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This paper presents a new Smoothed Particle Hydrodynamics (SPH) parallel framework, which is designed 
for free surface flows and is scalable on a High Performance Computer (HPC). The framework is 
accomplished by adopting a Message Passing Interface (MPI) approach with a domain partitioning 
strategy. A regular background grid is used to partition the entire computational domain and each 
subdomain is labelled using an index ordering method. Adjacent subdomains can be determined by the 
index list, and avoid global communications in the particle distribution process. Within the local grid, 
the grid is divided into an internal grid as well as an interactive grid to identify the particles for which 
information is to be transferred. The implementation of the dynamic loading balance strategy considers 
two different ways of determining loading: computation particle numbers and running time. The dynamic 
load balance strategy repositions neighbouring subdomains based on the local load imbalance between 
cores. To demonstrate the framework’s capacity and distinctive properties, a variety of free surface 
flow benchmarks are studied. Intensive numerical experiments at various scales are used to assess the 
performance in detail.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian mesh-
free method that was originally used to study problems of astro-
physical gas dynamics formulated approximately forty years ago by 
Gingold and Monaghan [12] and Lucy [21]. Since Monaghan [28]
first used SPH to study free-surface flows, SPH has been used to 
study various free surface flow problems [32,34,19,23,22]. The in-
teractions between particles are built, based on the kernel function 
which represents the derivatives of continuous fields in a discrete 
form. SPH is deemed to be an ideal technique to simulate interfa-
cial flows with large deformation [6,38,37]. The interface can be 
automatically detected without special interface detection treat-
ment. The particles with physical properties can move arbitrarily, 
and complex interfaces can be reproduced well. Thus, sizeable free 
surface deformation, such as splashing [39,31], wave breaking [14], 
and so on, can be simulated naturally. However, the SPH model is 
known to be an expensive model with high computational costs. 
Each particle should be interpolated with tens or even hundreds 
of neighbouring particles. The number of neighbouring particles 

✩ The review of this paper was arranged by Prof. David W. Walker.

* Corresponding author.
E-mail address: siming.zheng@plymouth.ac.uk (S. Zheng).
https://doi.org/10.1016/j.cpc.2022.108608
0010-4655/© 2022 The Author(s). Published by Elsevier B.V. This is an open access artic
in SPH is far greater than the number of neighbouring nodes 
for mesh methods (finite volume method (FVM), finite element 
method (FEM), and so on) [4]. Secondly, modelling incompress-
ible fluids requires a small time step (weakly compressible SPH 
model) or solving the pressure Poisson equation (Incompressible 
SPH model). For the scale of engineering problems, SPH models 
often require the simulation of millions or even tens of millions of 
particles, which leads to significant time consumption. The use of 
hardware acceleration and parallel programming is an option for 
achieving efficient computation of large particle numbers. Hard-
ware acceleration is the specialist use of computing hardware to 
achieve more efficiency. Hardware acceleration is utilised through 
parallel programming which can be implemented through high 
performance computing on multiple CPU cores or through hard-
ware architecture such as the graphics processing unit (GPU) [7,5].

Several parallel frameworks exist for the large-scale parallel 
simulation of SPH methods. Ihmsen et al. [16] introduced a parallel 
framework for simulating fluids using the SPH methods. Efficient 
parallel neighbourhood inquiries were suggested and evaluated for 
low computing costs per simulation step. To reduce the processing 
time for whole simulation sequences even further, solutions for op-
timising the time step and its implications for parallel implemen-
tations were examined. Cherfils et al. [3] developed JOSEPHINE, 
a parallel SPH code, for solving unstable free-surface flows. The 
dynamic loading balancing strategy in JOSEPHINE considered the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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dynamic loading differences between adjacent subdomains. The re-
sults showed that parallelism provided for a substantial decrease 
in processing time, especially when dealing with a high number 
of particles. DualSPHysics [8] is a hardware-accelerated SPH pro-
gram designed to handle issues involving free-surface flow. Dual-
SPHysics is an open-source software project that was created and 
distributed under the GNU General Public License (GPLv3). Along 
with the source code, a comprehensive set of instructions for com-
piling and running the source files is also included. DualSPHysics 
is accelerated by up to two orders of magnitude as compared to 
the serial version thanks to the parallel power processing of GPUs. 
DualSPHysics has been proven to be both efficient and trustworthy 
[9]. Various key points related to the specificities of the particle 
methods for their massive parallelisation on distributed memory 
were presented and discussed by Oger et al. [30]. Both the Orthog-
onal Recursive Bisection (ORB) and the particle domain updating 
procedures were presented and tested in terms of parallel effi-
ciency for cases involving a large number of particles. The model 
was then tested on massive particle discretisation involving up to 
3.2 billion particles and 32,768 cores, showing some good paral-
lel efficiencies in both strong and weak scaling measurements. A 
new massively parallel scheme is developed by Guo et al. [13], 
to simulate free-surface flows with ISPH method for simulations 
involving more than 100 million particles. The new scheme uses 
a Hilbert space-filling curve with a cell-linked list to map the 
entire domain so that domain decomposition and load balancing 
can be achieved while taking advantage of the geometric local-
ity to reduce cache access latency. Ji et al. [17] present a new 
multi-resolution parallel framework, which is designed for large-
scale SPH simulations of fluid dynamics. An adaptive rebalancing 
criterion and monitoring system is developed to integrate the Cen-
troidal Voronoi Particle (CVP) partitioning method as a rebalancer 
to achieve dynamic load balancing of the system. In addition, there 
is much work in the literature on hardware acceleration of the SPH 
model [11,26,10,33,35].

This paper focuses on distributed memory parallelisation of the 
SPH method by Message Passing Interface (MPI) libraries. Domain 
decomposition consists of geometrically subdividing the computa-
tional domain into as many smaller subdomains as desired, and 
performing solutions in a processor corresponding to a subdomain. 
Using MPI data communications among processes, the SPH nu-
merical results can be reconstructed on the whole domain. We 
develop a new SPH parallel model for modelling the free surface 
problem. A regular background grid is used to partition the entire 
computational domain and each subdomain is labelled using an 
index ordering method. Within each subdomain, the classical reg-
ular grid is used to search for neighbouring particles. Within the 
local grid, the grid is divided into an internal grid as well as an in-
teractive grid to identify the particles for which information is to 
be transferred. To consider the dynamic loading balance, two load-
ing measures, computation particle number and running time, are 
discussed. The subdomains adjust the boundary positions accord-
ing to the load distribution to meet the load balance requirements. 
An initial load balance strategy is set up to ensure that the ini-
tial phase of loading balance is achieved. The remainder of the 
paper is organised as follows. In §2, we first briefly review SPH 
model theory. The main contribution in this paper is presented in 
§3 and §4. The parallel framework is presented in §3. Dynamic 
load balance strategy is elaborated in §4. In §5, the free surface 
problems were simulated to validate the parallel framework. Load-
ing strategies based on different criterions are compared. Parallel 
performance is also examined. Concluding remarks are given in §6.
2

2. SPH model

In this study, the flow is assumed to be viscous, weakly–
compressible, and adiabatic. The adopted governing equations con-
sist of the Navier–Stokes equations in the Lagrange framework:⎧⎪⎪⎨
⎪⎪⎩

du
dt = − 1

ρ ∇p + Fα + g,

dρ
dt = −ρ∇ · u,

dr
dt = u,

(1)

where ρ , u, t , r and p denote the density, velocity vector, time, 
position vector and pressure, respectively. Fα is the viscosity term 
and g represents the gravitational acceleration. The governing 
equation can be discretized by an SPH approximation. According 
to the work in [20], the discrete pressure gradient can be written 
as:

− 1

ρi
∇pi = − 1

ρi

∑
j

(p j + pi) · ∇i W ij V j, (2)

where W ij = W (ri − r j, h) is the kernel function, h is the smooth-
ing length defining the influence area. Subscripts i and j denote 
the particle index. V j is the volume of the particle (V j = m j /ρ j , m
denotes mass).

The artificial viscosity term can be added to the momentum 
equation to produce bulk and shear viscosity and also to stabilise
the scheme as follows [29]

Fα =
∑

j

αhcs
(u j − ui) · (r j − ri)

|r j − ri|2 · ∇i W ij V j, (3)

where cs is numerical sound speed, and α = 0.01 is artificial vis-
cosity factor. The velocity divergence can be discretized as [20]

−ρi∇ · ui = −
∑

j

(u j − ui) · ∇i W ij V j, (4)

where ui is the velocity of particle i. Spurious numerical oscilla-
tions generally exist in the pressure and density fields for tradi-
tional weakly compressible SPH. The δ–SPH model [1] is employed 
to avoid spurious high–frequency oscillations

δhc
∑

j

�i j · ∇i W ij V j, (5)

where δ = 0.1 [25,31] for all the following cases and⎧⎪⎨
⎪⎩

�i j = 2(ρ j − ρi)
r j−ri

|r j−ri |2 − (〈∇ρ〉L
i + 〈∇ρ〉L

j ),

〈∇ρ〉L
i = ∑

j(ρ j − ρi)Li∇i W ij V j, where

Li = [∑
j(r j − ri) ⊗ ∇i W ij V j

]−1
(6)

where ⊗ denotes tensor product. With the artificial diffusive δ

term introduced, the continuity equation can be re-written as

dρ

dt
= −

∑
j

(u j − ui) · ∇i W ij V j + δhc
∑

j

�i j · ∇i W ij V j . (7)

Meanwhile, the fluid pressure is related to the density explicitly 
according to the concept of artificial compressibility. Then, the 
pressure is obtained through the equation of state as

p = (ρ − ρ0)c2
s , (8)

where ρ0 is initial fluid density. In the present simulation, a 
prediction–correction time–stepping scheme is applied [27]. Fol-
lowing [25] and [2], the present model uses the regular fixed ghost 
particles that are created to represent the solid boundary. Particle 
shifting method [18] is also used to avoid errors due to grossly 
irregular distribution of particles.
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Fig. 1. Sketch of the 2-D domain decomposition and grid index list.
3. Parallelisation SPH framework

Contrary to Eulerian grid-based methods, SPH is a Lagrange 
mesh-free method with particles. This specificity causes some 
problems: (i) The interpolation-based kernel support domain gen-
erally includes a lot of neighbouring particles. The size of the 
support domain depends on the smoothing length. For a particle 
near the subdomain boundary, there is an interpolation trunca-
tion due to domain decomposition, and so it requires adjacent 
subdomains to allow particle-to-particle interactions. The particle 
searching process for a particle in one subdomain should include 
particles in neighbouring subdomains. (ii) The particles in one sub-
domain may move into another one, and so some strategies should 
be introduced to transfer particles. (iii) Load balance strategy. The 
transfer of particles between different processors may result in 
various numbers of particles per processor. Simulating a complex 
free surface flow with the SPH model usually results in irregularly 
distributed particles across the computational domain. Different 
numbers of particles lead to different computational costs for each 
processor. Load-unbalance affects parallel efficiency. Therefore, in 
the development of a parallel SPH framework, we need to address 
several of these issues.

3.1. Domain decomposition

Firstly, we need to decompose the entire computational domain 
into several subdomains. Each subdomain corresponds to a core. 
Domain decomposition is achieved by using a fictitious background 
Cartesian grid. Here, we do not consider load balancing strategies, 
but rather focus on the completion of a parallel framework. Thus, 
the background grid is fixed in time during the entire simula-
tion, as shown in Fig. 1. Each grid denotes a subdomain. K and 
M denote the number of grids in x and z directions of the whole 
simulation domain. The length and height of the whole domain 
are denoted by Lx and Lz , respectively. If the region decomposi-
tion is homogeneous over the entire computational domain, the 
size (lx, lz) of each grid can be determined by

(lx, lz) =
(

Lx

K
,

Lz

M

)
. (9)

The parallelisation of the background meshes was not easy. We 
need to determine each mesh to prevent race conditions for the 
particle input process, i.e., multiple threads inputting the same 
particle at the same time. To overcome this issue, the subdomains 
should be marked and each of them shall correspond to a unique 
core. Here, the index sort method is used to get grid index Ci(k, m)

(i = 0, 1, ·, Nc − 1, k = 0, 1, ·, K − 1, m = 0, 1, ·, M − 1, Nc = K ∗ M
is the total core numbers). The grid index C(k, m) is computed as
3

C(k,m) = k ∗ M + m. (10)

Note that the index C(k, m) of each subdomain is unique. In the 
basic uniform grid, particle i with position ri = (xi, zi) is inserted 
into one spatial grid with coordinates C(k, m). After determining 
the boundary for each subdomain, we can find a unique corre-
sponding grid C for every particle according to the position ri . The 
sorted particle array is processed in parallel. Thus, with the above 
strategy, we mark all particles and assign them to the correspond-
ing subdomains.

3.2. Message passing

In the SPH method, the interpolation of a particle requires con-
tributions from its neighbouring particles. Thus, a particle around 
the subdomain boundary requires message from particles in adja-
cent subdomains to ensure kernel support integrity. It needs to be 
identified: (i) lists of adjacent subdomains and (ii) the particles in 
each subdomain that need to be passed.

3.2.1. Lists of adjacent subdomains
According to the domain decomposition method, a fixed reg-

ularly distributed background grid is used, and each grid has a 
unique sort index C(k, m). Adjacent subdomains for grid C(k, m)

represent all surrounding grids that are in contact with this grid, 
and their sort indexes are C(k − 1, m − 1), C(k − 1, m), C(k −
1, m + 1), C(k, m − 1), C(k, m + 1), C(k + 1, m − 1), C(k + 1, m)

and C(k + 1, m + 1) for a grid C(k, m). For some subdomains near 
the boundary of the entire computational domain, which are not 
fully surrounded by other subdomains, the rule should be adjusted 
accordingly. This strategy is entirely based on the grid index list. If 
the subdomain division does not change, then this list of adjacent 
grids applies to the entire calculation process.

3.2.2. Interaction particles
In the SPH method, the search of the neighbour particles is 

based on the mutual distance of the interpolation points [11]. With 
the help of the background mesh, the links between particles and 
their neighbouring particles are locally constructed, which are used 
in the calculation, as shown in Fig. 2. The minimum side length of 
a mesh must equal the size of the support domain. Thus, there 
is a local neighbouring mesh list in each subdomain, which has 
the same sort index C(K, M) as introduced in the work of do-
main decomposition. C is the local index for neighbouring particle 
search. It is found that message passing is only required for parti-
cles in the meshes besides subdomain boundaries. The meshes that 
do not have any interaction with adjacent subdomains are named 
as ‘interior meshes’, and the meshes that influence adjacent sub-
domains are, called ‘interactive meshes’. Each subdomain needs to 
be divided by a small grid in order to perform particle searches. 
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Fig. 2. Illustration of message passing. (a) Local neighbouring particle list, interior meshes and interactive meshes; (b) Interactive meshes message passing from adjacent 
subdomains. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Illustration of dynamic load balance strategy along y direction. (a): When La < Lb , subdomain boundary is shifted to subdomain b by da to reduce loading imbalance; 
(b) When La > Lb , subdomain boundary a is shifted to subdomain by db to reduce loading imbalance.

Fig. 4. Illustration of dynamic load balance strategy along x direction. (a): When L A < LB , subdomain boundary is shifted to subdomain set B by dA to reduce loading 
imbalance; (b) When L A > LB , subdomain boundary is shifted to subdomain set A by dB to reduce loading imbalance.
4
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Fig. 5. Flowchart of SPH parallel framework.
Fig. 6. Sketch for two-dimensional dam break problem.

However, the subdomain size is sometimes not exactly divided by 
the grid. This means that the local meshes of neighbouring sub-
domains are not perfectly matched. Therefore, the two-layer mesh 
near the subdomain boundary needs to be considered. As the local 
neighbouring particle list, the interactive meshes can be deter-
mined by

∀ C ∈ [K < 2 ∨K> (K− 3) ∨M< 2 ∨M > (M− 3)]
=⇒ C ∈ Interactive meshes, (11)

where K and M denote the number of grids in the x and z di-
rections of the local neighbouring search mesh. As a result, this 
5

procedure dedicated to finding the interactive meshes should be 
completed just before the message passing. Then particles in the 
interactive meshes are interaction particles.

According to the region decomposition strategy, any subdomain 
is a regular quadrilateral. All subdomain boundaries are uniquely 
determined. Particle information can be reloaded into a new core 
based on the particle’s position. At same time, the particle infor-
mation is deleted from the previous core. Thus, the transfer of 
particles among cores is carried out by the deletion and addition 
of particle information. Since the displacement of the particle at 
each time step is small relative to the subdomain size, the transfer 
of particles only takes place in adjacent subdomains, which further 
narrows the choice of new subdomains for particles.

4. Dynamic load balance

As a Lagrangian particle-based method, SPH particles could 
move from one processor to another processor. In some particular 
cases, particles will be present in large numbers in one proces-
sor and in small numbers in other processors. In the numerical 
calculation of SPH, the number of SPH particles is related to the 
calculation load. At the same time, the computational time spent 
on the whole calculation process depends on the processor with 
the longest computational time. The uneven distribution of com-
putational effort between processors is called ‘load imbalance’. One 
of the biggest problems with load imbalance is that it reduces the 
speed of computation. This is because when a processor with a 
small number of particles has completed calculation, it needs to 
wait for a processor with a larger load to complete the compu-



G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 7. Domain decomposition for test (a), (b), (c), and (d) at t = 0 s, 1.0 s, and 1.9 s. (Label ‘1’, ‘2’, and ‘3’ denote t = 0 s, 1.0 s, and 1.9 s, respectively.) Each subdomain is 
shown in a different colour.
tation before it can start the next time step. Therefore, we need 
to specify special methods to ensure that each processor is loaded 
equally at each time step in order to maximise the efficiency of 
parallelism.

4.1. Computation load

4.1.1. Computation particle numbers
The distribution of the number of particles has a direct relation-

ship to the computational loading. Thus, the measurement of the 
calculation load in each core is translated into a measurement of 
the number of particles. The load balancing problem is converted 
into a geometric problem, i.e. the number of particles in each 
region is guaranteed to be balanced by geometric division. Compu-
tational load balance strategies based on the number of particles 
6

are widely considered in published works [11,16,3,30,13]. In these 
works, the entire computational domain is discretized into regu-
lar meshes. The meshes are grouped into subdomains by means of 
space-filling curves or division methods. The load balance of the 
subdomains is balanced taking into account the number of parti-
cles in these meshes.

In the present SPH model, the calculation particle numbers Ncn

can be calculated as

L = Ncn = N f + Nw + Nin + Nip, (12)

where N f , Nw , Nin , and Nip are the numbers of fluid particles, 
wall particles, interpolation nodes, and interaction particles from 
other processors. L denotes computation load.
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Fig. 8. History of calculation particle numbers Ncn . (Label ‘a’, ‘b’, ‘c’ and ‘d’ denote tests (a), (b), (c), and (d), respectively.)

Fig. 9. History of running time ts in each core. (Label ‘a’, ‘b’, ‘c’ and ‘d’ denote tests (a), (b), (c), and (d), respectively.)
7
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Fig. 10. History of ratio of check time tcheck to running time ts in each core for case 
(d).

However, there are several problems with the division based 
on calculating the number of particles. Firstly, the computational 
cost of various nodes/particles is inconsistent. For example, fixed 
ghost particles need an additional cost to determine their physical 
quantities. Thus, fluid particles near walls and fixed ghost particles 
require more computational effort. In addition, the correlation be-
tween the calculation load and the number of particles decreases 
if there are severe inhomogeneous distributions in the subdomains 
such as fragmentation, splashes, complex interface, etc. In the case 
of irregular distribution, the support domain of a particle is not 
fully filled with neighbouring particles. Even if the number of par-
ticles is the same, it does not mean that the number of particle 
pairs is the same. A parallel strategy based on computation parti-
cle numbers cannot guarantee a consistent computational cost in 
each core.

4.1.2. Running time
At each time step, the parallel SPH code is divided into two 

main parts: MPI communication and SPH solver. MPI communi-
cation represents the transfer of particle data between different 
cores. SPH solver represents the numerical solution of the SPH 
model, including neighbouring particle search, boundary condi-
tions and solution of the Navier-Stokes equation. The load balance 
needs to take into account all of these components to achieve per-
fect results. However, in the current SPH code, we use M P I − Send
and M P I − Recv for point-to-point communication. Communica-
tion load is not only affected by the number of transfer particles, 
but also communication blocks, which make it difficult to take into 
account the load balance of MPI communication for large-scale MPI 
parallel problems.

A more simple and reliable way to evaluate computational load-
ing is to use running time. The main purpose of dynamic load 
balance is to improve parallel efficiency, i.e., to ensure that the 
computation time cost is consistent in each core. Running time 
based load balance ignores the complexity of the SPH process 
(code) and directly considers the primary purpose of load balance 
strategy. Moreover, the variability of core performance is already 
implicitly included. The calculation load L can be calculated as

L = ts, (13)

where ts denotes the time cost for SPH process (not including com-
munication cost) in each core. The greater the time consumption, 
the more the computational load. However, it seems like it requires 
us to run the code at the beginning of each time step to obtain the 
time cost of each core. It means that we need to run the code at 
8

least twice at each time step. The update of particle position is 
small due to small SPH time step. Thus, the information about the 
time cost of each core at the previous time step can be used as a 
computational load distribution to optimise subdomain partition-
ing

Ln = tn−1
s , (14)

where Ln is the computational load at nth time step. tn−1
s is the 

time cost at nth − 1 time step. The message of subdomain division 
at previous time is also recorded as a reference.

4.2. Subdomain update

In most previously published studies, the entire computational 
domain is divided into small grids. These small grids are then 
searched using space-filling curves. The combination of small 
meshes along the space-filling curve can achieve load balance. 
However, this approach would result in a completely new subdo-
main division, which cannot refer to the SPH time of the previous 
time step when considering the SPH time balance. In the present 
parallel strategy, the computational domain has been delineated 
as regular subdomains and marked by grid index list. Therefore, 
to achieve dynamic loading balance, subdomains are updated by 
changing the subdomain boundaries (size). This leads to the ad-
justment of its neighbouring subdomain boundaries, to ensure 
subdomains have no overlapping parts.

At each time step, many particles flow into and out of the sub-
domain. The inflow and outflow of particles at the boundary of 
a subdomain are shown in Fig. 3. The calculation loads are La and 
Lb for subdomain a and b, respectively. The change of boundary re-
quires the determination of a reference position. For this purpose, 
we record the position of the particle furthest from the boundary 
as the reference position. The positions of the inflow and outflow 
particles furthest from the subdomain boundary are denoted as 
da and db , respectively. However, there is no inflow and outflow 
particle along subdomain boundary sometimes, so then a parti-
cle spacing is used as a reference position. When La > Lb , the 
boundary along the y-axis direction should be shifted inside the 
subdomain a to da in order to reduce the size of the subdomain 
A to ensure there is a load balance between subdomains a and 
b. When La < Lb , the boundary should be moved inside the subdo-
main b to db in order to increase calculation loads in subdomain b. 
The change in boundaries causes the division of subdomains to be-
come irregular. To be able to continue using the grid index list, we 
set the subdomains of the same column to have the same bound-
aries along the x-axis. When considering changes in the boundaries 
of subdomains along the x-axis, we need to consider all subdo-
mains in the same column as a whole, called set A and B as shown 
in Fig. 4. The rules of subdomain boundaries along x-axis direc-
tion are the same as the those along y-axis direction, as shown 
in Fig. 4. Total calculation particle numbers in set A and B are 
considered as the computation load for the balance strategy based 
on calculation particle numbers. While the maximum SPH time in 
set A and B is used as computation load for load balance strategy 
based on running time.

To achieve load balance of the system, an accurate evaluation of 
load is important. Evaluation of the load situation allows the de-
termination of whether to implement the dynamic load balancing 
strategy. We define an imbalance monitoring tag as

Ei,max = Lmax
S − Lmin

S

Lavg
S

< ed, (15)

where Ei,max is max error for all cores, ed is user defined error 
tolerance. Lmax

S , Lmin
S , and Lavg

S denote max, min, and average cal-
culation load for all cores. Once max error Ei,max is greater than 
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Fig. 11. Subdomain distribution at t = 2.0 s (a), 2.5 s (b), 3.0 s (c), 3.5 s (d), 5.0 s (e) and 9.0 s (f).
the set value, the dynamic load balancing strategy can be imple-
mented. In addition, this criterion also applies to the local load 
balance distribution Ei as follows

Ei = La − Lb

La
< ed. (16)

This means that the load balance between local cores is not simul-
taneous, but depends on the local load balance distribution. The 
check of dynamic loading balance can be implemented for every 
few tens or hundreds of time steps. This depends on the definition 
of the user.

It takes some time to obtain load balance for initially unstable 
fluid problems. Thus, we develop an initial load balance strategy to 
maintain the initial homogeneous load balance. Initially, the entire 
computational domain is divided evenly. The subdomain bound-
ary positions are then updated according to calculation loads. This 
9

approach is the same as the dynamic loading balance strategy 
described above. The subdomain boundaries are continuously ad-
justed until the conditions of Eq. (15) are met. The maximum 
number of iterations (Number of adjustments) is set to 1000, and 
the physical information of the particles is not updated in the ini-
tial homogeneous load balance.

A detailed flowchart of the developed framework is presented 
in Fig. 5 to summarise all the algorithms. The code is written in 
FORTRAN using open source libraries OpenMPI. If not specifically 
stated, studies in this paper are conducted on the Fotcluster2 in 
High Performance Computer Centre in University of Plymouth. Fot-
cluster2 is a 752 core distributed-memory cluster, which is com-
prised of: a 3U combined head & storage node, plus 56 compute 
nodes. The tests are conducted on the phase2 consisting of 36 
Viglen H X425T 2i HPC 2U Compute Nodes, equipped with Dual In-
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Fig. 12. The heat map of SPH time for the dam break case with 1,000,000 fluid 
particles and 200 cores. Fig. 13. Time series of water front.

Fig. 14. Side view sketch of physical model [15].
tel Xeon E5650 (Westmere) Six Core 2.66 GHz processors and 12 
GB of memory per motherboard.

5. Numerical validation

5.1. Dam breaking

Dam breaking is widely investigated in the SPH literature, since 
this case shows the ability of SPH models to deal with large de-
formation problems. The deformation of the water phase can be 
used to validate the dynamic load balance strategy. Fig. 6 shows a 
sketch of the initial setup, where the reservoir height is H = 1.0 m, 
length and height of the tank are d = 5.366H and D = 3.0H . Ini-
tial particle spacing is 0.01 m, and 20,000 fluid particles are used. 
Time step is 0.0005 s, and numerical sound speed is c0 = 10

√
g H . 

A total of 12 cores, 6 cores along the x-direction and 2 cores 
along the y-direction, are used. Four tests are employed here for 
a comprehensive assessment of the performance: (a) dynamic load 
balance strategy based on calculation particle number, fluid do-
main uniformly divided at the beginning; (b) dynamic load balance 
strategy based on calculation particle number with initial homoge-
neous load balance; (c) dynamic load balance strategy based on 
10
running time, fluid domain uniformly divided at the beginning; (d) 
dynamic load balance strategy based on running time with ini-
tial homogeneous load balance. ed is 0 for all these four cases. 
The check of dynamic loading balance can be implemented at each 
time step.

Fig. 7 compares the division of the computational domain for 
test (a), (b), (c), and (d) at t = 0 s, 1 s, and 1.9 s. Although the 
initial divisions are the same for tests (a) and (c), the division of 
subdomains showed some differences at 1.0 s and 1.9 s because 
of different load balance strategies. Although tests (a) and (b) ((c) 
and (d)) use the same load balance strategy, there are still some 
differences between the divisions at 1.0 s and 1.9 s due to the 
different divisions initially.

Fig. 8 shows the time series of calculation particle numbers 
Ntol in each core for tests (a), (b), (c), and (d). Tests (a) and 
(b) show small oscillations around the mean value generally after 
t = 4.0 s. Although tests (c) and (d) show relatively stable changes 
after t = 4.0 s, the stability interval for Ncn in each core is not con-
sistent. The changes of Ncn in tests (b) and (d) are relatively stable 
compared to tests (a) and (c) in the beginning, respectively. Note 
that, the dynamic load balance strategy based on the calculation 
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Fig. 15. Subdomain distribution at 35.1 s (a); Pressure field in the whole flume at 35.1 s (b); Local pressure field at 35.1 s (c); Local horizontal velocity field at 35.1 s (d).

Fig. 16. Comparison of wave elevation at a position 26.885 m.

Fig. 17. The heat map of SPH time for the wave structure case with 1,575,000 fluid 
particles and 200 cores.

particle numbers Ncn ensures that calculation particle number in 
each core is balanced.

Fig. 9 shows the time series of SPH time Ts in each core for 
tests (a), (b), (c), and (d). Although Ncn in tests (a) and (b) reach 
the steady state after t = 4.0 s, the stability interval for Ts varies in 
each core. Moreover, the difference between the maximum (about 
0.031 s) and minimum (about 0.021 s) running times is approxi-
mately 0.01 s. In comparison, the running time for tests (c) and (d) 
are stable around 0.025 s after t = 4.0 s. The time spent for a time 
step depends on the core that consumes the longest amount of 
time. Obviously, the time consumption of a time step for a loaded 
balancing strategy based on the number of particles computed is 
greater than that of a balancing strategy based on the running time 
after t = 4.0 s. Furthermore, the initial load balancing strategy en-
sures that the running time is relatively balanced at the start of 
the calculation.

Sharp changes in calculation particle numbers Ncn and running 
time Ts are observed before t = 4.0 s. It can be seen that the 
use of load balancing strategies does not instantly result in perfect 
load balancing when loading is most unbalanced. The update of 
the subdomain boundaries is based on the gradual adjustment of 
the particle position changes. Nevertheless, the load balance strat-
egy avoids an exacerbation of the load unbalance condition. The 
11
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Fig. 18. Geometry of water tank and wedge.

Table 1
SPH setup and computational time.

Test Fluid particle number Time step (s) Number of cores Physical time (s) Wall time (s)

(a) 20000 0.0005 12 9 1836.33
(b) 20000 0.0005 12 9 1784.83
(c) 20000 0.0005 12 9 1646.83
(d) 20000 0.0005 12 9 1549.16
load balance strategy guarantees almost perfect balance at each 
time step, in terms of either the running time or the number of 
calculated particles after t = 4.0 s. Table 1 shows the time cost 
in these four cases. The load balance strategy based on running 
time can improve computational efficiency more, compared to the 
one based on calculation particle numbers. For example, test (d) 
is 15.2% more efficient than test (b). Although the initial load bal-
ancing strategy requires extra computational effort at the initial 
moment, the overall computational cost is effectively reduced.

Fig. 10 presents the ratio of check time tcheck to SPH time ts at 
each time step. It can be found that the ratio of check time spent 
is greater than 0.2 when time (t) is less than 3 s. At this point, the 
small SPH time resulting from loading imbalance leads to a large 
ratio. At t = 3 s to 5 s and 8 s to 9 s, the ratio varies around 0.05. 
In addition, the total check time is 15.64 s, which is 0.01 of the 
total time spent. Therefore, the detection time spent is small in 
the overall calculation.

The dam break then is extended to be simulated with 1 mil-
lion fluid particles (Initial particle spacing is 0.002 m) to test the 
performance of present model at a scale of the hundreds of cores 
and millions of particles. A total of 200 cores, 40 cores along the x-
direction, 5 cores along the y-direction, are used. The time step is 
0.0001 s. This case uses the proposed dynamic load balance strat-
egy based on running time with initial homogeneous load balance. 
The physical time was 9 s, taking a total of 9.5 hours to complete 
the calculation. Fig. 11 shows the subdomain snapshots at six mo-
ments. The complex free surface can be observed at 2.5 s, where 
the upwardly deflected fluid then falls violently onto the wet deck 
under the recovering action of gravity producing a large splash at 
3.0 s. Eventually, it reaches a relatively stable state at 9 s, i.e., no 
strong slamming with large splashes occurring. The complex free 
surface is divided into 200 non-overlapping subdomains by regu-
lar small rectangles. Fig. 12 shows the heat map, where The y-axis 
represents the number of cores and the x-axis represents physi-
cal time, colour indicates SPH time. An imbalance in running time 
can be observed until 3 s. After 3 s, the SPH time is fairly even 
across the 200 cores. In particular, the balancing running time at 
3.5 s corresponds to Fig. 11, showing the performance of the cur-
rent parallel model with dynamic load balancing. Fig. 13 shows the 
12
time series of the water front. The agreement with the reference 
solution demonstrates the accuracy of the parallel model.

5.2. Wave structure simulation

Physical experiments of a focused wave group interacting with 
a truncated vertical wall are modelled in this section [24,15]. The 
wave flume is 35 m long, 0.6 m wide in cross-section, 1.2 m high 
and operates at a still water depth of 0.7 m. The plate is 26.9 m 
from the wave maker and submerged to a depth of 0.15 m. An 
incident wave set (focused wave) was used in the experiment. A 
theoretical focus time is 42 s and a theoretical focus position is 
at 31.90 m. The values of still water level, position of the plate 
and wave condition were set in general agreement with the exper-
iment as shown in Fig. 14. In particular, the plates are fixed during 
the experiment. The numerical flume length is 36 m. A sponge 
layer located between 31 m and 36 m is used to absorb the wave 
to prevent wave reflection. The free surface level is measured at 
26.885 m from the wave maker for comparison with the experi-
mental data. The initial particle spacing was 0.004 m with a total 
of 1,575,000 fluid particles. ed is set to 0.05, and the time step was 
set to 0.0002 s. We have chosen a different Ei,max to show that a 
wide range of options of ei,max does not affect the parallel imple-
mentation. The physical time was 45 seconds, taking a total of 31.5 
hours to complete the calculations.

As shown in Fig. 15(a), a total of 200 cores are used in this 
example, with 2 cores in the vertical direction and 100 cores dis-
tributed along the horizontal direction. The smooth pressure distri-
bution in the whole flume at 35.1 s can be observed in Fig. 15(b). 
Fig. 15(c) and Fig. 15(d) show the locally smooth pressure distribu-
tion as well as the horizontal velocity distribution. Splashing shows 
the ability of SPH to reconstruct the non-linear free liquid surface. 
Fig. 16 shows the free surface elevation in front of the plate in 
comparison with the experiment. The peak free surface predicted 
by SPH near 36.7 s is overestimated by 0.05 m. After 38 s, there is 
a phase shift of the free surface, which may be due to the effect of 
the sponge layer not absorbing waves well.

In Fig. 17, all cores spend a similar amount of time at the be-
ginning, due to the implementation of the initial load balancing 
strategy. Before 30 seconds, the time spent increases for an in-
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Fig. 19. The velocity of wedge impact simulation involving various particle resolution at t = 0.005 s. (Label ‘a’, ‘b’, and ‘c’ denote tests 45 thousand, 1.125 million, and 18 
million, respectively; ‘1’ and ‘2’ denote whole water wank and local domain, respectively.)
13
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Table 2
CPU data of water entry of a wedge.

Test Resolution (m) Fluid particle number Timestep (s) Number of timestep Cores Serial CPU time (s/particle/time-step)

(a) 0.01 4.5 × 104 0.00005 100 12 1.7 × 10−4

(b) 0.002 1.125 × 106 0.00001 500 288 2.4 × 10−4

(c) 0.0005 1.8 × 107 0.0000025 2000 1920 4.6 × 10−4

(d) 0.002 1.125 × 106 0.00001 500 144 2.0 × 10−4
Fig. 20. Simulation setup for scaling tests.

creasing serial number of cores. The larger the core serial number, 
the later the increase in SPH time occurs. This may be due to the 
fact that the wave propagates gradually from the wave maker (on 
the left side) to the right side. Thus, when the wave propagates on 
the left side of the tank, the complications of the flow condition 
(the motion of free surface, particles transfer between adjacent 
cores, etc.) make the corresponding processors slower compared 
to those of the still water related ones. In spite of this, the max-
imum difference in time consumption for the 200 cores over the 
entire 45 seconds is approximately 0.0255 seconds (5.1% relative 
to the minimum run time), which is a very slight loading imbal-
ance. The current parallel model still achieves relatively good load 
balance.

5.3. Water entry of a wedge

This case simulates the free fall of a wedge in initially calm wa-
ter [36]. The width of the wedge is 0.5 m with an angle 30◦ and 
mass 72.5 kg, as shown in Fig. 18. The depth and the width of wa-
ter tank are 1.5 m and 3 m, respectively. Initial vertical velocity of 
the wedge is 6.15 m/s. The convergence of the present SPH model 
is checked via three different particle resolutions in this part: 0.01 
m, 0.002 m, and 0.0005 m, resulting in 45 thousand, 1.125 million, 
and 18 million fluid particles, correspondingly. ed is 0.05 for this 
case. The tests are conducted on the China Science and Technol-
ogy Cloud (CSTC), which consists of 823688 cores on 858 compute 
nodes. The tests are conducted on 96 core CPU nodes each using 
Intel Xeon Platinum 9242@2.3 GHz.

A snapshot at t = 0.005 s is illustrated in Fig. 19, where the 
effect of particle resolutions on the free surface jet capture can 
be observed. As particle resolution increases, splashes are better 
captured. Table 2 presents the numerical set up and time cost 
for three particle resolutions. The number of time steps varies 
from resolution to resolution because to the Courant-Friedrichs-
Levy (CFL) condition; it is inversely proportional to the particle 
resolution. Table 2 shows the comparable serial CPU time for each 
resolution. A complete parallelisation should provide an equivalent 
serial CPU time. This value rises with spatial resolution, as seen in 
Table 2. This difference may mostly be attributed to communica-
tion blockage. The additional time caused by blocking communica-
tion becomes more obvious as the number of cores rises.

5.4. Performance analysis

Weak and strong scaling tests are conducted to evaluate the 
overall parallel performance of our current implementation. The 
14
test case examined is the 2D 2nd Stokes wave (wave height 0.1 m 
and wave period 2.0 s) in a numerical wave flume. Each simulation 
is run for 1000 time steps. The initial set-up is as shown in Fig. 20. 
The regular numerical tank facilitates the setting up of numerical 
cases to meet the needs of strong and weak scale tests. The tests 
are conducted on CSTC, and ed is 0.05.

The weak scale test is a test to ensure that the number of 
particles in each core is consistent while increasing the number 
of cores. Ideally, as the number of core increases, the computa-
tion time should remain constant. However, due to communication 
load, as the number of cores increases, the computation time also 
increases. We define the computational cost tr for 60 cores as a 
reference and calculate the weak scale efficiency ew for different 
numbers of cores

ew = ti

tr
, (17)

where ti is the time cost for the number i of cores. Three differ-
ent groups of single core particle numbers of 30,000, 100,000, and 
200,000 (written as 30T, 100T, and 200T) were tested at 60, 120, 
240, 480, 960, and 1920 cores, respectively. Fig. 21 shows the time 
spent and the efficiency of the weak scale tests. As the number 
of cores increases, the calculation time increases, whereas the effi-
ciency decreases as expected. Ultimately, for the cases run in 1920 
cores, the efficiencies are only 0.73, 0.86, and 0.92 for 30, 100, and 
200 thousand particles per core, respectively. Although the num-
ber of particles in each core remains the same, the increase in 
communication time due to the increased number of cores affects 
the overall computational efficiency. For the case of more particles 
in each core, the communication time takes up less of the overall 
time, leading to a higher computational efficiency.

In the case of strong scaling, the number of cores is increased 
while the problem size remains constant, resulting in a reduced 
workload per core. Speedup Ss and efficiency es for strong scaling 
studies are calculated from

Ss = Nr × Tr

Ts
, (18)

es = Nr × Tr

Ns × Ts
. (19)

Three different sets of total particle numbers of 2.4, 15 and 38.4 
million (written as 2.4M, 15M, and 38.4M) were tested at 60, 120, 
240, 480, 960, and 1920 cores, respectively. Fig. 22 shows the com-
putational speedups as well as the efficiencies under the strong 
scale tests. Increasing the number of cores can reduce the number 
of particles per cores. This leads to a reduction in the cost per core 
calculation. However, the cost for overhead computation and com-
munication of information also increases. For the cases run in 1920 
cores, the efficiencies are 0.72, 0.89 and 0.93 for the cases with 2.4, 
15 and 38.4 million particles, respectively. It is expected that the 
efficiency could be improved. Meanwhile, higher efficiency can be 
obtained by introducing a data decomposition of particle interac-
tion loops through a shared memory parallel framework.

5.5. Three-dimensional (3D) dam breaking

To demonstrate the capabilities of the model for 3D problems, 
the dam breaking case in §5.1 is extended to three dimensions 
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Fig. 21. Time cost (a) and efficiency (b) of weak scaling tests.

Fig. 22. Speedup (a) and efficiency (b) of strong scaling tests.
Fig. 23. Snapshot of the horizontal velocity field of 3D dam breaking case at t = 0.3 
s (a), 0.8 s (b), 1.5 s (c) and 2.3 s (d).

with a width of 1.0 m. The initial particle spacing is 0.01 m, and a 
total of 2,000,000 fluid particles are simulated. A total of 96 cores, 
4 cores along the x-direction, 24 cores along the y-direction, are 
15
used. The time step is 0.0001 s. This case uses the proposed dy-
namic load balance strategy based on running time with initial 
homogeneous load balance. The physical time was 2.5 s, taking 
a total of 15.6 hours to complete the calculation. Fig. 23 shows 
the horizontal velocity at four different moments. It can be noticed 
that the parallel model simulates the 3D problem and still achieves 
smooth and stable results, although the current model only con-
siders dynamic loading balance in the direction of two degrees of 
freedom (x and z). When dealing with complex 3D problems, load-
ing balance in three directions (x, y and z) of freedom needs to be 
considered in the future.

6. Conclusions

This paper has presented a new MPI-based parallel SPH frame-
work with a dynamic load balance strategy for free-surface flow. 
The new framework uses a background Cartesian grid to decom-
pose the domain, and a grid list to map the entire domain. Mean-
while, within each subdomain there exists a local mesh for neigh-
bouring particle search as well as determining the particles that 
need to be transferred. In the dynamic load balance strategy, two 
evaluation criteria, i.e., computation particle numbers and running 
time, are considered. The update of the subdomain divisions is 
achieved by updating the subdomain boundary according to the 
workload/subdomain division from the previous time step. An ini-
tial load balance strategy is developed to maintain the initial ho-
mogeneous load balance. Results show that the present parallel 
SPH framework can simulate free surface flow with load balanc-
ing, even for free surface conditions with large deformation.

In the dam breaking cases, the load balance strategy based on 
the calculation particle number can achieve the balance of the 



G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608
calculation particle number. The load balancing strategy based on 
running time ensures that the running times in each core are al-
most uniform, regardless of different particle numbers. In terms 
of overall time cost, the load balancing strategy based on running 
time achieves better parallel efficiency. The complex free surface 
in the dam breaking cases can be captured, demonstrating that 
the current parallel framework can guarantee dynamic load bal-
ance even in the face of large deformations. The wave-structure 
case demonstrates the ability of the present SPH model to simu-
late the numerical wave tank with millions of particles for tens of 
seconds. The water entry of wedge is simulated with various par-
ticle resolutions, which involved up to 18 million particles as well 
as 1920 cores. The results show that higher resolutions allow for 
better capture of the non-linear free-surface condition. However, 
the difference in equivalent serial CPU time at different resolutions 
and cores shows the extra cost of blocking communication. This 
parallel SPH model was then tested on a large scale uniform par-
ticle distribution of up to 1920 cores. Nevertheless, it still shows a 
decrease in efficiency in the case of 1920 cores. Finally, the paral-
lel SPH model is used to simulate a 3D dam breaking case. Future 
work should consider the extension of the model to 3D complex 
flows. Dynamic loading balancing requires consideration of loading 
imbalances in the three degrees of freedom (x, y and z) directions. 
Meanwhile the indexed list method needs to be extended to three 
degrees of freedom. The development of non-blocking MPI parallel 
strategies to overlap communication and calculation cost has the 
potential to further improve parallel efficiency for 3D problems.
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