
Computer Physics Communications 284 (2023) 108608

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A novel MPI-based parallel smoothed particle hydrodynamics

framework with dynamic load balancing for free surface flow ✩

Guixun Zhu, Jason Hughes, Siming Zheng ∗, Deborah Greaves

School of Engineering, Computing and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 August 2022
Received in revised form 4 November 2022
Accepted 21 November 2022
Available online 23 November 2022

Keywords:
Smoothed particle hydrodynamics
Parallel computing
Load balance
Free surface flow

This paper presents a new Smoothed Particle Hydrodynamics (SPH) parallel framework, which is designed
for free surface flows and is scalable on a High Performance Computer (HPC). The framework is
accomplished by adopting a Message Passing Interface (MPI) approach with a domain partitioning
strategy. A regular background grid is used to partition the entire computational domain and each
subdomain is labelled using an index ordering method. Adjacent subdomains can be determined by the
index list, and avoid global communications in the particle distribution process. Within the local grid,
the grid is divided into an internal grid as well as an interactive grid to identify the particles for which
information is to be transferred. The implementation of the dynamic loading balance strategy considers
two different ways of determining loading: computation particle numbers and running time. The dynamic
load balance strategy repositions neighbouring subdomains based on the local load imbalance between
cores. To demonstrate the framework’s capacity and distinctive properties, a variety of free surface
flow benchmarks are studied. Intensive numerical experiments at various scales are used to assess the
performance in detail.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian mesh-
free method that was originally used to study problems of astro-
physical gas dynamics formulated approximately forty years ago by
Gingold and Monaghan [12] and Lucy [21]. Since Monaghan [28]
first used SPH to study free-surface flows, SPH has been used to
study various free surface flow problems [32,34,19,23,22]. The in-
teractions between particles are built, based on the kernel function
which represents the derivatives of continuous fields in a discrete
form. SPH is deemed to be an ideal technique to simulate interfa-
cial flows with large deformation [6,38,37]. The interface can be
automatically detected without special interface detection treat-
ment. The particles with physical properties can move arbitrarily,
and complex interfaces can be reproduced well. Thus, sizeable free
surface deformation, such as splashing [39,31], wave breaking [14],
and so on, can be simulated naturally. However, the SPH model is
known to be an expensive model with high computational costs.
Each particle should be interpolated with tens or even hundreds
of neighbouring particles. The number of neighbouring particles

✩ The review of this paper was arranged by Prof. David W. Walker.

* Corresponding author.
E-mail address: siming.zheng@plymouth.ac.uk (S. Zheng).
https://doi.org/10.1016/j.cpc.2022.108608
0010-4655/© 2022 The Author(s). Published by Elsevier B.V. This is an open access artic
in SPH is far greater than the number of neighbouring nodes
for mesh methods (finite volume method (FVM), finite element
method (FEM), and so on) [4]. Secondly, modelling incompress-
ible fluids requires a small time step (weakly compressible SPH
model) or solving the pressure Poisson equation (Incompressible
SPH model). For the scale of engineering problems, SPH models
often require the simulation of millions or even tens of millions of
particles, which leads to significant time consumption. The use of
hardware acceleration and parallel programming is an option for
achieving efficient computation of large particle numbers. Hard-
ware acceleration is the specialist use of computing hardware to
achieve more efficiency. Hardware acceleration is utilised through
parallel programming which can be implemented through high
performance computing on multiple CPU cores or through hard-
ware architecture such as the graphics processing unit (GPU) [7,5].

Several parallel frameworks exist for the large-scale parallel
simulation of SPH methods. Ihmsen et al. [16] introduced a parallel
framework for simulating fluids using the SPH methods. Efficient
parallel neighbourhood inquiries were suggested and evaluated for
low computing costs per simulation step. To reduce the processing
time for whole simulation sequences even further, solutions for op-
timising the time step and its implications for parallel implemen-
tations were examined. Cherfils et al. [3] developed JOSEPHINE,
a parallel SPH code, for solving unstable free-surface flows. The
dynamic loading balancing strategy in JOSEPHINE considered the
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2022.108608
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108608&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:siming.zheng@plymouth.ac.uk
https://doi.org/10.1016/j.cpc.2022.108608
http://creativecommons.org/licenses/by/4.0/

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608
dynamic loading differences between adjacent subdomains. The re-
sults showed that parallelism provided for a substantial decrease
in processing time, especially when dealing with a high number
of particles. DualSPHysics [8] is a hardware-accelerated SPH pro-
gram designed to handle issues involving free-surface flow. Dual-
SPHysics is an open-source software project that was created and
distributed under the GNU General Public License (GPLv3). Along
with the source code, a comprehensive set of instructions for com-
piling and running the source files is also included. DualSPHysics
is accelerated by up to two orders of magnitude as compared to
the serial version thanks to the parallel power processing of GPUs.
DualSPHysics has been proven to be both efficient and trustworthy
[9]. Various key points related to the specificities of the particle
methods for their massive parallelisation on distributed memory
were presented and discussed by Oger et al. [30]. Both the Orthog-
onal Recursive Bisection (ORB) and the particle domain updating
procedures were presented and tested in terms of parallel effi-
ciency for cases involving a large number of particles. The model
was then tested on massive particle discretisation involving up to
3.2 billion particles and 32,768 cores, showing some good paral-
lel efficiencies in both strong and weak scaling measurements. A
new massively parallel scheme is developed by Guo et al. [13],
to simulate free-surface flows with ISPH method for simulations
involving more than 100 million particles. The new scheme uses
a Hilbert space-filling curve with a cell-linked list to map the
entire domain so that domain decomposition and load balancing
can be achieved while taking advantage of the geometric local-
ity to reduce cache access latency. Ji et al. [17] present a new
multi-resolution parallel framework, which is designed for large-
scale SPH simulations of fluid dynamics. An adaptive rebalancing
criterion and monitoring system is developed to integrate the Cen-
troidal Voronoi Particle (CVP) partitioning method as a rebalancer
to achieve dynamic load balancing of the system. In addition, there
is much work in the literature on hardware acceleration of the SPH
model [11,26,10,33,35].

This paper focuses on distributed memory parallelisation of the
SPH method by Message Passing Interface (MPI) libraries. Domain
decomposition consists of geometrically subdividing the computa-
tional domain into as many smaller subdomains as desired, and
performing solutions in a processor corresponding to a subdomain.
Using MPI data communications among processes, the SPH nu-
merical results can be reconstructed on the whole domain. We
develop a new SPH parallel model for modelling the free surface
problem. A regular background grid is used to partition the entire
computational domain and each subdomain is labelled using an
index ordering method. Within each subdomain, the classical reg-
ular grid is used to search for neighbouring particles. Within the
local grid, the grid is divided into an internal grid as well as an in-
teractive grid to identify the particles for which information is to
be transferred. To consider the dynamic loading balance, two load-
ing measures, computation particle number and running time, are
discussed. The subdomains adjust the boundary positions accord-
ing to the load distribution to meet the load balance requirements.
An initial load balance strategy is set up to ensure that the ini-
tial phase of loading balance is achieved. The remainder of the
paper is organised as follows. In §2, we first briefly review SPH
model theory. The main contribution in this paper is presented in
§3 and §4. The parallel framework is presented in §3. Dynamic
load balance strategy is elaborated in §4. In §5, the free surface
problems were simulated to validate the parallel framework. Load-
ing strategies based on different criterions are compared. Parallel
performance is also examined. Concluding remarks are given in §6.
2

2. SPH model

In this study, the flow is assumed to be viscous, weakly–
compressible, and adiabatic. The adopted governing equations con-
sist of the Navier–Stokes equations in the Lagrange framework:⎧⎪⎪⎨
⎪⎪⎩

du
dt = − 1

ρ ∇p + Fα + g,

dρ
dt = −ρ∇ · u,

dr
dt = u,

(1)

where ρ , u, t , r and p denote the density, velocity vector, time,
position vector and pressure, respectively. Fα is the viscosity term
and g represents the gravitational acceleration. The governing
equation can be discretized by an SPH approximation. According
to the work in [20], the discrete pressure gradient can be written
as:

− 1

ρi
∇pi = − 1

ρi

∑
j

(p j + pi) · ∇i W ij V j, (2)

where W ij = W (ri − r j, h) is the kernel function, h is the smooth-
ing length defining the influence area. Subscripts i and j denote
the particle index. V j is the volume of the particle (V j = m j /ρ j , m
denotes mass).

The artificial viscosity term can be added to the momentum
equation to produce bulk and shear viscosity and also to stabilise
the scheme as follows [29]

Fα =
∑

j

αhcs
(u j − ui) · (r j − ri)

|r j − ri|2 · ∇i W ij V j, (3)

where cs is numerical sound speed, and α = 0.01 is artificial vis-
cosity factor. The velocity divergence can be discretized as [20]

−ρi∇ · ui = −
∑

j

(u j − ui) · ∇i W ij V j, (4)

where ui is the velocity of particle i. Spurious numerical oscilla-
tions generally exist in the pressure and density fields for tradi-
tional weakly compressible SPH. The δ–SPH model [1] is employed
to avoid spurious high–frequency oscillations

δhc
∑

j

�i j · ∇i W ij V j, (5)

where δ = 0.1 [25,31] for all the following cases and⎧⎪⎨
⎪⎩

�i j = 2(ρ j − ρi)
r j−ri

|r j−ri |2 − (〈∇ρ〉L
i + 〈∇ρ〉L

j),

〈∇ρ〉L
i = ∑

j(ρ j − ρi)Li∇i W ij V j, where

Li = [∑
j(r j − ri) ⊗ ∇i W ij V j

]−1
(6)

where ⊗ denotes tensor product. With the artificial diffusive δ

term introduced, the continuity equation can be re-written as

dρ

dt
= −

∑
j

(u j − ui) · ∇i W ij V j + δhc
∑

j

�i j · ∇i W ij V j . (7)

Meanwhile, the fluid pressure is related to the density explicitly
according to the concept of artificial compressibility. Then, the
pressure is obtained through the equation of state as

p = (ρ − ρ0)c2
s , (8)

where ρ0 is initial fluid density. In the present simulation, a
prediction–correction time–stepping scheme is applied [27]. Fol-
lowing [25] and [2], the present model uses the regular fixed ghost
particles that are created to represent the solid boundary. Particle
shifting method [18] is also used to avoid errors due to grossly
irregular distribution of particles.

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 1. Sketch of the 2-D domain decomposition and grid index list.
3. Parallelisation SPH framework

Contrary to Eulerian grid-based methods, SPH is a Lagrange
mesh-free method with particles. This specificity causes some
problems: (i) The interpolation-based kernel support domain gen-
erally includes a lot of neighbouring particles. The size of the
support domain depends on the smoothing length. For a particle
near the subdomain boundary, there is an interpolation trunca-
tion due to domain decomposition, and so it requires adjacent
subdomains to allow particle-to-particle interactions. The particle
searching process for a particle in one subdomain should include
particles in neighbouring subdomains. (ii) The particles in one sub-
domain may move into another one, and so some strategies should
be introduced to transfer particles. (iii) Load balance strategy. The
transfer of particles between different processors may result in
various numbers of particles per processor. Simulating a complex
free surface flow with the SPH model usually results in irregularly
distributed particles across the computational domain. Different
numbers of particles lead to different computational costs for each
processor. Load-unbalance affects parallel efficiency. Therefore, in
the development of a parallel SPH framework, we need to address
several of these issues.

3.1. Domain decomposition

Firstly, we need to decompose the entire computational domain
into several subdomains. Each subdomain corresponds to a core.
Domain decomposition is achieved by using a fictitious background
Cartesian grid. Here, we do not consider load balancing strategies,
but rather focus on the completion of a parallel framework. Thus,
the background grid is fixed in time during the entire simula-
tion, as shown in Fig. 1. Each grid denotes a subdomain. K and
M denote the number of grids in x and z directions of the whole
simulation domain. The length and height of the whole domain
are denoted by Lx and Lz , respectively. If the region decomposi-
tion is homogeneous over the entire computational domain, the
size (lx, lz) of each grid can be determined by

(lx, lz) =
(

Lx

K
,

Lz

M

)
. (9)

The parallelisation of the background meshes was not easy. We
need to determine each mesh to prevent race conditions for the
particle input process, i.e., multiple threads inputting the same
particle at the same time. To overcome this issue, the subdomains
should be marked and each of them shall correspond to a unique
core. Here, the index sort method is used to get grid index Ci(k, m)

(i = 0, 1, ·, Nc − 1, k = 0, 1, ·, K − 1, m = 0, 1, ·, M − 1, Nc = K ∗ M
is the total core numbers). The grid index C(k, m) is computed as
3

C(k,m) = k ∗ M + m. (10)

Note that the index C(k, m) of each subdomain is unique. In the
basic uniform grid, particle i with position ri = (xi, zi) is inserted
into one spatial grid with coordinates C(k, m). After determining
the boundary for each subdomain, we can find a unique corre-
sponding grid C for every particle according to the position ri . The
sorted particle array is processed in parallel. Thus, with the above
strategy, we mark all particles and assign them to the correspond-
ing subdomains.

3.2. Message passing

In the SPH method, the interpolation of a particle requires con-
tributions from its neighbouring particles. Thus, a particle around
the subdomain boundary requires message from particles in adja-
cent subdomains to ensure kernel support integrity. It needs to be
identified: (i) lists of adjacent subdomains and (ii) the particles in
each subdomain that need to be passed.

3.2.1. Lists of adjacent subdomains
According to the domain decomposition method, a fixed reg-

ularly distributed background grid is used, and each grid has a
unique sort index C(k, m). Adjacent subdomains for grid C(k, m)

represent all surrounding grids that are in contact with this grid,
and their sort indexes are C(k − 1, m − 1), C(k − 1, m), C(k −
1, m + 1), C(k, m − 1), C(k, m + 1), C(k + 1, m − 1), C(k + 1, m)

and C(k + 1, m + 1) for a grid C(k, m). For some subdomains near
the boundary of the entire computational domain, which are not
fully surrounded by other subdomains, the rule should be adjusted
accordingly. This strategy is entirely based on the grid index list. If
the subdomain division does not change, then this list of adjacent
grids applies to the entire calculation process.

3.2.2. Interaction particles
In the SPH method, the search of the neighbour particles is

based on the mutual distance of the interpolation points [11]. With
the help of the background mesh, the links between particles and
their neighbouring particles are locally constructed, which are used
in the calculation, as shown in Fig. 2. The minimum side length of
a mesh must equal the size of the support domain. Thus, there
is a local neighbouring mesh list in each subdomain, which has
the same sort index C(K, M) as introduced in the work of do-
main decomposition. C is the local index for neighbouring particle
search. It is found that message passing is only required for parti-
cles in the meshes besides subdomain boundaries. The meshes that
do not have any interaction with adjacent subdomains are named
as ‘interior meshes’, and the meshes that influence adjacent sub-
domains are, called ‘interactive meshes’. Each subdomain needs to
be divided by a small grid in order to perform particle searches.

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 2. Illustration of message passing. (a) Local neighbouring particle list, interior meshes and interactive meshes; (b) Interactive meshes message passing from adjacent
subdomains. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Illustration of dynamic load balance strategy along y direction. (a): When La < Lb , subdomain boundary is shifted to subdomain b by da to reduce loading imbalance;
(b) When La > Lb , subdomain boundary a is shifted to subdomain by db to reduce loading imbalance.

Fig. 4. Illustration of dynamic load balance strategy along x direction. (a): When L A < LB , subdomain boundary is shifted to subdomain set B by dA to reduce loading
imbalance; (b) When L A > LB , subdomain boundary is shifted to subdomain set A by dB to reduce loading imbalance.
4

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 5. Flowchart of SPH parallel framework.
Fig. 6. Sketch for two-dimensional dam break problem.

However, the subdomain size is sometimes not exactly divided by
the grid. This means that the local meshes of neighbouring sub-
domains are not perfectly matched. Therefore, the two-layer mesh
near the subdomain boundary needs to be considered. As the local
neighbouring particle list, the interactive meshes can be deter-
mined by

∀ C ∈ [K < 2 ∨K> (K− 3) ∨M< 2 ∨M > (M− 3)]
=⇒ C ∈ Interactive meshes, (11)

where K and M denote the number of grids in the x and z di-
rections of the local neighbouring search mesh. As a result, this
5

procedure dedicated to finding the interactive meshes should be
completed just before the message passing. Then particles in the
interactive meshes are interaction particles.

According to the region decomposition strategy, any subdomain
is a regular quadrilateral. All subdomain boundaries are uniquely
determined. Particle information can be reloaded into a new core
based on the particle’s position. At same time, the particle infor-
mation is deleted from the previous core. Thus, the transfer of
particles among cores is carried out by the deletion and addition
of particle information. Since the displacement of the particle at
each time step is small relative to the subdomain size, the transfer
of particles only takes place in adjacent subdomains, which further
narrows the choice of new subdomains for particles.

4. Dynamic load balance

As a Lagrangian particle-based method, SPH particles could
move from one processor to another processor. In some particular
cases, particles will be present in large numbers in one proces-
sor and in small numbers in other processors. In the numerical
calculation of SPH, the number of SPH particles is related to the
calculation load. At the same time, the computational time spent
on the whole calculation process depends on the processor with
the longest computational time. The uneven distribution of com-
putational effort between processors is called ‘load imbalance’. One
of the biggest problems with load imbalance is that it reduces the
speed of computation. This is because when a processor with a
small number of particles has completed calculation, it needs to
wait for a processor with a larger load to complete the compu-

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 7. Domain decomposition for test (a), (b), (c), and (d) at t = 0 s, 1.0 s, and 1.9 s. (Label ‘1’, ‘2’, and ‘3’ denote t = 0 s, 1.0 s, and 1.9 s, respectively.) Each subdomain is
shown in a different colour.
tation before it can start the next time step. Therefore, we need
to specify special methods to ensure that each processor is loaded
equally at each time step in order to maximise the efficiency of
parallelism.

4.1. Computation load

4.1.1. Computation particle numbers
The distribution of the number of particles has a direct relation-

ship to the computational loading. Thus, the measurement of the
calculation load in each core is translated into a measurement of
the number of particles. The load balancing problem is converted
into a geometric problem, i.e. the number of particles in each
region is guaranteed to be balanced by geometric division. Compu-
tational load balance strategies based on the number of particles
6

are widely considered in published works [11,16,3,30,13]. In these
works, the entire computational domain is discretized into regu-
lar meshes. The meshes are grouped into subdomains by means of
space-filling curves or division methods. The load balance of the
subdomains is balanced taking into account the number of parti-
cles in these meshes.

In the present SPH model, the calculation particle numbers Ncn

can be calculated as

L = Ncn = N f + Nw + Nin + Nip, (12)

where N f , Nw , Nin , and Nip are the numbers of fluid particles,
wall particles, interpolation nodes, and interaction particles from
other processors. L denotes computation load.

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 8. History of calculation particle numbers Ncn . (Label ‘a’, ‘b’, ‘c’ and ‘d’ denote tests (a), (b), (c), and (d), respectively.)

Fig. 9. History of running time ts in each core. (Label ‘a’, ‘b’, ‘c’ and ‘d’ denote tests (a), (b), (c), and (d), respectively.)
7

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608
Fig. 10. History of ratio of check time tcheck to running time ts in each core for case
(d).

However, there are several problems with the division based
on calculating the number of particles. Firstly, the computational
cost of various nodes/particles is inconsistent. For example, fixed
ghost particles need an additional cost to determine their physical
quantities. Thus, fluid particles near walls and fixed ghost particles
require more computational effort. In addition, the correlation be-
tween the calculation load and the number of particles decreases
if there are severe inhomogeneous distributions in the subdomains
such as fragmentation, splashes, complex interface, etc. In the case
of irregular distribution, the support domain of a particle is not
fully filled with neighbouring particles. Even if the number of par-
ticles is the same, it does not mean that the number of particle
pairs is the same. A parallel strategy based on computation parti-
cle numbers cannot guarantee a consistent computational cost in
each core.

4.1.2. Running time
At each time step, the parallel SPH code is divided into two

main parts: MPI communication and SPH solver. MPI communi-
cation represents the transfer of particle data between different
cores. SPH solver represents the numerical solution of the SPH
model, including neighbouring particle search, boundary condi-
tions and solution of the Navier-Stokes equation. The load balance
needs to take into account all of these components to achieve per-
fect results. However, in the current SPH code, we use M P I − Send
and M P I − Recv for point-to-point communication. Communica-
tion load is not only affected by the number of transfer particles,
but also communication blocks, which make it difficult to take into
account the load balance of MPI communication for large-scale MPI
parallel problems.

A more simple and reliable way to evaluate computational load-
ing is to use running time. The main purpose of dynamic load
balance is to improve parallel efficiency, i.e., to ensure that the
computation time cost is consistent in each core. Running time
based load balance ignores the complexity of the SPH process
(code) and directly considers the primary purpose of load balance
strategy. Moreover, the variability of core performance is already
implicitly included. The calculation load L can be calculated as

L = ts, (13)

where ts denotes the time cost for SPH process (not including com-
munication cost) in each core. The greater the time consumption,
the more the computational load. However, it seems like it requires
us to run the code at the beginning of each time step to obtain the
time cost of each core. It means that we need to run the code at
8

least twice at each time step. The update of particle position is
small due to small SPH time step. Thus, the information about the
time cost of each core at the previous time step can be used as a
computational load distribution to optimise subdomain partition-
ing

Ln = tn−1
s , (14)

where Ln is the computational load at nth time step. tn−1
s is the

time cost at nth − 1 time step. The message of subdomain division
at previous time is also recorded as a reference.

4.2. Subdomain update

In most previously published studies, the entire computational
domain is divided into small grids. These small grids are then
searched using space-filling curves. The combination of small
meshes along the space-filling curve can achieve load balance.
However, this approach would result in a completely new subdo-
main division, which cannot refer to the SPH time of the previous
time step when considering the SPH time balance. In the present
parallel strategy, the computational domain has been delineated
as regular subdomains and marked by grid index list. Therefore,
to achieve dynamic loading balance, subdomains are updated by
changing the subdomain boundaries (size). This leads to the ad-
justment of its neighbouring subdomain boundaries, to ensure
subdomains have no overlapping parts.

At each time step, many particles flow into and out of the sub-
domain. The inflow and outflow of particles at the boundary of
a subdomain are shown in Fig. 3. The calculation loads are La and
Lb for subdomain a and b, respectively. The change of boundary re-
quires the determination of a reference position. For this purpose,
we record the position of the particle furthest from the boundary
as the reference position. The positions of the inflow and outflow
particles furthest from the subdomain boundary are denoted as
da and db , respectively. However, there is no inflow and outflow
particle along subdomain boundary sometimes, so then a parti-
cle spacing is used as a reference position. When La > Lb , the
boundary along the y-axis direction should be shifted inside the
subdomain a to da in order to reduce the size of the subdomain
A to ensure there is a load balance between subdomains a and
b. When La < Lb , the boundary should be moved inside the subdo-
main b to db in order to increase calculation loads in subdomain b.
The change in boundaries causes the division of subdomains to be-
come irregular. To be able to continue using the grid index list, we
set the subdomains of the same column to have the same bound-
aries along the x-axis. When considering changes in the boundaries
of subdomains along the x-axis, we need to consider all subdo-
mains in the same column as a whole, called set A and B as shown
in Fig. 4. The rules of subdomain boundaries along x-axis direc-
tion are the same as the those along y-axis direction, as shown
in Fig. 4. Total calculation particle numbers in set A and B are
considered as the computation load for the balance strategy based
on calculation particle numbers. While the maximum SPH time in
set A and B is used as computation load for load balance strategy
based on running time.

To achieve load balance of the system, an accurate evaluation of
load is important. Evaluation of the load situation allows the de-
termination of whether to implement the dynamic load balancing
strategy. We define an imbalance monitoring tag as

Ei,max = Lmax
S − Lmin

S

Lavg
S

< ed, (15)

where Ei,max is max error for all cores, ed is user defined error
tolerance. Lmax

S , Lmin
S , and Lavg

S denote max, min, and average cal-
culation load for all cores. Once max error Ei,max is greater than

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 11. Subdomain distribution at t = 2.0 s (a), 2.5 s (b), 3.0 s (c), 3.5 s (d), 5.0 s (e) and 9.0 s (f).
the set value, the dynamic load balancing strategy can be imple-
mented. In addition, this criterion also applies to the local load
balance distribution Ei as follows

Ei = La − Lb

La
< ed. (16)

This means that the load balance between local cores is not simul-
taneous, but depends on the local load balance distribution. The
check of dynamic loading balance can be implemented for every
few tens or hundreds of time steps. This depends on the definition
of the user.

It takes some time to obtain load balance for initially unstable
fluid problems. Thus, we develop an initial load balance strategy to
maintain the initial homogeneous load balance. Initially, the entire
computational domain is divided evenly. The subdomain bound-
ary positions are then updated according to calculation loads. This
9

approach is the same as the dynamic loading balance strategy
described above. The subdomain boundaries are continuously ad-
justed until the conditions of Eq. (15) are met. The maximum
number of iterations (Number of adjustments) is set to 1000, and
the physical information of the particles is not updated in the ini-
tial homogeneous load balance.

A detailed flowchart of the developed framework is presented
in Fig. 5 to summarise all the algorithms. The code is written in
FORTRAN using open source libraries OpenMPI. If not specifically
stated, studies in this paper are conducted on the Fotcluster2 in
High Performance Computer Centre in University of Plymouth. Fot-
cluster2 is a 752 core distributed-memory cluster, which is com-
prised of: a 3U combined head & storage node, plus 56 compute
nodes. The tests are conducted on the phase2 consisting of 36
Viglen H X425T 2i HPC 2U Compute Nodes, equipped with Dual In-

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 12. The heat map of SPH time for the dam break case with 1,000,000 fluid
particles and 200 cores. Fig. 13. Time series of water front.

Fig. 14. Side view sketch of physical model [15].
tel Xeon E5650 (Westmere) Six Core 2.66 GHz processors and 12
GB of memory per motherboard.

5. Numerical validation

5.1. Dam breaking

Dam breaking is widely investigated in the SPH literature, since
this case shows the ability of SPH models to deal with large de-
formation problems. The deformation of the water phase can be
used to validate the dynamic load balance strategy. Fig. 6 shows a
sketch of the initial setup, where the reservoir height is H = 1.0 m,
length and height of the tank are d = 5.366H and D = 3.0H . Ini-
tial particle spacing is 0.01 m, and 20,000 fluid particles are used.
Time step is 0.0005 s, and numerical sound speed is c0 = 10

√
g H .

A total of 12 cores, 6 cores along the x-direction and 2 cores
along the y-direction, are used. Four tests are employed here for
a comprehensive assessment of the performance: (a) dynamic load
balance strategy based on calculation particle number, fluid do-
main uniformly divided at the beginning; (b) dynamic load balance
strategy based on calculation particle number with initial homoge-
neous load balance; (c) dynamic load balance strategy based on
10
running time, fluid domain uniformly divided at the beginning; (d)
dynamic load balance strategy based on running time with ini-
tial homogeneous load balance. ed is 0 for all these four cases.
The check of dynamic loading balance can be implemented at each
time step.

Fig. 7 compares the division of the computational domain for
test (a), (b), (c), and (d) at t = 0 s, 1 s, and 1.9 s. Although the
initial divisions are the same for tests (a) and (c), the division of
subdomains showed some differences at 1.0 s and 1.9 s because
of different load balance strategies. Although tests (a) and (b) ((c)
and (d)) use the same load balance strategy, there are still some
differences between the divisions at 1.0 s and 1.9 s due to the
different divisions initially.

Fig. 8 shows the time series of calculation particle numbers
Ntol in each core for tests (a), (b), (c), and (d). Tests (a) and
(b) show small oscillations around the mean value generally after
t = 4.0 s. Although tests (c) and (d) show relatively stable changes
after t = 4.0 s, the stability interval for Ncn in each core is not con-
sistent. The changes of Ncn in tests (b) and (d) are relatively stable
compared to tests (a) and (c) in the beginning, respectively. Note
that, the dynamic load balance strategy based on the calculation

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 15. Subdomain distribution at 35.1 s (a); Pressure field in the whole flume at 35.1 s (b); Local pressure field at 35.1 s (c); Local horizontal velocity field at 35.1 s (d).

Fig. 16. Comparison of wave elevation at a position 26.885 m.

Fig. 17. The heat map of SPH time for the wave structure case with 1,575,000 fluid
particles and 200 cores.

particle numbers Ncn ensures that calculation particle number in
each core is balanced.

Fig. 9 shows the time series of SPH time Ts in each core for
tests (a), (b), (c), and (d). Although Ncn in tests (a) and (b) reach
the steady state after t = 4.0 s, the stability interval for Ts varies in
each core. Moreover, the difference between the maximum (about
0.031 s) and minimum (about 0.021 s) running times is approxi-
mately 0.01 s. In comparison, the running time for tests (c) and (d)
are stable around 0.025 s after t = 4.0 s. The time spent for a time
step depends on the core that consumes the longest amount of
time. Obviously, the time consumption of a time step for a loaded
balancing strategy based on the number of particles computed is
greater than that of a balancing strategy based on the running time
after t = 4.0 s. Furthermore, the initial load balancing strategy en-
sures that the running time is relatively balanced at the start of
the calculation.

Sharp changes in calculation particle numbers Ncn and running
time Ts are observed before t = 4.0 s. It can be seen that the
use of load balancing strategies does not instantly result in perfect
load balancing when loading is most unbalanced. The update of
the subdomain boundaries is based on the gradual adjustment of
the particle position changes. Nevertheless, the load balance strat-
egy avoids an exacerbation of the load unbalance condition. The
11

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 18. Geometry of water tank and wedge.

Table 1
SPH setup and computational time.

Test Fluid particle number Time step (s) Number of cores Physical time (s) Wall time (s)

(a) 20000 0.0005 12 9 1836.33
(b) 20000 0.0005 12 9 1784.83
(c) 20000 0.0005 12 9 1646.83
(d) 20000 0.0005 12 9 1549.16
load balance strategy guarantees almost perfect balance at each
time step, in terms of either the running time or the number of
calculated particles after t = 4.0 s. Table 1 shows the time cost
in these four cases. The load balance strategy based on running
time can improve computational efficiency more, compared to the
one based on calculation particle numbers. For example, test (d)
is 15.2% more efficient than test (b). Although the initial load bal-
ancing strategy requires extra computational effort at the initial
moment, the overall computational cost is effectively reduced.

Fig. 10 presents the ratio of check time tcheck to SPH time ts at
each time step. It can be found that the ratio of check time spent
is greater than 0.2 when time (t) is less than 3 s. At this point, the
small SPH time resulting from loading imbalance leads to a large
ratio. At t = 3 s to 5 s and 8 s to 9 s, the ratio varies around 0.05.
In addition, the total check time is 15.64 s, which is 0.01 of the
total time spent. Therefore, the detection time spent is small in
the overall calculation.

The dam break then is extended to be simulated with 1 mil-
lion fluid particles (Initial particle spacing is 0.002 m) to test the
performance of present model at a scale of the hundreds of cores
and millions of particles. A total of 200 cores, 40 cores along the x-
direction, 5 cores along the y-direction, are used. The time step is
0.0001 s. This case uses the proposed dynamic load balance strat-
egy based on running time with initial homogeneous load balance.
The physical time was 9 s, taking a total of 9.5 hours to complete
the calculation. Fig. 11 shows the subdomain snapshots at six mo-
ments. The complex free surface can be observed at 2.5 s, where
the upwardly deflected fluid then falls violently onto the wet deck
under the recovering action of gravity producing a large splash at
3.0 s. Eventually, it reaches a relatively stable state at 9 s, i.e., no
strong slamming with large splashes occurring. The complex free
surface is divided into 200 non-overlapping subdomains by regu-
lar small rectangles. Fig. 12 shows the heat map, where The y-axis
represents the number of cores and the x-axis represents physi-
cal time, colour indicates SPH time. An imbalance in running time
can be observed until 3 s. After 3 s, the SPH time is fairly even
across the 200 cores. In particular, the balancing running time at
3.5 s corresponds to Fig. 11, showing the performance of the cur-
rent parallel model with dynamic load balancing. Fig. 13 shows the
12
time series of the water front. The agreement with the reference
solution demonstrates the accuracy of the parallel model.

5.2. Wave structure simulation

Physical experiments of a focused wave group interacting with
a truncated vertical wall are modelled in this section [24,15]. The
wave flume is 35 m long, 0.6 m wide in cross-section, 1.2 m high
and operates at a still water depth of 0.7 m. The plate is 26.9 m
from the wave maker and submerged to a depth of 0.15 m. An
incident wave set (focused wave) was used in the experiment. A
theoretical focus time is 42 s and a theoretical focus position is
at 31.90 m. The values of still water level, position of the plate
and wave condition were set in general agreement with the exper-
iment as shown in Fig. 14. In particular, the plates are fixed during
the experiment. The numerical flume length is 36 m. A sponge
layer located between 31 m and 36 m is used to absorb the wave
to prevent wave reflection. The free surface level is measured at
26.885 m from the wave maker for comparison with the experi-
mental data. The initial particle spacing was 0.004 m with a total
of 1,575,000 fluid particles. ed is set to 0.05, and the time step was
set to 0.0002 s. We have chosen a different Ei,max to show that a
wide range of options of ei,max does not affect the parallel imple-
mentation. The physical time was 45 seconds, taking a total of 31.5
hours to complete the calculations.

As shown in Fig. 15(a), a total of 200 cores are used in this
example, with 2 cores in the vertical direction and 100 cores dis-
tributed along the horizontal direction. The smooth pressure distri-
bution in the whole flume at 35.1 s can be observed in Fig. 15(b).
Fig. 15(c) and Fig. 15(d) show the locally smooth pressure distribu-
tion as well as the horizontal velocity distribution. Splashing shows
the ability of SPH to reconstruct the non-linear free liquid surface.
Fig. 16 shows the free surface elevation in front of the plate in
comparison with the experiment. The peak free surface predicted
by SPH near 36.7 s is overestimated by 0.05 m. After 38 s, there is
a phase shift of the free surface, which may be due to the effect of
the sponge layer not absorbing waves well.

In Fig. 17, all cores spend a similar amount of time at the be-
ginning, due to the implementation of the initial load balancing
strategy. Before 30 seconds, the time spent increases for an in-

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 19. The velocity of wedge impact simulation involving various particle resolution at t = 0.005 s. (Label ‘a’, ‘b’, and ‘c’ denote tests 45 thousand, 1.125 million, and 18
million, respectively; ‘1’ and ‘2’ denote whole water wank and local domain, respectively.)
13

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Table 2
CPU data of water entry of a wedge.

Test Resolution (m) Fluid particle number Timestep (s) Number of timestep Cores Serial CPU time (s/particle/time-step)

(a) 0.01 4.5 × 104 0.00005 100 12 1.7 × 10−4

(b) 0.002 1.125 × 106 0.00001 500 288 2.4 × 10−4

(c) 0.0005 1.8 × 107 0.0000025 2000 1920 4.6 × 10−4

(d) 0.002 1.125 × 106 0.00001 500 144 2.0 × 10−4
Fig. 20. Simulation setup for scaling tests.

creasing serial number of cores. The larger the core serial number,
the later the increase in SPH time occurs. This may be due to the
fact that the wave propagates gradually from the wave maker (on
the left side) to the right side. Thus, when the wave propagates on
the left side of the tank, the complications of the flow condition
(the motion of free surface, particles transfer between adjacent
cores, etc.) make the corresponding processors slower compared
to those of the still water related ones. In spite of this, the max-
imum difference in time consumption for the 200 cores over the
entire 45 seconds is approximately 0.0255 seconds (5.1% relative
to the minimum run time), which is a very slight loading imbal-
ance. The current parallel model still achieves relatively good load
balance.

5.3. Water entry of a wedge

This case simulates the free fall of a wedge in initially calm wa-
ter [36]. The width of the wedge is 0.5 m with an angle 30◦ and
mass 72.5 kg, as shown in Fig. 18. The depth and the width of wa-
ter tank are 1.5 m and 3 m, respectively. Initial vertical velocity of
the wedge is 6.15 m/s. The convergence of the present SPH model
is checked via three different particle resolutions in this part: 0.01
m, 0.002 m, and 0.0005 m, resulting in 45 thousand, 1.125 million,
and 18 million fluid particles, correspondingly. ed is 0.05 for this
case. The tests are conducted on the China Science and Technol-
ogy Cloud (CSTC), which consists of 823688 cores on 858 compute
nodes. The tests are conducted on 96 core CPU nodes each using
Intel Xeon Platinum 9242@2.3 GHz.

A snapshot at t = 0.005 s is illustrated in Fig. 19, where the
effect of particle resolutions on the free surface jet capture can
be observed. As particle resolution increases, splashes are better
captured. Table 2 presents the numerical set up and time cost
for three particle resolutions. The number of time steps varies
from resolution to resolution because to the Courant-Friedrichs-
Levy (CFL) condition; it is inversely proportional to the particle
resolution. Table 2 shows the comparable serial CPU time for each
resolution. A complete parallelisation should provide an equivalent
serial CPU time. This value rises with spatial resolution, as seen in
Table 2. This difference may mostly be attributed to communica-
tion blockage. The additional time caused by blocking communica-
tion becomes more obvious as the number of cores rises.

5.4. Performance analysis

Weak and strong scaling tests are conducted to evaluate the
overall parallel performance of our current implementation. The
14
test case examined is the 2D 2nd Stokes wave (wave height 0.1 m
and wave period 2.0 s) in a numerical wave flume. Each simulation
is run for 1000 time steps. The initial set-up is as shown in Fig. 20.
The regular numerical tank facilitates the setting up of numerical
cases to meet the needs of strong and weak scale tests. The tests
are conducted on CSTC, and ed is 0.05.

The weak scale test is a test to ensure that the number of
particles in each core is consistent while increasing the number
of cores. Ideally, as the number of core increases, the computa-
tion time should remain constant. However, due to communication
load, as the number of cores increases, the computation time also
increases. We define the computational cost tr for 60 cores as a
reference and calculate the weak scale efficiency ew for different
numbers of cores

ew = ti

tr
, (17)

where ti is the time cost for the number i of cores. Three differ-
ent groups of single core particle numbers of 30,000, 100,000, and
200,000 (written as 30T, 100T, and 200T) were tested at 60, 120,
240, 480, 960, and 1920 cores, respectively. Fig. 21 shows the time
spent and the efficiency of the weak scale tests. As the number
of cores increases, the calculation time increases, whereas the effi-
ciency decreases as expected. Ultimately, for the cases run in 1920
cores, the efficiencies are only 0.73, 0.86, and 0.92 for 30, 100, and
200 thousand particles per core, respectively. Although the num-
ber of particles in each core remains the same, the increase in
communication time due to the increased number of cores affects
the overall computational efficiency. For the case of more particles
in each core, the communication time takes up less of the overall
time, leading to a higher computational efficiency.

In the case of strong scaling, the number of cores is increased
while the problem size remains constant, resulting in a reduced
workload per core. Speedup Ss and efficiency es for strong scaling
studies are calculated from

Ss = Nr × Tr

Ts
, (18)

es = Nr × Tr

Ns × Ts
. (19)

Three different sets of total particle numbers of 2.4, 15 and 38.4
million (written as 2.4M, 15M, and 38.4M) were tested at 60, 120,
240, 480, 960, and 1920 cores, respectively. Fig. 22 shows the com-
putational speedups as well as the efficiencies under the strong
scale tests. Increasing the number of cores can reduce the number
of particles per cores. This leads to a reduction in the cost per core
calculation. However, the cost for overhead computation and com-
munication of information also increases. For the cases run in 1920
cores, the efficiencies are 0.72, 0.89 and 0.93 for the cases with 2.4,
15 and 38.4 million particles, respectively. It is expected that the
efficiency could be improved. Meanwhile, higher efficiency can be
obtained by introducing a data decomposition of particle interac-
tion loops through a shared memory parallel framework.

5.5. Three-dimensional (3D) dam breaking

To demonstrate the capabilities of the model for 3D problems,
the dam breaking case in §5.1 is extended to three dimensions

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608

Fig. 21. Time cost (a) and efficiency (b) of weak scaling tests.

Fig. 22. Speedup (a) and efficiency (b) of strong scaling tests.
Fig. 23. Snapshot of the horizontal velocity field of 3D dam breaking case at t = 0.3
s (a), 0.8 s (b), 1.5 s (c) and 2.3 s (d).

with a width of 1.0 m. The initial particle spacing is 0.01 m, and a
total of 2,000,000 fluid particles are simulated. A total of 96 cores,
4 cores along the x-direction, 24 cores along the y-direction, are
15
used. The time step is 0.0001 s. This case uses the proposed dy-
namic load balance strategy based on running time with initial
homogeneous load balance. The physical time was 2.5 s, taking
a total of 15.6 hours to complete the calculation. Fig. 23 shows
the horizontal velocity at four different moments. It can be noticed
that the parallel model simulates the 3D problem and still achieves
smooth and stable results, although the current model only con-
siders dynamic loading balance in the direction of two degrees of
freedom (x and z). When dealing with complex 3D problems, load-
ing balance in three directions (x, y and z) of freedom needs to be
considered in the future.

6. Conclusions

This paper has presented a new MPI-based parallel SPH frame-
work with a dynamic load balance strategy for free-surface flow.
The new framework uses a background Cartesian grid to decom-
pose the domain, and a grid list to map the entire domain. Mean-
while, within each subdomain there exists a local mesh for neigh-
bouring particle search as well as determining the particles that
need to be transferred. In the dynamic load balance strategy, two
evaluation criteria, i.e., computation particle numbers and running
time, are considered. The update of the subdomain divisions is
achieved by updating the subdomain boundary according to the
workload/subdomain division from the previous time step. An ini-
tial load balance strategy is developed to maintain the initial ho-
mogeneous load balance. Results show that the present parallel
SPH framework can simulate free surface flow with load balanc-
ing, even for free surface conditions with large deformation.

In the dam breaking cases, the load balance strategy based on
the calculation particle number can achieve the balance of the

G. Zhu, J. Hughes, S. Zheng et al. Computer Physics Communications 284 (2023) 108608
calculation particle number. The load balancing strategy based on
running time ensures that the running times in each core are al-
most uniform, regardless of different particle numbers. In terms
of overall time cost, the load balancing strategy based on running
time achieves better parallel efficiency. The complex free surface
in the dam breaking cases can be captured, demonstrating that
the current parallel framework can guarantee dynamic load bal-
ance even in the face of large deformations. The wave-structure
case demonstrates the ability of the present SPH model to simu-
late the numerical wave tank with millions of particles for tens of
seconds. The water entry of wedge is simulated with various par-
ticle resolutions, which involved up to 18 million particles as well
as 1920 cores. The results show that higher resolutions allow for
better capture of the non-linear free-surface condition. However,
the difference in equivalent serial CPU time at different resolutions
and cores shows the extra cost of blocking communication. This
parallel SPH model was then tested on a large scale uniform par-
ticle distribution of up to 1920 cores. Nevertheless, it still shows a
decrease in efficiency in the case of 1920 cores. Finally, the paral-
lel SPH model is used to simulate a 3D dam breaking case. Future
work should consider the extension of the model to 3D complex
flows. Dynamic loading balancing requires consideration of loading
imbalances in the three degrees of freedom (x, y and z) directions.
Meanwhile the indexed list method needs to be extended to three
degrees of freedom. The development of non-blocking MPI parallel
strategies to overlap communication and calculation cost has the
potential to further improve parallel efficiency for 3D problems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The research was supported by the financial support from China
Scholarship Council (Grant No. 201806060137). The correspond-
ing author gratefully acknowledges the support from Open Re-
search Fund Program of State Key Laboratory of Ocean Engineer-
ing, Shanghai Jiao Tong University (Grant No. 1916). The authors
acknowledge the data of wave structure simulation from the CCP-
WSI Working Group.

References

[1] M. Antuono, A. Colagrossi, S. Marrone, Comput. Phys. Commun. 183 (2012)
2570–2580.

[2] B. Bouscasse, A. Colagrossi, S. Marrone, M. Antuono, J. Fluids Struct. 42 (2013)
112–129.

[3] J.M. Cherfils, G. Pinon, E. Rivoalen, Comput. Phys. Commun. 183 (2012)
1468–1480.

[4] A.D. Chow, Incompressible SPH (ISPH) on the GPU, The University of Manch-
ester, United Kingdom, 2018.

[5] A.D. Chow, B.D. Rogers, S.J. Lind, P.K. Stansby, Comput. Phys. Commun. 226
(2018) 81–103.

[6] A. Colagrossi, M. Landrini, J. Comput. Phys. 191 (2003) 448–475.
[7] A.C. Crespo, J.M. Dominguez, A. Barreiro, M. Gómez-Gesteira, B.D. Rogers, PLoS

ONE 6 (2011) e20685.
[8] A.J. Crespo, J.M. Domínguez, B.D. Rogers, M. Gómez-Gesteira, S. Longshaw, R.

Canelas, R. Vacondio, A. Barreiro, O. García-Feal, Comput. Phys. Commun. 187
(2015) 204–216.

[9] J.M. Domínguez, G. Fourtakas, C. Altomare, R.B. Canelas, A. Tafuni, O. García-
Feal, I. Martínez-Estévez, A. Mokos, R. Vacondio, A.J. Crespo, et al., Comput.
Part. Mech. (2021) 1–29.

[10] M.S. Egorova, S.A. Dyachkov, A.N. Parshikov, V. Zhakhovsky, Comput. Phys. Com-
mun. 234 (2019) 112–125.

[11] A. Ferrari, M. Dumbser, E.F. Toro, A. Armanini, Comput. Fluids 38 (2009)
1203–1217.

[12] R.A. Gingold, J.J. Monaghan, Mon. Not. R. Astron. Soc. 181 (1977) 375–389.
[13] X. Guo, B.D. Rogers, S. Lind, P.K. Stansby, Comput. Phys. Commun. 233 (2018)

16–28.
[14] F. He, H. Zhang, C. Huang, M. Liu, Coast. Eng. 156 (2020) 103617.
[15] Z.Z. Hu, T. Mai, D. Greaves, A. Raby, J. Fluids Struct. 75 (2017) 99–116.
[16] M. Ihmsen, N. Akinci, M. Becker, M. Teschner, in: Computer Graphics Forum,

Wiley Online Library, 2011, pp. 99–112.
[17] Z. Ji, L. Fu, X.Y. Hu, N.A. Adams, Comput. Methods Appl. Mech. Eng. 346 (2019)

1156–1178.
[18] A. Khayyer, H. Gotoh, Y. Shimizu, J. Comput. Phys. 332 (2017) 236–256.
[19] M. Liu, Z. Zhang, Sci. China, Phys. Mech. Astron. 62 (2019) 984701.
[20] M.B. Liu, G.R. Liu, Arch. Comput. Methods Eng. 17 (2010) 25–76.
[21] L.B. Lucy, Astron. J. 82 (1977) 1013–1024.
[22] M. Luo, A. Khayyer, P. Lin, Appl. Ocean Res. 114 (2021) 102734.
[23] H.G. Lyu, P.N. Sun, X.T. Huang, S.Y. Zhong, Y.X. Peng, T. Jiang, C.N. Ji, Energies

15 (2022) 502.
[24] T. Mai, Z.Z. Hu, D. Greaves, A. Raby, in: The Twenty-Fifth International Ocean

and Polar Engineering Conference, OnePetro, 2015.
[25] S. Marrone, M. Antuono, A. Colagrossi, G. Colicchio, D.L. Touzé, G. Graziani,

Comput. Methods Appl. Mech. Eng. 200 (2011) 1526–1542.
[26] S. Marrone, B. Bouscasse, A. Colagrossi, M. Antuono, Comput. Fluids 69 (2012)

54–66.
[27] J.J. Monaghan, J. Comput. Phys. 82 (1989) 1–15.
[28] J.J. Monaghan, J. Comput. Phys. 110 (1994) 399–406.
[29] J.J. Monaghan, Rep. Prog. Phys. 68 (2005) 1703–1759.
[30] G. Oger, D. Le Touzé, D. Guibert, M. De Leffe, J. Biddiscombe, J. Soumagne, J.G.

Piccinali, Comput. Phys. Commun. 200 (2016) 1–14.
[31] P.N. Sun, A.M. Zhang, S. Marrone, F. Ming, Appl. Ocean Res. 72 (2018) 60–75.
[32] D. Violeau, B.D. Rogers, J. Hydraul. Res. 54 (2016) 1–26.
[33] E. Yang, H.H. Bui, H. De Sterck, G.D. Nguyen, A. Bouazza, Comput. Geotech. 121

(2020) 103474.
[34] T. Ye, D. Pan, C. Huang, M. Liu, Phys. Fluids 31 (2019) 011301.
[35] H. Zhang, Z. Zhang, F. He, M. Liu, Eur. J. Mech. B, Fluids 94 (2022) 1–16.
[36] R. Zhao, O. Faltinsen, J. Aarsnes, in: Proceedings of the 21st Symposium on

Naval Hydrodynamics, 1996, pp. 408–423.
[37] G. Zhu, L. Zou, Int. J. Numer. Methods Fluids 92 (2020) 950–975.
[38] G. Zhu, L. Zou, Z. Chen, A. Wang, M. Liu, Int. J. Numer. Methods Fluids 86 (2018)

167–184.
[39] L. Zou, G. Zhu, Z. Chen, Y. Pei, Z. Zong, Int. J. Comput. Methods 15 (2018)

1850008.
16

http://refhub.elsevier.com/S0010-4655(22)00327-7/bib3F14350949D9D230E060322C2696A748s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib3F14350949D9D230E060322C2696A748s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibEEC2024FD24EA732A4354D3DF2523319s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibEEC2024FD24EA732A4354D3DF2523319s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib66ADA4F5FF42450CEC0FC806699F7151s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib66ADA4F5FF42450CEC0FC806699F7151s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib840C3DEF40C4AB9951AAA50B0517991As1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib840C3DEF40C4AB9951AAA50B0517991As1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib31AF3B17C7D8D3F929D716EB34C84CBBs1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib31AF3B17C7D8D3F929D716EB34C84CBBs1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibDE92F08D09C700F5C328A5F25F6E77D4s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib02F3510667790DDBBAD0212DD916359Ds1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib02F3510667790DDBBAD0212DD916359Ds1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibEB6A43EE9E48FD356CA03AC2C68DB21Ds1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibEB6A43EE9E48FD356CA03AC2C68DB21Ds1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibEB6A43EE9E48FD356CA03AC2C68DB21Ds1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib1944B2136ABA1A9B7CC1933A1A9F38C8s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib1944B2136ABA1A9B7CC1933A1A9F38C8s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib1944B2136ABA1A9B7CC1933A1A9F38C8s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibDF574203622E6DD4A6C9EF360A46EB36s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibDF574203622E6DD4A6C9EF360A46EB36s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib9F8B4251861ACBEBFB001639057A6C16s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib9F8B4251861ACBEBFB001639057A6C16s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib78EB5B1880063FC84DD4FF86F03FF446s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibCEC63122BC5A405BA734665D429BC47As1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibCEC63122BC5A405BA734665D429BC47As1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibCC5305D8D8CBF1F9E8AAB8D28EB54629s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib9323942E73CE06354A0F98695F14A865s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibBB4D9A163F5F409CF12E1D1F8B034CF3s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibBB4D9A163F5F409CF12E1D1F8B034CF3s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib4134E631AAB454D5F004A3D0BF0CE7DCs1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib4134E631AAB454D5F004A3D0BF0CE7DCs1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib24393D0180CF4F8EB017EBB4EB4AA304s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib4BAC5C699B3C522072463CDE8595E453s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibF54B2F449DDFFAE7EE0BA7357FCCD0D8s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibF713DA594D708CCCD75866EBA7C2C3A1s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib4A70D8E93BDACBEB6346A917B6C839B3s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibAAB9EBD291E812E73772DE00A7FAB2F5s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibAAB9EBD291E812E73772DE00A7FAB2F5s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibB41007A25D686AAC4607D282DC1B12DFs1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibB41007A25D686AAC4607D282DC1B12DFs1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibA78C551557ACE8EFF31D23992081104As1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibA78C551557ACE8EFF31D23992081104As1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib03A83AFBFDFFE74F67790F4E0A90FF9Ds1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib03A83AFBFDFFE74F67790F4E0A90FF9Ds1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib44BD556F1C388CA689379E962915FB43s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib16027BEA6C5EFE2148BF367C894F9D38s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibC50566130396AE9C2851E8824ED6BD09s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib63C9F065F4B15956E20FBC757224BA8As1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib63C9F065F4B15956E20FBC757224BA8As1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibB722DE251CF8E359656844535BCC3442s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibF52AEB09831F493175006809FCC12EEAs1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibC5FB806F08B390E2F0D14DFDE13252F9s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibC5FB806F08B390E2F0D14DFDE13252F9s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib8EF9855DD76611FB4DCA81EC071D577Bs1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibB0911EA1479F472ADDD02FE95A9A150Cs1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibCBC2265DE8B5D8615BCEE637078687B7s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibCBC2265DE8B5D8615BCEE637078687B7s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib5EE2A1FF61864DC436E731B25AC345B7s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibDD8D5BFF3AF16F8A0CDB7541CEFE7D52s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bibDD8D5BFF3AF16F8A0CDB7541CEFE7D52s1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib94013A7E2ED587820DC44308CC5500EAs1
http://refhub.elsevier.com/S0010-4655(22)00327-7/bib94013A7E2ED587820DC44308CC5500EAs1

	A novel MPI-based parallel smoothed particle hydrodynamics framework with dynamic load balancing for free surface flow
	1 Introduction
	2 SPH model
	3 Parallelisation SPH framework
	3.1 Domain decomposition
	3.2 Message passing
	3.2.1 Lists of adjacent subdomains
	3.2.2 Interaction particles

	4 Dynamic load balance
	4.1 Computation load
	4.1.1 Computation particle numbers
	4.1.2 Running time

	4.2 Subdomain update

	5 Numerical validation
	5.1 Dam breaking
	5.2 Wave structure simulation
	5.3 Water entry of a wedge
	5.4 Performance analysis
	5.5 Three-dimensional (3D) dam breaking

	6 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

