113.60 mbsf across the Paleocene / Eocene boundary, δ^{13} C values decrease by about 2.0‰ from 1.873 to -0.149‰. δ^{13} C values decrease rapidly below the Paleocene / Eocene boundary (200.80 to 174.85 mbsf). δ^{13} C values at 174.85 mbsf are remarkably low (-0.143‰), and related to the "benthic extinction event".

Stensioina beccariiformis

Isotope analyses were performed for material from Samples 121-752A-16X-4, 59-65cm to 121-752A-33X-3,

Stensioina beccariiformis

Fig. 13. Oxygen and carbon isotope records of benthic foraminifer *Stensioina beccariiformis* at Site 752.

57-60cm (147.09-301.97 mbsf) and from Samples 121-752B-5R-3, 50-53cm to 121-752B-19R-3, 49-52cm (300.50-435.09 mbsf) from the upper Maastrichtian to lower Eocene. The isotopes of S. beccariiformis below 335.82 mbsf were analyzed using five to ten individuals, or a single individual. No occurrence of S. beccariiformis slightly above Sample 121-752A-20X-1, 70-75cm (181.40 mbsf) before the Paleocene / Eocene boundary indicates that this species became extinct by the late Paleocene Benthic Event (e.g., Nomura, 1991a). However, reworked S. beccariiformis was found in Sample 121-752A-16X-4, 59-65cm (147.09 mbsf) above the event. The oxygen and carbon isotopic values of this sample are similar to those of 181.40 mbsf located before the "extinction event", and are high in comparison with those of A. danicus from the same sample. Therefore, S. beccariiformis at 174.85 mbsf supports the intercalation of reworked sediment. The isotopic records of S. beccariiformis are shown in Fig. 13.

Oxygen isotopes: Fluctuations in δ^{18} O with a general decreasing trend of 0.3%, from -0.8 to -1.1%, is shown

from 435.09 to 326.85 mbsf (late Maastrichtian to early Paleocene). Above the Cretaceous / Tertiary boundary, δ^{18} O values show the largest amplitude from a maximum of -0.746‰ at 358.18 mbsf, to a minimum of -1.969‰ at 351.60 mbsf. From 326.85 to 252.10 mbsf in the Paleocene section, δ^{18} O values increase from -1.120 to -0.244‰. From a maximum value of 258.80 mbsf, δ^{18} O values gradually decrease to -0.699‰ at 181.40 mbsf, located below the Paleocene / Eocene boundary near the extinction event.

Carbon isotopes: Four δ^{13} C values between 435.09 and 413.63 mbsf in the upper Maastrichtian are constant at ~0.2‰, showing the lowest δ^{13} C values at Site 752. δ^{13} C values rapidly increase by 0.6-0.8% up to 400.42 mbsf in the upper Maastrichtian. The section across the Cretaceous / Tertiary boundary (400.42 to 345.6 mbsf) shows a slight increase with a small oscillation of carbon isotopic records. However, the values just above the Cretaceous / Tertiary boundary show a large variation from 1.486% (358.18 mbsf) to 0.475% (353.10 mbsf). Averaged δ^{13} C values tend to decrease by 0.75% from 345.6 to 307.04 mbsf in the lower Paleocene. In this section, averaged $\delta^{13}C$ values increase from 335.82 mbsf to 316.92 mbsf, and rapidly decrease to 307.04 mbsf (0.392‰), which is the lowest value among the Paleocene $\delta^{13}C$ values. In the late early and late Paleocene, averaged δ^{13} C values tend to increase by about 1.3‰, up to a peak value of 1.689% at 210.34 mbsf. However, averaged $\delta^{13}C$ values decrease between 272.92 and 247.12 mbsf in the late Paleocene. A rapid decrease of 813C value is shown from 210.34 to 181.40 mbsf, where S. beccariiformis became extinct below the Paleocene / Eocene boundary.

Cibicidoides velascoensis

Isotopic records were obtained from Samples 121-752A-20X-1, 70-75cm to 121-752A-33X-3, 57-60cm (181.40-301.99 mbsf) and from Samples 121-752B-5R-3, 50-53cm to 121-752B-19R-3, 49-52cm (300.50-435.09 mbsf) from the lower Maastrichtian and Paleocene. No occurrence of *C. velascoensis* above Sample 121-752A-20X-1, 70-75cm (181.40 mbsf) before the Paleocene / Eocene boundary may result from the late Paleocene Benthic Event. The rare occurrence of *C. velascoensis* through Samples 121-752A-25X-3, 79-84cm to 121-752A-30X-1, 73-76cm (232.89-278.13 mbsf) in the Paleocene provides some isotope data in this section. The isotopic record of *C. velascoensis* is shown in Fig. 14.

Oxygen isotopes: δ^{18} O values repeatedly fluctuate from 435.09 to 310.59 mbsf in the upper Maastrichtian and lower Paleocene. In this section, δ^{18} O values increase by ~ 0.2‰ from 435.09 to 358.18 mbsf, shift down about 0.4‰ around 360 mbsf immediately above the Cretaceous / Tertiary boundary, then show a general increasing trend of ~0.1‰ up to 310.59 mbsf. From 310.59 to 284.65 mbsf in the late early Paleocene, δ^{18} O values rapidly increase by ~ 0.7‰ from -1.044 to -0.345‰. In the late Paleocene, δ^{18} O values are relatively constant (~ -0.4‰).

Carbon isotopes: δ^{13} C values slightly decrease from 435.09 to 413.63 mbsf in the upper Maastrichtian, then show the lowest value among Site 752. From 413.63 to 400.32 mbsf in upper Maastrichtian, δ^{13} C values increase from 0.531 to 1.289‰. δ^{13} C values gradually decrease up to 367.50 mbsf.

In the section from 367.50 to 347.60 mbsf just across the Cretaceous / Tertiary boundary, δ^{13} C values show a large fluctuation with a maximum of 1.719‰ (358.44 mbsf) and a minimum of 0.880‰ (353.10 mbsf). In the interval from 347.60 to 307.04 mbsf, δ^{13} C values increase by 0.3‰ between 326.85 and 322.86 mbsf; however the values decrease by 0.45‰ between 316.92 and 310.59 mbsf. δ^{13} C value at 307.04 mbsf is the lowest among the early Paleocene. In the late early and late Paleocene, δ^{13} C values tend to increase by 1.5‰ up to a peak value of 2.375‰ at 210.34 mbsf. In this section, δ^{13} C values of 245.77 mbsf are relatively low. In the latest late Paleocene, δ^{13} C values decrease rapidly by 0.9‰ from 210.34 to 181.40 mbsf and then *C. velascoensis* disappears in the section.

Subbotina spp.

Isotopic analysis is analyzed for Samples 121-752A-17X-3, 70-75cm to 121-752A-33X-3, 57-60cm (155.40-

Fig. 14. Oxygen and carbon isotope records of benthic foraminifer *Cibicidoides velascoensis* at Site 752.

403

301.97 mbsf) were made, from the lower and upper Paleocene. The isotopic records of *Subbotina* spp. are shown in Fig 15..

Oxygen isotopes: δ^{18} O values increase by about 0.6‰ from 301.97 to 258.80 mbsf. In this section, δ^{18} O values show a distinct decrease just above lower / upper Paleocene boundary with a minimum value of -1.870‰ at 274.40 mbsf. From 258.8 to 155.40 mbsf (upper Paleocene and lowermost early Eocene), δ^{18} O values fluctuate although generally decrease. δ^{18} O values increase from -1.873 to -1.324‰ in the section between 174.85 and 163.75 mbsf just across the Paleocene / Eocene boundary.

Carbon isotopes: δ^{13} C values from 301.97 to 220.20 mbsf in the lower Paleocene increase by about 1.3% (1.640 to 2.917%), then decrease by 0.55% between 268.40 and 249.10 mbsf in the upper Paleocene section. From 220.20 to 155.40 mbsf (upper Paleocene and lowermost Eocene), δ^{13} C values decrease by about 2.2‰. The dramatic decrease in this section occurs slightly below the Paleocene / Eocene boundary.

Other planktonic foraminifera

Less common planktonic foraminiferal species, Morozovella marginodentata, primitiva, Acarinina Globorotalia pseudobulloides, and Rugoglobigerina penny, were analyzed for Samples 121-752A-13X-1, 70-75cm to 121-752A-17X-3, 70-75cm (113.60-155.40 mbsf, lower Eocene), Samples 121-752A-15X-1, 70-75cm to 121-752A-20X-3, 70-75cm (133.00-181.40 mbsf, lower Eocene to the uppermost Paleocene), Samples 121-752B-10R-2, 100-102cm to 121-752B-10R-7, 41-43cm (347.60-354.51 mbsf, above the Cretaceous / Tertiary boundary), and Samples 121-752B-11R-1, 112-114cm to 121-752B-12R-5, 54-57cm (358.92-370.94 mbsf, below the Cretaceous / Tertiary boundary), respectively. Two to eight individuals analyzed at

Fig. 15. Oxygen and carbon isotope records of planktonic foraminifer *Subbotina* spp. at Site 752.

Site752

Fig. 16. Oxygen and carbon isotope records of other planktonic foraminifers at Site 752.

Koji SETO

Fig. 17. Summary of oxygen and carbon isotope records at Site 752.

Site 752. *Globorotalia pseudobulloides* and *R. penny* do not overlap. The isotopic records of those species are shown in Fig. 16.

Oxygen isotopes. δ^{18} O values of *R. penny* below the Cretaceous / Tertiary boundary increase from -2.988 to -2.538‰. δ^{18} O values of *G. pseudobulloides* above the Cretaceous / Tertiary boundary also show a general increase, from -2.377 to -2.020‰. However, δ^{18} O of *G. pseudobulloides* shows remarkably low values at 347.60 mbsf. In the latest late Paleocene and early Eocene, δ^{18} O values of *M. marginodentata* are constant (~ -1.7‰). In the early Eocene, δ^{18} O values of *M. marginodentata* is observed across the Paleocene / Eocene boundary, which differs from the oxygen isotopic records of *Subbotina* spp. In *A. primitiva* and *M. marginodentata*, δ^{18} O values at 152.4 mbsf exhibit remarkably low values of -2.160 and -2.291‰, respectively.

Carbon isotopes: δ^{13} C values of *R. penny* below the Cretaceous / Tertiary boundary are constant at ~2.6%. Above

the Cretaceous / Tertiary boundary, δ^{13} C values of *G. pseudobulloides* are about 2.2 ‰, except for a slightly low value at 354.51 mbsf. In *M. marginodentata*, δ^{18} O values are constant at ~3‰ from 181.4 to 155.4 mbsf across the Paleocene / Eocene boundary, and tend to decrease from 155.40 to 133.00 mbsf in the lower Eocene. δ^{13} C values of *A. primitiva* in the lower Eocene are constant at ~1‰. However, δ^{13} C values of *M. marginodentata* and *A. primitiva* fluctuate. At 152.40 mbsf and 123.30 mbsf, δ^{13} C values are remarkably low.

Isotopic values obtained from Site 752 are summarized in Fig. 17.

2. Site 754

At Site 754, only the benthic foraminifer *Oridorsalis umbonatus* was analyzed for oxygen and carbon isotopes. Isotope analyses were made on material from Samples 121-754A-1H-1, 70-75cm to 121-754A-13X-3, 70-75cm (0.70-

116.00 mbsf) from the Pleistocene to late Oligocene. The isotopic records of *Oridorsalis umbonatus* at Site 754 are shown in Fig. 18.

Oxygen isotopes: The oxygen isotopic records of Oridorsalis umbonatus are constant at ~1.2% from 116.00 mbsf to 89.90 mbsf in the upper Oligocene and the lower Miocene. δ^{18} O values decrease by ~0.4% across the early / middle Miocene boundary. δ^{18} O values are relatively low from 83.90 to 77.20 mbsf (nannofossil Zones CN3-4). In this interval, δ^{18} O values at 83.90 mbsf display the lowest value (0.933%) among the Neogene samples. In the middle Miocene, δ^{18} O values from 77.20 to 60.80 mbsf increase significantly by 0.85% from 1.077% to 1.924%. δ^{18} O values are constant about 2.0% from 60.80 to 32.00 mbsf through the upper

Site 754

Oridorsalis umbonatus

Fig. 18. Oxygen and carbon isotope records of benthic foraminifer *Oridorsalis umbonatus* at Site 754.

middle and upper Miocene. In the early Pliocene, δ^{18} O values increase by 0.5‰ up to a small peak at 22.40 mbsf (2.467‰), and decrease by ~0.3‰. A shift of δ^{18} O (of ~0.4‰) is observed across the early / late Pliocene boundary. During the late Pliocene and Pleistocene, δ^{18} O values increase up to 2.945‰ at 0.70 mbsf near to the present.

Carbon isotopes: The carbon isotopic records show a notable increase from 113.00 to 103.30 mbsf across the Oligocene / Miocene boundary, and then attain the highest (0.938‰) among lower Miocene samples. The magnitude of this increase is 0.9‰. δ^{13} C values decease by 0.5‰ up to 93.60 mbsf in nannofossil Zone CN1, then begin to increase again. This increase is gradual up to 83.90 mbsf, then changes up to 80.20 mbsf within Zones CN3-4. From 80.20 to 74.20 mbsf across the Zone CN4/5 boundary in the middle Miocene, δ^{13} C values are distinctly high (~1.2‰). During the middle Miocene, δ^{13} C values drastically decrease by about 1.1‰ from 1.2 to 0.1‰ at 67.50 mbsf, and then rapidly increase by 0.65% up to a weak peak at 57.80 mbsf (0.749‰). δ¹³C values are constant at ~0.5‰ from 54.80 to 35.60 mbsf (middle and upper Miocene). δ^{13} C values display a distinct shift to lower values (decreasing by ~0.5‰) between 35.60 and 32.00 mbsf (uppermost Miocene), and show a decreasing trend up to minimum value at 22.40 mbsf (-0.341‰) in the early Pliocene (Zones CN11a-10b). This shift is correlated with the Chron-6 Carbon Shift in the latest Miocene (Vincent et al., 1980; 1985). The carbon isotopic records exhibit a slight increase up to a weak peak at 6.80 mbsf (Zone CN12d) just below the Pleistocene / Pliocene boundary, and then show a decreasing trend up to 0.70 mbsf near to the present.

3. Site 756

At Site 756, only the benthic foraminifer Oridorsalis umbonatus was analyzed for oxygen and carbon isotopes. The analyzed material was obtained from Samples 121-756A-1H-1, 70-75cm to 121-756A-11H-5, 70-75cm (0.70-101.30 mbsf), and from Samples 121-756A-4X-1, 70-75cm to 121-756A-7X-5, 70-75cm (101.60-136.50 mbsf), from the Pleistocene to the uppermost Eocene. Fig. 19 shows the oxygen and carbon isotopic records for Oridorsalis umbonatus at Site 756.

Oxygen isotopes: The oxygen isotopic records show an increasing trend up to 120.90 mbsf within nannofossil Zone CP16 in the earliest Oligocene. The magnitude of this increase is 0.95%. During the late early Oligocene to early Miocene, δ^{18} O values show a slight increase with fluctuations of amplitude of ~0.5‰. In this interval, weak peaks in δ^{18} O value are observed at 101.60 mbsf (Zones CP17-18), 81.90 mbsf (Zone CP19), and 56.90 mbsf (Zones CN1-2) (1.622, 1.715, and 1.643‰, respectively). The value of 53.60 mbsf (Zone CN3-4 just below the early / middle Miocene boundary) is the lowest among the Neogene samples. During the middle Miocene, δ^{18} O values rapidly increase by about 1.4% up to 2.590% at 41.0 mbsf (Zones CN5-6). A constant value of ~2.5‰ is observed from 41.00 to 9.20 mbsf (middle Miocene to lower Pliocene). Across the late / early Pliocene boundary, 818O values rapidly increase by about 0.8% from 2.335% (9.20 mbsf) to 3.169% (3.70

Fig. 19. Oxygen and carbon isotope records of benthic foraminifer *Oridorsalis umbonatus* at Site 756.

mbsf). Limited data from the late Pliocene and Pleistocene shows ~3.0‰.

Carbon isotopes: The carbon isotopic record shows a gradual increase up to 0.636‰ at 120.90 mbsf (Zones CP16 in the early Oligocene). In the lower Oligocene, δ^{13} C values from 120.90 to 107.60 mbsf decrease by 0.8%. δ^{13} C values increase from -0.173‰ (107.60 mbsf) to 0.383‰ (98.30 mbsf) in the late early Oligocene and then reverse at the early / late Oligocene boundary, decreasing to -0.148‰ at 81.90 mbsf (Zone CP19). Across the Oligocene / Miocene boundary, δ^{13} C values rapidly increase by 1.0‰ up to the peak at 66.30 mbsf (Zones CN2-1). From 62.90 to 50.60 mbsf, δ^{13} C values increase by ~1.0% from 0.449 to 1.439‰. In this section, a notable shift is observed between 53.60 and 50.60 mbsf. During the middle Miocene, $\delta^{13}C$ values significantly decrease by ~1.2‰ up to 44.00 mbsf in Zones CN5-6, and then rapidly increase by 0.7‰ up to a distinct peak at 41.00 mbsf (0.967%), and again decrease up to 38.0 mbsf in Zone CN7. From 38.00 to 28.40 mbsf, δ^{13} C values are constant (~0.25%). In the uppermost Miocene, the carbon isotopic records between 28.40 and 18.80 mbsf

Fig. 20. Oxygen and carbon isotope records of benthic foraminifer *Oridorsalis umbonatus* at Site 757.

exhibit a remarkable negative shift that correlates with the Chron-6 Carbon Shift in the latest Miocene (Vincent et al., 1980; 1985). During the Pliocene and Pleistocene, δ^{13} C increases to 0.4‰ up to 12.2 mbsf. Those values are constant at ~-0.4‰.

4. Site 757

At Site 757, oxygen and carbon isotopes were analyzed for 2 species of benthic foraminifers; *Oridorsalis umbonatus* and *Anomalinoides danicus*, and for planktonic foraminifera *Subbotina* spp. The isotopic values *A. danicus* overlap with that of *Oridorsalis umbonatus* from Samples 121-757B-15H-5, 70-75cm to 121-757B-22X-3, 70-75cm (136.5-196.10 mbsf), and with that of *Subbotina* spp. from Samples 121-757B-15H-5, 70-75cm to 121-757B-24X-4, 48-61cm (136.5-216.78 mbsf).

Oridorsalis umbonatus

Isotopes were analyzed for Samples 121-757B-1H-2, 70-75cm to 121-757B-22X-3, 70-75cm (2.03-196.1 mbsf) from the lower Eocene to Pleistocene. Insufficient isotopic data were obtained below the middle Eocene, because Oridorsalis umbonatus are rare. The isotopic records of Oridorsalis umbonatus are shown in Fig 20.

Oxygen isotopes: δ^{18} O values increase gradually through the Eccene, and up to 120.80 mbsf within the nannofossil Zones CP16a-b in the lowermost Oligocene. In this section, they increase up to 1.6%. Furthermore, δ^{18} O values show a remarkable positive shift of 0.6% (from 1.104 to 1.710) between 120.80 and 117.20 mbsf across the Zone CP16b/c boundary. From the early Oligocene to early Miocene, δ^{18} O values decrease with small fluctuations. In this section, weak peaks are observed at 107.50 and 94.90 mbsf. In the early middle Miocene, in Zones CN3-4, 818O values decrease to the minimum value of 1.217‰ at 88.29 mbsf throughout the Neogene . From 88.20 to 68.90 mbsf, δ^{18} O values rapidly increase by ~1.6% from 1.217 to 2.825% in the middle Miocene. From the late Miocene to early Pliocene, δ^{18} O values are constant at around 2.6%, despite a relatively large fluctuation (~0.6% amplitude). In this section, the peak δ^{18} O value of 2.793‰ is observed at 49.50 mbsf within Zone CN9b. In the late Pliocene and Pleistocene, δ^{18} O values increase up to ~3.3% near to the present. In this section, two small positive shifts are recognized; a shift of 0.30% between 24.30 and 20.70 mbsf across the Zone CN11b/12a boundary. and a shift of 0.45% between 11.20 and 14.70 mbsf across the CN12/13 boundary.

Carbon isotopes: The carbon isotopic record in the Eocene shows a trend of slight decrease up to 0.436% at 140.20 mbsf, then an increase up to a peak value at 126.80 mbsf (0.991‰) just below the Eocene / Oligocene boundary. The magnitude of this increase is about 0.6%. From 126.80 to 112.20 mbsf in the lower Oligocene, δ^{13} C values decrease by ~0.8‰. From the late early Oligocene to early Miocene, δ^{13} C values are rather stable at 0.25%. Above the early / middle Miocene boundary, a small positive shift of 0.35% is recognized between 91.90 and 88.20 mbsf, and then δ^{13} C values decrease to a maximum value of 0.56% throughout the Neogene. During the middle Miocene, δ^{13} C values gradually Within Zones CN9a-8 in the late decrease by 0.4%. Miocene, δ^{13} C values increase up to slight peak at 68.90 mbsf (0.375%), then immediately decrease to a lower value at 65.90 mbsf (-0.094‰), and again increase up to 62.90 mbsf. The notable decrease of δ^{13} C value from 62.90 to 46.50 mbsf in the uppermost Miocene reaches ~1.1‰, from 0.233 to This decrease is correlated with the Chron-6 -0.892% Carbon Shift in the latest Miocene (Vincent et al., 1980; 1985). During the Pliocene and Pleistocene, δ^{13} C values are constant at ~-0.7‰. However, lower values are observed at 20.70 mbsf (-1.005‰) and 5.20 mbsf (-1.310‰).

Anomalinoides danicus

Isotope analyses were performed on material from Samples 121-757B-15H-5, 70-75cm to 121-757B-24X-4, 58-61cm (136.50-216.78 mbsf) in lower and middle Eocene. The isotopic records of *A. danicus* are shown in Fig. 21.

Oxygen isotopes: The oxygen isotopic record displays a gradual increase up to 0.420% at 159.50 mbsf (nannofossil Zone CP13b). The magnitude of this increase reaches 1.74%. In Zones CP13c and 14 in the upper middle Eocene, δ^{18} O values are constant at ~0.4%.

Carbon isotopes: δ^{13} C values notably increase by about 1.0% from 0.302% (212.28 mbsf) to 1.340% (183.90 mbsf) through Zones CP10 and 11 in the lower Eocene. In the middle Eocene, δ^{13} C values exhibit a decrease of 0.4% up to 169.20 mbsf (0.934%) within Zone CP13a, an increase of 0.3% up to a peak value at 146.20 mbsf (Zones CP14), and a decrease of 0.35%.

Subbotina spp.

Isotope analyses were performed on five small sized tests. The oxygen and carbon isotopic values were obtained from Samples 121-757B-14H-1, 70-75cm to 121-757B-24X-4, 58-61cm (120.80-216.78 mbsf) in middle and lower Eocene. The isotopic records of *Subbotina* spp. are shown in Fig. 22.

Oxygen isotopes: δ^{18} O values increase gradually throughout the Eocene, except for a lower value at 193.10 mbsf (within nannofossil Zone CP11). The magnitude of this increase reaches 2.35‰ (from -1.323 to 1.012‰).

Carbon isotopes: δ^{13} C values increase about 0.9‰ from 212.28 to 202.70 mbsf across the Zone 10/11 boundary in the

Fig. 21. Oxygen and carbon isotope records of benthic foraminifer *Anomalinoides danicus* at Site 757.

Koji SETO

Fig. 22. Oxygen and carbon isotope records of planktonic foraminifer *Subbotina* spp. at Site 757.

lower Eocene, and are constant (~1.4%) up to 155.80 mbsf in Zone CP13b of the middle Eocene. The carbon isotopic record shows an increase up to a peak at 146.20 mbsf within Zone CP14 in the upper middle Eocene, and a gradual decrease up to 120.80 mbsf within Zones CP16a-b of the earliest Oligocene.

Isotopic values obtained from Site 757 are summarized in Fig. 23.

5. Site 758

At Site 758, oxygen and carbon isotopes were analyzed for seven benthic foraminiferal taxa, Oridorsalis umbonatus, Anomalinoides danicus, Nuttallides truempyi, Stensioina beccariiformis, Cibicidoides wuellerstorfi, Cibicidoides mundulus, and Groidinoides soldanii, and for seven planktonic foraminiferal taxa, Acarinina primitiva, A. Morozovella velascoensis, Subbotina praecursoria, pseudoeocaena, S. eocaena, S. sp.1, and S. spp. At this site, an unconformity has been recognized at ~250 mbsf, which lacks almost all of Eocene sequence (Peirce, Weissel, et al., 1989).

Fig. 23. Summary of oxygen and carbon isotope records at Site 757.

Oridorsalis umbonatus

Isotope analyses were performed for material from Samples 121-758A-1H-1, 75-80cm to 121-758A-27X-1, 75-80cm (0.75-248.05 mbsf) from the uppermost Eocene to Pleistocene. The isotopic records of *O. umbonatus* are shown in Fig. 24.

Oxygen isotopes: The oxygen isotopic records are constant at ~1.8‰, with a fluctuation from 248.05 to 135.15 mbsf through the uppermost Eocene to lower Miocene. In this interval, the amplitude of the fluctuation is ~0.4‰, and a significant negative peak (1.265‰) is observed at 190.05 mbsf above the Oligocene / Miocene boundary. δ^{18} O values at 135.15 and 122.45 mbsf just above the early / middle Miocene boundary are relatively low (1.669 and 1.660‰, respectively). In the middle and early late Miocene, the oxygen isotopic records display a remarkable positive shift of 1.3‰ up to a weak peak at 112.85 mbsf (2.911‰). From 112.85 to 35.55 mbsf, δ^{18} O values are constant at ~2.8‰ with smaller fluctuations (amplitude of ~0.3‰). In this section, two minor peaks are observed at 78.65 mbsf (nannofossil Zone CN9b) and 64.45 mbsf (Zones CN10-

Fig. 24. Oxygen and carbon isotope records of benthic foraminifer *Oridorsalis umbonatus* at Site 758.

11a), with values of 2.850 and 2.845‰, respectively. Just across the Zone CN12 c/d boundary, a positive shift of 0.6‰ (from 2.731 to 3.322‰) in δ^{18} O value is recognized in the interval between 35.55 and 30.45 mbsf. From 30.45 to 0.75 mbsf, δ^{18} O values show increase with relatively large fluctuations. The amplitude of these fluctuations reaches ~0.6‰. An δ^{18} O peak value is observed at 11.25 mbsf just below the Zone CN14b/a boundary.

Carbon isotopes: δ^{13} C values decrease by 1.2‰ up to -1.196‰ at 228.76 mbsf (within Zone CP18), and immediately increase up to a peak value at 181.95 mbsf (0.480‰). The magnitude of this increase reaches 1.7‰. From 181.95 to 144.75 mbsf in the lower Miocene, δ^{13} C values decrease. In this section, a minor peak is observed at 154.45 mbsf (0.030‰). Across the early / middle Miocene boundary, a remarkable positive shift of ~1.0‰ occurred between 144.75 (-0.409‰) and 135.15 mbsf (0.569‰), and then δ^{13} C values are the highest among Neogene samples. In the middle Miocene, δ^{13} C values rapidly decrease by 0.9‰ from 0.569 to -0.255‰, and increase by 0.4‰ up to a peak at 122.45 mbsf (0.151‰). From 117.35 to 93.55 mbsf in the lower upper Miocene, the carbon isotopic ratios are constant (with fluctuation) at ~0.2‰. The amplitude of

Fig. 25. Oxygen and carbon isotope records of benthic foraminifer *Anomalinoides danicus* at Site 758.

fluctuation reaches to 0.5‰. A distinct negative shift of 1.15‰ is recognized from 93.55 (-0.247‰) to 74.15 (-1.362‰) mbsf in the uppermost Miocene. This shift is correlated with the Chron-6 Carbon Shift of the latest Miocene (Vincent et al., 1980; 1985). Throughout the Pliocene and Pleistocene, δ^{13} C values (about -1.1‰) fluctuate by 0.5‰. In this section, four minor peaks are observed at 68.95 mbsf within Zones 10-11a, 45.15 mbsf (within Zones 12a-c), 25.35 mbsf (within 13), and 6.75 mbsf (within Zones 14b-15), with values of -0.828, -0.844, -0.905, and -0.981‰, respectively.

Anomalinoides danicus

Isotopes were analyzed for three samples from Samples 121-758A-28X-2, 75-80cm to 121-758A-30X-1, 75-80cm (265.15-277.05 mbsf) in the upper Paleocene, because of the rare occurrence of *A. danicus*. The isotopic records of *A. danicus* are shown in Fig. 25.

Oxygen and Carbon isotopes: δ^{18} O values tend to decrease, whereas δ^{13} C values tend to increase. The minimum δ^{18} O value and the maximum δ^{13} C value are 0.085 and 2.220‰, respectively.

Nuttallides truempyi

Isotope analyses were performed for two to five individuals and single specimen in each sample. The difference in values between the measured individuals is relatively small. No significant difference in the two measuring methods is recognized, except for Sample 121-758A-28X-6, 75-80 cm. At this site, the isotopic records were obtained from Samples 121-758A-28X-2, 75-80 cm to 121-758A-31X-5, 75-80 cm (259.15-292.65 mbsf) in the Paleocene. The isotopic records of *N. truempyi* are shown in Fig. 26.

Oxygen isotopes: Nuttallides truempyi δ^{18} O values increase up to a peak of 277.05 mbsf, and decrease with a small fluctuations.

Carbon isotopes: The carbon isotopic record shows an increase from 0.77 to 1.82%. The magnitude of the increase is 1.1% in the studied section.

Stensioina beccariiformis

Isotopes were analyzed for Samples 121-758A-28X-2, 75-80cm to 121-758A-31X-5, 75-80cm (259.15-292.65 mbsf) in the Paleocene. The isotopic records of *S. beccariiformis* are shown in Fig. 27.

Oxygen isotopes: 818O values increase up to a peak at

Fig. 26. Oxygen and carbon isotope records of benthic foraminifer *Nuttallides truempyi* at Site 758.

277.05 mbsf (0.526‰) within the nannofossil Zones CP6-7 of the upper Paleocene, and decrease from 277.05 mbsf (0.526‰) to 265.15 mbsf (-0.140‰).

Carbon isotopes: δ^{13} C values increase up to a maximum value at 267.35 mbsf (2.071‰) within Zones CP6-7 in the upper Paleocene. The magnitude of this increase reaches 1.2‰.

Other Benthic foraminifers

Isotope analyses were performed for specimens from Samples 121-758A-9H-4, 75-80cm to 121-758A-27X-1, 75-80cm (78.65-248.05 mbsf) for *Groidinoides soldanii*, from Samples 121-758A-10H-1, 75-80cm to 121-758A-27X-1, 75-80cm (81.85-248.05 mbsf) for *Cibicidoides mundulus*, and from Samples 121-758A-12X-1, 75-80cm to 121-758A-14X-3, 75-80cm (103.15-125.45 mbsf) for *Cibicidoides wuellerstorfi* in the Miocene and Oligocene. The isotopic records of those species are shown in Fig. 28.

Oxygen isotopes: The trend of isotopic records of those species resembles those of Oridorsalis umbonatus. δ^{18} O values show a general increase. The δ^{13} C values for Groidinoides soldanii decrease by 0.75‰ from 248.05 to 228.76 mbsf in the lower Eocene, and are constant at ~0.4‰ up to 122.45 mbsf in the middle Miocene. During the late

Site758

Stensioina beccariiformis

Fig. 27. Oxygen and carbon isotope records of benthic foraminifer *Stensioina beccariiformis* at Site 758.

Site758

Fig. 28. Oxygen and carbon isotope records of other benthic foraminifers at Site 758.

Miocene, the *Groidinoides soldanii* δ^{13} C values decrease. The δ^{13} C values of *Cibicidoides mundulus* are constant (~0.8%) up to 103.15 mbsf within Zones CN8-9a in the upper Miocene, and exhibit a decreasing trend. The distribution of δ^{13} C in *Cibicidoides wuellerstorfi* resembles that of *Cibicidoides mundulus*.

Subbotina group

At Site 758, isotopes of the Subbotina group were analyzed for four taxa. Isotope analyses of Subbotina spp. were performed for five individuals (253-367 μ m in diameter). The isotope analyses of other taxa were made on a single individual (>380 μ m in diameter). The isotopic records of Subbotina group were obtained from Samples 121-758A-28X-2, 75-80cm to 121-758A-31X-5, 75-80cm (259.15-292.65 mbsf) in the Paleocene. The isotopic records of Subbotina group are shown in Fig. 29.

The oxygen isotopic record of *Subbotina* spp. shows a general decrease from 280.05 mbsf to 265.15 mbsf in the late Paleocene. δ^{18} O values at 280.05 mbsf are relatively high, and are the maximum values among the Paleocene samples. Between 367.35 and 265.15 mbsf, δ^{18} O values show a negative shift of 0.4‰. The same trend of δ^{18} O values are

Fig. 29. Oxygen and carbon isotope records of planktonic foraminifer *Subbotina* group at Site 758.

recognized, but the identified taxa such as *Subbotina* spp. show an offset of *Subbotina* spp. toward low values by 0.3-0.5%.

Carbon isotopes: δ^{13} C values of Subbotina spp. show an increase with stratigraphic height up to 267.35 mbsf (within Zones CP6-7), then decrease. The magnitude of this increase reaches 1.0‰, and the peak of this increase exhibits the maximum value (2.529‰) among the Paleocene samples. The carbon isotopic signals of other Subbotina show the same trend as Subbotina spp.

Other Planktonic foraminifers

The isotopes of *Morozovella velascoensis* were analyzed for Samples 121-758A-28X-2, 75-80cm to 121-758A-31X-1, 75-80cm (259.15-286.65 mbsf) from the upper Paleocene. *Acarinina primitiva* and *A. praecursoria* were used in Sample 121-758A-28X-2, 75-80cm (259.15) in the upper Paleocene and Sample 121-758A-31X-5, 75-80cm (292.65 mbsf) from the lower Paleocene, respectively. The isotopic records of those species are shown in Fig. 30.

Oxygen and Carbon isotopes: The oxygen isotopic records of *M. velascoensis* show a constant trend (about -1.5%). In this section, δ^{18} O values at 265.15 mbsf are relatively low.

Subbotina spp.

Fig. 30. Oxygen and carbon isotope records of other planktonic foraminifers at Site 758.

 δ^{13} C values of *M. velascoensis* rapidly increase by ~1.0‰ up to 277.05 mbsf, and then are constant at ~4.8‰. A minor peak is observed at 267.35 mbsf (5.084), with the maximum value for the Paleocene. δ^{18} O of *Acarinina primitiva* values are close to those of *M. velascoensis*, whereas their δ^{18} O values are slightly lower than *M. velascoensis*. The isotopic ratios of *A. praecursoria* are similar to those of *Subbotina* group rather than *M. velascoensis*.

Isotopic values obtained from Site 758 are summarized in Fig. 31.

6. Site 762

At Site 762, oxygen and carbon isotopes were analyzed for four benthic foraminiferal taxa: Anomalinoides danicus, Nuttallides truempyi, Oridorsalis umbonatus, and Stensioina beccariiformis. At this site, isotope analyses were limited to the lower Eocene and upper Paleocene (370-490 mbsf). The analysis of O. umbonatus was only available in Sample 122-762A-24X-2, 77-82cm (379.77 mbsf) from the earliest Eocene, and values -0.628‰ for oxygen isotopes and -0.547‰ for carbon isotopes. Site758

Fig. 31. Summary of oxygen and carbon isotope records at Site 758.

Anomalinoides danicus

Isotopes were determined for Samples 122-762C-26X-1, 70-73cm to 122-762C-32X-1, 65-69cm (398.70-450.65 mbsf). The occurrence of *A. danicus* is rare in all samples. The isotopic records of *A. danicus* are shown in Fig. 32.

Oxygen isotopes: δ^{18} O values tend to increase up to 434.69 mbsf, and reaching a maximum value (0.325‰). δ^{18} O values decrease by ~1.0‰ from 434.69 to 398.16 mbsf.

Carbon isotopes. The carbon isotopic records show an increase up to 425.19 mbsf, with small fluctuations, and the maximum value of δ^{13} C is 2.623‰. δ^{13} C values drastically decrease from 425.19-404.70 mbsf across the Paleocene / Eocene boundary. The magnitude of this decrease reaches ~2.2‰. Above 404.70 mbsf, δ^{13} C values are constant at ~0.4‰. However, a weak negative peak is observed at 400.21 mbsf (0.120‰).

Nuttallides truempyi

Isotope analyses were performed for two to five individuals and single specimen in each sample. No significant differences were recognized for the different analyses. At this site, isotopic records were obtained from Samples 122-762C-23X-1, 69-74cm to 122-762A-35X-1, 68-73cm (370.19-497.18 mbsf). The isotopic records of *N. truempyi* are shown in Fig. 33.

Oxygen isotopes: The records of *N. truempyi* δ^{18} O show an increase, with small fluctuations up to 450.65 mbsf in the upper Paleocene. δ^{18} O values decrease by 0.9% (-0.138 to -1.055%) up to 379.77 mbsf across the Paleocene / Eocene boundary. Above this, oxygen isotopic records exhibit an increasing trend.

Carbon isotopes: Carbon isotope record increase, with fluctuations up to 431.69 mbsf. The magnitude of increase is 1.0‰. In this section, A ¹³C maximum is recognized at 447.18 mbsf (1.748‰). δ^{13} C values drastically decrease by 1.9‰ from 1.812‰ (431.69 mbsf) to -0.088‰ (406.18 mbsf) across the benthic event. From 406.18 to 379.77 mbsf, δ^{13} C records are a constant with small fluctuations at ~ 0.1‰. A ¹³C minimum is observed at 400.21 mbsf (-0.487‰). The carbon isotopic records tend to increase above this level.

Stensioina beccariiformis

Isotope analyses were performed for Samples 122-

Fig. 32. Oxygen and carbon isotope records of benthic foraminifer *Anomalinoides danicus* at Site 762.

762C-29X-1, 76-80cm to 122-762C-35X-1, 68-73cm (422.26-479.18 mbsf) in the upper Eocene. S. beccariiformis does not occur above Sample 122-762C-29X-1, 76-80cm (422.26 mbsf) below the Paleocene / Eocene boundary. The isotopic records of S. beccariiformis are shown in Fig. 34. Oxygen isotopes: The oxygen isotopic record of S. beccariiformis shows an increasing trend, with fluctuations, up to a maximum value (0.165‰) at 434.69 mbsf, with an increasing trend of 0.65‰. In this section, a notable peak is observed at 469. 61 mbsf. From a maximum value at 434.69 mbsf, δ^{18} O values decrease to -0.525‰ at 422.26 mbsf.

Carbon isotopes: In the late Paleocene, averaged δ^{13} C values increase by ~1.1‰ with relatively large fluctuations up to a maximum value (1.946‰) at 423.69 mbsf. In this section, two remarkable peaks are recognized at 469.61 and 447.18 mbsf. δ^{13} C values rapidly decrease by 0.6‰ up to 422.26 mbsf, located just below the level of the benthic event, where S. beccariiformis disappears.

Isotopic values obtained from Site 762 are summarized in Fig. 35.

Site762

Nuttallides truempyi

Fig. 33. Oxygen and carbon isotope records of benthic foraminifer *Nuttallides truempyi* at Site 762.

Fig. 34. Oxygen and carbon isotope records of benthic foraminifer *Stensioina beccariiformis* at Site 762.

III. Stable isotopic paleoceanography in the South Atlantic and Indian Oceans

A. Compiled data

In and around the Indian and South Atlantic Oceans, oxygen and carbon isotopic data of Cenozoic foraminifera have been obtained at many DSDP and ODP sites. Information from these sites, including this study, is shown in Table 1. The Indian and South Atlantic Oceans are divided into six areas: the northeastern Indian Ocean (Sites 214, 215, 216, 253, 752, 754, 756, 757, 758, and 762), northwestern Indian Ocean (Sites 237, 238, 709, 714, and 716), southern Indian Ocean (Sites 538, 744, 748, 750, and 751), Central Atlantic Ocean (Sites 366, 658, 659, 665, and 667), South Atlantic Ocean (Sites 516, 517, 518, 519, 521, 522, 523, 525, 526, 527, 528, and 529), and Southern Ocean of the Atlantic (Sites 658, 689, 690, 699, 700, 702, and 704). The oxygen and carbon isotopic data of these areas are compiled in order to compare the Cenozoic paleoceanography of the Indian and South Atlantic Oceans. However, there are limited resources to compile part of the section, such as the Paleogene section of the northwestern Indian Ocean, Neogene of the Southern Ocean (Atlantic sector), and deep sea sections below 3000 m.

Site762

Fig. 35. Summary of oxygen and carbon isotope records at Site 762.

1. Adjustment of data

Although oxygen and carbon isotopes have been measured from foraminiferal tests at many sites, these comprise different foraminiferal species. In the studied area, the benthic foraminifer Oridorsalis umbonatus has been commonly measured, and Nuttallides truempyi, Cibicidoides spp., Cibicidoides wuellerstorfi have also been measured. For the purpose of this study, the isotopic values of sea water should be indicated by the values of different species. However, benthic species may draw in pore water and overlying water as carbon dioxide pools (Shackleton et al., 1984; Woodruff et al., 1990; Zachos et al., 1992a; 1992c; and other), and thus different species record different values according to their paleoecology. Therefore, the oxygen and carbon isotopic data cannot be directly compared, because of interspecific variation in the isotopic values. Most workers use the adjusted values obtained by Shackleton et al. (1984). Barrera and Huber (1990; 1991), however, pointed out that the magnitudes of departure in the Maastrichtian and Paleogene differ from those of Shackleton et al. (1984). Interspecific difference vary according to region and age. Therefore, adjustment should be made at each site based on

Table 1. Sources for foraminiferal oxygen and carbon isotopic data in the studied area.

<u></u>				Woton		Range		· · · ·
Site	Latitude	Longitude	Geographical area	depth	Species	Kan	ge	Reference
				(m)		mbsf	Age (Ma)	
Site 214	11°20.21' S	88°43.08' E	Indian Ocean	1655	Globigerinoides sacculifer	86.34-200.48	5~18	Vincent et al., 1985
					Dentoglobigerina altispira	123.92-200.48	7~18	Vincent et al., 1985
					Globoquadrina venezuelana	86.34-217.95	5~23	Vincent et al., 1985
		00000 100 5			Oridorsalis umbonatus	86.34-224.33	5~24	Vincent et al., 1985
Site 216	1°27.73' N	90°12.48' E	Indian Ocean	2247	Globigerinoides sacculifer	109.32-188.10	8~23	Vincent et al., 1985
					Globoquadrina veneruelana	109.32-174.39	8~21	Vincent et al., 1985
					Oridorsalis umbonatus	109.32-199.78	8~23	Vincent et al., 1985
Site 237	7°04.99' S	58°07.48' E	Indian Ocean	1640	Globigerinoides sacculifer	109.82-175.42	8~20	Vincent et al., 1985
					Dentoglobigerina altispira	83.32-184.24	5~23	Vincent et al., 1985
					Globoquadrina venezuelana	83.32-200.32	5~24	Vincent et al., 1985
					Oridorsalis umbonatus	83.32-200.32	5~24	Vincent et al., 1985
Site 238	11°09.20' S	70°31.56' E	Indian Ocean	2844	Globigerinoides sacculifer	132.66-439.03	5~24	Vincent et al., 1985
					Dentoglobigerina altispira	132.66-398.86	5~24	Vincent et al., 1985
					Globoquadrina venezuelana	132.66-455.83	5~24	Vincent et al., 1985
					Oridorsalis umbonatus	132.66-455.83	5~24	Vincent et al., 1985
Site 253	24"52.65" 8	87°21.97' E	Indian Ocean	1962	various species (Planktonic)	19.31-132.48	4~3/	Obernansii, 1986
Pin 200	5940 71 N	10261 11 11	Easture Terrinal Atlantia	2052	various species (Beninic)	19.51-152.48	4~37	Miller et al 1080
Site 500	3140.7 N	19'51.1' W	Eastern Fropical Atlantic	2855	Cloicales spp.	9 20 37 50	2-1	Luonard et al. 1983
ane 510	50 10.0 5	55 57.1° W	western souur Auame	1515	Cibicidoides wuellerstorfi	890-3750	2~4	Leonard et al., 1983
Site 517	30256.818	38°02 5 W	western South Atlantic	2963	Globigerinoides sacculifer	24 70-50 70	1~3	Leonard et al., 1983
0110 017	20 20.0 0	50 02.2 11		2/02	Cibicidoides wuellerstorfi	36.50-50.70	2~3	Hodell et al., 1983
Site 518	29°58.4' S	38°08.1' W	western South Atlantic	3944	Orbulina universa	28.0-43.70	2~4	Hodell et al., 1983
					Cibicidoides wuellerstorfi	28.0-44.0	2-4	Hodell et al., 1983
Site 519	26''08.20' S	11°39.97' W	South Atlantic	3779	Globigerinoides sacculifer	33.15-95.15	0-4	Weissert et al., 1984
					Dentoglobigerina altispira	64.25-101.00	3~4	Weissert et al., 1984
					Orbulina universa	101.40-112.50	4~5	Weissert et al., 1984
					Cibicidoides wuellerstorfi	31.65-112.50	0~5	Weissert et al., 1984
					Nuttallides umbonifera	31.65-101.00	0~4	Weissert et al., 1984
					Orbulina universa	97.20-146.80	0~9	McKenzie et al., 1984
					Cibicidoides wuellerstorfi	31.60-144.6	0~6	McKenzie et al., 1984
					Nuttallides umbonifera	31.60-121.0	5~6	McKenzie et al., 1984
Pin. 501	2004 1218	1/19/1 5 079 317	Couth Adaptio	41 41	Clobicerinoides secondifer	12 21 27 27	4~9	Weissert et al. 1984
511e 521	20 04.45 5	10 15.87 W	South Attanue	4141	Oroorgermoures saccunjer Oridorsalis umbonatus	31 33-41 60	3~5	Weissert et al., 1984
					Cibicidoides wuellerstorfi	1240-4531	1~6	Weissert et al., 1984
					Nuttallides umbonifera	13.92-45.31	1~6	Weissert et al., 1984
Site 522	26°06.84' S	05°06,78' W	South Atlantic	4457	Globigerinoides conglobatus	11.11-16.03	1~2	Weissert et al., 1984
					Oridorsalis umbonatus	16.58-30.15	2~6	Weissert et al., 1984
					Cibicidoides wuellerstorfi	16.58-30.15	2~6	Weissert et al., 1984
					Nuttallides umbonifera	11.11-30.15	1~6	Weissert et al., 1984
					various species (Planktonic)	66.45-145.52	26~36	Poore and Matthews, 1984
					various species (Benthic)	66.45-145.52	26~36	Poore and Matthews, 1984
					Globoquadrina venezuelana	130.7-145.4	35~36	Oberhansli et al., 1984
					Catapsydrax dissimilis	130.20-146.80	35~30	Oberhansli et al., 1984
					Suiosiomeira spp.	110 20-140.80	33~30	Oberhansli et al., 1904
Site 572	78°33 12' 6	0.2º15 08' W	South Atlantic	1572	Globigerinoides ruber	5.75-25.45	1~3	Weissert et al., 1984
ane 223	20 22.12 3	VE 10.00 W	ostan manuale		Oridorsalis umbonatus	9.63-24.70	1~3	Weissert et al., 1984
					Cibicidoides wuellerstorfi	5.75-25.45	1~3	Weissert et al., 1984
					Nuttallides umbonifera	9.63-24.70	1~3	Weissert et al., 1984
					various species (Planktonic)	85.90-184.00	34~48	Oberhansli et al., 1984
					various species (Benthic)	85.90-184.00	34~48	Oberhansli et al., 1984
Site 524	29'29.05' S	03°30.74' E	South Atlantic	4806	various species (Planktonic)	9.50-117.30	55~56	Oberhansli et al., 1984
					Stensioina beccariiformis	98.3	61	Oberhansli et al., 1984
			•		Nuttallides truempyi	9.50-28.10	55~56	Oberhansli et al., 1984
					Oridorsalis umbonatus	9.50-18.90	55~56	Upernansii et al., 1984
o'	00001077	00100 1015	Canal, Admints	04/2	Siensiona beccarilformis	104.57-230.19	01~07	Shackleton et al. 1094
Site 525	29/04.24' S	02°59.12' E	South Attantic	2467	various species (Bentinc)	0.8-4/0.91	0~08 8.49	Shackleton et al., 1984
Sin For	20207-2414	02000 001 1	South Atlantia	1051	various species (Planktonic)	671_017 53	1~37	Shackleton et al. 1984
one 526	29 07.50 8	05-05.28 13	adum Adumuc	1004	various species (Denuic)	30 80-214 71	4~37	Shackleton et al., 1984
Sit- 577	28'02 40' %	01°45 80' E	South Atlantic	4178	various species (Benthic)	40.94-282.20	4~67	Shackleton et al., 1984
<i>ا خر</i> د د د د د	20 02.77 0	01 H2.00 E			various species (Planktonic)	146.77-283.14	50~67	Shackleton et al., 1984
Site 528	28°31.49' S	02°19.44 E	South Atlantic	3800	various species (Benthic)	8.87-315.99	1~58	Shackleton et al., 1984
		· · · · -			various species (Planktonic)	8.87-315.99	1~58	Shackleton et al., 1984
Site 529	28°55.83' S	02°46.08' E	South Atlantic	3035	various species (Benthic)	0.11-268.84	0~58	Shackleton et al., 1984
					various speci spp. anktonic)	0.11-268.84	0~58	Shackleton et al., 1984

.

Table 1. (continued).

Site	Latituda	Longituda	Congraphical ana	Water	Encoder	Ran	ge	Dec
	Lautude	Longitude	Geographical area	acptn (m)	Species	mbsf	Age (Ma)	- Kelerence
Site 658	20°44.95' N	18°34.87' W	Eastern Tropical Atlantic	2263	Globorotalia inflata	0.24-136.07	0~2	Sarnthein and Tiedemann, 1989
					Cibicidoides wuellerstorfi	0.24-293.01	0-4	Samthein and Tiedemann, 1989
					Uvigerina auberiana	151.73-293.01	2~4	Samthein and Tiedemann, 1989
614 CE0	10004 (201)				Uvigerina peregrina	151.73-293.01	2~4	Samthein and Tiedemann, 1989
Site 659	18'04.63' N	21°01.57' W	Eastern Tropical Atlantic	3071	Globorotalia inflata	0.47-32.59	0~1	Samhein and Tiedemann, 1989
Site 662	1073.111 6	119.11 251 11	Eastern Tranical Atlantic	2011	Cibiculoules wuellerstorfi	0.47-32.92	0~1	Samthein and Tiedemann, 1989
Site 663	1°1187'S	11°52 71' W	Eastern Tropical Atlantic	3709	Globigerinoides ruber	117.39-130.09	1~2	Karlin et al., 1989
Site 665	2°57.07' N	19°40 07' W	Eastern Tropical Atlantic	1752	Cibicidaides son	4.01-52.21	2	Cumu and Millar, 1090
Site 667	4°34.15 N	21°54.68' W	Eastern Tropical Atlantic	3529	Cibicidoides spp.	220 16:375 16	19.31	Miller et al. 1089
Site 689	64°31' S	03°06'E	Weddell Sea	2080	various species (Planktonic)	102 10-233 10	31~66	Stott at al 1990
				-	various species (Planktonic)	227.51-261.8	64.68	Stott and Kennett, 1990
					Archaeoglobigerina australis	246.87-291.30	68~76	Barrera and Huber, 1990
					Globigerinelloides multispinatus	246.87-294.50	68~77	Barrera and Huber, 1990
					Abathomphalus mayaroensis	246.87-256.38	68~69	Barrera and Huber, 1990
					Nuttallides spp.	165.90-236.47	18~67	Kennett and Stott, 1990
					Cibicidoules spp.	93.15-233.54	18-66	Kennett and Stott, 1990
					Nuttallides truempyi	246.87-256.38	68~69	Barrera and Huber, 1990
					Stensioina beccariiformis	246.87-294.50	68~77	Barrera and Huber, 1990
eta. (00	C #21010	0101015			Coryphostoma incrassata	246.87-269.50	66~71	Barrera and Huber, 1990
ane 090	05 10 8	01-12-E	wedden Sea	2914	Various species (Planktonic)	93.95-247.76	38-66	Stott at al., 1990
					Various species (Planktolac)	224.74-242.94	63~65	Stott and Kennett, 1990
					Globigerinelloides multisningtus	203.01-314.52	67.72	Barrera and Huber, 1990
					Abathomphalus mavaroepsis	258.00-277.87	67~70	Barreri and Huber 1990
·					Nuttallides truemovi	53.00-206.06	26~59	Kennett and Stott 1990
					Cibicidoides snn	50.75-212.82	20~60	Kennett and Stott, 1990
					Nuttallides truempyi	258.00-283.81	68~71	Barrera and Huber, 1990
					Stensioina beccariiformis	263.01-316.62	68~72	Barrera and Huber, 1990
					Coryphostoma incrassata	258.00-300.40	67~71	Barrera and Huber, 1990
Site 698	51°27.51' S	33°05.96' W	South Atlantic	2128	Nuttallides truempyi	45.20-73.40	55-58	Katz and Miller, 1991
					Cibicidoides spp.	4.86-81.71	52~59	Katz and Miller, 1991
Site 699	51°32.537 S	30°40.619 W	South Atlantic	3708	Nuttallides truempyi	442.94-498.32	52~57	Katz and Miller, 1991
Site 700	51°31.977' S	30°16.688 W	South Atlantic	3598	Nuttallides truempyi	131.20-329.18	50~65	Katz and Miller, 1991
St. 500	50056 500 0		6 . 		Cibicidoides spp.	67-290.49	46~61	Katz and Miller, 1991
Site 702	50'56,786 5	26°22.117 W	South Atlantic	3083	Nuttailides truempyi	32.23-274.10	39-59	Katz and Miller, 1991
Site 70.1	16952 818	7025 21 5	South Atlantic	2522	Neoglaborgrading vachularing	21.23-287.60	38-00	Katz and Miller, 1991
SRC 704	40.52.8 8	/ 23.5 E	Souri Analuc	2002	Cibicidoidas	0.41-255.41	0~5	Hodell and Clestelski, 1991
					various species (Benthic)	2.26-35.90	1.0	Muller et al. 1991
Site 709	03°54.9 S	60°33.1' E	Mascarene Plateau	3041	Globigerinoides sacculifer	13 35.36 50	1~4	Shacketon and Hall 1990
					Globigerinoides ruber	26.30-53.96	3~5	Shacketon and Hall, 1990
					Globigerinoides sacculifer	25,70-103,40	2~5	Vincent et al., 1991
					Dentoglobigerina altispira	30.20-171.00	3~19	Vincent et al., 1991
					Globoquadrina venezuelana	133.80-215.45	13-26	Vincent et al., 1991
					various species (Benthic)	54.2-200.5	5~24	Woodruff et al., 1990
Site 714	05°03.6 S	73°47.2' E	Mascarene Plateau	2038	Globigerinoides sacculifer	0.15-19.48	0~5	Droxler et al., 1990
					Globigerinoides sacculifer	26.5-70.3	7~12	Boersma and Mikkelsen, 1990
61. 71 6	0.4956.01.0	53915 (N E			various species (Benthic)	26.5-205.0	7~24	Boersma and Mikkelsen, 1990
Site /16	04°56.0'S	73°17.0°E	Mascarene Plateau	544	Globigerinoules sacculifer	0.20-40.90	0~1	Droxler et al., 1990
Sile /38	02.42.54.9	82°47.23°E	Kerguelen Mateau	2203	Cibicidaidan	19 19 33 96	35~03	Barrera and Huber, 1991
					Nuttallides truemmi	61.00.380.70	30.75	Barrers and Huber 1001
					Stilostomella subsninova	73.00.80.00	35.40	Barren and Huber 1991
					Stensioina beccariifornis	25.00.00	57~65	Barrera and Huber 1991
Site 744	61°34.66' S	80°35.46' E	Kerguelen Plateau	2317	Globicerinita iuvenilis	100.17-109.67	26-27	Barrera and Huber, 1991
					Chiloguembelina cubensis	118.2-175.07	31~39	Barrera and Huber, 1991
					Globorotaloides suteri	82.63-175.07	19-39	Barrera and Huber, 1991
					Cibicidoides spp.	28.11-175.07	9~39	Barrera and Huber, 1991
					Nuttallides spp.	27.11-77.09	9~18	Barrera and Huber, 1991
					Stilostomella subspinosa	81.13-175.07	18~39	Barrera and Huber, 1991
					Cibicidoides spp.	38.05-63.55	10~15	Woodruff and Chamber, 1991
					Cibicidoides wuellerstorfi	55.24-57.75	13~14	Woodruff and Chamber, 1991
	,				Cibicidoùles kullenbergi	51.20-77.75	11~18	Woodruff and Chamber, 1991
0	E 10 10 COLO	7/047 44 5		1000	Civicidoules spp.B	50.23-52.70	10~11	woodruit and Chamber, 1991
Site 7.10	58°76 151 0	70°47.04 E	Central Kerguelen Plateau	1095	Civiculoules spp.	55.50-141.90 10139 137.00	8~26 22 37	Wright and Miller, 1992 Zacher et al., 1992
510 /48	20 20.43 8	10 JO.89 E	Central Nergueten Prateau	1730	Subboting line and	104.28-127.00	35~3/	Zachos et al., 1992a Zachos et al., 1992a
					Subbolinat in spp. 4	1/1.50-147.90		Zacitty et al., 1992a

417

Table 1. (continued).

Site Latitud			a	Water	Guardia	Ran	ge	Deference
Site	Latitude	Longitude	Geographical area	depth (m)	Species	mbsf	Age (Ma)	Kelerence
Site 748	58°26.45' S	78°58.89' E	Central Kerguelen Plateau	1290	Chiloguembelina cubensis	104.50-176.00	33~45	Zachos et al., 1992a
					Chiloguembelina spp.	154.28-389.22	42~59	Zachos et al., 1992a
					Cibicidoides	67.57-350.80	22~58	Zachos et al., 1992a
					Gyroidina spp.	67.57-389.22	22~59	Zachos et al., 1992a
					Stensioina beccariiformis	379.26-388.53	59	Zachos et al., 1992a
	•				Nuttallides umbonifera	77.10-96.10	25~30	Zachos et al., 1992a
Site 750	57°35.54' S	81°14.42' E	Kerguelen Plateau	2031	Heterohelix globulosa	349.73-356.28	66	Zachos et al., 1992b
			U		Eoblobigerina eobulloides	349.73-349.93	66	Zachos et al., 1992b
					Globigerinelloides spp.	349.73-350.25	66	Zachos et al., 1992b
					Nuttallides truempyi	348.08-356.06	65~66	Zachos et al., 1992b
					Stensioina beccariiformis	350.11-356.60	66	Zachos et al., 1992b
ite 751	57°43.56' S	79°48.89' E	Kerguelen Plateau	1634	various species (Benthic)	40.28-165.2	4~19	Mackensen et al., in press
Site 752	30°53.48' S	93°34.65' E	Broken Ridge	1086	Cibicidoides spp.	0.80-102.05	0~35	Rea et al., 1991
Site 754	30°56.44' S	93°33.99' E	Broken Ridge	1064	Cibicidoides spp.	0.78-125.78	0~28	Rea et al., 1991
Site 756	27°21.33' S	87°35.80' E	Ninetyeast Ridge	1518	Gyroidinoides SDD.	18.90-136.60	5~36	Rea et al., 1991
			• •		Uvigerina spp.	0.80-140.20	0~37	Rea et al., 1991
Site 757	17°01.46' S	88°10.90' E	Ninetveast Ridge	1652	Gyroidinoides spp.	8.30-161.1	1~47	Rea et al., 1991
					Uvigerina spp.	2.13-123.90	0~37	Rea et al., 1991
Site 758	05°23.05' S	90°21.67' E	Ninetyeast Ridge	2935	Globigerinoides sacculifer	30.25-110.45	2~7	Vincent et al., 1991
			. 0		Dentoglobigerina altispira	39.85-146.02	2~18	Vincent et al., 1991
					Globoquadrina venezuelana	63.55-146.02	4~18	Vincent et al., 1991
					Globigerinoides sacculifer	0.01-34.91	0~2	Farrell and Janecek, 1991

data of interspecific differences previously compiled by many workers as well as in the present study.

In this study, the isotopic composition of various foraminiferal species is adjusted to that of O. umbonatus. This species was measured in the largest number of studied sites, occurs over a long time range, and has a stable magnitude of departure from the isotopic composition of the Cibicidoides group. The original δ values of O. umbonatus are converted into the δ values of dissolved CO₂ of bottom water by 0 % for δ^{18} O and by +1.0 % for δ^{13} C (Shackleton et al., 1984). For the Early to middle Paleogene, the isotopic composition is adjusted to that of N. truempyi and the δ values of N. truempyi are converted into the δ values of dissolved CO₂ of bottom water by +0.330 % for δ^{18} O and by +1.082 % for δ^{13} C. If no measurements are given for O. umbonatus, the isotopic compositions of various species are adjusted to those of one taxon (Cibicidoides group, such as C. wuellerstorfi), and the data are converted to the δ values of dissolved CO2 of bottom water. Adjusted values used in this study are shown in Table 2.

The δ values of planktonic foraminifers are adjusted to those of *Globigerinoides sacculifer* because this species has been measured at many sites and the ecology of this species is well known. An ecological investigation by plankton net reveals that *G. sacculifer* mostly inhabits water shallower than 50m (Be, 1977). Therefore, this study assumes the isotopic composition of *G. sacculifer* as an indication of the δ values of dissolved CO₂ of surface water shallower than 50 m depth. The adjustments of planktonic foraminifera are established by the same method as benthic foraminifera, and most of the adjustments are calculated based on the data of Shackleton *et al.* (1984). Some of the adjustments, however, are established by indirect differences, because the range of planktonic foraminifer is often short. The isotopic compositions of Paleogene planktonic foraminifera are adjusted to those of Subbotina spp., which has been measured in many studies. In the Subbotina group, the intergeneric difference and the isotopic fluctuation according test size is relatively small (Shackleton et al., 1985; Stott et al., 1990). The δ values of Subbotina spp. in the Paleogene are converted into the δ values of G. sacculifer by -0.610 %. for δ^{18} O and by +0.850 % for δ^{13} C, which are indirectly obtained from the interspecific difference studied by Shackleton et al. (1984). The δ values adjusted from Subbotina spp., however, may not indicate that of dissolved CO₂ of surface water (50 m depth), because the δ values adjusted from Subbotina spp are >1% lower than those of the Morozovella group and the Acarinina group. The adjusted values of planktonic foraminifers are shown in Table 2.

2. Chronology of the samples

The ages of the studied section are defined by geomagnetic polarity events and the biostratigraphy of calcareous nannofossils. The numerical ages of nannofossil events have been originally determined by correlation with the geomagnetic polarity time scale.

The magnetic polarity time scale used in this study is based on Berggren et al. (1985a, 1985b, 1985c). The time scale of nannofossil species events has been proposed in many studies (Thiersten et al., 1977; Backman and Shackleton, 1983; Backman and Pestiaux, 1986; Berggren et al., 1985a; 1985b; 1985c; Backman, 1987; Gartner, 1977; Zijdeveld et al., 1986; Poore et al., 1983; Lohman, 1986; Barton and Bloemendal, 1986; Baldauf et al., 1987; Clement and Robinson, 1987; Takayama and Sato, 1987; Rahman and Roth, 1989; Rio et al., 1990; Gartner, 1990; Okada, 1990;

<u></u>		,												
Site	Site 752 Site 754 Site 754	Site 758 Site 762	Site 214 Site 216	Site 238	Site 253		Site 516 Site 517		Site 521 Site 522	Site 519	Site 527 Site 528	Site 525 Site 526	Site 667 Site 658	Site 662 Site 665
Species	δ ¹ "Ο	۵ ¹³ C	<u>مانی مادی</u> م ¹⁸ 0	٥ ^{1.3} С	0	 ک' '۵	6 ^{1.6} O	۵ ^{1.3} C	δ ^{1 1} O	ه ^{۱3} C	δ ¹⁸ Ο		δ ^{1 8} Ο	
Benthic foraminifera (botto	om water	r)												
Anomal invides danicus	0.178	0.547												
Bulimina jarvisi											-0.080	0.460		
Bulimina spp.											-0.140	0.445		
Cassialaina cornua Cibicidoides kullenheroi										0.014				
Cibicidoides lamontdohertyi									0.336	0.036	0,615	0.070		
Cibicidoides mundulus														
Cibicidoides sp.B														
Cibleidoides sp.C Cibleidoides sp.C														
Cibicidoides wuellerstorfi					0.396	0.210	0 208	0.417	0 209	0.07	0.280	0.290	0.280	0.290
Gavelinella spp.					0.470	0.240	0.208	-0.457	0.208	-0.437	0.795	-0.105	0.795	-0.105
Globocassidulina spp.											-0.230	0.441		
Globocassidulina subglobosa									-0.094	0.616				
Cyrolaina spp. Nutlallidet spp.											0.110	0.280		
Nuttallides truempyi	0.330	1.082									0.418	0.548		
Nuttallides umbonifera									0.147	.0.222				
Oridorsalis umbonatus	0.000	1.000	0,000	1.000	0.000	1.000			0.000	1.000	0,000	1.000		
Planulina bradyi Blanulina soci														
r ianui ina rengi Rectuvi verina spinea											0.870	-0.085		
Stensiona beccariiformis	0.214	1.203												
Stilostomella spp.											0.035	0.515		
Uvigerina spp.											-0,036	0.498		
Planktonic foraminifera (su	rface wa	ater)												
Acarinina nitida											-0.419	0.239		
Acarinina primitiva	-0.511	0.367												
Acarinina spp.											-0.580	0.052		
Catapsydrax echonands Catapsydrax echonands											-0.110	-0.133		
Catapsydrax unicavus											-0.649	0.999		
Chiloguembelina spp.											-0.022	1.244		
Chiloguembelina wilcoxensis											-0.439	1.317		
Dentoglobigerina altispira Globigerina annulisaturalia	-0.18-1	0.140	0.102	-0.060							-0.290	0.600		
Globigerina apertura											-0.229	0.849		
Globigerina barbemoensis											-0.569	1.219		
Globigerina corpulenta											-0.540	0.580		
Globigerina eusperta											-0.729	0.679		
Globigerina globiuaris Globigerina gortanii											-0.689	1.159		
Globigerina nepenthes											-0.220	0.349		
Globigerina obesa											-0.811	0.879		
Globigerina ouachitensis											-0.649	0.689		
Globigerina pseudoampliapertura Globigerina selli											-0.754	0.944		
Globigerina tripartita											-0.719	0.579		
Globigerina venezuelana	-1.759	1.065	-1.115	1.027	-1.115	1.027					-0.027	0.007		
Globigerina winkleri											-0.540	0.430		
Globigerinoides ruber									0,264	-0,011	-0.285	0.095	0.264	
Giobigermoides saccuiter Globigermoides seistei	0,000	0.000			0,000	0.000					0.000	0,000		
Globigerinokles subquadratus											0 140	0.230		
Globigerinoides trilobus					-0.550	0.415								
Globogerinatheka index											-0,490	0.380		
Globoger maineka mexicana Globoger maineka son											-0.309	0.266		
Globoquadrina dehiscens					-0.100	0.785					-0.333	0.450		
Globoquadrina pradehiscens											-0.679	0.579		
Globoquadrina spp.											-0.639	0.869		
Globoquadrina transdehiscens Globorutalia cercoavulencie											-0.779	0.564		
Globorotalia conoidea											.0.571	0.952		
Globorotalia inflata											1.465	0.198	1.465	0.198
Globorotalia peripheroronda											0,340	0.655		
Globorotalia siakensis Globorotalia transatulinoides											0.659	0.999		
Globorotaloides miozea											-1.333	0.285		
Globorotaloides suteri											10.471	0.017		
Hantkenina spp.											-0.466	0.840		
Morozovella acuta Morozovella acuta											0.408	0.263		
Morozovena aragonensis Morozovella formosa											0.296	-0.860		
Morozovella lehneri											-0.059	-0.331		
Morozovella marginodentata	-0.464	-1.139									,			
Morozovella pseudomenardii											0.652	1.485		
Morozovella rex Morozovella subbasino											-0.034	-0.221		
Morozovena suoponnae Morozovella velascoensis											-0.371	0.251		
Planoglobulina spp.											-0.234	-0.064		
Subbotina spp.	-0.610	0.850									-0.610	0.850		
Turborotalia increbescens											-0.463	0.759		
in vor nand spp.											-0.594	0.899		

-

Table 2. Values to adjust to d value of the bottom or surface (about 50m) DIC in the studied area.

Table 2. (continued).

Site Site <th< th=""><th></th><th>Site 689</th><th>-</th><th>Site 700</th><th>Site 698</th><th>Site 709</th><th></th><th>Site 714</th><th></th><th>Site 718</th><th></th><th>Site 748</th><th></th><th>Site 751</th><th></th></th<>		Site 689	-	Site 700	Site 698	Site 709		Site 714		Site 718		Site 748		Site 751	
Note: 1/2 </td <td>Site</td> <td>Site 690</td> <td></td> <td>Site 700</td> <td>Site 699</td> <td>5100 709</td> <td></td> <td>512 /14</td> <td></td> <td>Site 744</td> <td></td> <td>Site 750</td> <td></td> <td>0.00 / 51</td> <td></td>	Site	Site 690		Site 700	Site 699	5100 709		512 /14		Site 744		Site 750		0.00 / 51	
Specim 1/C 1/C<				Site 704											
Control of and	Species	d ^B C	6 ¹⁶ O	4160	م ¹³ ۲	Å ¹⁸ Ω	A ¹³ C	Å ¹⁸ ∩	δ ¹³ C	A ¹⁸ O	Å ¹³ ℃	å ¹⁸ ∩	δ ¹³ C	å ¹⁸ ∩	δ ¹³ Ω
Hondiese lise weis weis weis weis weis weis weis w		ч U			ν U	• 0		50		• •	• •				
Automation density of a set of the set	Benthic foraminifera (botto	m water	•)										•		
minimetry in the series of the	Anomalinoides danicus														
Turner or manTurner of the sector of the secto	Bulimina son														
Characterizational controlUnit </td <td>Cassidulina cornuta</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0.360</td> <td>0.720</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cassidulina cornuta							-0.360	0.720						
CalculationCalculatio	Cibicidoides kullenbergi			0.358	0.340	0.358	0.340			0.358	0.340				
Checkelar and Decision and Decision of Checkelar and Part of Checkelar	Cibicidoides lamontdohertyi					0.305	0.417								
Checkedar ng Checkedar ng 200.2100.2300	Cibicidoides mundulus					<u> </u>								0.587	0.512
 Lamenar sph. Link und und und und und und und und und und	Cibicidoides sp.B					0.400	-0.250			0.400	-0.250				
networksong many many many many many many many many	Cibicidaides sp.C	0 12.1	0 79.1	0.30%	0 210	0.428	0.500			0 297	0 783	0.490	0 210	0.507	0.192
Control late may	Cibicidoides wuellerstorfi	0.134	0.724	0.370	0.210	0.490	0,240			0.490	0.240	0.470	0.210	0.490	0.240
Globarding matche in the set of the se	Gavelinella spp.														*
Glober and space of the sector of the sect	Globocassidulina spp.														
Graden up, 0.30 1.02 0.30 0.60 0.814 Machiner up, 0.30 1.02 0.30 1.02 0.30 0.02 0.30 0.02 0.30 0.02 0.30 0.02 0.30 0.02 0.30 0.02 0.30 0.02 0.30 0.02	Globocass idulina subglobosa							-0.147	0.868						
maintain part main 0.330 0.300 0.300 0.310 <td>Gyroidina spp.</td> <td></td> <td>-0.146</td> <td>0.519</td> <td>0.099</td> <td>0.694</td>	Gyroidina spp.											-0.146	0.519	0.099	0.694
naments prove non-series and series of the s	Nuttallides spp.	0,330	1.082	0.220	1.092					0 2 2 0	1.082	0 220	1 092		
Control <	Nuttallides umbonifera			0.183	0.803					0.330	1.002	0.550	1.002	0.728	0.689
Pierware not watch Bondware not Bondware not B	Oridorsalis umbonatus														
New low of many low of the set of the se	Planulina bradyi					0.178	0,700								
Render projection0.0131.2010.0140	Planulina renzi					0.343	0.140	0.662	0.230						
лици and any angeneration of the second of	Rectuvigerina spinea							0.013	1.260				1 000		
Turne app 0.38 0.50 Plaking for app of the second of the seco	Mensioina beccariiformis Stilottomelle											0.214	1.203		
Control Control Control	University spin.							0.038	0.982						
r hanking niki karala and a set and								0.000							
	Planktonic foraminifera (su	irface wa	ter)												
Accorner premers 4.003 -0.003 Categorized ar reference -0.004 -0.004 -0.004 Categorized ar reference -0.004 0.001 -0.004 0.001 Categorized ar reference -0.004 0.001 -0.004 0.001 0.001 Categorized ar reference -0.004 -0.004 -0.004 0.001	Acarinina nitida										0.00-				
name and provide angle of the set of the se	Acarinina primitiva									-0.108	-0.081				
CappyDes and Tune	Catanswirax echimeter														
Calignment	Catapsydrax son														
Calcymental wir working -0.104 0.400 -0.015 -0.105 -0.105 Collegeneral wir working -0.104 0.140 -0.105 -0.10	Catapsydrax unicavus														
Chargehole invious disjona 0.134 0.100 Chole invisus disjona 0.134 0.101 Chole invisus disjona 0.135 0.13 Chole invisus disjona 0.1759 1.055 Chole invisus disjona 0.1759 1.05 Chole invisus disjona 0.000 0.000 0.000 Chole invisus dinvisus disjona <	Chiloguembelina spp.		·									-0.166	0.291		
μontegringers and mapping 0.181 0.140 Goldgers and guidational of the second	Chiloguembelina wilcoxensis														
Concepting angebraik Concepting the appendix is a set of the appendix is a set o	Dentoglobigerina altispira					-0.184	0.140								
Colsbyrene acreations: Colsbyrene acreation: Colsbyrene acreatio: Colsbyrene acreation: Colsby	Globigerina angulisuturalis Globigerina angetura														
Goldgerons conjunta	Globigerina barbemoensis														
Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia Globaratia	Globigerina corpulenta														
	Globigerina euaperta														
Globperturing journal journa journal journal journal journal journal jo	Globigerina globularis														
Conversion in represents Chologreine and anomplany trais Chologreine an	Globigerina gortanii Globigerina vananthaa														
Cobbyrnia machimuli Gobyrnia machimuli Gobyrnia machimuli Gobyrnia machimuli Gobyrnia triparita Gobyrnia triparita Gobyrnia triparita 1.759 1.065 Gobyrnia machimuli 0.264 -0.011 Gobyrnia riparita 0.264 -0.011 Gobyrnia machimuli 0.264 -0.011 Gobyrnia machimuli 0.000 0.000 Gobyrnia machimuli 0.001 0.000 Gobyrnia machimuli 0.001 0.000 Gobyrnia machimuli 0.000 0.000 Gobyrnia machimulia 0.000 0.000 Gobyrnia machimulia 0.000 0.000 Gobyrnia machimulia 0.000 0.000 Gobyrnia machimulia	Giooigerina nepenines Globizerina obesa														
Globgratis gail Globgratis relation Globergratis relation <	Globigerina quachitensis														
Globy:rive withit 1.759 1.065 Globy:rive withit 0.060 Globy:rive withit rube 0.264 0.011 Globy:rive with rube 0.000 0.000 Globy:rube 0.000 0.000 Globoratis rube 0.000 0.000	Globigerina pseudoampliapertura														
Globy:risk trystrik 1,759 1.065 1.061 Globy:risk trystrik 0,264 0.011 0.000 Globy:risk strystrik 0,264 0.011 0.000 Globy:risk strystry 0,000 0.000 0.000 Globy:risk strystry 0.000 0.000 0.000 Globy:risk strystry	Globigerina selli														
Caobing run wind wind in the interval of the in	Globigerina tripartita														
Colographics note: 0.264 0.011 Colographics note: 0.000 0.000 Colographics: 0.000 0.000 <	Globigerina venezuelana					-1.759	1.065								
Colographic scale 0.000	Globigerina winkleri Globigerinaides ruber					0 264	-0.011								
Globigrowiter srigter Globigrowiter subgravitation Globigrowiter subgravitation Globigrowiter subgravitation Globogrowitet subgravitation Globigrowitet subgravitation Globogrowitet subgravitation Globigrowitet subgravitation Globogrowitet subgravitation Globigrowitet subgravitation Globogravitation supp. Globogravitation supp. Globogravitation supp. Globogravitation Globogravitation Gl	Globigerinoides sacculifer					0.000	0.000								
Globigretworkit subspacedratus Globigretworkit subspacedratus IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Globigerinoides seiglei														
Globigreinauhka india	Globigerinoides subquadratus														
Globagerbathka tardt Globagerbathka tardt Globagerbathka tardt The second tardt Globagerbathka tardt Globagerbathka tardt Morozovila tardt<	Globigerinoides trilobus														
Curboger subanesa metal attribute Cibobger subanesa metal attribute More sovel a arge subanesa metal attribute More sovel a subbotinae More sovel a subbotinae <	Globogerinatheka index														
Cilobargadarbas chiscens Cilobargadarbas page Cilobargadarbas page Cilobargadarbas page Cilobargadarbas renoschiscens Cilobargadarbas renoschiscens Cilobargadarbas renoschiscens Cilobargadarbas page Cilobargadarbas page Cilobargadarbas page Cilobargadarbas page Cilobargadarbas page Cilobargadarbas page Morozovella arganensis Morozovella previsa Morozovella previsa Moro	Globogerinaineka mexicana Globogerinaiheka mu														
Globoquadrins rpadehisters	Globoquadrina dehiscens														
Globoquadrian raps. Globoquadrian transide/iscens Globoquadrian transide/iscens Globoratalia cervazularnis Globoratalia cervazularnis Globoratalia tripitata Globoratalia tripitata	Globoquadrina pradehiscens														
Globordalia errozajdnitis Globordalia errozajdnitis Globordalia izdiaa Globordalia izdia Morozovella izdia <tr< td=""><td>Globoquadrina spp.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	Globoquadrina spp.														
Ciobareata conoidea Ciobareata ispita Mortovella acuta Mortovella acuta Mortovella acuta Mortovella acuta Mortovella perdomenza di	Globoquadrina transdehiscens														
Culoarialia conciaria Globorealia infrata Globorealia infractuliovide Globorealia intercatiliovide Globorealia intercatiliovide Globorealia intercatiliovide Globorealia intercatiliovide Globorealia intercatiliovide Globorealia intercatiliovide Globorealia intercatiliovide Globorealia intercatiliovide Globorealia intercatiliovide Morecovella area Morecovella formosa Morecovella premosa Morecovella premosa Morecovella premosa Morecovella predoritaa Morecovella predo	Globorotalia cerroandensis Cloborotalia cerroandensis														
Cilobardala priphroonda Cilobardala priphroonda Cilobardala statensis Cilobardala statensis Cilobardala statensis Cilobardala statensis Cilobardala statensis Cilobardala statensis Cilobardala statensis Morozovella gramasa Morozovella primosa Morozovella primosa Morozove	Gioborotalia inflata														
Globoretalla statensis Globoretalla statensis Globoretalla statensis Globoretalla statensis Globoretalla statensis Globoretalla statensis Globoretalla statensis Morotovella aragonensis Morotovella formas Morotovella formas Morotovella formas Morotovella statensis Morotovella statensis	Globorotalia peripheroronda														
Globoretalia tranecatalianoides Globoretalia tranecata Globoretalia	Globorotalia siakensis														
Globoretaloides miozea -0.884 1.079 Hanklenbin spp. -0.884 1.079 Hanklenbin spp. -0.884 1.079 Morozovella aragonensis - - Morozovella formosa - - - Morozovella formosa - - - - Morozovella pisudomenar dit - - - - Morozovella pisudomenar dit - - - - - Morozovella pisudomenar dit - - - - - - Morozovella pisudomenar dit -	Globorotalia truncatulinoides														
Ciobardabides suleri -0.854 1.079 Hanklenber spp. Hanklenber spp. Hanklenber spp. Hanklenber spp. Horozovella gragonensis Morozovella formosa Morozovella pisudomenar di Morozovella pisudomenar di Morozovella pisudomenar di Morozovella rex Morozovella subotinae Morozovella velascoensis Planoglabidina spp0.610 0.850 -0.610 -0.	Globorotaloides miozea									0.007	1.070				
riamknori typ. Morezovella aragonensis Morezovella formosa Morezovella formosa Morezovella pseudomenata Morezovella pseudomenata Morezovella subolinae Morezovella subolinae Morezovella velascoensis Planoglobulana typ. Subolina typ. Subolina typ. Subolina typ.	Gioborotaloides suteri									-0,884	1.079				
Morotovila aragounsis Morotovila aragounsis Morotovila formosa Morotovila margbodentata Morotovila subotinae Morotovila subotinae Morotovila subotinae Morotovila subotinae Morotovila subotinae spp. Subotina spp0.610 0.850 -0.610 0.850 Tarboratala berefeterens	Hantkenter spp.														
Morozovella formasa Morozovella Inargivudentala Morozovella margivudentala Morozovella pesudomenarditi Morozovella subbotinae Morozovella velascoensis Planoglabulina spp0.610 0.850 -0.610 0.850 Tarbornalla berefestens Dochoratali pere	Morozovella arazonensis														
Morotovella lehneri Morotovella marginudentala Morotovella rez Morotovella subbotinae Morotovella subbotinae Morotovella velasconnis Planoglobalina spp0.610 0.850 -0.610 0.850 Tarbornalla incretescens Dechandelia pro-	Morozovella formosa														
Morozovella marginadentata Morozovella pseudomenardit Morozovella rek Morozovella subolitnar Morozovella velascontis Planoglobulitar typ. Subbotina typ0.610 0.850 -0.610 0.850 Tarboretalla increbesens Debenardi in serve	Morozovella lehneri														
Morozowella pseudomenardii Morozowella rez Morozowella subbolinae Morozowella velasconnis Planoglobulina typ. Subbolina typ0.610 0.850 -0.610 0.850 Tarborotalia turrebecens	Morozovella marginodentata														
More converting real More converting reals and bottmae More converting velas constis Planoglabulism spp. Subbotima spp0.610 0.850 -0.610 0.850 Tarbor realia increbesens Dechanged in serve	Morozovella pseudomenardii														
Norozovella velas coensis Planoglobulion spp. Subbotina spp0.610 0.850 -0.610 0.850 Tarborotalia increbescens Tarborotalia increbescens	Morozovella subhotinae														
Planoglobulina spp. Subbatina spp. -0.610 0.850 -0.610 0.850 Tarborotalia increbescens -0.610 0.850 -0.610 0.850	Morozovella velas coensis														
Subbritina spp0.610 0.850 -0.610 0.850 Tarborotalia incretescens Technologia pro	Planoglobulina spp.														
Turborotalia burtebescens Turborotella pro	Subbotina spp.	-0,610	0.850							-0.610	0.850	-0.610	0.850		
A METRIX INCLUME NUM	Turborotalia increbescens Turborotalia suu														

Backman *et al.*, 1990; and others). Among them, the biostratigraphic time scale proposed by Berggren *et al.* (1985a, 1985b) has been accepted as the standard time scale (e.g., Peirce, Weissel, *et al.*, 1989). Backman *et al.* (1990), however, pointed out that low-latitude nannofossil biochronology differs from the standard of mid-latitude biostratigraphy established by Berggren *et al.* (1985a, 1985b).

Based on their information the biochronology of nannofossil species events is constructed as follows; a) the basic biostratigraphic time scale follows that of Berggren et al. (1985a), b) nannofossil species events near the studied area are included if they are not contradictory in order, and c) species events described since Berggren et al. (1985a, 1985b) are considered. Thus, the biochronology applied in the time interval are: Pleistocene (Takayama and Sato, 1987), late Pliocene (Backman and Shackleton, 1983), early Pliocene to late Miocene (Rio et al., 1990), middle Miocene to early Miocene (Backman et al., 1990), Oligocene to middle Eocene (Okada, 1990), and the early Eocene to Paleocene (Berggren et al., 1985a; 1985b; 1985c). In addition to the species events proposed by Martini (1971) and Okada and Bukry (1980), zonal schemes (Backman, J., Duncan, R. A., et al., 1988; Peirce, Weissel, et al., 1989; Rio et al., 1990) are also considered. These compiled nannofossil events are shown in Table 3.

The numerical age of a sampled horizon is calculated by assuming a constant sedimentation rate between the two stratigraphic levels. The geomagnetic polarity events and nannofossil event levels at each site used in this study are shown in Tables 4 and 5, respectively.

3. Paleodepth

Paleodepths in this study were reconstructed by published data based on a "backtrack method" (Sites 214, 215, 216, 237, 238, 709, 752, 754, 756, and 758: Zachos *et al.*, 1992c; Sites 738 and 744: Barrera and Huber, 1991; Site 253: Kidd and Davies, 1978; Site 519: Finger, 1984; Sites 521, 522, and 523: Hsü *et al.*, 1984; Sites 525, 526, 527, 528, and 529: Moore, Jr. *et al.*, 1984; Sites 366 and 667: Miller *et al.*, 1989; Sites 698, 699, 700, and 702: Katz and Miller, 1991). The paleodepth at Site 748 through the Paleogene was upper bathyal (water depth: ~1000 m; Mackensen and Berggren, 1991). The paleodepth at Site 748 was calculated by a assuming linear change from this depth to the present depth (1290 m). In case of an unknown subsidence curve, the present depth was used for the paleodepth for relatively young ages.

4. Paleolatitude and Paleolongitude

Paleolatitude and paleolongitude of the Indian Ocean site are estimated from migration velocity calculated from backtracked paleocoordinate (Zachos *et al.*, 1992c). Paleolatitude and paleolongitude of the South Atlantic Ocean site are estimated from migration velocity given by Scotese *et al.* (1988), and based on sea-floor spreading isochrons (Larson *et al.*, 1985). The paleolatitude and paleolongitude at each site are shown in Table 6.

B. General trend of isotopic records in the northern Indian Ocean

In the northern Indian Ocean, distribution pattern of carbon and oxygen isotopic ratios in surface (~50 m in depth) and bottom waters throughout the Cenozoic are illustrated in Figs. 36-39.

The oxygen isotopic records of bottom water around the Cretaceous / Tertiary boundary show a negative shift of 0.4‰ from -0.8 to -1.2‰. During the Paleocene, 818O values increase by 1.3‰ (66-61 Ma), and decrease down to a minimum value (-0.6‰) in the earliest Eocene (56 Ma). δ^{18} O values throughout the Eocene gradually increase by 1.6% from the minimum value in the earliest Eocene. From the Oligocene, distinct positive shifts are recognized three times. These shifts are observed immediately above epoch or subepoch boundaries, and accompanied by decreasing $\delta^{18} O$ values before the shifts. The first shift is recognized around the Eocene / Oligocene boundary, and the second shift in the middle Miocene. The net magnitudes of the first and second shifts are 0.7‰, 0.8‰, respectively. In the interval between the first and second shifts, the oxygen isotopic ratios vary from 1.0 to 2.5 ‰, with a gradual increase. Although a discontinuity is found near the Oligocene / Miocene boundary, this is probably caused by limited data. The third shift is recognized in the late Pliocene, and the net magnitude of this shift is 0.8‰. The oxygen isotopic ratios in interval between the second and third shifts are constant with a variation of 1.8-3.3‰. However, two remarkable ¹⁸O maxima are recognized around 6 and 8 Ma. In the interval between the third shift and the present, δ^{18} O values show a gradual increase.

During the Paleocene, the increase of δ^{18} O values in surface water is observed up to 61 Ma, and subsequently a ¹⁸O minimum value (-2.0‰) is recognized in the earliest Eccene (58 Ma). The same pattern of isotopic change is found in oxygen isotopic records of bottom water. The oxygen isotopic records of surface water, however, exhibit a smaller magnitude of change (only 0.5 ‰) than those of bottom waters. The difference of δ^{18} O value between Sites 752 and 758 is relatively large (about 0.8‰) at that time. The ¹⁸O minimum of surface water during the earliest Eocene (58 Ma) delayed by about 2 Ma than that of bottom waters. From 61 to 37 Ma, the distribution of δ^{18} O values are parallel between surface and bottom water around 1.8%. During the Eccene, δ^{18} O values increase by 2.5‰ (from -2.1 to 0.4‰) in the entire water column, with the increase of surface δ^{18} O values being especially rapid from the early to early middle Eccene. As a result, the δ^{18} O difference between surface and bottom water is reduced to about 0.6‰ after the early middle Eccene. From the Oligocene to early Miccene, δ^{18} O values are constant around -0.2%. No remarkable shift at the Oligocene / Eccene boundary is recognized. Then, δ^{18} O values of surface water are again separated from those of bottom water at this time, and the difference is about 1.5‰ during the Oligocene. During the Miocene, δ^{18} O values decrease from 20 Ma to 16 Ma, increase to a peak value (~0.2‰) at 12 Ma, and again decrease to about -1.0‰. However, 818O values at Site 253 tend to increase from 0.5 to 1.5 % at that time. Hence, the scatter of δ^{18} O value increases, and the highest degree of scatter (reaching 3‰) is recorded at 6 Ma. Around the Miocene / Pliocene boundary, δ^{18} O values at Site 253 rapidly decrease, and as a

421

Table 3. Cenozoic calcareous nannofossil datum levels and corresponding zonal boundaries ofOkada and Bukry (1980) and Martini (1971) with age estimates.

		Zone	(hase)			-	Zone (base)				
Event	Species	Okada and	Martini	Age	Reference	Event	Species	Okada and	Martini	Age	Reference
Diene	- Cherry	Bukry (1980)	(1971)	(Ma)				Bukry (1980)	(1971)	(Ma)	
Increase	Emiliania huxleyi			0.085	1	FO	Discoaster druggii	CN1c	NN2	23.6	10
LO TO	Helicosphaera inversa			0.15	2	10	Dictyococcites bisectus	CN1a	NN1	23.7	3
FO	Emiliania huxleyi	CN15	NN21	0.275	1,3	10	Sphenolithus ciperoensis			23.7	3
LO	Pseudoemiliania lacunosa	CN14b	NN20	0.460	1,3	LO	Crassidiscus backmanii			24.8	11
FO	Helicosphaera inversa			0.48	2	FO	Crassidiscus backmanii			25.0	11
Acme top	Reticulofenestra sp. A			0.83	2	10	Sphenolithus distentus	CP196	NP25	26.0	11
FO	Gephyrocapsa parallela			0.89	2		Chuismolithus altus	0010		28.2	3
Increase	Gephyrocapsa oceanica			0.90	4	FO	Sphenolulius ciperoensis	CP19a	NP24	30.2	3
Acme top	Gephyrocapsa (small)			0.93	5	FO	Sphenolithus distentus	CPI8		31.2	11
LO	Gephyrocapsa (large)			1.10	2	10	Sphenoluhus aff. distentus	0010	1000	32.4	11
10	Helicosphaera sellii			1.19	2	LO LO	Reliculojenestra umbilica	CPI7	NP23	34.2	11
FO	Gephyrocapsa (large)			1.36	2	10	Bramietieius serraculoides			34.2	11
LO LO	Calcidiscus macintyrei			1.45	3,6	LO LO	Ericsonia obruta	0014		34.4	12
FO	Gephyrocapsa oceanica			1.57	2	10	Ericsonia formosa	CP16C	NP22	34.9	12
FO	Gephyrocapsa caribbeanica			1.66	2	LD LD	Isthmolunus recurvus			34.9	3
LO	Discoaster triradiatus			1.89	7		Hayella suuriformis			35.1	
ro	Discoaster brouweri	CN13a	NN19	1.91	2	FO	Sphenolithus aff. distentus			35.1	11
Increase	Discoaster triradiatus			2.07	7	LO	Chiasmolithus titus	004.0		35.8	11
ы	Discoaster pentaradiatus	CN12d	NN18	2.35	6, 8	Acme top	Ericsonia subdisticha	CP16b		35.9	3
ы	Discoaster surculus	CN12c	NN17	2.41	6	LO	Reticulofenestra oamaruensis			36.0	13
го	Discoaster tamalis	CN12b		2.65	6,7	Increase	Ericsonia obruta			36.1	12
го	Discoaster variabilis			2.90	5	LO	Discoaster saipanensis	CP16a	NP21	36.7	3,12
го	Sphenolülus spp.			3.45	6	LO	Discoaster barbadiensis			36.8	11
го	Sphenolühus neoabies			3.51	. 8	LO	Crirocentrum reticulatum			37.0	11
ы	Sphenolithus abies			3.56	2	FO	Isthmolithus recurvus	CP15b	NP19	37.8	3, 11
ro	Reticulofenestra pseudoumbilica	CN12a	NN16	3.56	6	FO	Chiasmolithus oamaruensis			39.8	3
FO	Discoaster tamalis	CN11b		3.8	3	LO	Chiasmolithus grandis	CP15a	NP18	40.0	3
LO	Amaurolithus tricorniculatus			3.7	3	го	Campylosphaera dela			40.6	11
FO	Pseudoemiliania lacunosa			4.05	8	ь	Sphenolühus spiniger			41.4	11
FO	Discoaster asymmetricus			4.1	3	LO	Sphenolithus furcatolithoides			41.4	, 11
го	Amaurolithus delicatus			4.11	9	FO	Dictyococcites bisectus			41.4	11
LO	Amaurolithus primus	CN11a	NN15	4.37	9	FO	Reticulofenestra reticulata			42.1	13
го	Ceratolithus acutus			4.43	9	LO	Chiasmolithus solitus	CP146	NP17	43.4	11
FO	Ceratolithus rugosus	CN10c	NN13	4.66	9	LO	Discoaster bifax			43.4	11
FO	Ceratolithus acutus	CN10b		4.85	10	LO	Nannotetrina alata			43.4	11
LO	Triquetrorhabdulus rugosus			4.90	10	FO	Reticulofenestra umbilica			43.5	11
LO	Ceratolithus armatus			5.06	5	LO	Cruciplacolithus staurion			43.5	11
LO	Discoaster quinqueramus	CN10a	NN12	5.26	5	го	Nannotetrina fulgens	CP14a		45.4	3
ь	Amaurolithus amplificus			5.33	9	FO	Discoaster bifax	-		46.6	11
LO	Discoaster berggrenii			5.80	5.	LO	Chiasmolithus gigas	CP13c		47.0	3
FO	Amaurolithus amplificus			6.02	9	FO	Sphenolithus furcatolithoides	00401		48.2	11
FO	Amaurolühus prinus	CN9b		6.70	10	FO	Chiasmolithus gigas	CP136		49.0	11
FO	Discoaster quinqueramus			7.46	10	FO	Nannotetrina fulgens	CP13a	NP15	49.8	3
FO	Discoaster berggrenii	CN9a	NN11	8.00	9	LO	Discoaster lodoensis			50.4	12
LO	Discoaster neohamatus			8.10	8	FO	Reticulofenestra inflata			52.0	3
FO	Discoaster neorectus	CN8b		8.5	3	FO	Discoaster sublodoensis	CP12	NP14	52.6	3
FO	Discoaster loeblichii			8.5	3	LO	Tribrachiatus orthostylus	CP11	NP13	53.7	3
ы	Discoaster hamatus	CN8a	NN10	8.67	10	FO	Discoaster lodoensis	CP10	NP12	55.5	3
го	Catinaster spp.			8.77	10	LO	Tribrachiatus contortus	CP9b	NPII	56.3	3
FO	Discoaster neohamatus			8.96	10	FO	Discoaster diastypus			56.5	. 3
го	Catinaster coalitus			9,00	5	FO	Tribrachiatus orthostylus	-		56.6	3
FO	Catinaster calyculus			10.00	3	LO	Fasciculuhus spp.	CP9a	NP10	57.8	3
ſO	Coccolithus miopelagicus			10.23	2	FO	Tribrachiatus bramlettei			57.8	3
FO	Discoaster hamatus	CN7	NN9	10.5	10	FO	Campylosphaera eodela			58.2	3
FO	Catinaster coalitus	CN6	NN8	11.1	10	FO	Discoaster multiradiatus	CP8	NP9	59.2	3
FO	Discoaster pentaradiatus			12.0	3	FO	Discoaster mobilis			59.8	3
FO	Discoaster kugleri		NN7	12.2	10	FO	Heliolithus reidelii	CP7	NP8	60.0	3
LO	Coronocyclas nitescens			12.7	9	FO	Discoaster mohleri	CP6	NP7	60.4	3
ſO	Coccolithus floridanus	CN5b		13.1	3, 10	FO	Heliolithus kleinpellii	CP5	NP6	61.6	3
LO	Sphenolithus heteromorphus	CN5a	NN6	13.6	10	FO	Ellipsolithus tympaniformis		· ·	62.0	5
FO	Discoaster exilis			15.4	3	FO	Fasciculithus spp.	CP4	NP5	62.0	3
LO	Helicosphaera ampliaperta	CN4	NN5	16.0	3, 10	FO	Ellipsolithus macellus	CP3	NP4	63.7	3
Acme to	p Discoaster deflandrei			16.1	9	FO	Prinsius martinii			63.8	3
FO	Discoaster signus			16.1	9	FO	Chiasmolithus danicus	CP2	NP3	64.8	3
FO	Sphenolithus heteromorphus	CN3		18.4	10	FO	Cruciplacolithus tenuis	CP1b	NP2	65.9	3
го	Sphenolithus belemnos		NN4	18.8	10	FO	Biantholithus sparsus	CP1a	NP1	66.4	3
ы	Triquetrorhabdulus carinatus		NN3	19.5	10	FO	Nephrolühus frequens			69.0	
FO	Sphenolithus belemnos	CN2		20.0	10	LO	Reticulofenestra levis			69.0	

Note: FO = first occurrence, LO = last occurrence. The references refer to the age column and represent (1) Thierstein et al. (1977); (2) Takayama and Sato (1987); (3) Berggren et al. (1985a, 1985b, 1985c); (4) Gartner (1977); (5) Gartner (1990); (6) Backman and Shackleton (1983); (7) Backman and Pestiaux (1986); (8) Rahman and Roth (1989); (9) Rio et al. (1990); (10) Backman et al. (1990); (11) Okada (1990); (12) Backman (1987); (13) Wei and Wise (1990).

Koji SETO

Table 4	Nannofossil zonations for Indian and South Atlantic Ocean DSDR and ODR sites
	taine occur zonations for indian and South Atlantic Occar DSDF and ODF Siles.

_		Zone (ba	use)										
Event	Species	Okada and	Martini	Age									
·	·	Bukry (1980)	(1971)	(Ma)	Site 214*	Site 215	Site 216*	Site 237*	Site 238*	Site 253*	Site 525	Site 526	Site 527
FO	Emiliania huxleyi	CN15	NN21	0.275									
LO	Pseudoemiliania lacunosa	CN14b	NN20	0.460								3.23	
FO	Genhvrocansa (laree)			1.19									
LO	Calcidiscus macintyrei			1.45									
FO	Gephyrocapsa oceanica			1.57									
10	Discoaster triradiatus			1.89									
LO	Discoaster brouweri Discoaster triradiatus	CN13a	NN19	1.91							9.3	16.2	14
LO	Discoaster pentaradiatus	CN12d	NN18	2.35									
LO	Discoaster surculus	CN12c	NN17	2.41									18.97
LO	Discoaster tamalis	CN12b		2.65									
	Discoaster variabilis			2.90									
LO	Reticulofenestra pseudoumbilica	CN12a	NN16	3.43							19.26		a 2 4a
FO	Discoaster tamalis	CNIIb		3.8							16.20		23.42
lo	Amaurolithus tricorniculatus			3.7									
10	Amaurolithus primus	CNIIa	NN15	4.37							32.6	29.5	
FO	Ceratolithus rugosus Ceratolithus acutus	CN10c	NN13	4.66					120.2	19.3	47.82	35.45	
10	Discoaster quinqueramus	CN10a	NN12	5.26	92.9			82 5	138.5	24 50.25 08	57	47.2	59.1
LO	Discoaster berggrenii			5.80					•••••	2			
FO	Amaurolithus primus	CN9b		6.70	119.4			100.0	186.3				
FO	Discoaster quinqueramus Discoaster barooneuii	C110-		7.46					••••				
FO	Discoaster verggrenn Discoaster neorectus	CN9a CN8b	NNII	8.00	133.3		111.0	111.1	214.6	39.98-41.18	103.78	67.87	104.12
LO	Discoaster hamatus	CN8a	NN10	8.67	152.7		119.0	120.6	218.5	43.65-45.15	119.68	80.08	104.56
FO	Discoaster neohamatus			8.96						10.00 10.10		00.00	101.50
FO	Discoaster hamatus	CN7	NN9	10.5	162.0			130.0	280.6	54.65-56.15	137.52	89.73	110.55
FO	Catinaster coalitus	CN6	NN8	11.1	170.8		124.5	130.0	290.5		139.58	94.21	113
FO	Discoaster pentaradiatus Discoaster kunleri		NIN77	12.0							1000	100 80	
LO	Coronocyclas nitescens		ININ/	127							120.0	106.75	
LO	Coccolithus floridanus	CN5b		13.1	181.1			135.5					
lo	Sphenolithus heteromorphus	CN5a	NN6	13.6	190.8		139.5	149.0		65.65-69.15	172.88	114.63	
FO	Discoaster exilis			15.4									
LO A cme tor	Helicosphaera ampliaperta Discoarter deflandrai	CN4	NN5	16.0			149.0	158.5	362.1	74.00-76.58	193.15	116.65	
FO	Discoaster aejanarei			16.1									
FO	Sphenolithus heteromorphus	CN3		18.4	201.0		158.3		386.3				
LO	Sphenolithus belemnos		NN4	18.8							197	117.45	
LO	Triquetrorhabdulus carinatus		NNB	19.5						83.15-84.65	207.95	121.08	
FO	Sphenolithus belennos Disconster druggil	CN2 CNL	NIN P	20.0	208.2		167.2	177.5	390.3	04 / 8 0/ / 8			
LO	Dictvococcites bisectus	CNIa	NN1	23.0	221.2		1954	187.0	393.0	64.03-60.03	226.75	122	
LO	Sphenolithus ciperoensis			23.7			120.4		430.0		256.65	160.09	
LO	Sphenolithus distentus	CP19b	NP25	26.0						89.65-91.15	278.6	170.2	
LO	Chiasmolithus altus			28.2									
FO	Sphenolithus cipercensis Schevolithus distensis	CP19a CP19a	NP24	30.2						96.15-98.95		184.1	
LO	Reticulofenestra umbilica	CP17	NP23	34.2						111.53-114.80		209.6	113.84
LO	Ericsonia formosa	CP16c	NP22	34.9									
LO	Isthmolühus recurvus			34.9									
LO	Reticulofenestra oamaruensis			36.0									
EO	Discoaster salpanensis Isthmolithus recomus	CP16a CP15b	NP21	36.7						1225		209.61	125.68
FO	Chiasmolithus oamaruensis	Cribo	INFIS	39.8						152.5	278 61	220.2	
LO	Chiasmolithus grandis	CP15a	NP18	40.0							270.01		
FO	Reticulofenestra reticulata			42.1									
LO	Chiasmolithus solitus	CP14b	NP17	43.4									
10	Kenculojenestra umbulca Namuletrina fulgens	CP141		43.5									
LO	Chiasmolithus gigas	CP13c		47.0							279.1		138.85
FO	Chiasmolithus gigas	CP13b		49.0							283.89		140.77
FO	Nannotetrina fulgens	CP13a	NP15	49.8							291.65		
FO	Discoaster sublodoensis	CP12	NP14	52.6							310.55		
FO	Disconster Indoensis	CPII	NPI3	55.7		814					329.55		
LO	Tribrachiatus contortus	CP96	NPII	56.3		0.0					349		
FO	Discoaster diastypus			56.5							-		
FO	Tribrachiatus orthostylus			56.6							372.61		
LO	Fasciculithus spp.	CP9a	NP10	57.8							391.55		
FO	L'ribrachiatus bramlettei Discoaster multiradiatur	CDV	MITED	57.8		1116					101 00		
FO	Heliolithus reidelii	CP3	NP8	60.0		114.5					413.13		
FO	Discoaster mohleri	CP6	NP7	60.4		130.0					419.63		
FO	Heliolithus kleinpellii	CP5	NP6	61.6		150.0					428.35		
FO	Ellipsolithus tympaniformis Enorimitish	65 ·		62.0							433.95		
FO	rasciculiuus spp. Filipsolithus macellus	CP4 CP3	NP5 NP1	62.0 63.7									
FO	Prinsius martinii		11174	63.8									
FO	Chiasmolithus danicus	CP2	NP3	64.8									
FO	Cruciplacolithus tenuis	CP1b	NP2	65.9									
FO	Biantholithus sparsus	CP12	NPI	66.4									
10	Reticulatenestra levie			69.0 60 0									
	nenonojencon a terio			0.0									

69.0

Carbon and oxygen isotopic paleoceanography

Table 4. (continued).

F 4	6 1	Zone (ba	se)							D 417		
Event	Species	Okada and Bukry (1980)	Martini (1971)	Age (Ma)	Site 528	Site 529	Site 658	Site 662	Site 663	Depth (m Site 665	bsf) Site 667	Site 698
FO	Emiliania huxleyi	CN15	NN21	0.275			34.2-43.7	4.1-4.8	4.3-5.8			
lo	Pseudoemiliania lacunosa	CN14b	NN20	0.460		1.7	68.7-70.2	21.7-22.2	14.5-15.8	8.9-9.5	6.6-6.9	
LO	Helicosphaera sellii			1.19								
FO	Gephyrocapsa Calsidizate masintarei			1.36	12.81		001004	106 9 109 5	19 2 61 0	20.0 20.7	165 20 9	
FO	Gephyrocapsa oceanica			1.45	12.04		33.1-33.4	100.8-108.5	48.2-01.9	29.9-50.7	10.3-29.6	
LO	Discoaster triradiatus			1.89								
lo	Discoaster brouweri	CN13a	NN19	1.91	19.7	17.3	124.7-126.9	122.2-123.2	103.1-103.7	35.6-36.8		
Increase	Discoaster triradiatus			2.07			135.0-145.0	130.4-133.5	109.8-111.7	39.6-39.8		
	Discoaster pentaradiatus	CN12d CN12a	NN18	2.35			165.3-165.7	148.3-152.1	133.0-135.0	45.5-47.0	32.2-33.8	
LO	Discoaster tamalis	CN126	ININI /	2.41			197.7-201.3	159.5-160.5	141.6-143.2	50.7-51.2	40.5-41.7	
LO	Discoaster variabilis			2.90				100.0				
lo	Sphenolähus			3.45			281.4-290.9	189.7-193.9		63.8-64.4	48.8-49.6	
lo	Reticulofenestra pseudoumbilica	CN12a	NN16	3.56	27.85	19.05		193.9-196.7		65.0-65.4	49.6-54.2	
FO	Discoaster tamalis	CNIIb		3.8								
	Amourolithus tricorniculatus	Chille	NINTI C	3.7	46.2	26.25				67.1-69.9	58.3-67.8	
FO	Ceratolithus primus	CN10c	NN13	4.57	40.5	30.35				77 7.73 8	758.783	
FO	Ceratolithus acutus	CN10b		4.85	55.61						79.7-85.1	
LO	Discoaster quinqueramus	CN10a	NN12	5.26							84.2-85.2	
lo	Discoaster berggrenii			5.80								
FO	Amaurolithus primus	CN9b		6,70							106.8-108.3	
FO	Discoaster quinqueramus	C11 10		7.46							118.0-120.0	
FO	Discoaster berggrenii	CN9a CN9b	NNH	8.00 9.5	102.85							
10	Discoaster hamatus	CN8a	NN10	6.J 867	108.9							
FO	Discoaster neohamatus	C 1 104		8.96								
FO	Discoaster hamatus	CN7	NN9	10.5	115.34	37.46						
FO	Catinaster coalitus	CN6	NN8	11.1	117.69							
FO	Discoaster pentaradiatus			12.0								
FO	Discoaster kugleri		NN7	12.2	118.5							
10	Coronocyclas nuescens	CNISh		12.7							157 9-158 3	
10	Sohenolithus heteromorphus	CN50 CN5a	NN6	13.1	118 51	55 25					160.3-160.9	
FO	Discoaster exilis		14.05	15.4								
LO	Helicosphaera ampliaperta	CN4	NN5	16.0	132.2	56.43					166.2-166.6	
Acme top	Discoaster deflandrei			16,1								
FO	Discoaster signus			16.1								
FO	Sphenolithus heteromorphus	CN3		18.4		(0.8)					207.7-208.0	
10	Sphenolithus belemnos		NN4	18.8	132.74	69.73 74.05					211.5-211.7	
FO	Sphenolithus belemnos	CN2	INING	20.0	145.21	74.05					244.7-229.8	
FO	Discoaster druggii	CNle	NN2	23.6		82.05					250.4-257.8	
LO	Dictyococcites bisectus	CNIa	NN1	23.7								
LO	Sphenolithus ciperoensis			23.7		118.55					293.0-293.4	
LO ·	Sphenolithus distentus	CP19b	NP25	26.0		138.15					343.3-352.2	
LO	Chiasmolithus altus	0010		28.2							261 9 276 0	
FO	Sphenolithus cipercensis	CP19a	NP24	30.2							504.0-570.0	
10	Sphenolunus aistenais Reticulofenestra umbilica	CP10	NP23	31.2		162.55						
LO	Ericsonia formosa	CP16e	NP22	34.9		186.07						
LO	Isthmolähus recurvus			34.9								
lo	Reticulofenestra oamaruensis			36.0								
lo	Discoaster sayumensis	CP16a	NP21	36.7	36.9	199.79						
FO	Isthmolähus recurvus	CP15b	NP19	37.8								
FO 10	Chiasmolithus oamaruensis Chiasmolithus orandis	CDIS	NDIS	39.8	40.2							
FO	Reticulatenestra reticulata	CI 134	14110	42.1								
LO	Chiasmolithus solitus	CP14b	NP17	43.4								
FO	Reticulofenestra umbilica			43.5								
LO	Nannotetrina fulgens	CP14a		45.4								
LO	Chiasmolithus gigas	CP13c		47.0								
FO	Chiasmolithus gigas	CP13b		49.0	253.5	223.15						
FO	Nannotetrina fulgens Discoaster subledenssis	CPISA	NPID NPL4	49.8		231						13.70-23.00
10	Tribrachiatus orthostylus	CPI1	NP13	53.7	269.5					· •		23.00-32.50
FO	Discoaster lodoensis	CP10	NP12	55.3	284.8	247.15						
LO	Tribrachiatus contortus	CP9b	NP11	56.3								
FO	Discoaster diastypus			56.5	311.5							
FO	Tribrachiatus orthostylus			56.6	306.86							(***)
LO	Fasciculithus	CP9a	NP10	57.8	313.2	264.5						62.80-71.02
FO	i ribrachiatus bramlettei Discoaster multiradiatur	ሮም	NDO	37.8 50.7		772 75						80.66-81.85
FO	Heliolithus reidelii	CP7	NPR	60 O		314.75						89.50-99.00
FO	Discoaster mohleri	CP6	NP7	60.4	346.7	319.8						
FO	Heliolithus kleinpellii	CP5	NP6	61.6		331.9						
FO	Ellipsolithus tympaniformis			62.0	379.7	348.7						
FO	Fasciculithus	CP4	NP5	62.0								
FO	Ellipsolühus macellus	CP3	NP4	63.7								
FO	ermsus marinii Chiasmalithus daulaus	CIM	ND	6.10 6.10	104 2	377 9						
FO	Cruciplacolithus termis	CP1b	NP2	65.9	393.6	383.63						
FO	Biantholithus sparsus	CPIa	NPI	66.4								
FO	Nephrolithus frequens			69.0								
LO	Reticulofenestra levis			69.0								

Tab	le 4. I	(continued).

Koji SETO

	·····	Zone (ba	(a)								
Event	Species	Okada and	Martini	Age							
		Bukry (1980)	(1971)	(Ma)	Site 699	Site 702	Site 709	Site 714	Site 716	Site 738	Site 748
FO	Emiliania huxleyi	CN15	NN21	0.275							
10	Pseudoemitiania lacunosa Valioomina ma politi	CN145	NN20	0.460							
FO	Genhveocansa			1.19					240262		
LO	Calcidiscus macintyrei			1.30			10.4.10.32		34.8-30.3		
FO	Genhvrocavsa oceanica			1.57			19.4.10.32		43.0-40.0 54.1.55.6		
LO	Discoaster triradiatus			1.89			20.92-19.4		54.1-55.0		
LO	Discoaster brouweri	CN13a	NN19	1.91			20.92-19.4		62.2-63.7		
Increase	Discoaster triradiatus			2.07							
LO	Discoaster pentaradiatus	CN12d	NN18	2.35			23.0-21.9		71.9-72.9		
LO	Discoaster surculus	CN12e	NN17	2.41			24.0-23.7				
	Discoaster tamalis	CN125		2.65			28.5-27.3				
10	Liscoasier variabilis			2.90			240.33.4		10101050		
10	Sphenolunus Reticulofementra preudoumbilica	CNU2	NINILG	3.43			34.0-33.4		103.8-105.3		
FO	Discoaster tamalis	CN11h	141410	3.8			50.5-55.5				
LO	Amaurolithus tricomiculatus	0.0110		3.7							
LO	Amaurolithus primus	CN11a	NN15	4.37							
FO	Ceratolithus rugosus	CN10c	NN13	4.66			54.8-53.3		123.2-129.2		
FO	Ceratolithus acutus	CN10b		4.85			57.8-56.3				
LO	Discoaster quinqueranus	CN10a	NN12	5.26			63.0-60.8		148.4-149.1		
LO	Discoaster berggrenii			5.80			107.6-104.6				
FO	Amaurolithus primus	CN9b		6.70							
FO	Discoaster quinqueramus	CN10	NNU 1	7.46							
FO	Discouster vergerenn	CNSb	ININIT	0.00							
LO	Discoaster hamatus	CN8a	NNIO	8.67			111 2,109 1	37 0.31 7			
FO	Discoaster neohamatus	01104	1440	8.96				53.9-52.8			
FO	Discoaster hamatus	CN7	NN9	10.5			114.2-112.7	55.8-55.6			
FO	Catinaster coalitus	CN6	NN8	11.1			115.7-114.2	62.0-61.35			
FO	Discoaster pentaradiatus			12.0							
FO	Discoaster kugleri		NN7	12.2				73.3-72.0			
LO	Coronocyclas nitescens			12.7				79.8-76.5			
10	Coccolithus floridanus	CN5b		13.1				88.05-87.1			
10	Sphenolithus heteromorphus Discoust maxilis	CN54	NN6	13.6				88.05-87.1			
10	Helicomhaera amilianerta	CNI	NINS	15.4				122 15 120 65			
Acme ton	Discoaster deflandrei	C144	DIND	161				122.13-120.03			
FO	Discoaster signus			16.1				127.55-126.75			
FO	Sphenolithus heteromorphus	CN3		18.4				163.3-163.0			
LO	Sphenolühus belemnos		NN4	18.8				166.6-165.3			
LO	Triquetrorhabdulus carinatus		NN3	19.5				166.6-165.3			
FO	Sphenolühus belemnos	CN2		20.0				171.1-169.6			
FO	Discoaster druggii	CNIc	NN2	23.6				179.3-177.8			
10	Dictyococcites bisectus	CNIa	NN1	23.7				195.7-194.4			66.6-76.1
	Sphenolühus ciperoensis Submolithus distantus	CBIO	NIDOS	23.7			201.1-198.1	197.2-195.7			
10	Sphenolulus aistetuus Chiasmolithus altus	CP190	NP25	20.0							
FO	Sphenolithus civeroensis	CP19a	NP24	30 2							
FO	Sphenolithus distentus	CP18		31.2							
LO	Reticulofenestra umbilica	CP17	NP23	34.2							
LO	Ericsonia formosa	CP16e	NP22	34.9							
lo	Isthmolithus recurvus			34.9							104.6-114.1
lo	Reticulofenestra oamaruensis			36.0						23.66-25.16	
LO	Discoaster saipanensis	CP16a	NP21	36.7							
FO	Isthmolühus recurvus	CP15b	NP19	37.8						39.26-40.66	123.6-133.1
10	Chiasmolithus oamaruensis	CDIC	NIDLO	39.8						69.7-71.16	142.6-152.1
FO	Reticulatenestra reticulata	CFIJa	NF10	40.0						06 66 08 16	
10	Chiasmolithus solitus	CP14b	NP17	43.4						20.00-20.10	152.1.161.6
FO	Reticulofenestra umbilica	••••		43.5						118.46-119.96	
LO	Nannotetrina fulgens	CP14a		45.4							
LO	Chiasmolithus gigas	CP13c		47.0							
FO	Chiasmolithus gigas	CP13b		49.0							
FO	Nannotetrina fulgens	CP13a	NP15	49.8						196.8-205.26	
FO	Discoaster sublodoensis	CP12	NP14	52.6	452.62-449.10					226.26-227.79	
LO	Tribrachiatus orthostylus	CPII	NP13	53.7	464.08-468.10	200.23				266 70 24 1 76	268.0-277.5
10	Discoaster todoensis	CPIO	NP12	22.3						255./9-204./0	2/7.5-287.0
FO	Discoaster diastrous	CF90	NELL	56.5						278 9.284 30	
FO	Tribrachiatus orthostylus			56.6							315.5-320.5
LO	Fasciculithus	CP9a	NP10	57.8	487.10-499.45	239.63					320.5-330.0
FO	Tribrachianıs bramlettei			57.8							
FO	Discoaster multiradiatus	CP8	NP9	59.2		249.38				288.2-302.8	378.5-388.0
FO	Heliolithus reidelii	CP7	NP8	60.0		276.58					
FO	Discoaster mohleri	CP6	NP7	60.4						312.44-322.0	397.5-407.0
FO	Heliolithus kleinpellil	CP5	NP6	61.6						322.07-338.30	407
FO	Europsolithus tympaniformis Earciaulithus	CD4	117-5	62.0							
FO	Filipsolithus macellus	CP4 CP3	C1VI ND4	627							
FO	Prinsius martinii	615	1414	63.8						359.5-360.85	
FO	Chiasmolithus danicus	CP2	NP3	64.8						364.35-364.85	
FO	Cruciplacol ithus termis	CPIb	NP2	65.9						376.22-376.55	
FO	Biantholithus sparsus	CP1a	NP1	66.4							
FO	Nephrolithus frequens			69.0						409.14-411.04	416.5
LO	Reticulofenestra levis			69.0							

Carbon and oxygen isotopic paleoceanography

Table 4. (continued).

		Zone (ba	se)								
Event	Species	Okada and	Martini	Age					C14 . 857	CH. 779	CH- 7(3)
		Bukry (1980)	(1971)	(Ma)	Site 750	Site 752	Site 754	Site 756	Site /5/	Site /58	Sue 762*
FO	Emiliania haxlevi	CN15	NN21	0.275							
LO	Pseudoemiliania lacunosa	CN14b	NN20	0.460					2.3-3.8	6.0-7.5	4.4
LO	Helicosphaera sellii			1.19						15.6-17.1	
FO	Gephyrocapsa			1.36							
lo	Calcidiscus macintyrei			1.45					9.0-10.5		
FO	Gephyrocapsa oceanica			1.57							•
LO	Discoaster triradiatus			1.89							
lo	Discoaster brouweri	CN13a	NN19	1.91		4.3	6.1-6.6	0.47-1.97	12.0-13.5	25.2-26.7	27.9
Increase	Discoaster triradiatus			2.07							
LO	Discoaster pentaradiatus	CN12d	NN18	2.35			6.6-8.1			33.3-34.8	25.0
	Discoaster surculus	CN12c	NNI7	2.41			06111		155170		33.9
10	Discoaster tamatis	CN120		2.05			9.0-11.1		13.3-17.0	37 8-39 3	
10	Discousier variabilits			3.45						51.0-57.5	
10	Spherizhanas Reticulofenestra useudoumbilico	CN17a	NN16	3.56		10.3	15.7-16.2	4.50-6.00	23.0-23.6	44.4-45.9	64.4
FO	Discoaster tamalis	CN11b		3.8			17.7-19.2	8.00-8.50	26.6-28.1	57.0-58.5	•
LO	Amaurolithus tricorniculatus			3.7							
LO	Amaurolithus primus	CN11a	NN15	4.37							
FO	Ceratolithus rugosus	CN10c	NN13	4.66							92.9
FO	Ceratolithus acutus	CN10b		4.85		19.1	22.7-25.3		38.2-39.7		
LO	Discoaster quinqueramus	CN10a	NN12	5.26					42.8-44.3	69.7-71.2	99.4
LO	Discoaster berggrenii			5.80							
FO	Amaurolähus primus	CN9b		6.70		25.1	31.8-34.9		52.5-54.0	83.1-84.6	
FO	Discoaster quinqueramus			7.46					62.2-63.6	102.4-103.9	
FO	Discoaster berggrenii	CN9a	NN11	8.00							111.9
FO	Discoaster neorectus	CN8b		8.5				24702567	71 7 71 9	1166 119 1	
LO	Discoaster hamatus	CN8a	NN10	8.67				34. /0-35.6 /	/1.2-/1.8	110.0-118.1	
FO	Discoaster neohamahis	0.7	1110	8.96				27 20 28 80			1184
FO	Discoaster hamatus	CN/	NN9	10.5				31,30-38.80			110.4
FO	Calinaster coalitus	CNO	ININO	11.1			46 5 48 5				
FO	Discouster penarananas		· NINT	122			40.0-40.0				
10	Coronocyclas nitescens		14147	127							
10	Corcolithus floridanus	CN5b		13.1					80.9-81.5		
10	Sphenolähus heteromorphus	CN5a	NN6	13.6		58.1	73.5-77.0	45.40-46.90	83.0-84.5		125.9
FO	Discoaster exilis			15.4			80.0-83.2		89.0-90.5		
LO	Helicosphaera ampliaperta	CN4	NN5	16.0							
Acme to	Discoaster deflandrei			16.1							
FO	Discoaster signus			16.1							
FO	Sphenolithus heteromorphus	CN3		18.4		73.1	86.7-89.7	54.70-56.20	95.7-97.2		
LO	Sphenolithus belemnos		NN4	18.8						144.0-145.5	133.5
LO	Triquetrorhabdulus carinatus		NNB	19.5							
FO	Sphenolühus belemnos	CN2		20.0			89.7-92.9		98.7-100.2		
FO	Discoaster druggii	CNle	NN2	23.6					100.2-100.8		144.0
LO	Dictyococcites bisectus	CNIa	NN1	23.7		91.7	107.1-108.6		100.0 102.2	1053 106 8	144.9
LO	Sphenolühus ciperoensis	-		23.7				/3./0-/4./0	100.8-102.5	193.3-190.8	
LO	Sphenolithus distentus	CP196	NP25	26.0		02.4	116 0 112 0				
LO	Chiasmolithus albus	CDIO	NID2 4	28.2		95.4	110.8-115.0	04 20 06 10	1053-1068	2183-2198	152.9
FO	Sphenolahus ciperoensis	CPI9a	NP24	212				34.20-30.10	110 5.112 0	237.7-239.2	
FO I	Sphenolunus aistenuus Betimiloimeetra umbilion	CP10	NID23	31.2				117 70-119 20	1150-116.5	20111 20110	162.4
10	Reticulojenestra umou cu Friesonia formoso	CDIA	NP22	3.1.0					119.5-120.1		173.4
10	Isthmolithus securitus	Critic	141 22	349							
10	Reticulofenestra ognaruensis			36.0				-			
10	Discoaster salvanensis	CP16a	NP21	36.7				134.90-136.40	123.1-124.6		200
FO	Isthmolithus recurvus	CP15b	NP19	37.8		104.3			129.1-129.8		222
FO	Chiasmolithus oamaruensis			39.8							
LO	Chiasmolithus grandis	CP15a	NP18	40.0					131.8-133.3		246
FO	Reticulofenestra reticulata			42.1							
LO	Chiasmolithus solitus	CP140	NP17	43.4							272.5
FO	Reticulofenestra umbilica			43.5							
LO	Nannotetrina fulgens	CP14a		45.4					153.6-155.1		•
LO	Chiasmolithus gigas	CP13c		47.0					158.4-159.9		
FO	Chiasmolithus gigas	CP13b		49.0					100.0-107.5		2075
FO	Nannotetrina fulgens	CP13a	NPI5	49.8					1/4.7-1/3.3		329.5
FO	Discoaster sublodoensis	CP12	NP14	52.6					202 0.203 5		334 5
10	Tribrachiatus orthostylus	CPII	NPIS	55.7		114.3			202.0-200.0		369.5
FO	Discoaster todoensis	CPIU	NP12 ND11	563		114.5			211.7-213.2		393
FO	Disconstantis contorius	Cry0	INFIT	56.5							
FO	Tribrachiatus orthortylus			56.6							
10	Fasciculithus	CP9a	NPIO	57.8			•				407
FO	Tribrachiatus bramlettei	0174		57.8		171.1					
FO	Discoaster multiradiatus	CP8	NP9	59.2		202.05			· · · ·	264.1-265.4	421.5
FO	Heliolithus reidelii	CP7	NP8	60.0		219.5					
FO	Discoaster mohleri	CP6	NP7	60,4						271.1-271.6	434
FO	Heliolithus kletuvellii	CP5	NP6	61.6		251.4					459.5
FO	Ellipsolithus tympaniformis			62.0	309.55-309.77	297.7				290.4-291.6	
FO	Fasciculithus	CP4	NP5	62.0							480
FO	Eltipsolithus macellus	CP3	NP4	63.7							489.5
FO	Prinsius martinii			63.8		318.7					
FO	Chiasmolithus danicus	CP2	NP3	64.8	346.42-346.44	345.1				292.1-295.6	529
FO	Cruciplacol thus tenuis	CPIb	NP2	65.9		353.46					332.5
FO	Biantholithus sparsus	CP1a	NPI	66.4	350.0	358.5				105 0 105 0	300
FO	Nephrolithus frequens			69.0	201 6 201 -	422.3				293.8-293.9	
LO	Keticulofenestra levis			69.0	394.0-394.4						

DP and ODP sites.
DS
Ocean
Atlantic
South /
i and
Indiar
for
(mbsf)
depth
and
ages
Transition
Table 5.

Site 758 Hole B		0/ 01	14 12 12 12 12 12		01.74		34.75	39.00	22.04	414	42.60	45.70	53.00	212	56.80	58.30	61.10	6240	63.20			80.40	82.20	85.40	89.40	00'16																							
Site 758 Hole A		06.01	15 20	0011	20	70.07	34.20	39.50	5.07	41.90	42.90				56.20	58.70	61.50	63.05	618	66.70	26.40	80.50	82.70	84.30	90.20	92.10																							
Site 752																																																	
Site 751																			367	40.2	426			48.5	50.6										7.5+15								108						
Site 744		3.80-6.30		0000000	00.2-00.2	9.80-10.5	14.8-15.3					18.3-20.8	20.4	20.6										23.3-23.8											0.42-C.42		41.92.42.58	\$0.42.51.39	51.39-52.05									54.91.55.38	
Site 709 Hole A		00.6				21.5	26.05			30.55	31.65	33.25																																					
Site 704		34.51	38.41	17 S	20.75		168.45	1.971	177.8	1.6.1	181.5	186.64	195.55	201.94	204.19	210.35	211.99	213.24	215.4	219.74	224.76	231.04	233.84	241.62	251.25	256.75	259.5	275.85	290.06	318.55	324.1	327.05	338.55		170.61					429.6									
Site 702																																																	
Site 700												•																																					
bsf) Site 699		10.59			66.61	21.19	29.45					40.69									53.61																												
Depth (m Site 690							483	6.71	6.98				10.23	10.48	11.21	11.78	18.32													20.07					10.02		29.28			31.72	3245	33.47	33.95	36.35	36.91	37.2	37.97	38.97	39.95
Site 689													3.38	77 77	8.79	9.63	11.45	11.72	15.17	16.92					18.09	18.67	18.92	20.17	22.15			23.65	23.81	2112	10.42			37.55	37.93	45.93	46.41	46.68	47.18	48.68	49.18	49.68	50.91	51.93	5241
Site 665 Hole A		14.8	19.3	7	33.2	36.4	49.1																																										
Site 659 Hole A		22.8	28.6	5																																													
8 Site 529																																																	
27 Site 52																																																	
525 Site 5																																																	
524 Site																																																	
Site																																																	
Site 523																																																	
Site 522		432-4.51			9.31-9.85	10.53-10.98	14.91-15.90					24,79-24,86																																					
Site 521		40-3.43	.70-4.33	6.16-5.30	.60-12.11	131-13.69	141-2224			041-30.65		521-3541																																					
te 519		4-9.02 3	9-14.11 3	3-32.01	B3621 1	0.42.63 13	8-51.42 20	1-63.51		11-65.53 3(11-65.53 3:	11-85.51		15-87.19		8-95.59		6-103.02		5.116.57		1204130		H-121.92																								
u Si		yama? 8.5	(T) 13.	(0) 31.4	T) 35.	0) 42(Causs 51.2	J) 615		(T) 65.	; Q	bert 65	op 84.	dc	.78 do	. 6	op 95.	. 0	20 101.5	- 5	ton 1164	- uot	1201: 1201:	don don	top 121.8	lop	8	ď	top	top	top	top	top	top	ę.	d -	8-9	<u>-</u> 5	5 g	6	6	do	do						
Transitie		Brunhes/Mat	Jaramillo	Jaramillo	Olduvai(Olduvai	Matuyama/6	KacnaG	Kaena(C	Mammoth	Mammoth	Gauss/Gil.	C3N-14	C3R-11	C3N-2 II	C3R-21	C3N34	C3R.3 IC	GNAL	GR41	L NF	CAR.1		CBAR-21	CBANA	C3AR-3	CHN-I	C4R-3 to	CHAN-L	C4AR-1	C4AN-2	C4AR-21	CHAN3	C4AR.3	CSN-11		12-NCD	SIE NYL	CSR3 to	CSAN-11	CSAR-11	CSAN-21	CSAR-21	C5AN-51	CSAR-51	C5AN-61	C5AR-61	CSAN-71	C5AR-71
Normal polarity interval (Ma)	0.00	0.73	16.0	0.98	1.66	1.88	2.47	2.92	2.99	3.08	3.18	3.40	3.88	3.97	4.10	4.24	4.40	4.47	4.57	11	\$35	5	895	5.89	637	6.50	6.70	7.41	7.90	8.21	8.41	8.50	8.71	8.80	8.92	74-01			811	2115	11.73	11.86	12.12	1283	13.01	13.20	13.46	13.69	14 08

- 0
Ō
- -
~
.=
Ħ
<u> </u>
0
0
Ē
· -*
ŝ
С Л
le 5
ble 5
able 5
Table 5
Table 5

÷

	Site 758 Hole B																																											
	Site 758 Hole A																																÷									•		
	Site 752																						135.00	157.00	201.00	(212-218)	(222-229)	233.00	308.00	312.00	(336-349)			355.00	(360-364)	388.00	393.00	398.00						
	Site 751																																										• .	
	Sile 744	170.0-170.4	1723-173.4																																									
	Site 709 Hole A																																											
	Site 704																																											
	Site 702										71.84-71.96	34.25-85.26	86.45-86.55	08.65-98.75	1334113.45	57.25-157.35																												
	Site 700										•		18.45	55.76	68.60 1	-		152.01	164.16	190.86							267.19		299.13				327.31	333.29				341.22	357.75			384.82	407.45	430.95
sD	Site 699															405.65	434.68	455.21	464.65																									
)epth (mb	Site 690	92.21	95.70	96.59	10 .66	11-66								106.27	118.23		123.63	130.48	132.23	133.18	137.33	139.67	144.42	154.63	185.48	195.94	210.05	213.06						247.55	252.28			272.25	283.39	302.78	308.02			
П	Site 689		144.77	145.02		••	151.73	151.95	152.73	153.70	161.17		163.16	165.55	171.11	183.23	197.89														228.61					2.46.60	2-48.08	252.92	259.97	272.33	277.32			
	Site 665 Hole A											•																																
	Site 659 Hole A																																											
	Site 529																											323.95						385.10	394.17									
	Site 528														248.59	257.05	258.24				277.81								391.58				399.47	405.97	413.34			464.57						
	Site 527										136.31			137.61	138.71	143.45	148.09	153.59	154.73	163.88			172.93					16.752	258.75	260.77	267.41	272.22	273.72	278.02	286.61		329.63							
	Site 525																								_						43.81	447.03	8 447.91	450.99	2 456.69	475.15	1 476.50	4 489.26	519.95					
	Site 524																								58.11-58.33				28.84 129.2		56.26-156.6		85.10-185.4		13.02-213.7		67.31-267.8	03.93-303.9						
	Site 523			1.61-111.81						3.41-124.99		0.05-140.25		7.75-147.95	2.11-16231																-		-											
	ite 522			1						1		Ξ		Ξ	16																													
	• 521 S																																											
	19 Sit																																											
	Site 5.																																											
	Transition	C16N-3 top	C16R-3 top	CITN-1 top	CI7R-1 top	CITN-2 top	CITR-2 top	CLTN-3 top	CITR-3 top	C18N top	C18R top	C19N top	C19R top	C20N top	C20R top	C21N top	C21R top	C22R top	C22N Iop	C23R-2 top	C24N-1 top	C24R-1 top	C24N-2 lop	C24R-2 top	C25N top	C25R top	C26N top	C26R top	C27N top	C27R top	C28N top	C28R top	C29N top	C29R top	C30N top	C30R top	C31N top	C31R top	C32N top	C32R top				
Normal polarity	interval (Ala)	38.83	39.24	39.53	40.43	40.50	0.104	107	41.11	41.29	42.73	43.60	41.06	41.66	46.17	48.75	50.34	51.95	52.62	51.10	55.14	55.37	55.66	56.14	58.64	59.24	60.21	60.75	63.03	63.54	64.29	65.12	65.50	66.17	66.74	68.42	68.52	69.40	71.37	71.65	71.91	74.30	80.17	84.00

Carbon and oxygen isotopic paleoceanography

427
Math Ball Ball <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																						
Image Image <th< th=""><th>mal ưity</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>:</th><th>1</th><th></th><th>1</th><th>Septh (mbsf)</th><th></th><th>COT - 113</th><th>6 FUL - 101</th><th>5 0UL *1</th><th>0- 744 0</th><th>5 151 5</th><th>ite 752 Si</th><th>1- 758 S</th><th>ite 758</th></th<>	mal ưity								:	1		1	Septh (mbsf)		COT - 113	6 FUL - 101	5 0UL *1	0- 744 0	5 151 5	ite 752 Si	1- 758 S	ite 758
00000 000000 00000 00000 </th <th>irval (a)</th> <th>Transition</th> <th>Site 519</th> <th>Site 521</th> <th>Site 522</th> <th>Site 523</th> <th>Site 524</th> <th>Site 525 Site 527</th> <th>Site 528 Site 529</th> <th>Site 659 : Hole A</th> <th>Site 665 Hole A</th> <th>Site 689</th> <th>Sile 690 Sile</th> <th>1009 Dile 100</th> <th>2116 /07</th> <th></th> <th>Hole A</th> <th>Ŧ</th> <th></th> <th></th> <th>[ole A]</th> <th>fole B</th>	irval (a)	Transition	Site 519	Site 521	Site 522	Site 523	Site 524	Site 525 Site 527	Site 528 Site 529	Site 659 : Hole A	Site 665 Hole A	Site 689	Sile 690 Sile	1009 Dile 100	2116 /07		Hole A	Ŧ			[ole A]	fole B
0.0001 0.000 <t< td=""><td>8</td><td>C5AN-8 top</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>52.85</td><td>40.2</td><td></td><td></td><td></td><td>:</td><td></td><td></td><td></td><td></td><td></td></t<>	8	C5AN-8 top										52.85	40.2				:					
00010 0001 <t< td=""><td>8</td><td>C5AR-8 top</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>41.68</td><td></td><td></td><td></td><td>X :</td><td>14-59.22</td><td></td><td></td><td></td><td></td></t<>	8	C5AR-8 top											41.68				X :	14-59.22				
01010 0101 <t< td=""><td>ß</td><td>C5BN-1 top</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>42.16</td><td></td><td></td><td></td><td>2</td><td>85.09-67</td><td>CC-601</td><td></td><td></td><td></td></t<>	ß	C5BN-1 top											42.16				2	85.09-67	CC-601			
00000 000000 00	8	C5BR-1 top											42.41									
0 0000 00	3	C5BN-2 top										56.53					Ś	101010				
C C C L (1) C C C (1) C C C (1) C C C (1)	5	C5BR-2 top										<i>5</i> 7.4					3:	18.10-10				
CR010 CR010 <td< td=""><td>5</td><td>CSCN-1 top</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ţ:</td><td>100-10</td><td>1</td><td></td><td></td><td></td></td<>	5	CSCN-1 top															ţ:	100-10	1			
CR014b 48 48 48 40 <td< td=""><td>80</td><td>C5CR-3 top</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>g i</td><td>85-66.95</td><td>123.2</td><td></td><td></td><td></td></td<>	80	C5CR-3 top															g i	85-66.95	123.2			
0 500.14 4.64 4.64 4.64 4.52 5.52 0 600.14 4.64 4.64 4.64 5.52 5.52 0 600.14 4.64 4.64 4.64 5.52 5.52 0 600.14 4.64	5	CSDN-1 top														489.5		1.6-72.4	1327			
Circle Circle<	8	C5DR-1 top											± 68			498.2	ζ <u>.</u>	25-75.76				
CSR is in the control of the		CSDN-1 ton										60.03	45.41									
CR040 CR040 0.1	: 3	CSDD 1 top										60.4	45.68					Sir				
CR040 100.4 CR041 101 CR041	ts	CSEN IOD										61.76	46.68						152.1			
0.000 101 </td <td>2 2</td> <td></td> <td>80</td> <td>1.0-82.4</td> <td></td> <td></td> <td></td> <td></td>	2 2																80	1.0-82.4				
No.	2013	COEK top															3	.11-83.26				
Colding Land Land <thland< th=""> Land Land <</thland<>	0	CoN top															62	11.6.8				
No. Control Co	\$	C6R top							11.441								1 3	78 10 01				
(6) (13) (13) (13) (7) (8) (13) (13) (13) (7) (8) (13) (13) (13) (13) (7) (8) (13) (13) (13) (13) (7) (13) (13) (13) (13) (13) (7) (13) (13) (13) (13) (13) (7) (13) (13) (13) (13) (13) (7) (13) (13) (13) (13) (13) (7) (13) (13) (13) (13) (13) (7) (13) (13) (13) (13) (13) (7) (13) (13) (13) (13) (13) (7) (13) (13) (13) (13) (13) (7) (13) (13) (13) (13) (13) (7) (13) (13) (13) (13) (13)	8	C6AN-1 top															τ 2					
C (601)e 5133443 F (57) 0 (6013)e 513431 113 0 (6013)e 51341 113 0 (6013)e 51341 113 0 (6013)e 51341 113 0 (6013)e 51341 113 0 (6014)e 67841 113 0 (712)e 113 113 0 (713)e 113 113 0 (714)e 61740 113 0 (714)e 113 113 <tr< td=""><td>16</td><td>C6AR-1 top</td><td></td><td></td><td></td><td></td><td></td><td></td><td>153.21</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>g</td><td>0.00.00</td><td></td><td></td><td></td><td></td></tr<>	16	C6AR-1 top							153.21								g	0.00.00				
Concluip 5.31,357 5.75 Concluip 30,357 34,57 7.75 Concluip 30,357 34,57 7.75 Concluip 31,367 1133 7.75 Concluip 617,341 1133 7.75 Concluip 617,341 1135 7.75 Concluip 610,466 671 1133 9.75 Concluip 610,466 673 12,79 98,1700,9 Concluip 611,700 633 313 143 94,75 Concluip 611 14,7 133 94,75 94,75 Concluip 611 14,3 14,4 144,15 144,15 Concluip 611 14,3 143 143 144,15 Concluip 733 513 143 143 144,15 Concluip 733 513 143 144,15 144,15 Concluip 734 611 154 144,15 144,15 <	Ľ:	C6BN top			54:32-54:45																	
(6) (2) (3) <td>5</td> <td>C6CN-1 top</td> <td></td> <td></td> <td>55.51-55.71</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td>21</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	5	C6CN-1 top			55.51-55.71								8	21								
M (CGC) and (5	C6CN-2 top			57.01-57.21																	
CGR3.09 CH-7 CH-7 CH-7 C CN3.19 L17641 133 113 C CN3.19 G11 133 113 C CN3.19 G11 130 113 C CN3.19 G11 130 113 C CN3.19 G11.101 130 1130 C CN3.19 G11.101 130 1130 C CN3.10 031.300 031.300 031.300 C CN3.19 G11.101 130 130 C CN3.10 031.300 131 130 C CN3.10 031.300 131 131 C CN3.10 031.300 131 131 C CN3.10 031.300 131 131 C CN3.10 131.11 131 131.11 C CN3.10 131.11 131 131.11 C CN3.10 131.11 131.11 131.11 C CN3.10 131.11 131.11 131.11 C CN3.10 131.11 131.11 131.11		C6CN-3 top			58.51-58.71													91.76				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	C6CR-3 top											a	141								
Chilling		UN I too			63.70-64.21				170.96				Ξ	535								
CTX.100 CCX.0.10 CCX.0.11 CCX.0.1 CCX.0.1 <t< td=""><td>· F·</td><td>CNC ton</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>67.11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	· F·	CNC ton										67.11										
CTANUE G01.6866 0503 137.00 957.700 957.700 957.700 957.700 957.700 957.700 957.700 957.700 957.700 957.700 957.700 957.700 957.700 957.700 957.700 957.700 957.700 955.7160 955.7160 955.7160 955.7160 955.7160 <		CTR-2 ton										67.88	12	7.69								
CTAR by SERVICY Lot and CERVICY Lot and CE		CIAN top			68 01 68 66							68.61	Е	607			98	:17-99.62				
CINING 677.701 7.13 5.13 1.84 104.51057 CINING CINING 5.0 5.0 11.5 5.73 10.15.11207 CINING CINING 7.31 5.73 6.01 15.41 111.56.11207 CINING CINING CINING 7.34 6.01 15.41 111.56.11207 CINING CINING CINING 7.34 6.01 15.41 111.56.11207 CINING CINING CINING 6.09 16.03 10.01 111.56.11207 CINING CINING CINING 6.09 16.03 10.01 111.56.11207 CINING CINING 6.09 16.03 10.03 10.04 111.56.11207 CINING CINING 6.09 16.03 10.03 10.03 10.01 111.56.11207 CINING CINING 6.04 10.02 20.03 10.02 20.03 10.01 112.011158 CINING CINING CINING CINING 10.023												68.88	7	0.38			66	98-100-49				
701 513 500 513 500 CR8.109 73.13 500 153 500 1156:11 CR8.109 73.13 500 153 500 153 1156:11 CR8.109 73.13 500 153 500 153 1156:11 CR8.109 73.13 1154 1154:1 1156:126 1156:11 CR8.109 85.9 86:8 820 820 183 1156:11 CR8.109 85.9 86:8 820 832 183 1150:11 CR8.109 957.96:3 193 182 183 1150:11 CR8.109 957.96:3 193 193 183 1150:11 CR8.109 957.96:3 103 260 183-11 1150:11 CR8.109 133 73 233 2160 118:31:18.4 113:01:19:58 CR8.109 133 133 73 236 103 2160 118:30:19:5 CR8.109 133 2		CIAN LOP			10021209							69.38	53.25 14	3.84			9	1.5-105.07				
CNN-109 733 530 510 1156-1120* CNN-109 CNN-109 734.6 73.6 611 155.1 CNN-109 CNN-109 65.9 73.6 611 155.1 CNN-109 CNN-109 65.9 12.66 73.6 1156.1 CNN-109 65.9 12.69 82.0 1150.1 1156.1 CNN-109 65.9 12.69 82.0 125.6 125.6 CNN-109 65.9 12.69 82.0 133.5 150.1 CNN-109 55.7 61.8 193.5 183.5 153.5 CNN-109 118.7 193.5 163.3 183.1 183.2 CNN-109 118.7 133.3 167.7 133.0 133.3 CNN-109 118.7 133.3 167.1 133.0 153.1.193 CNN-109 118.7 133.3 163.1 133.0 153.1.193 CNN-109 118.7 133.3 167.1 133.0.1.93 153.1.193					10.01-11.00							11 02	52.15									
CarArting 733 611 15.41 1115.61120* C RN 10p 734.73.54 122.06 735 611 15.41 1115.61120* C RN 10p C RN 10p E 20 165.01 150.01115.8 1150.0115.8 C C RN 10p C RN 10p E 20 165.01 182.01 1150.0115.8 C C RN 10p E 48 E 20 182.01 182.01 1150.0115.8 C RN 10p E 48 E 20 182.01 182.01 1150.0115.8 C RN 10p 153.756.24 190.36 182.31 182.01 1150.0115.8 C RN 10p 151.756 183.31 182.01 182.01 182.01 182.01 C RN 10p 114.11 10.01.01.2 203.31 193.31 183.01.95 113.30.135 C RN 10p 114.11 10.01.81 216.01 10.02 246.01 113.30.135 C RN 10p 147.11 10.01.81 256.01 10.02 245.11 113.30.135 C RN 10p 147.11 114.11 <td></td> <td>Coviding</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>70.38</td> <td>55.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Coviding										70.38	55.00									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												75.98	60.11 15	6.14			Ξ	56-112.07				
CN110p 64.9 & 66.8 8.0.5 64.9 & 66.8 8.0.5 64.9 & 66.8 8.0.5 64.9 & 66.9 8.0.5 64.9 & 66.9 8.0.5 64.9 & 66.9 8.0.5 8.0.3 <td></td> <td></td> <td></td> <td></td> <td>13 01 15 01</td> <td></td> <td></td> <td></td> <td>187.06</td> <td></td> <td></td> <td>94-62</td> <td>60.99 16</td> <td>6.95</td> <td></td> <td></td> <td>115</td> <td>01-115.58</td> <td></td> <td></td> <td></td> <td></td>					13 01 15 01				187.06			94-62	60.99 16	6.95			115	01-115.58				
CV3.LIOP 68.48 R2.69 CV3.LIOP 86.49.86.68 180.34 CV3.LIOP 86.49.86.68 180.34 C10N.LIOP 9537.62.4 190.36 193.35 C10N.LIOP 9537.62.4 190.36 10.38 7.39 C10N.LIOP 9537.62.4 190.36 10.38 7.39 C11N.LIOP 9537.62.4 100.36 10.38 7.39 C11N.LIOP 9537.62.4 20136 10.38 7.39 C11N.LIOP 7.607.62.4 20136 10.38 7.39 C11N.LIOP 134.115 2118.9 130.0195 118.29/118.5 C12N.LIOP 134.115 2118.9 130.0195 118.29/118.5 C12N.LIOP 134.115 2118.9 116.71 114.15/13.9 C13N.LIOP 134.115 2118.9 116.71 114.012 C13N.LIOP 134.115 2118.9 116.71 114.15/13.9 C13N.LIOP 134.115 216.19 116.71 114.15/14.7 C13N.LIOP					ためいため				00-001			50.58										
CUN-LOP 86.9 86.68 89.2 193.4 89.2 193.4 CIOR.1 top 91.9 193.5 193.5 193.5 193.5 193.5 CIOR.2 top 91.9 183.3 3.9 193.5 183.3 193.5 193.5 CIOR.2 top 91.91 190.36 10.02.3 208.4 1182.9118.45 CIOR.2 top 10.00.104.52 76.02.76.24 201.36 10.38 203.4 1182.9118.45 CINUtop 138.41128.49 201.36 10.38 84.01 1187.9119.93 CINUtop 138.41128.49 221.83 11671 124.30.125.47 139.01.95 CINUtop 138.41128.49 221.83 11671 139.01.95 139.01.95 CINUtop 138.4128.49 221.83 11671 234.55 139.01.95 CISN-top 138.70 138.71.84.9 239.55 146.51.46 154.54 CISN-top 138.71 23.33 256.03 135.75 155.416 155.416 CISN-top 145.75	+ -	COR 21-1										20.00	81 81 85	2.69								
CIRR-100 1933 19345 19345 19345 19345 19345 19345 19345 19345 18345 1829-11844 1829-11464 1829					89 98 01 98							89.82	18	934								
023 2034 190.36 100.3 2034 1829-11845 C11N-top 1440-104-5 7393 21605 11829-11845 11829-11845 C11N-top 1440-104-5 7303 21605 11829-11845 11829-11845 C11N-top 1440-104-5 7607-76.24 20136 10438 8401 11829-11845 C12N-top 1334+12349 20136 10638 8401 11879-11993 11829-11845 C12N-top 134115143 221603 10570 28415 1330-1355 1390-1395 C13N-top 134115143 223031 22603 11671 23445 1455-1457 C15N-top 144151443 22303 11677 23455 1455-1457 C15N-top 14451445 22603 11677 28455 1455-1457 C15N-top 14451449 1579-1583 1579-1454 1579-1454 C15N-top 1545149 1575-1583 1579-1454 C15N-top 15454 1557-153 1579-1454	_											91.93	19	8.35								
III 201 7.339 21605 III 201 III 201 <thiii 201<="" th=""> <thiii 201<="" th=""> <thiii 2<="" td=""><td></td><td>CLIN Ltop</td><td></td><td></td><td>FC 90 LE 50</td><td></td><td></td><td></td><td>19036</td><td></td><td></td><td>100.23</td><td>53</td><td>834</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thiii></thiii></thiii>		CLIN Ltop			FC 90 LE 50				19036			100.23	53	834								
CLINE up 10438 80.76 118.79.11993 CLINE up 7607.56.24 20136 10438 80.76 118.79.11993 CLI2R up 7607.56.24 20136 106.88 8.401 113.30.135.7 CLI2R up 138.41134.9 2.259.9291 2218.3 116.71 1390.1395 CLISR up 138.118.79 2.259.9291 2216.3 116.71 1390.1395 CLISR up 138.118.79 2.256.03 116.71 284.55 155.146.7 CLISR up 148.73.148.98 2.26.03 123.33 155.415.9 155.416.9 CLISR up 154.51.46 133.77 284.55 155.416.9 155.416.9 CLISR up 154.59.154.91 135.77 284.55 155.416.9 157.51.83.9 CLISR up 154.51.46 135.77 284.55 155.416.4 157.51.83.9 CLISR up 154.51 155.51 155.416.4 155.416.4 155.416.9 CLISR up 155.51 155.51 155.416.9 155.416.9 155.416.9												103.38	73.93 210	6.05			118	29-118-45				
CTR top 76.07-56.4 20136 106.88 84.01 13.30-125.47 CTR top 138.41 226.03 11671 139.0195.5 139.0195.5 C13R 20p 138.41 225.03 11671 234.55 146.5-146.77 C13R 20p 134.15 226.03 119.70 234.55 145.5146.77 C15R 10p 148.78.14.878 226.03 137.70 234.55 145.5146.77 C15R 10p 148.78.14.878 226.03 137.70 234.55 155.5146.77 C15R 10p 154.50 138.77 137.71 155.916.9 157.91.83 C16R 10p 154.50.154.91 155.716.9 155.716.9 157.91.83 C16R 10p 154.50.159 155.716.9 157.91.83 155.91.64.9 C16R 10p 155.51.56 155.716.9 155.24.16.9 155.94.16.9 C16R 10p 154.50 155.716.9 155.74.16.9 155.74.16.9 C16R 10p 155.56 155.74.16.9 155.56 155.24.16.9 C16R 10p 155.56		CI2NIND		-	101-00-101 52							104.38	80.76				118	29-119.93				
Clishing 1334112849 2256.03 116.71 1390-1395 1300-1395 155-155 155-155 155-155 155-155 155-155 155-155 157-156 157-156 157-156 157-156 157-156 157-156 157-156 155-155 155-155 155-155 155-156 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>10 25 m 25</td><td></td><td></td><td>20136</td><td></td><td></td><td>106.88</td><td>8401</td><td></td><td></td><td></td><td>121</td><td>30-125-47</td><td></td><td></td><td></td><td></td></th<>						10 25 m 25			20136			106.88	8401				121	30-125-47				
CUISATUP Latential 226.03 119.70 284.55 146.71 C 13N.1 lop 140.72 284.55 155.41.67 155.41.65 C 15N.1 lop 140.72 128.33 155.41.55 155.41.55 C 15N.1 lop 140.72 128.33 155.41.55 155.41.55 C 15N.1 lop 140.72 128.33 155.41.55 155.41.55 C 15N.1 lop 140.72 135.77 155.41.55 155.41.55 C 15N.1 lop 140.72 135.77 151.41.55 151.41.55 C 15N.1 lop 155.41.55 155.41.55 151.41.55 151.41.55 C 15N.1 lop 155.41.55 155.41.55 151.41.55 151.41.55 C 15N.1 lop 155.41.55 155.41.55 151.41.55 151.41.55 C 15N.1 lop 135.57 135.57 151.45.55 151.41.55 C 15N.1 lop 135.57 135.57 151.45.55 151.45.55 C 15N.1 lop 135.57 135.57 151.55 151.45.55 C 15N.1 lop 135.55 151.55 151.55.55 151.45.55 C 15N.1 lop 135.55 151.55.55 151.45.55 C 15N.2 lop 135.55 151.55.55 151.55.55 C 15N.2 lop <td< td=""><td></td><td>CI3N ter</td><td></td><td>-</td><td>01.961.11.961</td><td>01 50 07 01</td><td></td><td></td><td>771 84</td><td></td><td></td><td>116.71</td><td></td><td></td><td></td><td></td><td>8</td><td>9.0-139.5</td><td></td><td></td><td></td><td></td></td<>		CI3N ter		-	01.961.11.961	01 50 07 01			771 84			116.71					8	9.0-139.5				
CUNCUP LARCE LASS LARCE LASS<				-	120.4111.021	1040-0040			116.01			02.011	. 28	155			71	12:146.77				
CLANTUP Technology 1579-183 CISATION 134.00 135.77 1579-183 CISATION 135.77 135.77 1613-161.9 CISATION 139.55 159.55 1613-161.9 CISATION 139.55 139.55 1623-163.9 CISATION 139.55 139.55 1623-163.9 CISATION 139.55 139.55 1653-169.9 CISATION 199.55 199.5 16681.889									CO.077			17833	2				15	5.4-155.9				
0 CIGN-100 133.77 161.3-161.9 1 133.45 139.45 161.3-161.9 1 CIGN-100 139.45 163.164.9 1 CIGN-200 139.45 163.164.9 0 CIGN-200 91.95 16668.163.9	• •			-	00041-01-041							134.02					15	7.9-158.3				
13945 163-1634 163-1634 163-163-163-163-163-163-163-163-163-163-		CIENT Inte		-	151 50 151 01							135.77					91	0.161.EI				
13055 1613-1619 13055 1613-1619 0 C1612-100 166.68.1639				-								57681					16	24-163.4				
91.95 1668-1689		CI6N-2 top										139.55					16	13-164.9				
		CiteD.2 ton											91.95				166	6891-89				

428

Table 5. (continued).

Koji SETO

Table 6. Paleolatitude and paleolongitude for Indian and South Atlantic Ocean DSDP and ODP sites.

Age (Ma)	Latitude	Longitude	Age (Ma)	Latitude	Longitude	Age (Ma)	Latitude	Longitude	Age (Ma)	Latitude	Longitude
Site 214			Site 750			Site 689	<u></u>		Site 529	89	
0	-11.3368	88.7180	0	-57,5920	81.2395	0.0	-64.5167	3.1000	0.0	-28.9305	2.7680
10	-15.9456	84.8116	10	-57.3442	78.9036	5.9	-66,2000	4.9456	5.9	-31.8078	2.7354
20	-20.5250	80.8046	- 20	-57.7088	78.1143	23.0	-69.0000	6.9186	23.0	-35.9078	1.9362
35	-27.3647	75.6525	35	-58.4260	77.3241	37.7	-71.0000	11.9846	37.7	-39.1078	-0.0243
45	-30.3489	71.2536	45	-57.5245	75.5062	59.2	-67.1000	5.1890	59.2	-37.7078	-1.0619
55	-37.6345	66.5541	55	-56.2898	73.9504	66.2	-67.2000	3.4593	66.2	-39.7078	-2.7915
60	-43.5605	63.1810	60	-56.5576	73.2808						
66	-53.9952	55.9089	66	-58.2030	/21/4/	Site 690	(5)(7	1 2000	Site 516	20 27(7	25 6193
54- 216			Sin. 751			0.0	-03.100/	1.2000	0.0	-30.2/6/	-33.0103
510 210	1.4622	90 2080	Site /31	-57 7260	79 81.48	2.9	-60.0000	4 9584	3.9	-31.8000	-3-4.04447
10	-3 2004	873183	10	-57 4789	77.4789	25.0	-71 5000	103713	Sit- 517		
20	-7.9936	83 9027	20	-57 8428	76 6896	59.2	-67.5000	4.1512	0.0	-30,9467	-38.0417
35	-15.1726	80.1364	35	-58.5600	75,8994	66.2	-67.4000	1.6143	5.9	-32,7000	-36.6901
45	-18.3758	76,4942	45	-57,6585	74,0815						
55	-25.8665	72.7479	55	-56.4238	72.5257	Site 698			Site 518		
60	-31.9171	70.1932	60	-56.6916	71.8561	0.0	-51.4585	-33.0993	0.0	-29.9733	-38.1350
66	-42.8533	65.7410	66	-58.3370	70.7500	37.7	-58.0000	18.5531	5.9	-31.7000	-36.4601
						59.2	-56.1000	9.2249	· ·		
Site 237			Site 752			66.2	-57.1000	7.6105	Site 519		
0	-7.0832	58.1247	0	-30.8913	93,5775				0.0	-26.1367	-11.6662
10	-8.1770	56,7058	10	-35.8046	88.0336	Site 699			5.9	-28,2000	-12.3067
20	-10.0566	55.1970	20	-40.4972	83.0759	0.0	-51.5423	-30.6770			
35	-13.5454	53.8467	35	-47.4277	75.2207	37.7	-58.0000	16.1332	Site 521		
45	-14.8039	52,7407	45	-49.7730	69.4555	59.2	-56.1000	6.8033	0.0	-26.0738	-10.2645
55	-15.9938	52.3575	55	-49.0639	67.5327	66.2	-56.9000	4.8430	5.9	-28.1000	-10.3514
60	-17.3310	51.9533	60	-49.4415	67.3313						
66	-22.4280	49.7591	66	-51.1781	67.0640	Site 700			Site 522		
						0.0	-51,5330	-30.2781	0.0	-26.1140	-5.1130
Site 238			Site 754		•	37.7	-58.0000	15.3265	5.9	-28.1000	-5.6358
0	-11.1535	70.5260	0	-30.9407	93.5658	59.2	-56.1000	6.2268	23.0	-33.3000	-6.6880
10	-14.1274	66.4282	10	-35.8529	88.0160	66.2	-56,9000	4.1512	37.7	-35.0000	8.0666
20	-17.6872	62.1526	20	-40.5148	83.0540						
35	-22.4291	56.7264	35	-47,4727	75.1873	Site 702			Site 523	00 5500	0.0512
45	-23,8565	52,5880	45	-49.8163	69.4157	0.0	-50.9464	-26,3686	0.0	-28.5522	-2.2513
			55	-49.1061	67,4905	37.7	-57.7000	12.0999	5.9	-30.9000	-1.8403
			60	-49.4835	67.2886	59.2	-55.5000	2.6521	23.0	-34,7000	-3.4393
			66	-51.2198	67.0189	60.2	-30.7000	1.0145	59.7	-36 4000	-5 7655
Sir. 709			54-756			Sita 704			57.2	-50.4000	-5,7655
0	-3 9120	60 5517	0	.27 3548	87 5973	0.0	-46 8800	7.4217	Site 658		
10	-4 8770	58 9757	10	-31 8147	82 1515	5.9	-48 9000	7.8211	0.0	20.7492	-18.5812
20	-6 4862	57,2805	20	-36 2513	77.1224	23.0	-53,6000	6.9186	5.9	-19.0000	-18.7476
35	-9.6658	55.6776	35	-42,6070	69.4599						
45	-10.7405	54.4558	45	-45.2435	63.6150	Site 525			Site 366		
55	-11.7185	53.9289	55	-52.0742	56.5491	0.0	-29.0712	2.9853	0.0	5.6783	-19.8517
60	-12.9602	53.4716	60	-57.6124	50.7719	5.9	-31.9485	2.9528	5.9	3.9000	-22.0831
66	-15.7036	52.4378	66	-66.4441	34,9935	23.0	-36,0485	2.1535	23.0	0.4000	-19.6028
						37.7	-39.2485	0.1930	37.7	-2.1000	-19.8207
Site 738			Site 757			59.2	-37,8485	-0.8445			
0	-62.7092	82.7875	0	-17.0233	88.1802	66.2	-39.8485	-2.5742	Site 667		
10	-62.4770	80.2168	10	-21.5704	83.7710				0.0	4.5692	-21.9113
20	-62.8313	79.5958	20	-26.0973	79.4448	Site 526			5.9	1.0000	-19.7827
35	-63,5433	78.9116	35	-32.7713	73.5277	0.0	-29.1227	3.1380	23.0	-1.8000	-22.2550
45	-62,6609	76,7674	45	-35.6424	68.6980	5.9	-32.0000	3.1054	37.7	-3.9000	-22.4712
55	-61.4366	74,9877	55	-42.7977	63.3564	23.0	-36,1000	2.3062			
60	-61.6973	74.4524	60	-48.6259	59.3740	37.7	-39.3000	0.3457			
66	-63.3389	73.4704	66	-58.6726	49.9854	59.2	-37.9000	-0.6919		1. Sec. 1. Sec	
						66.2	-39.9000	-2.4215			
Site 744	<i></i>		Site 758		00 0 11 -	eu					
0	-61,5777	80.5910	0	5.3842	90.3612	Site 527					
10	-61.3221	78.0938	10	0.6002	87.7646	0.0	-28.0415	1.7633			
20	-61.6922	77,4088	20	-4.1143	84.5032	5.9	-30.9188	1.7308	•		
35	-62.4115	76.6534	35	+11.3592	81.0910	23.0	-35.0188	0.9315			
45	-61.4999	74,6470	45	-14,0066	77,0562	31.1	-38,2188	-1.0290			
55	-60,2574	72,9944	55	-22.1319	74.0700	59.2	-30,8188	-2.0000			
60	-60,5505	/24101	60	-28,1985	/1.0449	66.2	-38.8188	-3./202			
66	-62.1785	o /1.2999	66	-39.2081	07.0414	Cit_ P10					
C1- 840			£14. W/#			51te 528	10 51 10	9 2940			
Site 748	50 4400	70.001 5	51te 762	10 0070	112 2540	0.0	-28.5248	2.3240			
10	-20,4408	10.9810 76.9810	0	-12,00/2	100,4010	7.5	-31.4022	1 /000			
10	-38,16,58	, 11,6303	10	-23.8980	105.4818	23.0	-33.3022	0.4922			
20	- 38. 3491 50 777	13.8383	20	-31.0641	100.07-14	51.1	-30. /022	-0.4003			
33	-37.2/33	73.0103	33	-37,3430	06.0646	57.2	-31.3022	-1.3039			
45	-30.342	· · · · · · · · · · · · · · · · · · ·	45	-42 100/	05 2100	00,2	-37.3022	-3.4333			
55 60	-37,0880 57 370	· /1./10/	55	-42 3700	93.3122						
60	-57.5704	/1.0416	60	-45.5/28	22.3188						
00	-39,020	02.63/2	00		20.0140						

Fig. 36. Composite oxygen isotope record of bottom water in the Northern Indian Ocean region. All data corrected to dissolved inorganic carbon (DIC) of bottom water (See III-A-1 section). The smoothed curve is obtained by 15-point running average.

consequence there is less scatter in δ^{18} O values. Afterward, the general trends of surface δ^{18} O value are close to constant, although they exhibit a large fluctuation (~1.8‰). From the Miocene, the general trend of surface oxygen isotopic record shows the opposite pattern to that of bottom water, and consequently the δ^{18} O difference between surface and bottom water is expanded. Near the present-day, this difference reaches 4.5‰.

The carbon isotopic values of bottom water tend to increase about 2.5‰ from 70 to 65 Ma. Across the K/T boundary, no remarkable change in δ^{13} C values is found, however they fluctuate. Around the late / early Paleocene boundary (63 Ma), δ^{13} C shows a minimum value (~1.8‰).

The carbon isotopic ratios rapidly increase from this minimum value to a maximum (~3.0%) at 60 Ma within the late Paleocene, which shows the highest values among the Cenozoic data. Across the Paleocene / Eocene boundary, they exhibit a remarkable negative shift by 2.5% to the minimum value zone in the earliest Eocene (56-54 Ma). δ^{13} C values in the minimum zone are largely fluctuated, and are around 0.6%. δ^{13} C values increase by 1.2% from 55 to 53 Ma and remain around 1.6% from the late early to late Eocene (53-37 Ma). Around the Oligocene / Eocene boundary, they increase slightly to 1.8%. From the Oligocene, two remarkable carbon isotopic negative shifts are observed in the earliest Oligocene (33 Ma) and the latest Miocene (6 Ma, Chron-6

40

1.

30

Oligocene

early

late

Shift: Vincent *et al.*, 1985). The magnitudes of these shifts are ~0.7‰ and ~0.8‰, respectively. During the interval between these two shifts, δ^{13} C values are constant at ~1.0‰ with a range of 1.0‰. In this interval, pronounced peaks are recognized in the earliest Miocene (23 Ma) and the middle Miocene (15 Ma, Monterey Excursion: Vincent and Berger, 1985). δ^{13} C ratios begin to increase from the Oligocene / Miocene boundary reaching a maximum value (~1.5‰) at 23 Ma, and subsequently decreasing at 20 Ma. It ratios increase again from 17 Ma, reaching a maximum value (~2.2‰) at 15 Ma, and decreasing to 1.0 ‰ at 12 Ma (the peak of the middle Miocene). The magnitude of the middle Miocene peak is higher than that of the earliest Miocene. After the shift in the latest Miocene, δ^{13} C values are generally constant around 0.5‰, but the degree of scatter is relatively high (~1.5‰).

10

middle

Miocene

late

20

early

4

3

2

1

0

-1

-2

Age (Ma) 0

Epoch

δ¹³C (‰)

The carbon isotopic ratios of surface water vary in a similar pattern to that of bottom waters during the Paleocene and Eocene. During the Paleocene, they are higher by $\sim 0.5\%$

than those of the bottom water. $\delta^{13}C$ differences between surface and bottom water increases to 0.8‰ at the earliest Eccene. From the middle Eccene to Oligocene, δ^{13} C values remain around 2.5‰ without any remarkable shifts. Consequently, the surface to bottom $\delta^{13}C$ difference expands to 1.1‰ in the late Oligocene. $\delta^{13}C$ values from the Oligocene / Miocene boundary to the early Miocene (20 Ma) decrease to a minimum value (~1.5%). This minimum value is close to the present value, and at this time, the $\delta^{13}C$ difference between surface to bottom water is small (~0.4‰). During the Miocene, pronounced peaks are recognized at 15 and 8 Ma. For the peaks at 15 and 8 Ma, the values are ~2.7‰ and ~2.3‰, respectively. The peak at 15 Ma is remarkable in the carbon isotopic record of bottom water, whereas the peak at 8 Ma is weak, and consequently the surface to bottom difference increases more than 1.0% at this time. Although δ^{13} C values in surface water show a negative

50

early

middle

Eocene

×

×

late early

Paleo.

60

Site 758

Site 762

70

Maa.

Koji SETO

shift of 0.5‰ at ~6 Ma, the magnitude of this shift is smaller than that of the bottom waters. After the shift at 6 Ma, δ^{13} C values are constant around 1.4‰ with a low degree of scatter (~0.8‰). In this section, a weak peak (~0.3‰) is observed at 3 Ma. The carbon isotopic ratios of surface water are about 1.0‰ higher than those of bottom water.

C. Correlation of oxygen and carbon isotopes between the Indian Ocean and the South Atlantic Ocean

The isotopic records of the northern Indian Ocean are correlated with those of the Indian and South Atlantic Oceans. The general trends of carbon and oxygen isotopes in these ocean through the Cenozoic are illustrated in Figs. 40-53.

Oxygen isotopic record: During the late Maastrichtian, δ^{18} O values of bottom water in the Southern Ocean (Atlantic sector) are ~1.7‰ higher than those of the northern Indian Ocean. From 66 to 61 Ma within the Paleocene, although δ^{18} O values in the northern Indian Ocean rapidly increase, the increases in the South Atlantic and southern Indian Oceans are gradual. Consequently, the difference of δ^{18} O values between the northern Indian Ocean and the other oceans decreases to 0.4‰ in the ¹⁸O maximum value at 61 Ma. Through the late Paleocene to Eocene, the same trends as those of the northern Indian Ocean are observed in all oceans. The δ^{18} O difference throughout the ocean is small. However, δ^{18} O values in the South Atlantic Ocean tend to be slightly higher than those of the other ocean. In the shift at the Oligocene / Eocene boundary, the net magnitude in the northern Indian Ocean is remarkably small (~0.6‰). The southern Indian Ocean exhibits a shift of ~0.8‰, the South Atlantic Ocean is ~ 0.6‰, the Southern Ocean (Atlantic sector) is ~1.0‰, and the Central Atlantic Ocean is ~1.0‰. This shift is generally large in the Antarctic Ocean, and tends to decrease northwards at this time. During the Oligocene, different trends in oxygen isotopes of bottom water are

recognized in each ocean. δ^{18} O values in the Southern Ocean (Atlantic sector) increase. In the northern Indian and Central Atlantic Oceans, they gradually increase, while they gradually decrease in the southern Indian and South Atlantic Oceans. Then, 8¹⁸O values in the northern Indian, South and Central Atlantic Oceans become ~0.7‰, which is lower than those of the southern Indian and Southern Oceans. The shift in the middle Miocene is largest in the southern Indian Ocean (~0.9‰). The net magnitudes of this shift in the northern Indian and South Atlantic Oceans are ~0.8‰. In the Central Atlantic Ocean, the shift is remarkable small (~0.6‰). The decrease in δ^{18} O value before the shift is clearly observed in the southern Indian Ocean. The shift in the late Pliocene is most conspicuous in the Central Atlantic Ocean, and then the magnitude of shift reaches 1.3%. The net magnitudes in other oceans are 1.1 to 0.6‰, and the northern Indian Ocean records the lowest magnitude. The magnitude of this shift tends to decrease southwards in the Atlantic Ocean side, and

toward the Indian Ocean. Thus, $\delta^{18}{\rm O}$ values appear to be highest in the Central Atlantic Ocean from the late Pliocene onwards.

From the Paleocene to Eocene, the oxygen isotopic records in surface water exhibit a similar pattern in all oceans. δ^{18} O values during the Paleocene, however, are different in each region. δ^{18} O values in the northern Indian Ocean are smallest at ~-2.0%. The Southern Ocean and South Atlantic Oceans are ~1.5%, which is larger than that of the northern Indian Ocean. In the South Atlantic Ocean, δ^{18} O values are larger at ~0.8%, compared with the northern Indian Ocean. The magnitude of increase during the early Eocene is large in the northern Indian Ocean, and similar δ^{18} O values are recognized in the Indian and South Atlantic Oceans during the middle and late Eocene. In this interval, the surface to bottom δ^{18} O difference is also small (<1%). A sharp increase at the Oligocene / Eocene boundary is recognized in the southern

Fig. 40. Composite oxygen isotope record of bottom water in the Southern Indian Ocean region. All data corrected to DIC of bottom water (See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Fig. 41. Composite carbon isotope record of bottom water in the Southern Indian Ocean region. All data corrected to DIC of bottom water (See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Fig. 42. Composite oxygen isotope record of surface water in the Southern Indian Ocean region. All data corrected to DIC of surface water (about 50 m below sea; See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Fig. 43. Composite carbon isotope record of surface water in the Southern Indian Ocean region. All data corrected to DIC of surface water (about 50 m below sea; See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Fig. 44. Composite oxygen isotope record of bottom water in the Central Atlantic Ocean region. All data corrected to DIC of bottom water (See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Fig. 45. Composite carbon isotope record of bottom water in the Central Atlantic Ocean region. All data corrected to DIC of bottom water (See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Fig. 46. Composite oxygen isotope record of bottom water in the South Atlantic Ocean region. All data corrected to DIC of bottom water (See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Fig. 47. Composite carbon isotope record of bottom water in the South Atlantic Ocean region. All data corrected to DIC of bottom water (See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Koji SETO

Fig. 48. Composite oxygen isotope record of surface water in the South Atlantic Ocean region. All data corrected to DIC of surface water (about 50 m below sea; See III-A-1 section). The smoothed curve is obtained by 15point running average.

Fig. 49. Composite carbon isotope record of surface water in the South Atlantic Ocean region. All data corrected to DIC of surface water (about 50 m below sea; See III-A-1 section). The smoothed curve is obtained by 15point running average.

Carbon and oxygen isotopic paleoceanography

Fig. 50. Composite oxygen isotope record of bottom water in the Southern Ocean (Atlantic sector) region. All data corrected to DIC of bottom water (See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Fig. 51. Composite carbon isotope record of bottom water in the Southern Ocean (Atlantic sector) region. All data corrected to DIC of bottom water (See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Koji SETO

Fig. 52. Composite oxygen isotope record of surface water in the Southern Ocean (Atlantic sector) region. All data corrected to DIC of surface water (about 50 m below sea; See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Fig. 53. Composite carbon isotope record of surface water in the Southern Ocean (Atlantic sector) region. All data corrected to DIC of surface water (about 50 m below sea; See III-A-1 section). The smoothed curve is obtained by 15-point running average.

Indian, South Atlantic, and Southern Oceans. The net magnitudes are largest (~0.8‰) in the Southern Ocean, and tend to decrease southwards as found in the shift of the bottom water record. The following δ^{18} O values differ among the oceans during the Oligocene. δ^{18} O values in the northern Indian Ocean are lowest (~0.2‰); the Southern Ocean, southern Indian, and South Atlantic Oceans, respectively, record the values of 2.0, 1.4, and 1.0‰, which are higher than those of the northern Indian Ocean. From the Miocene, although isotopes can only be recorded in the South Atlantic Ocean, the general trends are similar to those of the northern Indian Ocean. The degrees of decrease in those oceans are small from 12 Ma on consequently the δ^{18} O differences of those oceans expands to 1.4‰.

Carbon isotopic record: The carbon isotopic records of surface and bottom water through the Cenozoic exhibit the

same pattern in the Indian and South Atlantic Oceans, except for a pronounced shift toward low values (by $\sim 1.0\%$) observed in the Southern Ocean (Atlantic sector) in the late Pliocene (2.5 Ma). The South Atlantic and northern Indian Oceans located in the same latitude record similar δ^{13} C values of bottom water. $\delta^{13}C$ values in the southern Indian Ocean are also similar with the exception of a lower value from the Eccene to late Oligocene. In the Central Atlantic Ocean, δ^{13} C values are slightly lower than those of the northern Indian Ocean. The difference of δ^{13} C values between the northern Indian and Southern Ocean varies according to age. $\delta^{13}C$ values in the Southern Ocean are close to those of the northern Indian Ocean in the late and middle Eocene, latest Pliocene, and Pleistocene, but they are higher through the Paleocene to early Eocene (0.5‰), and are higher through the Oligocene to early Pliocene (0.3‰).

Fig. 55. All carbon isotope data considered in this study. Open circle shows a DIC values of surface water (about 50 m below sea), and dot shows a DIC value of bottom water.

For δ^{13} C values of surface water from the Paleocene to Oligocene, the southern Indian Ocean is generally similar to the northern Indian Ocean, however the former records 0.5‰, which is lower than that of the latter in the middle Eocene. During the Pleistocene, δ^{13} C values of the Central Atlantic Ocean are lower than those of the northern Indian Ocean (1.0‰). δ^{13} C values in the South Atlantic Ocean are higher throughout the Cenozoic 0.5 to 1.0‰. In the Southern Ocean (Atlantic sector), δ^{13} C values are 0.6‰ higher than those of the northern Indian Ocean during the Paleocene, which are similar to the early Eocene δ^{13} C values. They are slightly lower than those of the northern Indian Ocean in the middle and late Eocene.

The difference of δ^{13} C between surface and bottom water is smallest in the Southern Ocean (Atlantic sector), and largest in the South Atlantic Ocean. This difference tends to increase northwards. The Atlantic Ocean side exhibits larger difference than those of the Indian Ocean, although the two oceans are located at the same latitude.

D. General trends in the isotopic record

All oxygen and carbon isotope data used in this study are shown in Figs. 54 and 55. The general trends for oxygen and carbon isotopic records are similar in both the Indian and South Atlantic Oceans. In general, the oxygen and carbon isotopic values increase southwards.

The oxygen isotopic changes show a particular pattern from the Oligocene / Eocene boundary, that is, a gentle change followed by a sharp change in terms of a positive shift. Before and after the shift, a decrease in oxygen isotope values is recognized. The magnitudes of the shift of the Eocene / Oligocene boundary in surface and bottom water and the shift of the middle Miocene in bottom water tend to increase southwards. The shift of the late Pliocene tends to decrease southwards on the Atlantic ocean side, and decreases northwards on the Indian Ocean side. The difference in the magnitude of the shift may be caused by the difference in water mass structure.

As a general feature of carbon isotopes, the degree of variance of $\delta^{13}C$ tends to increase with a decrease in average

90°11

Distribution of oxygen isotopic values

63-64 Ma

 δ^{13} C. This suggests that the carbon isotopic changes are related to ocean circulation velocity and marine productivity. The fluctuations in carbon isotopes from the latest Paleocene to early Eocene are remarkable in the Cenozoic record.

D. Distribution of oxygen and carbon isotopic values

The geographical distribution of oxygen and carbon isotopes are examined using reconstructed paleocoordinates and paleodepths. For the correlation among sites, the isotopic data are averaged in one million year intervals. The averaged values and standard deviations are shown in Table 7.

1. Oxygen isotopes

Maastrichtian: In the Maastrichtian, oxygen and carbon isotopic data are measured from Site 752 (around 50°S) in the northeastern Indian Ocean and Sites 689 and 690 (around 70°S) in the Atlantic sector of the Southern Ocean (Barrera and Huber, 1990). The oxygen isotopic values at Site 752 are constant at ~-0.9‰ with a slight fluctuation, whereas those at Sites 689 and 690 tend to increase slightly by ~1.0‰. The difference between sites results from geographic difference, rather than variation in water depth, because the estimated water depth at Site 752 is close to that of Site 689.

Paleocene: From the early Paleocene to the time of the ¹⁸O maximum at 61 Ma, the latitudinal gradient of oxygen isotopes in bottom water in the South Atlantic Ocean (70°-30°S) shows a slightly increasing trend toward low-latitudes, and the latitudinal difference is less than 0.2% (Fig. 56). In the Indian Ocean, δ^{18} O values on the high-latitude side are only 0.1%, which are higher than those on the low-latitude side in this interval. However, the oxygen isotopic values at 50°S are lower than those on the high- and low-latitude sides (0.6-1.3%). The oxygen isotopic values in the Indian Ocean side are lower than those of the Atlantic Ocean side at similar latitude and water depth (0.3-0.4‰). This difference tends to reduce in this interval. δ^{18} O values on the low-latitude side in surface water are lower than those on the high-latitude side, and the difference on both sides is about 0.5%. In contrast, the $\delta^{18} \mathrm{O}\,difference$ between surface and bottom water on the high-latitude side is lower than that on low-latitude sides. The oxygen isotopic values at about latitude 50°S in the Indian Ocean are lower than those of the high- and low-latitude sides, and similar to bottom water record (1.0-1.5%). The surface to bottom difference of δ^{18} O values in this area is the largest among in the Indian and Atlantic Oceans reaching 1.6% at 62 Ma.

From 61 Ma in the Paleocene (Fig. 56), the oxygen isotopic values on the low-latitude side (around 40°S) in the Atlantic Ocean are close to those of the high-latitude side (~70°S). δ^{18} O values in mid-latitudes (~55°S) are 0.2-0.4‰, lower than those of both sides. In this area, δ^{18} O values in intermediate water depth (~1000m) are slightly higher than in deep water (~2000m). In surface water in the South Atlantic Ocean, the oxygen isotopic values on the low-latitude side are 0.6-0.8‰, lower than those on the high-latitude side, and the surface to bottom δ^{18} O difference on the low-latitude side is larger than that of the high-latitude sides. The latitudinal gradient of bottom water δ^{18} O in the Indian Ocean is similar to that of the Atlantic Ocean. The oxygen isotopic values on

Ig. 56. Geographical distribution of oxygen isotopes during the Paleocene. The isotopic data are averaged in one million year intervals (Table 7).

the low-latitude side (~25°S) in bottom water are close to those on the high-latitude side (~65°S), and at mid-latitude (~50°S) records values lower by 0.6‰ than those of both sides. At high-latitudes, the oxygen isotopic values of bottom water in the Indian Ocean are close to those of the Atlantic Ocean. In surface water, the oxygen isotopic values on the low-latitude side in the Indian Ocean are 0.5-0.8‰, lower than those on the high-latitude side; furthermore those at midlatitudes are 0.6-0.9‰, lower than those of the low-latitude side. The difference of δ^{18} O values between surface and bottom water is relatively large, being ~1.6‰ on the lowlatitude side and ~0.8‰ on the high-latitude side. The difference at mid-latitudes is only 0.2‰, larger than the lowlatitude side.

Remarkably low values of oxygen isotopes at midlatitudes are observed in the Indian and South Atlantic Oceans (Fig. 56). Low values in the Indian Ocean are situated slightly northward, compared with those in the South Atlantic Ocean. Low values in both oceans may be geographically connected by a belt-form (here called the "oxygen isotopic minima belt"). The "oxygen isotopic minima belt" may also exist in the late Maastrichtian.

Eccene: The pattern of oxygen isotopes in the early Eccene is similar to that in the latest Paleocene (Fig. 57-1). The oxygen isotopic values at high-latitudes in the Atlantic Ocean are 0.3-0.5‰, higher than those at low-latitudes, with a smaller difference in the older part of the record. In this interval, δ^{18} O values in intermediate water (~1000 m) are

N

300

PALEOCENE

	Interval (Ma)	δ ¹⁸ Ο (%)	δ ¹³ C (%)	No. of Data	Interval (Ma)	δ ¹⁸ Ο (%)	δ ¹³ C (%)	No. of Data
Central	Atlantic O	cean			Site 667 Benthic			
Site	98				24-25	1.668 ± 0.208	0.862 ± 0.281	11
B	enthic				25-26	1.794 ± 0.228	0.690 + 0.158	8
2	48-49	1 0 1 4	1 917	ı.	26-27	1 554	0.0502.0.155	1
	52-53	0 224 + 0 224	1 811 + 0 131	5	20 21	1.504	0.542	4 4
	57-59	.0 169	1 202	1	27 20	1.078 ± 0.185	0.025 ± 0.013	1
	57-58	-0.162	1.392	1	28-29	1.001	0.438	1
	38-39	-0.097	1.506	1	29-30	1.484 ± 0.160	0.506 ± 0.151	2
Site	366				30-31 31-32	1.572 ± 0.172 1.666	0.186 ± 0.114 0.511	3
В	enthic 8 · 9	2.570 ± 0.025	1.178 ± 0.244	4	South Atlantic Oc	an		
	9.10	2.488 ± 0.122	1.047 ± 0.082	2				
	10-11	2.293	0.857	1	Site 516			
	11-12	2.394	0.865	1	Benthic			
	12-13	2.411	0.827	1	2 · 3	2.932 ± 0.249	0.420 ± 0.177	12
	13 - 14	2 401	1 245	1	3.4	2.552 ± 0.245 2.552 \pm 0.159	0.340 ± 0.164	38
	14-15	2 001 + 0 207	1 302 + 0 073	â	4.5	2.502 + 0.103	0.252+0.159	22
	14 15	1 975 ± 0.207	1 206 + 0 224	3	Dianktonia	2.044 ± 0.516	0.333 2 0.138	33
	16-17	1.875 ± 0.363	1.396 ± 0.224	3	Flanktonic	0.046-0.168	1 000 + 0 107	
	17-18	1.0// ±0.205	1.707 ± 0.244	4	2.3	0.346 ± 0.157	1.882 ± 0.137	10
	18-19	1.745 ± 0.088	1.087±0.685	z	3 - 4	0.336±0.184	1.974 ± 0.164	40
	19-20	1.886 ± 0.227	0.792 ± 0.189	4	4 · 5	0.265 ± 0.151	2.226 ± 0.201	33
	20-21	1.893 ± 0.136	0.987 ± 0.185	8				
	21-22	2.068	1.071	1	Site 517			
	22-23	1.841 ± 0.184	1.534 ± 0.143	7	Benthic			
	23-24	1.742 ± 0.220	1.388 ± 0.214	7	2 · 3	2.645 ± 0.124	0.646 ± 0.025	3
	24-25	1.456 ± 0.092	0.964 ± 0.074	3	3 · 4	2.561 ± 0.263	0.431 ± 0.236	12
	26-27	1.510	0.94	1	Planktonic			
	27-28	1.445 ± 0.007	0.895 ± 0.191	2	1 · 2	-0.028 ± 0.055	1.935 ± 0.165	6
	29-30	1.873 ± 0.273	1.060 ± 0.185	4	2 · 3	0.105 ± 0.184	2.018 ± 0.175	33
	30-31	1.857 ± 0.159	0.797 ± 0.272	10	3 - 4	0.211 ± 0.224	2.038 ± 0.201	25
•	31-32	1.669 ± 0.193	0.697 ± 0.170	7		•		
	32-33	1.645 ± 0.179	0.597 ± 0.187	7	Site 518			
	33-34	1.555 ± 0.201	1.020 ± 0.164	12	Benthic			
	34-35	1.519 ± 0.126	1.062 ± 0.159	3	2 · 3	3.138 ± 0.216	-0.070 ± 0.205	6
	35-36	1.606 ± 0.153	1.333 ± 0.179	4	3 · 4	2.537 ± 0.216	0.384 ± 0.223	23
	36-37	0.861 ± 0.042	1.189 ± 0.168	2	4.5	2.540 ± 0.167	0.231 ± 0.210	5
	37-38	0.653 ± 0.032	$1 170 \pm 0.426$	2				-
	38-39	0.603	1.423	1	Site 519 Bonthia			
C:+-	(20				Dentine	2 100 + 0 502	0 6 8 0 + 0 19 2	•
one n	uso anthia				1-2	3.108 ± 0.323	0.009 ± 0.133	2
D	oentine	4 200 + 0 501	0.105 + 0.010	0.2.1	2.3	3.004 ± 0.489	0.442 10.418	3
	0.1	4.362 ± 0.521	0.135 ± 0.318	231	3.4	2.876±0.082	0.529 ± 0.152	4
	1-2	4.005 ± 0.464	0.063 ± 0.336	82	4.5	2.438±0.224	0.442 ± 0.221	8
	2.3	3.663 ± 0.339	-0.010 ± 0.350	133	5.0	2.691±0.306	0.604 ± 0.260	11
	3-4	3.309 ± 0.251	-0.061±0.317	6	6.7	2.699±0.135	0.926 ± 0.143	5
P	lanktonic				7.8	2.585 ± 0.241	1.116±0.213	6
	0 - 1	0.241 ± 0.474	0.327 ± 0.340	237	8.9	2.333 ± 0.277	0.741 ± 0.173	4
	1 - 2	0.229 ± 0.336	0.572 ± 0.304	90	9-10	2.423 ± 0.106	0.933 ± 0.184	2
	2 · 3	0.680 ± 0.115	0.546 ± 0.144	4	Planktonic			
					1 · 2	0.085 ± 0.290	2.190 ± 0.283	2
Site	659				2 · 3	0.482 ± 0.398	2.040 ± 0.384	5
В	Benthic				3 - 4	0.350 ± 0.132	2.077 ± 0.266	3
	0 - 1	4.419 ± 0.495	0.252 ± 0.376	163	4 - 5	0.355 ± 0.290	2.375 ± 0.049	2
P	lanktonic							
	0 - 1	0.202 ± 0.482	0.450 ± 0.333	108	Site 521 Benthic			
Site	e 662				1 - 2	3.508 ± 0.054	0.349 ± 0.153	4
F	lanktonic				2 - 3	3.094 ± 0.440	0.410 ± 0.200	7
-	0 - 1	-0.947 ± 0.203	1	103	3 • 4	2.874±0.377	0.594 ± 0.450	9
	1.2	-1.020+0 293		81	4 - 5	2.512 ± 0.131	0.364 ± 0.059	4
				~.	5.6	2.336±0.073	0.370±0.068	2
Site	663				6.7	2.723	0.421	1
T	- ood Nanktonic				13-14	2 353 +0 440	1.865 +0 387	-
1	0.1	-0.628+0.441		109	15 14	1 030	1 810	1
	0.1	0.020 I U.441	•	100	Planktonic	1.330	1.510	
Site	e 665				1 - 2	0.147 ± 0.047	1.9870.224	3
1	Benthic				2.3	0.290 ± 0.234	2.056 ± 0.173	8
-	2.3	2.699+0 353	0.288 + 0 458	134	3 - 4	0.460 ±0.042	1.855±0.191	2
	3 · 4	2.140 ± 0.214	0.610±0.306	12	4 - 5	0.440	2.080	1
Sit	e 667				Site 522			
on					D (1)			
I	Benthic				Benthic			
I	Benthic 19-20	1.678±0.091	1.158 ± 0.191	8	Benthic 1 - 2	3.447±0.679	0.138 ± 0.127	2
ł	Benthic 19-20 20-21	1.678±0.091 1.890±0.143	1.158 ± 0.191 0.976 ± 0.021	8 2	Benthic 1 - 2 2 - 3	3.447±0.679 3.268±0.503	0.138 ± 0.127 0.233 ± 0.217	2 16

Table 7-1. Average oxygen and carbon isotopic data of the 1 Ma interval used in this study.

Table 7-2. (continued).

Interval (Ma)	δ ¹⁸ Ο (‰)	δ ¹³ C (‰)	No. of Data	Interval (Ma)	δ ¹⁸ Ο (‰)	δ ¹³ C (‰)	No. of Data	-
Site 522 Benthic				Site 525 Benthic				
4 - 5	2.508	0.294	1	15-16	1.751 ± 0.266	2.239 ± 0.346	7	
5 - 6	2.708	0.436	1	16-17	2.073 ± 0.194	2.041 ± 0.298	2	
6 - 7	2.588	0.464	1	18-19	1.410	1.701	1	
26-27	1.893	0.693	1	19-20	1.905 ± 0.049	1.761 ± 0.184	2	
27-28	1.956	0.556	1	20-21	2.200	1.781	1	
29-30	2.273	0.713	1	22-23	2.145	1.411	1	
30-31	1.996	0.356	1	23-24	2.359 ± 0.052	1.561 ± 0.101	2	
32-33	2.410	1056+0028	2	24-25	0 709	1 339	1	
33-34	2.146	0.966	1	49-50	0.744 ± 0.032	1.315 ± 0.065	4	
34-35	1.936	0.946	1	50-51	0.266 ± 0.128	1.037 ± 0.139	3	
35-36	2.193 ± 0.169	1.199 ± 0.217	32	55-56	-0.362	1.378	1	
36-37	1.659 ± 0.196	1.006 ± 0.104	3	56-57	0.065 ± 0.189	0.928 ± 0.143	10	
				57-58	0.282 ± 0.145	1.672 ± 0.299	5	
Site 523				58-59	0.488	2.098	1	
Benthic				59-60	0.397 ± 0.121	2.900 ± 0.221	6	
1 - 2	3.391 ± 0.376	-0.211 ± 0.429	9	60-61	0.578 ± 0.127	2.843 ± 0.445	2	
2 - 3	3.021 ± 0.199	0.012 ± 0.334	9	61-62	0.608	1.558	1	
3 - 4	2.728 ± 0.172	0.205 ± 0.198	6	62-63	0.448	1.588	1	
34-35	1.993 ± 0.387	1.363 ± 0.312	3	63-64	0.499	1.919	1	
35-36	1.995 ± 0.191	1.530 ± 0.046	4	64-65	0.407 ± 0.174	1.882 ± 0.108	4	
36-37	1.720 ± 0.269	1.735 ± 0.021	2	68-69	0.328	2.402	1	
37-38	1.450	1.360	1	Planktonic	0.200	0 6 9 5	,	
38-39	1.292	1.820	1	10-11	0.390	2.030	1	
40 - 41	1.420 ± 0.173	1 860	2	10 - 11 11 - 12	0.810	2739+0160	7	
41 42	0.872	1.300	1	13-14	0.926 + 0.223	3391 ± 0.100	8	
43-44	0.910	1 190	1	14-15	0.480	3.080	1	
44-45	0.730 ± 0.113	1.000 ± 0.028	2	15-16	0.300	3.060	1	
45-46	0.535 ± 0.064	0.995 ± 0.106	2	47-48	0.026 ± 0.113	2.175 ± 0.318	2	
46-47	0.560	0.600	1	48-49	-0.154	2.680	1	
47-48	0.482	0.770	1	49-50	0.147 ± 0.127	2.082 ± 0.184	5	
48-49	0.790	1.050	1	50-51	-0.214	2.110	1	
Planktonic				55-56	-0.914	1.670	1	
1 - 2	1.182 ± 0.358	1.005 ± 0.248	9	56-57	-1.047 ± 0.395	2.092 ± 0.226	14	
2 - 3	1.259 ± 0.059	0.907 ± 0.127	4	57-58	-1.006 ± 0.178	3.332 ± 1.347	5	
3 - 4	1.241 ± 0.175	0.916 ± 0.025	3	58-59	-0.997	4.230	1	
42-43	-1.240	3.300	1	59-60	-1.126 ± 0.092	4.631 ± 0.231	6	
43-44	-1.115 ± 0.106	3.345 ± 0.389	2	60-61	-1.090 ± 0.016	4.489 ± 0.495	2	
44-45	-0.940	2.870	1	0 5 0.4				
46-47	-1.470	3.330	1	Sile 520 Denthia				
47-48	-0.460	2,430	1	Dentnic 0.1	3 953	0 973	1	
Site 574				1.2	3.505	0.373	2	
Benthic				2.3	3.391 ± 0.101	0.353 ± 0.174 0.757 ± 0.252	5	
55-56	-0.583	0.339	1	3 4	3.001 ± 0.085	0.676 ± 0.225	. 3	
56-57	-0.270 ± 0.132	1.299 ± 0.467	2	4.5	3.023 ± 0.205	0.877 ± 0.138	40	
61-62	-0.246	2.283	1	5 - 6	2.893 ± 0.194	0.760 ± 0.180	29	
64-65	-0.706 ± 0.042	2.193 ± 0.184	2	6 - 7	2.842 ± 0.114	1.172 ± 0.274	23	
65-66	-0.172 ± 0.327	2.319 ± 0.372	5	7 - 8	2.795 ± 0.147	1.372 ± 0.192	10	•
66-67	-0.846 ± 0.499	2.211 ± 0.227	6	8 - 9	2.772 ± 0.157	1.364 ± 0.123	24	
67-68	-0.921 ± 0.799	1.733 ± 0.014	2	9-10	2.549 ± 0.128	1.134 ± 0.135	7	
Planktonic				10-11	2.549 ± 0.141	1.314 ± 0.205	7	
55-56	-1.350	1.960	1	11-12	2.423 ± 0.192	1.351 ± 0.162	19	
56-57	-1.225 ± 0.064	2.260 ± 0.424	2	12-13	2.513 ± 0.181	1.516 ± 0.200	11	
61-62	-1.060	2.770	1	13-14	2.415	1.000	1	
62-63	-0.780	2.910	1	19-16	2.016±0.165	2.108 ± 0.205	4	
Site 575				23-24	1 595 + 0 183	1 665 + 0 222	6	
Benthic				24-25	1.575	0.805	1	
0 • 1	3.914	0.578	1	25-26	1.793 ± 0.140	1.523 ± 0.115	3	
2 · 3	3.534 ± 0.313	0.782 ± 0.264	2	26-27	1.739 ± 0.030	1.242 ± 0.215	2	
3 - 4	3.305 ± 0.184	0.738 ± 0.204	6	27-28	1.666 ± 0.240	1.493 ± 0.260	6	
4 - 5	2.985 ± 0.090	0.927 ± 0.305	10	28-29	1.722 ± 0.140	1.503 ± 0.196	3	
5-6	3.187 ± 0.172	0.981 ± 0.201	14	29-30	1.843 ± 0.011	1.488 ± 0.272	2	
6 - 7	3.133 ± 0.324	0.841 ± 0.136	10	30-31	1.453 ± 0.138	1.250 ± 0.219	4	
7 - 8	2.959 ± 0.184	1.393 ± 0.120	7	31-32	1.453 ± 0.018	1.311 ± 0.310	2	
8 9	2.998 ± 0.163	1.430 ± 0.223	3	32-33	1.374 ± 0.141	1.253 ± 0.035	2	
9.10	2.732 ± 0.250	1.487±0.319	5	33-34	1.340 ± 0.910	1.326 ± 0.173	3	
10-11	3.020±0.309	1.385 ± 0.087	4	37-38	0.710	1.333	1	
11-12	2.917 ± 0.253	1.427 ± 0.168	20	FIANKIONIC	0.010 - 0.100	1 743 + 0 950	E	
12-13	2.03U IU.167	1.020 ± 0.241	5 19	4 ° D 5 . C	0.120	1 040	1	
14-15	2,990	1,891	1	7-8	0.689±0.178	2.486 ± 0.078	8	
14 10	0.000	1.001	-				-	

Table 7-3. (continued).

_

-

Interval (Ma)	δ ¹⁸ Ο (%)	الم ¹³ C (الأم)	No. of Data	Interval (Ma)	δ ¹⁸ Ο (%)	δ ¹³ C (%)	No. of Data
Site 526 Planktonic				Site 529 Planktonic			
8 - 9	0.481 ± 0.115	2.338 ± 0.248	4	35-36	0.501	2.919	1
9.10	0.642 ± 0.061	2.339 ± 0.155	6	36-37	0.234 ± 0.456	2.935 ± 0.216	4
10-11	0.294 ± 0.021	2.409 ± 0.170	2	37-38	-0.164 ± 0.088	2.900 ± 0.149	3
11-12	0.189	2.269	1	38-39	0.081	2.726	1
12-13	0.735 ± 0.064	2.553 ± 0.021	2	39-40	0.040	2.797	1
13-14	0.850	2.825	1	40-41	0.060	2.604	1
19-20	0.870	2.295	1	47-48	0.040	2.912	1
23-24	0.730 ± 0.390	2.455 ± 0.265	5	48-49	0.091	2.636	1
36-37	-0.225	3.045	1	52-53	-0.897	1.557	1
37-38	-0.283	3.264	1				
				Southern Ocean			
Site 527							
Benthic				Site 689			
4 • 5	2.975	0.765	1	Benthic			
7 - 8	3.165	0.685	1	18-19	2.382	1.439	· 1
41-42	1.498	1.508	1	19-20	2.428 ± 0.117	1.702 ± 0.049	2
44-45	1.088	1.208	1	25-26	2.427	1.494	1
46-47	0.861 ± 0.035	1.331 ± 0.230	3	26-27	2.571 ± 0.361	1.563 ± 0.218	3
48-49	0.586 ± 0.111	1.171 ± 0.128	4	27-28	2.498 ± 0.040	1.465 ± 0.159	4
49-50	0.332 ± 0.033	0.915 ± 0.110	3	28-29	3.081 ± 0.314	1.706 ± 0.251	6
50-51	0.158 ± 0.212	1.228 ± 0.057	2	29-30	2.838 ± 0.183	1.476 ± 0.185	5
51-52	0.228	1.518	1	30-31	2.664 ± 0.151	1.263 ± 0.047	3
54-55	-0.012	1.118	1	31-32	2.422 ± 0.078	1.156 ± 0.157	5
57-58	0.248 ± 0.145	1.402 ± 0.105	3	32-33	2.320 ± 0.108	1.524 ± 0.206	5
59-60	0.504	2.681	1	33-34	2.360 ± 0.280	1.624 ± 0.097	5
62-63	0.550	1.680	1	34 - 35	2.294 ± 0.043	1.812 ± 0.033	5
63-64	0.463 ± 0.206	1.838 ± 0.114	2	35-36	2.537 ± 0.067	2.164 ± 0.112	4
64-65	0.519 ± 0.310	1.828 ± 0.122	4	36-37	1.402 ± 0.259	1.721 ± 0.184	4
65-66	0.578 ± 0.033	1.981 ± 0.100	3	37-38	1.382 ± 0.228	1.920 ± 0.221	5
66-67	0.983 ± 0.337	2.602 ± 0.213	4	38-39	1.624	1.646	1
Planktonic				39-40	1.294 ± 0.282	1.472 ± 0.166	5
54-55	-0.574	2.410	1	40-41	1.149 ± 0.064	1.564 ± 0.103	6
55-56	-1.029	2.229	1	41-42	1.085 ± 0.099	1.566 ± 0.163	7
57-58	-0.850 ± 0.412	3.164 ± 0.531	2	42-43	0.624 ± 0.232	1.859 ± 0.088	4
66-67	-0.558 ± 0.217	2.937 ± 0.212	12	43-44	0.634	1.796	1
				44 45	0.593 ± 0.167	1.448 ± 0.131	4
Site 528				45-46	0.414 ± 0.142	1.583 ± 0.116	3
Benthic				46-47	0.630 ± 0.166	1.334 ± 0.144	7
1.2	3.763 ± 0.312	0.477 ± 0.249	27	47-48	0.427 ± 0.104	1.296 ± 0.136	4
2 · 3	2.740	0.641	1	48-49	0.357 ± 0.046	1.353 ± 0.031	3
4.5	2.835 ± 0.078	0.840 ± 0.085	2	49-50	0.102 ± 0.130	1.449 ± 0.033	2
41-42	1.349	1.359	1	50-51	0.121 ± 0.246	1.698 ± 0.266	6
46-47	0.728	0.718	1	55-56	0.262	2.079	1
47-48	0.421 ± 0.186	1.718 ± 0.365	7	56-57	0.520	2.032	1
Planktonic				57-58	0.450	2.162	1
1 · 2	0.294 ± 0.171	1.422 ± 0.232	29	58-59	0.490 ± 0.113	2.252 ± 0.057	2
47-48	-0.034	2.440	1	64-65	0.341 ± 0.098	2.324 ± 0.080	9
57-58	-1.057 ± 0.421	3.252 ± 0.511	6	65-66	0.409 ± 0.177	2.256 ± 0.113	2
			-	66-67	0.815 ± 0.261	2.319 ± 0.329	7
Site 529				68-69	1.334 ± 0.060	2.615 ± 0.213	3
Benthic				69-70	1.450 ± 0.078	2.278 ± 0.533	3
0 - 1	2.985	0.905	1	70-71	1.212	1.618	1
25-26	2.290	1.006	1	71-72	1.130 ± 0.101	2.125 ± 0.226	6
27-28	1.955	1.153	1	72-73	1.027 ± 0.163	2.758 ± 0.085	2
30-31	1.910	0.915	1	73-74	0.857 ± 0.007	2.388 ± 0.198	2
32-33	2.070	1.530	1	76-77	0.787 ± 0.064	2.473 ± 0.134	2
33-34	2.000	1.281	1	77-78	0.922	2.208	1
34-35	1.967 ± 0.177	1.348 ± 0.228	15	Planktonic			
35-36	2.320 ± 0.044	1.698 ± 0.222	3	31-32	1.578 ± 0.039	1.325 ± 0.304	2
36-37	1.985 ± 0.512	1.715 ± 0.393	9	32-33	1.672 ± 0.184	2.111 ± 0.140	4
37-38	1.024 ± 0.035	1.504 ± 0.184	2	33-34	1.618 ± 0.271	1.823 ± 0.207	4
38-39	1.334	1.299	1	34-35	1.799 ± 0.107	2.074 ± 0.107	5
39-40	1.360	1.290	1	35-36	1.994 ± 0.069	2.458 ± 0.233	5
40-41	1.119 ± 0.139	1.364 ± 0.261	3	36-37	0.602 ± 0.755	1.992 ± 0.543	5
48-49	1.214	1.174	1	37-38	1.203 ± 0.120	2.355 ± 0.134	4
Planktonic			-	38-39	0.773 ± 0.109	2.230 ± 0.128	4
0 - 1	0.185	1.205	1	39-40	0.833 ± 0.425	1.954 ± 0.346	9
10-11	0.519	2.389	1	40-41	0.731 ± 0.269	2.012 ± 0.128	16
24-25	0.751	2.409	1	41-42	0.592 ± 0.149	2.112 ± 0.111	12
24 25	0.740 +0 129	2.525 ±0.093	2	42-43	0.516 ± 0.125	2.236 ± 0.138	5
20 20	1 041	2 639	ĩ	43-44	0.260 ± 0.299	2.293 ± 0.099	6
20-21	0 991	2.509	î	44-45	-0.045 ± 0.049	1.970 ± 0.099	2
49-44	0.681	2.859	1	45-46	0.178 ± 0.229	2.020 ± 0.128	5
34-35	0.526±0.138	2.810 ± 0.156	- 5	46-47	-0.077 ± 0.155	1.799 ± 0.183	10
			••				

.

 Interval (Ma)	δ ¹⁸ Ο (%)	δ ¹³ C (%)	No. of Data	Interval (Ma)	δ ¹⁸ Ο (%)	δ ¹³ C (‰)	No. of Data
 Site 689 Planktonic	`			Site 699 Benthic			
47-48	-0.183 ± 0.216	1.763 ± 0.198	6	50-51	0.120	1.308	1
48-49	-0.464 ± 0.140	2.100 ± 0.127	7	51-52	-0.475 ± 0.259	1.895 ± 0.190	3
49 - 50	-0.385 ± 0.049	2.200 ± 0.057	2	52-53	-0.369	2.266	1
57-58	-0.750 ± 0.694	1.787 ± 0.976	3	54-55	-0.916	1.707	1
58-59	-0.525 ± 0.102	2.530 ± 0.182	4	55-56	-1.093	1.384	1
60-61	-0.463 ± 0.064	3.387 ± 0.158	3	56-57	-1.160	1.361	1
				58-59	-0.993	2.569	1
Site 690							
Benthic				Site 700			
20-21	2.624	1.556	1	Benthic		• •	
26-27	2.678 ± 0.106	1.452 ± 0.069	4	46-47	0.479 ± 0.075	1.693 ± 0.130	4
27-28	2.437 ± 0.107	1.643 ± 0.142	8	47-48	0.567 ± 0.099	1.592 ± 0.111	3
28-29	2.687 ± 0.269	1.416 ± 0.149	4	48-49	0.377±0.064	1.575 ± 0.209	2
29-30	2.565 ± 0.190	1.441 ± 0.251	5	49-50	-0.314	1.415	1
31-32	2.154	1.326	1	50-51	-0.180 ± 0.071	1.848 ± 0.233	3
32-33	2.239 ± 0.184	1.371 ± 0.184	13	51-52	-0.308	2.221	1
33-34	2.035 ± 0.213	1.815 ± 0.205	7	52-53	-0.729	1.610	1
38-39	2.214 ± 0.156	2.201 ± 0.134	2	53-54	-0.588 ± 0.264	1.552 ± 0.442	2
39-40	1.103 ± 0.169	1.655 ± 0.127	5	54-55	-0.554 ± 0.129	1.341 ± 0.110	2
40-41	1.075 ± 0.192	1.727 ± 0.228	5	55-56	-0.352 ± 0.147	1.087 ± 0.247 3 165 ± 0.131	5
44-45	0.372 ± 0.268	1.522±0.343	0	58-59	-0.463 ± 0.111	3.105 ± 0.131	7
45-46	0.167 ± 0.167	1.480 ± 0.261	9	59-60	-0.351 ± 0.201	2 953 +0 124	2
46-47	0.087 ± 0.117	1.679±0.004	2	60-61	-0.667 ± 0.137	2.805 ± 0.124	2
49-50	-0.012 ± 0.104	1.650 ± 0.105	5	62-63	-0.456 ± 0.108	2.693 ± 0.120	2
50-51	-0.079 ± 0.100	1.884 ± 0.082	- 4 - 5	63-64	-0 595	2.030 1.0.142	1
51-52	-0.411 ± 0.088	1.705 ± 0.131	3	64-65	-1.036	2 960	1
52-55	-0.214 ± 0.130	1.375 ± 0.125 1.344 ± 0.124	4	65-66	-1 028	3,127	1
55-56	-0.089 ± 0.156	1.544 ± 0.124 1.583 ± 0.291	19	00 00	1.000	01101	-
56-57	-0.119 ± 0.196	1.003 ± 0.231	19	Site 702			
57-58	0.089+0.215	2258 ± 0.687	12	Benthic			
58-59	0.137 ± 0.144	3.051 ± 0.199	16	38-39	1.047 ± 0.026	1.753 ± 0.024	3
59-60	0.415 ± 0.193	3.484 ± 0.202	15	39-40	1.069 ± 0.157	1.811 ± 0.095	4
60-61	0.457 ± 0.218	3.160 ± 0.144	9	40-41	1.132 ± 0.064	1.660 ± 0.005	2
67-68	1.380	2.612	1	42-43	0.358 ± 0.061	2.129 ± 0.191	3
68-69	1.368 ± 0.028	2.550 ± 0.476	3	43-44	0.582 ± 0.075	1.499 ± 0.258	4
69-70	1.072 ± 0.255	2.444 ± 0.152	3	44-45	0.451 ± 0.064	1.695 ± 0.080	4
70-71	1.426 ± 0.350	2.103 ± 0.520	3	45-46	0.483 ± 0.016	1.984 ± 0.005	2
71-72	0.885 ± 0.163	2.197 ± 0.345	18	46-47	0.478 ± 0.112	1.951 ± 0.295	4
72-73	0.700 ± 0.113	2.591 ± 0.413	4	47-48	0.532 ± 0.123	1.648 ± 0.091	7
Planktonic				48-49	0.427 ± 0.069	1.692 ± 0.125	6
38-39	0.835 ± 0.431	2.015 ± 0.134	2	49-50	0.173 ± 0.146	1.538 ± 0.115	6
39-40	0.958 ± 0.090	2.100 ± 0.224	4	50-51	-0.085	1.528	1
40-41	0.913 ± 0.145	2.222 ± 0.097	5	52-53	-0.278 ± 0.121	1.802 ± 0.083	3
41-42	0.630 ± 0.125	2.197 ± 0.191	6	53-54	-0.549 ± 0.088	1.847 ± 0.134	4
44 - 45	0.025 ± 0.106	1.900 ± 0.140	4	54-55	-0.406	1.370	1
45-46	-0.031 ± 0.103	2.081 ± 0.152	13	55-56	-0.237 ± 0.057	1.230 ± 0.059	2
46-47	-0.130	2.030	1	56-57	-0.157	1.431	1
49-50	-0.177 ± 0.198	2.117 ± 0.176	6	57-58	0.120 ± 0.195	1.899 ± 0.394	3
50-51	-0.332 ± 0.077	2.240 ± 0.154	6	58-59	0.095 ± 0.228	2.196 ± 0.420	3
51-52	-0.460 ± 0.139	2.103 ± 0.107	3	59-60	0.277 ± 0.121	3.400 ± 0.199	9
52-53	-0.500 ± 0.192	2.250 ± 0.165	5	60-61	0.090±0.110	2.738±0.206	4
53-54	-0.866 ± 0.202	1.330 ± 0.365	5	04. 804			
54-55	-0.439 ± 0.115	1.633 ± 0.134	7	Site 704			
55-56	-0.367 ± 0.246	2.051 ± 0.165	16	Benthic	0 475.40 405	0 114 + 0 500	40
56-57	-0.661 ± 0.180	2.122 ± 0.110	21	0-1	3.475±0.435	0.114 ± 0.509	48
57-58	-0.619 ± 0.425	2.353 ± 0.822	23	1.2	3.834±0.343	- U.2UD IU.397	202
58-59	-0.394 ± 0.169	3.384 ± 0.272	17	2.3	3.517±0.250	0.502 ± 0.415	100
59-60	-0.243 ± 0.391	3.852 ± 0.229	17	3.4	3.030 ± 0.253	0.010 10.213	5.9
60-61	-0.045 ± 0.159	3.604±0.164	6	4.5	2.134 ± 0.189 2.797 ± 0.227	0.000 - 0.240	47
				0.7	2.10120.001	1 577+0 435	29
Bandhia				U · / 7 . 2	2.140 - 0.200	1.762 ± 0.158	23
Benunic	-0 406 + 0 100	1 716 + 0 907	2	2.0	2.829 + 0 166	1.746±0.160	28
51-52	-0.406 ±0.102	1.715 ± 0.207	3	0-5	2.620 ± 0.100	1.695 ± 0.149	10
52-53	-0.448	1.703	1	3.10	2.020 ± 0.147	2.00020.140	
53-54	-0.614+0.001	1.000	2	Northwestern Inc	lian Ocean		
54-55	-0.014 ±0.021	1 321 + 0 272	2	and an order in the			
55-55	0.210 10.220	1 1021 - 0.272	1	Site 237			
50-57	0.024	1.403	1	Renthic			
- 57 - 58	0.214	2 357 + 0 709	2	5.6	2.932 ± 0.152	0.108 ± 0.107	5
50-59	0.200 - 0.334	2.351 10.138	5 9	6-7	2.949 ± 0.052	0.183 ± 0.207	7
55-60	0.4111.0.223	0,000 - 0,000	6	7 - 8	2.798 ± 0.175	0.650 ± 0.275	6
				8-9	3.102 ± 0.324	0.973 ± 0.148	11

```
Table 7-5. (continued).
```

Site 297 Subrit Bendix Subrit Subrit 9-10 2.560 1.180 1 11-12 2.916±0.075 1.167±0.158 11 13-14 2.560 1.230 1 12-15 2.775±0.058 1.741±0.158 11 14-16 2.560±0.058 1.770±0.158 1.14 1.972±0.203 1.741±0.352 14 15-16 1.265±0.058 1.770±0.238 6 1.671 1.244±0.300 6 15-17 1.245±0.165 1.338±0.231 1.03±0.101 1.032±0.101 12 16-22 2.266±0.057 1.66±0.011 2 1.272±0.138±0.020 1.032±0.106 2 22-223 2.006±0.057 1.56±0.021 2 2.22-34 2.025±0.017 1.032±0.106 2 22-223 2.006±0.057 1.38±0.203 1.83±0.203 1.83±0.203 1.43±0.203 1.44 16-10 -0.642±0.203 1.742±0.203 1.73±0.106 1.44 16-11 -1.33±0.201 1.741±0.203 1.44 1.44 <th>Interval (Ma)</th> <th>δ¹⁸Ο (‰)</th> <th>δ¹³C (‰)</th> <th>No. of Data</th> <th>Interval (Ma)</th> <th>δ¹⁸Ο (%)</th> <th>δ¹³C (%)</th> <th>No. of Data</th>	Interval (Ma)	δ ¹⁸ Ο (‰)	δ ¹³ C (‰)	No. of Data	Interval (Ma)	δ ¹⁸ Ο (%)	δ ¹³ C (%)	No. of Data
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Site 237 Benthic				Site 709 Benthic			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9-10	2.950	1.180	1	11-12	2.916 ± 0.075	1.167 ± 0.158	11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12-13	3.010	1.290	1	12-13	2.775 ± 0.159	1.024 ± 0.587	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13-14	2.550 ± 0.208	1.263 ± 0.365	6	13-14	1.972 ± 0.203	1.476 ± 0.352	14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14-15	2.070 ± 0.157	1.570 ± 0.336	3	14-15	2.105 ± 0.175	1.324 ± 0.329	24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15-16	2.255 ± 0.035	2.170 ± 0.212	2	15-16	1.970 ± 0.223	1.945 ± 0.330	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16-17	1.835 ± 0.218	1.797 ± 0.538	6	16-17	2.024 ± 0.128	1.108 ± 0.096	9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17-18	1.968 ± 0.080	1.413 ± 0.100	6	17-18	1.936 ± 0.136	0.936 ± 0.157	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18-19	1.948 ± 0.146	1.328 ± 0.237	12	18-19	1.971 ± 0.134	1.023 ± 0.130	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19-20	1.869 ± 0.088	1.165 ± 0.111	12	19-20	2.224 ± 0.149	1.107 ± 0.114	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20-21	1.990 ± 0.173	1.085 ± 0.155	3	20-21	2.003 ± 0.142	0.955 ± 0.116	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21-22	2.035 ± 0.163	1.205 ± 0.021	2	21-22	2.328 10.083	1.720 ± 0.005	2
	22 23	1 835 + 0 223	1.130 ± 0.042	2	22-23	2.322 + 0.177	1.708 ± 0.200	0
	Planktonic	1.000 20.220	1.200 ± 0.420		Planktonic	2.127 - 0.107	1,0012.0.020	u
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.6	-0.446 ± 0.297	1.338 ± 0.201	6	1 • 2	-0.856 ± 0.220	1.320 ± 0.195	173
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.7	-0.602 ± 0.200	1.743 ± 0.203	7	2 · 3	-0.884 ± 0.228	1.406 ± 0.207	140
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.8	-0.616 ± 0.215	2.001 ± 0.258	6	3 · 4	-0.957 ± 0.239	1.372 ± 0.175	248
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8-9	-0.457 ± 0.162	2.018 ± 0.228	12	4 - 5	-0.742 ± 0.212	1.453 ± 0.173	144
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9.10	-0.843 ± 0.219	2.175 ± 0.163	2				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10-11	-1.338	2.700	1	Site 714			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12-13	-0.078	2.090	1	Benthic			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. 13-14	-0.138 ± 0.227	2.361 ± 0.252	7	7 · 8	2.745 ± 0.138	0.863 ± 0.133	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14-15	-0.531 ± 0.278	2.600 ± 0.121	3	8 - 9	2.640 ± 0.149	0.907 ± 0.160	30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15-16	-0.508 ± 0.042	2.920 ± 0.071	2	9-10	2.456 ± 0.034	0.955 ± 0.078	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16-17	-0.784 ± 0.145	2.616 ± 0.467	6	10-11	2.579 ± 0.123	0.937 ± 0.026	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17-18	-0.630 ± 0.343	1.878 ± 0.271	· 5	11-12	2.540 ± 0.110	1.194 ± 0.192	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18-19	-0.536 ± 0.249	1.936 ± 0.191	11	12-13	2.583 ± 0.100	1.189 ± 0.102	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19-20	-0.262 ± 0.187	1.613 ± 0.255	7	13-14	2.140	2.020	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20-21	-0.238 ± 0.398	1.657 ± 0.029	3	14-15	1.813	2.148	1
Site 238 $22-24$ 1.873 ± 0.201 1.271 ± 0.220 1.271 ± 0.220 1.271 ± 0.220 1.271 ± 0.220 1.971 ± 0.220 0.971 ± 0.251 1.97 ± 0.261 $1.97\pm0.261+0.26$	22-23	0.662	1.280	1	15-16	1.951 ± 0.581	1.760 ± 0.269	2
PlanktonicDenthic $5 \cdot 6$ 3.137 ± 0.233 0.097 ± 0.276 6 $1 \cdot 2$ -1.232 ± 0.514 19 $6 \cdot 7$ 3.162 ± 0.061 0.448 ± 0.438 5 $2 \cdot 3$ -1.054 ± 0.279 19 $7 \cdot 8$ 2.948 ± 0.159 0.410 ± 0.176 6 $3 \cdot 4$ -1.433 ± 0.351 19 $8 \cdot 9$ 3.076 ± 0.138 1.182 ± 0.255 9 $4 \cdot 5$ -1.269 ± 0.497 16 $9 \cdot 10$ 3.560 $ 1 \cdot 5 \cdot 6$ -1.428 ± 0.611 5 $10 - 11$ 3.260 0.850 1 $7 \cdot 8$ -2.115 ± 0.168 2.100 ± 0.287 $11 - 12$ 2.825 ± 0.304 0.955 ± 0.686 2 $8 \cdot 9$ -1.385 ± 0.026 1.951 ± 0.203 27 $12 - 13$ 2.885 ± 0.035 0.345 ± 0.318 2 $9 \cdot 10$ -2.330 ± 0.288 2.060 ± 0.099 2 $13 - 14$ 2.438 ± 0.304 1.150 ± 0.233 4 $10 - 11$ -1.610 1.540 1 $14 - 15$ $2.300 \pm 0.381 \pm 0.120$ 2 $0 \cdot 1$ -0.941 ± 0.381 112 $15 - 16$ 1.935 ± 0.320 1.333 ± 0.128 4 Planktonic $18 - 19$ 2.135 ± 0.029 0.395 ± 0.120 2 $0 \cdot 1$ -0.941 ± 0.381 112 $19 - 20$ 2.100 0.740 $1 \cdot 2$ -0.861 ± 0.318 6 $23 - 24$ 2.262 ± 0.147 1.206 ± 0.215 11 Northeastern Indian Ocean $5 \cdot 6$ -0.886 ± 0.297 2.047 ± 0.270 <			,		23-24	1.873 ± 0.201	1.271 ± 0.220	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Site 238				Planktonic			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Benthic			_	0 - 1	-1.030 ± 0.501		20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-6	3.137 ± 0.233	0.097 ± 0.276	6	1 · 2	-1.242 ± 0.514		19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.7	3.152 ± 0.061	0.448 ± 0.438	5	2.3	-1.054 ± 0.279		19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.8	2.948 ± 0.159	0.810 ± 0.176	6	3 · 4	-1.433 ± 0.351		19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.9	3.076±0.138	1.182 ± 0.295	9	4.5	-1.269 ± 0.497		10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9-10	3.550	-	1	5.0	-1.428±0.051	9 100 - 0 957	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-11	3.260	0.850	1	7.0	-1.095±0.168	2.100 ± 0.257	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11 - 12	2.825 ± 0.304	0.955 ± 0.686	2	8.9	-1.985 ± 0.258	1.951 ± 0.203	21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-13	2.005 10.035	0.345 ± 0.318	4	10-11	-1.610	1 540	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14-15	2.435 ± 0.304	1.130 ± 0.235 1 733 ± 0 125	- 1 2	11-12	-1925 ± 0313	2 072 + 0 245	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15-16	1935 + 0 325	1.735 ± 0.120	4	11 16	1.520 20.010	2,072 - 0,240	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16 - 17	2.020 ± 0.020	1.560 ± 0.465	2	Site 716			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17-18	2.020 ± 0.400 2.035 ± 0.082	1.333 ± 0.128	4	Planktonic			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18-19	2.135 ± 0.290	0.985 ± 0.120	2	0 • 1	-0.941 ± 0.381		112
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19-20	2.110	0.740	1	1 · 2	-0.861 ± 0.318		65
Northeastern Indian Ocean $5 \cdot 6$ -0.886 ± 0.297 2.047 ± 0.270 7 $6 \cdot 7$ -0.864 ± 0.109 2.240 ± 0.501 6 Site 214 $7 \cdot 8$ -1.067 ± 0.156 2.536 ± 0.316 5 Benthic $8 \cdot 9$ -0.923 ± 0.237 2.407 ± 0.263 13 $5 \cdot 6$ 3.133 ± 0.222 0.267 ± 0.259 6 $9 \cdot 10$ -1.014 2.270 1 $6 \cdot 7$ 2.771 ± 0.250 0.756 ± 0.394 7 $10 - 11$ -0.844 2.120 1 $8 \cdot 9$ 3.069 ± 0.220 1.300 ± 0.138 12 $11 - 12$ -0.860 2.400 1 $8 \cdot 9$ 3.069 ± 0.220 1.300 ± 0.138 12 $11 - 13$ -0.814 ± 0.043 2.237 ± 0.122 3 $9 \cdot 10$ 2.220 0.680 1 $13 - 14$ -0.882 ± 0.294 2.379 ± 0.158 4 $10 - 11$ 2.557 ± 0.074 0.963 ± 0.225 3 $14 - 15$ -0.619 ± 0.268 2.915 ± 0.106 2 $11 - 12$ 2.577 ± 0.074 0.963 ± 0.225 3 $14 - 15$ -0.619 ± 0.268 2.915 ± 0.106 2 $11 - 12$ 2.577 ± 0.074 0.963 ± 0.225 3 $16 - 17$ -0.117 ± 0.075 1.860 ± 0.339 2 $13 - 14$ 1.95 ± 0.288 0.70 1 $17 - 18$ -0.318 1.910 1 $14 - 15$ 1.780 1.410 1 $18 - 19$ -0.288 1.720 1 $15 - 16$ 1.745 ± 0.148 1.565 ± 0.007 2 <	23-24	2.262 ± 0.147	1.206 ± 0.215	11				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Planktonic				Northeastern Indi	an Ocean		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 - 6	-0.886 ± 0.297	2.047 ± 0.270	7				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 - 7	-0.864 ± 0.109	2.240 ± 0.501	5	Site 214			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 - 8	-1.067 ± 0.156	2.536 ± 0.316	5	Benthic			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 - 9	-0.923 ± 0.237	2.407 ± 0.263	13	5.6	3.133 ± 0.222	0.267 ± 0.259	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 - 10	-1.014	2.270	1	6 · 7	2.771 ± 0.250	0.756 ± 0.394	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-11	-0.844	2.120	1	7 · 8	2.967 ± 0.097	1.300 ± 0.138	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11-12	-0.860	2.400	1	8-9	3.069 ± 0.220	1.173 ± 0.103	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12-13	-0.814 ± 0.043	2.237 ± 0.122	3	9.10	2.220	0.680	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13-14	-0.882 ± 0.294	2.379 ± 0.158	4	10-11	2.557 ± 0.074	0.963 ± 0.225	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14-15	-0.699±0.268	2.915 ± 0.106	2	11-12	2.070 ± 0.156	0.00010.339	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15-16	-0.013 ± 0.213	2.860±0.143	5 7	12 - 13	2.100 ± 0.134	0.820 20.078	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16-17	-0.11/±0.075	1.010	2	13-14	2.300 IU.228	1 410	5 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17-18	-0.318	1.310	1	14-10	1 745 + 0 149	1 565 ±0 007	1 9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-19	-0.264+0.190	2.020 +0 113	2	18-10	1.945:+0.064	1.395 ± 0.488	2
Site 70910 $20 - 21$ 1,9000,9801Benthic $21 - 22$ 1.970 ± 0.057 1.130 2 4 $\cdot 5$ 3.120 0.270 1 $22 - 23$ 2.030 1.350 1 5 $\cdot 6$ 3.125 ± 0.100 0.716 ± 0.382 11 $23 - 24$ 1.970 ± 0.028 1.050 ± 0.028 2 7 $\cdot 8$ 3.138 1.060 1 Planktonic8 $\cdot 9$ 3.170 0.780 1 $5 \cdot 6$ -0.821 ± 0.197 1.984 ± 0.210 8 $9 \cdot 10$ 2.995 ± 0.021 0.885 ± 0.078 2 $6 \cdot 7$ -0.514 ± 0.189 1.978 ± 0.257 8 $10 - 11$ 2.914 ± 0.072 0.989 ± 0.184 5 $7 \cdot 8$ -0.542 ± 0.120 2.407 ± 0.188 18	. 23 24	0.20420.130	2.020 10.113	-	19-20	1.900 + 0 170	1.145 ± 0.290	2
Benthic $21-22$ 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 2 $4 \cdot 5$ 3.120 0.270 $1.22-23$ 2.030 1.350 1.130 2 $4 \cdot 5$ 3.125 ± 0.100 0.716 ± 0.057 1.130 2 $7 \cdot 8$ 3.125 ± 0.100 0.716 ± 0.057 1.130 2 $7 \cdot 8$ 3.125 ± 0.100 0.716 ± 0.057 1.050 ± 0.028 2 $7 \cdot 8$ 3.138 1.060 1.970 ± 0.028 1.050 ± 0.028 2 $7 \cdot 8$ 3.170 0.780 1.542 ± 0.120 1.974 ± 0.257 8 $10-11$ 2.914 ± 0.072 0.989 ± 0.184 5 $7 \cdot 8$ -0.542 ± 0.120 2.407 ± 0.188 1.812	Site 709				20-21	1.900	0.980	1
$4 \cdot 5$ 3.120 0.270 1 $22 - 23$ 2.030 1.350 1 $5 \cdot 6$ 3.125 ± 0.100 0.716 ± 0.382 11 $23 - 24$ 1.970 ± 0.028 1.050 ± 0.028 2 $7 \cdot 8$ 3.138 1.060 1 Planktonic $8 \cdot 9$ 3.170 0.780 1 $5 \cdot 6$ -0.821 ± 0.197 1.984 ± 0.210 8 $9 \cdot 10$ 2.995 ± 0.021 0.885 ± 0.078 2 $6 \cdot 7$ -0.514 ± 0.189 1.978 ± 0.257 8 $10 - 11$ 2.914 ± 0.072 0.989 ± 0.184 5 $7 \cdot 8$ -0.542 ± 0.120 2.407 ± 0.188 18	Benthic				21-22	1.970±0.057	1.130	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 - 5	3.120	0.270	1	22-23	2.030	1.350	1
$7 \cdot 8$ 3.138 1.060 1Planktonic $8 \cdot 9$ 3.170 0.780 1 $5 \cdot 6$ -0.821 ± 0.197 1.984 ± 0.210 8 $9 \cdot 10$ 2.995 ± 0.021 0.885 ± 0.078 2 $6 \cdot 7$ -0.514 ± 0.189 1.978 ± 0.257 8 $10 - 11$ 2.914 ± 0.072 0.989 ± 0.184 5 $7 \cdot 8$ -0.542 ± 0.120 2.407 ± 0.188 18	5.6	3.125±0.100	0.716 ± 0.382	11	23-24	1.970±0.028	1.050 ± 0.028	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 · 8	3.138	1.060	1	Planktonic			-
9·10 2.995±0.021 0.885±0.078 2 6·7 -0.514±0.189 1.978±0.257 8 10-11 2.914±0.072 0.989±0.184 5 7·8 -0.542±0.120 2.407±0.188 18	8 - 9	3.170	0.780	1	5.6	-0.821 ± 0.197	1.984 ± 0.210	8
10-11 2.914±0.072 0.989±0.184 5 7.8 -0.542±0.120 2.407±0.188 18	9.10	2.995 ± 0.021	0.885 ± 0.078	2	6 - 7	-0.514 ± 0.189	1.978 ± 0.257	8
	10-11	2.914 ± 0.072	0.989 ± 0.184	5	7 - 8	-0.542 ± 0.120	2.407 ± 0.188	18

Table 7-6. (continued).

•	Interval (Ma)	δ ¹⁸ Ο (%)	δ ¹³ C (%)	No. of Data	Interval (Ma)	δ ¹⁸ Ο (‰)	δ ¹³ C (‰)	No. of Data
	Site 214 Planktonic				Site 253 Benthic			
	8.9	-0.354 ± 0.158	2.133 ± 0.284	15	32-33	1.554 ± 0.049	1.290 ± 0.184	2
	9-10	-0.127 ± 0.400	1.622 ± 0.124	3	33-34	1.599	1.360	1
	10-11	-0.381 ± 0.222	1.978 ± 0.046	2	35-36	1.384 ± 0.191	1.455 ± 0.064	2
	11-12	-0.016 ± 0.314	2.165 ± 0.233	2	36-37	0.964 ± 0.247	1.495 ± 0.035	2
	12-13	-0.008 ± 0.255	2.155 ± 0.134	2	Planktonic			
	13-14	-0.228 ± 0.152	2.303 ± 0.135	5	4 - 5	0.288 ± 0.297	1.920 ± 0.041	4
	14-15	-0.528	2.220	1	5 - 6	0.743 ± 0.399	1.746 ± 0.175	8
	15-16	-0.631 ± 0.141	2.168 ± 0.301	4	6 · 7	1.020	2.010	1
	16 - 17	-0.428 ± 0.200	2.140 ± 0.379	4	7 · 8	1.185 ± 0.247	1.985 ± 0.205	2
	18-19	-0.069	2.110	1	8 - 9	1.240 ± 0.076	2.173 ± 0.156	4
					9.10	1.120 ± 0.000	2.000 ± 0.007	2
	Site 215				10-11	1.025 ± 0.007	2.130 ± 0.007	2
	Benthic				11-12	1.067 ± 0.177	2.115 ± 0.080	3
	55-56	-0.530 ± 0.225	1.185 ± 0.350	3	12-13	1.075 ± 0.247	1.840 ± 0.403	2
	56-57	-0.080 ± 0.000	1.647 ± 0.064	2	13-14	0.780	2.315	1
	57-58	-0.118 ± 0.102	1.970 ± 0.165	4	14-15	0.573 ± 0.311	2.415 ± 0.178	3
	58-59	-0.035 ± 0.108	2.343 ± 0.791	4	15-16	0.645 ± 0.021	2.800 ± 0.049	2
	59-60	0.270 ± 0.221	3.074 ± 0.218	5	16-17		2.000 ± 0.021	2
	60-61	0.470 ± 0.269	2.829 ± 0.169	3	17-18	0.515 ± 0.071	2.142 ± 0.106	2
					18-19	0.475	2.157	1
	Site 216				19-20	0.455	2.657	1
	Benthic				21-22	0.110	2.607	1
	8 - 9	3.041 ± 0.119	0.850 ± 0.121	7	24-25	-0.185 ± 0.057	2.457 ± 0.170	2
	10-11	2.850 ± 0.141	0.875 ± 0.078	2	25-26	-0.235	2.197	1
	11-12	2.773 ± 0.090	0.757 ± 0.175	3	26-27	-0.425	2.187	1
	12-13	2.810 ± 0.245	1.065 ± 0.181	4	27-28	-0.075	2.137	1
	13-14	2.453 ± 0.194	1.477 ± 0.110	3	28-29	-0.145	2.147	1
	14-15	2.030 ± 0.087	1.760 ± 0.201	3	29-30	0.185	2.057	1
	15-16	1.910 ± 0.424	1.735 ± 0.290	2	30-31	0.175 ± 0.057	2.127 ± 0.113	2
	16 - 17	1.807 ± 0.084	1.727 ± 0.212	3	31-32	0.175 ± 0.085	2.282 ± 0.304	2
	17-18	1.835 ± 0.021	1.565 ± 0.502	2	32-33	-0.355 ± 0.200	2.194 ± 0.032	3
	18-19	1.895 ± 0.235	1.130 ± 0.292	4	33-34	-0.385	2.207	1
	19-20	2.062 ± 0.151	0.940 ± 0.133	9				
	20-21	2.195 ± 0.325	0.735 ± 0.521	8	Site 752			
	21-22	2.077 ± 0.121	1.034 ± 0.229	7	Benthic			
	22-23	2.193 ± 0.335	1.367 ± 0.387	3	0 - 1	2.413	1.071	1
	Planktonic				1-2	2.313 ± 0.156	1.421 ± 0.028	z
	8 - 9	-0.333 ± 0.158	1.787 ± 0.270	7	2 - 3	2.668 ± 0.191	0.876 ± 0.064	Z
	10-11	-0.188 ± 0.240	1.745 ± 0.445	2	3 - 4	2.110 ± 0.100	0.884 ± 0.115	3
	11-12	0.059 ± 0.276	1.627 ± 0.081	3	4.5	1.896±0.100	0.861 ± 0.206	4
	12-13	0.017 ± 0.175	1.865 ± 0.254	4	5.6	2.003 ± 0.014	0.891 ± 0.057	2
	13-14	-0.238 ± 0.014	2.105 ± 0.092	2	6-7	1.883 ± 0.104	1.1/1±0.308	3
	14-15	-0.308 ± 0.087	2.417 ± 0.023	3	1.9	1.950±0.015	1.441 ± 0.083	3
	15-16	0.227 ± 0.389	2.355 ± 0.035	2	8-9	1.840 ± 0.133	1.271 ± 0.101	2.
	16-17	0.009 ± 0.180	2.115 ± 0.254	4	9.10	1.703 ± 0.014 1.780 ± 0.021	1.500 ± 0.177	3
	17-18	-0.373 ± 0.021	2.405 ± 0.021	2	11-12	1.780 ± 0.021	1.688 ± 0.237	3
	18-19	-0.243 ± 0.318	2.005 ± 0.926	z	11-12	1.793 ± 0.033	1.000 ± 0.201	2
	19-20	0.032 ± 0.057	1.370 ± 0.014	2	12 13	1.753 ± 0.021	2 086 + 0 191	2
	20-21	-0.165 ± 0.316	1.627 ± 0.087	3	13-14	1.443 ± 0.071	1.851 ± 0.255	2
	22-23	-0.135 ± 0.148	1.900±0.170	2	14 15	1 248 + 0 064	2.196 ± 0.120	2
	SH- 252				16-17	0.848 ± 0.106	1.566 ± 0.318	2
	Sile 253				17-18	0.040 ± 0.100 0.708 ± 0.247	1.616 ± 0.219	2
	Demuic	3 020 4 0 083	1 015 +0 092	4	18-19	1.058 ± 0.177	1.401 ± 0.368	2
	4-5	3.020 ± 0.000	0.960 ± 0.130	8	19 - 20	2.363 ± 0.778	1.036 ± 0.007	2
	5.0	3.038 ± 0.100	0.535 + 0.332	2	20 - 21	1.218 ± 0.049	1.406 ± 0.092	2
	7.8	3,030 ± 0,170	1.240 ± 0.352	4	21-22	0.963 ± 0.156	1.406 ± 0.049	2
	8.0	3.210 ± 0.203	1 633 + 0 131	4	22-23	0.728 ± 0.714	1.346 ± 0.219	2
	0.10	3.345 ± 0.201	1,000 ± 0.101	2	23-24	1.393	1.881	1
	10-11	2.935 ± 0.100	1 430 + 0.099	2	24-25	1.083	1.801	1
	11-12	2.370 ± 0.030	1.683 ± 0.163	3	28-29	0.913	1.411	1
	19-19	2 765 + 0 276	1.285 ± 0.361	2	30-31	0.413	1.451	1
	13-14	2.100 20.270	1.150	- 1	31-32	0.253	1.491	1
	14-15	2.057 ± 0.315	1.793 ± 0.156	- 3	32-33	0.313	1.391	1
	14-10	1.575 + 0.600	1.745 ± 0.615	2	34-35	-0.377	1.721	1
	16-17	2 289 + 0 071	1.120 ± 0.099	2	35-36	-0.192 ± 0.148	1.866 ± 0.064	2
	17-18	2,259	1.080	1	55-56	-0.789 ± 0.199	0.655 ± 0.282	13
	18-19	2.369	1.170	1	56-57	-0.721 ± 0.301	0.741 ± 0.540	7
	19-20	2.269	1.490	1	57-58	-0.588 ± 0.086	1.325 ± 0.293	3
	21-22	2.349	1.440	1	58-59	-0.323 ± 0.080	2.565 ± 0.243	6
	24-25	1.589	0.760	1	59-60	-0.308 ± 0.140	2.578 ± 0.274	3
	28-29	2.009	1.010	1	60 - 61	-0.239 ± 0.055	2.320 ± 0.161	4
	30 - 31	2.024 ± 0.049	0.905 ± 0.219	2	61-62	-0.222 ± 0.090	2.083 ± 0.193	12
	31-32	1.939 ± 0.297	1.190 ± 0.127	2	62-63	-0.524 ± 0.161	1.917 ± 0.178	16

l able 7-7.	continued).
-------------	-----------	----

Interval (Ma)	δ ¹⁸ Ο (%)	δ ¹³ C (%)	No. of Data	Interval (Ma)	δ ¹⁸ Ο (%0)	δ ¹³ C (%)	No. of Data
Site 752 Benthic				Site 756 Benthic			
63-64	-0.955 ± 0.179	2.066±0.307	5	23-24	1.355 ± 0.081	1.167 ± 0.047	3
64 - 65	-0.940 ± 0.125	2.262 ± 0.179	4	24-25	1.471 ± 0.161	1.095 ± 0.078	3
65 - 66	-1.386 ± 0.179	2.175 ± 0.274	6	25-26	1.567 ± 0.174	0.911 ± 0.255	3
66-67	-1.059 ± 0.386	2.181 ± 0.249	9	26-27	1.567 ± 0.056	0.906 ± 0.048	3
67-68	-0.875 ± 0.345	2.168 ± 0.087	4	27-28	1.592 ± 0.097	1.010 ± 0.085	3
68-69	-0.851 ± 0.224	2.079 ± 0.069	3	28-29	1.430 ± 0.044	1.077 ± 0.085	4
69-70	-0.821 ± 0.019	1.941 ± 0.172	3	29-30	1.397 ± 0.032	0.841 ± 0.099	2
70-71	-0.578 ± 0.006	1.432 ± 0.018	2	30-31	1.303 ± 0.233	1.423 ± 0.127	5
71-72	-1.105 ± 0.371	1.433 ± 0.150	2	31-32	1.400 ± 0.217	1.108 ± 0.228	9
Planktonic				32-33	1.608 ± 0.335	1.020 ± 0.224	4
55-56	-2.114 ± 0.094	1.534 ± 0.673	7	33-34	1.222 ± 0.105	1.213 ± 0.186	7
56-57	-2.232 ± 0.270	1.567 ± 0.527	5	34-35	1.200 ± 0.260	1.561 ± 0.298	5
57-58	-2.264 ± 0.173	1.914 ± 0.243	2	35-36	0.684 ± 0.089	1.430 ± 0.149	4
58-59	-2.177 ± 0.149	3.175 ± 0.416	4	36-37	0.571 ± 0.146	1.516 ± 0.146	6
59-60	-1.973 ± 0.146	3.581 ± 0.264	2	37-38	0.475 ± 0.099	1.294 ± 0.085	2
60 - 61	-1.957 ± 0.128	3.291 ± 0.119	3				
61-62	-1.976 ± 0.228	2.843 ± 0.218	6	Site 757			
62-63	-2.192 ± 0.199	2.647 ± 0.216	7.	Benthic			
				0 · 1	3.088 ± 0.201	0.108 ± 0.277	5
Site 754				1 - 2	3.145 ± 0.213	0.195 ± 0.231	7
Benthic				2 · 3	2.800 ± 0.196	0.342 ± 0.106	5
0 - 1	2.847 ± 0.113	0.936 ± 0.230	3	3 - 4	2.632 ± 0.186	0.309 ± 0.210	9
1 • 2	2.741 ± 0.073	1.015 ± 0.190	3	4 • 5	2.505 ± 0.127	0.429 ± 0.166	8
2 · 3	2.696 ± 0.088	0.997±0.133	6	5-6	2.506 ± 0.118	0.363 ± 0.132	6
3 · 4	2.240 ± 0.196	0.885 ± 0.110	6	6.7	2.625 ± 0.290	0.648 ± 0.272	7
4 - 5	2.249 ± 0.227	0.808 ± 0.125	4	7 - 8	2.356 ± 0.227	1.158 ± 0.282	5
5.6	2.189 ± 0.071	0.922 ± 0.150	4	8 - 9	2.825	1.355	1
6 - 7	1.957 ± 0.038	1.120 ± 0.168	4	9-10	2.415 ± 0.213	1.089 ± 0.124	2
7 - 8	2.092 ± 0.059	1.469 ± 0.067	2	10-11	2.464 ± 0.014	0.957 ± 0.291	2
8 - 9	2.078 ± 0.163	1.331 ± 0.170	2	11-12	2.309 ± 0.155	1.141 ± 0.118	3
9-10	1.933 ± 0.036	1.492 ± 0.076	3	12-13	2.484	0.491	1
10-11	1.933	1.531	1	13-14	2.118 ± 0.150	1.255 + 0.266	3
11-12	2.169 ± 0.112	1.182 ± 0.254	3	14-15	1.354 ± 0.127	1.464 ± 0.076	4
12-13	1.873 ± 0.132	1.523 ± 0.234	16	16 - 17	1.528 ± 0.069	1.050 ± 0.220	2
13-14	1.681 ± 0.226	1.798 ± 0.284	11	17-18	1.719 ± 0.084	1.000 ± 0.220 1.187 ± 0.114	3
14-15	1.058 ± 0.096	2.222 ± 0.131	3	18-19	1.784	1,117	1
15-16	1.232 ± 0.210	2.233 ± 0.250	3	19-20	1.443	1.293	1
16-17	0.953 ± 0.028	1.670 ± 0.012	2	23 - 24	1.687±0.053	1.218+0.001	2
17-18	1.223 ± 0.226	1.301 ± 0.410	2	25-26	1 584	1 429	1
18-19	1.313	1.511	ĩ	20 20	1.666	1.956	1
19-20	1.273 ± 0.141	1.493 ± 0.088	2	28-29	1.634	1.379	1
20-21	1.285 ± 0.136	1.482 ± 0.113	4	30-31	1 723 + 0 077	1 284 + 0 038	4
21-22	1.238 ± 0.164	1.530 ± 0.083	4	31-32	1 619	1 206	1
22-23	1.287 ± 0.160	1.764 ± 0.179	3	33-34	1.620 ± 0.021	1.575 ± 0.102	2
23-24	1.228 ± 0.271	1.580 ± 0.235	4	34-35	1.631 ± 0.132	1.790 ± 0.210	4
24-25	1.100 ± 0.222	1.513 ± 0.243	2	35-36	1.219 ± 0.163	1.568 ± 0.182	2
25-26	1.263	1.311	1	36-37	0.922 ± 0.011	1.350 ± 0.182	2
26-27	1.221 ± 0.017	0.952 ± 0.128	2	37-38	1.069 ± 0.051	1.856 ± 0.131	4
27-28	1.213	1.301	1	38-39	0.941 ± 0.066	1.748 ± 0.001	2
28-29	1.227 ± 0.020	1.212 ± 0.114	5	40-41	0.878 ± 0.099	1.353 ± 0.121	3
				41-42	0.916 ± 0.068	1.562 ± 0.177	2
Site 756				42-43	0.974	1.677	1
Benthic				43-44	0.618 ± 0.122	1.812 ± 0.021	2
1 · 2	3.003 ± 0.187	0.683 ± 0.086	2	44 - 45	0.684	1.635	1
2 · 3	3.026 ± 0.573	0.398 ± 0.052	3	45-46	0.488	1.664	1
3 · 4	2.623 ± 0.333	0.681 ± 0.312	5	47-48	0.451 ± 0.010	1.638 ± 0.057	2
4 • 5	2.699 ± 0.084	0.757 ± 0.148	4	48-49	0.294	1.575	1
5 · 6	2.652 ± 0.136	0.574 ± 0.247	6	49-50	0.110 ± 0.222	1.575 ± 0.133	2
6 · 7	2.498 ± 0.167	0.676 ± 0.093	5	51-52	-0.187 ± 0.141	1.793 ± 0.019	2
7 - 8	2.446 ± 0.133	1.168 ± 0.160	4	53-54	-0.681 ± 0.192	1.563 ± 0.282	3
8 - 9	2.523 ± 0.084	1.221 ± 0.140	3	54-55	-0.799	1.044	1
9-10	2.535	1.434	1	55-56	-0.903	0.849	1
10-11	2.376 ± 0.030	1.184 ± 0.141	2	56-57	-1.141	0.972	1
11-12	2.498 ± 0.131	1.581 ± 0.547	2	Planktonic			
12-13	2.143 ± 0.167	1.312 ± 0.042	3	35-36	0.402	2.367	1
13-14	1.572	1.359	1	37-38	0.430	2.343	1
14-15	1.645	1.603	1	38-39	0.197	2.445	1
15-16	1.394 ± 0.245	2.174 ± 0.270	3	40 - 41	0.317	2.421	1
17-18	1.214 ± 0.000	1.534 ± 0.159	2	41-42	0.182	2.431	1
18-19	1.479 ± 0.233	1.444 ± 0.245	2	43-44	0.006	2.609	1
19-20	1.509 ± 0.245	1.567 ± 0.067	2	45-46	-0.159	2.390	1
20-21	1.616 ± 0.193	1.493 ± 0.143	4	47-48	-0.231	2.212	1
21-22	1.629 ± 0.115	1.824 ± 0.089	3	48-49	-0.170	2.413	1
22-23	1.446 ± 0.083	1.442 ± 0.306	3	49-50	-0.583 ± 0.275	2.182 ± 0.083	2

Table 7-8. (continued).

Interval (Ma)	δ ¹⁸ Ο (%)	δ ¹³ C (%)	No. of Data	Interval (Ma)	δ ¹⁸ Ο (‰)	δ ¹³ C (%)	No. of Data
Site 757 Planktonic				Site 762 Benthic			
51-52	-0.872 ± 0.194	2.259 ± 0.033	2	61-62	-0.042 ± 0.172	2.337 ± 0.273	9
52-53	-1.115	2.302	1	Couthonn Indian (Jacon		
53-54 54-55	-1.433±0.292	2.094±0.255	2	Southern Indian C	Jcean		
55-56	-1.636	1.395	1	Benthic			
56-57	-1.933	1.523	1	35-36	2.034 ± 0.394	1.440 ± 0.223	5
				36-37	1.475 ± 0.167	1.106 ± 0.099	9
Site 758				37-38	1.543 ± 0.220	1.447 ± 0.141	9
Benthic				38-39	1.547 ± 0.188	1.505 ± 0.190	5
0 - 1	3.751 ± 0.314	0.022 ± 0.227	13	39-40	1.272 ± 0.049	1.800 ± 0.109	2
1.2	3.640 ± 0.407	-0.021 ± 0.225	12	40 - 41	1.012	1.763	3
3 - 4	2.699 ± 0.209	0 188 + 0 220	9	42 45	0.727	1.583	1
4.5	2.703 ± 0.209	0.061 ± 0.205	7	45-46	0.612 ± 0.035	1.582±0.085	2
5-6	2.645 ± 0.369	0.030 ± 0.292	8	46-47	0.610 ± 0.205	1.279 ± 0.236	3
6 - 7	2.528 ± 0.226	0.666 ± 0.301	7	47-48	0.469 ± 0.220	1.264 ± 0.174	5
7 - 8	2.536±0.336	0.904 ± 0.256	8	48-49	0.430 ± 0.114	1.212 ± 0.135	3
8 - 9	2.535 ± 0.361	0.825 ± 0.312	6	49-50	0.187	0.982	1
10-11	2.676	1.151	1	50-51	0.023 ± 0.257	1.753 ± 0.151	5
11-12	2.269 ± 0.325	0.722 ± 0.033	2	51-52	-0.290 ± 0.040	1.869 ± 0.042	3
12-13	1.679	1.008	1	52-53	-0.343±0.000	1.962 ± 0.198	· 1
14-15	1.796±0.120	1.408 ± 0.214	1	54-55	-0.511 ± 0.095	1.572 1.581 ± 0.294	5
17-18	1.848	1.014	1	55-56	-0.383 ± 0.099	1.452 ± 0.353	2
18-19	1.793 ± 0.062	0.985±0.556	2	56-57	-0.292 ± 0.204	0.939 ± 0.314	7
19-20	2.045 ± 0.015	1.097 ± 0.189	3	57-58	0.182	1.628	1
20-21	1.549 ± 0.616	1.060 ± 0.252	4	58-59	0.262	2.013	1
21-22	1.510 ± 0.235	1.400 ± 0.442	3	60-61	0.332 ± 0.073	3.192 ± 0.241	4
22-23	1.805 ± 0.208	1.627 ± 0.182	3	61-62	0.462 ± 0.414	2.314 ± 0.383	5
23-24	1.347 ± 0.264	1.287 ± 0.169	7	62-63	0.376 ± 0.130	1.964 ± 0.134	9
25-26	1.758 ± 0.134	0.983 ± 0.317	3	63-64	0.257 ± 0.162	1.950 ± 0.182	5
27-28	1.786 ± 0.121	0.975 ±0.192	2	65-66	-0.033 ±0.164	2.710 ± 0.233	1
28 29	1.715	1 330	1	Planktonic	0.100	2.002	-
30-31	1.684 ± 0.259	0.728 ± 0.514	8	35-36	0.757 ± 0.107	2.597±0.120	3
31-32	1.790 ± 0.183	0.574 ± 0.264	2	36-37	0.497 ± 0.087	2.353 ± 0.182	7
34-35	1.675 ± 0.303	0.938 ± 0.541	2	37-38	0.503 ± 0.192	2.358 ± 0.160	9
41-42	1.775	1.033	1	38-39	0.615 ± 0.323	1.793 ± 0.209	5
58-59	0.291	2.836	1	39-40	0.627 ± 0.292	2.287 ± 0.075	2
59-60	0.340 ± 0.320	3.031 ± 0.163	2	40-41	0.293	2.365	1
60-61	0.563 ± 0.158	2.731 ± 0.118	2	41-42	0.009 ± 0.491	2.241 ± 0.257 2.130 ± 0.164	2
61-62	0.321±0.075	2.221±0.150	2	42-45	0.013 ± 0.055	1.939	1
Planktonic	0,185	2.025	1	45-46	0.062 ± 0.071	1.765	2
0 - 1	-1.250 ± 0.409	1.411 ± 0.185	142	46-47	0.009 ± 0.160	2.127 ± 0.074	3
1 - 2	-1.478 ± 0.232	1.621 ± 0.222	121	47-48	-0.157 ± 0.218	1.814 ± 0.246	6
2 - 3	-1.599 ± 0.251	1.654 ± 0.173	81	48-49	-0.305 ± 0.111	1.911 ± 0.081	3
3 - 4	-1.903 ± 0.135	1.542 ± 0.180	12	49-50	-0.564 ± 0.191	1.940 ± 0.118	3
4 - 5	-1.605 ± 0.231	1.741 ± 0.245	10	50-51	-0.680 ± 0.072	2.110 ± 0.386	5
5.6	-1.701 ± 0.259	1.740 ± 0.320	10	51-52	-0.676 ± 0.208	2.120 ± 0.351	3
6.7	-1.358 ± 0.193	2.074 ± 0.223	8 0	52-53	-0.879+0.134	2.127 ± 0.110	2
6°) 2.0	-1.000-0.110	2.101 - 0.220	5	54-55	-1.078 ± 0.099	1.980 ± 0.179	5
9-10	-1.624 ± 0.148	1.655 ± 0.346	2	55-56	-0.855 ± 0.502	1.640 ± 0.099	2
11-12	-1.069±0.276	2.108 ± 0.134	2	56-57	-1.173 ± 0.215	1.708 ± 0.240	4
12-13	-1.154	2.178	1	57-58	-0.850 ± 0.156	2.270 ± 0.226	2
14-15	-1.507 ± 0.095	2.610 ± 0.145	2	58-59	-0.560	2.500	1
15-16	-1.184	2.562	1	60-61	-0.625 ± 0.092	3.870±0.042	2
17-18	-1.299	2.062	1	61-62	-0.465 ± 0.163	2.730 ± 0.099	2
18-19	-1.369 ± 0.148	1.969 ± 0.102	3	62-63	-0.563 ± 0.144	2.243 ± 0.165	4
58-59	-1 340 +0 201	3.239	1 9	03-04	0.42020.047	2.200 ± 0.104	5
60-61	-1 037 +0 026	3.132+0.044	2	Site 744			
61-62	-0.922 ± 0.140	2.609 ± 0.271	2	Benthic			
63-64	-0.927	2.388	1	9.10	3.131 ± 0.021	1.090 ± 0.085	2
				10-11	3.023 ± 0.212	1.338 ± 0.235	5
Site 762				11-12	3.051 ± 0.381	1.217 ± 0.356	6
Benthic				12-13	2.657 ± 0.041	1.305 ± 0.035	2
55-56	-0.559 ± 0.168	0.869 ± 0.359	2	13-14	2.287 ± 0.236	1.788±0.203	5
56-57	-0.547 ± 0.116	0.973 ± 0.197	3	14-15	1.937 ± 0.237	1.810 ± 0.141	12
57-58	-0.460 ± 0.128	0.987±0.168	8	15-16	2.033 ± 0.334	1.334 ±0.187	, Я
58-59	-0.183+0.040	1.311	3	17-18	2.068 ± 0.316	1.774 ± 0.142	19
60-61	0.216±0.187	2.821 ± 0.107	5	18-19	2.292 ± 0.238	1.592 ± 0.138	5
55 51			-				

Table 7-9. (continued).

	Interval (Ma)	δ ¹⁸ Ο (%)	δ ¹³ C (%)	No. of Data	Interval (Ma)	δ ¹⁸ Ο (%)	δ ¹³ C (%)	No. of Data
	Site 744 Benthic				Site 748 Planktonic			
	19-20	2.491 ± 0.060	1.433 ± 0.130	4	39 - 40	0.344	1.761	1
	20-21	2.220 ± 0.121	1.260 ± 0.200	5	40 - 41	0.201 ± 0.009	1.801 ± 0.226	2
	21-22	2.176	1.280	1	42 - 43	0.012 ± 0.229	2.021 ± 0.268	2
	24-25	2.576	1.650	1	43 - 44	0.034	2.041	1
	25-26	2.666	1.560	1	44 - 45	-0.217 ± 0.159	1.757 ± 0.306	3
	26-27	2.226 ± 0.208	1.385 ± 0.151	4.	45-46	0.274 ± 0.269	1.661 ± 0.099	2
	27-28	2.360 ± 0.128	1.020 ± 0.197	5	47-48	0.534	0.771	1
	28-29	2.651 ± 0.148	1.130 ± 0.014	2	49 - 50	0.104	0.671	1
	30-31	2.556	1.050	1	52-53	-0.496 ± 0.085	0.776 ± 0.049	2
	31-32	3.356	0.990	1	55-56	-0.546	0.331	1
	32-33	2.502 ± 0.125	1.128 ± 0.090	5	58-59	-0.426 ± 0.115	1.904 ± 0.330	3
	33-34	2.476 ± 0.125	1.253 ± 0.240	4	59-60	-0.699 ± 0.187	2.964 ± 0.395	4
	34-35	2.559 ± 0.083	1.298 ± 0.077	4	014 88 0			
	35-36	2.412 ± 0.348	1.532 ± 0.154	9	Site 750			
	36-37	1.696 ± 0.196	1.158 ± 0.286	5	Beninic	0 105 40 001	0 555 + 0 072	
	37-38	1.690 ± 0.339	1.274 ± 0.161	5	65-66	0.195 ± 0.021	2.555 ± 0.073	4
	38-39	1.312 ± 0.141	1.440 ± 0.168	8	66-67	0.173±0.217	2.341±0.131	12
	39-40 Displitania	1.656 ± 0.044	1.527 ± 0.112	3	Site 751			
	Planktonic		0 000 + 0 151	-	Sile /51 Depthic			
	19-20	1.122 ± 0.181	2.839 ± 0.151	5 5	Dentine A.5	3 410 +0 133	0 955 +0 105	A
	20-21	0.100 ± 0.259	2.019 ± 0.227	0 1	4') 5.6	3.410 - 0.133	1 297 + 0 140	
	21-22	0.956	2.389	1	5.0	3.570±0.137	1.237 ± 0.160	9
	24-25	1.146	2.629	1	7.8	3 503 + 0 209	1 196 + 0 148	5
	25-26	1.200	2.305	1	8.0	3 489 + 0 145	1 135 + 0 093	12
	20-21	0.700 ± 0.075	2.434 ± 0.038 2.054 ± 0.117	r 6	9.10	3 313 + 0 252	1.100 ± 0.000	41
	21-28	1.131 ± 0.106	2.034 ± 0.117 2.149 ± 0.197	2	10-11	3.354 ± 0.202	1.202 ± 0.210 1.372 ± 0.262	54
	20 23	1.131 1.0.100	2.145 10.127	1	11-12	3.319 ± 0.226	1.407 ± 0.273	55
	31-32	1 316	2.000	1	12 - 13	3.005 ± 0.128	1.658 ± 0.109	8
	32-33	1.010 1 114 ± 0.261	2 257 + 0 045	15	13-14	3.099 ± 0.003	2.073 ± 0.211	3
	33-34	1.091 ± 0.083	2.201 ± 0.040 2 337 ± 0 123	4	14-15	2.727 ± 0.393	1.779 ± 0.124	4
	34-35	1.051 ± 0.000 1.159 ± 0.092	2.007 ± 0.049	4	15-16	2.325 ± 0.179	1.878 ± 0.172	11
	35-36	1.205 ± 0.052 1.217 ± 0.259	2.242 ± 0.142	8	16-17	2.164 ± 0.219	1.835 ± 0.162	17
	36-37	0.560 ± 0.111	2.257 ± 0.107	5	17-18	2.224 ± 0.334	1.672 ± 0.326	8
	37-38	0.528 ± 0.172	2.285 ± 0.096	5	18-19	2.481 ± 0.194	1.316 ± 0.361	12
	38-39	0.344 ± 0.168	2.402 ± 0.181	6	19-20	2.360 ± 0.024	1.106 ± 0.192	2
	39-40	0.313 ± 0.087	2.489 ± 0.171	3				
	Site 748							
	Benthic							
	22-23	2.292	1.149	1				
	23-24	2.174 ± 0.114	1.118 ± 0.048	3				
	24-25	2.321 ± 0.182	0.957 ± 0.081	2				
	25-26	2.407 ± 0.095	1.180 ± 0.159	3				
	26-27	2.409 ± 0.125	0.955 ± 0.573	2				
	27-28	2.394 ± 0.179	0.885 ± 0.007	2				
	28-29	2.310 ± 0.141	0.830 ± 0.028	2				
	29-30	2.515 ± 0.195	0.765±0.069	4				
	30-31	2.521 ± 0.126	0.677±0.117	Z				
	31-32	2.211 ± 0.098	0.477 ± 0.117	2				
	32-33	2.437±0.196	U.00UIU.104	3				
	33-34	2.310±0.036	1.027 ± 0.132	3				
	34-35	2.210 ±0.198	0.303 ± 0.049	19				
	30-30	2.333 20.030	1 184 +0 197	5				
	30-37	1.020 ±0.110	1 496 + 0 169	5 6				
	31-38	1 669 40 097	1 484 +0 007	3				
	30-39	1 421 40 066	1 420 + 0 000	ч 9				
	33-40	1 260 + 0 1/5	1 233 + 0 104	3				
	40-41	1 164	1 199	1				
	41 42	0.970	1.070	. 1				
	43-44	0.903 ±0 143	1.355±0 280	3				
	44-45	0.880±0.141	1.040±0.491	2				
	52-53	-0.560	0.410	1				
	55-56	-0.220	-0.750	1				
	58-59	-0.090	0.450	1				
	59-60	0.092±0.359	2.251 ± 0.695	5				
	Planktonic			-		•		
	33-34	1.377±0.212	1.839 ± 0.310	4				
	34-35	0.997±0.170	1.831 ± 0.101	3				
	35-36	1.287±0.387	2.190±0.211	10				
	36-37	0.745 ± 0.104	2.097 ± 0.213	7				
	37-38	0.455 ± 0.259	2.379 ± 0.098	5				
·	38-39	0.334 ± 0.121	1.941 ± 0.378	3				

.

Fig. 57-1. Geographical distribution of oxygen isotopes during the Eocene. The isotopic data are averaged in one million year intervals (Table 7). See legend of Fig. 56.

distinctly high. Latitudinal difference of surface water δ^{18} O at this time is smaller than that in the latest Paleocene; for example the difference between 40°S and 70°S ranges from 0.2-0.4‰. Distinctly lower values of δ^{18} O of surface and bottom water in the Indian and South Atlantic Oceans became close to δ^{18} O values at high-latitudes in this interval, and those values became close to values recognized at the middle/early Eocene boundary. As a result, "oxygen isotopic minima belt" in the Indian and South Atlantic Oceans disappear at this time. δ^{18} O values in the Indian Ocean are slightly lower than those in the Atlantic Ocean.

During the middle Eocene, the oxygen isotopic values of bottom water in the Atlantic Ocean tend to increase northward from high-latitudes, and the oxygen isotopic difference between the high- and low-latitude sides (around 70°-40°S) is 0.2-0.6% at the same depth. From 49 to 51 Ma, δ^{18} O values of intermediate water (~2000m) at high-latitudes are 0.2-0.3% lower than those of deep water. In contrast, δ^{18} O values of intermediate water (1000-2000m) at high-latitudes are 0.3-0.5‰ higher than those from 47 to 43 Ma. The benthic δ^{18} O values at 40 Ma are close to values at depths shallower than 2500 m. In surface water of the Atlantic

Fig. 57-2. (continued).

Ocean, δ^{18} O values at low-latitude are about 0.3‰ higher than those at high-latitudes during the period 51-48 Ma (Fig. 57). In the Indian Ocean, the oxygen isotopic values of bottom water tend to increase southward from low-latitudes in the middle Eocene, and the latitudinal difference of δ^{18} O value between 35°S and 65°S is 0.1-0.4‰ at a different water depth (Fig. 57-2). This difference tends to be expanded. The oxygen isotopes of intermediate water (1000-1500m) at highlatitudes in the Indian Ocean show relatively high values in comparison with deep water, which is a similar oxygen isotopic record to the Atlantic Ocean. No latitudinal gradient of oxygen isotopes is observed in surface water of the Indian Ocean.

In the late Eocene, the oxygen isotopic values of bottom water in the Atlantic Ocean tend to decrease toward low-latitudes the opposite pattern to the middle Eocene, and then the latitudinal difference between 70°S and 0° is about 0.6% (Fig. 57-2). The pattern of oxygen isotopes in surface water is similarly to that in bottom water. The latitudinal difference between 70° and 40°S in surface water is about 0.6-1.4\%. Although the latitudinal gradient of oxygen isotopes in the Indian Ocean in the late Eocene is close to that of the

middle Eocene, the latitudinal difference of δ^{18} O values between 65°S and 35°S is expanded by 0.3-0.6‰.

Oligocene: In the Atlantic Ocean, the oxygen isotopic values of bottom water in the Oligocene exhibit a decreasing trend toward low-latitudes, and the gradient at the late Oligocene is steeper than that of the early Oligocene (Fig. 58). The latitudinal difference from 70°S to 0° at ~2000m water depth ranges from 0.8-1.0% in the earliest Oligocene (36-34 Ma). This difference is rapidly reduced in the 34-33 Ma interval, and becomes to 0.4-0.6% in the late early Oligocene (34-30 Ma). This difference is again expanded by 0.6-1.2% in the late Oligocene. The oxygen isotopic values in intermediate water (~2000 m paleodepth) at high-latitudes are relatively higher than those in deep water. The water column gradient in other regions around the Atlantic Ocean shows a decreasing trend toward shallower depth. δ^{18} O values in surface water around the Atlantic Ocean also tend to decrease northward from the high-latitude side during the Oligocene. The latitudinal difference of δ^{18} O value in surface water between 70°S and 40°S is 1.0-1.4‰, and show a reducing trend.

The oxygen isotopic values of bottom water in the

Fig. 58. Geographical distribution of oxygen isotopes during the Oligocene. The isotopic data are averaged in one million year intervals (Table 7). See legend of Fig. 56.

Indian Ocean tend to decrease northward from high-latitudes similar to the oxygen isotopic record in the Atlantic Ocean. No latitudinal difference is recognized to the north of 40°S. At 2000 m paleodepth, the latitudinal difference between 65°S and 10°S is constant throughout the Oligocene (approximately 0.9‰). The latitudinal difference (65°S-35°S) in surface water is 1.4‰ from 35 to 32 Ma, reducing to ~1.0‰ at 32-31 Ma, and tends expand gently from 32 to 24 Ma. At 1000m paleodepth, the latitudinal difference between 60°S and 30°S is ~0.7‰ with a small fluctuation throughout the Oligocene. This fluctuation may reflect an isotopic change in surface water. The water column gradient in the Indian Ocean exhibits a decreasing trend toward shallower depths.

Miocene: During the Miocene, the oxygen isotopic values of bottom water in the Atlantic Ocean show a decrease north-ward from the high-latitude side, which is similar to the Oligocene isotopic record (Fig. 59-1). At 2500m water depth, the δ^{18} O difference between the high- and low-latitude sides (around 35°S-5°N) is relatively large from 25-20 Ma and 13-7 Ma, respectively (0.3-0.8‰). In these intervals, the largest differences are recognized at 24-23 Ma and 11-10 Ma, respectively. The water column gradient tends to decrease

Fig. 59. Geographical distribution of oxygen isotopes from Miocene to Pliocene. The isotopic data are averaged in one million year intervals (Table 7). See legend of Fig. 56.

Fig. 59-2. (continued).

with depth in these intervals. In contrast, the latitudinal difference of δ^{18} O (around 35°S-5°N) is small at 20-13 Ma (<0.25‰) and in terms of the δ^{18} O water column is constant between 1000-2500m depths.

The oxygen isotopic values of bottom water in the Indian Ocean exhibit a general decrease northward from the high-latitude side and westward from the east side during the Miocene. The latitudinal difference of δ^{18} O values between 60°S and 35°S is from 0.5 to 1.5% at a water depth of 1500 m, and this difference is small at 26-23 Ma, 18-15 Ma, 13-12 Ma, and 9-8 Ma intervals, whereas it is large from 15-13 Ma (Fig. 59). The 18-15 Ma interval corresponds to the oxygen isotopic minima zone in the Miocene, and the 15-13 Ma interval corresponds to a shift in the middle Miocene. δ^{18} O values at 1500 m paleodepth between 55°E to 85°E show a range of 0.2-0.8 % at the 15-9 Ma interval. This difference is not observed at other intervals in the Miocene. At a water depth of 2000m, the latitudinal difference between 60°S and 10°S in terms of $\delta^{18}{\rm O}$ value is less than 0.5%, and is relatively small at 22-20 Ma and 18-15 Ma. The latitudinal difference between 60°S and 10°S shows an increase northward from high-latitudes from 15 to 13 Ma. Relations are reverse to the general gradients. Therefore, the latitudinal gradient of deep water is in contrast to that of shallow water (1500m). The longitudinal difference of δ^{18} O at 2000m paleodepth between 55°E and 85°E is consistently 0.1-0.2‰ throughout the Miocene. The latitudinal difference of δ^{18} O in surface water is large in the Indian Ocean during the Miocene: for example this difference at 35°-5°S is 1.9-3.0 ‰. This difference is largest at 9-8 Ma, which corresponds to the ¹⁸O maximum at 8 Ma. The longitudinal difference of δ^{18} O values in surface water during the Miocene gradually expands to the ¹⁸O maximum at 8 Ma, and reduces afterward.

Pliocene-Pleistocene: The oxygen isotopic latitudinal gradient from the Pliocene to Pleistocene in the Atlantic Ocean decreases south-ward at depths shallower than 4000 m, opposite to the pattern in the Miocene (Fig. 59-2). The latitudinal differences of 818O between 50°S-30°S and 50°S-20°N at a water depth of 2500 m are less than 0.2 ‰ in the shift of the late Pliocene (5-3 Ma), whereas they expand to 0.5 and 1.2% respectively after the shift of the late Pliocene (3-0 Ma) . The latitudinal gradient of $\delta^{18}{\rm O}$ below the 4000m paleodepth in the Atlantic Ocean decreases to the north. The latitudinal difference in oxygen isotopes between 30°S and 0° is ~0.6 % at 4500m depth. The oxygen isotopic ratios in surface water tend to increase toward high-latitude, and the latitudinal difference between 0° and 30°S is ~1.0‰. In the Indian Ocean, δ^{18} O values of bottom water at depths <3000m tend to decrease north-ward from the Pliocene on, which is the opposite relation to the gradient in the Atlantic Ocean. The oxygen isotopic values in the Indian Ocean are lower than those of the Atlantic Ocean.

2. Carbon isotopes

Maastrichtian: In the Maastrichtian, the carbon isotopic values at Site 752 in the Indian Ocean are ~0.4%, lower than those of Site 689 in the Atlantic sector of the Southern Ocean. Although Sites 689 and 690 are situated at different water depths, δ^{13} C values at Site 689 are close to those of Site 690. Therefore, the carbon isotopic column in the Atlantic sector of Southern Ocean may be uniform.

Paleocene: In general, carbon isotopic values at the low-latitudes in the Atlantic Ocean are higher than those at the high-latitudes (Fig. 60). The 13C latitudinal gradient is relatively large from 66-61 Ma: for example the latitudinal difference between 55°S and 40°S is ~1.0‰ at a water depth of 2000m. In this interval, a water column gradient is not observed at low-latitudes. In contrast, the latitudinal difference in carbon isotopes between 70°S and 40°S is small at 61-58 Ma, <0.3‰ at 1000-2500m water depth. At the 61-60 Ma section, δ^{13} C values at mid-latitudes (60°S-40°S) are uniform at 1000-2500 m paleodepth, however the δ^{13} C values at high-latitudes are relatively low. The 13C difference between those regions and Site 690 at 70°S are relatively large. At the 60-59 Ma interval, which show the highest values of δ^{13} C, they are uniform in the water mass between 70° and 55°S in the 1500-2500 m paleodepth, and between 55°S and ~40°S at 1000 m. The ¹³C difference of these water masses, however, is relatively large. The surface carbon isotopic values at 61-58 Ma interval are relatively high at lowlatitudes.

 Fig. 60. Geographical distribution of carbon isotopes during the Paleocene. The isotopic data are averaged in one million year intervals (Table 7). See legend of Fig. 56.

In the Indian Ocean, the carbon isotopic latitudinal difference at ~1000 m between 65°S 50°S is ~0.5‰ from 67 to 64 Ma, with higher values at high-latitudes. At 64-61 Ma, $\delta^{13}\mathrm{C}$ values of bottom water between 65°S and 30°S are uniform. In this area, δ^{13} C values are the lowest at 50°S. In this interval, $\delta^{13}\mathrm{C}$ values of surface water at mid-latitudes (~50°S) are 0.1-0.4‰, higher than those on the low- and high-latitude sides (around 30°-60°S). Consequently, the surface to bottom difference is the largest at mid-latitudes. In the 61-58 Ma interval for highest values of δ^{13} C, the latitudinal difference of δ^{13} C at ~1000m is relatively large: δ^{13} C values on the high-latitude side (~60°S) are ~0.5% higher than those on the low-latitude side (~30°S), and ~0.9% higher than those of mid-latitudes (~50°S), which are the lowest values in this area. The carbon isotopic values in surface water decrease toward low-latitudes, and the 13C latitudinal difference between 60° and 50°S is relatively large (approximately 0.75%). In contrast, δ^{13} C values between 50°-30°S exhibit a relatively small difference (<0.2%). In general, the carbon isotopic values on the Atlantic Ocean side are slightly higher than those of the Indian Ocean side at highlatitudes

Eocene: The carbon isotopic values of bottom water on the Atlantic Ocean side decrease toward low-latitudes through the Eocene (Fig. 61). In the early Eocene, the latitudinal difference of δ^{13} C in bottom water tends to expand from 58 to 56 Ma, then reduce to 52 Ma (Fig. 61-1). The largest latitudinal difference of δ^{13} C at 57-56 Ma corresponds to a ¹³C minimum value, and the latitudinal difference between 70 and 40°S at 1000m paleodepth reaches 1.1 ‰. The carbon isotopic column gradient of bottom water in the 58-56 Ma

interval shows a decrease with depth, whereas the gradient increases during the 56-52 Ma interval. This gradient is remarkable at mid-latitudes (~55°S). No surface latitudinal difference in δ^{13} C value is observed in the 57 to 55 Ma interval. As for other intervals in the early Eocene, δ^{13} C values in surface water show slight latitudinal differences, and are randomly distributed. The benthic latitudinal gradient of δ^{13} C on the Indian Ocean side shows a decrease toward lowlatitudes similar to that on the Atlantic Ocean side. The latitudinal difference in δ^{13} C tends to expand from 58 to 56 Ma. Carbon isotopic values decrease from the Atlantic to Indian Ocean sides at high-latitudes. A regional difference in $\delta^{13}\mathrm{C}$ is recognized in the Indian and South Atlantic Oceans during the $^{13}\mathrm{C}$ minima zone (57-55 Ma). The $\delta^{13}\mathrm{C}$ variance increases between the southern and northern parts of the South Atlantic Ocean. The same feature can be observed in δ^{13} C between the South Atlantic and Indian Oceans.

In the 52-49 Ma interval of the middle Eocene, the carbon isotopic values of intermediate water (~2000 m) in the South Atlantic Ocean (70-55°S latitude) are relatively high. A ¹³C latitudinal difference is not observed in this area. In the 49-44 Ma interval on the Atlantic Ocean side, the carbon

Fig. 61-1. Geographical distribution of carbon isotopes during the Eocene. The isotopic data are averaged in one million year intervals (Table 7). See legend of Fig. 56.

Fig. 61-2. (continued).

isotopic values are lowest at low-latitudes (~40°S) in deep water (2500-3000 m paleodepth). This trend is noted in the 48-46 Ma interval (Fig. 61-2). The ¹³C latitudinal difference is relatively small except for the area showing the lowest value, and is less than 0.6 % in this interval. In the 44-40 Ma interval, δ^{13} C values differ by <0.6 % according to latitude. In surface water, a latitudinal difference in $\delta^{13}\mathrm{C}$ between 70°S and 40°S in the middle Eocene is not recognized in the 52-49 Ma interval, whereas isotopic differences are 0.55-0.75 % in the 49-40 Ma interval, with higher values at low-latitudes. In the Indian Ocean, carbon isotopic values in low-latitudes tend to be higher than those at high-latitudes at different water depths through the middle Eocene. The ¹³C latitudinal difference in the 43-40 Ma interval is 0.4-0.6 % in intermediate water (~1000 m paleodepth). In this interval, the carbon isotopic values of deep water at high-latitude (>1500 m) are the highest among the Indian Ocean sites, while the lowest values are found at intermediate water (~1000 m). At high-latitudes, the carbon isotopic values of deep water (>1500 m paleodepth) in the Indian Ocean are close to those of the Atlantic Ocean during the middle Eocene. Between 60°

and 40°S, δ^{13} C values of surface water at low-latitudes tend to be slightly higher than those at high-latitudes.

In the late Eocene, the ¹³C latitudinal difference (70-0°S) in the Atlantic Ocean is <0.8 % in bottom water. δ^{13} C values in intermediate water (~1500 m) are lower than those of deep water (~2000 m) at high-latitudes (~70°S). The carbon isotopes in the water column are close to constant at mid-latitudes (~40°S). 813C values in surface water at midlatitudes (~40°S) are 0.7-1.0 ‰, higher than those at highlatitudes (~70°S). In the Indian Ocean, the carbon isotopic at low-latitude are higher than those at high-latitudes at shallower than 2000m paleodepth throughout the late Eocene. The latitudinal difference of δ^{13} C at that time is 0.1-0.4 ‰ between 60°S and 35°S, which is smaller than that in the late middle Eocene. Carbon isotopic values in the Indian Ocean are lower than those in the Atlantic Ocean, and the difference of $\delta^{13}\mathrm{C}$ in those oceans tends to expand throughout the middle Eocene.

Oligocene: Carbon isotopes on the Atlantic Ocean side shows decrease gradually toward low-latitudes (Fig. 62). The ¹³C latitudinal difference between 70°S and 0° at a water depth of ~2000m is 0.6-1.0% up to ~32 Ma, and 0.4-0.6% from 32 Ma to 26 Ma. This difference tends to expand from 30 Ma. The latitudinal difference of δ^{13} C at 2500-3500 m between 70°S and 0° is 0.8-1.1 % in the 32-26 Ma interval with an increase in upper stratigraphic levels. Surface carbon isotopes exhibit a high values at low-latitudes. Carbon isotopic values of intermediate water (<1500 m paleodepth) on the Indian Ocean side increase toward low-latitudes. The ¹³C latitudinal difference reduces upward, and is <0.2‰ in the 27-24 Ma interval. Conversely, carbon isotopic values in deep water (>1500 m paleodepth) decrease toward lowlatitudes. At high-latitudes (~60°S), δ^{13} C values in intermediate water (~1000 m) are lower than those in deep water during the Oligocene. Although this trend cannot be found in low-latitudes by 31 Ma, δ^{13} C values are low at ~1000m after 31 Ma, with high values at ~2000m paleodepth.

Miocene: During the Miocene, carbon isotopes in bottom water on the Atlantic Ocean side decrease toward low-latitudes (Fig. 63). The latitudinal difference of δ^{13} C at 2500m between 35°S and 5°N is less than 0.4‰ in the 24-22 Ma interval, corresponding to a 13 C maximum in the earliest

Fig. 63-1. Geographical distribution of carbon isotopes from Miocene to Pliocene. The isotopic data are averaged in one million year intervals (Table 7). See legend of Fig. 56.

Miocene (23 Ma). A value of 0.5-0.7% at 19-14 Ma corresponds to a ¹³C maximum in the middle Miocene (15 Ma), whereas there are large variation between 0.8 to 1.0% from 21-19 Ma. From 8 to 14 Ma, the ¹³C latitudinal difference between 35°S and 5°N at 2500m paleodepth tends to reduce from 0.8 to 0.2 ‰. The water column gradient in the 1000-3000 m depth interval is small (<0.3 ‰). δ^{13} C values at >3000m differ by ~0.5‰ from this depth section, particularly during the late Miocene.

The latitudinal gradient of carbon isotopic values in the Indian Ocean decrease toward low-latitudes at the same water depth. Carbon isotopic values in the Indian Ocean transect show a longitudinal decrease eastward from 24 Ma to 9 Ma, whereas they increase eastward from 9 Ma to 5 Ma. In the water column of the northern Indian Ocean, lower δ^{13} C values are observed at 1500-2000m, and δ^{13} C values are relatively high immediately above and below this interval. The ¹³C latitudinal gradient in surface water tends to decrease northward from high-latitudes. The ¹³C latitudinal difference is large up to 19 Ma, and then is greater than 1.0‰ between 60° and 5°S. After 19 Ma, the ¹³C latitudinal difference is relatively small during the Miocene.

Pliocene-Pleistocene: During the Pliocene, carbon

Fig. 63-2. (continued).

isotopic values on the Atlantic Ocean side tend to decrease northward. At 2500m water depth, δ^{13} C values around 30°S are 0.1-0.2‰, higher than those at 50°S. The latitudinal difference at 2000m between 30°S and 20°N is ~0.8‰. This difference decreases throughout the Pleistocene. The water column gradient of δ^{13} C is relatively large, and δ^{13} C values at >4500m paleodepth are particularly low. From 30°S-20°N, the surface carbon isotopic values on the south side are 0.8-1.5‰, higher than the north side, with low values in the young part. During the Pleistocene and Pliocene, the gradient of carbon isotopic values in the Indian Ocean decreased a northward at high-latitudes. In the 5 to 4 Ma interval, δ^{13} C values between 60°S and 25°S are uniform (<0.25‰). In general, the carbon isotopic values at depth >2500m are low during the Pleistocene and Pliocene.

IV. Paleoceanographic reconstruction of the Indian and South Atlantic Oceans

A. Paleo-ocean circulation viewed from carbon and oxygen isotopic ratios

Carbon isotopic ratios in sea water are mainly influenced by the biological production of organic carbon and the decomposition of organic matter. $\delta^{13}C$ values in surface water are generally 1‰ higher than those of bottom water (Kroopnick, 1974; 1980; Berger and Vincent, 1986). This is caused by selective absorption of ¹²C-enriched CO₂ by phytoplankton in surface water. On the other hand, Kroopnick (1974, 1980) investigated the δ^{13} C values of DIC (dissolved inorganic carbon) of the modern ocean, and noted that the δ^{13} C values depend on the circulation velocity of deep water. Modern δ^{13} C distribution of DIC in the Atlantic Ocean show a southward decrease from the Northern hemisphere (Kroopnick, 1974; 1980; Leonard et al., 1983; Duplessy et al., 1984; Woodruff and Savin, 1989). This gradient is explained by a supply of ¹²C by oxidative resolution of ¹²Cenriched organic carbon through flow of deep water. $\delta^{13}C$ values in aged deep water are low because of high ¹²C. Therefore, a ¹³C gradient indicates the deep water flow (Woodruff and Savin, 1989).

 δ^{13} C values of DIC have been recorded in the carbonate of foraminiferal tests (e.g., Shackleton et al., 1984; Woodruff and Savin, 1989). Woodruff and Savin (1989) showed that the distribution pattern of foraminiferal δ^{13} C are similar to the modern distribution of water DIC δ^{13} C, and they concluded that the benthic δ^{13} C gradient can be used to tracer ancient ocean circulation. Based on this evidence, they proposed the existence of Tethyan Indian Saline Water (TISW), flowing from the Tethys into the northern Indian Ocean.

In this study, the paleo-directions of deep flow are deduced from the foraminiferal δ^{13} C gradient. In the case of a single direction of deep-water flow, the relationship between δ^{13} C values and migration distance are characterized by a linear function (Fig. 64-A). If this relationship is not recognized, the geographical distribution of δ^{13} C may represent the some water mass flow (Fig. 64-B).

Fig. 64. Paleodirection of deep water flow and the ¹³C gradient. A. In the case of a linear function, the paleodirection indicates a single direction flow. B. For no linear function, the paleodirection indicates some water-mass flow.

B. Isotopic water of column structure

The water column structure of oxygen and carbon isotopes from the late Maastrichtian to Pleistocene has been reconstructed, shown in Figs. 65 and 66. The relationship between the estimated water depth and isotopic data at representative ages are shown in Figs. 67 and 68. Each reconstruction covers a relatively large area (i.e., for the northeastern Indian Ocean region; the latitudinal range is about 35°), therefore even small regional differences can be recognized. The reconstruction of the Neogene in the southern Indian and Southern Oceans cannot be illustrated because of few data.

1. Oxygen isotopes

During the Paleocene, oxygen isotopic ratios of the northeastem Indian Ocean increased in a linear fashion with depth down to 1500m, and become constant below this level. The differences between the δ^{18} O values of surface and

Fig. 65-1 DIC δ¹⁸O value of water column at the Cenozoic in the four ocean region. The isotopic data are averaged in one million year intervals (Table 7). Paleodepth is mainly reconstructed using published data calculated from a subsidence curve of the "backtrack method" (See III-A-3 section).

Carbon and oxygen isotopic paleoceanography

Fig. 66-1 DIC δ¹³C value of water column in the Cenozoic in the four ocean region. The isotopic data are averaged in one million year intervals (Table 7). Paleodepth is mainly reconstructed using published data calculated from a subsidence curve of the "backtrack method" (See III-A-3 section).

Carbon and oxygen isotopic paleoceanography

Fig. 67 Vertical change of DIC δ¹⁸O value at representative age in the four ocean region. The isotopic data are averaged in one million year intervals (Table 7). Paleodepth is mainly reconstructed by published data calculated from a subsidence curve of the "backtrack method" (See IV-A-3 section).

bottom water are relatively large (up to ~2.5‰). The water columns in other oceans exhibit the same gradient to that of the northeastern Indian Ocean except for the Southem Ocean (Atlantic sector), which shows homogeneous values through the water column. A ¹⁸O maximum at 61 Ma is observed in all the oceans except for the Southern Ocean (Atlantic sector), and is particularly high at the northeastern Indian Ocean region. The surface to bottom difference in oxygen isotopes of the northeastern Indian Ocean region during this time is the largest in the Paleocene section.

In the ¹⁸O minimum zone within the early Eocene, δ^{18} O values are low through the entire water column, and the surface to bottom difference is relatively small. In the northeastem Indian Ocean, bottom water oxygen isotopes increase with increasing depth. During the increase of the middle and late Eocene, the surface to bottom difference in oxygen isotopes is relatively small, and the isotopic difference according to depth in bottom water is also small, especially in the Southern Ocean where the entire water column records relatively homogeneous values. The shift at the Oligocene / Eocene boundary is remarkable in the Southern Ocean. During the Oligocene, δ^{18} O values rapidly increased from the surface to depths of about 1000m, and gradually increased from 1000m.

In the early Miocene, the water column in the northeastern Indian Ocean was divided into intermediate and deep water by a conspicuous discontinuity at about 1500m. δ^{18} O values of intermediate water are ~0.6‰, higher than those of deep water. The difference between δ^{18} O values of surface and intermediate water during this time is similar to that of Oligocene sections. In the ¹⁸O minima zone of the Miocene, the intermediate/deep water boundary is indistinct, and the surface to bottom difference reduces. After the shift of the middle Miocene, this conspicuous discontinuity is again observed around 1500m, and the surface to bottom difference increases. All sections of bottom water show high values at the 8 Ma ¹⁸O maximum. From the latest Miocene to early Pliocene, 818O values are distinctively high in the water column from 1600-2500m paleodepth. These discontinuities are only recognized in the northern Indian Ocean. During the Miocene, the water column gradient in the South Atlantic

Fig. 68 Vertical change of DIC δ¹³C value at representative age in the four ocean region. The isotopic data are averaged in one million year intervals (Table 7). Paleodepth is mainly reconstructed by published data calculated from a subsidence curve of the "backtrack method" (See IV-A-3 section).

Ocean displays a trend of gradual increase with depth. From the late middle Miocene to early Pliocene, δ^{18} O values are relatively high in intermediate water (1000-2800 m).

After the shift of the late Pliocene, the surface to bottom differences in oxygen isotope values expanded in the Indian and South Atlantic Oceans. In bottom water, δ^{18} O values tended to increase with depth in the northern Indian Ocean, and were uniform in the South Atlantic Ocean.

2. Carbon isotopes

During the Paleocene, carbon isotopes in the water column of the northeastern Indian Ocean region showed an increase by 0.5‰ from 400 to 1200m, and were uniform below 1200m. In the Southern Ocean (Atlantic sector), the surface to bottom water difference of carbon isotope was relatively small. The surface to bottom water differences, however, were large except for the Southern Ocean (Atlantic sector). The shift at the Paleocene / Eocene boundary is remarkable as observed in other deep sea sections.

The minimum value zone within the early Eocene exhibits a similar pattern in all oceans, as in the Paleocene.

The surface to bottom difference at this time is slightly smaller than those in the Paleocene. Although the intermediate water (500-1500 m) in the southern Indian Ocean shows relatively low values, the carbon isotopic ratios of bottom water are uniform from the minimum value zone in the early Eocene to the shift in the earliest Oligocene in all oceans. The surface to bottom difference is the largest (1.5-2.0%) in the South Atlantic Ocean. In contrast to this, δ^{13} C values of bottom water are close to that of surface water of the Southern Ocean. The surface to bottom difference in the Indian Ocean is 0.5-1.0‰. Although the water column exhibits a general decreasing trend with increasing paleodepth during the late Oligocene, δ^{13} C values from 400-1000m in the northeastern Indian Ocean and of 400-1500m in the southern Indian Ocean are relatively low. The surface to bottom difference in this interval is larger than that of the early Oligocene in the northeastern Indian Ocean. At the 13C maximum at 23 Ma (near the Miocene / Oligocene boundary), the entire water column records are roughly homogeneous.

From the Miocene onward, the carbon isotopic values through the water column in the northeastern Indian Ocean show a gradual decrease with depth. At approximately 1500m, carbon isotopic values are remarkably low (0.2-0.5‰) during the Miocene. From 11 to 7 Ma, a discontinuity is observed at a depth of 2000m, and δ^{13} C values below 2000m deep reduce by ~0.5‰. δ^{13} C values of surface water increase from 6 to 10 Ma, consequently the surface-bottom difference increases. From the Pliocene to Pleistocene, a discontinuity with a value of 0.6‰ is recognized at 1300m paleodepth. No discontinuity is recognized in other oceans after the Miocene.

C. Source of deep water

Ocean regions with high δ^{13} C values is close to the source of bottom water (Miller et al., 1987) because the ¹³Cenriched surface water produced from the source region flows into the bottom water. Therefore, the oxygen and carbon isotopic ratio of bottom water in these regions is also close to that of surface water. The oxygen isotopic ratio of bottom water in the source region exhibits the highest value, because this water is characterized by either colder or highly saline waters. Based on water density, the source water may have flowed to a warmer and less saline deep area.

In the South Atlantic and Indian Oceans, the averaged value of δ^{13} C in one million year intervals are plotted as a function of paleo-latitude (Fig. 69). Throughout the Cenozoic, carbon isotopic values are high on the high latitude side of the Southern Ocean, and tend to decrease toward middle to low latitudes. In the former region, oxygen isotopic ratios are higher, and the carbon isotopic values of bottom water are also close to those of surface water. This suggests that the source water formed at a high latitude in the Southern Ocean throughout the Cenozoic. Bottom water influenced by this source water may correspond to AABW (Antarctic Bottom Water) or its prototype.

During the Paleocene, δ^{18} O and δ^{13} C values in the northern part of the South Atlantic and Indian Oceans are also distinctly high. The ¹³C difference between surface and bottom water is small in the northern part of Indian Ocean (Site 758), which is similar to that of the Southern Ocean (Site 690). This shows that the source water exists in the northern part of the South Atlantic and the Indian Oceans. This water may be warm and highly saline, because this source water probably formed at low latitude. Brass et al. (1982) called such deep water "Warm Saline Deep Water (WSDW)", and considered that this water was formed by the concentration of saline water through evaporation in the Tethyan Sea or lower latitudes. The gradient of carbon isotopic ratios in the Indian Ocean supports the supposition that WSDW may have formed in the Tethyan Sea.

High δ^{13} C values are recognized at mid latitudes (~30°S) from the Miocene. This is probably caused by the influence of AAIW (Antarctic Intermediate Water).

During Miocene, the carbon isotopic values are high at 10°S in the northwestern Indian Ocean. This may be influenced by TISW (Tethyan Indian Saline Water) as proposed by Woodruff and Savin (1989).

D. Reconstruction of paleo-ocean circulation

During the Paleocene, two water masses (proto-AABW and WSDW) probably existed in the South Atlantic and Indian Oceans. The gradient of oxygen and carbon isotope ratios shows that Proto-AABW flowed northward

Fig. 69 ¹³C latitudinal change of one million average values during the each period. Carbon isotopic ratios of source water show a high value. In general, carbon isotopic values decrease from high to low latitudes.

from the Southern Ocean, and that WSDW flowed probably southward from the Tethyan Sea. In the South Atlantic and Indian Oceans during the Paleocene, an "oxygen isotopic minima belt" existed at mid-latitudes (50-60°S). δ^{18} O values in this belt are 0.6-1.6‰, lower than that of high- and low latitudes. $\delta^{18}\text{O}$ values at Site 752 are lowest among the "oxygen isotopic minima belt". The "oxygen isotopic minima belt" may have been caused by the confluence of Proto-AABW and WSDW, as pointed out by Nomura et al.(1992), because the carbon isotopic ratio is lowest among the ¹³C gradient. Across the Paleocene / Eocene boundary, a sudden decrease in carbon isotopic ratios has been recognized from 59 to 56 Ma (Kennett and Stott, 1990; Barrera and Huber, 1991; Zachos et al., 1992a). However, the distribution of oxygen and carbon isotopes is similar to that of the Paleocene. Therefore, the ocean circulation system seems to be similar to that of the Paleocene.

After 56 Ma, the ¹³C latitudinal gradient shows that Proto-AABW flowed into the South Atlantic and Indian Oceans from high latitudes. Until about 50 Ma, 818O values at Site 757 in the northern Indian Ocean are higher than that at Site 689 in the Southern Ocean. This suggests that WSDW remained an influence in the Indian Ocean until about 50 Ma, and that WSDW flowing from the north part of Indian Ocean disappeared after that. This water mass may have been reduced with the closing of the Tethyan Sea. WSDW on the Atlantic Ocean side, however, may have flowed until about 40 Ma judging from the ¹³C geographical gradient of the South Atlantic Ocean. The carbon and oxygen isotopic ratios at Site 738, where the paleodepth is slightly deeper than at Site 748, show similar values to those at Sites 689 and 690. This indicates that the water mass flowed into deep water in the southern Indian Ocean from the Southern Ocean. This water mass can be referred to as the proto-type of CPDW (Circumpolar Deep Water).

The sharp change in oxygen isotopic ratios and low carbon isotopic ratios are recognized at ~1000 m depth in the northern Indian Ocean at about 30 Ma. The water mass in the deep part may be equivalent to the proto-type of AABW (Proto-AABW), and the water mass in the shallow part is equivalent to the present AAIW. AAIW may be formed by melting of sea ice, as in the present ocean, based on the lower δ^{18} O values.

Carbon isotopic ratios in the northwestern Indian Ocean are higher during the Miocene. This supports the scenario of Woodruff and Savin (1989), where a warm saline plume (Tethyan / Indian Saline Water: TISW) flowed into the northern Indian Ocean from the Tethyan Sea. However, a northward decrease of the carbon isotope gradient is recognized in the intermediate water of the northeastern Indian Ocean. This suggests that TISW is not the main flow in the Indian Ocean. This intermediate water is probably the Antarctic Intermediate Water (AAIW), which formed by melting of sea ice, because the δ^{18} O values of intermediate water are low in comparison with that of deep water. The sharp change of oxygen isotopic ratios in the water column of the northern Indian Ocean, assuming that the AAIW / Proto-AABW boundary, are recognized at ~2000 m paleodepth. The boundary is deeper than that recognized in the late Oligocene. During the late Miocene, the AAIW / Proto-AABW boundary deepens to the north, as indicated by the distribution of low δ^{13} C values. This may be caused by the northward movement of Proto-AABW. As a result, AAIW flows into the deeper part of the northern Indian Ocean.

After the late Pliocene, ocean circulation of the deep sea is the same as the present circulation. The oxygen isotopic ratios of Central Atlantic Ocean are higher than those of the South Atlantic Ocean. The carbon isotopic gradient shows a southward decrease in the South Atlantic Ocean. These features indicate a water mass corresponding to NADW in the modern ocean. Before the early Pliocene, positive evidence of NADW is not recognized in the South Atlantic Ocean. This indicates that NADW developed rapidly near the early/late Pliocene boundary (about 3 Ma), and affected to AABW and CPDW.

VI. Concluding Remarks

(1) Oxygen and carbon isotopic ratios were studied in Cenozoic sediments at six sites (Sites 752, 754, 756, 757, 758, and 762) of ODP Legs 121 and 122 in the northeastern Indian Ocean. They recorded such global events as the sharp increase of δ^{18} O values near the middle Miocene and Eocene / Oligocene boundary, the increase of δ^{18} O values in the Eocene (Miller et al., 1987), the chron-6 shift and the chron-16 shift of δ^{13} C ratios (Vincent et al., 1980; 1985), and the drastic change of δ^{13} C and δ^{18} O values across the Paleocene / Eocene boundary.

(2) Benthic and planktonic foraminiferal isotopic were data converted into δ values of dissolved inorganic carbon of marine water on the basis of the adjustment values calculated from foraminiferal interspecific differences in isotopic ratios. Those data are compiled from the Indian Ocean and the South Atlantic Oceans. The general trends of oxygen and carbon isotopic records are similar in all studied oceans. However, the oxygen and carbon isotopic values show an increase southwards.

(3) Averaged isotopic values in one million year intervals are calculated at each ODP and DSDP site, and the time and spatial distributions of the oxygen and carbon isotopic values are examined based on the estimated paleodepth and paleocoordinates. In the Paleocene water column, vertical change in isotopic ratios is not observed. In the Miocene, a notable oxygen isotopic discontinuity and low carbon isotopic values are recognized at ~1500m paleodepth in the northeastern Indian Ocean. This suggests that two water masses may have existed in the Miocene water column of the Indian Ocean. The modern ocean shows a complicated water circulation in the Indian Ocean (Warren, 1984). Based on those results, it is concluded that the water column structure became more complicated from Paleocene to the Recent.

(4) The source of deep water is discussed using the ¹³C geographical gradient. In the South Atlantic and Indian Oceans, the source water may be formed on the high latitude side of the Southern Ocean through the Cenozoic because the carbon isotopic values are consistently high on the high latitude side of the Southern Ocean. The bottom water formed in the source region should correspond to AABW (Antarctic Bottom Water) or its prototype. In the Paleocene, the $\delta^{18}O$ and $\delta^{13}C$ values in the northern part of the South Atlantic and Indian Oceans also are remarkably high. This water may be

"Warm Saline Deep Water (WSDW)". High δ^{13} C values are recognized at mid latitudes (~30°S) from the Miocene onwards. This is probably caused by the influence of AAIW (Antarctic Intermediate Water). During the Miocene, carbon isotopes showed high values at 10°S in the northwestern Indian Ocean. This may be due to the influence of TISW (Tethyan Indian Saline Water; Woodruff and Savin, 1989).

(5) The circulation patterns of deep water within the Cenozoic have been reconstructed from isotopic evidence. The gradient of oxygen and carbon isotopic values reveals that Proto-AABW flowed northward from the Southern Ocean, and that WSDW flowed southward probably from the Tethyan Sea. WSDW is characterized by high temperature and high salinity. WSDW may have formed in the shallow Tethyan Sea associated with high evaporation. This water mass rapidly reduced with the closing of the Tethyan Sea across the Paleocene/Eocene boundary, and disappeared at about 50 Ma in the Indian Ocean, but it may have developed until 40 Ma in the South Atlantic Ocean. After 56 Ma, the ¹³C latitudinal gradient shows that Proto-AABW flowed into the South Atlantic and Indian Oceans from high latitude. including the present Weddell Sea region. During the Paleocene and early Eocene, an "Oxygen isotopic minima belt" is recognized at mid-latitudes in the South Atlantic and Indian Oceans. A sharp change in oxygen isotopic ratios and a low value zone of carbon isotopic ratios formed at 1000-2000 m depths in the water column of the northern Indian Ocean after 30 Ma. This sharp change may indicate the formation of the AAIW/Proto-AABW boundary. AAIW may have flowed northward from high latitude judging from the northward decrease of the carbon isotope gradient. NADW (North Atlantic Deep Water) rapidly developed during the early/late Pliocene boundary time (~3 Ma), and affected AABW and CPDW.

Acknowledgment

I express sincere gratitude to Prof. Y. Okimura of Hiroshima University for his invaluable discussion and suggestions, and for his critical reading of the manuscript. Special thanks are due to Associate Prof. R. Nomura of Shimane University for his continuous guidance and encouragement during the course of this study. Thanks are also due to Prof. N. Niitsuma and Associate Prof. H. Wada of Shizuoka University for helpful discussion and technical advice concerning isotope analysis. I would like to thank Drs. M. Miyamoto, T. Yano, and A. Kano of Hiroshima University for valuable discussions and critical reading of the manuscript. I also wish to thank Dr P. Morris, Shimane University for reading the manuscript, and Dr. H. Nishi of Tohoku University for identification of planktonic foraminifera. Thanks are also due to Prof. I. Hara, Prof. S. Takeno, Prof. S. Honda, and Prof. Y. Sano of Hiroshima University for their important advice and encouragement. I would like to thank Dr. T. Matsumoto, Dr. T. Naka, and Mr. H. Yamasaki, and friends of Hiroshima University and Shizuoka University for helpful advice.

REFERENCE

Backman, J., 1987. Quantitative calcareous nannofossil biochronology of middle Eocene through early Oligocene sediment from DSDP Site 522 and 523. Abh. Geol. Bundesanst. (Austria), 39:21-31.

- Backman, J., Duncan, R. A., et al., 1988. Proc. ODP, Init. Repts. 115: College Station, TX (Ocean Drilling Program).
- Backman, J., and Pestiaux, P., 1986. Pliocene Discoaster abundance variations, Deep Sea Drilling Project Site 606: biochronology and Paleoenvironmental implication. In Ruddiman, W. F., Kidd, R. B., Thomas, E., et al., Init. Repts. DSDP, 94, Pt. 2: Washington (U.S.Govt. Printing Office), 903-910.
- Backman, J., Schneider, D. A., Rio, D., and Okada, H., 1990. Neogene low-latitude magnetostratigraphy from Site 710 and revised age estimates of Miocene nannofossil datum events. *In* Backman, J., Duncan, R. A., Peterson, L. C., et al., *Proc. ODP*, *Sci. Results*, 115: College Station, TX (Ocean Drilling Program), 271-276.
- Backman, J., and Shackleton, N. J., 1983. Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Pacific and Indian oceans. *Mar. Micropaleontol.*, 8:141-170.
- Baldauf, J. G., Thomas, E., Clement, B., Takayama, T., Weaver, P. P. E., Backman, J., Jenkins, G., Mudie, P. J., and Westberg-Smith, M. J., 1987.
 Magnetostratigraphic and biostratigraphic synthesis, Deep Sea Drilling Project Leg 94. *In* Ruddiman, W. F., Kidd, R. B., Thomas, E., et al., *Init. Repts.* DSDP, 94, Pt. 2: Washington (U.S.Govt. Printing Office), 1159-1205.
- Barrera, E. and Huber, T., 1990. Evolution of Antarctic waters during the Maestrichian: Foraminifer oxygen and carbon isotope ratios, Leg 113. In Barker, P. F., Kennett, J. P., et al., Proc. ODP, Sci. Results, 113: College Station, TX (Ocean Drilling Program), 813-827.
- Barrera, E. and Huber, T., 1991. Paleocene and early Neogene oceanography of the southern Indian Ocean : Leg 119 foraminifer stable isotope results. In Barron, J., Larsen, B., et al., Proc. ODP, Sci. Results, 115: College Station, TX (Ocean Drilling Program), 693-717.
- Barton, C. E., and Bloemendal, J., 1986. Paleomagnetism of sediments collected during Leg 90, southwest Pacific. In Kennett, J. P., von der Borch, C. C., et al., Init. Repts. DSDP, 90: Washington (U.S.Govt. Printing Office), 1273-1316.
- Be, A. W. H., 1977. An ecologic, zoogeographic and taxonomic review of recent planktonic foraminifera. *In* Ramsay, A. T. S. (Ed.), *Oceanic Micropaleontology*, Vol.1: 1-88
- Belanger, P. E., Curry, W. B., and Matthews, R. K., 1981. Core-top evaluation of benthic foraminiferal isotopic ratios for paleoceanographic interpretations. *Palaeogeogr., Palaeoclimatol., Palaeoecol.*, 33: 205-220.
- Berger, W. H., and Vincent, E., 1986. Deep-sea carbonates: reading the carbon-isotope signal. *Geol. Rundsch.*, 75: 249-269.
- Berggren, W. A., Kent, D. V., and Flynn, J. J., 1985a. Jurassic to Paleogene: Part 2. Paleogene

geochronology and chronostratigraphy. In Snelling, N. J. (Ed.), The Chronology of the Geological Record, Geol. Soc. London Mem. 10:141-195.

- Berggren, W. A., Kent, D. V., and Van Caouverring, J.
 A., 1985b. The Neogene: Part 2. Neogene geochronology and chronostratigraphy. *In Snelling*,
 N. J. (Ed), *The Chronology of the Geological Record*, Mem. Geol. Soc. (London), 10: 211-260.
- Berggren, W. A., Kent, D. V., Flynn, J. J. and Van Caouverring, J. A., 1985c. Cenozoic geochronology. Geol. Soc. Am. Bull., 96: 1407-1418.
- Blattner, P. and Hulston, J. R., 1978. Proportional variations of geochemical δ^{18} O scales -- an interlaboratory comparison. *Geochim. Cosmochim.* Acta, 42: 59-62.
- Boersma, A., and Mikkelsen, N., 1990. Miocene-age primary productivity episodes and oxygen minima in the central equatorial Indian Ocean. In Duncan, R. A., Backman, J., Peterson, L. C., et al., Proc. ODP, Sci. Results, 115: College Station, TX (Ocean Drilling Program), 589-609.
- Brass, G. W., Southam, J. R., and Pererson, W. H., 1982. Warm saline bottom water in the ancient ocean. *Nature*, 296: 620-623.
- Clement, B. M., and Robinson, F., 1987. The magnetostratigraphy of Leg 94 sediments. *In* Ruddiman, W. F., Kidd, R. B., Thomas, E., et al., *Init. Repts. DSDP*, 94, Pt. 2: Washington (U.S.Govt. Printing Office), 635-650.
- Craig H., 1965. The measurement of oxygen isotope paleotempertures. In Tongiorgi, E.(Ed.), Proc. Stable Isotope in Oceanographic Studies and Paleotempertures, Spoleto, 2: 1-87.
- Duplessy, J. C., Shackleton, N. J., Matthews, R. K., Prell, W. L., Ruddiman, W. F., Caralp, M., and Hendy, C. H., 1984. ¹³C record of benthic foraminifera in the last interglacial ocean: implications for the carbon cycle and global deepwater circulation. *Quat. Res.*, 21: 225-243.
- Epstein, S., Buchsbaum, R., Lowenstam, H., and Urey, H. C., 1951. Carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull., 62: 417-426.
- Finger, W., 1984. Carbonate dissolution facies of late Miocene to Pleistocene sediments from Leg 73, Sites 519 and 520 (South Atlantic). In Hsti, K. J., LaBrecque, J. L., et al., Init. Repts. DSDP, 73: Washington (U.S. Govt. Printing Office), 765-769
- Ganssen, G., and Sarnthein, M., 1983. Stable-isotope composition of foraminifers: The surface and bottom water record of coastal upwelling. *In Seuss*, E., and Thiede, J. (Ed.), *Coastal Upwelling: Its Sediment Record*, *Part A*, 99-121.
- Gartner, S., Jr., 1977. Calcareous nannofossil biostratigraphy and reyised zonation of the Pleistocene. Mar. Micropaleontol., 2:1-25.
- Gartner, S., 1990. Neogene calcareous nannofossil biostratigraphy, Leg 116 (Central Indian Ocean). In Cochran, J. R., Stow, D. A. V., et al., Proc. ODP, Sci. Results, 116: College Station, TX (Ocean Drilling Program), 165-187.

- Haq, B. U., Hardenbol, J., and Vail, P R., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156-1167.
- Hodell, D. A., Muller, D. W., Ciesielski, P. F., and Mead
 G. A., 1991. Synthesis of oxygen and carbon isotopic results from Site 704 : Implications for major climatic-geochemical transitions duting the late Neogene. *In Ciesielski*, P. F., Kristoffersen, Y., et al., *Proc. ODP, Sci. Results*, 115: College Station, TX (Ocean Drilling Program), 475-480.
- Horibe, Y. and Oba, T., 1969. Paleotemperatures of deepsea cores from the Indian Ocean by oxygen isotope method. *Kaseki (Fossils), Special Issue*, 21-29. (in Japanese).
- Hsü, K. J., McKenzie, J. A., Oberhänsli, H., Weissert, H., and Wright, R. C., 1984. South Atlantic Cenozoic paleoceanography. In Hsü, K. J., LaBrecque, J. L., et al., Init. Repts. DSDP, 73: Washington (U.S. Govt. Printing Office), 771-785.
- Katz, M. E., and Miller, K. G., 1991. Early Paleogene benthic foraminiferal assemblage and stable isotope composition in the Southern Ocean, Ocean Drilling Program, Leg 114. In Ciesielski, P. F., Kristoffersen, Y., et al., Proc. ODP, Sci. Results, 114: College Station, TX (Ocean Drilling Program), 481-516.
- Kennett, J. P., and Stott, L. D., 1990. Proteus and Protooceanus: ancestral Paleogene ocean as revealed from Antarctic stable isotopic results: ODP Leg 113. In Barker, P. F., Kennett, J. P., et al., Proc. ODP, Sci. Results, 113: College Station, TX (Ocean Drilling Program), 865-880.
- Kidd, R. B. and Davies, T. A., 1978. Indian Ocean sediment distribution since the Late Jurassic. Mar. Geol. 26: 49-70.
- Kroopnick, P. M., 1974. The dissolved O₂-CO₂-1³C system in the eastern equatorial Pacific. *Deep-sea Res.*, 21: 211-227.
- Kroopnick, P. M., 1980. The distribution of ¹³C of ∑CO₂ in the Atlantic Ocean. *Eart. Planet. Sci. Lett.*, 49:469-484.
- Kroopnick, P. M., 1985. The distribution of ${}^{13}C$ of ΣCO_2 in the world oceans. *Deep-sea Res.*, 32: 57-84.
- Larson, R. L., Pitman III, W. C., Golovchenko, X., Cande, S. C., Dewey, J. F., Haxby, W. F., and Labrecque, J. L., 1985. The Bedrock Geology of the World. Freeman, New York.
- Leonard, K. A., Williams, D. F., and Thunell, R. C., 1983. Pliocene paleoclimatic and paleoceanographic history of the South Atlantic Ocean: stable isotopic records from Leg 72 DSDP Sites 516A and 517. In Kennett, J. P., von der Borch, C. C., et al., Init. Repts. DSDP, 72: Washington (U.S.Govt. Printing Office), 895-906.
- Lohman, W. H., 1986. Calcareous nannoplankton biostratigraphy of the southern Coral Sea, Tasman Sea, and southwestern Pacific Ocean. Deep Sea Drilling Project Leg 90: Neogene and Quaternary. In Kennett, J. P., von der Borch, C. C., et al., Init. Repts. DSDP, 90: Washington (U.S.Govt. Printing Office), 763-795.

- Mackensen, A. and Berggren, W. A., 1992. Paleogene benthic foraminifers from the Southern Indian Ocean (Kerguelen Plateau): biostratigraphy and paleoecology. *In Wise*, S. W., Jr., Schlich, R., et al., *Proc. ODP, Sci. Results*, 120: College Station, TX (Ocean Drilling Program), 603-630.
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Farinacci, A. (Ed.), Proceedings of the Second International Conference on Planktonic Microfossils, Roma: Rome (Tecnoscienza), 739-785.
- McKenzie, J. A., Weissert, H., Poore, R. Z., Wright, R. C., Percival, S. F. Jr., Oberhänsli, H., and Casey, M., 1984. Paleoceanogrphic implications of stable-isotope data from upper Miocene-Lower Pliocene sediments from the Southeast Atlantic (Deep Sea Drilling Project Site 519). In Hsu, K. J., LaBrecque, J. L., et al., Init. Repts. DSDP, 73: Washington (U.S. Govt. Printing Office), 717-724.
- Miller, K. G., Fairbanks, R. G., and Mountain, G. S., 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. *Paleoceanography*, 2:1-19.
- Miller, K. G., Wright, J. D., and Brower, A., 1989. Oligocene to Miocene stable isotope stratigraphy and planktonic foraminifer biostratigraphy of the Sierrab Leone Rise (DSDP Site 366 and ODP Site 667). In Ruddiman, W., Sarnthein, M., et al., Proc. ODP, Sci. Results, 108: College Station, TX (Ocean Drilling Program), 279-294.
- Moore, T. C. Jr., Rabinowitz, P. D., Borella, P. E., Shackleton, N. J., and Boersma, A., 1984. History of the Walvis Ridge. In Moore, T. C. Jr., Rabinowitz, P. D., et al., Init. Repts. DSDP, 74: Washington (U.S. Govt. Printing Office), 737-747
- Nomura, R., 1991a, Paleoceanography of upper Maastrichtian to Eocene benthic foraminiferal assemblages at Site 752, 753 and 754, eastern Indian Ocean. *In Weissel, J., Peirce, J., Taylor,* E., Alt, J., et al., *Proc. ODP, Sci. Results*, 121: College Station, TX (Ocean Drilling Program), 3-29.
- Nomura, R., 1991b, Oligocene to Pleistocene benthic foraminifera assemblages at Site 754 and 756, eastern Indian Ocean. In Weissel, J., Peirce, J., Taylor, E., Alt, J., et al., Proc. ODP, Sci. Results, 121: College Station, TX (Ocean Drilling Program), 31-75.
- Nomura, R., Seto, K., and Niitsuma, N., 1992. Late Cenozoic deep-sea benthic foraminiferal changes and isotopic records in the Eastern Indian Ocean. *In* Saito, (Ed.), *Studies in Benthic Foraminifera*, BENTHOS'90, Sendai, 1990, 227-233.
- Nomura, R., Seto, K., and Niitsuma, N., 1992. Warm Saline Deep Water (WSDW) Chikyu Monthly, 6, 161-166. (in Japanese).
- Oberhänsli, H., 1986. Latest Cretaceous-Early Neogene oxygen and carbon isotopic record at DSDP sites in the Indian Ocean. *Mar. Micropaleontol.*, 10:91-117.

- Oberhänsli, H., McKenzie, J. A., Toumarkine, M., and Weissert, H., 1984. A paleoclimatic and paleoceanographic record of the Paleogene in the central South Atlantic (Leg 73, Sites 522, 523, and 524). In Hsü, K. J., LaBrecque, J. L., et al., Init. Repts. DSDP, 73: Washington (U.S. Govt. Printing Office), 737-747
- Okada, H., 1990. Quaternary and Paleogene calcareous nannofossils, Leg 115. In Duncan, R. A., Backman, J., Peterson, L. C., et al., Proc. ODP, Sci. Results, 115: College Station, TX (Ocean Drilling Program), 129-174.
- Okada, H., and Bukry, D., 1980. Supplementary modification and introduction of code number to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Mar. Micropaleontol., 5:321-325.
- Peirce, J., Weissel, J., et al., 1989. Proc. ODP, Init. Repts., 121: College Station, TX (Ocean Drilling Program).
- Poore, R. Z., and Matthews, R. K., 1984. Late Eocene-Oligocene oxygen- and carbon-isotopic record from South Atlantic Ocean, deep sea drilling Project Site 522. In Hsü, K. J., LaBrecque, J. L., et al., Init. Repts. DSDP, 73: Washington (U.S. Govt. Printing Office), 725-735
- Poore, R. A., Tauxe, L., Percival, S F., Jr., LaBrecque, J. L., Wright, R., Peterson, N. P., Smith, C. C., Tucker, P., and Hsü, K. J., 1983. Late Cretaceous-Cenozoic magnetostratigraphic and biostratigraphic correlations for the South Atlantic Ocean, DSDP Leg 73. Palaeogeogr. Palaeoclimatol. Palaeoecol., 42:127-148.
- Rahman, A., and Roth, P. H., 1989. Late Neogene calcareous nannofossil biostratigraphy of the Gulf of Aden region based on calcareous nannofossils. Mar. Micropaleontol., 15:1-27.
- Rea, D. K., Lohmann, K. C., MacLeod, N. D., House, M. A., Hovan, S. A., and Martin, G. D., 1991. Oxygen and carbon isotopic records the oozes of ODP Sites 752, 754, 756, and 757, castern Indian Ocean. *In Peirce*, J., Weissel, J., et al., *Proc. ODP*, *Sci. Results*, 121: College Station, TX (Ocean Drilling Program), 229-240.
- Rio, D., Fornaciari, F., and Raffi, I., 1990. Late Oligocene through early Pleistocene calcareous nannofossils from western equatorial Indian Ocean (Leg 115). In Duncan, R. A., Backman, J., Peterson, L. C., et al., Proc. ODP, Sci. Results, 115: College Station, TX (Ocean Drilling Program), 167-185.
- Sarnthein, M. and Tiedemann, R., 1989. Toward a highresolution stable isotope stratigraphy of the last 3.4 million years: Sites 658 and 659 off Northwest Africa. In Ruddiman, W., Sarnthein, M., et al., Proc. ODP, Sci. Results, 108: College Station, TX (Ocean Drilling Program), 529-538.
- Scotese C. R., Gahagan L. M., and Larson R. L., 1988. Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. *Tectonophysics*, 155: 27-48.

- Savin, S. M. and Woodruff, F., 1990. Isotopic Evidence for temperature and productivity in the Tertiary oceans. In Burnett, W. C. and Riggs, S. P. (Ed.), Phosphate Deposits of the World, vol.3, Genesis of Neogene to recent Phosphorites, 241-259.
- Seto, K., Nomura, R., and Niitsuma, N., 1991. DATA REPORT: Oxygen and carbon isotope records of the upper Maastrichtian to lower Eocene benthic foraminifers at Site 752 in the eastern Indian Ocean. In Peirce, J., Weissel, J., Taylor, E., Alt, J., et al., Proc. ODP, Sci. Results, 121: College Station, TX (Ocean Drilling Program), 885-889.
- Shackleton, N. J., Backman, J., Zimmerman, H. B., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Desprairies, A., Homrighausen, R., Guddlestun, P., Keene, J. B., Kalttenback, A. J., Krumsiek, K. A. O., Morton, A C., Murray, J. W., and Westberg-Smith, J., 1984. Oxygen isotope calibration of the onset of icerafting in DSDP Site 522A: history of glaciation in the North Atlantic region. *Nature*, 307: 620-623.
- Shackleton, N. J., Corfield, R. M., and Hall, M. A., 1985. Stable isotope data and the ontogeny of Paleocene planktonic foraminifera. J. Foraminiferal. Res., 15: 321-336.
- Shackleton, N. J., and Hall, M. A., 1990. Pliocene oxygen isotope stratigraphy of Hole 709C. In Duncan, R. A., Backman, J., Peterson, L. C., et al., Proc. ODP, Sci. Results, 115: College Station, TX (Ocean Drilling Program), 529-538.
- Stott, L. D. and Kennett, J. P., 1990. Antarctic Paleogene planktonic foraminifer biostratigraphy: ODP Leg 113, Sites 689 and 690. *In Barker*, P. F., Kennett, J. P., et al., *Proc. ODP, Sci. Results*, 113: College Station, TX (Ocean Drilling Program), 549-569.
- Stott, L. D., Kennett, J. P., Shackleton, N. J., and Corfield, R. M., 1990. The evolution of Antarctic surface waters during the Paleogene: inferences from stable isotopic composition of planktonic foraminifers, ODP Leg 113. In Barker, P. F., Kennett, J. P., et al., Proc. ODP, Sci. Results, 113: College Station, TX (Ocean Drilling Program), 849-863.
- Takayama, T., and Sato, T., 1987. Coccolith biostratigraphy of the North Atlantic Ocean, Deep Sea Drilling Project Leg 94. In Ruddiman, W. F., Kidd, R. B., Thomas, E., et al., Init. Repts. DSDP, 94, Pt. 2: Washington (U.S.Govt. Printing Office), 651-702.
- Thierstein, H. R., Geitzenauer, K. R., Molfino, B., and Shackleton, N. J., 1977. Global synchroneity of late Quaternary coccolith datum levels: validation by oxygen isotope. *Geology*, 5:400-404.
- Urey, H. C., 1947, The thermodynamic properties of isotopic substances. J. chem. Soc., 562-581.
- Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. *Geol. Soc. Am. Bull.*, 62: 399-416.

- Vincent, E., Killingley, J. S., and Berger, W. H., 1980. The Magnetic Epoch-6 carbon shift: a change in the ocean's ¹³C/¹²C ratio 6.2 million years ago. *Mar. Micropaleontol.*, 5: 185-203.
- Vincent, E., Killingley, J. S., and Berger, W. H., 1985. Miocene oxygen and carbon isotope stratigraphy of the tropical Indian Ocean. In Kennet, J. P. (Ed.), The Miocene Ocean: Paleoceanography and Biogeography. Mem. Geol. Soc. Am., 163: 103-130.
- Vincent, E., Shackleton, N. J., and Hall, M. A., 1991. Miocene oxygen and carbon isotope stratigraphy of planktonic foraminifers at Sites 709 and 758, tropical Indian Ocean. In Peirce, J., Weissel, J., et al., Proc. ODP, Sci. Results, 121: College Station, TX (Ocean Drilling Program), 241-252.
- Wada, H., Fujii, N., and Niitsuma, N., T., 1984. Analytical method of stable isotope for ultra-small amounts of carbon dioxide with MAT 250 Massspectrometer. *Geosci. Rep. Shizuoka Univ.*, 10: 103-112.
- Wada, H., Nagai, Y., Ando, T., and Niitsuma, N., 1991. New trap system for Purification of Carbon Dioxide equipped to the inlet system of MAT 250 Mass-Spectrometer. *Geosci. Rep. Shizuoka Univ.*, 17: 161-167.
- Wada, H., Niitsuma, N., and Saito, T., 1982. Carbon and oxygen isotopic measurement of ultra-small samples. *Geosci. Rep. Shizuoka Univ.*, 7: 35-50.
- Weissert, H. J., Mckenzie, J. A., Wright, R. C., Clark, M., Oberhänsli, H., and Casey, M., 1984.
 Paleoclimatic record of the Pliocene at deep sea drilling project Sites 519, 521, 522, and 523 (Central South Atlantic). *In* Hsu, K. J., LaBrecque, J. L., et al., *Init. Repts. DSDP*, 73: Washington (U.S. Govt. Printing Office), 701-715.
- Woodruff, F., and Chamber, R., 1991. Middle Miocene benthic foraminiferal oxygen and carbon isotopes and stratigraphy: Southern Ocean Site 744. In Barron, J., Larsen, B., et al., Proc. ODP, Sci. Results, 119: College Station, TX (Ocean Drilling Program), 935-939.
- Woodruff, F., and Savin, S., 1989. Miocene deepwater oceanography. *Paleoceanography*, 4: 87-140.
- Woodruff, F., Savin, S. M., and Abel, L., 1990. Miocene benthic foraminifera oxygen and carbon isotopes, Site 709, Indian Ocean. *In* Backman, J., Duncan, R. A., Peterson, L. C., et al., *Proc. ODP, Sci. Results*, 115: College Station, TX (Ocean Drilling Program), 519-528.
- Zachos, J. C., Berggren, W. A., Aubry, M. P., and Mackensen, A., 1992a. Isotope and trace element geochemistry of Eocene and Oligocene foraminifers from Site 748, Kerguelen Plateau. *In Wise*, S. W., Jr., Schlich, R., et al., *Proc. ODP, Sci. Results*, 120: College Station, TX (Ocean Drilling Program), 839-854.
- Zachos, J. C., Breza, J., and Wise, S. W., Jr., 1992b. Early Oligocene ice-sheet expansion on Antarctica: sedimentological and isotope evidence from Kerguelen Plateau. *Geology*. 20: 569-573.

- Savin, S. M. and Woodruff, F., 1990. Isotopic Evidence for temperature and productivity in the Tertiary oceans. In Burnett, W. C. and Riggs, S. P. (Ed.), Phosphate Deposits of the World, vol.3, Genesis of Neogene to recent Phosphorites, 241-259.
- Seto, K., Nomura, R., and Niitsuma, N., 1991. DATA REPORT: Oxygen and carbon isotope records of the upper Maastrichtian to lower Eocene benthic foraminifers at Site 752 in the castern Indian Ocean. In Peirce, J., Weissel, J., Taylor, E., Alt, J., et al., Proc. ODP, Sci. Results, 121: College Station, TX (Ocean Drilling Program), 885-889.
- Shackleton, N. J., Backman, J., Zimmerman, H. B., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Desprairies, A., Homrighausen, R., Guddlestun, P., Keene, J. B., Kalttenback, A. J., Krumsiek, K. A. O., Morton, A C., Murray, J. W., and Westberg-Smith, J., 1984. Oxygen isotope calibration of the onset of icerafting in DSDP Site 522A: history of glaciation in the North Atlantic region. *Nature*, 307: 620-623.
- Shackleton, N. J., Corfield, R. M., and Hall, M. A., 1985. Stable isotope data and the ontogeny of Paleocene planktonic foraminifera. J. Foraminiferal. Res., 15: 321-336.
- Shackleton, N. J., and Hall, M. A., 1990. Pliocene oxygen isotope stratigraphy of Hole 709C. In Duncan, R. A., Backman, J., Peterson, L. C., et al., Proc. ODP, Sci. Results, 115: College Station, TX (Ocean Drilling Program), 529-538.
- Stott, L. D. and Kennett, J. P., 1990. Antarctic Paleogene planktonic foraminifer biostratigraphy: ODP Leg 113, Sites 689 and 690. *In Barker*, P. F., Kennett, J. P., et al., *Proc. ODP, Sci. Results*, 113: College Station, TX (Ocean Drilling Program), 549-569.
- Stott, L. D., Kennett, J. P., Shackleton, N. J., and Corfield, R. M., 1990. The evolution of Antarctic surface waters during the Paleogene: inferences from stable isotopic composition of planktonic foraminifers, ODP Leg 113. In Barker, P. F., Kennett, J. P., et al., Proc. ODP, Sci. Results, 113: College Station, TX (Ocean Drilling Program), 849-863.
- Takayama, T., and Sato, T., 1987. Coccolith biostratigraphy of the North Atlantic Ocean, Deep Sea Drilling Project Leg 94. In Ruddiman, W. F., Kidd, R. B., Thomas, E., et al., Init. Repts. DSDP, 94, Pt. 2: Washington (U.S.Govt. Printing Office), 651-702.
- Thierstein, H. R., Geitzenauer, K. R., Molfino, B., and Shackleton, N. J., 1977. Global synchroneity of late Quaternary coccolith datum levels: validation by oxygen isotope. *Geology*, 5:400-404.
- Urey, H. C., 1947, The thermodynamic properties of isotopic substances. J. chem. Soc., 562-581.
- Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. *Geol. Soc. Am. Bull.*, 62: 399-416.

- Vincent, E., Killingley, J. S., and Berger, W. H., 1980. The Magnetic Epoch-6 carbon shift: a change in the ocean's ¹³C/¹²C ratio 6.2 million years ago. *Mar. Micropaleontol.*, 5: 185-203.
- Vincent, E., Killingley, J. S., and Berger, W. H., 1985. Miocene oxygen and carbon isotope stratigraphy of the tropical Indian Ocean. In Kennet, J. P. (Ed.), The Miocene Ocean: Paleoceanography and Biogeography. Mem. Geol. Soc. Am., 163: 103-130.
- Vincent, E., Shackleton, N. J., and Hall, M. A., 1991. Miocene oxygen and carbon isotope stratigraphy of planktonic foraminifers at Sites 709 and 758, tropical Indian Ocean. In Peirce, J., Weissel, J., et al., Proc. ODP, Sci. Results, 121: College Station, TX (Ocean Drilling Program), 241-252.
- Wada, H., Fujii, N., and Niitsuma, N., T., 1984. Analytical method of stable isotope for ultra-small amounts of carbon dioxide with MAT 250 Massspectrometer. *Geosci. Rep. Shizuoka Univ.*, 10: 103-112.
- Wada, H., Nagai, Y., Ando, T., and Niitsuma, N., 1991. New trap system for Purification of Carbon Dioxide equipped to the inlet system of MAT 250 Mass-Spectrometer. *Geosci. Rep. Shizuoka Univ.*, 17: 161-167.
- Wada, H., Niitsuma, N., and Saito, T., 1982. Carbon and oxygen isotopic measurement of ultra-small samples. *Geosci. Rep. Shizuoka Univ.*, 7: 35-50.
- Weissert, H. J., Mckenzie, J. A., Wright, R. C., Clark, M., Oberhänsli, H., and Casey, M., 1984. Paleoclimatic record of the Pliocene at deep sea drilling project Sites 519, 521, 522, and 523 (Central South Atlantic). In Hsu, K. J., LaBrecque, J. L., et al., Init. Repts. DSDP, 73: Washington (U.S. Govt. Printing Office), 701-715.
- Woodruff, F., and Chamber, R., 1991. Middle Miocene benthic foraminiferal oxygen and carbon isotopes and stratigraphy: Southern Ocean Site 744. In Barron, J., Larsen, B., et al., Proc. ODP, Sci. Results, 119: College Station, TX (Ocean Drilling Program), 935-939.
- Woodruff, F., and Savin, S., 1989. Miocene deepwater oceanography. *Paleoceanography*, 4: 87-140.
- Woodruff, F., Savin, S. M., and Abel, L., 1990. Miocene benthic foraminifera oxygen and carbon isotopes, Site 709, Indian Ocean. In Backman, J., Duncan, R. A., Peterson, L. C., et al., Proc. ODP, Sci. Results, 115: College Station, TX (Ocean Drilling Program), 519-528.
- Zachos, J. C., Berggren, W. A., Aubry, M. P., and Mackensen, A., 1992a. Isotope and trace element geochemistry of Eocene and Oligocene foraminifers from Site 748, Kerguelen Plateau. *In Wise*, S. W., Jr., Schlich, R., et al., *Proc. ODP, Sci. Results*, 120: College Station, TX (Ocean Drilling Program), 839-854.
- Zachos, J. C., Breza, J., and Wise, S. W., Jr., 1992b. Early Oligocene ice-sheet expansion on Antarctica: sedimentological and isotope evidence from Kerguelen Plateau. *Geology*. 20: 569-573.

473

- Zachos, J. C., Rea, D. K., Seto, K., Niitsuma, N., and Nomura, R., 1992c. Paleogene and early Neogene deep water paleoceanography of the Indian Ocean as determined from benthic foraminifera stable carbon and oxygen isotope records. Am. Geophys. Union Monograph, 70: 351-385.
- Zahn, R., Winn, K., and Sarnthein, M., 1986. Benthic foraminiferal d¹³C and accumulation rates of organic carbon: Uvigerina pergrina group and Cibicidoides wuellerstorfi. Paleoceanography, 1: 27-42.
- Zijderveld, J. D., Zachariasse, J. W., Verhallen, P. J. J., and Hilgen, F. J., 1986. The age of the Miocene/Pliocene boundary. *Newsl. Stratigr.*, 16:169-181.

Koji SETO

From 1, Oct., 1995

Department of Geoscience, Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue, 690, Japan.

Department of Geology, Faculty of Science, Shimane University, Matsue, 690, Japan.

Koji SETO

Appendix A-1. Oxygen and carbon isotopic data from Legs 121 and 122.

Core				Specim	en size					Core				Specim	en size				
&	Interval	Depth	Age	D	Т	δ ¹⁸ Ο	$\delta^{13}C$	δ ¹⁸ O	δ ¹³ C	&	Interval	Depth	Age	D	т	۸ ¹⁸ 0	8 ¹³ C	8 ¹⁸ 0	×13
Section		(mbsf)	(Ma)	(µm)	(µm)		00	ave.	ave.	Section		(mbsf)	(Ma)	(µm)	- (μm)	00	00	ave.	ave.
Danthia	Fanant																		
Jeninic Jeninic	r orami	nuera								Benthic	Forami	nifera							
Leg 12	I SHE 7.	52 HC	ole A							Leg 12	I Site 7.	52 Ho	ole A						
Anoma	anomes		5							Anoma	uinoides	danicu	S						
132-1	0.70-0.75	113.60	55.27	658	380	-0.770	0.314	-0.8-10	0.170	19X-2	0.71-0.74	173.31	57.86	557	329	-0.664	0.712		
13X-1	0.70-0.75	113.60	55.27	607	354	-0.935	0.050			19X-3	0.75-0.79	174.85	57.91	455	278	-0.672	0.647	-0.769	0.698
13X-1	0.70-0.75	113.60	55.27	405	253	-0.816	0.146			19X-3	0.75-0.79	174.85	57.91	506	304	-0.848	0.769		
13X-2	0.70-0.75	115.10	55.34	658	405	-1.039	-0.056	-1.026	0.122	19X-3	0.75-0.79	174.85	57.91	-481	329	-0.786	0.679		
13X-2	0.70-0.75	115.10	55.34	392	253	-1.068	0.003			20X-1	0.70-0.75	181.40	58.09	430	278	-0.008	2.129	-0.189	1.889
13X-2	0.70-0.75	115.10	55.34	405	304	-0.971	0.419			20X-1	0.70-0.75	181.40	58.09	455	304	-0.112	2.025		
13X-4	0.62-0.67	118.02	55.46	557	278	-1.021	-0.072	-0.856	0.079	20X-1	0.70-0.75	181.40	58.09	-430	278	-0.447	1.513		
13X-4	0.62-0.67	118.02	55.46	481	278	-0.875	0.081			21X-1	0.70-0.75	191.10	58.36	455	329	-0.420	2.127	-0.389	2.105
13X-4	0.62-0.67	118.02	55.46	405	228	-0.673	0.229			21X-1	0.70-0.75	191.10	58.36	506	304	-0.403	2.109		
14X-1	0.70-0.75	123.30	55.70	506	278	-1.456	-0.890	-1.371	-0.648	21X-1	0.70-0.75	191.10	58.36	607	329	-0.343	2.079		
14X-1	0.70-0.75	123.30	55.70	506	304	-1.233	-0.684			21X-2	0.70-0.73	192.60	58.40	632	-405	-0.492	2.041	-0.633	1.966
14X-1	0.70-0.75	123.30	55.70	455	278	-1.538	-0.995			21X-2	0.70-0.73	192.60	58.40	506	380	-0.581	2.022		
14X-1	0.70-0.75	123.30	55.70	405	228	-1.255	-0.022			21X-2	0.70-0.73	192.60	58.40	380	253	-0.824	1.834		
14X-2	0.72-0.75	124.82	55.76	620	329	-1.041	-0.175	-0.886	0.079	22X-1	0.70-0.75	200.80	58.63	430	304	-0.590	2.375	-0.577	2.315
14X-2	0.72-0.75	124.82	55.76	455	304	-0.728	0.321			22X-1	0.70-0.75	200.80	58.63	405	253	-0.6-13	2.410		
14X-2	0.72-0.75	124.82	55.76	481	278	-0.887	0.091			22X-1	0.70-0.75	200.80	58.63	531	354	-0.499	2.160		
14X-3	0.70-0.75	126.30	55.83	607	329	-0.851	0.228	-0.998	0.021	22X-3	0.70-0.75	203.80	58.76	430	304	-1.412	1.912	-0.837	2.071
14X-3	0.70-0.75	126.30	55.83	-481	253	-1.214	-0.239			22X-3	0.70-0.75	203.80	58.76	455	278	-0.701	1.994		
14X-3	0.70-0.75	126.30	55.83	405	228	-0.930	0.074			22X-3	0.70-0.75	203.80	58.76	430	253	-0.397	2.306		
14X-4	0.62-0.68	127.72	55.89	506	304	-0.920	-0.077	-0.825	-0.016	23X-1	0 510 56	210.34	59.04	430	304	-0.845	2.200	.0845	2 281
14X-4	0.62-0.68	127.72	55.89	417	253	-0.762	0.028	0.020	0.010	258.2	075079	231 35	60.63	506	370	.0.609	1 986	-0.609	1 986
14X-4	0.62-0.68	127.72	55.89	455	253	-0.793	0.001			263-1	0.97-1.00	730 77	60.96	155	301	-0.667	1 0 5 5	.0.610	2 035
15X-1	0.70-0.75	133.00	56.12	481	278	-1 218	-0.287	-1 126	-0.230	268-1	0.97-1.00	220.77	60.06	495	370	-0.657	2.4.40	-0.010	2.055
152.1	070-075	133.00	56 12	455	278	-1.012	.0.137	-1.120	-00	201-1	0.971.00	239.77	60.00	401	155	0.511	1 702		
158-1	0.70-0.75	133.00	56.12	510	270	1 1/19	0.157			201-1	0.97-1.00	252.17	61 22	003	433	-0.311	1.702	0.250	1 172
155.2	0.60 0.72	121.10	56 10	101	270	-1.140	-0.207	0.070	0.000	272-3	0.70-0.75	252.10	61.33	120	070	-0.397	1.454	-0.339	1.475
151.2	0.69.0.72	121.10	56 10	401	2/0	-0.550	0.150	-0.872	0.209	272-3	0.70-0.75	252.10	01.33	430	278	-0.321	1.513	0 170	1.005
157.2	0.09-0.72	124.49	56.19	455	2/8	-0.917	0.150			283-1	0.70-0.75	258.80	61.53	430	2/8	-0.714	1.586	-0.472	1.635
152.1	0.09-0.72	124.49	50.19	417	205	-1.162	0.036		0.055	28X-1	0.70-0.75	258.80	61.53	/08	430	-0.289	1.704		
153-4	0.70-0.73	137.50	55.71	481	304	-0.8.28	0.279	-0.799	0.356	28X-1	0.70-0.75	258.80	61.53	632	380	-0.414	1.614		
152-4	0.70-0.73	137.50	55.71	417	228	-0.744	0.357			28X-4	0.72-0.76	263.32	61.67	683	278	-0.184	1.631	-0.184	1.631
153-4	0.70-0.73	137.50	55.71	455	2/8	-0.824	0.433			28X-5	0.70-0.75	264.80	61.72	683	430	-0.554	1.903	-0.487	1.958
152-5	0.70-0.75	139.00	55.75	531	304	-0.622	0.412	-0.700	0.277	28X-5	0.70-0.75	264.80	61.72	607	354	-0.527	1.970		
15X-5	0.70-0.75	139.00	55.75	430	253	-0.748	0.164			28X-5	0.70-0.75	264.80	61.72	607	380	-0.364	2.155		
15X-5	0.70-0.75	139.00	55.75	405	228	-0.730	0.254			28X-5	0.70-0.75	264.80	61.72	582	405	-0.504	1.804		
16X-1	0.70-0.75	142.70	55.83	430	253	-0.963	0.216	-0.861	0.234	29X-1	0.70-0.75	268.40	61.83	784	455	-0.562	1.817	-0.609	1.856
16X-1	0.70-0.75	142.70	55.83	405	228	-0.728	0.343			29X-1	0.70-0.75	268.40	61.83	607	304	-0.772	1.862		
16X-1	0.70-0.75	142.70	55.83	506	278	-0.893	0.143			29X-1	0.70-0.75	268.40	61.83	683	380	-0.492	1.890		
16X-2	0.70-0.75	144.20	55.86	380	215	-1.014	-0.234	-1.047	-0.150	29X-2	0.68-0.71	269.88	61.87	506	329	-0.367	1.731	-0.594	1.706
16X-2	0.70-0.75	144.20	55.86	380	202	-1.124	-0.219			29X-2	0.68-0.71	269.88	61.87	531	342	-0.707	1.616		
16X-2	0.70-0.75	144.20	55.86	405	278	-1.002	0.003			29X-2	0.68-0.71	269.88	61.87	405	278	-0.708	1.770		
16X-4	0.59-0.65	147.09	55.92	380	240	-0.809	0.349	-0.973	0.120	29X-5	0.70-0.73	274.40	62.01	683	405	-0.816	1.568	-0.636	1.603
16X-4	0.59-0.65	147.09	55.92	455	228	-1.136	-0.109			29X-5	0.70-0.73	274.40	62.01	481	278	-0.596	1.627		
16X-5	0.25-0.30	148.25	55.95	455	278	-0.778	0.283	-0.768	0.395	29X-5	0.70-0.73	274,40	62.01	430	304	-0.495	1.613		
16X-5	0.25-0.30	148.25	55.95	-481	278	-0.663	0.421			29X-6	0.78-0.81	275.98	62.06	620	380	-0.609	1.651	-0.465	1.636
16X-5	0.25-0.30	148.25	55.95	430	253	-0.864	0.480			29X-6	0.78-0.81	275.98	62.06	860	430	-0.422	1.665		
17X-1	0.70-0.75	152.40	56.04	531	354	-1.459	-0.815	-1.420	-0.746	29X-6	0.78-0.81	275.98	62.06	708	405	-0.363	1.593		
17X-1	0.70-0.75	152.40	56.04	405	228	-1.568	-0.833			30X-1	0.73-0.76	278.13	62.12	582	380	-0.355	1.640	-0.465	1.708
17X-1	0.70-0.75	152.40	56.04	405	228	-1.343	-0.634			30X-1	0.73-0.76	278.13	62.12	430	278	-0.567	1.715		
17X-1	0.70-0.75	152.40	56.04	430	253	-1.311	-0.702			30X-1	0.73-0.76	278.13	62.12	430	278	-0.473	1.769		
17X-2	0.64-0.66	153.84	56.07	392	215	-0.968	0.194	-0.968	0.194	31X-1	0.70-0.75	280.10	62.18	455	278	-0.798	1.725	-0.684	1.733
17X-3	0.70-0.75	155.40	56.11	607	354	-0.532	0.507	-0.679	0.418	31X-1	0.70-0.75	280.10	62.18	455	278	-0.537	1.908		
17X-3	0.70-0.75	155.40	56.11	455	228	-0.821	0.370			31X-1	0.70-0.75	280.10	62.18	506	304	-0.718	1.566		
17X-3	0.70-0.75	155.40	56.11	430	228	-0.683	0.376			31X-2	0.77-0.80	281.67	62.23	506	354	-0.701	1.706	-0.595	1.609
18X-1	0.71-0.75	162.11	56.74	506	304	-1.226	0.281	-0.747	0.642	31X-2	0.77-0.80	281.67	62.23	759	455	-0.686	1.617		
18X-1	0.71-0.75	162.11	56.74	430	253	-0.379	0.824			31X-2	0.77-0.80	281.67	62.23	708	430	-0.397	1.505		
18X-1	0.71-0.75	162.11	56.74	380	202	-0.637	0.820			31X-4	0.75-0.79	284.65	62.32	822	481	-0.660	1.432	-0.640	1.464
18X-2	0.67-0.70	163.57	56.91	405	278	-0.621	0.794	-0.561	0.810	31X-4	0.75-0.79	284.65	62.32	658	392	-0.619	1.497		
18X-2	0.67-0.70	163.57	56.91	-405	228	-0.501	0.825			31X-5	0.70-0.75	286.10	62.36	481	304	-0.644	1.443	-0.6-14	1.443
19X-1	0.70-0.75	171.80	57.82	582	380	-0.718	1.009	-0.672	1.041	32X-1	0.70-0.75	289.40	62.46	784	455	-1.069	1.294	-0.964	1.119
19X-1	0.70-0.75	171.80	57.82	582	202	-0.748	1.024			32X-1	0.70-0.75	289.40	62.46	658	380	-1.101	1.244		
19X-1	0.70-0.75	171.80	57.82	-481	278	-0.733	0.979			32X-1	0.70-0.75	289.40	62.46	582	430	-0.801	0.8-41		
19X-1	0.70-0.75	171.80	57.82	405	278	-0.589	1.031			32X-1	0.70-0.75	289.40	62.46	506	329	-0.883	1.096		
19X-1	0.70-0.75	171.80	57.82	430	228	-0.570	1.163			32X-5	0.70-0.75	295.40	62.65	430	329	-0.821	1.432	-1.011	1.433
19X-2	0.71-0.74	173.31	57.86	607	380	-0.811	0.607	-0.727	0.683	32X-5	0.70-0.75	295.40	62.65	380	228	-1.200	1.434		
19X-2	0.71-0.74	173.31	57.86	607	329	-0.705	0.729				-								

Carbon and oxygen isotopic paleoceanography

Appendix A-2. (continued).

			Specimer						Come				Canada					
& Interval	Depth	Age	D	T	δ ¹⁸ Ο	δ ¹³ C	δ ¹⁸ Ο	δ ¹³ C	&	Interval	Depth	Age	D	T	δ ¹⁸ Ο	$\lambda^{13}C$	δ ¹⁸ Ο	δ ¹³ C
Section	(mbsf)	(Ma)	(µm) ((µ m)	00	00	ave.	ave.	Section		(mbsf)	(Ma)	(µm)	(µm)	00	00	ave.	ave.
Leg 121 Site 7	52 Ho	le A							Leg 12	1 Site 7	52 H	le Δ						
Cibicidoides ve	lascoer	isis							Stensio	ina becc	ariifor	mis	(Cont.)					
20X-1 0.70-0.75	181.40	58.09	582	380	-0.512	1.284	-0.505	1.470	21X-1	0.70-0.75	191.10	58.36	506	278	-0.468	1.386	-0.533	1.422
20X-1 0.70-0.75	181.40	58.09	557	380	-0.555	1.413			21X-1	0.70-0.75	191.10	58.36	430	253	-0.387	1.431		
20X-1 0.70-0.75	181.40	58.09	430	278	-0.447	1.714			21X-1	0.70-0.75	191.10	58.36	481	278	-0.745	1.448		
21X-1 0.70-0.75	191.10	58.36	607	380	-0.371	2.110	-0.305	2.156	21X-2	0.70-0.73	192.60	58.40	468	253	-0.570	1.495	-0.599	1.501
21X-1 0.70-0.75	191.10	58 36	557	380	-0.252	2.115			21A-2 22X-1	0.70-0.75	200.80	58.63	433 506	220	-0.627	1.508	-0 566	1 581
21X-2 0.70-0.73	192.60	58.40	595	329	-0.386	2.080	-0.379	2.091	22X-1	0.70-0.75	200.80	58.63	506	278	-0.562	1.594	0.200	1.001
21X-2 0.70-0.73	192.60	58.40	506	354	-0.457	2.141			22X-1	0.70-0.75	200.80	58.63	531	304	-0.549	1.498		
21X-2 0.70-0.73	192.60	58.40	430	304	-0.292	2.053			22X-2	0.75-0.79	202.35	58.70	430	228	-0.517	1.436	-0.527	1.361
22X-1 0.70-0.75	200.80	58.63	531	354	-0.394	2.227	-0.387	2.360	22X-2	0.75-0.79	202.35	58.70	519	304	-0.604	1.392		
22X-1 0.70-0.75	200.80	58.63	506	354	-0.429	2.457			22X-2	0.75-0.79	202.35	58.70	455	253	-0.460	1.254		
22X-1 0.70-0.75	200.80	58.63	455	329	-0.337	2.396	0.260		22X-3	0.70-0.75	203.80	58.76	557	278	-0.436	1.294	-0.600	1.466
22X-2 0.75-0.79	202.33	58.70	455	304	-0.423	2.149	-0.369	2.200	22X-3	0.70-0.75	203.80	58.70	506 455	253	-0.049	1.557		
22X-2 0.75-0.79	202.35	58.70	417	304	-0.292	2.292			23X-1	0.54-0.56	210.34	59.04	430	329	-0.710	1.755	-0.699	1.689
22X-3 0.70-0.75	203.80	58.76	506	329	-0.435	2.318	-0.384	2.292	23X-1	0.54-0.56	210.34	59.04	506	278	-0.567	1.654		
22X-3 0.70-0.75	203.80	58.76	506	354	-0.373	2.297			23X-1	0.54-0.56	210.34	59.04	481	253	-0.820	1.659		
22X-3 0.70-0.75	203.80	58.76	405	304	-0.343	2.260			24X-1	0.70-0.73	220.20	59.72	582	278	-0.468	1.293	-0.419	1.242
23X-1 0.54-0.56	210.34	59.04	354	253	-0.536	2.369	-0.626	2.375	24X-1	0.70-0.73	220.20	59.72	582	329	-0.390	1.276		
23X-1 0.54-0.56	210.34	59.04	354	253	-0.716	2.380	0.252	1.020	24X-1	0.70-0.73	220.20	59.72	582	304	-0.399	1.156	0 165	1 102
24X-2 0.70-0.75	221.22	59.81	269	405	-0.253	2.018	-0.253	1.938	24X-2 24X-2	0.70-0.75	221.22	59.81	560	278	-0.493	1.181	-0.465	1.195
25X-1 0.79-0.84	229.89	60.53	493	380	-0.257	2.225	-0.520	نت 1. ن	24X-2	0.70-0.75	221.22	59.81	417	228	-0.372	1.125		
25X-3 0.79-0.84	232.89	60.74	380	278	-0.581	2.162	-0.581	2.162	25X-1	0.79-0.84	229.89	60.53	557	304	-0.492	1.191	-0.419	1.251
26X-5 0.97-1.00	245.77	61.14	405	253	-0.370	1.412	-0.370	1.412	25X-1	0.79-0.84	229.89	60.53	380	202	-0.347	1.428		
30X-1 0.73-0.76	278.13	62.12	455	329	-0.447	1.593	-0.478	1.642	25X-1	0.79-0.84	229.89	60.53	380	202	-0.417	1.135		
30X-1 0.73-0.76	278.13	62.12	481	380	-0.428	1.764			25X-2	0.75-0.79	231.35	60.63	557	304	-0.627	0.891	-0.408	1.068
30X-1 0.73-0.76	278.13	62.12	481	405	-0.559	1.569			25X-2	0.75-0.79	231.35	60.63	481	266	-0.343	1.136		
31X-1 0.70-0.75	280.10	62.18	658	380	-0.611	1.430	-0.598	1.467	25X-2	0.75-0.79	231.35	60.63	455	253	-0.253	1.178	0 553	0.010
31X-1 0.70-0.75	280.10	62.18	337 405	224 278	-0.005	1.590			20X-1 26X-1	0.97-1.00	239.11	60.90	587	304	-0.025	0.800	-0.555	0.717
31X-4 0.75-0.79	284.65	62.32	746	392	-0.450	1.469	-0.345	1.374	26X-1	0.97-1.00	239.77	60.96	506	253	-0.319	0.978		
31X-4 0.75-0.79	284.65	62.32	392	291	-0.211	1.191			26X-2	0.82-0.85	241.12	61.00	468	253	-0.398	0.815	-0.403	0.886
31X-4 0.75-0.79	284.65	62.32	430	304	-0.372	1.463			26X-2	0.82-0.85	241.12	61.00	493	304	-0.404	0.873		
32X-1 0.70-0.75	289.40	62.46	708	380	-0.685	1.103	-0.774	1.168	26X-2	0.82-0.85	241.12	61.00	455	253	-0.407	0.970		
32X-1 0.70-0.75	289.40	62.46	658	354	-0.787	1.107			26X-5	0.97-1.00	245.77	61.14	455	329	-0.402	0.814	-0.389	0.864
32X-1 0.70-0.75	289.40	62.46	455	278	-0.850	1.295	0.027	0.052	26X-5	0.97-1.00	245.77	61.14	227 430	304 · 228	-0.413	1 187		
33X-3 0 57-0 60	301.97	62.85	380	200 778	-0.987	0.932	-0.987	1.012	20X-3	0.97-1.00	245.17	61.14	506	228	-0.352	0.686	-0.492	0.623
33X-3 0.57-0.60	301.97	62.85	380	278	-0.656	1.076	-0.717	1.012	26X-6	0.82-0.86	247.12	61.18	380	202	-0.632	0.560		
Nuttallides true	empyi								27X-1	0.70-0.75	249.10	61.24	531	278	-0.492	0.255	-0.418	0.484
22X-1 0.70-0.75	200.80	58.63	405	253	-0.566	1.752	-0.538	1.890	27X-1	0.70-0.75	249.10	61.24	455	253	-0.323	0.813		
22X-1 0.70-0.75	200.80	58.63	430	278	-0.515	1.983			27X-1	0.70-0.75	249.10	61.24	405	228	-0.440	0.384		
22X-1 0.70-0.75	200.80	58.63	455	278	-0.533	1.934			27X-2	0.78-0.82	250.68	61.29	607	291	-0.257	0.718	-0.276	0.758
22X-3 0.70-0.75	203.80	58.76	481	278	-0.508	1.442	-0.508	1.442	27X-2	0.78-0.82	250.68	61.29	468	253	-0.4/6	0.717		
13X-1 0.70-0.75	113.60	55 27	253-380 1'	77.202	-1 094	.0 149			27X-2 27X-3	0.76-0.82	252.10	61.33	400	255	-0.268	0.739	-0.364	0.765
13X-4 0.62-0.67	118.02	55.46	153-329 1	52-177	-1.971	-0.146			27X-3	0.70-0.75	252.10	61.33	430	278	-0.277	0.660		
15X-4 0.70-0.73	137.50	55.71	253-304 1	77-202	-1.116	0.014			27X-3	0.70-0.75	252.10	61.33	405	202	-0.546	0.897		
18X-1 0.71-0.75	162.11	56.74	304-405 20	02-253	-0.739	0.226			28X-1	0.70-0.75	258.80	61.53	531	304	-0.182	0.952	-0.244	0.829
19X-1 0.70-0.75	171.80	57.82	278-304	177	-0.894	0.638			28X-1	0.70-0.75	258.80	61.53	506	329	-0.323	0.715		
19X-3 0.75-0.79	174.85	57.91	278-3541	52-202	-1.112	-0.143			28X-1	0.70-0.75	258.80	61.53	481	278	-0.226	0.821	0.400	0.005
20X-1 0.70-0.75	181.40	58.09	304-380 1	77-228	-0.506	0.933			28X-2	0.55-0.58	260.15	61.58	582 491	329	-0.367	0.708	-0.422	0.885
222-1 0.70-0.73	210.80	59.03	278-3291	202	-0.5.0	1.010			287-2	0.55-0.58	260.15	61.58	468	253	-0.447	1.122		
26X-1 0.97-1.00	239.77	60.96	304-354 1	77-253	-0.302	1.215			28X-4	0.72-0.76	263.32	61.67	531	266	-0.678	0.879	-0.543	0.923
Oridorsalis um	bonatu	5							28X-4	0.72-0.76	263.32	61.67	506	228	-0.445	0.889		
21X-1 0.70-0.75	191.10	58.36	-481	253	-0.164	1.518	-0.221	1.613	28X-4	0.72-0.76	263.32	61.67	481	253	-0.506	1.002		
21X-1 0.70-0.75	191.10	58.36	455	304	-0.278	1.708			28X-5	0.70-0.75	264.80	61.72	582	329	-0.416	0.606	-0.377	0.887
Stensioina bec	cariifor	mis	10-				n r = /		28X-5	0.70-0.75	264.80	61.72	481	278	-0.409	0.943		
16X-4 0.59-0.65	147.09	55.92	481	253	-0.612	0.903	-0.524	0.887	28X-5	0.70-0.75	264.80	61.72	455	278 วาจ	-0.305	1.111	-0.615	1 024
102-4 0.22-0.62	147.09	00.92 55 m	430 475	2/8 253	-0.377	0.787			29X-1 29X-1	0.70-0.73	268.40	61.83	506	278	-0.845	1.090	-0.015	1.0.54
20X-1 0.70-0.75	181.40	58.09	481	253	-0.853	0.345	-0.699	0.703	29X-1	0.70-0.73	268.40	61.83	506	278	-0.423	1.071		
20X-1 0.70-0.75	181.40	58.09	430	228	-0.675	1.014			29X-2	0.68-0.71	269.88	61.87	430	253	-0.392	0.963	-0.392	0.963
20X-1 0.70-0.75	181.40	58.09	405	253	-0.568	0.749			29X-4	0.72-0.76	272.92	61.96	367	228	-0.507	1.080	-0.507	1.080

Appendix A-3. (continued).

								·····		·									
Core	Testerman	Denth		Specim	en size	. 18 .	. 13 .	. 18	13	Core				Specim	en size	18	13	18	
Section	111101 1 441	(mbsf)	Age (Ma)	υ (μm)	۱ (µm)	80	9C	δ°°Ο ave.	δ ^{ro} C ave.	& Section	Interval	Depth (mbsf)	Age (Ma)	D (µm)	Τ (μm)	δ'°O	δ"°C	δ' 0 ave.	δ ¹³ C ave.
Leg 121	Site 7	52 Ho	le A							Leg 12	1 Site 7	52 Ho	le B		-				
Stensio	ina becc	ariifon	nis	(Cont.)						Cibicia	loides ve	lascoe	nsis	(Cont.)					
29X-5	0.70-0.73	274.40	62.01	506	329	-0.408	0.800	-0.722	0.596	9R-1	0.42-0.45	335.82	64.13	860	-481	-0.873	1.327	-0.8-16	1.279
29X-5	0.70-0.73	274.40	62.01	506	304	-0.913	0.623			9R-1	0.42-0.45	335.82	64.13	632	354	-0.851	1.222		
29X-5 (0.78-0.81	275.98	62.01	481	253	-0.287	0.366	-0.263	0.813	9R-1	0.42-0.45	335.82	64.13	683	354	-0.814	1.288	1 0 1 1	1 210
29X-6	0.78-0.81	275.98	62.06	506	291	-0.306	0.692	-0.200	0.015	10R-1	1.05-1.08	346.15	64.84	531	304	-1.189	1.250	-1.024	1.510
29X-6	0.78-0.81	275.98	62.06	468	266	-0.200	0.820			10R-1	1.05-1.08	346.15	64.84	481	304	-0.986	1.326		
30X-1	0.73-0.76	278.13	62.12	455	304	-0.574	0.986	-0.559	0.992	10R-2	1.00-1.02	347.60	65.06	481	278	-1.664	1.215	-1.492	1.224
30X-1	0.73-0.76	278.13	62.12	455	253	-0.361	0.932			10R-2	1.00-1.02	347.60	65.06	455	329	-1.496	1.289		
31X-1	0.75-0.76	2/8.15	62.12	455 481	253	-0.743	1.058	.0.813	0877	10R-2	1.00-1.02	347.60	65.06	430	278	-1.317	1.168	1 20 1	1.462
31X-1	0.70-0.75	280.10	62.18	455	278	-0.785	0.779	-0.815	0.077	10R-3	1.12-1.15	349.22	65.30	430	304	-1.747	1.555	-1.594	1.402
31X-1	0.70-0.75	280.10	62.18	455	253	-0.881	0.908			10R-3	1.12-1.15	349.22	65.30	430	253	-1.577	1.355		
31X-2	0.77-0.80	281.67	62.23	493	228	-0.597	0.733	-0.577	0.846	10R-4	0.79-0.81	350.39	65.48	481	329	-1.530	1.624	-1.572	1.539
31X-2	0.77-0.80	281.67	62.23	430	215	-0.565	0.671			10R-4	0.79-0.81	350.39	65.48	455	253	-1.889	1.524		
31X-2 (0.77-0.80	281.67	62.23	430 506	228	-0.569	1.135	0 770	0 700	10R-4	0.79-0.81	350.39	65.48	405	253	-1.298	1.468		
31X-4	0.75-0.79	284.65	62.32	531	304	-0.714	0.612	-0.779	0.782	10R-6	1.00-1.02	353.60	65.96	430	253	-1.090	1.015	-1.493	0.912
31X-4	0.75-0.79	284.65	62.32	-481	228	-0.960	0.833			10R-6	1.00-1.02	353.60	65.96	430	253	-1.407	0.732		
31X-5	0.70-0.75	286.10	62.36	405	278	-1.021	0.839	-0.784	0.706	10R-7	0.41-0.43	354.51	66.10	405	253	-1.269	0.825	-1.217	0.880
31X-5	0.70-0.75	286.10	62.36	430	253	-0.689	0.721			10R-7	0.41-0.43	354.51	66.10	405	228	-1.164	0.934		
31X-5	0.70-0.75	286.10	62.36	455	253	-0.641	0.558			11R-1	0.440.47	355.24	66.18	632	329	-1.576	1.422	-1.064	1.177
32X-1	0.70-0.75	289.40	62.46	405	304 253	-0.800	0.583	-0.712	0.686	11R-1	0.410.47	355.24	66.18	531	304	-0.810	1.093		
32X-1	0.70-0.75	289.40	62.46	380	202	-0.861	0.627			11R-1	0.440.47	356.74	66.28	405 632	380	-0.805	1.467	-1.158	1.443
32X-2	0.71-0.75	290.91	62.51	531	278	-0.936	0.114	-0.773	0.381	11R-2	0.41-0.47	356.74	66.28	658	380	-0.976	1.354	-1.1.50	1.110
32X-2	0.71-0.75	290.91	62.51	468	266	-0.763	0.460			11R-2	0.41-0.47	356.74	66.28	405	304	-1.413	1.509		
32X-2	0.71-0.75	290.91	62.51	430	215	-0.618	0.569			11R-3	0.38-0.41	358.18	66.37	734	405	-0.524	0.984	-0.593	1.352
32X-4	0.71-0.74	293.91	62.60	481	240	-0.626	0.539	-0.732	0.564	11R-3	0.38-0.41	358.18	66.37	582	506	-0.593	1.153		
32X-4	0.71-0.74	293.91	62.60	405	202	-0.912	0.624			11R-3	0.38-0.41	358.18	66.37	455 506	253	-0.661	1.919	1 075	1 710
32X-5	0.70-0.75	295.40	62.65	430	228	-0.857	0.780	-0.925	0.636	11R-3	0.640.66	358.44	66.38	455	329	-1.354	1.648	-1.075	1.717
32X-5	0.70-0.75	295.40	62.65	430	228	-0.906	0.407			11R-3	0.6-1-0.66	358.44	66.38	455	304	-1.055	1.711		
32X-5	0.70-0.75	295.40	62.65	443	278	-1.012	0.722			11R-3	1.12-1.14	358.92	66.42	430	278	-0.792	1.661	-0.990	1.609
32X-6	0.81-0.84	297.01	62.70	430	253	-0.648	0.844	-0.779	0.754	11R-3	1.12-1.14	358.92	66.42	430	253	-1.233	1.516		
32X-6	0.81-0.84	297.01	62.70 62.70	481	266	-0.740	0.776			11R-3	1.12-1.14	358.92	66.42	430	278	-0.946	1.650	0 700	1 010
33X-1	0.68-0.71	299.08	62.76	405	253	-0.976	0.568	-0.827	0.505	12R-1 12R-1	1.04-1.07	365.44	66.96	506	304	-0.835	1.163	-0.728	1.018
33X-1	0.68-0.71	299.08	62.76	519	253	-0.809	0.453	0.021	0.000	12R-1	1.04 1.07	365.44	66.96	430	278	-0.827	0.955		
33X-1	0.68-0.71	299.08	62.76	531	278	-0.697	0.495			12R-3	0.10-0.13	367.50	67.10	531	329	-0.662	1.314	-0.888	1.242
33X-2	0.71-0.73	300.61	62.81	506	266	-0.578	0.627	-0.578	0.627	12R-3	0.10-0.13	367.50	67.10	557	405	-0.870	1.157		
33X-3	0.57-0.60	301.97	62.85	405	228	-1.33-4	0.843	-1.018	0.638	12R-3	0.10-0.13	367.50	67.10	607	405	-1.132	1.256		
332.3	0.57-0.60	301.97	62.85	455 430	202	-0.922	0.822			12R-5	0.540.57	370.94	67.32	405	278	-1.757	1.142	-1.193	1.214
Leg 12	1 Site 7	52 Ho	ole B	-150	2,0	-0.727	0.250			12R-5	0.54-0.57	370.94	67.32	734	455	-0.733	1.205		
Cibicia	loides ve	elascoe	nsis							13R-1	0.40-0.43	374.40	67.54	683	455	-1.239	1.195	-0.900	1.187
5R-3	0.50-0.53	300.50	62.80	708	430	-0.761	1.025	-0.948	1.103	13R-1	0.40-0.43	374.40	67.54	658	380	-0.855	1.129	•	
5R-3	0.50-0.53	300.50	62.80	481	304	-1.175	1.275			13R-1	0.40-0.43	374.40	67.54	455	253	-0.606	1.238		
6R-1	0.50-0.55	307.04	63.00	582 708	380	-0.907	0.861	.1 371	0.859	13R-5	0.65-0.68	380.65	67.95	810 708	455	-0.648	1.271	-0.523	1.275
6R-1	0.41-0.47	307.04	63.00	658	329	-1.234	0.874	-1.521	0.000	13R-5	0.65-0.68	380.65	67.95	455	253	-0.491	1.330		
6R-1	0.41-0.47	307.04	63.00	455	228	-1.419	0.841			14R-1	0.69-0.72	384.29	68.18	557	405	-0.547	1.133	-0.744	1.338
6R-3	0.99-1.02	310.59	63.36	481	405	-1.010	1.059	-1.044	1.017	14R-1	0.69-0.72	384.29	68.18	544	329	-0.628	1.261		
6R-3	0.99-1.02	310.59	63.36	405	228	-1.210	1.159			14R-1	0.69-0.72	384.29	68.18	784	405	-1.057	1.621		
6R-3	0.99-1.02	310.59	63.36	607	405	-0.913	0.833	0.056	1 101	14R-5	0.62-0.65	390.22	68.46	658	405	-1.256	1.413	-0.929	1.268
7R-1	0.82-0.85	316.92	63.66	658	405	-0.908	1.515	-0.930	1.481	14R-5	0.62-0.65	390.22	68.46	03≟ 708	380	-0.655	1.159		
7R-1	0.82-0.85	316.92	63.66	734	405	-0.946	1.401			15R-1	1.19-1.22	394.49	68.78	506	380	-0.954	1.328	-1.147	1.291
7R-5	0.76-0.78	322.86	63.81	430	329	-1.076	1.491	-1.207	1.518	15R-1	1.19-1.22	394.49	68.78	531	354	-1.414	1.293		
7R-5	0.76-0.78	322.86	63.81	430	304	-1.606	1.661			15R-1	1.19-1.22	394.49	68.78	380	228	-1.072	1.251		
/R-5	0.76-0.78	322.86	63.81	455	278	-0.939	1.402	1 155	1 110	15R-5	1.12-1.15	400.42	69.53	632	380	-0.768	1.159	-0.734	1.287
8R-2	0.91-0.94	326.85	63.91	430	2/8	-1.597 -1.697	1.185	-1.435	1.218	15R-5	1.12-1.15	400.42	69 53	880 380	228	-0.757	1.28/		
8R-2	0.91-0.94	326.85	63.91	430	304	-1.269	1.099			16R-1	0.15-0.18	403.15	69.67	506	329	-0.711	1.074	-0.863	0.957
8R-6	1.01-1.04	332.91	64.05	658	354	-0.950	1.214	-1.037	1.267	16R-1	0.15-0.18	403.15	69.67	506	329	-0.936	0.861		-
8R-6	1.01-1.04	332.91	64.05	886	506	-1.193	1.243			16R-1	0.15-0.18	403.15	69.67	481	304	-0.943	0.936		
8R-6	1.01-1.04	332.91	64.05	-430	278	-0.969	1.345			16R-3	1.36-1.39	407.36	69.89	759	455	-1.294	0.968	-1.308	0.962

Koji SETO

Appendix A-4. (continued).

Core				Specim	en size					Core				Specim	en size				
& Section	Interval	Depth (mbsf)	Age (Ma)	D (µm)	Τ (μm)	δ ¹⁸ Ο	δ ¹³ C	δ ¹⁸ O ave.	δ ¹³ C ave.	& Section	Interval	Depth (mbsf)	Age (Ma)	D (µm)	Τ (μm)	δ ¹⁸ Ο	δ ¹³ C	δ ¹⁸ Ο ave.	$\delta^{13}C$ ave.
Leg 12	1 Site 7	52 Ho	le B							Leg 12	1 Site 7	52 Ho	ole B						
Cibici	doides ve	lascoer	isis	(Cont.)	200	1 000				Stensic	oina becc	ariifor	mis	(Cont.)			0.000		
16R-3	1.36-1.39	407.36	69.89 69.89	632 430	380 278	-1.898	1.112			11R-3 11R-3	0.64-0.66	358.44	66.38 66.42	380 380	202 228	-1.511	0.808	-1.252	1.253
17R-1	1.03-1.06	413.63	70.22	531	405	-0.476	0.322	-1.067	0.531	11R-3	1.12-1.14	358.92	66.42	405	228	-0.962	1.487		
17R-1	1.03-1.06	413.63	70.22	557	329	-1.331	0.817			11R-3	1.12-1.14	358.92	66.42	405	228	-1.099	1.032		
17R-1	1.03-1.06	413.63	70.22	380	202	-1.395	0.454	0.670	0.505	12R-1	1.04-1.07	365.44	66.96	405	202	-1.284	0.958	-1.473	1.019
17R-5	0.66-0.69	419.26	70.52	734	455	-0.288	0.364	-0.079	0.595	12R-1	1.041.07	365.44	66.96	380	202	-1.603	0.966		
17R-5	0.66-0.69	419.26	70.52	531	329	-1.065	0.673			12R-3	0.10-0.13	367.50	67.10	380	202	-0.807	0.903	-0.982	0.812
19R-1	0.42-0.45	432.02	71.19	582	329	-0.727	0.605	-0.680	0.678	12R-3	0.10-0.13	367.50	67.10	405	202	-1.182	0.879		
19R-1 19R-1	0.42-0.45	432.02	71.19	658 587	380	-0.553	0.644			12R-3 12R-5	0.10-0.13	367.50	67.10 67.32	405 405	228	-0.956	0.653	1 123	1 084
19R-3	0.49-0.52	435.09	71.35	810	455	-1.644	0.638	-1.336	0.626	12R-5	0.54-0.57	370.94	67.32	455	329	-0.949	0.929	1.125	1.001
19R-3	0.49-0.52	435.09	71.35	683	380	-0.926	0.579			12R-5	0.54-0.57	370.94	67.32	430	228	-1.110	1.218		
19R-3	0.49-0.52	435.09	71.35	759	430	-1.437	0.661			13R-1	0.40-0.43	374.40	67.54	405	228	-1.823	1.012	-1.621	0.888
5R-3	0.50-0.53	300.50	62.80	582	278	-0.892	0.596	-0.826	0.563	13R-1 13R-1	0.40-0.43	374.40	67.54	380 455	255 253	-1.225	1.033		
5R-3	0.50-0.53	300.50	62.80	531	304	-0.707	0.601			13R-5	0.65-0.68	380.65	67.95	455	253	-0.506	1.113	-0.543	1.049
5R-3	0.50-0.53	300.50	62.80	506	278	-0.932	0.616			13R-5	0.65-0.68	380.65	67.95	405	202	-0.643	0.924		
5R-3	0.50-0.53	300.50	62.80	430	228	-0.701	0.546			13R-5	0.65-0.68	380.65	67.95	380	202	-0.479	1.110	0 721	0 833
6R-1	0.44-0.47	307.04	63.00	405	202	-0.890	0.562	-1.250	0.392	14R-1	0.69-0.72	384.29	68.18	405	235	-0.403	0.707	-0.721	0.0
6R-1	0.44-0.47	307.04	63.00	430	228	-1.242	0.255			14R-1	0.69-0.72	384.29	68.18	405	228	-1.016	1.039		
6R-1	0.41-0.47	307.04	63.00	430	253	-1.201	0.358			14R-5	0.62-0.65	390.22	68.46	405	228	-1.104	0.956	-1.169	0.888
6R-3	0.99-1.02	310.59	63.36	430	228	-1.428	0.695	-1.216	0.733	14R-5	0.62-0.65	390.22	68.46	405	253	-1.097	0.836		
6R-3	0.99-1.02	310.59	63.36	405	202	-0.839	0.796			14R-5 15R-1	1.19-1.22	394.49	68.78	481	255 304	-1.181	0.872	-1.294	1.011
7R-1	0.82-0.85	316.92	63.66	405	228	-0.811	1.098	-0.891	1.125	15R-1	1.19-1.22	394.49	68.78	430	228	-1.546	1.022		
7R-1	0.82-0.85	316.92	63.66	405	253	-0.789	1.123			15R-1	1.19-1.22	394.49	68.78	380	202	-1.155	1.024		
7R-1	0.82-0.85	316.92	63.66	405	253	-1.073	1.155	1.200	1 1 00	15R-5	1.12-1.15	400.42	69.53	380	202	-1.153	0.836	-0.982	1.000
7R-5	0.76-0.78	322.86	63.81 63.81	455 430	278	-1.672	1.141	-1.369	1.109	15R-5 15R-5	1.12-1.15	400.42	69.53 69.53	506 405	278	-0.854	1.1004		
7R-5	0.76-0.78	322.86	63.81	405	202	-1.259	1.094			16R-1	0.15-0.18	403.15	69.67	430	253	-0.885	0.660	-1.027	0.674
8R-2	0.91-0.94	326.85	63.91	455	253	-1.152	0.869	-1.120	0.956	16R-1	0.15-0.18	403.15	69.67	380	202	-1.223	0.616		
8R-2	0.91-0.94	326.85	63.91	506	253	-1.122	0.922			16R-1	0.15-0.18	403.15	69.67	380	202	-0.972	0.745	1 1 26	0.6.19
8R-2 8R-6	1.01-1.04	326.85	64.05	455	228	-1.087	0.918	-1.069	0.977	16R-3	1.36-1.39	407.36	69.89 69.89	380 380	228 228	-0.870	0.479	-1.120	0.040
8R-6	1.01-1.04	332.91	64.05	430	253	-0.858	1.029			16R-3	1.36-1.39	407.36	69.89	430	278	-1.262	0.615		
8R-6	1.01-1.04	332.91	64.05	430	228	-1.330	0.985			17R-1	1.03-1.06	413.63	70.22	405	278	-0.499	0.280	-0.733	0.152
9R-1	0.42-0.45	335.82	64.13	455	253	-1.020	0.792	-1.009	0.863	17R-1	1.03-1.06	413.63	70.22	380	202	-0.924	0.251		
9R-1	0.42-0.45	335.82	64.13	455 506	255 278	-1.15+	0.929			17R-1	0.66-0.69	413.65	70.52	380	202	-0.797	0.221	-0.772	0.291
10R-1	0.50-0.52	345.60	64.76	430	253	-1.428	1.223	-1.111	1.145	17R-5	0.66-0.69	419.26	70.52	380	228	-0.647	0.3 <i>5</i> 7		
10R-1	0.50-0.52	345.60	64.76	430	228	-0.834	1.163			17R-5	0.66-0.69	419.26	70.52	405	228	-0.873	0.294		
10R-1	0.50-0.52	345.60	64.76	405	253	-1.070	1.050	1 252	1 241	19R-1	0.42-0.45	432.02	71.19	405	228	-0.779	0.102	-1.055	0.058
10R-1	1.05-1.08	346.15	64.84	403 380	235	-1.399	1.125	-1.232	1.244	19R-1	0.42-0.45	432.02	71.19	380	202	-0.845	-0.150		
10R-1	1.05-1.08	346.15	64.84	380	202	-1.170	1.420			Stensic	oina becc	ariifori	mis(1)	specimer	ns)				
10R-2	1.00-1.02	347.60	65.06	380	228	-1.355	1.073	-1.432	1.098	9R-1	0.42-0.45	335.82	64.13	253-354	127-177	-1.040	0.826		•
10R-2	1.00-1.02	347.60	65.06	405	228	-1.264	1.098			10R-1	0.50-0.52	345.60	64.76	202-304	127-202	-1.423	1.293		
10R-2	1.12-1.15	349.22	65.30	455	202	-1.328	1.300	-1.211	1.215	10R-2	1.00-1.02	347.60	65.06	202-354	127-202	-1.779	1.139		
10R-3	1.12-1.15	349.22	65.30	405	228	-0.986	1.199			10R-3	1.12-1.15	349.22	65.30	253-354	152-177	-1.479	1.145		
10R-3	1.12-1.15	349.22	65.30	380	253	-1.320	1.147			10R-4	0.79-0.81	350.39	65.48	253-354	152-202	-1.445	1.203		
10R-4	0.79-0.81	350.39	65.48	380	202	-1.872	1.262	-1.656	1.267	10R-5	0.50-0.52	351.60	65.88	202.354	101-278	-1.969	0.475		
10R-4	0.79-0.81	350.39	65.48	405	228	-1.588	1.337			10R-6	1.00-1.02	353.60	65.96	253-354	127-177	-1.626	0.661		
10R-5	0.50-0.52	351.60	65.66	455	228	-1.744	1.027	-1.744	1.027	10R-7	0.41-0.43	354.51	66.10	253-304	127-202	-2.040	0.725		
10R-6	0.50-0.52	353.10	65.88	380	202	-1.662	0.489	-1.780	0.657	11R-1	0.440.47	355.24	66.18	278-304	152-177	-0.727	0.715		
10R-6	0.50-0.52	353.10	65.88	380 380	202	-1.897	0.825	-1 301	0.730	11R-1	1.02-1.04	355.82	66.22	202-354	101-202	-1.341	0.712		
11R-2	1.00-1.02	357.30	66.31	405	202	-1.230	0.977	-1.391	0.904	11R-2	1.00-1.02	357.30	66.31	253-354	152-202	-1.614	0.879		
11R-2	1.00-1.02	357.30	66.31	405	202	-0.973	1.159			11R-3	0.38-0.41	358.18	66.37	278-354	152-202	-0.746	1.468		
11R-2	1.00-1.02	357.30	66.31	380	177	-1.970	0.577			11R-3	0.64-0.66	358.44	66.38	253-354	127-202	-1.056	1.325		
11R-3	0.38-0.41	358.18	66.37 66.37	405	228- 202	-0.726	1.375	-0.873	1.374	11R-3	1.12-1.14	308.92	66.42	278-354	152-202	-1.344 -1.303	1.097		
11R-3	0.64-0.66	358.44	66.38	380	202	-1.238	1.211	-1.375	1.010	12R-3	0.10-0.13	367.50	67.10	278-354	152-202	-1.206	0.861		

·

478

Appendix A-5. (continued).

·····																			
Core				Specim	en size					Core				Specim	en size				
&	Interval	Depth	Age	D	т	8 ¹⁸ 0	s130	s ¹⁸ 0	× ¹³ C	&	Interval	Depth	Age	D	Т	s180	8 ¹³ C	×180	×13
Section		(mbsf)	(Ma)	(μm)	- (μm)	00	00	ave.	ave.	Section		(mbsf)	(Ma)	(μ m)	- (μm.)	00	0 C	ave.	ave.
				V		1			·					• • • •					
Leg 12	1 Site 7	52 Ho	ole B							Leg 12	1 Site 7	54 Ho	ole A						
Stensia	oina becc	cariifor	mis(1	1 specime	ns)	(Cont.)				Orido	rsalis um	bonatu	S	(Cont.)					
12R-5	0.54-0.57	370.94	67.32	253-354	127-202	-1.010	0.949			8H-3	0.70-0.75	67.50	13.15	392	228	1.388	-0.022		
13R-1	0.40-0.43	374.40	67.54	304-354	177-202	-1.416	1.159			8H-5	0.70-0.75	70.50	13.33	430	228	1.875	0.487	1.734	0.504
13R-5	0.65-0.68	380.65	67.95	253-354	152-202	-0.805	0.916			8H-5	0.70-0.75	70. <i>5</i> 0	13.33	405	228	1.636	0.435		
14R-1	0.69-0.72	384.29	68.18	278-354	127-202	-0.938	0.803	•		8H-5	0.70-0.75	70.50	13.33	405	228	1.691	0.590		
14R-5	0.62-0.65	390.22	68.46	253-354	152-202	-1.005	0.8-10			9H-1	0.70-0.75	74.20	13.54	506	278	1.556	1.315	1.395	1.175
15R-1	1.19-1.22	394.49	68.78	253-329	152-177	-1.259	0.889			9H-1	0.70-0.75	74.20	13.54	531	304	1.376	1.427		
15R-5	1.12-1.15	400.42	69.53	253-354	152-202	-1.049	0.867			9H-1	0.70-0.75	74.20	13.54	430	253	1.252	0.782		
16R-1	0.15-0.18	-403.15	69.67	253-354	152-202	-1.047	0.660			9H-3	0.70-0.75	77.20	14.15	506	354	0.971	1.200	1.077	1.244
16R-3	1.36-1.39	407.36	69,89	228-329	127-177	-0.979	0.576			9H-3	0.70-0.75	77.20	14.15	-481	304	1.102	1.055		
17R-1	1.03-1.06	413.63	70.22	253-354	127-202	-0.841	0.279			9H-3	0.70-0.75	77.20	14.15	455	278	1.158	1.476		
17R-5	0.66-0.69	419.26	70.52	253-354	152-202	-0.819	0.192			9H-5	0.70-0.75	80.20	15.00	506	278	1.283	1.578	1.231	1.216
19R-1	0.42-0.45	432.02	71.19	278-354	152-202	-1.056	0.189			9H-5	0.70-0.75	80.20	15.00	506	304	1.139	1.001		
19R-3	0.49-0.52	435.09	71.35	253-354	152-202	-1.581	0.336			9H-5	0.70-0.75	80.20	15.00	506	354	1.272	1.068		
Leg 12	1 Site 7	54 H	ole A							10H-1	0.70-0.75	83.90	16.45	-481	253	1.061	0.827	0.933	0.678
Orido	rsalis um	bonati	ıs							10H-1	0.70-0.75	83.90	16.45	430	253	0.766	0.446		
1H-1	0.70-0.75	0.70	0.21	405	228	2.801	-0.319	2.945	-0.325	10H-1	0.70-0.75	83.90	16.45	405	202	0.973	0.760		
1H-1	0.70-0.75	0.70	0.21	582	354	3.032	-0.204			10H-5	0.70-0.75	89.90	19.28	506	304	1.292	0.665	1.372	0.555
1H-1	0.70-0.75	0.70	0.21	506	304	3.003	-0.451			10H-5	0.70-0.75	89.90	19.28	405	253	1.476	0.361		
1H-3	0.70-0.75	3.70	1.11	405	228	2.593	-0.013	2.818	-0.186	10H-5	0.70-0.75	89.90	19.28	405	253	1.349	0.639		
1H-3	0.70-0.75	3,70	1.11	405	304	2.995	-0.273			11H-1	0.70-0.75	93.60	20.51	531	278	1.345	0.407	1.240	0.424
1H-3	0.70-0.75	3.70	1.11	455	253	2.867	-0.272			11H-1	0.70-0.75	93.60	20.51	455	329	1.273	0.569		
2H-1	0.70-0.75	6.80	2.11	506	253	2.565	0.063	2.700	-0.050	11H-1	0.70-0.75	93.60	20.51	582	304	1.103	0.296		
2H-1	0.70-0.75	6.80	2.11	455	253	2.750	-0.026			11H-5	0.70-0.75	99.60	21.86	531	354	1.136	0.700	1.222	0.647
2H-1	0.70-0.75	6.80	2.11	405	228	2.785	-0.187			11H-5	0.70-0.75	99.60	21.86	557	354	1.186	0.585		
2H-3	0.70-0.75	9.80	2.60	531	329	2.695	0.025	2.604	-0.140	11H-5	0.70-0.75	99.60	21.86	632	430	1.345	0.655		
2H-3	0.70-0.75	9.80	2.60	506	278	2.580	-0.263			12H-1	0.70-0.75	103.30	22.68	455	304	1.444	1.021	1.295	0.939
2H-3	0.70-0.75	9.80	2.60	481	228	2.537	-0.181			12H-1	0.70-0.75	103.30	22.68	455	304	1.271	0.822		
3H-1	0.70-0.75	5 16.40	3.60	506	304	2.329	-0.045	2.182	-0.125	12H-1	0.70-0.75	103.30	22.68	493	329	1.171	0.974		
3H-1	0.70-0.75	5 16.40	3.60	481	253	2.180	-0.310			12H-3	0.70-0.75	106.30	23.35	405	253	1.046	0.513	1.343	0.648
3H-1	0.70-0.75	5 16.40	3.60	455	253	2.036	-0.019			12H-3	0.70-0.75	106.30	23.35	-405	228	1.468	0.448		
3H-5	0.70-0.75	5 22.40	4.55	557	329	2.483	-0.320	2.467	-0.341	12H-3	0.70-0.75	106.30	23.35	430	253	1.516	0.982		
3H-5	0.70-0.75	5 22.40	4.55	481	278	2.554	-0.331			12H-5	0.70-0.75	109.30	24.58	531	304	1.287	0.853	1.257	0.684
3H-5	0.70-0.75	5 22.40	4.55	481	253	2.363	-0.373			12H-5	0.70-0.75	109.30	24.58	481	278	1.287	0.773		
4H-1	0.70-0.75	5 26.00	5.25	493	278	2.309	-0.301	2.235	-0.246	12H-5	0.70-0.75	109.30	24.58	405	253	1.196	0.426		
4H-1	0.70-0.7	5 26.00	5.25	-481	278	2.192	-0.188			13X-1	0.70-0.75	113.00	26.81	430	278	1.261	-0.217	1.209	0.042
4H-1	0.70-0.75	5 26.00	5.25	455	253	1.944	-0.089			13X-1	0.70-0.75	113.00	26.81	-405	202	1.330	0.332		
4H-1	0.70-0.75	5 26.00	5.25	430	253	2.496	-0.405			13X-1	0.70-0.75	113.00	26.81	392	228	1.037	0.011		
4H-5	0.70-0.7	5 32.00	6.43	-481	304	1.917	0.078	1.967	0.016	13X-3	0.70-0.75	116.00	28.62	-405	253	1.006	-0.164	1.241	0.292
4H-5	0.70-0,7	5 32.00	6.43	405	228	2.105	0.165			13X-3	0.70-0.75	116.00	28.62	-405	202	1.429	0.361		
4H-5	0.70-0.7	5 32.00	6.43	405	228	1.878	-0.194			13X-3	0.70-0.75	116.00	28.62	430	228	1.288	0.680		
5H-1	0.70-0.7	5 35.60	7.54	683	405	2.224	0.713	2.050	0.516	Leg 12	21 Site 7	'56 H c	le B						
5H-1	0.70-0.7	5 35.60	7.54	506	278	2.034	0.245			Orida	rsalis un	bonati	ıs						
5H-1	0.70-0.7	5 35.60	7.54	405	202	1.892	0.589			1H-1	0.70-0.75	0.70	1.10	531	304	2.887	-0.435	2.870	-0.378
5H-5	0.70-0.7	5 41.60	9.79	531	329	2.236	0.561	1.962	0.504	1H-1	0.70-0.75	0,70	1.10	506	278	2.635	-0.299		
5H-5	0.70-0.7	5 41.60	9.79	531	278	1.817	0.510			1H-1	0.70-0.75	0.70	1.10	-481	278	3.100	-0.516		
5H-5	0.70-0.7	5 41.60	9.79	405	253	1.832	0.442			1H-1	0.70-0.75	0.70	1.10	582	329	2.857	-0.263		
6H-1	0.70-0.7	5 45.20	11.1	4 506	304	2.096	0.341	2.042	0.394	1H-3	0.70-0.75	3,70	2.93	506	304	3.031	-0.800	3.169	-0.553
6H-1	0.70-0.7	5 45.20	11.1-	4 519	278	2.004	0.367			1H-3	0.70-0.75	3.70	2.93	455	278	3.175	-0.567		
6H-1	0.70-0.7	5 45.20	11.1	4 506	278	2.025	0.475			1H-3	0.70-0.75	3.70	2.93	430	253	3.302	-0.293		
6H-5	0.70-0.7	5 51.20	12.2	1 430	253	2.241	0.698	2.096	0.532	1H-5	0.70-0.75	6,70	3.68	607	304	2.587	-0.337	2.653	-0.383
6H-5	0.70-0.7	5 51.20	12.2	1 -481	253	2.074	0.455			1H-5	0.70-0.75	6.70	3.68	531	304	2.847	-0.382		
6H-5	0.70-0.7	5 51.20	12.2	1 531	304	1.974	0.444			1H-5	0.70-0.75	6.70	3.68	-481	253	2.526	-0.430		
7H-1	0.70-0.7	5 54.80	12.4	2 506	253	1.914	0.346	1.938	0.535	2H-5	0.70-0.7	5 15.20	5.06	481	278	2.670	-0.407	2.494	-0.593
7H-1	0.70-0.7	5 54.80) 12.4	2 481	278	1.975	0.646			2H-5	0.70-0.7	5 15.20	5.06	-481	278	2.424	-0.943		
7H-1	0.70-0.7	5 54.80) 12.4	2 455	228	1.925	0.614			2H-5	0.70-0.7	5 15.20	5.06	-481	278	2.389	-0.428		
7H-3	0.70-0.7	5 57.80	12.5	9 582	354	1.928	0.628	1.716	0.749	3H-1	0.70-0.7	5 18.80	5.71	531	304	2.985	-0.508	2.663	-0.790
7H-3	0.70-0.7	5 57.80) 12.5	9 506	329	1.683	0.847			3H-1	0.70-0.7	5 18.80	5.71	506	304	2.707	-0.988		
7H-3	0.70-0.7	5 57.80) 12.5	9 506	278	1.626	0.716			3H-1	0.70-0.7	5 18.80	5.71	455	253	2.297	-0.873		
7H-3	0.70-0.7	5 57.80) 12.5	9 430	228	1.628	0.805			3H-3	0.70-0.7	5 21.80	6.25	658	354	2.506	-0.629	2.634	-0.391
7H-5	5 0.70-0.7	5 60.80) 12.7	455	253	2.035	0.857	1.92-	1 0,708	3H-3	0.70-0.7	5 21.80	6.25	607	304	2.635	-0.157		
7H-	5 0.70-0.7	5 60.80) 12.7	430	228	1.709	0.456			3H-3	0.70-0.7	5 21.80	6.25	430	278	2.715	-0.621		
7H-:	5 0.70-0.7	5 60.8) 12.7	77 430	240	2.028	0.811			3H-3	0.70-0.7	5 21.80	6.25	582	329	2.680	-0.158		
8H-:	0.70-0.7	5 64.5) 12.9	8 506	291	1.751	0.526	1.755	5 0.544	3H-5	6 0.70-0.7	5 24.80	6.79	557	329	2.275	-0.308	2.411	-0.223
8H-1	0.70-0.7	5 64.5) 12.9	8 455	278	1.792	0.493	1		3H-5	5 0.70-0.7	5 24.80	6.79	506	304	2.455	-0.3-46		
8H-1	0.70-0.7	5 64.5	0 12.9	8 455	253	1.722	0.612	:		3H-5	5 0.70-0.7	5 24.80	6.79	455	278	2.503	-0.016		
8H-3	3 0.70-0.7	5 67.5	0 13.1	15 430	304	1.667	0.228	1.52	8 0.103	-4H-1	0.70-0.7	5 28.40	7.44	455	253	2.447	0.175	2.394	0.219

Koji SETO

Carbon and oxygen isotopic paleoceanography

Appendix A-6. (continued).

Core				Specie	nen cize									Crash					
& Section	Interval 1	Depth (mbsf)	Age (Ma)	D (µm)	τ (μm)	δ ¹⁸ Ο	δ ¹³ C	$\delta^{18}O$ ave.	$\delta^{13}C$ ave.	& Int Section	terval	Depth (mbsf)	Age (Ma)	D (µm)	T (μm)	δ ¹⁸ Ο	δ ¹³ C	$\delta^{18}O$ ave.	$\delta^{13}_{ave.}$
Leg 12	1 Site 7.	56 Ho	le B							Leg 121	Site 7.	56 Ho	le B						
Orido	rsalis um	bonatu	5	(Cont.)		0.201				Oridorsal	is umi	bonatu	5	(Cont.)					
4H-1 4H-1	0.70-0.75	28.40 28.40	7.44	455 430	253	2.321	0.274			11H-3 0.70	0-0.75	98.30	30.74	430 405	253	1.306	0.440		
4H-3	0.70-0.75	31.40	7.99	430	253	2.645	0.302	2.573	0.305	11H-5 0.70	0-0.75	101.30	31.26	405	253	1.031	0.097	1.100	0.289
4H-3	0.70-0.75	31.40	7.99	506	278	2.563	0.255			11H-5 0.70	0-0.75	101.30	31.26	405	253	1.030	0.472		
4H-3	0.70-0.75	31.40	7.99	557	278	2.511	0.359			11H-5 0.70	0-0.75	101.30	31.26	405	228	1.239	0.298		
4H-5	0.70-0.75	34.40	8.53	455	228	2.367	0.218	2.449	0.265	Leg 121 S	Site 7	56 Ho	ole C						
4H-5 4H-5	0.70-0.75	34.40	8.53	455	228	2.551	0.301			Oridorsali	is um i	101 60	5 21 21	521	200	1 226	0.022	1 622	0.057
5H-1	0.70-0.75	38.00	10.47	455	228	2.390	0.281	2.397	0.284	4X-1 0.70	0-0.75	101.60	31.31	506	304	1.550	-0.052	1.022	-0.037
5H-1	0.70-0.75	38.00	10.47	481	278	2.362	0.270			4X-1 0.70	0-0.75	101.60	31.31	531	380	1.760	-0.138		
5H-1	0.70-0.75	38.00	10.47	506	329	2.440	0.300			4X-3 0.70	0-0.75	104.60	31.82	455	278	1.606	-0.112	1.588	-0.031
5H-3	0.70-0.75	41.00	11.63	481	304	2.463	0.976	2.590	0.967	4X-3 0.70	0-0.75	104.60	31.82	455	253	1.375	-0.188		
5H-3 5H-3	0.70-0.75	41.00	11.63	531 506	304	2.561	0.991			4X-3 0.70	0-0.75	104.60	31.82	455	329	1.783	0.207	1 5 40	0.170
5H-5	0.70-0.75	44.00	12.78	481	278	1.893	0.954	1 950	0 271	4X-5 0.70 4X-5 0.70	10.75	107.60	32.34	455	278	1.492	-0.100	1.540	-0.173
5H-5	0.70-0.75	44.00	12.78	506	278	2.117	0.253	1.000	0.271	4X-5 0.70	0-0.75	107.60	32.34	455	253	1.552	-0.178		
5H-5	0.70-0.75	44.00	12.78	430	253	1.839	0.337			5X-2 0.65	5-0.70	111.47	33.00	455	329	1.426	0.169	1.348	0.165
6H-1	0.70-0.75	47.60	14.35	481	253	1.291	0.650	1.645	0.603	5X-2 0.65	5-0.70	111.47	33.00	430	304	1.209	0.099		
6H-1	0.70-0.75	47.60	14.35	405	228	1.965	0.773			5X-2 0.65	5-0.70	111.47	33.00	405	253	1.408	0.227		
6H-3	0.70-0.75	47.60 50.60	14.35	430 632	228	1.679	0.387	1 574	1 / 20	5X-5 0.70	0.75	114.16	33.46	506 455	278	1.106	0.383	1.220	0.193
6H-3	0.70-0.75	50.60	15.90	557	354	1.517	1.439	1.574	1.439	5X-5 0.70	-0.75	114.16	33.46	430	278	1.580	0.160		
6H-3	0.70-0.75	50.60	15.90	481	304	1.513	1.336			5X-7 0.70	0-0.75	116.31	33.83	481	278	1.180	0.083	1.212	0.183
6H-5	0.70-0.75	53.60	17.45	506	354	1.545	0.997	1.214	0.646	5X-7 0.70	0-0.75	116.31	33.83	405	253	1.114	0.083		
6H-5	0.70-0.75	53.60	17.45	430	253	1.168	0.570			5X-7 0.70	0-0.75	116.31	33.83	632	405	1.343	0.383		
6H-5	0.70-0.75	53.60	17.45	405	253	0.930	0.372		0.617	6X-1 0.70	0-0.75	120.90	34.56	506	329	1.384	1.003	1.312	0.636
7H-1 7H-1	0.70-0.75	56.90	18.81	282 481	405 329	1.717	0.827	1.643	0.617	6X-1 0.70	10.75	120.90	34.50 34.56	506 455	304 253	1.244	0.626		
7H-1	0.70-0.75	56.90	18.81	430	253	1.577	0.320			6X-3 0.70	-0.75	123.90	34.99	455	329	0.893	0.524	0.918	0.443
7H-3	0.70-0.75	59.90	19.66	481	354	1.258	0.419	1.335	0.614	6X-3 0.70	0-0.75	123.90	34.99	430	253	1.004	0.628		
7H-3	0.70-0.75	59.90	19.66	481	380	1.498	0.776			6X-3 0.70	0-0.75	123.90	34.99	430	278	0.856	0.176		
7H-3	0.70-0.75	59.90	19.66	506	329	1.248	0.647			7X-1 0.70	0-0.75	130.50	35.95	506	278	0.595	0.525	0.595	0.525
7H-5	0.70-0.75	62.90 62.90	20.51	481	354	1.712	0.691	1.425	0.449	7X-3 0.70	-0.75	133.50	36.39	430	253	0.852	0.614	0.785	0.461
7H-5	0.70-0.75	62.90	20.51	430	228	1.393	0.330			7X-3 0.70	L075	133.50	36 39	405	202	0.696	0.315		
8H-1	0.70-0.75	66.30	21.47	531	354	1.455	1.061	1.512	0.881	7X-5 0.70	0-0.75	136.50	36.82	430	228	0.265	0.329	0.361	0.412
8H-1	0.70-0.75	66.30	21.47	455	304	1.350	0.715			7X-5 0.70	0-0.75	136.50	36.82	430	304	0.231	0.128		
8H-1	0.70-0.75	66.30	21.47	455	278	1.732	0.868			7X-5 0.70	0-0.75	136.50	36.82	430	253	0.586	0.778		
8H-3 8H-3	0.70-0.75	69.30 69.30	22.31	506 491	354	1.348	0.613	1.421	0.649	Leg 121 S	Site 75	57 Ho damiau	le B						
8H-3	0.70-0.75	69.30	22.31	481 506	329	1.505	0.722			15H-5 070	1075	136 50	3 40.98	405	278	0 449	0.885	0.449	0.885
8H-5	0.70-0.75	72.30	23.16	531	380	1.386	0.464	1.270	0.113	16H-5 0.70	-0.75	146.20	43.38	632	380	0.208	1.229	0.278	1.237
8H-5	0.70-0.75	72.30	23.16	481	304	1.359	-0.300			16H-5 0.70	-0.75	146.20	43.38	683	430	0.262	1.184		
8H-5	0.70-0.75	72.30	23.16	455	278	1.065	0.176			16H-5 0.70	-0.75	146.20	43.38	759	455	0.363	1.297		
9H-1 0H-1	0.70-0.75	75.90	24.23	455	278	1.324	0.234	1.290	0.183	17H-5 0.70	-0.75	155.80	45.88	734	430	0.272	0.995	0.310	1.117
9H-1	0.70-0.75	75.90	24.23	405	220 278	1.325	0.275			17H-5 0.70	L075	155.80	45.88	0.28 708	360 405	0.355	1.158		•
9H-3	0.70-0.75	78.90	25.16	557	354	1.775	0.035	1.715	0.199	18H-1 0.70	-0.75	159.50	47.09	708	380	0.425	1.157	0.420	1.176
9H-3	0.70-0.75	78.90	25.16	481	329	1.583	0.280			18H-1 0.70	-0.75	159.50	47.09	.430	278	0.415	1.194		
9H-3	0.70-0.75	78.90	25.16	455	304	1.787	0.281			18H-5 0.70	-0.75	165.50	48.67	557	405	0.148	0.988	0.178	1.034
9H-5	0.70-0.75	81.90	26.09	531	354	1.736	0.050	1.599	-0.148	18H-5 0.70	-0.75	165.50	48.67	582	329	0.289	1.105		
9H-5 9H-5	0.70-0.75	81.90	26.09	430 430	278	1.391	-0.120			18H-5 0.70	-0.75	165.50	48.67	455	253	0.096	1.010	0.080	0 034
10H-1	0.70-0.75	85.60	27.24	557	329	1.781	-0.255	1.703	-0.081	19H-1 0.70	-0.75	169.20	49.24	430	253	0.208	1.023	0.009	0.754
10H-1	0.70-0.75	85.60	27.24	506	329	1.632	0.009			19H-1 0.70	-0.75	169.20	49.24	430	329	0.001	0.901		
10H-1	0.70-0.75	85.60	27.24	405	228	1.696	0.002			20X-1 0.70	0-0.75	175.40	49.90	607	354	-0.212	1.172	-0.225	1.122
10H-3	0.70-0.75	88.60	28.17	506	304	1.480	0.233	1.487	0.194	20X-1 0.70	-0.75	175.40	49.90	557	405	-0.386	0.936		
10H-3	0.70-0.75	88.60 88.60	28.17	455 481	278	1.626	0.066			20X-1 0.70	-0.75	175.40	49,90	455	278	-0.077	1.257	-0.255	1 273
10H-5	0.70-0.75	91.60	29.10	531	405	1.569	0.092	1.419	-0.089	20X-5 0.70	-0.75	181.40	51.37	481	278	-0.182	1.358	-0.4.10	1.213
10H-5	0.70-0.75	91.60	29.10	455	304	1.508	-0.079		-	20X-5 0.70	-0.75	181.40	51.37	430	304	-0.345	1.201		
10H-5	0.70-0.75	91.60	29.10	455	278	1.179	-0.280			21X-1 0.70	-0.75	183.40	51.85	557	304	-0.407	1.317	-0.433	1.340
11H-1	0.70-0.75	95.30	30.23	455	278	1.325	0.185	1.182	0.300	21X-1 0.70	-0.75	183.40	51.85	443	228	-0.470	1.360		
11H-1	0.70-0.75	95.30 95.30	30.23	481 455	303	1.292	0.465			21X-1 0.70 22X-1 0.70	+0.75 L075	103.10	53.05	405	202	-0.421	1.341	-0736	1 099
11H-3	0.70-0.75	98.30	30.74	506	304	1.314	0.407	1.385	0.383	22X-1 0.70	-0.75	193.10	53.05	531	278	-0.613	1.132	0.750	

Appendix A-7. (continued).

Core				Specim	en size					Core				Specim	en size				
& Section	Interval	Depth (mbsf)	Age (Ma)	D (μm)	Τ (μm)	δ ¹⁸ Ο	δ ¹³ C	δ ¹⁸ Ο ave.	δ ¹³ C ave.	& Section	Interval	Depth (mbsf)	Age (Ma)	D (μm)	Τ (μm)	δ ¹⁸ Ο	δ ¹³ C	δ ¹⁸ Ο ave.	δ ¹³ C ave.
Leg 12	1 Site 7	57 Ho	le B	(Cont.)						Leg 12	1 Site 7	57 Ho	le B	(Comt.)					
22X-1	0.70-0.75	193.10	3 53.05	455	253	-0.824	1.084			8H-1	0.70-0.75	62.90	7.46	(Cont.) 506	278	2.684	0.292		
22X-3	0.70-0.75	196.10	53.25	531	304	-0.705	1.227	-0.786	1.132	8H-1	0.70-0.75	62.90	7.46	557	278	2.568	0.234		
22X-3	0.70-0.75	196.10	53.25	531	304	-0.802	1.147			8H-3	0.70-0.75	65.90	7.88	481	329	2.340	-0.174	2.368	-0.094
22X-3	0.70-0.75	196.10	53.25	455	253	-0.851	1.023			8H-3	0.70-0.75	65.90	7.88	455	278	2.223	-0.236		
23X-1	0.70-0.75	202.70	53.70 53.70	083 587	430	-0.933	0.800	-1.079	0.692	8H-3 8H-5	0.70-0.75	65.90	7.88	481	278	2.540	0.129	2 825	0355
23X-1	0.70-0.75	202.70	53.70	455	228	-1.253	0.592			8H-5	0.70-0.75	68.90	8.30	506	329	2.823	0.444	ريده.	0.555
23X-3	0.70-0.75	205.70	54.19	632	367	-0.965	0.500	-0.977	0.497	8H-5	0.70-0.75	68.90	8.30	557	304	2.737	0.350		
23X-3	0.70-0.75	205.70	54.19	632	354	-0.874	0.552			9H-1	0.70-0.75	72.50	9.13	481	228	2.534	0.092	2.565	0.176
23X-3	0.70-0.75	205.70	54.19	582	329	-1.091	0.438	1 001	0.202	9H-1	0.70-0.75	72.50	9.13	531	278	2.549	0.095		
24X-1	0.58-0.61	212.28	55.27	582	329	-1.106	0.300	-1.081	0.502	9H-3	0.70-0.75	75.50	9.15	481	304	2.011	0.340	2 474	0.162
24X-1	0.58-0.61	212.28	55.27	531	278	-1.024	0.384			9H-3	0.70-0.75	75.50	10.50	481	253	2.332	0.167	2	0.102
24X-4	0.58-0.61	216.78	56.01	683	304	-1.403	0.351	-1.319	0.425	9H-3	0.70-0.75	75.50	10.50	557	278	2.658	0.145		
24X-4	0.58-0.61	216.78	56.01	658	380	-1.287	0.375			9H-5	0.70-0.75	78.50	11.87	557	354	2.361	0.318	2.188	0.226
Orido	0.58-0.61 rsalis um	210.78 bonatu	50.01	282	405	-1.268	0.550			9H-5 9H-5	0.70-0.75	78.50	11.87	481	329 278	2.296	0.177		
1H-2	0.70-0.75	2.03	0.31	557	304	2.904	-0.752	3.158	-0.691	10H-1	0.70-0.75	82.20	13.30	632	329	2.185	0.302	2.106	0.328
1H-2	0.70-0.75	2.03	0.31	481	278	3.333	-0.762			10H-1	0.70-0.75	82.20	13.30	455	253	2.148	0.253		
1H-2	0.70-0.75	2.03	0.31	506	354	3.238	-0.558			10H-1	0.70-0.75	82.20	13.30	455	228	1.984	0.430		
2H-1	0.70-0.75	5.20	0.78	506	329	3.502	-1.131	3.330	-1.310	10H-3	0.70-0.75	85.20	14.04	632	329	1.562	0.608	1.397	0.468
2H-1 2H-1	0.70-0.75	5.20 5.20	0.78	455	278	3.389	-1.580			10H-3 10H-3	0.70-0.75	85.20	14.04	455	278	1.511	0.476		
2H-3	0.70-0.75	8.20	1.22	632	455	3.539	-0.550	3.117	-0.559	10H-5	0.70-0.75	88.20	14.94	683	405	1.148	0.565	1.217	0.561
2H-3	0.70-0.75	8.20	1.22	455	278	2.711	-0.601			10H-5	0.70-0.75	88.20	14.94	607	380	1.330	0.477		
2H-3	0.70-0.75	8.20	1.22	430	278	3.102	-0.525			10H-5	0.70-0.75	88.20	14.94	455	253	1.172	0.642		
2H-5	0.70-0.75	11.20	1.67	607 506	405	3.089	-0.631	3.281	-0.819	11H-1	0.70-0.75	91.90	16.36	708 521	329	1.680	0.294	1.576	0.205
2H-5	0.70-0.75	11.20	1.67	506	278	3.514	-1.063		•	11H-1	0.70-0.75	91.90 91.90	16.36	506	304	1.811	-0.060		
3H-1	0.70-0.75	14.70	2.32	632	405	2.761	-0.472	2.830	-0.6-10	11H-3	0.70-0.75	94.90	17.71	658	405	1.756	0.591	1.625	0.310
3H-1	0.70-0.75	14.70	2.32	557	304	2.674	-0.835			11H-3	0.70-0.75	94.90	17.71	531	329	1.478	0.091		
3H-1	0.70-0.75	14.70	2.32	455	304	3.054	-0.612			11H-3	0.70-0.75	94.90	17.71	506	329	1.641	0.248		
311-3	0.70-0.75	17.70	2.84	582 607	354	2.937	-0.334	2,909	-0.572	11H-5	0.70-0.75	97,90	19.17	607 531	380	1.185	0.208	1.443	0.293
3H-3	0.70-0.75	17.70	2.84	557	329	2.636	-0.598			11H-5	0.70-0.75	97.90	19.17	481	253	1.522	0.444		
3H-5	0.70-0.75	20.70	3.22	5 <i>5</i> 7	304	3.072	-0.797	2.923	-1.005	12H-1	0.70-0.75	101.50	23.70	531	278	1.656	0.376	1.649	0.219
3H-5	0.70-0.75	20.70	3.22	531	304	2.864	-1.145			12H-1	0.70-0.75	101.50	23.70	455	278	1.814	0.258		
3H-5	0.70-0.75	20.70	3.22	481 597	304	2.832	-1.073	2 605	0.600	12H-1	0.70-0.75	101.50	23.70	405 592	228	1.477	0.023	1 666	0.256
4H-1 4H-1	0.70-0.75	24.30	3.62	506	304	2.555	-0.505	2.005	-0.602	12H-3 12H-3	0.70-0.75	104.50	27.96	382 481	278	1.706	0.259	1.000	0.230
4H-1	0.70-0.75	24.30	3.62	506	329	2.620	-0.598			12H-3	0.70-0.75	104.50	27.96	455	253	1.586	-0.024		
4H-3	0.70-0.75	27.30	3.80	531	304	2.661	-0.556	2.630	-0.504	12H-5	0.70-0.75	107.50	30.48	607	380	1.950	0.318	1.826	0.274
4H-3	0.70-0.75	27.30	3.80	531	304	2.420	-0.502			12H-5	0.70-0.75	107.50	30.48	582	354	1.737	0.117		
4H-3 5H-1	0.70-0.75	33.90	3.80 439	506 557	329	2.810	-0.454	2.696	-0.676	12H-5 13H-1	0,70-0.75	107.50	31.19	455	329 278	1.791	0.387	1.619	0.206
5H-1	0.70-0.75	33.90	4.39	531	329	2.647	-0.732	2.010	0.010	13H-1	0.70-0.75	111.20	31.19	531	304	1.621	0.087		
5H-1	0.70-0.75	33.90	4.39	506	304	2.690	-0.621			13H-1	0.70-0.75	111.20	31.19	405	278	1.554	0.146		
5H-3	0.70-0.75	36.90	4.66	632	329	2.313	-0.785	2.358	-0.737	13H-3	0.70-0.75	114.20	33.17	455	253	1.549	0.420	1.605	0.503
5H-3 5H-3	0.70-0.73	36.90	4.66	481	278	2.501	-0.565			13H-3 13H-3	0.70-0.75	114.20	33.17	430	278	1.695	0.626		
6H-1	0.70-0.75	5 43.50	5.26	607	354	2.461	-0.509	2.515	-0.658	1311-5	0.70-0.75	117.20	34.45	531	354	1.772	0.537	1.710	0.599
6H-1	0.70-0.75	6 43.50	5.26	481	278	2.615	-0.572			13H-5	0.70-0.75	117.20	34.45	455	304	1.583	0.745		
6H-1	0.70-0.7	5 43.50	5.26	455	278	2.470	-0.893			13H-5	0.70-0.75	117.20	34.45	506	304	1.775	0.514		
6H-3	0.70-0.75	5 46.50	5.70	557	304	2.327	-0.683	2.295	-0.892	14H-1	0.70-0.75	120.80	35.34	455	253	0.932	0.180	1.104	0.439
6H-3	0.70-0.7	5 46.50 5 46.50	5.70	455	228	2.076	-1.026			14H-1 14H-1	0.70-0.75	120.80	35.34	506 506	304	1.192	0.508		
6H-5	0.70-0.7	5 49.50	6.14	632	380	2.813	-0.387	2.793	-0.409	14H-5	5 0.70-0.75	126.80	37.28	683	531	0.920	1.192	1.053	0.991
6H-5	0.70-0.7	5 49.50	6.14	506	304	2.657	-0.493			14H-5	6 0.70-0.75	126.80	37.28	481	304	1.085	0.806		
6H-5	0.70-0.7	5 49.50	6.14	-430	278	2.910	-0.3-16	• • • •		14H-5	5 0.70-0.75	126.80	37.28	481	329	1.155	0.974	0.007	0.7.0
/H-1 711 י	0.70-0.7	53.20 5 53.20	6.69	506 405	253	2.727	-0.635	2.463	-0.584	15H-1	0.70-0.75	130.50	38.55 38.55	455	253	1.077	0.896	0.987	0.749
7H-1	0.70-0.7	5 53.20	6.69	405	202	1ند.2 2.440	-0.535			15H-1	0.70-0.75	130.50	38.55	430	253	0.699	0.446		
7H-3	0.70-0.7	5 56.20	6.93	607	354	2.305	-0.134	2.221	-0.120	15H-5	5 0.70-0.75	136.50	40.98	-481	329	0.961	0.522	0.925	0.537
7H-3	0.70-0.7	5 56.20	6.93	557	278	2.086	-0.057			15H-5	5 0.70-0.75	136.50	40.98	468	278	0.867	0.522		
7H-3	0.70-0.7	5 56.20	6.93	531	278	2.272	-0.170		0	15H-5	5 0.70-0.75	136.50	40.98	380	228	0.947	0.567	0.070	0.424
8H-1	0.70-0.7:	o 62.90	7.46	481	253	2.555	0.174	2.602	0.233	16H-1	0.70-0.75	140.20	41.89	430	253	1.059	0.599	0.868	0.436

Appendix A-8. (continued).

Core		Dauth		Specim	en size	. 18 .	a 13 au	- 18	13	Core	• . •			Specia	nen size	18	. 13	. 18	13
Section	ervai	(mbsf)	Age (Ma)	υ (μm)	τ (μm)	δΟ	δ.°C	δ.°O ave.	δ ¹³ C ave.	& Section	Interval	Depth (mbsf)	Age (Ma)	D (µm)	Τ (μm)	δ'°Ο	δ ^{rs} C	δ ¹⁰ O ave.	δ ¹³ C ave.
Leg 121 S	Site 75	57 Ho	le B							Leg 12	1 Site 7	58 Ho	ole A						
Oridorsali	is umt	onatus	5	(Cont.)						Gyroid	lina sold	anii	(Cont.)					
16H-1 0.70	0-0.75	140.20	41.89	430	278	0.825	0.322			26X-1	0.75-0.80	238.45	31.20	380	304	2.144	0.117	2.144	0.117
16H 5 070	0.075	140.20	41.89	430	200	0.721	0.387	0.600	0.010	26X-3	0.75-0.80	241.45	34.39	455	354	1.836	0.331	1.944	0.360
16H-5 0.70	0-0.75	146.20	43 38	455	301	0.520	0.643	0.009	0.810	20A-3	0.75-0.80	241.45	34.39	380	204	2.075	0.424		
16H-5 0.70	0-0.75	146.20	43.38	582	354	0.716	1.047			20X-3	0.75-0.80	248.05	41 42	360 468	367	2.075	0.524	2 060	0.629
17H-1 0.70	0-0.75	149.80	44.27	607	380	0.684	0.635	0.684	0.635	27X-1	0.75-0.80	248.05	41.42	455	329	2.061	0.662	2.000	0.022
18H-1 0.70	0-0.75	159.50	47.09	506	304	0.398	0.672	0.319	0.634	27X-1	0.75-0.80	248.05	41.42	392	291	2.092	0.779		
18H-1 0.70	0-0.75	1 <i>5</i> 9.50	47.09	405	253	0.240	0.559			Nuttali	lides true	empyi							
18H-1 0.70	0-0.75	159.50	47.09	405	240	0.318	0.670			28X-2	0.75-0.80	259.15	58.18	405	228	-0.165	1.611	-0.091	1.634
18H-5 0.70	0-0.75	165.50	48.67	506	329	0.288	0.662	0.233	0.569	28X-2	0.75-0.80	259.15	58.18	405	228	-0.087	1.623		
18H-5 0.70	0-0.75	165.50	48.67	405	240	0.146	0.374			28X-2	0.75-0.80	259.15	58.18	405	228	-0.022	1.669		
18H-5 0.70	J-0.75	165.50	48.67	405	228	0.266	0.672	0.007	0 700	28X-6	0.75-0.80	265.15	59.27	443	253	-0.027	1.819	-0.027	1.819
20X-3 0.70	1-0.75	183.40	51.57	455 380	2/8	-0.097	0.792	-0.097	0.792	29X-1 20X-2	0.75-0.80	207.35	59.67	521	253	0.267	1.766	0.267	1.766
22X-1 0.70	0-0.75	193.10	53.05	455	278	-0.560	0.729	-0.535	0.757	292.3	0.75-0.80	270.35	60.22	405	253	0.259	1.401	0.274	1.005
22X-1 0.70	0-0.75	193.10	53.05	417	253	-0.509	0.784		01101	29X-3	0.75-0.80	270.35	60.22	405	253	0.164	1.741		
22X-3 0.70	0-0.75	196.10	53.25	430	240	-0.587	0.770	-0.584	0.818	30X-1	0.75-0.80	277.05	60.86	531	316	0.481	1.456	0.421	1.448
22X-3 0.70	0-0.75	196.10	53.25	405	228	-0.622	0.917			30X-1	0.75-0.80	277.05	60.86	443	253	0.477	1.470		
22X-3 0.70	0-0.75	196.10	53.25	417	215	-0.542	0.768			30X-1	0.75-0.80	277.05	60.86	582	329	0.304	1.418		
Leg 121 S	Site 75	8 Ho	le A							30X-3	0.75-0.80	280.05	61.11	506	304	0.228	1.159	0.117	1.102
Anomalino	oides c	lanicus	5							30X-3	0.75-0.80	280.05	61.11	455	291	0.077	1.084		
28X-2 0.75	5-0.80	259.15	58.18	481	278	0.203	2.132	0.203	2.132	30X-3	0.75-0.80	280.05	61.11	430	253	0.047	1.063		
28X-6 0.75	5-0.80	265.15	59.27	455	278	0.310	2.483	0.085	2.220	31X-1	0.75-0.80	286.65	61.65	430	253	-0.048	0.770	-0.048	0.770
288.6 0.75	5-0.80 . 5-0.80 .	26515	59.27	445	200	-0.040	2.054			31X-5	0.75.0.80	292.00	63.62	430 521	2/8	0.152	0.918	0.116	0.909
30X-1 0.75	5-0.80	277.05	60.86	405	240	0.508	1.908	0.508	1.908	- 31X-5	0.75-0.80	292.65	63.62	405	240	0.038	0.824		
Cibicidoid	les wu	ellerste	orfi		- ···					Nuttall	ides true	труі	(6 spec	imens)	210	0.107	0.201		•
12X-1 0.75	5-0.80	103.15	7.46	557	202	2.581	0.884	2.547	0.964	28X-2	0.75-0.80	259.15	58.18	278-329	177-202	-0.217	1.632		
12X-1 0.75	5-0.80	103.15	7.46	493	177	2.531	1.005			28X-6	0.75-0.80	265.15	59.27	329	177-190	-0.624	1.726		
12X-1 0.75	5-0.80	103.15	7.46	569	253	2.530	1.003			29X-1	0.75-0.80	267.35	59.67	329	177-202	0.208	2.105		
12X-4 0.75	5-0.80	107.65	7.84	557	215	2.659	0.988	2.581	1.060	29X-3	0.75-0.80	270.35	60.22	291-342	164-228	0.044	1.702		
12X-4 0.75	5-0.80	107.65	7.84	506	202	2.625	1.106			30X-1	0.75-0.80	277.05	60.86	278-354	164-215	0.117	1.669		
12X-4 0.75	5-0.80	107.05	11.66	835 521	253	2,460	1.086	2155	0.007	30X-3	0.75-0.80	280.05	61.11	278-329	177-202	0.058	1.222		
14X-3 0.73	5-0.80	125.45	11.66	506	190	2.220	0.785	2.155	0.837	31X-1 31X 5	0.75.0.80	280.03	63.63	291-342	152-190	-0.186	0.888		
14X-3 0.75	5-0.80	125.45	11.66	696	278	2.140	0.987			Oridor	salis umi	bonatu	505.02 5		177-202	-0.207			
Cibicidoid	les mu	ndulus								1H-1	0.75-0.80	0.75	0.05	557	354	3.686	-0.876	3.794	-0.887
10H-1 0.75	5-0.80	83.85	5.83	443	278	2.528	-0.061	2.528	-0.061	1H-1	0.75-0.80	0.75	0.05	531	304	3.852	-0.870		
12X-1 0.75	5-0.80	103.15	7.46	443	228	2.702	0.883	2.702	0.883	1H-1	0.75-0.80	0.75	0.05	531	304	3.843	-0.916		
18X-1 0.75	5-0.80	161.15	20.37	506	253	1.869	0.849	1.869	0.849	1H-3	0.75-0.80	3.75	0.25	557	278	3.150	-1.349	3.438	-1.306
23X-1 0.70	0-0.75	209.40	27.47	380	190	1.940	0.608	1.896	0.759	1H-3	0.75-0.80	3.75	0.25	506	278	3.396	-1.196		
23X-1 0.70	0-0.75	209.40	27.47	392	177	1.852	0.909		0.000	1H-3	0.75-0.80	3.75	0.25	531	304	3.768	-1.372		
23X-3 0.73	5-0.80 R 0.62	212.45	28.33	445	228	1.640	0.830	1.640	0.830	2H-1	0.75-0.80	6.75	0.45	759	430	3.653	-0.828	3.560	-0.981
24X-1 0.58	8-0.63	218.88	30.15	417	228	2.255	0.717	2.215	0.747	2H-1 2H-1	0.75-0.80	675	0.45	531	278	3.399	-0.939		
24X-1 0.58	8-0.63	218.88	30.15	506	253	2.244	0.671			2H-4	0.75-0.80	11.25	0.75	582	329	3.867	-1.337	3.979	-1.270
27X-1 0.75	5-0.80	248.05	41.42	430	202	1.777	1.118	1.865	1.149	2H-4	0.75-0.80	11.25	0.75	632	329	4.106	-1.287		
27X-1 0.75	5-0.80	248.05	41.42	468	253	2.044	1.176			2H-4	0.75-0.80	11.25	0.75	683	405	3.964	-1.186		
27X-1 0.75	5-0.80	248.05	41.42	392	215	1.775	1.152			3H-1	0.75-0.80	16.35	1.07	531	329	3.955	1.327	3.857	-1.405
Gyroidina	solda	nii								3H-1	0.75-0.80	16.35	1.07	531	329	3.886	1.458		
9H-4 0.75	5-0.80	78.65	5.45	367	278	2.834	-0.800	2.834	-0.800	3H-1	0.75-0.80	16.35	1.07	506	253	3.730	-1.430		
10H-1 0.75	5-0.80	83.85	5.83	481	291	3.307	-0.944	3.307	-0.9-11	3H-3	0.75-0.80	19.35	1.32	481	278	3.575	-1.138	3.476	-1.007
10H 4 0.75	5-0.80	88.35	6.22	367	2/8	2.677	-0.704	2.778	-0.691	3H-3	0.75-0.80	19.35	1.32	455	329	3.365	-1.248		
12X-1 0.75	5.0.80	103 15	7.46	392	301	2.070	-0.077	2785	.0 375	311-5	0.75-0.80	19.33	1.52	430	430	3.488	0.030	3 105	0.905
14X-1 0.75	5-0.80	122.45	10.56	430	291	2.758	0.428	2.758	0.428	3H-5	0.75-0.80	22.35	1.57	582	354	3310	-0.837	5.105	-0.705
15X-1 0.75	5-0.80	132.15	14.14	658	493	2.109	0.455	2.109	0.455	3H-5	0.75-0.80	22.35	1.57	481	304	2.996	0.910		
17X-3 0.75	5-0.80	154.45	19.73	443	316	2.033	0.267	2.033	0.267	4H-1	0.75-0.80	25.95	1.88	506	304	3.743	1.024	3.526	-1.152
18X-1 0.75	5-0.80	161.15	20.37	531	380	1.831	-0.033	1.831	-0.033	4H-1	0.75-0.80	25.95	1.88	557	354	3.364 -	1.307		
18X-3 0.75	5-0.80	164.15	20.65	430	304	2.161	0.047	2.387	0.321	4H-1	0.75-0.80	25.95	1.88	455	278	3.472 -	1.125		
18X-3 0.75	5-0.80	164.15	20.65	468	342	2.613	0.594			4H-4	0.75-0.80	30.45	2.20	557	329	3.388 -	1.327	3.322	-1.316
23X-1 0.70	0-0.75	209.40	27.47	380	291	2.172	0.212	2.088	0.227	4H-4	0.75-0.80	30.45	2.20	506	329	3.278 -	1.273		
233-1 0.70	5000 S	209.40 212.45	21,47	392 200	304	2.003	0.241	1 020	0.205	4H-4	0.75-0.80	30.45	2.20	531	329	3.301 -	1.348		1 227
23X-3 0.73	5-0.80 . 5-0.80 .	212.45 212.45	20.33	367	266 266	1.595	0.425	1.820	0.293	5H-1 5H 1 /	0.75-0.80	33.33 35 55	2.38 2.58	206 291	304	2./38 -	1.209	2.751	-1.557
25X-1 0.76	5-0.81	228.76	30.70	455	329	1.908	0.123	1,908	-0.123	5H-1	0.75-0.80	35 55	2.58	430	278	2.547	1.373		
												20.00	<i></i>		2.0				

Appendix A-9. (continued).

As Interval Depth Age D T b ¹⁰ /b b ¹³ /b
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Orlidorsalis umbonalis Cont.) Orlidorsalis umbonalis Cont.) Cont. SH4 07.50.80 3055 2.58 3.51 2.765 -1.704 1.70 57 354 1.830 -0.69 SH4 07.50.80 40.05 2.66 2.63 2.99 2.095 -1.78 1.6X.3 0.75.080 44.05 2.88 -0.905 1.6X.3 0.75.080 44.05 2.88 -0.905 1.6X.3 0.75.080 44.15 1.88 405 2.81 4.005 2.78 1.64.1 -0.453 1.78.0 1.78.1 0.75.080 14.17 1.88 4.05 2.81 1.001 2.050 -0.499 6H4 0.75.080 4515 3.44 6.75 2.78 2.621 1.012 1.7X.1 0.75.080 154.5 1.78 2.019 0.007 2.028 0.010 6H4 0.75.080 4455 3.65 455 2.78 1.171 1.7X.1 0.75.080 154.55 2.78 1.48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
SH-4 0.75.08 4.005 2.96 632 3.29 2.795 0.005 1.007 1
SH-4 0.75.080 4.05 2.96 632 4.05 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.06 2.607 4.075.080 151.45 19.44 455 2.78 2.179 0.022 2.006 0.010 2.008 0.000 2.018 0.007 2.028 0.030 6H-4 0.75.080 44.05 3.65 452 3.04 2.78 1.103 17X.3 0.75.080 161.15 0.37 4.05 2.78 1.048 0.016 1.029 1.021 18X.1 0.75.080 161.15 0.37 4.05 2.28 0.018 1.047 1.05.080 161.15 0.37 4.05 2.28 0.018 1.029 1.014 1.05.080 1.015 0.037 1.05 2.88 1.029 1.014 1.05.080 1.015 0.037
bit 1 0.75-080 15.14 3.44 5.75 304 2.77 0.059 2.660 0.844 17X:1 0.75-080 15.14 19.44 506 304 2.011 0.012 2.025 0.049 6H1 0.75-080 15.15 3.34 607 322 2.551 0.988 17X:1 0.75-080 15.145 19.44 505 278 2.030 6H4 0.75-080 49.65 3.65 582 351 2.811 1.1013 17X:3 0.75-080 15.45 19.73 577 329 0.069 1.065 6H4 0.75-080 54.75 400 430 278 2.623 1.114 2.683 1.029 18X:1 0.75-080 16.15 0.37 405 278 1.989 0.016 7H4 0.75-080 54.75 400 430 278 2.77 1.71 2.784 1.71 2.784 1.899 0.142 1.999 0.142 1.999 0.142
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
6H4 0.75.080 9.65 3.65 405 2.78 2.50 -1.146 2.692 -1.02 17X.3 0.75.080 154.45 19.73 582 4.05 2.009 0.007 2.028 0.030 6H4 0.75.080 486.5 582 3.54 2.811 -1.013 17X.3 0.75.080 154.45 19.73 312 2.069 0.027 2.028 0.018 6H4 0.75.080 457.5 4.00 430 2.662 -1.014 17X.3 0.75.080 154.45 19.73 405 2.78 1.938 -0.015 7H1 0.75.080 54.75 4.00 430 2.662 -1.076 18X.1 0.75.080 161.15 2.037 405 2.78 1.939 -0.055 7H4 0.75.080 592.5 4.27 606 300 2.737 -1.171 2.784 -1.095 18X.1 0.75.080 170.75 2.128 430 2.53 314 1.053 0.097 1.94 0.480 7H4 0.75.080 543.5 4.60 450
6H4 0.750.80 9.65 3.65 582 3.54 2.811 -1.013 17X.3 0.750.80 154.55 19.73 481 304 1.995 -0.044 6H4 0.750.80 54.75 4.00 430 2.66 2.667 -1.142 2.683 -1.029 18X.1 0.750.80 154.75 9.78 2.236 0.018 2.028 -0.014 7H-1 0.750.80 54.75 4.00 430 2.78 2.739 0.898 -1050 18X.1 0.750.80 161.15 2.037 405 278 2.36 0.142 1.999 -0.142 7H+ 0.750.80 592.5 4.27 481 2.779 0.898 -1.055 19X.1 0.750.80 10.075 2.128 430 1.699 -0.142 7H+ 0.750.80 592.5 4.27 566 329 2.777 0.833 1.597 -1.128 405 2.38 5.005 5.0170.75 2.128 4.05 2.30 0.608 4.060 -0.480 4.070 2.056 6.914 2.005 0.845
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7H-1 0.75-0.80 54.75 4.00 4.30 278 2.739 -0.898 18X-1 0.75-0.80 59.25 4.27 481 278 2.734 -1.171 2.784 -1.095 18X-3 0.75-0.80 161.15 20.65 481 304 1.698 -0.095 7H+4 0.75-0.80 59.25 4.27 502 329 2.822 -1.260 18X-3 0.75-0.80 161.15 2.037 4.05 304 1.698 -0.085 7H+4 0.75-0.80 59.25 4.27 506 304 3.002 -1.055 2.885 -1.158 19X-1 0.75-0.80 170.75 21.28 430 253 1.550 -0.095 8H+1 0.75-0.80 64.45 4.60 455 278 2.707 -0.657 2.724 -0.828 2.005.2 0.750.80 181.95 22.35 340 2.005 0.489 4.045 0.480 4.44 0.750.80 181.95 22.35 350 3.04 1.045 0.045 1.633 0.285 1.633 0.285 1.633 0.285
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8H-1 $0.75 0.80$ 64.45 4.60 506 30.4 3.026 1.055 2.885 1.158 $19X-1$ $0.75 0.80$ 17.075 21.28 430 2235 531 329 2.132 0.997 1.964 0.480 8H-1 $0.75 0.80$ 64.45 4.60 430 278 2.922 1.354 $20X-2$ $0.75 0.80$ 181.95 22.35 531 329 2.132 0.997 1.964 0.480 8H-4 $0.75 0.80$ 68.95 4.90 531 342 2.707 0.733 $21X-1$ $0.75 0.80$ 181.95 22.35 380 228 1.754 0.045 8H-4 $0.75 0.80$ 68.95 4.90 551 342 2.707 0.733 $21X-1$ $0.75 0.80$ 181.95 22.35 380 2351 1.360 0.165 1.265 0.106 8H-4 $0.75 0.80$ 68.95 4.90 455 278 2.744 0.873 $21X-1$ $0.75 0.80$ 190.05 23.13 506 304 1.161 0.086 9H-1 $0.75 0.80$ 74.15 522 431 291 2.594 -1.447 $21X-2$ $0.75 0.80$ 190.05 23.13 300 2351 1.633 0.285 1.633 0.285 9H-1 $0.75 0.80$ 74.15 522 431 278 3.046 -1.242 2.850 -1.154 $22X-2$ $0.75 0.80$ 21.25 571 531 354 1.633 <t< td=""></t<>
8H-1 0.75-0.80 64.45 4.60 455 278 2.707 -1.065 20X-2 0.75-0.80 181-95 22.35 531 329 2.132 0.997 1.964 0.480 8H-1 0.75-0.80 64.45 4.60 430 278 2.922 -1.354 20X-2 0.75-0.80 181.95 22.35 380 228 1.754 -0.045 8H+4 0.75-0.80 68.95 4.90 531 342 2.707 -0.733 21X-1 0.75-0.80 180.5 2.35 380 228 1.754 -0.045 8H+4 0.75-0.80 68.95 4.90 531 329 2.81 -1.242 2.674 -1.362 21X-1 0.75-0.80 180.5 2.35 354 1.633 0.285 1.866 -0.040 9H+1 0.75-0.80 74.15 5.22 431 2.91 2.544 -1.447 21X-3 0.75-0.80 190.55 2.517 531 354 1.633 0.285 1.866 -0.040 9H+1 0.75-0.80 78.65 5.45 481<
8H-1 $0.75 0.80$ 64.45 4.60 2.78 2.922 2.1354 $200x 2$ $0.75 0.80$ 181.95 22.35 380 228 1.754 0.045 8H+4 $0.75 0.80$ 68.95 4.90 531 342 2.772 0.753 $21X1$ $0.75 0.80$ 181.95 22.35 380 228 1.754 0.045 8H+4 $0.75 0.80$ 68.95 4.90 531 342 2.777 0.753 $21X1$ $0.75 0.80$ 181.95 22.31 356 304 1.069 0.165 1.265 0.045 8H+4 $0.75 0.80$ 68.95 4.90 532 278 2.744 0.873 $21X1$ $0.75 0.80$ 190.05 23.13 506 304 1.161 0.986 9H-1 $0.75 0.80$ 74.15 5.22 433 291 2.544 -1.47 $21X.3$ $0.75 0.80$ 190.05 23.13 430 253 1.633 0.285 9H-1 $0.75 0.80$ 74.15 5.22 430 233 2.616 -1.447 $22X.2$ $0.75 0.80$ 201.25 25.17 531 354 1.603 0.285 $9H-4$ $0.75 0.80$ 7865 5.45 481 278 2.046 -1.154 $22X.2$ $0.75 0.80$ 201.25 25.17 531 354 1.632 0.046 1.871 0.161 $10H-1$ $0.75 0.80$ 83.85 5.83 682 380 2.842 0.911 2.324 <th< td=""></th<>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$8H+4$ $0.75 \cdot 0.80$ 68.95 4.90 4.55 2.78 2.744 0.873 $21X.1$ $0.75 \cdot 0.80$ 190.55 23.13 506 304 1.161 0.086 $9H-1$ $0.75 \cdot 0.80$ 74.15 5.22 531 329 2.813 -1.234 2.674 -1.362 $21X.1$ $0.75 \cdot 0.80$ 190.55 23.13 430 253 1.325 0.066 $9H-1$ $0.75 \cdot 0.80$ 74.15 5.22 443 291 2.594 -1.447 $21X.3$ $0.75 \cdot 0.80$ 190.55 23.13 430 253 1.633 0.285 $9H-1$ $0.75 \cdot 0.80$ 7865 5.45 481 278 3.046 -1.242 2.850 -1.154 $22X-2$ $0.75 \cdot 0.80$ 201.25 25.17 557 329 1.863 -0.161 $9H+4$ $0.75 \cdot 0.80$ 78.65 5.45 431 2278 2.0911 $23X+1$ $0.70 \cdot 0.75$ 209.40 27.47 506 304 1.765 0.435 $9H+4$ $0.75 \cdot 0.80$ 78.65 5.45 531 329 2.842 -0.911 $23X+1$ $0.70 \cdot 0.75$ 209.40 27.47 506 304 1.765 0.435 $10H-1$ $0.75 \cdot 0.80$ 83.85 583 607 380 2.840 -1.188 $23X+1$ $0.70 \cdot 0.75$ 209.40 27.47 531 354 2.055 0.003 $10H-1$ $0.75 \cdot 0.80$ 83.85 583 663 329 <t< td=""></t<>
9H-1 0.75-0.80 74.15 5.22 531 329 2.813 -1.234 2.674 -1.362 21X-1 0.75-0.80 190.05 23.13 430 253 1.325 0.066 9H-1 0.75-0.80 74.15 5.22 443 291 2.594 -1.447 21X-3 0.75-0.80 190.05 23.11 455 354 1.633 0.285 1.633 0.285 9H-1 0.75-0.80 78.65 5.45 481 278 3.046 -1.242 2.850 -1.154 22X-2 0.75-0.80 201.25 25.17 531 354 1.802 -0.026 9H-4 0.75-0.80 78.65 5.45 410 253 2.622 -1.308 22X-2 0.75-0.80 201.25 25.17 531 354 1.802 -0.026 9H-4 0.75-0.80 78.65 5.45 531 329 2.882 -0.911 2.779 -1.114 23X1 0.70-0.75 209.40 27.47 506 304 1.632 0.39 1.715 -0.288 10H-1 0.75-0.80 <td< td=""></td<>
9H-1 0.75-0.80 74.15 5.22 443 291 2.594 -1.447 21X.3 0.75-0.80 193.05 23.41 455 354 1.633 0.285 1.633 0.285 9H-1 0.75-0.80 74.15 5.22 430 253 2.616 -1.404 22X-2 0.75-0.80 201.25 25.17 531 354 1.603 0.285 0.400 9H-4 0.75-0.80 78.65 5.45 481 278 3.046 -1.242 2.850 -1.154 22X-2 0.75-0.80 201.25 25.17 551 354 1.802 -0.026 9H-4 0.75-0.80 78.65 5.45 405 253 2.622 -1.308 23X-1 0.70-0.75 209.40 27.47 506 304 1.793 -0.046 1.871 -0.161 10H-1 0.75-0.80 83.85 583 582 380 2.840 -1.188 23X-1 0.70-0.75 209.40 27.47 501 354 1.632 -0.369 1.715 -0.288 10H-1 0.75-0.80 <td< td=""></td<>
9H4 0.750.80 74.15 5.22 450 233 2.010 -1.404 22X-2 0.750.80 201.25 2.517 531 354 2.022 0.062 1.896 -0.040 9H4 0.750.80 78.65 5.45 481 278 3.046 -1.242 2.850 -1.154 22X-2 0.750.80 201.25 25.17 531 354 1.802 -0.026 9H4 0.750.80 78.65 5.45 405 253 2.622 -1.088 22X-2 0.750.80 201.25 25.17 531 329 1.863 -0.155 9H4 0.750.80 78.65 5.45 531 329 2.882 -0.911 23X-1 0.700.75 209.40 27.47 506 304 1.765 -0.435 10H-1 0.750.80 83.85 583 468 329 2.742 -1.153 23X-1 0.700.75 209.40 27.47 506 304 1.632 -0.369 1.715 -0.288 10H-1 0.750.80 83.85 6.22 566 329 <
9H4 0.75-0.80 78.65 5.45 405 253 2.622 -1.308 22X-2 0.75-0.80 201.25 25.17 557 329 1.863 -0.155 9H4 0.75-0.80 78.65 5.45 531 329 2.882 -0.911 23X-1 0.70-0.75 209.40 27.47 506 304 1.793 -0.046 1.871 -0.161 10H-1 0.75-0.80 83.85 583 582 380 2.754 -1.001 2.779 -1.114 23X-1 0.70-0.75 209.40 27.47 506 304 1.765 -0.435 10H-1 0.75-0.80 83.85 583 607 380 2.840 -1.188 23X-1 0.70-0.75 209.40 27.47 531 354 2.055 -0.003 10H-1 0.75-0.80 83.85 583 468 329 2.474 -0.643 2.638 -0.594 23X-3 0.75-0.80 212.45 28.33 531 278 1.899 -0.109 10H-4 0.75-0.80 88.35 6.22 582 38
9H4 0.75-0.80 78.65 5.45 531 329 2.882 -0.911 23X-1 0.70-0.75 209.40 27.47 506 304 1.793 -0.046 1.871 -0.161 10H-1 0.75-0.80 83.85 583 582 380 2.754 -1.001 2.779 -1.114 23X-1 0.70-0.75 209.40 27.47 506 304 1.765 -0.435 10H-1 0.75-0.80 83.85 583 607 380 2.840 -1.188 23X-1 0.70-0.75 209.40 27.47 531 354 2.055 -0.003 10H-1 0.75-0.80 83.85 583 468 329 2.742 -1.153 23X-3 0.75-0.80 212.45 28.33 531 278 1.899 -0.109 10H-4 0.75-0.80 83.85 6.22 566 329 2.474 -0.632 2.638 -0.594 23X-3 0.75-0.80 212.45 28.33 531 278 1.699 -0.109 -0.109 -0.169 -0.169 2.027 -0.755 10H-4
10H-1 0.75-0.80 83.85 58.3 582 380 2.754 -1.001 2.779 -1.114 23X-1 0.70-0.75 209.40 27.47 506 304 1.765 -0.435 10H-1 0.75-0.80 83.85 5.83 607 380 2.840 -1.188 23X-1 0.70-0.75 209.40 27.47 531 354 2.055 -0.003 10H-1 0.75-0.80 83.85 5.83 468 329 2.742 -1.153 23X.3 0.75-0.80 212.45 28.33 506 304 1.632 -0.369 1.715 -0.288 10H-4 0.75-0.80 88.35 6.22 566 329 2.474 -0.643 2.638 -0.594 23X.3 0.75-0.80 212.45 28.33 531 278 1.899 -0.109 10H-4 0.75-0.80 83.55 6.22 582 380 2.657 -0.609 24X-1 0.58-063 218.88 30.15 455 304 2.164 -0.630 2.027 -0.725 11H-1 0.75-0.80 93.55
10H-1 0.75-0.80 83.85 5.83 468 329 2.742 -1.153 23X-3 0.75-0.80 212.45 2.833 506 304 1.632 -0.369 1.715 -0.288 10H-1 0.75-0.80 88.85 5.83 468 329 2.742 -1.153 23X-3 0.75-0.80 212.45 28.33 506 304 1.632 -0.369 1.715 -0.288 10H-4 0.75-0.80 88.35 6.22 580 329 2.474 -0.643 2.638 -0.594 23X-3 0.75-0.80 212.45 28.33 531 278 1.613 -0.387 10H-4 0.75-0.80 88.35 6.22 582 380 2.657 -0.609 24X-1 0.58-0.63 218.48 30.15 455 304 2.164 -0.630 2.027 -0.725 10H-4 0.75-0.80 93.55 6.63 557 329 2.669 -0.367 2.417 24X-1 0.58-0.63 218.88 30.15 455 304 2.164 0.630 2.027 -0.725 11H-1
10H-4 0.75-0.80 88.35 6.22 506 329 2.474 -0.643 2.638 -0.594 23X-3 0.75-0.80 212.45 28.33 531 278 1.899 -0.109 10H-4 0.75-0.80 88.35 6.22 582 380 2.782 -0.529 23X-3 0.75-0.80 212.45 28.33 430 278 1.613 -0.387 10H-4 0.75-0.80 88.35 6.22 658 380 2.657 -0.609 24X-1 0.58.063 218.88 30.15 455 304 2.164 -0.630 2.027 -0.725 11H-1 0.75-0.80 93.55 6.63 557 329 2.669 -0.367 2.616 -0.247 24X-1 0.58.063 218.88 30.15 455 278 1.889 -0.820 11H-1 0.75-0.80 93.55 6.63 582 354 2.678 -0.020 24X-3 0.32-0.37 221.62 30.33 430 253 2.082 -0.452 1H+1 0.75-0.80 93.55 6.63 455 <t< td=""></t<>
10H-4 0.75-0.80 88.35 6.22 582 380 2.782 -0.529 23X.3 0.75-0.80 212.45 28.33 430 278 1.613 -0.387 10H-4 0.75-0.80 88.35 6.22 658 380 2.657 -0.609 24X.1 0.58-0.63 218.88 30.15 455 304 2.164 -0.630 2.027 -0.725 11H-1 0.75-0.80 93.55 6.63 557 329 2.669 -0.367 2.616 -0.247 24X-1 0.58-0.63 218.88 30.15 455 278 1.889 -0.820 11H-1 0.75-0.80 93.55 6.63 582 354 2.678 -0.020 24X-3 0.32-0.37 221.62 30.33 430 253 2.082 -0.452 11H-1 0.75-0.80 93.55 6.63 455 304 2.502 -0.353 24X-3 0.32-0.37 221.62 30.33 430 278 1.917 -0.329 11H-4 0.75-0.80 98.05 7.02 455 304 2.703 <t< td=""></t<>
10H-4 0.75-0.80 88.35 6.22 658 380 2.657 -0.609 24X-1 0.58-0.63 218.88 30.15 455 304 2.164 -0.630 2.027 -0.725 11H-1 0.75-0.80 93.55 6.63 557 329 2.669 -0.367 2.616 -0.247 24X-1 0.58-0.63 218.88 30.15 455 278 1.889 -0.820 11H-1 0.75-0.80 93.55 6.63 582 354 2.678 -0.020 24X-3 0.32-0.37 221.62 30.33 430 253 2.082 -0.463 1.922 -0.452 11H-1 0.75-0.80 93.55 6.63 455 304 2.502 -0.353 24X-3 0.32-0.37 221.62 30.33 430 278 1.917 -0.329 11H-4 0.75-0.80 98.05 7.02 455 3.04 2.703 -0.295 2.759 -0.422 24X-3 0.32-0.37 221.62 30.33 405 253 1.767 -0.564 11H-4 0.75-0.80 98.05
11H-1 0.75-0.80 93.55 6.63 582 354 2.678 -0.020 24X-1 0.58-0.63 218.88 30.15 455 2.78 1.889 -0.820 11H-1 0.75-0.80 93.55 6.63 582 354 2.678 -0.020 24X-3 0.32-0.37 221.62 30.33 430 253 2.082 -0.463 1.922 -0.452 11H-1 0.75-0.80 93.55 6.63 455 304 2.502 -0.353 24X-3 0.32-0.37 221.62 30.33 430 278 1.917 -0.329 11H-4 0.75-0.80 98.05 7.02 455 304 2.703 -0.295 2.759 -0.422 24X-3 0.32-0.37 221.62 30.33 405 253 1.767 -0.564 11H-4 0.75-0.80 98.05 7.02 405 278 2.861 -0.128 25X-1 0.76-0.81 28.76 30.70 683 354 1.597 -0.940 1.665 -1.196
11H-1 0.75-0.80 93.55 6.63 455 304 2.502 -0.353 24X-3 0.32-0.37 221.62 30.33 430 278 1.917 -0.329 11H-4 0.75-0.80 98.05 7.02 455 304 2.703 -0.295 2.759 -0.422 24X-3 0.32-0.37 221.62 30.33 405 253 1.767 -0.564 11H-4 0.75-0.80 98.05 7.02 405 278 2.861 -0.128 25X-1 0.76-0.81 228.76 30.70 683 354 1.597 -0.940 1.665 -1.196
11H-4 0.75-0.80 98.05 7.02 455 304 2.703 -0.295 2.759 -0.422 24X-3 0.32-0.37 221.62 30.33 405 253 1.767 -0.564 11H-4 0.75-0.80 98.05 7.02 405 278 2.861 -0.128 25X-1 0.76-0.81 28.76 30.70 683 354 1.597 -0.940 1.665 -1.196
11H-4 0.75-0.80 98.05 7.02 405 278 2.861 -0.128 25X-1 0.76-0.81 228.76 30.70 683 354 1.597 -0.940 1.665 -1.196
1114 + 0.75 + 0.80 + 98.05 + 7.02 + 430 + 253 + 2.712 + 0.844 + 25X + 1 0.75 + 0.81 + 228.76 + 30.70 + 481 + 278 + 1.633 + 1.083 + 12X + 1 0.75 + 0.81 + 228.76 + 30.70 + 431 + 278 + 1.564
12X-1 0.75-0.80 103.15 7.46 405 253 2.863 0.027 26X-1 0.75-0.80 238.45 31.20 531 329 1.917 -0.574 1.919 -0.613
12X-1 0.75-0.80 103.15 7.46 430 253 2.720 -0.243 26X-1 0.75-0.80 238.45 31.20 493 304 1.809 -0.946
12X-4 0.75-0.80 107.65 7.84 557 329 2.750 -0.167 2.804 -0.118 26X-1 0.75-0.80 238.45 31.20 481 278 2.031 -0.318
$12x + 0.75 - 0.80 \ 107.05 \ 7.84 \ 506 \ 278 \ 2.815 - 0.004 20x - 3 \ 0.75 - 0.80 \ 241.45 \ 34.39 \ 455 \ 504 \ 1.751 \ -0.526 \ 1.889 \ -0.445 \ 12x - 4 \ 0.75 - 0.80 \ 241.45 \ 34.39 \ 405 \ 278 \ 2.066 \ -0.695$
13X-1 0.75-0.80 112.85 8.29 557 304 2.949 -0.059 2.911 0.023 26X-3 0.75-0.80 241.45 34.39 405 278 1.871 -0.313
13X-1 0.75-0.80 112.85 8.29 455 304 2.938 0.026 27X-1 0.75-0.80 248.05 41.42 430 278 1.955 0.120 1.775 0.033
13X-1 0.75-0.80 112.85 8.29 405 278 2.846 0.102 27X-1 0.75-0.80 248.05 41.42 405 278 1.871 0.028
13x - 4 0.75-0.80 117.55 8.67 506 278 2.831 -0.452 Stensioina beccariiformis
13X-4 0.75-0.80 117.35 8.67 405 253 2.698 -0.727 28X-2 0.75-0.80 259.15 58.18 392 228 0.102 1.912 0.102 1.912
14X-1 0.75-0.80 122.45 10.56 481 278 2.695 0.307 2.676 0.151 28X-6 0.75-0.80 265.15 59.27 531 304 -0.221 1.835 -0.140 1.921
14X-1 0.75-0.80 122.45 10.56 455 278 2.517 0.077 28X-6 0.75-0.80 265.15 59.27 405 228 -0.059 2.006
14X-1 0.75-0.80 125.45 10.55 557 354 2.277 -0.371 2.498 -0.255 29X-1 0.75-0.80 267.35 59.67 493 228 0.283 1.965
14X-3 0.75-0.80 125.45 11.66 405 253 2.675 -0.177 29X-1 0.75-0.80 267.35 59.67 468 278 0.335 1.973
14X-3 0.75-0.80 125.45 11.66 455 253 2.542 -0.218 29X-3 0.75-0.80 270.35 60.22 506 304 0.288 1.662 0.198 1.659
15X-1 0.75-0.80 132.15 14.14 531 304 1.564 0.473 1.660 0.442 29X-3 0.75-0.80 270.35 60.22 544 304 0.209 1.705
10x1-0.050 10210 14.14 100
15X-3 0.75-0.80 135.15 15.25 506 304 1.582 0.415 1.669 0.569 30X-1 0.75-0.80 277.05 60.86 468 278 0.463 1.558
15X-3 0.75-0.80 135.15 15.25 430 228 1.813 0.455 30X-1 0.75-0.80 277.05 60.86 405 202 0.652 1.712
13X-3 0.75-0.80 135.15 15.25 405 253 1.612 0.838 30X-3 0.75-0.80 280.05 61.11 443 240 0.215 1.275 0.116 1.207 16X-1 0.75-0.80 141.77 17.70 430 304 1.647 .0157 1.848 0.014 30X 3 0.75 0.80 280.05 61.11 455 253 0.101 1.102
16X-1 0.75-0.80 141.77 17.70 380 278 2.063 -0.091 30X-3 0.75-0.80 280.05 61.11 481 266 0.030 1.154

Appendix A-10. (continued).

Core				Specim	en size					Core				Specim	en size				
& Section	Interval	Depth (mbsf)	Age (Ma)	D (μm)	Τ (μm)	δ ¹⁸ Ο	δ ¹³ C	δ ¹⁸ O ave.	$\delta^{13}C$ ave.	& Section	Interval 1	Depth (mbsf)	Age (Ma)	D (μm)	Т (µm)	δ ¹⁸ Ο	δ ¹³ C	δ ¹⁸ Ο ave.	$\delta^{13}C$ ave.
Leg 12	I Site 7	58 Ho	le A	(7						Leg 12	1 Site 7	58 Ho	le A						
Siensio	075.080	ariyom วรร รร	nis 61.65	(Cont.)	228	0 109	1 116	0.109	1 1 16	NUIIAI. 27X 3	0.68 0.73	angyi 406.18	(5 spec	nmens)	(Cont.)	0701	0.088		
31X-5	0.75-0.80	292.65	63.62	433 506	228 278	0.108	0.932	-0.128	0.834	27X-3 27X-4	0.08-0.75	400.18	57.87	253-329	152-202	-0.592	0.189		
31X-5	0.75-0.80	292.65	63.62	481	253	-0.311	0.739	0	0.001	28X-1	0.71-0.76	412.71	58.35	228-342	152-215	-0.418	0.826		
31X-5	0.75-0.80	292.65	63.62	455	253	-0.077	0.831			29X-1	0.76-0.80	422.26	59.27	278-304	152-177	-0.464	1.312		
Leg 122	2 Site 7	62 Ho	le C							29X-2	0.69-0.74	423.69	59.41	304-329	164-202	-0.435	1.872		
Anoma	linoides	danicus	5							29X-3	0.69-0.73	425.19	59.55	304-329	164-202	-0.524	1.554		
26X-1 26X-2	0.70-0.73	398.70	56.91	443	278	-0.720	0.475	-0.720	0.475	30X-1	0.69-0.74	431.69	60.18	266-304	152-17/	-0.065	1.812		
26X-2	0.76-0.81	401.76	57.24	380	228	-0.715	0.479	-0.715	0.479	31X-3	0.67-0.71	444.17	60.88	278-342	164-177	-0.058	1.749		
26X-4	0.69-0.74	403.19	57.39	430	253	-0.760	0.456	-0.760	0.456	31X-5	0.68-0.72	447.18	61.02	278-329	164-190	-0.299	1.713		
26X-5	0.70-0.75	404.70	57.55	455	266	-0.614	0.413	-0.583	0.392	32X-1	0.65-0.69	450.65	61.18	278-329	164-190	-0.138	1.286		
26X-5	0.70-0.75	404.70	57.55	531	316	-0.552	0.371			33X-1	0.71-0.75	460.21	61.61	266-291	152-164	-0.286	1.222		
27X-4	0.70-0.75	407.70	57.87	506	278	-0.510	0.645	-0.510	0.645	33X-3	0.69-0.73	463.19	61.67	278-342	164-215	-0.383	1.259		
28X-1 20X 3	0./1-0./6	412.71	50.55	443	200	-0.237	1.498	-0.237	1.498	33X-5 24V-1	0.71-0.75	460.21	61.73	278-329	164-190	-0.200	1.059		
30X-1	0.69-0.74	431.69	60.18	506	354	0.142	2.195	0.142	2.195	34X-3	0.65-0.69	472.65	61.86	304-316	164-190	-0.258	0.873		
30X-2	0.69-0.74	433.19	60.32	430	278	0.209	2.325	0.234	2.329	34X-5	0.65-0.70	475.65	61.92	291-329	164-190	-0.405	1.109		
30X-2	0.69-0.74	433.19	60.32	455	278	0.253	2.316			35X-1	0.68-0.73	479.18	61.98	253-329	164-202	-0.972	0.856		
30X-2	0.69-0.74	433.19	60.32	392	278	0.240	2.347			Oridor	rsalis um	bonatu	5						
. 30X-3	0.69-0.74	434.69	60.43	455	278	0.325	2.300	0.325	2.300	24X-1	0.77-0.82	379.77	55.74	481	278	-0.628	-0.547		
32X-1 32X-1	0.65-0.69	450.65	61.18	443	278	0.120	1.816	0.094	1.809	Siensie	0176 080	arujon Arrijon	70 77	734	253	.0.236	1 605	-0 525	1 368
Nuttall	ides true	movi	01.10	, 455	، ۲۵ ن	0.007	1.002			29X-1 29X-1	0.76-0.80	422.26	59.27	392	202	-0.764	1.240	-0.565	1.500
26X-2	0.71-0.75	400.21	57.07	392	215	-1.189	-0.463	-1.189	-0.463	29X-1	0.76-0.80	422.26	59.27	417	228	-0.576	1.258		
26X-3	0.76-0.81	401.76	57.24	392	228	-0.851	-0.086	-0.851	-0.086	29X-2	0.69-0.74	423.69	59.41	493	266	-0.396	1.922	-0.397	1.946
29X-3	0.69-0.73	425.19	59.55	455	266	-0.079	1.874	-0.412	1.600	29X-2	0.69-0,74	423.69	59.41	468	253	-0.281	1.996		
29X-3	0.69-0.73	425.19	59.55	380	202	-0.816	1.238			29X-2	0.69-0.74	423.69	59.41	430	266	-0.513	1.920	0 (00)	1 710
29X-3	0.69-0.73	425.19	59.55	367	215	-0.340	1.688	0.094	1 704	29X-3	0.69-0.73	425.19	59.55	531	329	-0.602	1.583	-0.600	1.718
31X-1	0.09-0.74	451.09	60.18	392 430	215 240	-0.084	1.724	-0.084	1.724	29X-3	0.69-0.73	425.19	59.55	531	215	-0.754	1.919		
31X-1	0.70-0.74	441.20	60.74	392	215	-0.225	1.435	-0.510	1.502	30X-1	0.69-0.74	431.69	60.18	481	278	0.083	1.824	-0.120	1.750
31X-3	0.67-0.71	444.17	60.88	557	278	-0.076	1.618	-0.234	1.571	30X-1	0.69-0.74	431.69	60.18	493	354	-0.266	1.671		
31X-3	0.67-0.71	444.17	60.88	405	228	-0.149	1.592			30X-1	0.69-0.74	431.69	60.18	468	240	-0.178	1.756		
31X-3	0.67-0.71	444.17	60.88	430	240	-0.476	1.502			30X-2	0.69-0.74	433.19	60.32	557	278	-0.001	1.794	0.038	1.820
31X-5	0.68-0.72	447.18	61.02	417	228	-0.460	1.722	-0.167	1.748	30X-2	0.69-0.74	433.19	60.32	380	177	0.128	1.880		
31X-5	0.68-0.72	447.18	61.02	397	200	-0.120	1.830			30X-2	0.69-0.74	433.19	60.43	5607	304	0.210	1.679	0.165	1.649
32X-1	0.65-0.69	450.65	61.18	493	253	-0.061	1.403	-0.021	1.420	30X-3	0.69-0.74	434.69	60.43	468	253	0.120	1.618		
32X-1	0.65-0.69	450.65	61.18	405	202	0.072	1.596			31X-1	0.70-0.74	441.20	60.74	380	202	-0.351	1.533	-0.351	1.533
32X-1	0.65-0.69	450.65	61.18	380	215	-0.073	1.260			31X-3	0.67-0.71	444.17	60.88	430	202	-0.068	1.820	-0.143	1.654
33X-1	0.71-0.75	460.21	61.61	455	266	-0.075	1.344	-0.106	1.295	31X-3	0.67-0.71	444.17	60.88	405	228	-0.194	1.564		
33X-1	0.71-0.75	460.21	61.61	405	228	0.015	1.303			31X-3 21V 5	0.67-0.71	444.17	61.02	417	228	-0.100	1.577	-0 278	1 781
33X.3	0.69-0.73	463.19	61.67	481	215	-0.180	1.258	-0 160	1 294	31X-5	0.68-0.72	447.18	61.02	417	228	-0.238	1.785	-0.270	1
33X-3	0.69-0.73	463.19	61.67	405	240	-0.234	1.236			32X-1	0.65-0.69	450.65	61.18	380	240	-0.282	1.322	-0.345	1.319
33X-3	0.69-0.73	463.19	61.67	380	215	-0.065	1.377			32X-1	0.65-0.69	450.65	61.18	392	177	-0.408	1.316		
33X-5	0.71-0.75	466.21	61.73	430	253	-0.323	1.412	-0.176	1.241	33X-1	0.71-0.75	460.21	61.61	544	278	-0.555	1.135	-0.470	1.239
33X-5	0.71-0.75	466.21	61.73	443	240	-0.163	1.265			33X-1	0.71-0.75	460.21	61.61	443	253	-0.255	1.290		
33X-5	0.71-0.75	466.21	61.73	380	228	-0.042	1.046	0 120	1 202	33X-1 22V 2	0.71-0.75	460.21	61.61	455	342	-0.000	1.291	-0312	1 1 56
34X-3	0.65-0.69	472.65	61.86	405	228	0.040	1.182	0.040	1.182	33X-3	0.69-0.73	463.19	61.67	569	304	-0.352	1.068	0.012	
34X-5	0.65-0.70	475.65	61.92	405	190	-0.678	1.084	-0.404	1.108	33X-3	0.69-0.73	463.19	61.67	392	202	-0.450	1.288		
34X-5	0.65-0.70	475.65	61.92	405	177	-0.430	1.080			33X-5	0.71-0.75	466.21	61.73	493	304	-0.352	0.796	-0.311	0.926
34X-5	0.65-0.70	475.65	61.92	405	215	-0.104	1.159			33X-5	0.71-0.75	466.21	61.73	380	190	-0.269	1.056		
Nuttal	lides tru	empyi	(5 spec	cimens)			0.040			34X-1	0.61-0.65	469.61	61.80	506	253	-0.176	1.382	-0.183	1.399
23X-1 24X-1	0.69-0.74	370.19	55.33	253-329	104-190	-0.770	-0.306			34X-1 34X-1	0.61-0.65	469.61	61.80	495	278	-0.052	1.384		
25X-1	0.72-0.76	389.22	56.14	253-304	152-202	-0.999	-0.324			34X-3	0.65-0.69	472.65	61.86	481	253	-0.314	0.820	-0.277	0.840
25X-3	0.71-0.75	392.21	56.27	266-329	164-177	-0.768	0.064			34X-3	0.65-0.69	472.65	61.86	493	266	-0.239	0.860		
26X-1	0.70-0.73	398.70	56.91	278-342	164-215	-0.855	-0.073			34X-5	0.65-0.70	475.65	61.92	531	278	-0.386	0.984	-0.393	0.958
26X-2	0.71-0.75	400.21	57.07	278-342	177-215	-0.976	-0.489			34X-5	0.65-0.70	475.65	61.92	481	228	-0.572	0.878		
26X-3	0.76-0.81	401.76	57.24	253-304	152-202	-0.607	0.073			34X-5	0.65-0.70	475.65	61.92	468	304	-0.221	1.012	0.492	0 8.19
20X-4 27X-1	0.69-0.74	++U3.19 1.403.10	57 20	205-516	152-228	-0.839	-0.154			358-1	0.08-0./3	4/7.18	01.98	+1/	420	-0.402	0.040	-0.402	0.040
27X-2	0.69-0.74	404.69	57.55	266-304	152-177	-0.803	-0.011												
26X-5	0.70-0.75	5 404.70	57.55	278-329	164-177	-0.567	-0.014												

Koji SETO

Appendix A-11. (continued).

4 Initial bayle Age D T NO O C NO	Core				Specin	nen size					Core				Specie	an diza				
Settion (mach 0) (La) (mach 0) (La)<	&	Interval	Depth	Age	D	Т	δ ¹⁸ Ο	$\delta^{13}C$	δ ¹⁸ O	δ ¹³ C	&	Interval	Depth	Age	D	T	۸ ¹⁸ 0	8 ¹³ C	۸ ¹⁸ 0	×13
Planticule Formalistics Lg [21] Liss (77) Hole III Lg [21] Liss (73) Hole III Lg [21] Liss (73) Hole IIII Lg [21] Liss (73) Hole IIII Lg [21] Liss (73) Hole IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Section		(mbsf)	(Ma)	(µm)	(µm)			ave.	ave.	Section	1	(mbsf)	(Ma)	(µm)	(µm)		00	ave.	ave.
Leg 121 Sub 752 Hole A Sub Notice State Sub Notice State Superior 1.995 1334 14 070-075 Hist 8 Sub Notice State Hist 8 Sub Notice State 1.995 1.995 1334 14 070-075 Hist 8 Sub Notice State Hist 8 Sub Notice State 1.995 1.995 1334 14 070-075 Hist 8 Sub Notice State Hist 8 Sub Notice State 1.995 1.995 1334 14 070-075 Hist 8 Sub Notice State Hist 8 Sub Notice State 1.995 1.995 1424 14 070-075 Hist 8 Sub Notice State Hist 8 Sub Notice State 1.995 1.995 1405 070-075 Hist 8 Sub Notice State 1.995	Plankto	onic Fora	minife	ега							Leg 12	1 Site 7	57 Ho	ole B						
Acartan profil (no.2) 1911 (1)	Leg 12	1 Site 7.	52 Ho	ole A							Subbo	tina spp.	(6 spec	imens)	(Cont.)					
13.4 (a) 13.4 (a) 13.9 (a)	Acarin	ina prim	itiva(5 s	specim	ens)				•		15H-1	0.70-0.75	130.50	38.55	253-329	202-253	0.807	1.595		
140.1 16111 1611 16111	13X-1 13X-1	0.70-0.75	113.60	55.27	329-380	278-304	-1.640	1.685			15H-5	0.70-0.75	136.50	40.98	253-329	177-228	0.927	1.571		
143.0 0.070.07 123.0 528.0 328.0 1.500 111.5 0.070.07 152.0 0.070.0 1.500	14X-1	0.70-0.75	123.30	55.70	342-380	2/8-529	-1.410	-0.101			16H-1	0.70-0.75	140.20	41.89	253-329	190-278	0.792	1.581		
15X1 070-07 1300 551 200-07 1300 551 200-07 1300 551 200-07 1300 551 200-07 1300 551 200-07 13000 13000 13000 13000	14X-3	0.70-0.75	126.30	55.83	329-380	304-329	-1.632	1.209			17H-5	0.70-0.75	155.80	45.88	266-304	202-304	0.010	1.759		
	15X-1	0.70-0.75	133.00	56.12	329-354	278-304	-1.510	0.592			18H-1	0.70-0.75	159.50	47.09	215-278	177-202	0.379	1.362		
16k1 0704.07 14270 5585 392-385 392-382 78-384 - 1.571 1.371 1941 170.07.5 (10.20 94.23 16.062 0.223 1.223 1.323 17k1 0704.07 15240 560 4392-342 78-391 - 1.692 0.77 200.5 070.075 1814.0 151.7 78-329 201223 - 0.107 1.381 17k1 0704.07 15240 560 451 239-342 78-391 - 1.692 1.682 200.5 070.075 1814.0 151.7 78-329 201223 - 0.107 1.386 17k1 0704.07 1530 561 23 16320 14202 1.742 2.01 222.4 070.075 1814.0 1527 505 255.379 201223 - 0.92 1.061 16k1 070.075 1120 555 50 51.328 01432 1.284 1.062 1.751 222.3 070.075 1910 535 255.379 201223 - 0.92 0.068 17k1 070.075 1120 555 00 11278 117228 1.120 2.071 200.073 2.081 070.075 1910 535 253.379 201233 - 0.92 0.068 17k1 070.075 1180 75 200 17288 117228 1.120 2.071 204.1 1228 1527 364.1208 201.230 1.023 0.068 2.077 1.061 1.223 17k1 070.075 1180 75 200 17288 11723 1.130 0172 2.074 010.226 6 564 25 77 1.154 2.002 1.201 2.001 2.021 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.002 2.01 3.000 2.01 3.000 2.01 3.000 2.01 5.000 2.01	15X-5	0.70-0.75	139.00	55.75	329-380	278-304	-1.595	1.634			18H-5	0.70-0.75	165.50	48.67	253-278	190-228	0.440	1.563		
100-3 (2):300 (F43) 23:30 (307) 1284 (307) 2005 (307) 5184 (3) 137 332 20223 (125 (142) 173. 070.075 (154) (301) 254 (304) 237 (2008) (126) 1005 (307) 5184 (3) 137 332 20223 (125 (142) 173. 070.075 (154) (301) 254 (301) 252 (142) (170) 1005 (307) 5184 (3) 137 332 20223 (125 (142) 155. 070.075 (1300) (301) 365 (263) 228 (146) (171) 2233 (107) 5184 (3) 137 232 2023 (126 (142) 155. 070.075 (1300) (301) 365 (263) (263) (1728 (142) (170) (163) (122 (152) (170) (163) (122 (152) (170) (163) (122 (152) (170) (163) (122 (152) (170) (163) (122 (152) (170) (163) (122 (152) (170) (163) (122 (152) (170) (163) (122 (152) (170) (163) (122 (152) (163) (122 (152) (163) (122 (152) (163) (122 (152) (163) (122 (152) (163) (122 (152) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (122 (153) (163) (163) (163) (163) (163) (173 (173 (163) (173 (173 (173 (173	16X-1	0.70-0.75	142.70	55.83	329-354	278-354	-1.547	1.371			19H-1	0.70-0.75	169.20	49.24	266-329	202-253	0.222	1.273		
173.3 070.07 154.0 54.0 0.07 200.5 0.07 10.3 0.00.7 10.3 <td>17X-1</td> <td>0.25-0.30</td> <td>148.25</td> <td>55.95</td> <td>329-405</td> <td>304-329</td> <td>-1.798</td> <td>1.845</td> <td></td> <td></td> <td>20X-1</td> <td>0.70-0.75</td> <td>175.40</td> <td>49.90</td> <td>278-329</td> <td>215-253</td> <td>-0.167</td> <td>1.391</td> <td></td> <td></td>	17X-1	0.25-0.30	148.25	55.95	329-405	304-329	-1.798	1.845			20X-1	0.70-0.75	175.40	49.90	278-329	215-253	-0.167	1.391		
Morecovella marginodentaria (Specimum)	17X-3	0.70-0.75	155.40	56.11	329-405	278-304	-2.100	1.828			20X-5	0.70-0.75	181.40	51.57	278-329	202-228	-0.125	1.432		
15X1 0700.75 133.00 25.07 1700.1 22X3 0700.75 18.01 25.07 1700.1 0700.75 1700.1 0700.75 1700.1 0700.75 1700.1 0700.75 1700.1 0700.75 1700.1 0700.75 1700.1 0700.75 1700.1 0700.75 1700.1 0700.75 1700.1 0700.75 1700.1 0700.1 1700.1 0700.1 1700.1 0700.1 1700.1 0700.1 1700.1 0700.1 1700.1 0700.1 1700.1 0700.1 1700.1 1700.1 1700.1 1700.1 1700.1 1700.1 1700.1 1700.1 1700.1 1700.1 1700.1 1700.1 1700.1 1100.1 1700.1 1700.1 1700.1 1700.1 11000.1 11000.1	Moroza	ovella ma	rginoa	lentat	a (5 spe	cimens)					21X-4	0.70-0.75	187.90	52.70	253-304	177-228	-0.505	1.560		
16X-1 107-00.75 14X-10 2583 30.439 228 -1.062 1.751 20X-3 0.700.75 150.49 253.50 20X-3 0.603 20X-3 0.700.75 107.00 107.00.75	1 <i>5</i> X-1	0.70-0.75	133.00	56.12	316-392	164-202	-1.794	2.631			22X-1	0.70-0.75	193.10	53.05	228-278	177-202	-1.029	1.063		
10x3 02-30 14825 \$305 30438 17:202 1.650 3383 23X 0:00.075 05 70 519 19:233 20:223 0.042 0.68 17x1 0:00.075 1540 501 1278380 17:228 1.540 0.79 24X 10:08.061 12:23 5:77 06:32 0:223 1.020 0.55 18X 1: 0:10.075 118 574 23:830 17:223 1.150 288 0.700 75 15:40 5:01 1278380 17:223 1.150 288 0.700 75 15:40 5:01 17:23 1.150 288 0.700 75 10:78 5:10 2:01 17:23 1.150 288 0.700 75 10:78 5:10 2:01 17:23 1.150 288 0.700 75 10:78 5:10 2:01 17:23 1.150 288 0.700 75 10:78 5:10 2:01 17:23 1.150 288 0.700 75 10:78 5:10 2:01 17:23 1.150 288 0.700 75 10:80 2:26 1:36 0:2 5:17 11:160 2:02 1:00 0:01 17:23 1.150 0.11 17:33 10:22 0:13 1:13 1:13 1:13 1:13 1:13 1:13 1:13	16X-1	0.70-0.75	142.70	55.83	304-329	228	-1.662	1.751			22X-3	0.70-0.75	196.10	53.25	253-329	202-253	-0.616	1.424		
17.13 0.70.07 15.40 3.004 3.044 19.24 2.017 2.047 2.047 2.047 2.047 2.047 2.047 2.047 2.041 0.073 <	16X-5	0.25-0.30	148.25	55.95	304-354	177-202	-1.650	3.383			23X-3	0.70-0.75	205.70	54.19	253-329	202-253	-0.942	0.608		
182.1 071.0.75 102.11 267.2 27.44 105.01 102.01 17.22 102.15	17X-1	0.70-0.75	152.40	56.04	329-342	190-228	-2.291	2.047			24X-1	0.58-0.61	212.28	55.27	266-329	202-253	-1.026	0.545		
IBS: 0 or 0.70 (16.37) 5.99) 129.389 (17.215 - 120) Page 1	18X-1	0.71-0.75	162.11	56.74	253-380	152-228	-1.724	2744			24X-4	0.58-0.61 1 Site 7	216.78 58 Hc	56.01 Ιο Δ	2/8-304	177-228	-1.323	0.673		
19X: 10740.75 17140 5742 354380 2523 177 31X. 5075080 5926.5 642 357 402 1.151 2021 1.202 1.203 19X3: 01750.01 11485 570 31X. 5075080 5926.5 642 357 440 1.67 2.203 19X3: 01750.07 11455 570 2033 1.607 3015 5075080 5915 818 403 329 1.804 4.655 1.596 4.519 18X3: 01750.07 11455 571 253.04 177.123 1.400 1.174 2823: 0750.80 291.15 818 403 329 1.804 4.667 4.805 1.596 4.787 19X3: 01700.75 1148 579 253.04 17722 1.787 4.207 1.600 1.407 2823: 0750.80 591.8 818 62 28 1.463 4.867 1.483 4.867 1.853 4.829 1.463 4.867 1.853 4.829 1.463 4.867 1.853 4.829 1.463 4.865 1.552 1.850 4.815 1.851	18X-2	0.67-0.70	163.57	56.91	278-380	177-215	-1.810	2.868			Acarin	ina prae	cursori	a						
19X3. 075.07 17445 5791 201.329 202.43 120.43 202.65 63.02 57 403 164 Subbolina app. (5 perimen) 17X3. 07.067 154.09 514.05 154.09 514.05 120.01 <	19X-1	0.70-0.75	171.80	57.82	354-380	228-253	-1.677	3.225			31X-5	0.75-0.80	292.65	63.62	557	291	-1.154	2.092	-1.201	2.023
200-10 070-075 184.09 38.09 300-432 202-23 1.500 9.205 6.3.0 9.7 4.50 1.500 4.519 1053.10 070.075 155.40 5.611 278.40 1.761 4.202 1.801 4.205 1.501 4.103 4.205 4.159 1053.0 070.075 155.40 5.011 278.40 1.773 4.300 1.776 4.430 1073.0 070.075 181.40 5.002 778.15 5.818 6.150 .778 4.430 121X-10 070.075 191.10 583.6 253.04 1.772 2.837 2.057.080 2.951 5.818 6.70 3.41 4.367 22X-10 070.075 10.10 583.6 2.53.04 1.772 2.437 2.075.080 2.951 5.818 6.70 3.41 4.363 4.206 7.78 2.205 7.21 3.41.20 4.363 4.206 7.78 2.216 7.78 2.216 7.78 2.216 7.78 2.216 7.78 2.216 7.78 2.216 7.78 2.2	19X-3	0.75-0.79	174.85	57.91	291-329	202-228	-1.825	2.773			31X-5	0.75-0.80	292.65	63.62	455	342	-0.777	1.614		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	20X-1 Subbat	0.70-0.75	181.40	58.09	304-329	202-253	-1.520	3.618			31X-5	0.75-0.80	292.65	63.62	557	405	-1.672	2.363		
$ \begin{array}{c} 163.1 \ 0.710.07 \ 163.11 \ 56.14 \ 26.14 \ 201 \ 177.12 \ 1.640 \ 1.174 \ 26.177 \ 162.175 \ 163.14 \ 56.14 \ 26.14 \ 26.148 \ 1.123 \ 26.177 \ 26.175 \ 26.18 \ 45.1 \ 23.27 \ 1.461 \ 45.07 \ 1.857 \ 45.07 \ 45.07 \ 26.07$	17X-3	070.075	(5 specii 155 40	nens) 56 11	278.316	202 253	1.400	0716			Acarin	ina prim	iliva	50.10	120	200				
	18X-1	0.71-0.75	162.11	56.74	240-291	177-215	-1.460	1.174			283-2	0.75-0.80	259.15	58.18	430	329	-1.804	4.655	-1.596	4.519
1973.3 0.750.79 174.85 57.91 253.304 1.177 28X.2 0.750.80 291.15 88.18 632 278 1.463 4.968 1.460 4.867 20X.1 0.700.75 191.10 83.62 253.39 1.271 277.20 28X.2 0.750.80 291.15 81.18 632 278 1.463 4.968 1.460 4.867 21X.1 0.700.75 191.10 83.62 253.39 21.23 1.777 28X.2 0.750.80 291.15 81.18 632 278 1.463 4.968 1.460 4.867 21X.1 0.700.75 101.0 83.67 253.39 202.31 1.462 2.447 22X.10 0.750.80 263.15 59.27 632 354.4 -1.613 5.648 1.497 1.433 4.829 2XX.1 0.750.80 273.5 59.27 632 354.4 -1.635 5.648 1.492 4.799 2XX.1 0.750.80 273.5 59.07 607 304 1.542 4.849 4.441 4.449 4.441 4.	18X-2	0.67-0.70	163.57	56.91	240-291	190-228	-1.324	1.123			28X-2	0.75-0.80	259.15	58.18	455	329	-1.757	4.420		
20X:1 0.70.075 181.40 58.09 278-304 215-255 1.821 2.477 28X:2 0.750.80 259.15 58.18 6.07 304 -1.323 4.857 21X:1 0.700.75 191.10 58.36 253.31 1.77.32 2.477 28X:2 0.750.80 259.15 58.18 6.07 304 -1.323 4.857 22X:1 0.700.75 20.80 58.43 2.532.41 2.556 28X:6 0.750.80 259.27 511 278 -1.633 5.445 -1.65 5.077 312 304 -1.622 4.843 2X:1 0.750.80 273.33 1.772.33 -1.532 2.520 22X:1 0.750.80 267.35 5.067 771 41.642 4.840 2X:1 0.750.40 297.71 0.753.20 273.33 1.772 1.777 207.50 273.33 1.771 233.41 773.41 273.40 273.41 273.40 273.41 273.40 273.41 273.40 273.41 273.41 273.41 273.41 273.41 273.41 273.41 273.41	19X-3	0.75-0.79	174.85	57.91	253-304	177-228	-1.873	0.999			Moroz	ovella ve	lascoer	ısis						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20X-1	0.70-0.75	181.40	58.09	278-304	215-253	-1.622	1.777	4 4 ¹		28X-2	0.75-0.80	259.15	58.18	632	278	-1.463	4.968	-1.460	4.867
$ \begin{array}{c} 21\times 1 & 0.700.73 & 10.110 & 38.36 & 20.3 & 177.202 & 1.743 & 2.477 \\ 22X\times 1 & 0.700.75 & 200.80 & 58.6 & 253.392 & 177.223 & 1.455 & 2.561 \\ 23X\times 1 & 0.700.75 & 200.80 & 58.7 & 253.304 & 177.228 & 1.554 & 2.561 \\ 23X\times 1 & 0.700.75 & 200.80 & 58.7 & 253.304 & 177.228 & 1.259 & 2017 \\ 23X\times 1 & 0.700.73 & 220.20 & 59.7 & 253.304 & 177.228 & 1.259 & 2017 \\ 23X\times 1 & 0.700.73 & 220.20 & 59.7 & 253.304 & 177.228 & 1.259 & 2017 \\ 23X\times 1 & 0.700.74 & 233.99 & 0.03 & 78.332 & 202.228 & 1.458 & 2.550 & 200.750.80 & 267.35 & 59.67 & 607 & 304 & 1.664 & 4.849 \\ 25X\times 1 & 0.700.74 & 253.392 & 0.72.233 & 1.403 & 2.500 & 207.15 & 50.67 & 607 & 304 & 1.658 & 4.968 \\ 26X\times 1 & 0.97.100 & 245.77 & 61.14 & 253.304 & 0.022.28 & 1.421 & 1.232 & 20XX & 0.75.080 & 270.35 & 60.27 & 608 & 608 & 329 & 1.501 & 5093 & 4.861 \\ 27X\times 1 & 0.700.75 & 24.100 & 61.17 & 253.304 & 100.228 & 1.137 & 1.363 & 30X\times 1 & 0.75.080 & 277.05 & 60.86 & 708 & 320 & -1.551 & 4.434 & 409 \\ 27X\times 1 & 0.700.75 & 254.80 & 61.13 & 253.304 & 100.228 & 1.137 & 1.363 & 30X\times 1 & 0.75.080 & 277.05 & 60.86 & 708 & 320 & -1.551 & 4.143 & 4.09 \\ 27X\times 1 & 0.700.75 & 254.80 & 61.13 & 253.304 & 100.228 & 1.137 & 1.396 & 30X\times 1 & 0.75.080 & 277.05 & 60.86 & 708 & 320 & -1.551 & 4.143 & 4.09 \\ 27X\times 1 & 0.700.75 & 254.80 & 61.13 & 253.304 & 100.228 & 1.137 & 1.396 & 30X\times 1 & 0.75.080 & 277.05 & 60.86 & 708 & 320 & -1.551 & 4.143 & 4.09 \\ 27X\times 1 & 0.700.75 & 254.80 & 61.13 & 253.304 & 100.228 & 1.167 & 2.046 & 30XX 3 & 0.75.080 & 270.56 & 688 & 320 & -1.551 & 4.143 & 4.09 \\ 27X\times 1 & 0.700.75 & 254.80 & 61.13 & 253.267 & 177.202 & -1.78 & 2.026 & 31XX 1 & 0.75.080 & 266.56 & 61.65 & 571 & 304 & -1.562 & 31XX & 0.75.080 & 266.56 & 61.65 & 571 & 304 & -1.562 & 31XX & 0.75.080 & 266.56 & 61.65 & 571 & 304 & -1.562 & 31XX & 0.75.080 & 266.56 & 61.65 & 571 & 304 & -1.562 & 31XX & 0.75.080 & 266.56 & 61.65 & 571 & 304 & -1.562 & 31XX & 0.75.080 & 270.56 & 686 & 683 & 980 & -0.672 & -2.64 & 266.278 & 10.972 & -2.64 & 200.561.5 & 59.27 & 514 & 354 & -1.602 & 1.427 & -2.64 & -2.64 & -$	21X-1	0.70-0.75	191.10	58.36	253-304	202-253	-1.821	2.478			28X-2	0.75-0.80	259.15	58.18	607	304	-1.328	4.855		
$ \begin{array}{c} 22 \times 3 & 0.70 + 0.75 & 203 & 0.5 \times 12 & 523 & 0.5 & 223 & 1.55 & 2.56 \\ 22 \times 1 & 0.70 + 0.75 & 203 & 0.5 \times 12 & 523 & 0.5 & 2.53 & 0.5 & 2.55 & 2.56 \\ 23 \times 1 & 0.70 + 0.5 & 203 &$	212-1	0.70-0.75	200.80	58.50	253	177-202	-1.736	2.477			28X-2	0.75-0.80	259.15	58.18	708	316	-1.590	4.778		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22X-3	0.70-0.75	203.80	58.76	253-304	152-228	-1.554	2.556			283-0	0.75-0.80	265.15	59.27	620	329	-1.843	4.987	-1.853	4.829
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23X-1	0.540.56	210.34	59.04	253-291	202-228	-1.466	2.544			28X-6	0.75-0.80	265.15	59.27	531	278	-1.591	4.483		
25X:1 0.790.84 229.89 60.53 278.329 202.33 1.205 2499 29X:1 0.750.80 267.35 59.67 607 304 1.538 4.968 25X:3 0.790.84 2298:6 0.74 253.329 202.228 1.433 2304 29X:1 0.750.80 270.35 607 304 1.538 4.968 26X:1 0.971.100 245.77 60.14 253.304 202.228 1.342 1.923 29X:3 0.750.80 270.35 6022 557 278 1.443 4.499 27X:1 0.700.75 25810 61.32 253.304 190-222 1.187 1.936 30X:1 0.750.80 270.35 60.86 683 329 1.1351 4.484 29X:1 0.700.70 258.80 61.82 253.3201 177-20 1.733 2.222 30X:3 0.750.80 270.35 61.11 531 4.54 4.849 29X:1 0.700.70 288.06 61.82 233.44 1.770.20 1.733 30X:1 0.750.80 200.55 61.11 53	24X-1	0.70-0.73	220.20	59.72	253-304	177-228	-1.259	2.917			29X-1	0.75-0.80	267.35	59.67	734	329	-1.693	5.445	-1.631	5.084
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25X-1	0.79-0.84	229.89	60.53	278-329	202-253	-1.205	2.499			29X-1	0.75-0.80	267.35	59.67	607	304	-1.642	4.840		
$ \begin{array}{c} 20x_{5} 0.97+100 2457 \ 6.014 253.042 17-235 1.385 2.304 \\ 20x_{5} 0.97+100 2457 \ 6.014 253.042 228 1.324 \\ 27x_{1} 0.700.75 248,10 61.24 253.0329 190.228 1.274 1.743 \\ 27x_{3} 0.700.75 252.10 61.33 253 190.022 1.150 1 1837 \\ 27x_{1} 0.700.75 258.10 61.32 253.040.0228 1.189 2.226 \\ 28x_{5} 0.700.75 264.80 61.72 253.304 202.228 1.189 2.226 \\ 20x_{5} 0.700.75 264.80 61.72 253.304 202.228 1.189 2.226 \\ 20x_{5} 0.700.75 264.80 61.72 253.304 202.228 1.189 2.226 \\ 30x_{1} 0.750.80 270.56 0.86 \\ 00x_{3} 0.75-0.80 270.56 0.86 \\ 00x_{3} 0.75-0.80 270.56 0.86 \\ 00x_{3} 0.75-0.80 270.56 \\ 00x_{3} 0.75-0.80 280.56 \\ 0111 \\ 03x_{3} 0.75-0.80 280.56 $	25X-3	0.79-0.84	232.89	60.74	253-329	202-228	-1.453	2.520			29X-1	0.75-0.80	267.35	59.67	607	304	-1.558	4.968		
$ \begin{array}{c} 27X + 0 \ (70 \ 0.075 \ 249.10 \ 61.24 \ 253 \ 259 \ 100 \ 228 \ 1.27 \ 1.743 \\ 27X + 0 \ (70 \ 0.075 \ 249.10 \ 61.24 \ 253 \ 251 \ 0.144 \ 4.499 \\ 27X + 0 \ (70 \ 0.075 \ 252.10 \ 61.32 \ 253 \ 100 \ 228 \ 1.474 \ 1.743 \\ 28X + 0 \ (70 \ 0.75 \ 258.00 \ 61.32 \ 253 \ 0.144 \ 253 \ 253 \ 0.150 \ 2.28 \\ 28X + 0 \ (70 \ 0.75 \ 258.00 \ 61.72 \ 253 \ 0.149 \ 0.228 \ 1.137 \ 1.936 \\ 30X + 0 \ (75 \ 0.80 \ 277.05 \ 60.86 \ 708 \ 329 \ -1.501 \ 50.93 \ 1.506 \ 4.935 \\ 28X + 0 \ (70 \ 0.75 \ 268.10 \ 61.72 \ 253 \ 0.177 \ 202 \ 1.753 \ 2.292 \\ 30X + 0 \ (75 \ 0.80 \ 277.05 \ 60.86 \ 638 \ 329 \ -1.531 \ 4.48 \ 429 \\ 29X + 0 \ (70 \ 0.75 \ 268.10 \ 61.72 \ 253 \ 0.177 \ 202 \ -1.753 \ 2.292 \\ 30X + 0 \ (75 \ 0.80 \ 280.05 \ 61.11 \ 632 \ 304 \ -1.783 \ 4.115 \ -1.587 \ 4.015 \ 30X + 0 \ (75 \ 0.80 \ 280.05 \ 61.11 \ 632 \ 304 \ -1.783 \ 4.148 \ 4.84 $	26X-5	0.97-1.00	239.77	61 14	253,304	202,228	-1.383	1 023			29X-3	0.75-0.80	270.35	60.22	683	304	-1.635	5.048	-1.492	4.799
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27X-1	0.70-0.75	249.10	61.24	253-329	190-228	-1.274	1.743			29X-3	0.75-0.80	270.35	60.22	557	278	-1.599	4.851		
28X-1 0.700.75 258.80 61.53 253.304 190.228 -1.137 1.936 30X-1 0.75.0.80 277.05 60.86 708 380 -1.664 5.228 28X-5 0.700.75 264.80 61.82 253.367 177.202 -1.753 2.292 30X.3 0.75.080 270.05 60.86 683 304 -1.664 5.228 29X-5 0.700.73 264.80 61.82 253.367 177.202 -1.753 2.292 30X.3 0.75.080 280.05 61.11 493 2.53 -1.415 -1.687 4.108 30X-1 0.75.070 728.13 62.12 278.344 190.228 -1.404 1986 30X.3 0.75.080 280.05 61.11 493 -1.428 3.762 31X-1 0.700.75 28.01 62.46 278 177.202 -1.419 1.713 31X-1 0.75.080 286.65 61.65 557 304 -1.553 3.635 31X-1 0.700.75 289.40 62.46 278 177.202 -1.719 1.713 31X-1 <	27X-3	0.70-0.75	252.10	61.33	253	190-202	-1.501	1.837			30X-1	0.75-0.80	277.05	60.86	708	329	-1.501	5.093	-1.506	4.935
28X:5 0.700.75 264.80 61.72 2233.04 22222 30X.1 0.750.80 277.05 6.86 683 329 1.353 4.484 29X:1 0.700.73 264.80 61.82 2237.50 777.022 1.753 2.292 30X.3 0.750.80 280.05 61.11 632 304 -1.763 4.115 -1.587 4.015 30X.1 0.73-0.76 278.13 62.12 278.304 109-228 -1.454 1.986 30X.3 0.750.80 280.05 61.11 531 545 -1.428 3.762 31X.1 0.73-0.75 286.10 62.36 278.316 177-228 -1.419 1.713 31X.1 0.750.80 286.65 61.65 531 304 -1.353 3.635 31X.1 0.70-0.75 286.10 62.36 278 177-202 -1.752 1.640 28X.6 0.750.80 265.15 59.27 541 380 -1.240 2.761 -1.223 2.540 Leg 121 Site 752 Hole B 28X.6 0.750.80 265.15 59	28X-1	0.70-0.75	258.80	61.53	253-304	190-228	-1.137	1.936			30X-1	0.75-0.80	277.05	60.86	708	380	-1.664	5.228		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28X-5	0.70-0.75	264.80	61.72	253-304	202-228	-1.189	2.226			30X-1	0.75-0.80	277.05	60.86	683	329	-1.353	4.484		
$ \begin{array}{c} 30X-3 \ 0.750.80 \ 280.05 \ 61.11 \ 493 \ 253 \ 1.12 \ 4.168 \\ 30X-3 \ 0.750.80 \ 280.05 \ 61.11 \ 531 \ 354 \ 1.428 \ 3.762 \\ 31X-1 \ 0.750.75 \ 280.10 \ 62.18 \ 253.291 \ 177.202 \ 1.598 \ 2.026 \\ 31X-1 \ 0.750.80 \ 280.05 \ 61.11 \ 531 \ 354 \ 1.428 \ 3.762 \\ 31X-1 \ 0.750.80 \ 280.65 \ 61.65 \ 582 \ 380 \ 1.595 \ 3.971 \\ 32X-1 \ 0.700.75 \ 289.10 \ 62.36 \ 278 \ 177.202 \ 1.491 \ 1.713 \\ 31X-1 \ 0.750.80 \ 286.65 \ 61.65 \ 582 \ 380 \ 1.595 \ 3.971 \\ 32X-1 \ 0.700.75 \ 289.40 \ 62.46 \ 278 \ 177.202 \ 1.491 \ 1.713 \\ 31X-1 \ 0.750.80 \ 286.65 \ 61.65 \ 587 \ 304 \ 1.535 \ 3.635 \\ 33X-1 \ 0.750.60 \ 30.97 \ 62.85 \ 253.329 \ 177.202 \ 1.752 \ 1.640 \\ 28X-6 \ 0.750.80 \ 265.15 \ 59.27 \ 544 \ 380 \ -1.240 \ 2.761 \ 1.223 \ 2.540 \\ \ Leg \ 121 \ Site \ 752 \ Hole \ B \\ 28X-6 \ 0.750.80 \ 265.15 \ 59.27 \ 544 \ 3854 \ -1.090 \ 2.304 \\ \ 61.66 \ 380 \ -0.750.80 \ 2.555 \ 59.27 \ 544 \ 386 \ -1.440 \ 2.555 \\ 10R-1 \ 1.051.08 \ 345.15 \ 64.84 \ 253.316 \ 152.190 \ -2.020 \ 2.150 \\ 29X-3 \ 0.750.80 \ 270.35 \ 60.22 \ 506 \ 392 \ -0.977 \ 2.496 \ -0.901 \ 2.568 \\ \ 10R-2 \ 1.00-1.02 \ 347.60 \ 65.06 \ 228-321 \ 139.202 \ -2.760 \ 2.162 \\ 29X-3 \ 0.750.80 \ 270.35 \ 60.22 \ 506 \ 390 \ -0.772 \ 2.496 \ -0.901 \ 2.568 \\ \ 10R-4 \ 0.790.81 \ 350.39 \ 65.48 \ 2283.42 \ 127.202 \ -2.219 \ 2.150 \\ 20X-3 \ 0.750.80 \ 270.35 \ 60.22 \ 506 \ 380 \ -0.978 \ 2.784 \\ \ 10R-4 \ 0.790.81 \ 350.39 \ 65.48 \ 2283.42 \ 127.202 \ -2.219 \ 2.159 \\ \ 30X-1 \ 0.750.80 \ 270.55 \ 60.86 \ 632 \ 380 \ -0.660 \ 2.026 \ -0.603 \ 1.892 \ -0.603 \ 1.89$	29X-1 20X-5	0.70-0.73	268.40	61.83	253-267	177-202	-1.753	2.292			30X-3	0.75-0.80	280.05	61.11	632	304	-1.783	4.115	-1.587	4.015
31X-1 0.70-0.75 280.10 62.18 253-291 177-202 -1.598 2.026 31X.1 0.75-0.80 286.65 61.65 531 304 -1.323 3.763 -1.497 3.790 31X-1 0.70-0.75 280.10 62.36 278-316 177-202 -1.598 2.026 31X.1 0.75-0.80 286.65 61.65 531 304 -1.323 3.763 -1.497 3.790 31X-1 0.70-0.75 289.06 62.46 278 177-202 -1.419 1.713 31X-1 0.75-0.80 286.65 61.65 531 304 -1.535 3.635 33X-1 0.68-0.71 299.08 62.76 266-278 109-202 -1.640 288X-6 0.75-0.80 265.15 59.27 544 380 -1.240 2.761 -1.223 2.540 Leg 121 Site 752 Hole B 28X-6 0.75-0.80 265.15 59.27 519 380 -0.772 2.496 -0.901 2.568 10R-1 1.05-1.08 350.39 65.48 282.316 199-2.2.070 2.	30X-1	0.73-0.76	278.13	62.12	278-304	190.228	-1.870	1.986			30X-3 30X-3	0.75-0.80	280.05	61.11	493	253	-1.551	4.168		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31X-1	0.70-0.75	280.10	62.18	253-291	177-202	-1.598	2.026			31X-1	0.75-0.80	286.65	61.65	531	304	-1.362	3.763	-1.497	3.790
32X-1 0.70-0.75 289.40 62.46 278 177-202 1.19 1.713 31X-1 0.750.080 286.65 61.65 557 304 -1.535 3.635 33X-1 0.680.71 299.08 62.76 266.278 190-202 1.688 1.518 Subbotina pseudoeccaena 59.27 544 380 -1.240 2.761 -1.223 2.540 Leg 121 Site 752 Hole B 28X-6 0.750.80 265.15 59.27 544 380 -1.000 2.304 -2.55 10R-1 1.051.08 346.15 6.484 253.316 152-190 -2.020 2.150 29X-3 0.750.80 260.25 506 392 -0.977 2.496 -0.901 2.568 10R-2 1.00-1.02 347.60 65.06 228.291 139-202 -2.102 2.162 29X-3 0.750.80 270.35 60.22 506 380 -0.747 2.494 -0.603 1.892 10R-4 0.790.81 350.39 65.48 228.34 127.202 -2.217 1.595 Subbotina eccaena	31X-5	0.70-0.75	286.10	62.36	278-316	177-228	-1.345	1.652			31X-1	0.75-0.80	286.65	61.65	582	380	-1.595	3.971		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32X-1	0.70-0.75	289.40	62.46	278	177-202	-1.419	1.713			31X-1	0.75-0.80	286.65	61.65	557	304	-1.535	3.635		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33X-1	0.68-0.71	299.08	62.76	266-278	190-202	-1.683	1.518			Subbo	ina pseu	doeoca	ena						
$ \begin{array}{c} 283.43 & 0.750.80 & 205.15 & 59.27 & 519 & 380 & -1.340 & 2.504 \\ \hline Globorotalia pseudobulloides & (8 specimens) \\ 10R-1 & 1.051.08 & 346.15 & 64.84 & 253.316 & 152.190 & 2.020 & 2.150 \\ 10R-2 & 1.00-1.02 & 347.60 & 65.06 & 228.291 & 139.202 & 2.760 & 2.162 \\ 10R-3 & 1.12-1.15 & 349.22 & 65.30 & 266.367 & 139.190 & 2.303 & 2.306 \\ 10R-4 & 0.79-0.81 & 350.39 & 65.48 & 228.342 & 127.202 & 2.219 & 2.219 \\ 10R-7 & 0.41-0.43 & 354.51 & 66.10 & 278.329 & 101-152 & 2.377 & 1.595 \\ \hline Maggelobigerina pennyi & (9 specimens) \\ 11R-3 & 1.12-1.14 & 358.92 & 66.42 & 266.304 & 177.202 & 2.538 & 3.016 \\ 12R-1 & 1.04-1.07 & 365.44 & 66.96 & 253.316 & 152.202 & 2.718 & 2.280 \\ 12R-3 & 0.10-0.13 & 367.50 & 67.10 & 253.304 & 177.228 & 2.599 & 2.513 \\ 12R-5 & 0.54-0.57 & 370.94 & 67.32 & 253.304 & 177.228 & 2.599 & 2.513 \\ 12R-5 & 0.54-0.57 & 370.94 & 67.32 & 253.304 & 177.228 & 2.599 & 2.513 \\ 12R-5 & 0.54-0.57 & 370.94 & 67.32 & 253.304 & 177.228 & 2.599 & 2.513 \\ 12R-5 & 0.54-0.57 & 370.94 & 67.32 & 253.304 & 177.228 & 2.599 & 2.513 \\ 12R-5 & 0.54-0.57 & 370.94 & 67.32 & 253.304 & 177.228 & 2.599 & 2.513 \\ 12R-5 & 0.54-0.57 & 370.94 & 67.32 & 253.304 & 177.228 & 2.599 & 2.513 \\ 12R-5 & 0.54-0.57 & 370.94 & 67.32 & 253.304 & 177.228 & 2.599 & 2.513 \\ 12R-5 & 0.54-0.57 & 370.94 & 67.32 & 253.304 & 177.228 & 2.599 & 2.513 \\ 30X-3 & 0.75-0.80 & 280.05 & 61.11 & 670 & 380 & -0.721 & 1.540 \\ 30X-3 & 0.75-0.80 & 280.05 & 61.11 & 670 & 380 & -0.721 & 1.540 \\ 30X-3 & 0.75-0.80 & 280.05 & 61.11 & 670 & 380 & -0.721 & 1.540 \\ 30X-3 & 0.75-0.80 & 280.05 & 61.11 & 670 & 380 & -0.721 & 1.540 \\ 30X-3 & 0.75-0.80 & 280.05 & 61.11 & 670 & 380 & -0.721 & 1.540 \\ 30X-3 & 0.75-0.80 & 280.05 & 61.11 & 670 & 380 & -0.721 & 1.540 \\ 30X-3 & 0.75-0.80 & 280.05 & 61.11 & 670 & 380 & -0.721 & 1.540 \\ 30X-3 & 0.75-0.80 & 280.05 & 61.11 & 670 & 380 & -0.721 & 1.540 \\ 30X-3 & 0.75-0.80 & 286.65 & 61.65 & 531 & 405 & -0.756 & 1.437 & -0.852 & 1.442 \\ 14H-1 & 0.70-0.75 & 120.80 & 35.34 & 304-342 & 202-233 & 1.012 & 1.517 \\ 14H-5 & 0.70-0.75 & 126.80 & $	337-3 Leg 12	0.57-0.60 1 Site 7	301.97 52 Ho	02.85 de B	253-329	177-202	-1.752	1.640			28X-6	0.75-0.80	265.15	59.27	544	380	-1.240	2.761	-1.223	2.540
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Globo	rotalia p	seudob	ulloid	es (8	specimer	15)				28X-6	0.75-0.80	265.15	59.27	519	380	-1.050	2.304		
10R-2 1.00-1.02 347.60 65.06 228-291 139-202 2.162 29X.3 0.75-0.80 270.35 60.22 506 380 -0.978 2.784 10R-3 1.12-1.15 349.22 65.30 266-367 139-190 -2.303 2.306 29X.3 0.75-0.80 270.35 60.22 493 380 -0.747 2.424 10R-4 0.79-0.81 350.39 65.48 228-342 127-202 -2.219 2.219 30X-1 0.75-0.80 277.05 60.86 506 367 -0.603 1.892 -0.603 1.892 10R-7 0.41-0.43 354.51 66.10 278.329 101-152 -2.377 1.595 Subbotina eocaena	10R-1	1.05-1.08	346.15	64.84	253-316	152-190	-2.020	2.150			29X-3	0.75-0.80	270.35	60.22	506	392	-0.977	2.496	-0.901	2.568
10R-3 1.12-1.15 349.22 65.30 266-367 139-190 -2.303 2.306 29X-3 0.75-0.80 270.35 60.22 493 380 -0.747 2.424 10R-4 0.79-0.81 350.39 65.48 228-342 127-202 -2.219 2.219 30X-1 0.75-0.80 277.05 60.86 506 367 -0.603 1.892 -0.603 1.892 10R-7 0.41-0.43 354.51 66.10 278.329 101-152 -2.377 1.595 Subbotina eccaena 30X-1 0.75-0.80 277.05 60.86 683 380 -0.660 2.026 -0.873 2.092 11R-3 1.12-1.14 358.92 66.42 266-304 177-202 -2.538 3.016 30X-1 0.75-0.80 277.05 60.86 632 380 -0.663 1.892 12R-1 1.04-1.07 365.44 66.92 253-316 152-202 -2.718 2.280 30X-1 0.75-0.80 280.05 61.11 721 481 -0.653 1.828 -0.799 1.696 12R-5 <	10R-2	1.00-1.02	347.60	65.06	228-291	139-202	-2.760	2.162			29X-3	0.75-0.80	270.35	60.22	506	380	-0.978	2.784		
10R-4 0.79-0.81 350.39 65.48 228-342 127-202 -2.219 2.219 30X.1 0.75-0.80 277.05 60.86 506 367 -0.603 1.892 -0.603 1.892 10R-7 0.41-0.43 354.51 66.10 278.329 101-152 -2.377 1.595 Subbotina eocaena 30X.1 0.75-0.80 277.05 60.86 683 380 -0.603 1.892 -0.603 1.892 11R-3 1.12-1.14 358.92 66.42 266-304 177-202 -2.538 3.016 30X-1 0.75-0.80 277.05 60.86 632 380 -0.603 1.892 -0.603 1.892 12R-1 1.04+1.07 365.44 6.696 253-316 152-202 -2.718 2.280 30X-1 0.75-0.80 270.05 60.86 632 430 -1.093 2.202 12R-5 0.54-0.57 370.94 67.32 253-304 177-228 2.599 2.513 30X-3 0.75-0.80 280.05 61.11 721 481 -0.653 1.828 -0.799 1.696 <	10R-3	1.12-1.15	349.22	65.30	266-367	139-190	-2.303	2.306			29X-3	0.75-0.80	270.35	60.22	493	380	-0,747	2.424		
Subbolina cocaena Subbolina cocaena Rugoglobigerina pennyi (9 specimens) 30X-1 0.750.80 277.05 60.86 632 380 -0.660 2.026 -0.873 2.092 11R-3 1.12-1.14 358.92 66.42 26.634 177.202 -2.538 3.016 30X-1 0.750.80 277.05 60.86 632 380 -0.660 2.026 -0.873 2.092 12R-1 1.04-1.07 365.44 66.96 253-316 152-202 -2.718 2.280 30X-1 0.750.80 277.05 60.86 632 430 -1.093 2.202 12R-3 0.10-0.13 367.50 67.10 253-304 177-228 2.599 2.513 30X-3 0.75-0.80 280.05 61.11 721 481 -0.653 1.828 -0.799 1.696 12R-5 0.54-0.57 370.94 67.32 253-304 164-215 -2.988 2.759 30X-3 0.75-0.80 280.05 61.11 696 405 -1.022 1.721 Leg 121 Site 757 Hole B <t< td=""><td>10R-4</td><td>0.79-0.81</td><td>350.39</td><td>65.48</td><td>228-342</td><td>127-202</td><td>-2.219</td><td>2.219</td><td></td><td></td><td>30X-1</td><td>0.75-0.80</td><td>277.05</td><td>60.86</td><td>506</td><td>367</td><td>-0.603</td><td>1.892</td><td>-0.603</td><td>1.892</td></t<>	10R-4	0.79-0.81	350.39	65.48	228-342	127-202	-2.219	2.219			30X-1	0.75-0.80	277.05	60.86	506	367	-0.603	1.892	-0.603	1.892
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rupno	0.41-0.43 lobioerir	334.31 1a penn	01.00 01.00	80ecim+) specim+	101-152 ns)	-2.577	1.595			30000	075.080	ena 27205	60.96	693	360	.0.660	2 026	0.077	2 002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11R-3	1.12-1.14	358.92	66.42	266-304	177-202	-2.538	3.016			30X-1	0.75-0.80	277.05	60.86	632	380	-0.867	2,040	-0.0/3	2.072
12R-3 0.10-0.13 367.50 67.10 253-304 177-228 2.513 30X-3 0.75-0.80 280.05 61.11 721 481 -0.653 1.828 -0.799 1.696 12R-5 0.54-0.57 370.94 67.32 253-304 164-215 -2.988 2.759 30X-3 0.75-0.80 280.05 61.11 670 380 -0.721 1.540 Leg 121 Site 757 Hole B 30X-3 0.75-0.80 280.05 61.11 670 380 -0.721 1.540 Subbotina spp. (6 specimens) 31X-1 0.75-0.80 286.65 61.65 531 405 -0.756 1.437 -0.852 1.442 14H-1 0.70-0.75 126.80 37.28 266-354 177-240 1.040 1.493 31X-1 0.75-0.80 286.65 61.65 531 316 -0.925 1.351	12R-1	1.041.07	365.44	66.96	253-316	152-202	2.718	2.280			30X-1	0.75-0.80	277.05	60.86	632	430	-1.093	2.202		
12R-5 0.54-0.57 370.94 67.32 253-304 164-215 2.988 2.759 30X-3 0.75-0.80 280.05 61.11 696 405 -1.022 1.721 Leg 121 Site 757 Hole B 30X-3 0.75-0.80 280.05 61.11 670 380 -0.721 1.540 Subbotina spp. (6 specimens) 31X-1 0.75-0.80 286.65 61.65 531 405 -0.756 1.437 -0.852 1.442 14H-1 0.70-0.75 120.80 35.34 304-342 202-253 1.012 1.517 31X-1 0.75-0.80 286.65 61.65 506 329 -0.876 1.537 14H-5 0.70-0.75 126.80 37.28 266-354 177-240 1.040 1.493 31X-1 0.75-0.80 286.65 61.65 531 316 -0.925 1.351	12R-3	0.10-0.13	367.50	67.10	253-304	177-228	-2.599	2.513			30X-3	0.75-0.80	280.05	61.11	721	481	-0.653	1.828	-0.799	1.696
Leg 121 Sile 75/ Hole B 30X-3 0.75-0.80 280.05 61.11 670 380 -0.721 1.540 Subbotina spp. (6 specimens) 31X-1 0.75-0.80 286.65 61.65 531 405 -0.756 1.437 -0.852 1.442 14H-1 0.70-0.75 120.80 35.34 304-342 202-253 1.012 1.517 31X-1 0.75-0.80 286.65 61.65 506 329 -0.876 1.537 14H-5 0.70-0.75 126.80 37.28 266-354 177-240 1.040 1.493 31X-1 0.75-0.80 286.65 61.65 531 316 -0.925 1.351	12R-5	0.54-0.57	370.94	67.32	253-304	164-215	-2.988	2.759			30X-3	0.75-0.80	280.05	61.11	696	405	-1.022	1.721		
14H-1 0.70-0.75 120.80 35.34 304-342 202-253 1.012 1.517 31X-1 0.75-0.80 286.65 61.65 531 405 -0.756 1.437 -0.852 1.442 14H-5 0.70-0.75 120.80 35.34 304-342 202-253 1.012 1.517 31X-1 0.75-0.80 286.65 61.65 506 329 -0.876 1.537 14H-5 0.70-0.75 126.80 37.28 266-354 177-240 1.040 1.493 31X-1 0.75-0.80 286.65 61.65 531 316 -0.925 1.351	Leg 12	1 dite 7	5/ Ho	bie B	enc)						30X-3	0.75-0.80	280.05	61.11	670	380	-0.721	1.540	0.077	
14H-5 0.70-0.75 126.80 37.28 266-354 177-240 1.040 1.493 31X-1 0.75-0.80 286.65 61.65 531 316 -0.925 1.351	14H-1	0.70-0.75	120.80	35.34	304.347	202-253	1.012	1.517			31X-1	0.75-0.80	280.65	01.65	531 506	405	-0.756	1.437	-0.852	1.442
	14H-5	0.70-0.75	126.80	37.28	266-354	177-240	1.040	1.493			31X-1	0.75-0.80	286.65	61.65	531	316	-0.925	1.351		

Appendix A. (continued).

13
ave.
2.593

•