Refresher course in maths

and
a project on numerical modeling done in twos

Course number: MAP 502

Master of Science and Technology STEEM
Ecole Polytechnique, Autumn 2022

Samuel Amstutz! and Thomas Wick?!?2

1 Ecole Polytechnique, Centre de Mathématiques Appliquées,
91128 Palaiseau, France
https://samuelamstutz.wordpress.com/

2 Leibniz University Hannover, Institute of Applied Mathematics,
Welfengarten 1, 30167 Hannover, Germany
https://thomaswick.org

ECOLE
POLYTECHNIQUE

N2: IP PARIS

' bg o™


https://samuelamstutz.wordpress.com/
https://thomaswick.org

Organization of this class
Class number | Date | Topic Chapter lecturer
1 23/09 | parts I, II 1,2,3,4,5,6, 9.1-9.17 | W+A
2 30/09 | part I1I 10, 12, 15.1-15.11 | WA
3 07/10 | part IL,III 8, 11, 9.20-9.23 W+A
4 14/10 | part III 13, 14, 15.12-15.21 | WA
5 21/10 | part IV 16, 17, 18.1-18.5 W+A
6 28/10 | mid-term exam W+A
7 18/11 | projects W+A
8 25/11 | projects W+A
9 09/12 | projects W+A
10 16/12 | presentations (exam) WA

Some chapters and sections are indicated as complement. These are not relevant
for the mid-term exam, but may need to be consulted (not all, but some) for the

project work.




Preface

These lecture notes have been written since September 2016 for various purposes. Originally, they
served as handout for a numerical modeling project within the STEEM (Energy Environment: Science
Technology and Management Master) program. Later in 2019, this class was redesigned as a refresher
class in maths plus the numerical modeling project. Third, Part I-III of these notes serve currently
as preparation for admission in Numerics 1 for foreign Master students at the Leibniz University
Hannover, Germany. Consequently, by nature, these notes address an audience that is international and
interdisciplinary with participants not necessarily having a previous Bachelor degree in mathematics.

Content-wise, we strive the motivation for scientific computing, floating point numbers, linear
algebra (pure and numerics), analysis (some pure elements and numerics), up to the Fourier transform.
Moreover, for the sake of a state-of-the-art preparation of the students for their further studies and
career, we dedicate our emphasis to differential equations in the final part. Parts that are not relevant
for the mid-term evaluation in the STEEM program are indicated as complement. However, some of
these parts might become relevant for the later numerical projects. In these projects, the tasks are
fivefold: mathematical modeling, algorithmic design, implementation, presenting scientific findings,
and learning how to interpret those results in order to draw scientific conclusions. Therefore, we
provide measures how to build confidence into numerical findings such as intuition, error analysis,
convergence analysis, and comparison to manufactured solutions. These projects are partially purely
academic, but modern directions such as regression problems and neural networks can be chosen as
well.

Specifically, with respect to the lastly mentioned applications and the impact of mathematics reach-
ing out in science, technical developments, economics, and the society, it is our sincere aim to not only
carry over the beauty of mathematics, but also to show its usefulness in other fields.

In case of questions, please do not hesitate to contact us!

Paris and Hannover Samuel Amstutz
September 2022 Thomas Wick






Contents

I__Introduction| 11
L Guiding questions in numerical modeling| 13
(1.1  What 1s numerical modeling?| . . . . . .. .. ... oL 13
[1.2  Concepts in numerical mathematics|. . . . . . . . .. .. ... ... ... ... ..., . 14
[[2.1 Definitiond . . . . . . . . . 14

[1.2.2 Examples| . . . . . . . . 15

[L.3  First related mathematical notionsl . . . . . . ... ... ... . oo 00000 17
[1.3.1  Well-posedness| . . . . . . . . . . . . 17

[1.3.2  Measuring errors| . . . . . . . . ... e 17

[L.3.3 I[lustration of three errors (experimental, theory, numerical) with the clothesline |

| problem| . . . . ... 18
[1.3.4 Measuring distances: metrics and norms| . . . . . . ... ... 18

[1.3.5 Application in numerical mathematics| . . . . . . . .. ... 20

[1.3.6  Notation for the complexity and convergence orders: Landau symbols| . . . . . 20

[1.4 Differential equations as an example and guiding questions|. . . . . . . . . ... .. .. 21
|1.4.1 Definitions of differential equations| . . . . . . . .. ... ... ... 21

[1.4.2  Some important questions and tasks with regard to numerical concepts|. . . . . 22

|2 Basic ingredients: sets and numbers| 23
RISeld . o o 23
2.2 Classical sets of numbers . . . . . . . .. .. ... 24
2.3 Real numbers and their usage in computers: floating-point number system| . . . . . . . 24
[2.3.1  Round-oft errors and machine precision|. . . . . . . . . . . . ... ... ... .. 24

[2.3.2  Influence of machine precision in numerical mathematics| . . . . . . . . ... .. 25

[2.3.3  Stability and condition number| . . . . . .. ..o 26

2.4 Complex numbers: a brief reminder|. . . . . . . . .. ... oL 28
B_Exercises| 31
(I Linear algebra and related numerical notions| 33
|4 Linear systems and matrices| 35
4.1 Gaussian elimination for solving linear systems| . . . . . . . .. .. ... .. ... ... 35
4.1.1  General definitions| . . . . . . . . . .. o 35

4.1.2  Elementary row operations, row echelon systems| . . . . . . .. ... ... ... 36

4.1.3  The Gaussian elimination methodl . . . . . . .. ... ... ... ... ..... 36

M2 Vectors and matricesl . . . . . . . . . ... 37
42,1 Basic definitionsl . . . . . . . . ..o L 37

[4.2.2  Operations on matrices| . . . . . . . . . . . ... 38

4.2.3  Matrix of a linear system| . . . . . . . ... ... 41

4.2.4 Invertible matrices| . . . . . . . . . oL Lo 41



6 CONTENTS
4.3 Linear subspaces of K"|. . . . . . . .. 42
4.3.1  Definitions and first properties| . . . . . . . . . . . ... L. 42
HE32 Bases . . . . . .o 43
B33 Dimensionl. . . . . . . .. 43

4.4 Determinantl. . . . . . . . . e 43
4.4.1  Expansion with respect to a row or a column| . . . . . ... ... ... ... .. 44
[4.4.2  Properties| . . . . . . ... 45
4.4.3  Determinant of a product, characterization ot invertible matrices| . . . . . . . . 45

(.5 LU decomposition (complement) . . . . . ... ... ... ... L0 46
4.5.1 Matrix representation ot Gaussian elimination|. . . . . . . . . . . ... ... .. 46
4.5.2 LU decomposition for diagonal-dominant matrices| . . . . . ... ... .. ... 959
4.5.3  Case of Hermitian positive definite matrices: Cholesky decomposition|. . . . . . 55

4.6  Canonical inner product, Euclidean norm, matrix norm|. . . . . . . .. ... ... ... 55
4.6.1 Canonical mner product and Euclidean norm| . . . . . . . ... ... ... ... 55
462 Matrixnorml . . . . . ... e e 56

[6 "Diagonalization of square matrices and applications)| 57
.1 Eigenvalues, eigenvectors, diagonalization| . . . . . . . ... ... ... ... .. .... 57
b.1.1  Eigenvalues and eigenvectors| . . . . . . .. . . . . ... ... ... 57
[b.1.2  Diagonalization| . . . . . . . . . ... 58
b.1.3 Case of Hermitian matrices| . . . . . . . . . . . . .. a8

[b.2 Applications|. . . . . . .. 58
[5.3  The power method (complement)| . . . . . . . .. .. .. ... Lo 59
|6 Vector spaces and elements of topology| 61
6.1  Vector spaces| . . . . . . . . e 61
[6.1.1  General definition] . . . . . . . . . . . . . . . 61
16.1.2  Vector spaces of finite dimension| . . . . . . . . . . ... ... 62

[6.2  Basic topologyl . . . . . . .. 62
621 Normsandballs .. ... ... .. ... . 62
[6.2.2  Open sets, closed sets (complement)| . . . . .. ... ... ... ... ... ... 63
[6.2.3  Closure, interior (complement)| . . . . . ... ... ... ... ... ... ..., 64
[6.2.4  Converging sequences (complement)| . . . . . .. .. ... ... 64
[6.2.5  Equivalent norms| . . . . . ..o o 64

[6.3 Special normed spaces (complement)| . . . . . ... Lo 64
[6.3.1 Inner product spaces| . . . . . . . . . 64
[6.3.2  Banach and Hilbert spaces|. . . . . . . . ... .. ... ... . . 65
[6.3.3  Complement on matrix norms|. . . . . . . . . .. ... 66

[7 Linear equation systems and iterative solvers (complement)| 67
[7.1 Stability analysis of linear equation systems| . . . . . . . . ... .. ... ... ..., . 67
[(.1.1 _Motivationl . . . . . . . . . . e 67
[7.1.2  Stability analysis| . . . . . . . . ... 68

[r.2 Basicsolvers]. . . . . . . .. 70
[7.2.1  Fixed-point solvers: Richardson, Jacobi, Gauss-Seidel[. . . . . . . ... ... .. 70
(22 Gradient descentl . . . . . . . . ... 72

7.3  Conjugate gradient method| . . . . . . . . . . . . ... L 73
[[.3.1 Formulation of the CG schemel . . . . . . ... .. ... ... ... .... 74
[7.3.2  Convergence analysis of the CG scheme| . . . . . . . ... ... ... ...... 76

7.4 Preconditioning| . . . . . . . . . . . L 78

7.5 GMRES - generalized minimal residual method . . . . . . .. ... ... ... ... .. 80




CONTENTS

I8 Convex sets and systems of linear inequalities|
[8.1 Convex sets: definition and first properties|. . . . . . . . . . . ... ...
[8.2  Convex combinations and convex hull (complement)| . . . . ... ... ... ... ...

8.3 Projection| . . . . . ...
8.4  Conesl . . . . . e

8.4.2 Normal cone (complement)| . . . . ... .. ... ... .. ... ..
8.4.3 Polar cones (complement) . . . . .. ... Lo L
[8.5  Systems of linear inequalities, introduction to linear programming|. . . . . . . . . . ..
[8.5.1  Linear inequality systems: Fourier-Motzkin elimination|. . . . . . . . . . . . ..
8.5.2 Conical hull and Farkas lemma (complement)| . . . . ... .. ... ... ... .
8.5.3 Introduction to linear programming (complement)| . . . . . ... ... ... ..

[0_Exercises]

T F . [Telated wcal o

I0F . F ] bles
[10.1 Basic concepts] . . . . . . . . . e

(10.2.5 Multiindex notation (complement) . . . . . . .. .. ... ...
[10.3 Classical differential operators|. . . . . . . . . . . .. .. .. ... ..
[10.4 Taylor expansions, Hessian matrix| . . . . . . . . .. .. . ... ... ... .......

110.5 Convex functionsl . . . . . . . . . . e

[10.6 Integration by parts| . . . . . . . . . . ...
[10.6.1 Substitution rulel . . . . . . . . ...

[10.6.2 Integration by parts and Green’s formulael . . . . . . . ... ... ... ... ..

|11 Introduction to nonlinear optimization|
[11.1 General concepts| . . . . . . . . . . . e
[11.1.1 Brief classification of optimization problems| . . . . . . . . ... ... ... ...
[11.1.2 Problem setting|. . . . . . . . . . . . . . ...

[11.1.4 Optimality conditions| . . . . . . . . . . . . . .. ... ...
[I1.2 Convex case (complement)|. . . . . . . . . ... .
[11.2.1 Specific aspects of convex optimization|. . . . . . . . . .. . ... ... ... ..
[11.2.2 Towards constrained optimization|. . . . . . . . . . . .. .. ... ... ... ..
[11.3 Steepest descent method| . . . . . . . . . .o o

11.4 Gradient descent with projection (complement)| . . . . . . . ... ... ... ... ...
11.5 Application of Newton-type methods (complement)| . . . . . . . . ... ... ... ...
[11.5.1 Newton’s method for optimization| . . . . . . .. .. ... ... ... ......

85
85
86
86
86
88
89
89
90
90
91
91
92
93

95



8 CONTENTS

[11.5.2 Quasi-Newton methods| . . . . . . .. ... .. .. . o 119

|12 Solving nonlinear equations| 121
[12.1 Introduction to iterative methods| . . . . . . . . . . . . . . ... 121
[12.2 The bisection method| . . . . . . . . . . ... 122
[12.3 Fixed points|. . . . . . . . . L 123
[12.3.1 Reminder: the (Banach) fixed point theorem| . . . . . . ... ... ... .... 123
[12.3.2 Attractive and repulsive fixed points| . . . . . . . ... ... ... 124
[12.3.3 Calculating fixed points| . . . . . . . . . ... oL 124
[[2.4 The Newton methodl . . . . . . . . . ... .. 125
[12.5 Generalization to higher dimensions (complement) . . . . .. ... ... ... ... .. 126
[12.5.1 Newton’s method: going from R to higher dimensions| . . . .. . ... ... .. 126
[12.5.2 A basic algorithm for a residual-based Newton method| . . . . . . . . . ... .. 127
[12.5.3 Example of the basic Newton method| . . . . . . .. ... ... ... ...... 127
[12.5.4 Example using a Newton defect-correction scheme including line search|. . . . . 128
[12.5.5 Newton’s method in higher dimensions and the Newton-Kantorovich theorem| . 129
12.5.6 Globalization of Newton’s methodl . . . . . . ... ... ... ... .. ..... 133

12.6 Newton’s method for a coupled, nonlinear system of ODEs (complement)| . . . . . .. 136
12.7 Iteration schemes in nonlinear optimization (complement)[ . . . . . . . . ... .. ... 137
[12.7.1 Linear regression| . . . . . . . . . . . ... e 137
[2.72 Neural metworks . . .. . . . . . . . . .. .. . 138

|[L3 Interpolation and approximation| 141
[13.1 Polynomial interpolation| . . . . . . . . .. ... .o 141
03.1.1 Introduction|. . . . . . . . . . . .. 141
[13.1.2 Existence, uniqueness, eXpression| . . . . . . . ... ..o 141
(13.1.3 Interpolation error (complement)| . . . . . . . .. .. ... 142
13.2 Numerical differentiationl . . . . . . . . . . . . . .. 143
[13.2.1 Approximation of the first derivative| . . . . . . . . . ... ... ... 143
(13.2.2 Approximation of the second derivative (complement)| . . . .. ... ... ... 144

(3.3 Numerical integration (complement) . . . . . .. .. ... ... ... L. 144
D331 Goall . . . oo 144
[13.3.2 General principle| . . . . . . . . 145
[13.3.3 Elementary quadrature formula) . . . . . . . . .. ... ... 000 145
[13.3.4 Simplest rules: box, mid-point, trapezoidal, Stmpson| . . . . . . . . .. ... .. 145
[13.3.5 Composite quadrature formula) . . . . . . .. ... ... 146
[13.3.6 Order of a quadrature formulal . . . . .. ... ... .. ... ... .. ..... 146
[13.3.7 Interpolatory quadrature|. . . . . . . . . ... ..o 146
[13.3.8 Gauss quadrature|. . . . . . . . . . . ... 147

|14 Trigonometric interpolation, Fourier series and Fourier transform| 149
[14.1 Trigonometric interpolation: discrete Fourier transform|. . . . . . . ... . ... .. .. 149
[[42 Fourier seried . . . . . . . . . . . .. 151
MA2T Series] . . . . o o o 151
[14.2.2 Convergence of Fourier series| . . . . . . . . . . . . ... ... ... 151
[14.2.3 Parseval’s equality] . . . . . . . . . . .. 152
[14.2.4 Applications|. . . . . . . . . .. 152
[[43 Fourter transforml . . . . . . . . . ... 152
[14.3.1 General concept| . . . . . . . . . . 152
[14.3.2 A glimpse on the Dirac distribution|. . . . . . . . . ... ... ... ... .... 153

15 Exercises| 155



CONTENTS 9

IV " Differential equations| 161
[16 Introduction to ODEs (ordinary differential equations)| 163
[16.1 An introductory example|. . . . . . . . Lo 163
[[6.2 The model ODEl . . . . . . . . . . 164
[16.3 Well-posedness| . . . . . . . . . 165
[16.4 Second order limear ODE'’s with constant coefficientsl . . . . ... ... ... ... ... 165
[I7 Finite differences for ODESd| 167
[L7.1 Problem statement of an IVP (initial value problem)[ . . . . . .. ... ... ... ... 167
[17.2 Stiff problems| . . . . . . .. 167
[17.3 Omne-step schemes| . . . . . . . . . . .. 168
[[7.3.1 The Euler method . . . . . . . . . . . . . 168

[17.3.2 Tmplicit schemes| . . . . . . . . . . . 168

[17.4 Numerical analysis| . . . . . . . .. . 169
[I7.4.1 Stability] . . . . . . . . . 171

[17.4.2 Consistency / local discretization error - convergence order| . . . . . . ... .. 173

[17.4.3 Convergence|. . . . . . . . . . . .. 173

[[7.5 Detailed numerical testd . . . . . . . . . . ... 174
[I7.5.1 Problem statementl . . . . . . . . . . . . ... 174

[17.5.2 Discussion of the results for test T with =023 . . ... .. ... ... ... .. 175

[17.5.3 Investigating the instability of the forward Euler method: test 3 with a=-10| . . 176

117.6 A BVP: boundary value problem| . . . . . . ... ... ... ... .. ... ....... 176
17.6.1 A 1D model problem: Poisson|. . . . . . .. ... ... ... ... ... ... 176

[17.6.2 Well-posedness of the continuous problem| . . . . . . . ... ... ... .. ... 176

[17.6.3 Spatial discretization| . . . . . . . . ..o 179

[17.6.4 Solving the linear equation system| . . . . . . . . . .. ... ... ... ... .. 180

[17.6.5 Well-posedness of the discrete problem|. . . . . . .. ... ... ... ... ... 181

[17.6.6 Numerical analysis: consistency, stability, and convergence|. . . . . . . . . . .. 182

[17.6.7 Numerical test: 1D Poissonl . . . . . . . ... ... ... o000 186

(7.7 Computational convergence analysis (complement)| . . . . . .. .. ... ... ..... 189
7. 7.1 Discretization errorl . . . . . . . . . . .. L 189

[17.7.2 Computationally-obtained convergence order| . . . .. . ... ... ... .... 191

[17.7.3 Spatial discretization error|. . . . . . . . . .. ... 192

[17.7.4 "Temporal discretization error tor fixed spatial numerical solution| . . . . . . .. 193

[17.7.5 Extrapolation to the limit| . . . . . . .. ... ... ... ... 0. 193

1776 Tteration errorl. . . . . . . . . . . . . e e 194

I8 Exercises| 195
[V Projects on numerical modeling in teams| 197
19 Project workl 199
[19.1 Idea and formal aspects| . . . . . . . . . . ... 199
[19.1.1 Choice of your project and contact email addresses| . . . . . .. ... ... ... 199

19.1.2 Final exam mid December| . . . . . . . . . .. .. ... ... ... 200

[19.2 List of projects (to be confirmed)| . . . . . . . . ... oo oo o oo 200
[19.2.1 Direct and iterative solution of linear equation systems|. . . . . . . . . ... .. 200

[19.2.2 Numerical methods for eigenvalues| . . . . . . . ... ... ... .. ... .. .. 201

[19.2.3 Image compression with SVD (singular valued decomposition) - related to eigen- |

| valuesl . . .. .. 201

[19.2.4 Numerical optimization and application to regression problems| . . . . . . . .. 202




10

[19.2.5 Neural network for image classification| . . . . . . . .. ... ..
19.2.6 Numerical methods for root-finding problems (I)| . . . . . . ..
19.2.7 Numerical methods for root-finding problems (I)] . . . . . . . .
[19.2.8 Shape optimization for fluids using FreeFem-++| . . . . . . . ..

[19.2.11 Predator-prey systems| . . . . . . . . ... ... ... ......
[19.2.12 Neural network approximation of ODEs| . . . . . . .. ... ..

119.3 Practical hints during the project work and final presentation|

[19.3.1 Typical guideline questions| . . . . . ... ... ... ... ...
(19.3.2 Hints for presenting results in a talk (final exam)[ . . . . . . ..
[19.3.3 Some example pages of a presentation| . . . .. .. .. ... ..

Bi1bliography

CONTENTS



Part 1

Introduction

11






Chapter 1

Guiding questions in numerical modeling

In this class, we refresh basic notions of numerical linear algebra and numerical analysis in combination
with numerical modeling up to differential equations. The content comprises in brief classical notions of
analytical methods and linear algebra. In view of technological applications, our goal is the design and
analysis of algorithms that can be used for computer simulations of prototype and complex problems.

1.1  What is numerical modeling?
Numerical modeling is a part of scientific computing. The latter comprises three main fields:

1. Mathematical modeling and analysis of physical, biological, chemical, economical, financial
processes, and so forth;

2. Development of reliable and efficient numerical methods and algorithms and their analysis;
3. Research software development: Implementation of the derived algorithms

All these steps work in a feed-back manner and the different subtasks interact with each other. It

is in fact the third above aspect, namely software and computers, who helped to establish this third

category of science. Thus, a new branch of mathematics, computational science, has been established.

This kind of mathematics may become experimental like experiments in physics/chemistry /biology.
A key task is the design and analysis of algorithms:

Definition 1.1 (Algorithm). An algorithm is an instruction for a schematic solution of a mathematical
problem statement. The main purpose of an algorithm is to formulate a scheme that can be implemented
nto a computer to carry out so-called numerical simulations. Direct schemes solve the given problem
up to round-off errors (for instance Gaussian elimination). Iterative schemes approzimate the solution
up to a certain accuracy (for instance Richardson iteration for solving linear equation systems, or
fizxed-point iterations). Algorithms differ in terms of accuracy, robustness, and efficiency.

An important feedback task is to analyse (rigorously or computationally) these algorithms in order
to detect shortcomings and suggest improvements. These can be nowadays on the algorithmic side
(classical numerical analysis with convergence proofs) or the computational side (analysis of different
discretization levels, parameter variations by just running the code again) or coding improvements
(re-organization of, e.g., for-loops in a finite element program), or hardware-specific aspects (e.g., CPU
computing, GPU computing).

Computational science allows us to investigate research fields that have partially not been address-
able in the past. Why? On the one hand experiments are often too expensive, too far away (Mars,
Moon, astronomy in general), the scales are too small (nano-scale for example); or experiments are sim-
ply too dangerous. On the other hand, mathematical theory or the explicit solution of an (ambitious)
engineering problem in an analytical manner is often impossible!

13



14 CHAPTER 1. GUIDING QUESTIONS IN NUMERICAL MODELING

Mathematics helps to formalise and structure given systems from physics, engineering, economics
and other disciplines. Hereupon, established algorithms for the numerical discretization and numerical
solution for known parts of the given system shall be further extended for new problems and new
applications.

1.2 Concepts in numerical mathematics

1.2.1 Definitions

In [15] seven concepts that are very characteristic of numerical modeling were identified. They will be
frequently encountered in the forthcoming chapters.

1. Approximation: For most mathematical problems, specifically those of practical relevance, the
derivation of analytical solutions is difficult or even impossible. Consequently, we must be content
with approzimations (in appropriate function spaces and corresponding topologies), which are
often obtained via numerical procedures and computer simulations.

2. Convergence: Whether approximations have something do to with a (unique) limit value is
studied with the notion of convergence. It is qualitative in the sense that it tells us when a
sequence (an)nen admits a limit a. In numerical mathematics this limit is often the (unknown)
solution we are aiming for, and the a,, are approximate solutions.

3. Order of convergence: The speed (or rate) of convergence tells us how fast a numerical
approximation tends to limit values. While in analysis we are often merely interested in the
convergence itself, in numerical mathematics we must pay attention to how long it takes until an
approximate solution has sufficient accuracy. The longer a simulation takes, the more time and
more energy (electricity to run the computer, air conditioning of servers, etc.) are consumed.
Therefore, we are heavily interested in developing fast algorithms.

4. Errors: Numerical mathematics can be considered as the branch of ‘mathematics of errors’.
What does this mean? Numerical modeling is not wrong, inexact or non-precise! Since we cut
sequences after a finite number of steps or accept sufficiently accurate solutions obtained from
a software, we need to say how well this numerical solution approximates the (unknown) exact
solution. In other words, we need to determine the errors, which can arise in various forms. Due
its importance, we also provide the extra Section

5. Error estimation: This is one of the biggest branches in numerical mathematics and the most
classical one. We need to derive error formulae to judge the outcome of a numerical simulation
and to measure the difference (distance; see Section between the numerical solution and
the (unknown) exact solution in a certain norm or metric (see again Section

6. Efficiency: In general we can say, the higher the convergence order of an algorithm is, the more
efficient the algorithm is. Therefore, we obtain faster the numerical solution to a given problem.
But numerical efficiency is not automatically related to resource-effective computing. For in-
stance, developing a parallel code using MPI (message passing interface), hardware-optimization
(CPU,GPU), software optimizations (ordering in some optimal way for-loops, arithmetic evalu-
ations, etc.) can further reduce computational costs.

7. Stability: Lastly, the robustness of algorithms and implementations with respect to parameter
(model, material, numerical) variations, boundary conditions, initial conditions, uncertainties
must be studied. Stability relates in the broadest sense to the third condition of Hadamard
defined in Section [[.3.11



1.2. CONCEPTS IN NUMERICAL MATHEMATICS 15

1.2.2 Examples

We illustrate the previous concepts with the help of some examples.

1. Approximation: Two approximations of the clotheslineﬂ problem:

Bad

A
’tvuc 500»1 Lon, Lm‘l

nho l LMww

2. Convergence: Converging approximations of the clothesline problem:

>4

A
{vue san Lan, Lul

ho l \(V\aww

3. Order of convergence: Two different speeds of convergence:

Ow‘ev ae Lonuev&eme

Slw cowvevamm

A
'f.vua 500./\ Jt“on, Lul

Y\dl \(V‘owﬂ

4. Errors: We first refer the reader to Section for a comparison of experimental, theoretical
and numerical situations. Second, we sharpen the sense of the influence of different errors. Not

'Let us explain the clothesline in a very simplified way: wash your clothes in your washing machine. Next, hang your
wet clothes on your clothesline, which gets deformed due to gravity. In a great mathematical simplification, we solve the
problem —u"(x) = f for x € (0,1) with the boundary conditions «(0) = u(1) = 0. This model is also known as Poisson
problem. To be specific, this is a differential equation, where we search for u according to the given differential equation,
the right hand side f (here: gravity) and boundary conditions; see Chapters —



16

CHAPTER 1. GUIDING QUESTIONS IN NUMERICAL MODELING

all errors are equally important and sometimes, one might try to ‘optimize’ an error, which has
no significant influence. Let’s see this in more detail. Let the errors ensoders €Numericss €Software
enter. The total error is defined as

€Total = €Model T €Numerics T €Software

Let us assume that we have the numbers eyoger = 1000, enumerics = 0.001, €50 ftware = 4, the
total error is then given by

eTotal = 1000 + 0.001 + 4 = 1004.001.

Which error dominates? It is clearly eproqer = 1000. The relative influence is epjoder/€Total =
0.996. So, the other two error sources are negligible and would not need further attention in this
specific example.

. Error estimation: Error estimation is the process to obtain the concrete numbers 1000, 0.001, 4

in the previous example. Error estimates can be classified into two categories:

e a priori estimates include the (unknown) exact solution u, such that n := n(u), and yield
qualitative convergence rates for asymptotic limits. They can be derived before (thus a
priori) the approximation is known.

e a posteriori error estimates are of the form 7 := n(@) and explicitly employ the approx-
imation @ and therefore yield quantitative information with computable majorants (i.e.,
bounds) and can be further utilized to design adaptive schemes.

. Efficiency: is more or less self-explaining. A first answer is to look at CPU or wall time: how

many seconds, minutes, weeks, months does a program need to terminate and yield a result?
A second answer is to study ‘iteration numbers’ or arithmetic operations. The latter are often
given in terms of the big O notation. Having a linear equation system Ax = b with A € R™*"
and O(n?®) complexity means that we need n® (cubic in unknowns n) arithmetic operations to
calculate the result. For instance, for n = 100, we need around 1000000 operations. Having
another algorithm (yielding the same result of Az = b) with only O(n) operations, means that
we only need around 100 operations, which is a great difference. The development of efficient
solvers for large linear equations systems is consequently a big branch in numerics and scientific
computing.

. Stability: We finally come back to the clothesline problem and change a bit the left boundary

condition:

S*ala'»@{]w&

%owrﬁ'/'*‘
tue ol Bm i

CLan%c

b llakon L Ce q:l“ N
ve Solution, Yu oun 0"6 ¥
not known cond i diom _i"‘:ff d"“"‘ﬂjlk
&v /l/o $‘a|ﬂ0§ %"vu; 2{64:.\.5\‘3‘:

L]‘ - arrw:m.,k,,,




1.3. FIRST RELATED MATHEMATICAL NOTIONS 17

1.3 First related mathematical notions

1.3.1 Well-posedness

The concept of well-posedness, as introduced by Hadamard, is very general and in fact very simple:

e The problem under consideration has a solution;

e This solution is unique;

e The solution depends continuously on the problem data.

The first condition is immediately clear. The second condition is also obvious but often difficult to
meet - and in fact many physical processes do not have unique solutions. The last condition says that
if a variation of the input data (right hand side, boundary values, initial conditions) is small, then also
the (unique) solution should only vary a little.

Remark 1.1. Problems in which one of the three above conditions is violated are ill-posed.

1.3.2 Measuring errors

Going ahead, we implement an algorithm in a software (for instance in Matlab/Octave, Python, For-
tran, C++, Java) using a computer. In the end, several error sources need to be addressed.

1.

The set of numbers that can be represented in a computer is finite, therefore a numerical calcu-
lation is limited by machine precision, which results in round-off errors.

The memory of a computer (or cluster) is finite and thus functions and equations can only
be represented through approximations. Thus, continuous information has to be represented
through discrete information, which results in investigating so-called discretization errors or
more generally approximation errors.

Interpolation errors appear when complicated functions are interpolated to simpler functions.

All further simplifications of a numerical algorithm (in order to solve the discrete problem), with
the final goal to reduce the computational time, result into iteration / truncation errors. One
example is the stopping criterion, which decides after how many steps an iteration is stopped.
These can be further divided into linear and nonlinear iteration errors.

. Regularization errors appear when ill-posed models are modified in order to become well-

posed.

Homogenization errors arise when full-scale models are reduced to larger scale (homogenized)
such that they are computationally simpler to solve.

Implementation errors, better known as bugs, appear when mistakes are made implementing
algorithms into a software. These errors can simply cause the program to abort. Then it is more
or less simple to find the place with the help of a debugger. But there are also subtle errors,
which cannot be easily found when the program runs nonetheless, but showing strange results or
behaviors.

Model errors: In order to make a ‘quick guess’ of a possible solution and to start the develop-
ment of an algorithm aimed at addressing at a later stage a difficult problem, often complicated
(nonlinear) equations are reduced to simple (in most cases linear) versions, which results in the
so-called model error.

Data errors and uncertainties: the data (e.g., input data, boundary conditions, parameters)
are obtained from experimental measurements and may be inaccurate themselves.



18 CHAPTER 1. GUIDING QUESTIONS IN NUMERICAL MODELING

10. Inaccurate experimental setups that yield wrong reference solutions to which numerical
solutions should be compared with.

It is very important to understand that we never can avoid all these errors. The important
aspect is to control these errors and to provide answers if these errors are sufficiently big to influence
the interpretation of numerical simulations or if they can be assumed to be small. A big branch of
numerical mathematics is to derive error estimates that allow to predict about the size of arising errors.

1.3.3 Illustration of three errors (experimental, theory, numerical) with the clothes-
line problem

You need to understand a bit of French for the words, but the figure might be self-explaining.

Q —u "(x):a K ["';L]
u ld):m(b) L

Evv v - POV“"N]!?

E EVVZUV:'JMMS 09— WA\("QE? . OIJ\N\*Q“V‘!
/ e - valable pow I c««bu?ﬁ_ ! dlgﬂv;ll«-ﬂe 1

T \ ™ ab)
e || TRW

1

Eﬂ‘"\(\c-

v

A

A Vi), , )

3

EX relv‘wﬂEn\‘aQ Tlnelov-)e

JJ~r

MM?V;?\AQ

Figure 1.1: Errors in experiments, theory and numerical modeling.

1.3.4 Measuring distances: metrics and norms

To determine the accuracy and quantify the previous errors, we need to frame our problem statements
in appropriate spaces that allow us to measure distances. The distance we are interested in is usually
between the ‘exact’ solution u and its numerical approximation u, i.e., it is related to the difference

u—u.

However, this expression is nearly useless since it can be negative (what does a negative distance
mean?) and v and @ might be vectors. Consequently, we need something like

[l —all.

In order to define || - ||, we first introduce metric spaces. A metric space is a set X with a metric on it.
This metric associates with any pair of elements (i.e., points), say a,b € X, a distance. The concept
of distance is more general than that of norm, in that it does not require the structure of vector space
(in particular the difference need not be defined).



1.3. FIRST RELATED MATHEMATICAL NOTIONS 19

Definition 1.2 (Metric space). A metric space is a pair (X,d) where X is a set and d is a metric (or
distance) on X. The function d is defined on X x X, where x denotes the Cartesian product of sets
(whose definition is recalled in the next chapter). For all x,y,z € X, it is assumed (azioms defining a
distance):

1. d is real-valued, finite and nonnegative;
2. d(z,y) =0 if and only if x = y;
3. d(x,y) = d(y, z);
4. d(z,y) < d(z,z)+d(zy).
Example 1.1. On the real line R the usual metric is defined by
d(z,y) = [z —yl.

Example 1.2. The Euclidean space R® consists of the set of ordered triples of real numbers x =
(x1,22,23) and y = (y1,Y2,y3) and so forth. The Euclidean metric is defined by

d(z,y) = v/ (z1 — y1)? + (22 — 12)* + (w3 — y3)%.

Example 1.3. On the surface of the earth (which is not a vector space but a manifold) we can define
the geodesic distance as the length of the shortest path joining two given points.

In numerical analysis, the framework is usually that of vector spaces and the distances of interest
are typically induced by norms.

Definition 1.3 (Normed space). A normed space X is a vector space with a norm. A norm on a real
or complex vector space X is a real-valued function on X whose value at v € X is denoted by ||x|| and
which has the following properties:

1. ||z]| >0

2. [lz|=0<2=0

3. [laz] = [alll]

4o Mz +yll < llzll + [yl
where x,y € X and « is any scalar from the underlying field R or C.

Reminders on vector spaces and complements on norms will be given in chapter [f]
Definition 1.4 (Norm vs. metric). A norm on X induces a metric d on X, which is defined by

d(z,y) = [z =yl

With the help of these definitions it is easy to infer that indeed a norm induces a metric. Therefore,
normed spaces are in particular metric spaces. It holds:

Proposition 1.1. The norm is continuous, that is x — ||z|| is a continuous mapping of (X, || -||) into
R.

Distances, induced or not by a norm, can now be employed to study the accuracy of mathematical
models and their numerical approximations. Consequently, we are now able to give a meaning to the
distance

d(u, @)
between the ‘exact’ solution u and its numerical approximation .
We finally add an important refinement when errors are evaluated through a norm:

Definition 1.5. Let & € X be an approzimation of x € X. With ||e|]| = ||Z—z|| we denote the absolute
error, and with ||e||/||z| we denote the relative error.

In most cases, relative errors are of greater importance. For instance, an error of 200m is small if
we measure the distance between amphi Painlevé and the moon, but 200m are big if we measure the
distance between amphi Painlevé and the CMAP corridor.



20 CHAPTER 1. GUIDING QUESTIONS IN NUMERICAL MODELING

1.3.5 Application in numerical mathematics

In numerical mathematics, the key task is often to design appropriate norms for measuring the distance
between a numerical approximation u;, and the continuous (exact) solution u. These norms give
quantitative information about the error for deciding when an approximation is sufficiently close to
our sought solution:

lu—wunl =0 (h—0),

where h indicates the approximation parameter. In particular, iteration error measurements in certain
norms allow to decide when numerical algorithms can be stopped:

lu—w] =0 (I— o),

where [ indicates the iteration index. Very often, we have a mixture of situations in which h, repre-
senting typically a discretization parameter, and [, the number of iterations, appear simultaneously.

A natural question is whether different norms yield similar answers. Here, one must distinguish
between finite-dimensional vector spaces and infinite-dimensional spaces. The latter results into the
branch of functional analysis. Therein, norms are in general not equivalent (a precise definition of
this notion is given in chapter |§[) Consequently, it does matter which norm is adopted. In finite-
dimensional spaces, it can be shown, however, that norms are indeed equivalent. We emphasize that
we speak here of the vector space in which the exact solution lives, even if the approximate one is
sought in a finite-dimensional subspace. Dealing with two equivalent norms implies that convergence
for one norm is equivalent to convergence for the other one. However, of course, both errors are not
equal, therefore in quantitative error analysis the choice of the norm matters even for intrinsically
finite-dimensional problems.

1.3.6 Notation for the complexity and convergence orders: Landau symbols

Definition 1.6 (Landau symbols). (i) Let g(n) be a function with g — oo for n — oo. Then f € O(g)
if and only if when

limsup‘f(n) < 00
n—oo | g(n)
and f € o(g) if and only if
lim ’f(n) =
n—oo | g(n)
(ii) Let g(h) be a function with g(h) — 0 for h — 0. As before, we define f € O(g) and f € o(g):
: f(h)
hI}Illjélp g(h)‘ <o <« feO(g),
and )

(iii) Specifically:

limsup|f(h)| <0 < feO0(1),
h—0

and
lim [f(1) =0 & f € o))

Often, the notation f = O(g) is used rather than f € O(g) and similarily f = o(g) rather than f € o(g).

Example 1.4. Seven examples:



1.4. DIFFERENTIAL EQUATIONS AS AN EXAMPLE AND GUIDING QUESTIONS 21

3. e =o(x"%) (r— ).

4. Let e — 0 and h — 0. We write
h = o(e)

when L
— =0 forh—0, £—0,
€

which means that h tends faster to 0 than .

5. Let us assume that we have the error estimate (see for instance Chapter

[y(tn) = ynll2 = O(F).
Here the O notation means nothing else than

1y(tn) = ynll2

3 —C fork— 0.

6. Let
Clkl + Cgk2 + 03k3 + ...

be a development in powers of k. We can shortly write:

cik' + O(k?).

7. Complexity of algorithms, e.g., LR
O(n®) for n— oco.
Here the fraction converges to a constant C' (and not necessarily 0!), which illustrates that O(-) conver-

gence is weaker than o(-) convergence. On the other hand, this should not yield the wrong conclusion
that ||y(tn) — ynll2 may not tend to zero. Since k — 0, also ||y(tn) — ynl|l2 — 0 must hold necessarily.

1.4 Differential equations as an example and guiding questions

As an example of the previously mentioned concepts, we consider differential equations (later in detail
in Part , which arise in numerous applications in science and engineering and are well-known in
continuum mechanics.

1.4.1 Definitions of differential equations

Let us first roughly define the meaning of a differential equation:

Definition 1.7. A differential equation is a mathematical equation that relates the function with certain
of its derivatives.

Differential equations can be split into two classes:

e Ordinary differential equations. An ordinary differential equation (ODE) is an equation (or
equation system) involving an unknown function of one independent variable and certain of its
derivatives.

e Partial differential equations. A partial differential equation (PDE) is an equation (or equa-
tion system) involving an unknown function of two or more variables and certain of its partial
derivatives.



22

CHAPTER 1. GUIDING QUESTIONS IN NUMERICAL MODELING

1.4.2 Some important questions and tasks with regard to numerical concepts

1.

2.

10.

What are the underlying physics?

What is the mathematical model? Which kind of differential equation are we dealing with?
Linear diff. eq.? Coupled system? Nonlinearities? Types of coupling? Order?

What discretization scheme is appropriate? Physics-based discretization, i.e., are the physics
conserved after discretization in time and/or space?

. Design of principle algorithms

. Can we prove that these algorithms really work?

Accuracy, efficiency, robustness of algorithms

Error-controlled adaptivity or model-order reduction (e.g., with the help of SVD - singular value
decomposition; computation of eigenvalues)

Linear and/or nonlinear solution schemes? Direct, iterative solution? Multigrid schemes? Com-
putational cost?

Analyzing the numerical results: is the numerical solution correct? What does it mean ‘correct’?
Is it close enough (appropriate norm!) to some known solution? Comparison with experimental
results possible? Comparison with analytical or manufactured solutions w and the numerical
solution ugp:

|lu —ugn|| =0 for h,k — 0,

where k£ and h are the temporal and spatial discretization parameters, respectively.

Advanced postprocessing techniques: quantities of interest rather global norms (see e.g., [20])?
Plotting graphical solutions (gnuplot, vtk, ...)? Computational convergence analysis?

The forthcoming sections of these notes aim at refreshing (and perhaps complementing) the mathe-
matical notions needed to address such questions. Applications will mainly be seen through the projects
and further courses.



Chapter 2

Basic ingredients: sets and numbers

2.1 Sets

Set theory relies on a series of axioms, which are usually considered as the foundations of mathemat-
ics. It includes in particular the definition of natural numbers. This is a very abstract theory, but
fortunately it is not needed to know it in details for a practical use of mathematics (rather advanced
mathematics existed far before the axiomatic construction). We gather below the main points to be
known.

Intuitively, a set is a collection of objects (of any nature) called elements. A set can be finite or
not. The empty set, which contains no element, is denoted (). To write the list of the elements of a set
we use the notation

A=1{1,2,3}.

This means that the set A is made of the numbers 1, 2 and 3. The ordering is irrelevant. To say that
1 belongs to A (or 1 is in A) and 4 does not belong to A we write

1 €A, 4¢ A.

Given two sets A and B, we say that A is included in B, denoted A C B, if all the elements of A
belong to B:

ACB<«<=VrecAzxeB.

The symbol "V" means "for all". When A C B and B C A we say that A and B are equal (A = B).
The union of two sets A and B, denoted AU B, is the set of elements that are either in A or in B:

AUB ={z,z € Aor x € B}.

The intersection of two sets A and B, denoted AN B, is the set of elements that are at the same time
in A and in B:

ANB={z,x € Aand z € B}.
The difference of two sets A and B, denoted A\ B, is the set of elements that are in A but not in B:
A\ B ={z,x € A and z ¢ B}.

The Cartesian product of two sets A and B, denoted A x B, is the set of pairs (z,y) with x € A and
y € B:

Ax B=A{(z,y),r € Aand y € B}.

23



24 CHAPTER 2. BASIC INGREDIENTS: SETS AND NUMBERS

2.2 Classical sets of numbers

Natural numbers:

N={0,1,2,--- };
N* =N\ {0} = {1,2,---}.

Integers:
Z=A{---2,-1,0,1,2,---}.

Rational numbers:

@z{g,pez,qew}.

Real numbers: they are the classical numbers we deal with. The set of real numbers is usually denoted
by R. It includes the rational numbers but not only. An example is v/2. The set R is constructed by
"completion" of Q. For further definitions and derivations, we refer to classical textbooks on real-valued
analysis or calculus.
Complex numbers:

C={z+iy,(z,y) € R xR}.

In the next sections, we recapitulate real and complex numbers. In addition, we also recall some
useful things to know when dealing with numbers with the help of computers.

2.3 Real numbers and their usage in computers: floating-point num-
ber system

2.3.1 Round-off errors and machine precision

In numerical mathematics it is important to understand that real numbers cannot be represented
in their full length by a computer. They are cut (i.e., rounded) according to the so-called machine
precision. The floating-point system is based on the IEEE-754 standard set in the year 1985. It
consists of floating numbers, zero, Inf and NaN.

Example 2.1. To warm up, please have a try yourself using for instance MATLAB, Octave, Python
and type in some real numbers. For instance 1/9 and see what happens.

Floating-point numbers have usually the form
r=(-1)°(0.a1a2...a;) - B¢ = (=1)*-m- B, a; #0,
which exactly means
= (-1)(@B +af?+-+af ) = (1) (@f +af T+ a5
Therein, we have:

1. sign: s is either 0 or 1

2. basis: > 2 (being an integer). Computers work with 8 = 2 and our usual decimal system has
B8=10

3. mantissa: m = a; 8 + a8 72+ - - +a;8° € N. It has length ¢, which is the maximum number
of digits a;, with 0 < a; < 8 — 1 that can be stored

4. exponent: e € {emin, " ,Emax} C Z



2.3. REAL NUMBERS AND THEIR USAGE IN COMPUTERS: FLOATING-POINT NUMBER SYSTEM?25

An important quantity is the so-called machine precision €, which is defined as

€= ﬁlft

and provides the distance between 1 and the closest floating-point number greater than 1. The machine
precision depends on the operating system (i.e., your computer) and not on your software.

Example 2.2. An example of machine (double) precision is € = 2.2204e — 16. This can be obtained
for instance in octave with

eps
or in python with

import numpy
print (numpy.finfo(float) .eps)

2.3.2 Influence of machine precision in numerical mathematics

The previous explanations need considerations once algorithms are implemented in a software and
computer simulations are carried out. Why? Often, we deal with large numbers, e.g., Young’s modulus
of steel is E = 190PA = 190 x 10°PA. Here, we have numbers of order 10°. For linear equations
system due to condition numbers (see below), we also easily deal with very large numbers. Therefore
it is important to know what are the biggest numbers the computer can deal with. As overflow we
denote the situation when the absolute value of a number is greater than the greatest machine number
of the computer.

On the other hand, we are concerned with underflow, which denotes the situation when a number
unequal to zero is rounded to zero. Many numerical algorithms are requested to terminate once the
distance between numerical approximation and sought solution is (very) small, e.g., || — x| =~ 0. But
zero is too small due to machine precision. What to choose else? We define a tolerance TOL such that

|z —z|| < TOL.
In order to avoid difficulties due to machine precision we must choose TOL > €. For instance:
e we have for machine epsilon € ~ 107'¢ in double precision
e Reasonable tolerances are in the range of TOL = 1078, ..., 10712,

Finally, due to round-off some mathematical laws may become violated on a computer. Due to the
finite representation of numbers in the computer, the mathematical law of associativity

a+(b+c)=(a+b)+c
may be violated; for instance in the case of overflow or underflow.

Example 2.3. In Section we provide numerical solutions to Newton’s method for computing
a root-finding problem. Therein, the tolerance TOL must be chosen. We show in the following the
interaction of € and TOL. For a classical choice TOL = le — 12 we obtain

Iter x f(x)
5 1.414214e+00 4.751755e-14

This means that we need 5 iterations to converge to a root value | f(z)| = 4.75e—14. For TOL = le—12

Iter x f(x)
4 1.414214e+00 6.156754e-07



26 CHAPTER 2. BASIC INGREDIENTS: SETS AND NUMBERS

This means that we need 4 iterations (the scheme is more efficient!) to converge to a root value
|f(z)] = 1.53e—07 (the final root is less accurate!). Here, we already see the trade-off between efficiency
and accuracy. Now let us choose TOL = le — 16, a value of the order of the machine precision. Then:

Iter x f(x)

6502 1.414214e+00 -4.440892e-16
6503 1.414214e+00 4.440892e-16
6504 1.414214e+00 -4.440892e-16
6505 1.414214e+00 4.440892e-16

16368 1.414214e+00 -4.440892e-16
16369 1.414214e+00 4.440892e-16
16370 1.414214e+00 -4.440892e-16
16371 1.414214e+00 4.440892e-16

The computation did not stop (endless loop) because of round-off errors due to machine precision such
that the tolerance cannot be met. This shows indeed that we must stay away with TOL from € and
should choose TOL > e.

Example 2.4. Previously, we wrote that € depends on the hardware. Nonetheless, the actual precision
i a program can be changed. The standard machine epsilon is double precision. But we can change to
single precision. The value for single precision can be obtained in python with

print (numpy.finfo (numpy.float32) .eps)

and yields € = 1.1920929¢ — 07. If we re-do the above calculations, then we even should not obtain the
result for TOL = le — 12. Indeed

Iter x f(x)

12270 1.414214e+00 -1.192093e-07
12271 1.414214e+00 -1.192093e-07
12272 1.414214e+00 -1.192093e-07
12273 1.414214e+00 -1.192093e-07

we obtain an endless loop. Convergence is again achieved for TOL > € as for example TOL = le — 5:

Iter x f(x)
4 1.414214e+00 7.152557e-07

Whether such low tolerances are sufficiently accurate depends on the problem and on the other hand on
the memory (of course single precision needs less memory to store numbers). For instance in machine
learning algorithms, often single precision is used.

2.3.3 Stability and condition number

Related to the machine precision is the stability of algorithms. Due to round-off errors, numerical
algorithms can yield wrong results. How severe they are can be estimated with the so-called condition
number.

Consider a function f: R — R and let us evaluate its values in the standard way:



2.3. REAL NUMBERS AND THEIR USAGE IN COMPUTERS: FLOATING-POINT NUMBER SYSTEM27

Due to round-off (or other, i.e., discretization, iterations, etc.) errors the function f(x) is not evaluated
at x, but at £ = x + Axz. The question is how this input error influences the result, i.e., the output
error. We denote by

Ay = f(z + Az) — f(x)

the absolute error in the function f. If f € C*(R) (one times continuously differentiable), we obtain
with the mean value theorem:

Ay = f(z+ Az) — f(z) = f'(§)Ax

where £ € [z, z+Ax]. We observe that f'(€) plays the role of an (absolute) amplification factor between
Ay and Az. However, in applications, the relative error is by far more important. Consequently, a
representation for the relative amplification factor is:

2 s = (1w ) &

Definition 2.1 (Condition number). The number kqps = |f'(x)| is the absolute condition number of
the problem x — f(x). For xf(xz) # 0 the relative condition is defined as

f'(@)z
f(z)

Rrel = ‘

The condition numbers describe the amplification of input errors of a given problem in relation to the
output errors. If
Krel > 1

then the problem is ill-conditioned. If Kro; = 1 the problem is well conditioned.

Example 2.5. 1. Addition, subtraction: f(x,y) =x +y (here we evaluate in relation to x):
x 1
T+ y' - ‘ 1+14

I{/f7x =

If © = —y, then the (relative) condition number of the addition (x =~ y for subtraction) can
become arbitrarily big. An example is:

r=-1019, y=1.021 = xz+y=0.002.

Let & = —1.020 be a perturbed argument. The relative error x is very small: |1.019—1.020(/|1.019| <
0.1%. We obtain the perturbed result

#+y = 0.001

and an error of 100%. The big amplification of the addition of two numbers with the same absolute
value is the so-called cancellation.

2. Multiplication: f(x,y) =x-y. This operation is always well-conditioned:

T
Kfz = yx—y = 1.
3. Division: f(x,y) = x/y. Same conclusion:
lz Ty
Kfa z| =L kpy=|5z| =L
y Y=y
4. Square root: f(x) = +/x:
1 = 1
K = |l = —
be = oz V| 2

An input error is even reduced.



28 CHAPTER 2. BASIC INGREDIENTS: SETS AND NUMBERS

2.4 Complex numbers: a brief reminder
The set of complex numbers is denoted by C. A complex number is written as
z=x+1y

where x = R(z),y = $(z) € R are the real part and the imaginary part of z, respectively. The
imaginary unit is defined as 2 = —1. The main reason to define complex numbers was for solving the
quadratic equation

4 pr+q=0 (2.1)

with coefficients p, ¢ € R. For values only in R, this quadratic equation has not always solutions. With
complex numbers, we can compute as with real numbers for addition, subtraction, multiplication and
division. Let us define

a=x+1y
b=u+1w.

Then, the addition gives us:
at+b=z+iy+ (u+iv) =z +u+i(y+v),
with x,y,u,v € R. The subtraction yields:
a—b=zx+4+iy—(u+iv) =z —u+i(y —v).
The multiplication yields:
axb=(z+iy)* (u+iv) = zu+izv + iyu + i>yv = zu — yv + i(zv + yu).

For the division we first introduce the conjugate

and the squared modulus

Then, we can write the reciprocal as -

E U — v
bbb u?+0?
and the division as _

a ab 1 .

The modulus (or absolute value) has been defined by

r=lal = /2% + y2.

The notation r indicates that this quantity can be identified as the radius of a with respect to the
origin in the complex plane. To this end, a can be represented with the help of trigonometric functions:

a = r(cos ¢ + isin @),

where ¢, the argument of a, denotes the angle of 0 to a on the positive real axis. With the help of

Euler’s formula,
e’ = cosa + isina

for @ € R, we obtain the following representation for a complex number a:

a=re?.



2.4. COMPLEX NUMBERS: A BRIEF REMINDER 29

This notation is convenient to handle multiplications, powers and divisions. Indeed trigonometric rules

entail ‘
el

_ — oil¢—0)
et

€i¢ei0 _ 6i<¢+9), (ei¢)n — einqﬁ’
Going back to (2.1), when the discriminant satisfies A := p? — 4¢g < 0 we have the complex solutions

oo PEWIA
SR

In general a computer stores a complex number as a pair of floating-point numbers.



30

CHAPTER 2. BASIC INGREDIENTS: SETS AND NUMBERS



Chapter 3

Exercises

Concepts in numerical mathematics

Exercise 3.1. What is the concept for measuring distances? Recapitulate the properties and provide
an example of (function) set.

Exercise 3.2. Fxplain the concepts of approzimation, stability and efficiency in your own words.

Exercise 3.3. We defined different sources of errors. Which errors are specifically related to computer
simulations?

Exercise 3.4. Let Cla,b] be the space of continuous real-valued functions defined over the closed
interval [a,b]. Define a metric on Cla,b] and verify the metric properties.

Sets

Exercise 3.5. Let A, B, C be three sets. Show that
1. AnB)UC=(AuC)N(BUC);
2. (AuUB)NC=(ANnC)u(BNQC);
3. AUB=ANB=A=0B.

Real numbers in computers

Exercise 3.6. In this exercise, we give some ideas for testing how numbers are treated in a computer.

1. Test the law of associativity on your computer (e.g., Python, C++, Octave/MATLAB,...) taking
a=1.0e +308,b=1.1e 4+ 308,c = —1.001e + 308.

2. Compute ((1+z) —1)/x for x = le — 15 (something close to machine precision) and observe if
there is a cancellation of significant digits.

3. Find out the machine precision of your personal computer.

Complex numbers

Exercise 3.7. Let a =8+ 6i and b =1+ 2i be given. Compute (by hand!)
1. a+b
2.a—b

31



32

S

10.

AT

CHAPTER 3. EXERCISES

the two square roots of a (complexr numbers ¢ such that ¢ = a)

the exponential representation of z = a + 2b

z

2

using the Cartesian (real and imaginary parts) and exponential representations



Part 11

Linear algebra and related numerical
notions

33






Chapter 4

Linear systems and matrices

The numerical solution of large linear systems is one of the two main problems of numerical linear
algebra, the other problem being the computation of eigenvalues discussed in chapter[5] Linear systems
occur in particular after the approximation (the so-called discretization procedure) of linear differential
equations (an introduction to this very wide topic is given in part . Even nonlinear problems are
usually solved through the construction of a sequence of linear problems, typically by the Newton
method (see section . The precision of the approximation is directly related to the number of
unknowns, since it is usually associated with spatial or time resolution. It is common to address linear
systems with several thousands (or even millions) of unknowns.

The numerical solution of linear systems is classified in two categories. The first one gathers the
so-called direct methods such as Gaussian elimination and LU or Cholesky decompositions. Such
methods are exact up to round-off errors made during the calculations. The second category contains
the iterative methods as we discuss in Section [7.2] They consist in the construction of a sequence
of approximate solutions, converging to an exact solution only when the number of iterations tends
to infinity. Some methods are mostly appropriate for systems with specific properties (symmetry,
sparsity, block structure, very large systems, systems with indirect knowledge of the coefficients...), or
for special computing architectures. The Gaussian elimination method is often considered as the most
competitive for general "not too large" systems. The LU decomposition is a kind of reformulation of
the Gaussian elimination procedure which is mostly of interest when several systems with the same
matrix need to be solved. The Cholesky decomposition is a simplification of the LU decomposition
for symmetric (or Hermitian) positive definite matrices. Iterative methods must be used for very large
systems (because of the cost complexity and memory requirements), or when one is interested in a
quick approximate solution. Moreover, iterative methods serve as so-called smoothers in geometric
multigrid methods, which may attain optimal cost complexity in solving linear systems; see e.g. [16].

In the following, unless otherwise specified, the letter K is used to designate either the set R of real
numbers or the set C of complex numbers.

4.1 Gaussian elimination for solving linear systems

4.1.1 General definitions

Definition 4.1. A linear system of m equations and n unknowns is a set of equations of form

a;1x1 + apre + -+ apr, = b (R1)
anxry + axprs + - + awT, = b (R2)

' ' : (4.1)
Am1T1 + am2T2 + 0+ AmpTn = bm (Rm)

The numbers a;; € K are the coefficients of the system. The numbers b; € K are the coefficients of the
right hand side. The numbers x; € K are the unknowns of the system.

35



36 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

Definition 4.2. A solution of the system (4.1)) is an n-tuple (1, ..., ) which simultaneously satisfies
the m equations Ry, ..., Ry,.

Definition 4.3. If all the coefficients b; are equal to zero then the system is said to be homogeneous.

Definition 4.4. We say that the system is compatible (or possible) if it admits at least one solution.
Otherwise we say that the system is incompatible (or impossible).

Remark 4.1. Every homogeneous system is compatible since (0, ...,0) is a solution.

Definition 4.5. We say that two systems are equivalent if the have the same set of solutions.

4.1.2 Elementary row operations, row echelon systems

Proposition 4.1. The following operations, said to be elementary, transform a linear system into an
equivalent one:

1. swapping the rows R; and Ry, denoted by R; <+ Ry,
2. multiplying the row R; by some o # 0, denoted by R; <+ aR;,
3. replacing the row R; by R; + BR;, j # i, denoted by R; < R; + BR;.

Definition 4.6. A linear system is in row echelon form if the number of leftmost vanishing coefficients
in each row is increasing, or possibly constant if this number is n+ 1 (row equal to 0).

There are two types of row echelon systems:

1. the last non-vanishing row is of the form
Ty + .. + apxy, = 6 (o #0), (4.2)
2. the last non-vanishing row is of the form
0=8 (B#0).
The system is compatible in case 1, incompatible in case 2.

4.1.3 The Gaussian elimination method

The Gaussian elimination method transforms a linear system into a row echelon equivalent one with
the help of elementary operations.

There are several steps. Let us describe the first one, which itself consists in two sets of elementary
operations.

1. First we possibly swap the row R; with another row Ry such that ax; # 0 (pivoting). We obtain
an equivalent linear system of form

ajiry + dpre + -+ dre = U (R})
ayxr + abpre + oo+ dbyr, = b (RY)

: : : (4.3)
U @1+ G2+ o+ ap e = by, (R7)

with af; # 0. This coeflicient a}; is called the first pivot.



4.2. VECTORS AND MATRICES 37

/
a

2. Then we replace each row R, p > 2, by R, — flel (elimination). This leads to an equivalent
a

11
system of form
(agll)ml + a%)xz + -+ a&):rn = bgl) (Rgl))
aws + o+ ayle, = b)) (RY)
: : : (4.4)
\ oMy + o+ e, = oY (&Y
Step 2 consists in applying the above procedure to rows Rél), e RS%), obviously choosing the pivot

in the second column.

We continue in this way until obtaining a full row echelon system. If this row echelon system is
compatible, with last row of form , then we write the » unknowns z1, ..., z, in terms of the other
ones, going upwards from the last row to the first one (backward substitutions).

In the numerical implementation of the Gaussian elimination method, small (in absolute value /
modulus compared to other coefficients) pivots are undesirable, because they may lead to significant
errors in the floating point arithmetic (an illustration is given as exercise). Therefore, pivoting is often
performed so as to select the largest available pivot. To improve accuracy, column swapping is generally
also performed. This procedure is called total pivoting.

4.2 Vectors and matrices

4.2.1 Basic definitions
Matrices

Definition 4.7. A matriz with coefficients in K of type (m,n) is a table with m rows and n columns
represented as

ail ai2 T Aln

a1 a2 e a2n
A=

aml AaAm2 - Amn

The numbers a;; € K are the coefficients of the matriz. Sometimes we denote A = (a;j).

Definition 4.8. We denote by M, (K), or K"™*™  the set of matrices with coefficients in K of type
(m,n).

Definition 4.9. Two matrices A = (aij) € Mpmn(K) and B = (bij) € Mpmn(K) are equal if they have
the same coefficients, i.e., a;; = by V(i,7) € {1,...,m} x {1,...,n}.

Definition 4.10. A zero matriz, denoted by 0, is a matriz with all coefficients equal to 0. Hence, if
A= (aij) S an(K), then

A=0<=a;; =0V(i,5) € {1,...,m} x {1, ...,n}.

Special matrices

a) Row matrix, also called row vector

A= (all co aln) € Mln(K)



38 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

b) Column matrix, also called column vector

ai
A= : € M1 (K)
am1
¢) Square matrix
aip a2 -+ Qip
a1 az --- a2p
A= . : .| € Mipn (K) =: M, (K)
anl Gp2 " Gnn

Some square matrices have themselves special features.
i) Lower triangular matriz

a7z, 0 - 0
A=
0
QAn1 Ann
it) Upper triangular matriz
all ... ... aln
a=|
0 -+ 0 an
i11) Diagonal matriz
aill 0 0
0o . :
A= . = diag(ai1, ..., ann)
. t. t. . O
0 0 anp
i) Identity matriz
1 0 0
0 . T .
L= |~ = diag(1, ..., 1) € M, (K)
T
0o --- 0 1

In contrast to vectors and matrices, the elements of K are called scalars.

Submatrix

Definition 4.11. A submatriz of a matriz A is a matrixz obtained by removing some rows and some

columns from A.

4.2.2 Operations on matrices

Addition, multiplication by a scalar

Definition 4.12. Let A = (ai;) and B = (b;;) be two matrices in My (K).

defined by
A+ B= (aij + bi]’) € an(K)

The matrizc A + B is



4.2. VECTORS AND MATRICES 39

Definition 4.13. Let A = (a;;) € Mun(K) and a € K. We define the matriz oA by
aA = (aaij) € Mpn(K).
Proposition 4.2. Let A, B,C € M, (K) and o € K. We have

A+B=B+A
(A+B)+C=A+(B+C)
a(A+ B) =aA+aB.

Multiplication of matrices

Definition 4.14. Let A = (a;j) € Mpu(K) and B = (bij) € Myp(K). We define the matric C' =
AB € Myp(K) by C = (ci5) with

n

cij =Y airbpj.

k=1

Remark 4.2. 1. Be careful with the compatibility of dimensions: the number of columns of the left
matrix must be equal to the the number of rows of the second matriz.

2. The product AB may be defined whereas the product BA is not. Fven if AB and BA are both
defined, in general AB # BA. If AB = BA, then we say that A and B commute.

3. It may happen that AB = 0 while A # 0 and B # 0/

Proposition 4.3. Let A, B,C be three matrices. We have, under the condition of compatible dimen-
stons, the associativity

(AB)C = A(BC).

Proposition 4.4. Let A € Mp,,,(K). We have Al, = I,,A = A.

Distributivity

Proposition 4.5. Let A, B, C be three matrices and o € K. We have, under the condition of compatible
dimensions,

A(B+C)=AB+ AC

(A+ B)C = AC + BC

a(AB) = (aA)B = A(aB).
Transposition

Definition 4.15. Let A = (a;;) € Mupn(K). The transpose of A, denoted by AT, is the matriz

AT = (a;:) € Mum(K).

-6

Definition 4.16. A matriz A € M,(R) such that A = AT s called a symmetric matriz. A matriz
A € M,(C) such that A= AT, where A is the complex conjugate matriz of A (obtained by taking the
conjugate of each coefficient), is called a Hermitian matriz.

Example 4.1.

Proposition 4.6. 1. Let A, B € M, (K). We have (A+ B)T = AT + BT,

2. Let A € Myy(K) and o € K. We have (aA)T = aAT.



40 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

k=0 k=1 k=2 k=3
p=0 1
p=1| 1 1
p=2 1 2 1
p=3 1 3 3 1

Table 4.1: Binomial coefficients C¥ for p < 3 (Pascal’s triangle)

3. Let A € M (K) and B € Mp,(K). We have (AB)T = BT AT,
4. Let A € Myn(K). We have (AT)T = A.

Definition 4.17. Let A € My (K) be a Hermitian (symmetric if K = R) matriz. We say that A is
positive semi-definite if T8 Ax > 0 for all x € K*. We denote A > 0. We say that A is positive definite
if T Ax > 0 for all z € K™\ {0}. We denote A > 0.

Trace of a square matrix

Definition 4.18. Let A = (a;;) € M,(K). The trace of A, denoted by tr A, is the sum of the diagonal
coefficients of A, i.e.

n
tr A= ZCL“
i=1
Proposition 4.7. 1. Let A, B € M,(K). We have tr(A+ B) =tr A+tr B.

2. Let A € M,(K) and v € K. We have tr(aAd) = atr A.

3. Let A € My (K), B € My (K). We have tr(AB) = tr(BA).
Power of a square matrix
Definition 4.19. Let A € M, (K) and p € N. We define

AP=AXAx---xA,
p factors

with the convention AY = I,,.

Remark 4.3. Be careful not to confuse the matriz power with the power of the coefficients. However,
if A is diagonal, then (diag(A1, ..., \n))P = diag(N], ..., Ah).

For two commuting matrices, we have the following binomial formula.
Proposition 4.8. Let A, B € M, (K) be two matrices such that AB = BA and p be a natural number.

The binomial formula
P

k Ak —k
(A+ By =Y CkAFBr
k=0
k_ (P P! o :
holds, where C); = B = m are the binomial coefficients.

The binomial formula is formally the same as for scalars. Remind that, due to the property
Cgill = C’;;H + C;f, the binomial coefficients can be obtained from Pascal’s triangle, see Table



4.2. VECTORS AND MATRICES 41

4.2.3 Matrix of a linear system

Let A = (a;;) € Muyp(K) and b = (by, ..., by)T € M1 (K). Solving the equation Az = b of unknown

r = (21,...,2,)7 is equivalent to solving the linear system
(anizr + apre + 0 4 amT, = b
agiry + apry + - 4+ awr, = by
(4.5)
am1T1 + amar2 + -+ AGunTn = by

We say that A is the matrix of the system (4.5]).

4.2.4 Invertible matrices
Definition and first properties

Definition 4.20. A matriz A € M, (K) is said to be invertible (or nonsingular, or regular) if there
exists B € My (K) such that AB = BA = I,,. In this case, B is unique and it is called the inverse
matriz of A, denoted by A",

Proposition 4.9. Let A, B € M, (K). If AB = I,, or BA = I,,, then A is invertible and B = A~

Remark 4.4. If A is invertible then Ax = b <= x = A~'b. The knowledge of A~' permits to
straightforwardly solve any linear system whose matriz is A. However, as we will see, numerically
computing A™" is usually much harder than solving a linear system of the matriz A.

Calculation of the inverse

Let A € M, (K). In order to know whether A is invertible and, if possible, calculate its inverse, the
classical approach when doing the calculations by hand consists in solving the linear system Ax = y
of unknown x = (x1,...,2,)7 and right hand side y = (y1,...,1)" arbitrary. If this system admits a
solution z* without any condition on y, this means that A is invertible. From z* = A~y we infer A~1
by identification.

If the computations are done numerically then the above technique does not apply directly. A
possible reformulation is to solve the matrix equation AB = I,,, of unknown B € M, (K). This is
equivalent to solving n linear systems of matrix A and corresponding to each column of B and I,,.
Even if LU / Cholesky decompositions are helpful for this, numerically inverting a large matrix is to
be avoided unless it is explicitly needed. In particular, do not invert a matrix in order to solve
a linear system! In addition to CPU time, it often happen that A be sparse and A~! be full and
impossible to store in memory.

Example 4.2. Compute the inverse of the matriz
31
A= (5 2) |

{ 3r1+22 =u1

To do so let us solve the linear system

o1 + 2T = Yo.

By Gaussian elimination the unique solution is found as

() =(nim) =5 3) 6
T2 —5y1 + 32 -5 3 y2)



42 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

It follows that A is invertible with inverse

The equivalent matriz formulation is

3 1\ (z1\ (1 O\ (m 3 111 0
<5 2> <x2>_<0 1) <y2> often denoted <5 210 1).

After Gaussian elimination this is found equivalent to

1 0\ (xz1\ _ (2 -1\ /[wm 1 0] 2 -1
b)) -G 3)G) e (005 5)
from which A" is readily obtained.

Some algebraic rules

Proposition 4.10. 1. I, is invertible of inverse I.
2. If A is invertible then A~1 is invertible and (A~1)~! = A.
3. If A, B are invertible then AB is invertible and (AB)~! = B~1A~1,
4. If A is invertible then AT is invertible and (AT)™1 = (A~)HT = 47T,

5. If A = diag(A1, ..., \n), then A is invertible if and only if all coefficients A\; do not vanish. In this
case A71 = diag(A\[ ', ..., A\ Y.

oy N\

4.3 Linear subspaces of K"

4.3.1 Definitions and first properties

Definition 4.21. A set F C K" is a linear subspace of K™ if
1. 0 e F,
2. YVo,weF, v+wéeF,
3. Yve FFYAEK, weF.

Such sets appear naturally when solving underdetermined homogeneous linear systems, as stated
below.

Proposition 4.11. The set of solutions of a linear homogeneous system of the unknown v = (v, ...,v,) €
K™ (here vy,...,v, denote the components of the vector v) is a linear subspace of K".

In the following, elements of K" are called vectors, whatever they are considered as row vectors or
column vectors.

Hereafter, be careful with the number of vectors indexed by m and the corresponding number of
components of each vector that is indicated by n.

Definition 4.22. Let w, vy, ..., v, be vectors from K". FEach of these vectors has n components. We
say that w is a linear combination of vy, ..., v, if there exist scalars A1, ..., Ay, such that

W= ANV + ... + A Um.

Proposition 4.12. Let vy, ...,v, be vectors. The set of linear combinations of vi,...,vy is a linear
subspace of K™. It is called the linear subspace spanned by v1, ..., Um, it is denoted by Span(vi, ..., vp).



4.4. DETERMINANT 43

4.3.2 Bases

Definition 4.23. A family (v1, ..., vm) of vectors is said to be linearly independent if, for all families
(A, ey Am) of scalars,
AMVLF o F A0 =0= X\ =...= )\, =0.

Otherwise it is said to be linearly dependent.

Definition 4.24. Let F be a linear subspace of K™ and (vy, ..., vm,) be a family of vectors. If Span(vi, ..., vm) =
F we say that (vy,...,vm) spans F', or that it is a spanning set of F'.

1 n
EIClt

Ezample. The vectors (eq, ..., ey,) defined by e; = (e ), eg =1ifi=j, eg =0 if ¢ # j obviously

span K". For instance for n = 3:

1 0 0
[ 0 y €9 = 1 y €3 = 0
0 0 1

Proposition 4.13. Let F be a linear subspace of K. If (v1,...,vm) spans F then all family of m + 1
vectors of F' is linearly dependent.

Corollary 4.14. A family of n + 1 vectors of K" is linearly dependent.

Definition 4.25. Let F' be a linear space of K™. We say that a family (vi, ...,vy,) of vectors is a basis
of F if it is linearly independent and a spanning set of F'.

Theorem 4.15. All linear subspace of K" different from {0} admit a basis.

Ezample. The family (e, ..., e,) defined above is a basis of K", called canonical basis.

Proposition 4.16. Let F be a linear subspace of K" and (v1,...,vm) be a basis of F. Any vector x
of F can be decomposed in a unique way as £ = A1 + ... + ApUm with Ay, ..., Ay € K. The scalars
Ay ooy A are called the coordinates of x in the basis (v, ..., vp).

4.3.3 Dimension

Here is the "theorem of the dimension".

Theorem 4.17. Let F' be a linear subspace of K™ different from {0}. All the bases of F' contain the
same number of vectors.

Definition 4.26. Let F be a linear subspace of K™ different from {0}. We call dimension of F', denoted
by dim F', the number of vectors of any basis of F. By convention, dim{0} = 0.

Proposition 4.18. We have dim K" = n and dim F' < n for all linear subspace F' of K".
Proposition 4.19. Let F be a linear subspace of K™ such that dim F' = m.

1. If p vectors of F' are linearly independent then p < m.

2. If m vectors of F' are linearly independent then they form a basis of F.

3. If p vectors of F' span F' then p > m.

4. If m vectors of F' span F then they form a basis of F'.
Corollary 4.20. Let F be a linear subspace of K™ such that dim F = n. Then F = K".

4.4 Determinant

The mathematical construction of the notion of determinant is a lengthy procedure. Here we only
recall the main properties of the determinant of a square matrix.



44 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

4.4.1 Expansion with respect to a row or a column

The determinant of a square matrix A € M,,(K) is a scalar det A € K. We adopt a practical definition
by induction on n.
We begin with the trivial case n = 1.

Definition 4.27. For A = (a) € M;(K) we set det A = a.
We now assume that the determinant is defined for all matrix of type (n —1,n — 1).
Definition 4.28. Let A € M, (K) eti,j € {1,...,n}. We call

e minor (i,7) of A the scalar

Aij(A) = det A
where the A is the submatriz of A obtained by removing the row i and the column j;
e cofactor (i,7) of A the scalar o
Cofi;(A) = (1) Aj;(A).

Definition 4.29. Let A = (ai;) € M, (K). Given ig € {1,...,n} we call expansion of the determinant
of A with respect to the row ig the scalar

n

Rig(A) = aiy; Cofyy ;(A).
J

1

Likewise, given jo € {1,...,n} we call expansion of the determinant of A with respect to the column jo
the scalar

Cjo (A) = Z Qi jo Cofi,jo (A)
i=1
Definition 4.30. Let A € M, (K). We set
det A = R1 (A)

The definitions to define unambiguously det A for any matrix A € M,,(K). The following
theorem permits to sometimes simplify its calculation.

Theorem 4.21. Let A = (a;;) € M,(K). For any iy, jo € {1,...,n} we have
det A = Rio (A) = Cjo (A)
Notation. If A = (ai;) € My(K), we usually write

ailr - Qlp
det A =

Gn1 - Qnn

Example 4.3.

o

QU

We have the minors
A11(A) =d, A12(A) =c, Ag1(A) =0, Ag(A) = a,

the cofactors

Cofll(A) =d, COle(A) = ¢ COle(A) = —b, 00f22(A) = —a,

the determinant
det(A) = R1 (A) == RQ(A) == Cl(A) = CQ(A) = ad — be.



4.4. DETERMINANT 45

4.4.2 Properties

Proposition 4.22. Let A € M, (K). We denote by A, ..., A, the columns of A and we write A =
(Ay,..., Ap).

1. Swapping two columns of A multiplies its determinant by —1.
2. If C is an arbitrary column vector then

det(Aq, ..., Aim1, Ai + C Aiga, . Ay)
= det(Al, ey Ai1, Ay A, 7An) + det(Al, vy Ai 1, CL Ay, An)

3. If A € K then

det(Al, ...,Ai_l, )\Az; Ai—i—la ,An) = )\det(Al, ceey Ai—lyAia Ai+1, ,An)

Remark 4.5. 1. If A and B are two matrices then in general det(A + B) # det A + det B.
2. If A € K then det(AA) = A" det A.

Corollary 4.23. Let A € M, (K).
1. If a column of A is zero then det A = 0.
2. If two columns of A are equal then det A = 0.

3. If we add to a column of A a linear combination of the other columns of A then the determinant
1s unchanged.

4. If the columns of A are linearly dependent then det A = 0.

Proposition 4.24. Let A € M, (K). We have
det A = det AT,

Consequently, the assertions of proposition and corollary apply also row-wise.
Calculating a determinant via recursive expansions is usually tedious. Only special matrices permit
an easy calculation.

Proposition 4.25. The determinant of a (lower or upper) triangular matriz is equal to the product of
its diagonal coefficients.

In particular, this applies to diagonal matrices. Notably, det I,, = 1.

4.4.3 Determinant of a product, characterization of invertible matrices

The following algebraic property is remarkable.

Theorem 4.26. Let A, B € M, (K). We have
det(AB) = det Adet B.

It leads to a very useful characterization of invertible matrices.

Corollary 4.27. Let A € M, (K). Then A is invertible if and only if det A # 0. In this case we have

_ 1
~ det A°

det(A™1)



46 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

4.5 LU decomposition (complement)

4.5.1 Matrix representation of Gaussian elimination

In this section, we formulate the Gaussian elimination method as a series of matrix operations. These
concepts are very useful in computer implementations.

We recall the Gauss elimination principle:

* * * * ok *
0 * * 0 =x *

x| 510 * x| ... 510 * *

* k% * 0 * =* * 0 0 0 =*

Using the upper triangular matrix U € M, (K) (U = (u;5)7 ;- with u;; = 0 for i > j), we can solve
the reduced system

U:c:B,

using backward substitution. Here, b is the modification of the right hand side b through the elimination
process. Let us consider the backward substitution in more detail:

Listing 4.1: Backward substitution
Let U € M, (K) be a regular upper triangular matrix, i.e., u;; # 0. The solution z € K" of Uz = b is
given by:

| Set | , = u,lb,.

|For| ¢ [from| n—1 |until| 1
zi = g (bi — Xjmit Uiﬁj)

It holds

Proposition 4.28 (Backward substitution). Let U € M, (K) be an upper triangular matriz with
ui; # 0. Then, the matriz U is reqular and the backward substitution requires

elementary operations on numbers.

Proof. 1t holds det(U) = [ ui; # 0. Also the matrix U is regular.

Each step of the backward substitution consists of additions, multiplications and divisions of the
diagonal elements. For u;; # 0 each step is well-defined.

For the computation of z;, we need n — ¢ multiplications and additions. Furthermore, we have one
division per step. This yields

i, (n—1n n?> n
n+;(n—i):n+(n—1)n—2:2+2.



4.5. LU DECOMPOSITION (COMPLEMENT) 47

The transformation of A to a triangular structure is obtained through row-based elimination:

ail a2 Qi3 ... Qin aj; a2 @13 ... Qln
(1) (1) (1)
a1 A2y a23 ... aon 0 5D CL23 Qo
- (1) 3) . (1)
azy azz ass cazn | = | 0 a3y ass ©oAg, |

1 1 1
Apl Gp2 QAp3 ... Gpnp 0 agﬂ) afﬁ) aq(m)
aip a2 a3 ... Qin
(1) (1) (1)
0 ayy ags ... ay,

2 -. (2) (n—=1) _.

=10 0 a5 coag | == A =: U.

2 2
0 0 a£L3) aﬁl,i

Starting from A(®) := A, we obtain successively the matrices A® with A®~1) =: U. Therein, in step
i, we eliminate the ith column of AG=1 below the diagonal. This is obtained through subtraction of
the g{"-fold of the ith row from the kth row. Here, it holds for k =i+ 1,...,n

i—1
() ._ al(m' )
gk T (i—l)’

i

and the new row is computed as

(i) (=1) _ @ G=1) 1

ak]:ak‘] _gk‘ aij y j:Z,...,n.

(i-1)

These instructions are well-defined if a;; ~’ # 0. This follows not necessarily from the regularity of A

and all A®). First of all, we assume that al(-z:_l) # 0 holds true, and discuss later the general case. In
the ith elimination step, the first ¢ — 1 rows and columns remain unchanged. The ith elimination step

is written in compact form with the help of a matrix-matrix multiplication
A6 — p() gG-1)

Here, the elimination matrix is

1
1 A
FO .= i . , g(l) =k
_91(+)1 E " ag*l)
g1 1

Therein, all non-specified entries are zero. Multiple applications yield

U = Ar-D = ph-l)gn=2) — ph-1)ph=2)gn=3) — pr-1). . p0) 4O — FA  (4.6)
—_—
=F

Matrices F(9) with this structure are called Frobenius matrices. It holds



48 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

Proposition 4.29 (Frobenius matrix). Each Frobenius matriz F € R™ " is reqular and it holds

1 1
FO = ' = [FO]7l = '
—Gi+1 .. gi+1
—dn 1 gn 1

For two Frobenius matrices F1) and FU2) with iy < is, it holds

1
1
_9§I1+)1 1
Fl) pliz) — pla) | pliz) _ 5 — '
1
—9§§2+)1
—gyV —gi?) 1
Proof. Follows from component-wise calculations. O

Multiplying Frobenius matrices, we should take into account that these are not commutative. It
holds
FEIp) £ p) 4 p62) _ T for 41 < 4.

Careful observations yield for i; < iy < i3 the simple generalization:
F) pl2) plis) — plo(ple) 4 pls) _ ) = p) pl2) 4 pl) plis) _ pl)
—pl) L plz) _ 74 pl)  pls) _p_ pli)
= pl) 4 pl2) 4 pGs) _of,

We now continue with (4.6). With F~() .= [F (i)]*l and using Proposition we obtain that F' as
product of two regular matrices is itself regular. If follows

A=F1U = [F(”*l) . F(l)]*lU o O A SV
=:L

The matrix L is with the help of the generalization of Proposition .29 a lower triangular matrix with
the diagonal entries 1:

1
g 1

I g ¢ 1
g’ ¢ oY 1
g g g 1

We summarize our results:



4.5. LU DECOMPOSITION (COMPLEMENT) 49

Proposition 4.30 (LU decomposition). Let A € M, (K) be a regular matriz. We assume that all
diagonal entries agz_l) arising through the elimination process are nonzero. Then, there exists a unique
decomposition A = LU with an upper triangular matric U € M, (K) and a lower trianglar matriz
L € M, (K) with diagonal entries 1. The computational cost to construct the LU decomposition
requires

éni)’ + 0O(n?)

elementary operations.

Proof. (i) Uniqueness. Let us assume there exist two LU decompositions
A=LU = LUy «  Ly'Ly =UU

The product of triangular matrices is again a triangular matrix. The product L., 111 has only values
of 1 on the diagonal. It follows
Ly'Ly = DU =1,

and therefore Iy = Lo and Uy = Us.

(ii) Feasibility. Each step of the elimination is well-defined as long as we do not need to divide by
(i—1)

a;; ~ = 0. The matrix F'is per construction regular and therefore the matrix L exists.

(i1i) Computational cost. In the ithe elimination step
A® — p(i) gG-1)

we have first of all n — ¢ arithmetic operations for the computation of g](-i) forj =i+ 1,...,n. The

matrix-matrix multiplication applies to all elements ay; with k& > ¢ and [ > 4. It holds

al) = o™ — WU i1,

Here, we need (n — 4)? arithmetic operations. In total, the computational cost in the n — 1 steps
sums-up to

n—1 n—1
New(n) =Y {n—i+m-i?}=> {i+i’},
i=1 i=1
and with the well-known summation rules, it follows
nd n
N = — + —.
wn) =5 +3

The LU decomposition can be used to solve linear equation system:

Listing 4.2: Solving Ax = b with the LU decomposition
Let A € M, (R) be a regular matrix which admits an LU decomposition.

Construct the LU decomposition A= LU
Forward substitution: Ly=0b
Backward substitution: Uz =y

The forward substitution is similar to Algorithm and requires O(n?) operations according to Propo-
sition .28 This is an interesting observation. The solution process is much cheaper than constructing
the LU decomposition itself. For this reason, if possible, the LU decomposition is only constructed
when needed, but in many applications it can be used several times (to solve several systems with the
same matrix). This should be considered in implementations and reduces significantly the computa-
tional cost for large problems.



50 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

Remark 4.6 (Practical aspects). The matriz L is a lower triangular matriz with values 1 on the
diagonal. These values are not required to be stored. Similarly, the zero-elements of AW below the
diagonal are not required to be stored either. Consequently, both matrices L and U can be stored in a
common square matriz. In step i, it holds

a’].]. a12 a13 “e e o e o e aln

b1 a3y ay

A0 — :
litai az@l,iﬂ o agl,n
bt oz o0 lng a0, ... al)

The bold entries are the entries of L. The values above the line do not change anymore during the
algorithm and form already the respective entries of L and U.

The algorithm reads:

Listing 4.3: LU decomposition of a matrix A without additional memory
Let A = (ai;)ij € Mp(K) be a regular matrix for which the LU decomposition exists

|For| ¢ |[from| 1 |until| n
|For| k |from| i4+1 |until| n
ki = ki Qi
|For| j |from| ¢4+ 1 |until| n
Akj = Qkj — ki - Qij

(i-1)

The element a;; "~ is the so-called Pivot element. Until now, this element was assumed to be non-zero.
For regular matrices this is however in general not the case. Let us consider the following example:

b

I
— N
DN OO W~
— =N

In the first step of the construction, we have ag(i) =1 and it holds

0
AV = Fg= -2 1
0

At this step, the algorithm aborts, because we have a%) = 0. We could have continued the algorithm

with the choice agg) = —2 as anew Pivot element. This approach can be applied in a systematic manner
and is called pivoting. In the ith step of the scheme, we search first for an appropriate Pivot element

ag; in the ith column with k& > 4. The kth and ith rows are switched and the LU decomposition can



4.5. LU DECOMPOSITION (COMPLEMENT) 51

be continued. Switching of the kth and ith rows is achieved by multiplying with a Pivot matrix:

1
1
0 0 1
01
Pki — :
1 0
1 0 0

1

It holds p% =1 for j # k and j # i and pﬁz = pf,g = 1; all other elements are zero. We collect now
some properties of P:

Proposition 4.31 (Pivot matrices). Let P = P* be the Pivot matriz with ijj =1 forj # k,i and
P,ff = Pi’zi = 1. Applying P¥ A from left switches the kth and ith row of A. Applying AP*" from right
switches kth and ith column. It holds

P? =1 hence P~' = P.
Proof. It is left to the reader. O
In step 7 of the LU decomposition, we search first the Pivot element:

Listing 4.4: Pivot search In step ¢, search index k > ¢, such that

| Search | Index k>4, such that
|agi| = max;>; [aji]

| Set| PO .= pki,

Afterward, we determine A as
A6 — p@) p() gG-1)

Pivoting ensures that all elements g,(j) = agi_l) / ag_l) of F() are bounded by 1 in their absolute value.

In summary, we obtain

U= A1 = pr=1) ptn=1)  p1) p(1) 4. (4.7)

The Pivot matrices are not commutative with A and F®). A straightforward transit to the LU
decomposition is therefore not possible. We define

F) . p=1) . plit)) p(0) pli+1) ., pln—1)

The matrix F() is obtained through multiple switches of rows and columns of F?). Specifically, only
rows and columns with j > ¢ are switched. The matrix F( has the same pattern as F®) and in
particular only values of 1 on the diagonal. This means that it is again a Frobenius matrix and
Proposition still holds true. Only the entries in the ith column below the diagonal are permuted.
For the inverse, it holds correspondingly

£ = [FO]71 = ple=1) . p(+1) [6) p(i+1) . ple=),

The simultaneous switch of rows and columns yields unchanged diagonal elements. The matrix L is
again a Frobenius matrix and only the elements in the column l;;,7 > j are permuted. We form (4.7))
through smart insertion of permutation matrices:

U=pn-Dpe=2  pl)phe-1)  pl) 4

—_—
=P



52 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

We illustrate this process with the help of a simple example:

U = FG pB) g2 p2) p(1) p(1) 4
— B pB) p2) pB) pB) p2) p1) p2) pB3) pB3) p(2) p(1) 4
—_——

=TI -7

— B3 p® p@) pB) pB) p2) p1) p2) pB) pB) p2) p) 4
~—~ -
=F®) —F(2) — () —_p

With L® = [F®]~1 it holds
L. =D = pA.
S—_——

—L

Since L are again Frobenius matrices, it holds further with Proposition m

L=LW.. . [(r-1

— p=1) (L“H) + pn=D) (L(’H) +o.

oy P(2>F(1>P<2>) . .P<"—2>) P _ (n — 2)I.

For the construction of the LU decomposition not only do we need to permute the A® but we also
need to change the L(®) that have been computed so far. We summarize:

Proposition 4.32 (LU decomposition with pivoting). Let A € M, (K) be a regular matriz. Then,
there exists an LU decomposition

PA=LU,

where P is a product of Pivot matrices, L is a lower triangular matriz with values 1 on the diagonal
and U an upper triangular matriz. The LU decomposition without pivoting P = I is unique in case it
erists.

Proof. The proof is left for the reader. O

We recall that pivoting yields a well-defined construction of the LU decomposition. But there is
a second advantage. With the help of pivoting, we can increase the numerical stability of Gaussian
elimination. Through the choice of a Pivot element aj; with maximal relative value (with respect to
the row), we can reduce the risk of cancellation.

Example 4.4 (LU decomposition without pivoting). Let:

23 1.8 1.0 1.2
A=114 11 -07], b=|-21],
0.8 43 2.1 0.6

and the solution of Az = b is given by (five-digit accuracy):

+0.34995
z~ | —0.98023
+2.1595

For the matriz A it holds conds(A) = [|Alleo |47 oo &~ 7.2 - 1.2 =~ 8.7. This problem is well-
conditioned. The amplification factor is 8.7 and we expect an amplification of the error of about one



4.5. LU DECOMPOSITION (COMPLEMENT) 53

digit. First, we construct the LU decomposition (three-digit accuracy). The entries of L are in bold
letters:

1 00 1 00
FO = —% 1 0| ~|-0609 1 0],
~22 0 1 —0.348 0 1

23 18 1.0\
LM, AW ~ [ 0.609 0.0038 —1.31).

0.348 3.67  1.75

In the second step, we obtain

1 0 0 1 0 0
F® = (o 1 ol~{o 1 o],
3.67
0 —307 1 0 —966 1

23 1.8 10
LALLM AP ~ [0.609 0.0038 —1.31
0.348 966 1270

The LU decomposition is then

1 0 O 23 1.8 1.0
L=10609 1 0}, U:=1]0 0.0038 -1.31
0.348 966 1 0 0 1270

We solve the linear equation system through forward and backward substitution:
Az =LUZ =b
~—
=y
First, we have

v =12,  yo=-2.1-00609-1.2~ —2.83,
ys = 0.6 — 0.348 - 1.2 + 966 - 2.83 = 2730.

And finally, we obtain

2730
Fy= o 91
3= 1970 >
. —283+1.31-2.15
v2= 0.0038 ~ —3.55,
1.24+1.8-3.55—1-2.15
- ~ 2.37.
e 23
For the solution T it holds
) lE—ale
F=|—355], T2 g4
2.15 lll2

which is a relative error of 140%. Here, we only considered round-off errors and not yet perturbed
entries!

The previous example shows the significance of pivoting. In the second step, we chose as Pivot
element 0.0038, which is close to 0. For this reason, we obtained values of different orders in the
matrices L and U. This yields instabilities in the computation.

Example 4.5 (LU decomposition with pivoting). We continue the previous example in step 2 and
search now first the Pivot element:

23 18 10\ 100
(LM, AM] = [0.609 0.0038 —131|, PP =0 0 1
0.348 1.75 010




54 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

Then:
o 23 18 1.0\
LW, AW = (0.348 ~ 367 1.75 |.
0.609 0.0038 —1.31
It follows
1 0 0 1 0 0
F@ =10 1 0]l~|o 1 0],
0 —00058 0 —0.00104 1

2.3 1.8 1.0
LALLM AP~ [0.348 367 175
0.609 0.00104 —1.31

We obtain the decomposition LU = PA as

. 1 0 0 23 1.8 1.0 1 00
L:=10.348 1 0), U=10 367 17 ], P:=|(0 01
0.609 0.00104 1 0 0 -1.31 010

The linear equation system, we solve in the form:

PAxr = L Uz = Pb.
~—~—
=y

For the right hand side, it holds b = Pb = (1.2,0.6, —2.1)"" and forward substitution in Ly = b yields

y1 =12,
yo = 0.6 — 0.348 - 1.2 ~ 0.182,
ys = —2.1 —0.609 - 1.2 — 0.00104 - 0.182 ~ —2.83.

As approximation T, we obtain

0.350
Z =1 —0.980
2.160
with a relative error :
Iz —=ll2 0.0002,
]2

which is now only 0.02% rather than 140% as in the previous example.

These examples show that the constructed LU decomposition is not really a truly decomposition,
but only an approximation of A ~ LU due to round-off errors. Computing LU easily yields the test
and we can compute the error A — LU.

As we emphasized at the beginning of this section, the LU decomposition is one of the most
important schemes for solving linear equation systems. Due to third order computational cost, however,
computing time exceeds easily the capacities of modern computers - despite faster and bigger machines!
For instance, we obtain as illustration:

Within the discretization of differential equations we usually obtain very large linear equation
systems with n ~ 105 — 10°. The good news are that these systems have a special structure, such
as symmetry or a sparse pattern with just a few non-zero entries. This is for instance the case for
the finite element discretization of Poisson’s problem (Chapter . Here, in contrast to the previous
table, we may have n = 1000000, but thanks to these structural properties, we can solve such systems
within one minute.



4.6. CANONICAL INNER PRODUCT, EUCLIDEAN NORM, MATRIX NORM 95

n ‘ Operations (~ in?) ‘ Time LU decomposition

100 300 - 103 30 us
1000 300 - 106 30 ms
10000 300 - 10? 30 s
100 000 300 - 1012 10 h
1000 000 300 - 10%° 1 year

Table 4.2: Computational time for constructing the LU decomposition of a non-sparse matrix A €
M,,(K) on a computer with 10 GigaFLOPS with optimal load-balancing.

4.5.2 LU decomposition for diagonal-dominant matrices

Proposition showed us that the LU decomposition for arbitrary regular matrices with pivoting
exists. On the other hand, there are many matrices for which the LU decomposition is stable without
pivoting. Examples are positive definite or diagonal dominant matrices:

Definition 4.31 (Diagonal dominant matrices). A matriz A € M,,(K) is called diagonal dominant,

if
laii| > Z\aij\, i1=1,...,n.
J#i

A diagonal dominant matrix has the largest (absolute) value on the diagonal. For regular matrices
the diagonal is moreover always nonzero.

Proposition 4.33 (LU decomposition of diagonal dominant matrices). Let A € M, (K) be a regular

and diagonal dominant matriz. Then, the LU decomposition can be constructed without pivoting and
(i-1)

all Pivot elements a;; are non-zero.

4.5.3 Case of Hermitian positive definite matrices: Cholesky decomposition

In the case of a Hermitian positive definite matrix A, a variant of the LU decomposition can be
obtained, namely the Cholesky factorization. It has the form

A=CTc,

where C is an upper triangular matrix with real positive diagonal entries.

4.6 Canonical inner product, Euclidean norm, matrix norm

4.6.1 Canonical inner product and Euclidean norm

The general definition of a norm has been given in Definition and the general definition of an inner
product will be given in chapter[6] In this chapter dedicated to linear algebra in K™ we restrict ourselves
to the canonical inner product and the associated Euclidean norm which are the most standard ones.

Definition 4.32. The canonical inner (or scalar) product of two vectors (xi,---,x,) € K" and
(y17 e 7yn) S K™ s deﬁned by
(z,y) =TIy + -+ + Tnln.

The Euclidean norm of (x1,--- ,x,) € K" is defined by

lzll2 := V{2, 2) = V]w12 + - + |zal?.

Obuviously, for real vectors, conjugacy and moduli can be dropped.



o6 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

Next, we have the classical Cauchy-Schwarz inequality for vectors of K™:

Proposition 4.34. For all z,y, € K" we have
[z, 9)| < [lll2lyll2-
4.6.2 Matrix norm
Definition 4.33. A matriz norm on M, (K) is a norm || - || on the vector space M,,(K) that satisfies
[AB|| < [IA[[[B]l VA, B € Mn(K).

As example we first mention the Frobenius norm, which is associated with an inner product (see
chapter @

Definition 4.34. The inner product of A = (a;j) € My(K) and B = (b;;) € My (K) is defined by

(A,B) = tr(A" B) = Zn: zn:@bij.

i=1 j=1

The Frobenius norm of A = (ai;) € My(K) is defined by

n o n
2D lail

i=1 j=1

[AllF = V(A A) =

There are also the so-called induced norms, which are more appropriate for some applications.
These norms are constructed from a vector norm.

Definition 4.35. Let ||.|| be a vector norm on K™. The induced norm on M, (K) is defined by

A
14] = sup 1421

(4.8)

It is an easy exercise to check that such norms are indeed matrix norms. However they are not
associated with an inner product on matrices, even if the Euclidean vector norm is considered.

Solving the maximization problem (4.8]) is in principle not an easy task. However, when the
Euclidean vector norm is used, it can be reformulated as an eigenvalue problem.

Proposition 4.35. The matriz norm induced by the Euclidean norm satisfies

1]l = Ve(ATA)
= o(A) if A is Hermitian (or real symmetric),

where ¢ stands for the spectral radius (Deﬁm'tion in the next chapter). It is called the spectral norm.
By definition an induced norm satisfies
[Az| < [ Allflz]] Vo e K"

When a matrix norm and a vector norm satisfy the above relation they are said to be compatible.



Chapter 5

Diagonalization of square matrices and
applications

Diagonalization of matrices has many applications. The major purpose is to simplify some given matrix
(in case it is diagonalizable) to a diagonal matrix by conserving important properties such as the
rank, characteristic polynomial, determinant, trace, and eigenvalues and their algebraic multiplicities.
Mathematically, diagonalization is the process to construct a similar matrix. Similar matrices represent
the same linear mapping under two different bases.

5.1 Eigenvalues, eigenvectors, diagonalization

5.1.1 Eigenvalues and eigenvectors
Let A € M,,(K) with in general K = C.

Definition 5.1. Let A € K. We say that X is an eigenvalue of A if there exists a column vector x € K",
x # 0, such that
Az = Ax.

Such an x is called an eigenvector associated with the eigenvalue .
Proposition 5.1. The function

K — K
A = Py(A) :=det(A — A,)

18 a polynomial of degree n. It is called the characteristic polynomial of A.
Proposition 5.2. Let A € K. Then X is an eigenvalue of A if and only if P4(\) = 0.

Determining the eigenvalues of a matrix amounts to finding the roots of its characteristic poly-
nomial. However this is not an easy task, since characteristic polynomials have no special propertyﬂ
Explicit formulas exist only for n < 4. For the numerical approximation of eigenvalues iterative meth-
ods are used. They are usually not based on the characteristic polynomial. The simplest method, the
power method, is described in section

Definition 5.2. Let A\ be an eigenvalue of A. We call an eigenspace of A associated with the eigenvalue
A the set
Ea(\) ={z € K" s.t. Az = A\z}.

It is a linear subspace of K™.

In other words, F4(\) is the set of eigenvectors associated with A and the zero vector.

!Given an arbitrary polynomial P one can always construct a matrix, called companion matrix, whose characteristic
polynomial is P, up to a multiplicative constant.

o7



58 CHAPTER 5. DIAGONALIZATION OF SQUARE MATRICES AND APPLICATIONS

5.1.2 Diagonalization

Definition 5.3. A matriz A € M,,(K) is diagonalizable if there exists an invertible matriz P € M, (K)
such that D := P~YAP is diagonal.

Remark 5.1. The matriz D := P~ AP corresponds to a change of coordinate system (or change of
basis) in the map x + Ax. Indeed, if v = PZ, y = Pj and y = Ax then § = P~1APZ. Therefore
P is called a change of basis matriz (or transition matriz). Its columns contain the coordinates of the
new basis vectors in the former (here canonical) basis. The relation D = P~YAP is straightforwardly
inverted into A = PDP™1,

Proposition 5.3. A matriz A € M, (K) is diagonalizable if and only if there ezists a basis B =
(v1, ..., vp) such that each each v; is an eigenvector associated with an eigenvalue \; of A. In this case,
if P is the matriz made columnwise of the vectors (vy,...,vy), then

A1
P71AP = =: diag(\1, ..., \n).
An

Therefore it is to be remembered that the columns of a transition matrix associated with a diago-
nalization form a basis of eigenvectors.

Remark 5.2. The diagonal coefficients \; need not be distinct.
Proposition 5.4. Eigenvectors associated with distinct eigenvalues are linearly independent.
Corollary 5.5. If A € M, (K) admits n distinct eigenvalues then A is diagonalizable.

The fact that a matrix be diagonalizable is related to the number of its eigenvalues and their order
of multiplicityﬂ We do not enter into these developments, which are extremely classical and well-
documented. We only stress that a real matrix may be diagonalizable on C while it is not on R, due
to a possibly larger number of eigenvalues. The case of symmetric and Hermitian matrices is of special
interest.

5.1.3 Case of Hermitian matrices

Theorem 5.6. If A is Hermitian then A is diagonalizable with the help of real eigenvalues. Moreover
the transition matriz P can be chosen such that P~' = PT (this is called a unitary matriz).

This theorem has a direct consequence on the characterization of Hermitian positive (semi-) definite
matrices.

Corollary 5.7. If A € M, (K) be a Hermitian matriz, then A is positive semi-definite (resp. positive
definite) if and only if all its eigenvalues are > 0 (resp. > 0).

5.2 Applications

The diagonalization has many applications. One of them, the expression of matrix power, turns out
to be very important in the analysis of iterative methods.

Proposition 5.8. If A = PDP~! with D = diag(\1, ..., \n) then, for all k € N, we have AF =
PD*P~! with DF = diag(A¥, ..., \E).

2The notion of order of multiplicity is related, but not equivalent, to the fact that an eigenvalue may appear in several
places in the diagonal form.



5.3. THE POWER METHOD (COMPLEMENT) 59

When k goes to infinity the behavior of A* is governed be the A¥’s. If |\;| < 1 for all 4 then clearly
A¥ — 0 when k — +oo. If |\;y| > 1 for some index ig then, calling v;, an eigenvector associated with
\ig, We have A¥v; = Mv;, whose norm goes to infinity when & — 4-oc.

Definition 5.4. The largest modulus of the eigenvalues (on C) of a (real or complex) matriz A is
called spectral radius and is denoted by p(A) with p = maxycqy(a) |-

A fairly similar reasoning can be made concerning the analysis of first order linear differential
systems with constant coefficients, where diagonalization uncouples the system, leading to explicit
solutions:
y=Pz, 2= (21,...,2n)"

/I —1 ! —1
y—Ay<:>(P y) —D(P y)@{zz/_:)\izivz'zlj,,_,n

Here the signs of the real parts of the eigenvalues govern the asymptotic behavior of the solutions.

5.3 The power method (complement)

There exist many more or less sophisticated methods for the numerical approximation of all or some
eigenvalues of a given matrix. The extremal eigenvalues (in modulus or in real part) often carry the
most important information, as mentioned in section The power method is an elementary method
ailming at computing the largest modulus of the eigenvalues.

Let A € M, (R). The power method consists in defining two sequences (x,) and (y,) by

e zg € R™ given,

e for all k£ € N*

Yk
Uk = Azg_1, Tk =
[l
Here, ||.|| is an arbitrary norm on R”, typically the Euclidean norm is used.

Theorem 5.9. We assume that A is diagonalizable (possibly on C), with basis of eigenvectors (eq, ..., e,),
chosen to be of unit norm, associated with the eigenvalues (A1, ..., \p). We assume further that

|/\1’ < |>\2| <. < ’)\n—l‘ < ’)\n|

If xg = Zﬂiei with By, # 0, then
i=1
li = | Anl.
(el = A

Moreover, if Ay s real and positive, e, € R™, then limg_, o T = Lep.

Remark 5.3. 1. There is a priori no way to ensure that xo admits a nonzero coordinate along e,
since by definition e, is unknown. However, because of round-off errors in a numerical imple-
mentation, such a component will automatically appear in the vector xy after some iterations.

2. A variant, the inverse power method, aims at computing the smallest modulus of the eigenvalues.



60 CHAPTER 5. DIAGONALIZATION OF SQUARE MATRICES AND APPLICATIONS



Chapter 6

Vector spaces and elements of topology

Here again, K stands either for R or for C.

6.1 Vector spaces

6.1.1 General definition

We have defined linear subspaces of K" in section however there is a more general and axiomatic
definition of the concept of vector space.

Definition 6.1. A vector space on K is a set X, whose elements are called vectors, equipped with two
operations

(z,y) € X? =z +ycX,

Nz)eKx X — M\ e X,

satisfying the following properties:

Va,y,z € X, (r+y)+tz=2+(y+2),

Va,y € X, r+y=y—+uw,

there exists a vector denoted by 0 such that 0+ x =z for all z € X,

for all x € X there exists a vector denoted by —x such that x + (—x) =0,

VA p,z) e Kx K x X, (Ap)x + A(px),
Ve e X, ler =z,
VA z,y) e Kx X x X, Mz +y) =+ Ny,
V(A p,z) e Kx K x X, A+ p)z = Az + px.

Clearly, K™ equipped with its standard operations is a vector space on K. This also holds true
for all its subspaces. We speak of real vector space when K = R, and of complex vector space when
K=C.

61



62 CHAPTER 6. VECTOR SPACES AND ELEMENTS OF TOPOLOGY

6.1.2 Vector spaces of finite dimension

Definition 6.2. Let X be a vector space and (u;)ier be a family (not necessarily finite) of elements of
X. A vector x € X is said to be a linear combination of (u;)icr if there exist a finite subfamily (u;)ics
and a family (o;)ieg of elements of K such that

Tr = Z ;U5
ic
Definition 6.3. A wvector space X is said to be of finite dimension if there exists a finite family
(uy, -+ ,up) such that every vector of X is a linear combination of (uy, -+ ,uy).

Of course, K" is of finite dimension. But function spaces are usually not of finite dimension.
For instance C([a, b],R), the set of continuous real-valued functions on [a, b] is a vector space but it is
not of finite dimension. There are exceptions, however. For instance the space of polynomial functions
of degree < n is of finite dimension: it is spanned by the monomials (z*)g<k<p.

6.2 Basic topology

6.2.1 Norms and balls
Definition 6.4. Let X be a vector space. A norm on X is a function
zeX |z € Ry

that satisfies:

Vo € X, |lz||=0< 2 =0,
V(z,a) e X xK,  [loz|| = |af]]],
V(z,y) € X2 e +yll < el + Iy (6.1)

A wector space endowed with a norm is called a normed vector space.

On X =K, the canonical norm is the modulus (or absolute value) | - |.
The triangle inequality (6.1]) implies other inequality

V(z,y) € X% llzll = llylll < llz —y]. (6.2)

Due to this property, we say that the norm is a 1-Lipschitz (or non-expansive) function.
When there is no confusion the notation ||z| will be systematically used for the norm of x on its
underlying space.

Example 6.1. On K" the most classical norms are defined, for x = (x1,--- ,2y), by

n
Izl = |ail, zll2 =
i=1

For instance, for x = (—1,2) we obtain ||z|1 = 3, ||z]l2 = V5, [|2]lc = 2.

n
Dol el = max |zl.
=1 =1, n

)

The norm || - ||2 has already been mentioned, and it is the most classical norm because it has a
noticeable property: it is associated with the canonical inner product of K™. Actually, to check that
the norms from example are indeed norms according to Definition the only nontrivial task is
to check the triangle inequality for || - ||2. For this we use the expression of the norm in terms of
the canonical inner product and the Cauchy-Schwarz inequality from Proposition [£.34] to obtain

lz + 33 = (& +y, 2 +y) = I3 + Iyll3 + 2R(z, y) < [l2l|3 + lyl3 + 2/, )|
< llll3 + lyll3 + 2llzllzllyllz = (lzll2 + lyll2)*.



6.2. BASIC TOPOLOGY 63

Definition 6.5. Let X be a normed vector space, z € X and p > 0. The open ball of center z and
radius p 1s the set

B,(z) ={r € X s.t. |z —z| <p}.
The closed ball of center z and radius p is the set
B,(2)={z €z st |z —z| <p}.

When the radius p is chosen equal to 1 and the center is fixed at the origin, the balls B;(0) and
B1(0) are called the (open or closed) unit balls. See Fig. [6.1

Figure 6.1: Unit balls of R? for the norms (from left to right): || - |1, || - |l2 and || - ||

Definition 6.6. Let X be a normed vector space and z € X. A subset U of X is said to be a
neighborhood of z if there exists p > 0 such that B,(z) C U.

6.2.2 Open sets, closed sets (complement)

Definition 6.7. Let X be a normed vector space. A subset A of X is said to be open if
Vze Adp>0 st By(z) C A,

i.e., A is a neighborhood of all its points.
More generally, a subset A C E C X is said to be open relatively to the set E if

Vze Adp>0 st By(z)NE C A,
i.e., A is a relative neighborhood of all its points.

Definition 6.8. Let X be a normed vector space. A subset A of X is said to be closed if its comple-
mentary set X \ A is open.
A subset A C E C X is said to be closed relatively to E if E'\ A is open relatively to E.

It is a classical exercise to show that open balls are indeed open sets, and that closed balls are
closed sets.

On R (equipped with the absolute value), all intervals of the form ]a, b[, | — 00, b, ]a, +oco[ are open,
and all intervals of the form [a, b], | — 00, b], [a, +o0[ are closed. Intervals of the form [a, b[ or |a, b] are
neither open nor closed. The interval | — 0o, +00[= R is open and closed.

The following proposition is straightforward and also applies to relative open / closed sets.

Proposition 6.1. An arbitrary union of open sets is an open set. A finite intersection of open sets is
an open set.
An arbitrary intersection of closed sets is a closed set. A finite union of closed sets is a closed set.



64 CHAPTER 6. VECTOR SPACES AND ELEMENTS OF TOPOLOGY

6.2.3 Closure, interior (complement)

Definition 6.9. Let X be a normed vector space and A be a subset of X. The closure of A, denoted
by A, is the subset of X defined by

Vo € X, r€A&Vp>0,By(x)NA£0.

The closure of a set A is always closed, in fact it is the smallest (in the sense of inclusion) closed
set containing A. If A is closed then A = A.

Definition 6.10. Let X be a normed vector space and A be a subset of X. The interior of A, denoted
by int A is the subset of X defined by

Vo e X, re€intAs 3p>0,B,(x) C A

The interior of a set A is always open, in fact it is the largest open set contained in A. If A is open
then int A = A.

It is classical to show that X \ A = int(X \ A) and X \ int A = X \ A. In addition, the closure of
an open ball is the closed ball of the same center and radius. The interior of a closed ball is the open
ball of the same center and radius.

6.2.4 Converging sequences (complement)

The notion of convergence in normed vector spaces extends that of real-valued sequences, only replacing
the absolute value by the norm.

Definition 6.11. Let X be a normed vector space and (x,) be a sequence of elements of X. We say
that (xy,) is converging to v € X if

Ve>03INeN st. n>N= |z, — x| <e.

This can be phrased as: x;, becomes arbitrarily close to x provided that n be large enough.

6.2.5 Equivalent norms

Definition 6.12. Two norms || - ||o and || - ||[p on X are said to be equivalent if there exists a,, B > 0
such that

allzlle < flzlly < Bllzlla  Vze X
Proposition 6.2. If two norms || - |l and || - ||y on X are equivalent then a subset of X is open for
the norm || - ||o if and only if it is open for the norm || - ||p. Of course, the same holds for closed sets.
Likewise, if the norms || - ||o and || - ||y are equivalent, a sequence of X is converging for the norm || - ||4
if and only if it converges for the norm || - ||p.

Theorem 6.3. If X is a vector space of finite dimension then all norms on X are equivalent.

This property is convenient, however it only holds in finite dimensional spaces. Be careful!

6.3 Special normed spaces (complement)

6.3.1 Inner product spaces
Definition 6.13. Let X be a vector space. A function

(z,y) € X? = (z,9) €K
is said to be an inner product (or scalar product) if

V(x,y) € sz <x,y) = <y7$>7




6.3. SPECIAL NORMED SPACES (COMPLEMENT) 65

V(z,2',y) € X3 Va € K, (ax + o' y) = alz,y) + (', y),
Vo e X\ {0}, (x,x) > 0.
A wector space endowed with an inner product is called inner product space.

Observe that two above properties imply

(z, 0y +¢) = alz,y) + (z,¢).

Therefore one gets the standard linearity of the inner product with respect to the second argument,
while one sometimes speaks of antilinearity with respect to the first argument because of the conjugacy.
Prescribing the antilinearity with respect to the first argument, hence the linearity with respect to the
second one, is a matter of (non-universal) convention. Of course, when K = R this discussion is
irrelevant.

Typical inner products are those defined in section (in the case of matrices, considering M, (KK)
as a vector space).

Theorem 6.4. If X is an inner product space then it is a normed space for the norm defined by

]l = v/, ).

In addition we have the Cauchy-Schwarz inequality
V(z,y) € X2 [{z,y)| < Jlz]llyll

The norm defined above will be considered as canonical in any inner product space.
If x,y belong to an inner product space then simple algebra yields the expansion formula

lz + ylI* = [l2]* + Iyll* + 2z, y),

the parallelogram equality
2+l + llz =yl = 2(l|=[1* + ly]*),

and the polarization identity
1
() = (lz+l* = llz - y]*).
If A is an arbitrary subset of X then we define the orthogonal of A by
At ={z e X st. (z,y) =0Vy € A}.

It is always a closed linear subspace of X. When A is a singleton we often write a* for {a}*.

6.3.2 Banach and Hilbert spaces

Let us first extend the notion of real-valued Cauchy sequence.

Definition 6.14. Let X be a normed vector space and (x,) be a sequence of elements of X. We say
that (zy,) is a Cauchy sequence if

Ve >03IN €N s.t. n,m> N = ||z, — Tl < e

Definition 6.15. A normed vector space such that every Cauchy sequence is converging is said to be
a Banach space. When it is at the same time an inner product space, it is called a Hilbert space.

Note that a Banach space remains a Banach space when changing the norm to an equivalent one.
But in general, the choice of the norm is crucial when defining a Banach space.

Theorem 6.5. A normed vector space of finite dimension is a Banach space.



66 CHAPTER 6. VECTOR SPACES AND ELEMENTS OF TOPOLOGY

6.3.3 Complement on matrix norms

In order to establish the convergence of sequences of vectors of K™ the choice of the norm is irrelevant, as
explained in section When such sequences arise from matrix operations it comes the question of
the choice of a compatible matrix norm (see section. Optimal convergence results take advantage
of this freedom thanks to the following convenient theorem. It highlights the prominent role played by
the spectral radius (see Definition .

Theorem 6.6. Let A be a square matriz with coefficients in K.

1. It holds for every matriz norm || - ||

o(4) < [|A].
2. For all € > 0 there exists an induced matriz norm || - || such that

[A]l < o(A) + .

As example of application we immediately see that the sequence (A™) goes to 0 as soon as p(A) <
1, since ||A"|| < ||A|™ < (o(A) + €)™ and € can be taken arbitrarily small. The if and only if
statement holds also true by definition of an eigenvalue. We underline that it is not requested that A
be diagonalizable.



Chapter 7

Linear equation systems and iterative
solvers (complement)

7.1 Stability analysis of linear equation systems

7.1.1 Motivation

Previously, we have shown how to solve linear equation systems. Tacitly we assumed that we deal with
‘nice’ numbers. However, in practice the computer will solve these systems for us and in most cases
we deal with floating point numbers from R. As we discussed in the introduction (Chapters |1| and ,
we now deal with round-off errors.

The question comes, how such round-off errors may influence the solution of Az = b. As an

0.988 0.960\ [z (0.084
0.992 0.963) \y/) \0.087

with the solution (x,y)T = (3, —3)T. We compute the solution with a precision of three correct digits
using Gauss elimination:

example, let us consider

0.988 0.960 | 0.084
0.992 0.963 | 0.087 %0.988/0.992

0.988 0.960 | 0.084
0.988 0.959 | 0.0866 -

0.988 0.959 | 0.084
0 0.001 | —0.0026

We now have the typical triangular system of A. The right hand side b was accordingly modified.
Through backward substitution we obtain

0.00ly = —0.0026 = y = —2.6
0.988z = 0.087 — 0.959 - (—2.6) ~ 2.58 = z = 2.61.

Here, we have (z,y) = (2.61,—2.60). The relative error of the numerical approximation is more
than 10%. It seems that the solution of linear equation systems is either ill-conditioned (see the
general concept of condition numbers in the chapter or the Gaussian elimination is numerically
unstable. The conditioning and stability will be addressed of the following subsection. In addition, in
many applications, we deal with very large linear equation systems, where A € R™ " with n > 10% and
larger. For this reason, the efficiency and memory requirements play a crucial role and therefore, direct
methods (such as Gaussian elimination) are unfortunately not always feasible, and rather iterative
methods come into play.

67



68CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

7.1.2 Stability analysis

We are given A € R™"™ and b € R™ and consider
Ax =b.

Through numerical errors, round-off errors, false input data or experimental errors, A and b may be
perturbed:
A =b.
Here, A = A+ 6A and b = b + 6b with the perturbations 64 and b, respectively.
We derive now results for the conditioning and error amplification for the solution of linear equation
systems. Errors can be in the matrix A as well as in the right hand side b.
We first consider errors in the right hand side vector.

Proposition 7.1 (Perturbation of the right hand side b). Let A € R™ "™ be a regular matriz and
b e R*. With x € R™ we denote the solution of Ax = b. Let §b be a perturbation of the right hand
side b=b+6b and & the solution of the perturbed system AZ = b. Furthermore, we denote with | - | a
matriz norm that is compatible with the vector norm || - ||. Then, it holds

150]]
ol

||||5:n”|] < cond(A)

with the condition number of the matriz, i.e.,
cond(A) = [|A]l - |A7Y].

Proof. Let ||-]| be an arbitrary matrix norm with compatible vector norm || - ||. For the solution z € R"
and the perturbed solution € R", we have

i—x=AYAZ - Azx) = A"Hb—b) = A"15b

thus oz I8l [l b [l Az b
X _ _ X
3ol g O ABI o DB A g0y 1
el ENT o e < AL IAT
=:cond(A)

O]

Remark 7.1. The condition number of a matriz is very important in numerical linear algebra. Let
us also consider the matriz-vector multiplication y = Ax. With perturbed input & = x + dx, we obtain,
since obviously cond(A) = cond(A~1):

15

13yl
20 < cond(A .
ST

Iyl —

Note that by definition the condition number of a matriz depends on the chosen norm. are also equiv-
alent. For symmetric matrices it can be inferred that condy(A):

max{|A|, A eigenvalue of A}
min{|A|, X eigenvalue of A}’

condz(A) = [|Allz - [|A™]2 =

In the second step, we consider now a perturbation dA of the matrix A. First, we need to ensure
that A = A+ §A is still regular.

Lemma 7.2. Let || -|| be the matriz norm induced by the vector norm. Let B € R™™™ be a matrix with
|B|| < 1. Then, the matriz I + B is reqular and it holds the estimate

1

I+ B)7H <
1B



7.1. STABILITY ANALYSIS OF LINEAR EQUATION SYSTEMS 69

Proof. It holds
(I + B)z| > ||z| — || Bz|| > (1 — || B])||z]-

Since 1 — ||B|| > 0, the mapping I + B is one-to-one. Thus, I + B is regular. Furthermore, we have

L= |1 = I(1+B)I +B)""| = I(I + B)~" + B(I + B)™'|
> [(T+B)7 M = IBIIT+B)~ =+ B)~ (- 1B]) >0

With this result, we address now the perturbation of a matrix A:

Proposition 7.3 (Perturbation of the matrix A). Let A € R"*" be a regular matriz, and b € R".
Furthermore, let x € R™ be the solution of Ax = b and let A = A+ §A a perturbed matriz with
Al < [JA7Y|| L. For the perturbed solution & = x + dx of A% = b, it holds

9] _ cond(A) loA[l
lz] - 1 = cond(A)[[0A][/[|A[l [ A]

Proof. 1t holds for x and the perturbed solution & and the error dx := & — x:

(A+0A)E=b

5z = —[A+5A] 5 Ax.
(A+6A)z = b+ 04z v= A+ oA oA

According to our assumption ||A716A| < ||A7Y ||6A| < 1, it follows with the Lemma

A7l
< 15 A1-1 41 < |
o] < 1T+ 47641 476 A) ol < = omgr 64l D
cond(A) ||6A||” H
< x|
1—[|A=H[[[s Al [[A]
We establish the assertion with the expansion ||Al|/||A]|. O

The combination of the two previous perturbation propositions yields the main result:

Theorem 7.4 (Perturbation theorem for linear equation systems). Let A € R™*™ be a regqular matriz
and b € R™ a right hand side vector. Furthermore, let x € R™ be the solution of Ax = b with the
reqular matriz A € R™™. For the solution & € R™ of the perturbed system A = b with 6b=b—b and
85A = A — A and the assumption

1
[6A] <
JJA=T]|
it holds the estimate
18] _ cond(A) (\5511 H5A!>
|zl = 1 —cond(A)[|SA[[/[[All \ [[oll ~ [IA]

with the condition number
cond(A) = [ A]| | A~

Proof. We combine the results from Proposition [7.1] and [7.3] To this end, let 2 be the solution of
Az = b, % the perturbed solution Az = b and # the solutlon to the perturbed right hand side Az = b.
Then, we obtain

~ e 1] cond(4) |34
lz = 2l < flz = & + |2 - Z]| < cond(A) 7 |2l + FTRIPTILGLE
[b]] 1—cond(A)|— 1Al
Taking into account ||§A| < ||A7!||7!, we have
16All -1 1
0 < cond(A) IPAL pappaty Ly
1Al [AJH[A=H]



7T0CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

Therefore,

cond(A) < cond(4)

C1- cond(A)%7

which shows the assertion. O

With this theorem, we re-consider our motivating example from the beginning of this section. We
recall

A— < 0.988 0.959 )

0.992 0.963
8302 —8267
-1,
- Am ( 8552 8517 )
Employing the maximum row sum || - || it holds

|Alloo = 1.955, ||A™ Yoo = 17069, conds(A) ~ 33370.

Solving linear equation systems is indeed often ill-conditioned. As a consequence, round-off errors
may be significantly amplified. This also shows that the difficulty is an intrinsic part of the problem
statement, but not necessarily a stability issue with the Gaussian elimination (provided appropriate
pivoting is performed!). These are partially good news and the reason why Gaussian elimination is
often used for moderate sizes of the matrix A.

7.2 Basic solvers

For a moderate number of unknowns a so-called direct solver (LU decomposition, Cholesky) is a good
choice to solve AU = B. Such methods are always available in most software packages such as Matlab,
octave, python, etc:

U = sp.sparse.linalg.spsolve(A,B) // in Python
U = A\B // in octave / Matlab

For big systems, iterative solvers are the methods of choice because they require less memory and
less computational cost than direct solvers. In addition, they serve as smoothers in so-called multigrid
methods, which may yield optimal complexities O(n), where n is the number of unknowns. We provide
a brief introduction to iterative solvers in the following section.

7.2.1 Fixed-point solvers: Richardson, Jacobi, Gauss-Seidel

A large class of schemes is based on so-called fixed point methods for solving:

flz) = .
We provide in the following a brief introduction that is based on [15]. First, we have

Definition 7.1. Let A € R™*", b € R" and C € R™™. For an initial guess z° € R™ we iterate for
k=1,2,...:
ab = 2h o — AP,

Please be careful that k does not denote the power, but the current iteration index. Furthermore, we
introduce:
B:=1—-CA and c:=Cb.

Then:
2k = Bak! +c.



7.2. BASIC SOLVERS 71

Thanks to the construction of
g(x) =Br+c=x+C(b— Ax)
it is trivial to see that in the limit £ — oo, it holds
g(x) =z

with the solution
Ax =b.

Remark 7.2. Thanks to Banach’s fized point theorem (see section , we can investigate under
which conditions the above scheme will converge. Actually it should hold

1Bl <1,

for a matriz norm such that
lg(z) =gl < | Bl [z — .

A similar condition appears in the stability analysis of the schemes for solving ODEs, as reported in
the numerical tests of Section (blow-up, zig-zag solution and converged solution). A big problem
(which is also true for the ODE cases) is that different norms may predict different results. For instance

it may happen that
|Blla <1 but |[B|le > 1.

Discussions can be found for instance in [15]. In particular, if the spectral radius of B is o(B) < 1
then ||B|| < 1 for some induced matriz norm and o(B) > 1 implies |B|| > 1 for all matriz norm.

We concentrate now on the algorithmic aspects. The two fundamental requirements for the matrix

C' (defined above) are:
e It should hold C' ~ A~! and therefore ||I — CA| < 1;
e [t should be simple to construct C.

Of course, we easily see that these two requirements are conflicting statements. As always in numerics
we need to find a trade-off that is satisfying for the developer and the computer.

Definition 7.2 (Richardson iteration). The simplest choice of C' is the identity matriz, i.e.,
c=1
Then, we obtain the Richardson iteration
P =P 4 w(b— Aazk_l)
with a relaxation parameter w > 0.

Further schemes require more work and we need to decompose the matrix A first:
A=L+D+U.

Here, L is a lower-triangular matrix, D a diagional matrix, and U an upper-triangular matrix. In more
detail:

0 0 ail 0 0 aly ... A1n
A= + +
. An—1,n
apl .. Gppn-1 O 0o ... Qnn 0o ... 0
=:L :TD =U

With this, we can now define two very classical schemes:



72CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

Definition 7.3 (Jacobi method). To solve Ax = b with A= L+ D+U let 2° € R™ be an initial guess.
We iterate for k =1,2,...
oF = 4 D b— Aa:k_l)

or in other words J := —D YL+ U):
a* = Ja*t 4 D71

Definition 7.4 (Gauss-Seidel method). To solve Az = b with A= L+ D+U let 2° € R" be an initial
guess. We iterate for k=1,2,...

aF =2 (D+ L) (b - Axt T
or in other words H :== —(D + L)~'U:
a¥ = Ha"' + (D + L)™'
To implement these two schemes, we provide the presentation in index-notation:

Theorem 7.5 (Index-notation of the Jacobi and Gauss-Seidel methods). One step of the Jacobi method
and Gauss-Seidel method, respectively, can be carried out in n? + O(n) operations. For each step, in
index-notation for each entry it holds:

1 n
== 1[p - E aijxffl , 1=1,...,n,
Py L
" J=Lj#i

i.e., (for the Gauss-Seidel method):

1

k k k—1 .

551;:; bi—g aijxj—g aije; , 1=1,...,n.
w j<i J>i

7.2.2 Gradient descent

An alternative class of methods is based on so-called descent or gradient directions, which further
improve the previously introduced methods. So far, we have:

=gk dk k=1,2,3,...
where d* denotes the direction in which we go at each step. For instance:
d* =D (b — Az¥), d*=(D+ L)71(b— Azb)

for the Jacobi and Gauss-Seidel methods, respectively. To improve these kind of iterations, we have
two possiblities:

e introduce a relaxation (or so-called damping) parameter w* > 0 (possibly adapted at each step)
such that

k+1

T = zF + Whdk,

e and/or to improve the search direction d* such that we reduce the error as best as possible.

We restrict our attention to positive definite symmetric matrices as they appear naturally many prob-
lems. A key point is another view on the problem by regarding it as a minimization problem for
which Az = b is the first-order necessary condition and consequently the sought solution. Imagine for



7.3. CONJUGATE GRADIENT METHOD 73

simplicity that we want to minimize f(x) = %aazQ — bx. The first-order necessary condition is nothing
else than the derivative f/(z) = ax —b. We find a possible minimum via f’(x) = 0, namely

ar—b=0 = z=a'b, ifa#0.

That is exactly the same how we would solve a linear matrix system Ax = b. By regarding it as
a minimum problem we understand better the purpose of our derivations: How does minimizing a
function f(x) work in terms of an iteration? Well, we try to minimize f at each step k:

f(2%) > fzh) > ... > f(zb).

This means that the direction d* (to determine z*! = z*F +w*d*) should be a descent direction. This
idea can be applied for solving linear equation systems. We first define the quadratic form

1
Qy) = 5(Ay,y) - (b,y),
where (+,-) is the Euclidian scalar product. Then, we can define

Algorithm 7.6 (Descent method - basic idea). Let A € R™ ™ be positive definite and x°,b € R™.
Then for k=0,1,2,...
e Compute d*;

k as minimum of w* = argmin Q(z* + wkd¥);

e Determine w
e Update zFt! = 2F + wkdk.
For instance d* can be determined via the Jacobi or Gauss-Seidel methods.

Another possibility is the gradient method in which we use the gradient to obtain search directions
d*. This brings us to the gradient method:

Algorithm 7.7 (Gradient descent). Let A € R™*™ positive definite and the right hand side b € R™.
Let the initial guess be z° € R and the initial search direction d® =b— Az®. Then k=0,1,2, ...

e Compute the vector r* = AdF;

o Compute the relaxation

e Nl
(rF, db)’

e Update the solution vector xF+1 = ¥ 4+ wkd*;

e Update the search direction vector d*+' = d¥ — wkrk.
One can show that the gradient method converges to the solution of the linear equation system Ax = b
(see for instance [15)]).

7.3 Conjugate gradient method

The previous gradient descent method may converge slowly in most cases because search directions
are in general d* J d**2. An improvement is the conjugate gradient method in which all directions
are conjugate in a certain sense. During this procedure another subspace is constructed for which this
method belongs to so-called Krylov subspace methods. The standard textbook with all information is
from Saad [16]. In the following, we closely follow to the second author’s co-authored book [15][Section
7.8]



TACHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

7.3.1 Formulation of the CG scheme.

In order to enhance the performance of gradient descent, the conjugate gradient (CG) scheme was
developed. Here, the search directions {d°,...,d* 1} are pairwise orthogonal. The measure of orthog-
onality is achieved by using the A scalar product:

(Ad",d°) =0 Vr#s.
At step k, we seek the approximation z* = 29 + Zf;ol a;d" as the minimum of all a = (ag, ..., ax_1)
with respect to Q(z¥):

k—1 k—1 k—1 k—1
) 1 . A ,
: 0 7 : 0 i .0 i 0 7
min T+ E o;d' ]| = min < = | Az" + E a; Ad', x” + g a;d" | — | b,x” + g o;d .
€R* ¢ ( i=0 ) acR* {2 ( i=0 i=0 ) ( i=0 ) }

The stationary point is given by

k—1
0L 9 oty = (Ax°+2aiAdi,dj> (b, ) = — (b—Axk,dj), =0, k-1,

8aj =0
Therefore, the new residual b — Az* is perpendicular to all search directions d’ for j = 0,...,k — 1.
The resulting linear equation system
(b—Az® &) =0 Vj=0,....k—1 (7.1)

has the feature of "Galerkin orthogonality", similar to FEM schemes.

While constructing the CG method, new search directions should be linearly independent of the
current d/. Otherwise, the space would not become larger and consequently, the approximation cannot
be improved.

Definition 7.5 (Krylov space). We choose an initial approzimation z° € R™ and set d° := b — Ax.
The Krylov space Ky(d°, A) is

Ki(d°, A) := span{d’, Ad", ..., A*1d°}.
Here, A* means the k-th power of A.
It holds:

Lemma 7.8. Assume AFd® € K (d°, A). Then, the solution x € R™ of Ax = b is an element of
Ky(do, A).

Proof. Let zF € zo + K;(d°, A) be the best approximation, which fulfills the Galerkin equation (7.1)
Let ¥ := b — Az". Since

P =b— Acf =b— A2 + A (20 — 2F) € d° + AK(d°, A)
N—_——

—_———

=d° €K, (d0,A)
it holds ¥ € K, 1(d°, A). Supposing that Kj,1(d°, A) C Kj(d°, A), we obtain r* € K (d°, A). The
Galerkin equation yields r* L K, (d°, A), from which we obtain r* =0 and Az* =b. ]

If the CG scheme aborts since it cannot find new search directions, the solution is found. Let
us assume that the A-orthogonal search directions {d",d',...,d* '} have been found, then we can
compute the next CG approximation using the basis representation z* = 20 + 3" a;d' and employing
the Galerkin equation:

0 k-l A 0 i o (dO dj)

b— Az —;aiAd di] =0 = (b- A d) = (AP, #) = a; = A d)
The A-orthogonal basis {d°,...,d*™1} of the Krylov space Kj(d°, A) can be computed with the

Gram-Schmidt procedure. However, this procedure has a high computational cost; see e.g., [15]. A

better procedure is a two-step recursion formula, which is efficient and stable:



7.3. CONJUGATE GRADIENT METHOD 75

Lemma 7.9 (Two-step recursion formula). Let A € R™"™ symmetric positive definite and z° € R"
and d° :=b— Az®. Then, for k=1,2,..., the iteration

(¥, Ad¥1)

k ._ .k k—1
W’ d¥:=r —6k,1d

rFi=b— Az® By = —

constructs an A-orthogonal basis with (Ad",d*) = 0 for r # s. Here z* in step k defines the new
Galerkin solution (b — Az, d7) =0 for j=0,...,k — 1.

Proof. See [15]. O

We collect now all ingredients to construct the CG scheme. Let 20 be an initial guess and d° :=
b— Az the resulting defect. Suppose that K, := span{d’, ... ,d* '} and 2* € 29+ K} and r* = b— Az*
have been computed. Then, we can compute the next iterate d* according to Lemma

(rk, Adk_l)
(dF1, AdF-1)’

For the new coefficient ay, in 2T = 20 + Zf:o a;d’ holds with testing in the Galerkin equation 1)
with dF:

Br—1=— d* =7k — Bp_1d" L. (7.2)

k
A0 A7 gk | — p 40 Ry k ky _ (p_ A0 0_ . ky gky_ ko gk
b fix EOaZAd,d (b—Az”,d")—ap(Ad",d") = (b—Ax"+A(x” — 2%),d")—ay(Ad”, d¥).
=d = €Ky

That is

(r*, d")
(Ad¥, dF)’
k+1.

ap = a* = 2k agd (7.3)

This allows to compute the new residual r
PRl = p— APt = b — A2¥ — o AdF = rF — o AdF. (7.4)
We summarize - and formulate the classical CG scheme:

Algorithm 7.10. Let A € R™" symmetric positive definite and x° € R™ and ¥ = d° = b — Az be
gwen. Iterate for k=0,1,...:

_ (rk.dk)
Lok = gty
2. ghtl = gk 4 oy dF

3. bl =k o AP

rht1 Aqk
4- i = iy
5. dk+1 — T.k+1 _ 6kdk

Without round-off errors, the CG scheme yields after (at most) n steps the solution of a n-
dimensional problem and is in this sense a direct method rather than an iterative scheme. However,
in practice for huge n, the CG scheme is usually stopped earlier, yiedling an approximate solution.

Proposition 7.11 (CG as a direct method). Let 29 € R™ be any initial guess. Assuming no round-off
errors, the CG scheme terminates after (at most) n steps with ™ = x. At each step, we have:
k . k—1 k—1 :
") = min Q(x + ad = mmin
Q(*) = min Q( )= min QW)

i.e.,

Ib— Ac®4s = min b — Ays

m
y€x0+Kk

with the norm )
|zl a1 = (A" 2, @)2.



7T6CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

Proof. That the CG scheme is a direct scheme follows from Lemma [7.§
The iterate is given by

Q@)= min_Q(y),

y€x0+Kk

with is equivalent to ([7.1]). The ansatz

k—1

LUk _ 330 + Zakdk—l — JIO + yk—l +at_1dk—1
~—

k=0 ek,

yields ‘ ‘
(b— Az® &) = (b— Ay* ™ dj) — a1 (Ad* 1, dP) =0 Vj=0,...
that is
(b—Ay*1dj)=0Vj=0,...,t—2,

and therefore y*~1 = %=1 and

Q") = min Q(z" " + ad*™).

Finally, employing symmetry A = A7, we obtain:

-1

16— Ayl%- = (A7'[b— Ay),b— Ay) = (Ay,y) — (A"'b, Ay) — (y,b)

= (Ay,y) — 2(by),

i.e., the relationship [|b — Ay|% -, = 2Q(y).

O

Remark 7.3 (The CG scheme as iterative scheme). As previosously mentioned, in pratice the CG
scheme is (always) used as iterative method rather than a direct method. Due to round-off errors the

search directions are never 100% orthogonal.

7.3.2 Convergence analysis of the CG scheme

We now turn our attention to the convergence analysis, which is a nontrivial task. The key is the

following characterization of one iteration z* = 20 + K}, by
o = 2% + pp1(A)d,
where pr_1 € Pi_1 is a polynomial in A:

k-1
Proi(A) =) Al
i=0

The characterization as minimization of Proposition can be written as:

|b— Az¥||4-1 = min ||b— Ay||4—1 = min ||b— Az® — Ag(A)d°|| 4-1.
y€xO4 qE€P; 1

Ky,

When we employ the | - || 4 norm, we obtain with d° = b — Az° = A(z — 2°)

Ib— Az*| 41 = [l — 2¥[|a = min [[(z —2°) — g(A) Az — 2°)]|a,
qE€EPk 1

that is
o —a*lla = min I - q(A)A](x — ).
qEPL_1

In the sense of the best approximation property, we can formulate this task as:

PE Py | =p(A)A)(z —a°)|la = Jain [T +g(A)AJ(z — ) a.

(7.5)



7.3. CONJUGATE GRADIENT METHOD 7

The characterization as best approximation is key in the convergence analysis of the CG scheme. Let
q(A)A € Py(A). We seek a polynomial ¢ € Py, with ¢(0) = 1, such that

k_ < i A — 29| 4.
|z JUHA_qepglél(lo):lHQ( Mallz — 27| a (7.6)

The convergence of the CG method is related to the fact whether we can construct a polynomial
q € P with p(0) = 1 such that the A norm is as small as possible. First, we have:

Lemma 7.12 (Bounds for matrix polynomials). Let A € R™™"™ symmetric positive definite with the
eigenvalues 0 < Ay < --- <\, and p € Py a polynomials with p(0) = 1:

Ip(A)a <M, M:= min sup  [p(A)].
PEPL, P(0)=1 xg[A{,A\p)

Proof. See [15]. O

Employing the previous result and the error estimate ([7.6|), we can now derive a convergence result
for the CG scheme.

Proposition 7.13 (Convergence of the CG scheme). Let A € R"™ "™ be symmetric positive definite.
Let b € R™ a right hand side vector and let z° € R™ be an initial guess. Then:

1-1/Vk
1+1/vk

with the spectral condition number k = conda(A) of the matriz A.

k
ka—xIIAS2< ) la® — 4 k>0,

Remark 7.4. We see immediately that a large condition number k > 1 yields

1-1/VEk
SV

and deteriorates significantly the convergence rate of the CG scheme. This is the key reason why
preconditioners of the form P~ ~ A" are introduced that re-scale the system; see Section :

P 'Ax =P .
N———
~I

Proof of Prop. [7.13. From the previous lemma and the estimate (7.6)) it follows
2% — 2|4 < Mj2® — 2|4

with
M = min max |q(N)].
g€ Py, q(0)=1 A€[A1,An]

We have to find a sharp estimate of the size of M. That is to say, we seek a polynomial ¢ € Py
which takes at the origin the value 1, i.e., ¢(0) = 1 and which simultaneously has values near 0 in the
maximum norm in the interval [\, A,,]. To this end, we work with the Tschebyscheff approximation
(see e.g., [15] and references therein for the original references). We seek a best approximation p € Py
of the zero function on [A1, A,]. Such a polynomial should have the property p(0) = 1. For this reason,
the trivial solution p = 0 is not valid. A Tschebyscheff polynomial reads:

Ty, = cos (karccos(z))

and has the property:

k—1
27" max |Tj(z)] = min max |zF + Z oz,
[—1,1] Qe Ok—1 [—1,1] —o



78CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

We choose now the transformation:

. An+ A1 — 2t
An — A1
and obtain with .
A+ A — 2t A+ AT\
ty=T, | ————— | 1]
plo) =11 (2R g ()
a polynomial of degree k, which is minimal on [\, \,,] and can be normalized by
p(0) =1.
It holds: . )
An A1\ k+1\"
w0 =7 () =m (55 77)
te[A1 An] An — A1 k—1
with the spectral condition:
An
R = )\71

We now employ the Tschebyscheff polynomials outside of [—1,1]:

Tn(x) = %[(m +Va2—1)"+ (x — Va2 — 1)”}.

For x = Z—ﬂ, it holds:

ptl E1\ | _st2V/Etl Vel
K—1 k—1 k=1 r—1

and therefore

K1 pt1\’ | _ Vol
k—1 k—1 Ve

Using this relationship, we can estimate (7.7)):

() () (R T (R

1\ ! Lk
() ()
€A, An] K — VE+1

This finishes the proof. O

It follows that

I

)
N
—_ =

+ |1

SIS
~
x>~

7.4 Preconditioning

Very often in practice the matrix A has a bad condition number for which iterative solvers fail to
converge or converge very slowly. Therefore, one can precondition the system with a matrix P~! that
has something to do with the inverse of A. In practice left- and right-preconditioning are known,
respectively:

P 1Az = P 1p,

AP 'u=b, wu= Pux.

The key question is how to design P~!. The two extreme cases are

P l=1
p =41



7.4. PRECONDITIONING 79

Therefore, the ‘best’ lies somewhere in between, since P! = I will not do the job and P~! = A~!
means that we actually would construct the inverse of A, which means that we can ‘solve’ the system
by Gaussian elimination or LU and do not need any iterative solver.

In the following, we concentrate first on the CG scheme and in the section later, we will also
see preconditioned GMRES solvers. For instance, we recall that for second-order operators (such as
Laplace) we have a dependence on the mesh size O(h=2) = O(N) (in 2D). For the CG scheme it holds:

1-— L
N 2 1
o= TE L2 o(2)
l-l-f VE K

Preconditioning reformulates the original system with the goal of obtaining a moderate condition
number for the modified system. Let P € P™*™ be a matrix with

P=KKT.
Then:
Ar=b < K 'AKD)'KTz=FK1b,
——_— — S~
=:A =i =:b
which is ~ .
AT =10

In the case of .
conds(A) < conda(A)

and if the application of K~ is cheap, then the consideration of a preconditioned system Az = b yields
a much faster solution of the iterative scheme. The condition P = KK is necessary such that the
matrix A keeps its symmetry.

The preconditioned CG scheme (PCG) can be formulated as:

Algorithm 7.14. Let A € R™™" symmetric positive definite and P = KKT a symmetric precondi-
tioner. Choosing an initial guess 20 € R™ yields:

1. 9 =b— A2
2. Pp? =10

3. d’ =p°

4. For k=0,1,...

(b) ka = 2% + oy dk
(c) v+l =k — qp Ad¥
(d) Ppk+1 _ TkJrl

(e) lBk k+1 pk-)kl)

(f) dk+1 = pk+1 + Bk’dk

At each step, we have as additional cost the application of the preconditioner P. We recall that P
allows the decomposition into K and K7 even if they are not explicitely used.
We seek P such that
P~ AL

On the other hand
P=1,

such that the construction of P is not too costly. Obviously, these are two conflicting requirements.
Typical preconditioners are:



80CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

e Jacobi preconditioning
We choose P ~ D~!, where D is the diagonal part of A. It holds
1 IS
D= D}(D)",

which means that for D;; > 0, this preconditioner is admissible. For the preconditioned matrix,
it holds

/I = D_%AD_% = ai; =1
e SSOR preconditioning

The SSOR scheme is a symmetric variant of the SOR method (successive over-relaxation) and is
based on the decomposition:

P=(D+wL)D YD +wl) = (D2 +wLD 2)(D? + wD2U).

K =KT

For instance, for the Poisson problem, we can find an optimal w (which is a non-trivial task) such

that
condy(A) = y/condy(A)

can be shown. Here, the convergence improves significantly. The number of necessary steps to
achieve a given error reduction by a factor of € improves to

logle) _ los() ;o log(0) __ log(o)
log(l—/(%) VE log(l—/(%) VE

tea(e) =

Rather than having 100 steps, we only need 10 steps for instance, in case an optimal w can be
found.

7.5 GMRES - generalized minimal residual method

The iterative GMRES algorithm [I7] [16] is suited for solving nonsymmetric linear systems. Let A €
R™ ™ be a regular matrix, but not necessarily symmetric. We demonstrate first an option, which turns
out to be not feasible when n is large. A symmetric version of the problem

Az =10
can be achieved by multiplication with AT:
AT Az = A"b.
The matrix B = AT A is positive definite since
(Bzx,z)y = (AT Az, )y = (Az, Ax)y = || Az]|>.

In principle, we could now apply the CG scheme to AT A. Instead of one matrix-vector multiplication,
we would need two such multiplications per step. However, using AT A, the convergence rate will
deteriorate since

#(B) = condy(AT A) = condy(A)>.

For this reason, the CG scheme is not really an option.



7.5. GMRES - GENERALIZED MINIMAL RESIDUAL METHOD 81

Pure GMRES

Let us now prepare the ingredients for the GMRES scheme. The main part is Arnoldi’s method [I]
in which the (modified) Gram-Schmidt method (see Numerik 1, e.g. [I5] for the modified Gram-
Schmidt see e.g., [16]) is used for orthonormalization of the basis {v1,...,v;} of the Krylov space
K, = span{vy, Avy, ..., Ao},

Algorithm 7.15 (Arnoldi). Choose some initial vector vi with ||v1|| = 1. Iterate for j =1,2,..., do
1. hi’j:(AUj,U)Q, 1=1,2,...,7
2. 1 = Avj = XL i
3. hjt15 = |04l
4- Vi1 = Vjp1/hjt

We then define
Vi = {1)1, R ,’Uk} S R™*F

and Hy = VkTAVk € RF*k is the upper Hessenberg matrix, with entries hij just computed by Arnoldi’s
algorithm.
Recall the task: Solve
Ar=0b, AecR™"

Using a Galerkin method with an ly-orthonormal basis (produced by Arnoldi’s algorithm), we seek xy,
of the form
T = To + 2k

where ¢ is some initial guess and zj comes from the Krylov space K} = span{rg, Aro, ... ,Ak_lro}
with the usual initial residual rg = b — Axg.
In order to prepare for GMRES, we assume that after k steps of Arnoldi’s algorithm, we have

e an orthonormal system Vi1 = {vy,..., 0541}
e a matrix Hy € RETD*F with the non-zero elements hij.

We have B
AVy = Vi1 Hg. (7.8)

With this, we are interested in solving the following least squares problem:

in|b— A — mj — Az 7.9
ng}ykll [zo + 2]|| ;g;gﬂl\m 2| (7.9)

Introducing the variable z = Viy we obtain the following minimization problem:
min J(y) = min || Bv — AVkyll, B = [|ro-
We notice that (using (7.8))
b— Az =b— A(zo + Viy) = 170 — AViky = Bor — Vi1 Hyy = Viep1 (Ber — Hyy)

This brings us to B
J(y) = [[Vi1[Ber — Hry]||

with the unit vector e; € R*+1)x(++1) Since V4,1 is orthonormal we have
J(y) = ||Ber — Hyyll, y€RF

The solution to ([7.9) is given by
Tk = o + Viyk

where y; minimizes J(y). This minimizer yj is inexpensive since it requires to solve a (k + 1) x k
least-squares problem, where k is typically small.



82CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

Algorithm 7.16. GMRES:
1. Choose the initial guess xo. Compute rg = b — Axg and v = ro/||7o]|-
2. Iterate: For j =1,2,... k,... until some stopping criterion:
(a) hij = (Avj,vi)2, 1=1,2,...,]
(b) 41 = Avj = Y1 hijoi
(c) hjy15 = |0j41l]. If hj41,; =0 set k :=j and go to Step 3 (Hessenberg matriz)

(d) vjt1 = 0j11/hji1;

o

. Define the (k+ 1) x k Hessenberg matriz Hy, = {hij h<ik+11<j<k;

~

Compute minimizer yy of J(y);

v

. Set as approximate solution xy = xg + Viyg.

Unfortunately, for increasing k the storage of vectors becomes an issue and increases like k. More-

over, the arithmetic cost increases as 1/2k?n. Consequently, there exists a restared version, say after
m steps, denoted by GMRES(m):

Algorithm 7.17. GMRES(m):

1. Choose the initial guess xo. Compute rg = b — Axzg and v = ro/||7o]|-

2. Iterate: For j =1,2,...,m do:
(a) hiJ:(AUj,’Ui)Q, ’L':1,2,...,j
(b) Bjp1 = Avj — 375 hijvi
(¢) hjvrj = l[ojnl
(d) vjy1 = Vj41/hjy1

3. Set as approximate solution T, = xo + Vinyr where y,, minimizes ||Ber — Hyyl| for y € R™.

4. Restart:

o Compute v, = b — Axyy,; if satisfied, stop

o clse compute xg := Ty, T1 := T/ ||rm|| and go to step 2.

Remark 7.5. Of course in both versions, still the minimization problem J(y) must be solve