
1

Refresher course in maths
and

a project on numerical modeling done in twos

Course number: MAP 502

Master of Science and Technology STEEM
École Polytechnique, Autumn 2022

Samuel Amstutz1 and Thomas Wick1,2

1 École Polytechnique, Centre de Mathématiques Appliquées,
91128 Palaiseau, France

https://samuelamstutz.wordpress.com/
2 Leibniz University Hannover, Institute of Applied Mathematics,

Welfengarten 1, 30167 Hannover, Germany
https://thomaswick.org

https://samuelamstutz.wordpress.com/
https://thomaswick.org

2

Organization of this class

Class number Date Topic Chapter lecturer
1 23/09 parts I, II 1,2,3,4,5,6, 9.1-9.17 W+A
2 30/09 part III 10, 12, 15.1-15.11 W+A
3 07/10 part II,III 8, 11, 9.20-9.23 W+A
4 14/10 part III 13, 14, 15.12-15.21 W+A
5 21/10 part IV 16, 17, 18.1-18.5 W+A
6 28/10 mid-term exam W+A
7 18/11 projects W+A
8 25/11 projects W+A
9 09/12 projects W+A
10 16/12 presentations (exam) W+A

Some chapters and sections are indicated as complement. These are not relevant
for the mid-term exam, but may need to be consulted (not all, but some) for the
project work.

Preface

These lecture notes have been written since September 2016 for various purposes. Originally, they
served as handout for a numerical modeling project within the STEEM (Energy Environment: Science
Technology and Management Master) program. Later in 2019, this class was redesigned as a refresher
class in maths plus the numerical modeling project. Third, Part I-III of these notes serve currently
as preparation for admission in Numerics 1 for foreign Master students at the Leibniz University
Hannover, Germany. Consequently, by nature, these notes address an audience that is international and
interdisciplinary with participants not necessarily having a previous Bachelor degree in mathematics.

Content-wise, we strive the motivation for scientific computing, floating point numbers, linear
algebra (pure and numerics), analysis (some pure elements and numerics), up to the Fourier transform.
Moreover, for the sake of a state-of-the-art preparation of the students for their further studies and
career, we dedicate our emphasis to differential equations in the final part. Parts that are not relevant
for the mid-term evaluation in the STEEM program are indicated as complement. However, some of
these parts might become relevant for the later numerical projects. In these projects, the tasks are
fivefold: mathematical modeling, algorithmic design, implementation, presenting scientific findings,
and learning how to interpret those results in order to draw scientific conclusions. Therefore, we
provide measures how to build confidence into numerical findings such as intuition, error analysis,
convergence analysis, and comparison to manufactured solutions. These projects are partially purely
academic, but modern directions such as regression problems and neural networks can be chosen as
well.

Specifically, with respect to the lastly mentioned applications and the impact of mathematics reach-
ing out in science, technical developments, economics, and the society, it is our sincere aim to not only
carry over the beauty of mathematics, but also to show its usefulness in other fields.

In case of questions, please do not hesitate to contact us!

Paris and Hannover Samuel Amstutz
September 2022 Thomas Wick

3

4

Contents

I Introduction 11

1 Guiding questions in numerical modeling 13
1.1 What is numerical modeling? . 13
1.2 Concepts in numerical mathematics . 14

1.2.1 Definitions . 14
1.2.2 Examples . 15

1.3 First related mathematical notions . 17
1.3.1 Well-posedness . 17
1.3.2 Measuring errors . 17
1.3.3 Illustration of three errors (experimental, theory, numerical) with the clothesline

problem . 18
1.3.4 Measuring distances: metrics and norms . 18
1.3.5 Application in numerical mathematics . 20
1.3.6 Notation for the complexity and convergence orders: Landau symbols 20

1.4 Differential equations as an example and guiding questions 21
1.4.1 Definitions of differential equations . 21
1.4.2 Some important questions and tasks with regard to numerical concepts 22

2 Basic ingredients: sets and numbers 23
2.1 Sets . 23
2.2 Classical sets of numbers . 24
2.3 Real numbers and their usage in computers: floating-point number system 24

2.3.1 Round-off errors and machine precision . 24
2.3.2 Influence of machine precision in numerical mathematics 25
2.3.3 Stability and condition number . 26

2.4 Complex numbers: a brief reminder . 28

3 Exercises 31

II Linear algebra and related numerical notions 33

4 Linear systems and matrices 35
4.1 Gaussian elimination for solving linear systems . 35

4.1.1 General definitions . 35
4.1.2 Elementary row operations, row echelon systems 36
4.1.3 The Gaussian elimination method . 36

4.2 Vectors and matrices . 37
4.2.1 Basic definitions . 37
4.2.2 Operations on matrices . 38
4.2.3 Matrix of a linear system . 41
4.2.4 Invertible matrices . 41

5

6 CONTENTS

4.3 Linear subspaces of Kn . 42
4.3.1 Definitions and first properties . 42
4.3.2 Bases . 43
4.3.3 Dimension . 43

4.4 Determinant . 43
4.4.1 Expansion with respect to a row or a column 44
4.4.2 Properties . 45
4.4.3 Determinant of a product, characterization of invertible matrices 45

4.5 LU decomposition (complement) . 46
4.5.1 Matrix representation of Gaussian elimination 46
4.5.2 LU decomposition for diagonal-dominant matrices 55
4.5.3 Case of Hermitian positive definite matrices: Cholesky decomposition 55

4.6 Canonical inner product, Euclidean norm, matrix norm 55
4.6.1 Canonical inner product and Euclidean norm 55
4.6.2 Matrix norm . 56

5 Diagonalization of square matrices and applications 57
5.1 Eigenvalues, eigenvectors, diagonalization . 57

5.1.1 Eigenvalues and eigenvectors . 57
5.1.2 Diagonalization . 58
5.1.3 Case of Hermitian matrices . 58

5.2 Applications . 58
5.3 The power method (complement) . 59

6 Vector spaces and elements of topology 61
6.1 Vector spaces . 61

6.1.1 General definition . 61
6.1.2 Vector spaces of finite dimension . 62

6.2 Basic topology . 62
6.2.1 Norms and balls . 62
6.2.2 Open sets, closed sets (complement) . 63
6.2.3 Closure, interior (complement) . 64
6.2.4 Converging sequences (complement) . 64
6.2.5 Equivalent norms . 64

6.3 Special normed spaces (complement) . 64
6.3.1 Inner product spaces . 64
6.3.2 Banach and Hilbert spaces . 65
6.3.3 Complement on matrix norms . 66

7 Linear equation systems and iterative solvers (complement) 67
7.1 Stability analysis of linear equation systems . 67

7.1.1 Motivation . 67
7.1.2 Stability analysis . 68

7.2 Basic solvers . 70
7.2.1 Fixed-point solvers: Richardson, Jacobi, Gauss-Seidel 70
7.2.2 Gradient descent . 72

7.3 Conjugate gradient method . 73
7.3.1 Formulation of the CG scheme. 74
7.3.2 Convergence analysis of the CG scheme . 76

7.4 Preconditioning . 78
7.5 GMRES - generalized minimal residual method . 80

CONTENTS 7

8 Convex sets and systems of linear inequalities 85
8.1 Convex sets: definition and first properties . 85
8.2 Convex combinations and convex hull (complement) 86

8.2.1 Convex combinations . 86
8.2.2 Convex hull . 86

8.3 Projection . 88
8.4 Cones . 89

8.4.1 Definitions . 89
8.4.2 Normal cone (complement) . 90
8.4.3 Polar cones (complement) . 90

8.5 Systems of linear inequalities, introduction to linear programming 91
8.5.1 Linear inequality systems: Fourier-Motzkin elimination 91
8.5.2 Conical hull and Farkas lemma (complement) 92
8.5.3 Introduction to linear programming (complement) 93

9 Exercises 95

III Functions and related numerical notions 101

10 Functions of one or several variables 103
10.1 Basic concepts . 103
10.2 Differentiation . 103

10.2.1 Partial derivatives . 103
10.2.2 Fréchet derivative, Jacobian matrix . 104
10.2.3 Chain rule . 104
10.2.4 Schwarz’ theorem . 105
10.2.5 Multiindex notation (complement) . 105

10.3 Classical differential operators . 105
10.4 Taylor expansions, Hessian matrix . 106
10.5 Convex functions . 107

10.5.1 Definitions . 107
10.5.2 Characterization . 108

10.6 Integration by parts . 108
10.6.1 Substitution rule . 108
10.6.2 Integration by parts and Green’s formulae . 109

11 Introduction to nonlinear optimization 111
11.1 General concepts . 111

11.1.1 Brief classification of optimization problems . 111
11.1.2 Problem setting . 111
11.1.3 Global and local minimizers . 111
11.1.4 Optimality conditions . 112

11.2 Convex case (complement) . 113
11.2.1 Specific aspects of convex optimization . 113
11.2.2 Towards constrained optimization . 114

11.3 Steepest descent method . 114
11.3.1 Descent methods . 114
11.3.2 Steepest descent . 114
11.3.3 Line search . 115

11.4 Gradient descent with projection (complement) . 116
11.5 Application of Newton-type methods (complement) . 118

11.5.1 Newton’s method for optimization . 118

8 CONTENTS

11.5.2 Quasi-Newton methods . 119

12 Solving nonlinear equations 121
12.1 Introduction to iterative methods . 121
12.2 The bisection method . 122
12.3 Fixed points . 123

12.3.1 Reminder: the (Banach) fixed point theorem 123
12.3.2 Attractive and repulsive fixed points . 124
12.3.3 Calculating fixed points . 124

12.4 The Newton method . 125
12.5 Generalization to higher dimensions (complement) . 126

12.5.1 Newton’s method: going from R to higher dimensions 126
12.5.2 A basic algorithm for a residual-based Newton method 127
12.5.3 Example of the basic Newton method . 127
12.5.4 Example using a Newton defect-correction scheme including line search 128
12.5.5 Newton’s method in higher dimensions and the Newton-Kantorovich theorem . 129
12.5.6 Globalization of Newton’s method . 133

12.6 Newton’s method for a coupled, nonlinear system of ODEs (complement) 136
12.7 Iteration schemes in nonlinear optimization (complement) 137

12.7.1 Linear regression . 137
12.7.2 Neural networks . 138

13 Interpolation and approximation 141
13.1 Polynomial interpolation . 141

13.1.1 Introduction . 141
13.1.2 Existence, uniqueness, expression . 141
13.1.3 Interpolation error (complement) . 142

13.2 Numerical differentiation . 143
13.2.1 Approximation of the first derivative . 143
13.2.2 Approximation of the second derivative (complement) 144

13.3 Numerical integration (complement) . 144
13.3.1 Goal . 144
13.3.2 General principle . 145
13.3.3 Elementary quadrature formula . 145
13.3.4 Simplest rules: box, mid-point, trapezoidal, Simpson 145
13.3.5 Composite quadrature formula . 146
13.3.6 Order of a quadrature formula . 146
13.3.7 Interpolatory quadrature . 146
13.3.8 Gauss quadrature . 147

14 Trigonometric interpolation, Fourier series and Fourier transform 149
14.1 Trigonometric interpolation: discrete Fourier transform 149
14.2 Fourier series . 151

14.2.1 Series . 151
14.2.2 Convergence of Fourier series . 151
14.2.3 Parseval’s equality . 152
14.2.4 Applications . 152

14.3 Fourier transform . 152
14.3.1 General concept . 152
14.3.2 A glimpse on the Dirac distribution . 153

15 Exercises 155

CONTENTS 9

IV Differential equations 161

16 Introduction to ODEs (ordinary differential equations) 163
16.1 An introductory example . 163
16.2 The model ODE . 164
16.3 Well-posedness . 165
16.4 Second order linear ODE’s with constant coefficients 165

17 Finite differences for ODEs 167
17.1 Problem statement of an IVP (initial value problem) 167
17.2 Stiff problems . 167
17.3 One-step schemes . 168

17.3.1 The Euler method . 168
17.3.2 Implicit schemes . 168

17.4 Numerical analysis . 169
17.4.1 Stability . 171
17.4.2 Consistency / local discretization error - convergence order 173
17.4.3 Convergence . 173

17.5 Detailed numerical tests . 174
17.5.1 Problem statement . 174
17.5.2 Discussion of the results for test 1 with a=0.25 175
17.5.3 Investigating the instability of the forward Euler method: test 3 with a=-10 . . 176

17.6 A BVP: boundary value problem . 176
17.6.1 A 1D model problem: Poisson . 176
17.6.2 Well-posedness of the continuous problem . 176
17.6.3 Spatial discretization . 179
17.6.4 Solving the linear equation system . 180
17.6.5 Well-posedness of the discrete problem . 181
17.6.6 Numerical analysis: consistency, stability, and convergence 182
17.6.7 Numerical test: 1D Poisson . 186

17.7 Computational convergence analysis (complement) . 189
17.7.1 Discretization error . 189
17.7.2 Computationally-obtained convergence order 191
17.7.3 Spatial discretization error . 192
17.7.4 Temporal discretization error for fixed spatial numerical solution 193
17.7.5 Extrapolation to the limit . 193
17.7.6 Iteration error . 194

18 Exercises 195

V Projects on numerical modeling in teams 197

19 Project work 199
19.1 Idea and formal aspects . 199

19.1.1 Choice of your project and contact email addresses 199
19.1.2 Final exam mid December . 200

19.2 List of projects (to be confirmed) . 200
19.2.1 Direct and iterative solution of linear equation systems 200
19.2.2 Numerical methods for eigenvalues . 201
19.2.3 Image compression with SVD (singular valued decomposition) - related to eigen-

values . 201
19.2.4 Numerical optimization and application to regression problems 202

10 CONTENTS

19.2.5 Neural network for image classification . 204
19.2.6 Numerical methods for root-finding problems (I) 204
19.2.7 Numerical methods for root-finding problems (II) 205
19.2.8 Shape optimization for fluids using FreeFem++ 205
19.2.9 Discrete Fourier transform . 206
19.2.10Numerical solution of ODEs with finite differences 206
19.2.11Predator-prey systems . 207
19.2.12Neural network approximation of ODEs . 208

19.3 Practical hints during the project work and final presentation 208
19.3.1 Typical guideline questions . 208
19.3.2 Hints for presenting results in a talk (final exam) 209
19.3.3 Some example pages of a presentation . 210

Bibliography 213

Index 216

Part I

Introduction

11

Chapter 1

Guiding questions in numerical modeling

In this class, we refresh basic notions of numerical linear algebra and numerical analysis in combination
with numerical modeling up to differential equations. The content comprises in brief classical notions of
analytical methods and linear algebra. In view of technological applications, our goal is the design and
analysis of algorithms that can be used for computer simulations of prototype and complex problems.

1.1 What is numerical modeling?

Numerical modeling is a part of scientific computing. The latter comprises three main fields:

1. Mathematical modeling and analysis of physical, biological, chemical, economical, financial
processes, and so forth;

2. Development of reliable and efficient numerical methods and algorithms and their analysis;

3. Research software development: Implementation of the derived algorithms

All these steps work in a feed-back manner and the different subtasks interact with each other. It
is in fact the third above aspect, namely software and computers, who helped to establish this third
category of science. Thus, a new branch of mathematics, computational science, has been established.
This kind of mathematics may become experimental like experiments in physics/chemistry/biology.

A key task is the design and analysis of algorithms:

Definition 1.1 (Algorithm). An algorithm is an instruction for a schematic solution of a mathematical
problem statement. The main purpose of an algorithm is to formulate a scheme that can be implemented
into a computer to carry out so-called numerical simulations. Direct schemes solve the given problem
up to round-off errors (for instance Gaussian elimination). Iterative schemes approximate the solution
up to a certain accuracy (for instance Richardson iteration for solving linear equation systems, or
fixed-point iterations). Algorithms differ in terms of accuracy, robustness, and efficiency.

An important feedback task is to analyse (rigorously or computationally) these algorithms in order
to detect shortcomings and suggest improvements. These can be nowadays on the algorithmic side
(classical numerical analysis with convergence proofs) or the computational side (analysis of different
discretization levels, parameter variations by just running the code again) or coding improvements
(re-organization of, e.g., for-loops in a finite element program), or hardware-specific aspects (e.g., CPU
computing, GPU computing).

Computational science allows us to investigate research fields that have partially not been address-
able in the past. Why? On the one hand experiments are often too expensive, too far away (Mars,
Moon, astronomy in general), the scales are too small (nano-scale for example); or experiments are sim-
ply too dangerous. On the other hand, mathematical theory or the explicit solution of an (ambitious)
engineering problem in an analytical manner is often impossible!

13

14 CHAPTER 1. GUIDING QUESTIONS IN NUMERICAL MODELING

Mathematics helps to formalise and structure given systems from physics, engineering, economics
and other disciplines. Hereupon, established algorithms for the numerical discretization and numerical
solution for known parts of the given system shall be further extended for new problems and new
applications.

1.2 Concepts in numerical mathematics

1.2.1 Definitions

In [15] seven concepts that are very characteristic of numerical modeling were identified. They will be
frequently encountered in the forthcoming chapters.

1. Approximation: For most mathematical problems, specifically those of practical relevance, the
derivation of analytical solutions is difficult or even impossible. Consequently, we must be content
with approximations (in appropriate function spaces and corresponding topologies), which are
often obtained via numerical procedures and computer simulations.

2. Convergence: Whether approximations have something do to with a (unique) limit value is
studied with the notion of convergence. It is qualitative in the sense that it tells us when a
sequence (an)n∈N admits a limit a. In numerical mathematics this limit is often the (unknown)
solution we are aiming for, and the an are approximate solutions.

3. Order of convergence: The speed (or rate) of convergence tells us how fast a numerical
approximation tends to limit values. While in analysis we are often merely interested in the
convergence itself, in numerical mathematics we must pay attention to how long it takes until an
approximate solution has sufficient accuracy. The longer a simulation takes, the more time and
more energy (electricity to run the computer, air conditioning of servers, etc.) are consumed.
Therefore, we are heavily interested in developing fast algorithms.

4. Errors: Numerical mathematics can be considered as the branch of ‘mathematics of errors’.
What does this mean? Numerical modeling is not wrong, inexact or non-precise! Since we cut
sequences after a finite number of steps or accept sufficiently accurate solutions obtained from
a software, we need to say how well this numerical solution approximates the (unknown) exact
solution. In other words, we need to determine the errors, which can arise in various forms. Due
its importance, we also provide the extra Section 1.3.2

5. Error estimation: This is one of the biggest branches in numerical mathematics and the most
classical one. We need to derive error formulae to judge the outcome of a numerical simulation
and to measure the difference (distance; see Section 1.3.4) between the numerical solution and
the (unknown) exact solution in a certain norm or metric (see again Section 1.3.4)

6. Efficiency: In general we can say, the higher the convergence order of an algorithm is, the more
efficient the algorithm is. Therefore, we obtain faster the numerical solution to a given problem.
But numerical efficiency is not automatically related to resource-effective computing. For in-
stance, developing a parallel code using MPI (message passing interface), hardware-optimization
(CPU,GPU), software optimizations (ordering in some optimal way for-loops, arithmetic evalu-
ations, etc.) can further reduce computational costs.

7. Stability: Lastly, the robustness of algorithms and implementations with respect to parameter
(model, material, numerical) variations, boundary conditions, initial conditions, uncertainties
must be studied. Stability relates in the broadest sense to the third condition of Hadamard
defined in Section 1.3.1.

1.2. CONCEPTS IN NUMERICAL MATHEMATICS 15

1.2.2 Examples

We illustrate the previous concepts with the help of some examples.

1. Approximation: Two approximations of the clothesline1 problem:

2. Convergence: Converging approximations of the clothesline problem:

3. Order of convergence: Two different speeds of convergence:

4. Errors: We first refer the reader to Section 1.3.3 for a comparison of experimental, theoretical
and numerical situations. Second, we sharpen the sense of the influence of different errors. Not

1Let us explain the clothesline in a very simplified way: wash your clothes in your washing machine. Next, hang your
wet clothes on your clothesline, which gets deformed due to gravity. In a great mathematical simplification, we solve the
problem −u′′(x) = f for x ∈ (0, 1) with the boundary conditions u(0) = u(1) = 0. This model is also known as Poisson
problem. To be specific, this is a differential equation, where we search for u according to the given differential equation,
the right hand side f (here: gravity) and boundary conditions; see Chapters 16 - 17.

16 CHAPTER 1. GUIDING QUESTIONS IN NUMERICAL MODELING

all errors are equally important and sometimes, one might try to ‘optimize’ an error, which has
no significant influence. Let’s see this in more detail. Let the errors eModel, eNumerics, eSoftware
enter. The total error is defined as

eTotal = eModel + eNumerics + eSoftware

Let us assume that we have the numbers eModel = 1000, eNumerics = 0.001, eSoftware = 4, the
total error is then given by

eTotal = 1000 + 0.001 + 4 = 1004.001.

Which error dominates? It is clearly eModel = 1000. The relative influence is eModel/eTotal =
0.996. So, the other two error sources are negligible and would not need further attention in this
specific example.

5. Error estimation: Error estimation is the process to obtain the concrete numbers 1000, 0.001, 4
in the previous example. Error estimates can be classified into two categories:

• a priori estimates include the (unknown) exact solution u, such that η := η(u), and yield
qualitative convergence rates for asymptotic limits. They can be derived before (thus a
priori) the approximation is known.
• a posteriori error estimates are of the form η := η(ũ) and explicitly employ the approx-

imation ũ and therefore yield quantitative information with computable majorants (i.e.,
bounds) and can be further utilized to design adaptive schemes.

6. Efficiency: is more or less self-explaining. A first answer is to look at CPU or wall time: how
many seconds, minutes, weeks, months does a program need to terminate and yield a result?
A second answer is to study ‘iteration numbers’ or arithmetic operations. The latter are often
given in terms of the big O notation. Having a linear equation system Ax = b with A ∈ Rn×n
and O(n3) complexity means that we need n3 (cubic in unknowns n) arithmetic operations to
calculate the result. For instance, for n = 100, we need around 1 000 000 operations. Having
another algorithm (yielding the same result of Ax = b) with only O(n) operations, means that
we only need around 100 operations, which is a great difference. The development of efficient
solvers for large linear equations systems is consequently a big branch in numerics and scientific
computing.

7. Stability: We finally come back to the clothesline problem and change a bit the left boundary
condition:

1.3. FIRST RELATED MATHEMATICAL NOTIONS 17

1.3 First related mathematical notions

1.3.1 Well-posedness

The concept of well-posedness, as introduced by Hadamard, is very general and in fact very simple:

• The problem under consideration has a solution;

• This solution is unique;

• The solution depends continuously on the problem data.

The first condition is immediately clear. The second condition is also obvious but often difficult to
meet - and in fact many physical processes do not have unique solutions. The last condition says that
if a variation of the input data (right hand side, boundary values, initial conditions) is small, then also
the (unique) solution should only vary a little.

Remark 1.1. Problems in which one of the three above conditions is violated are ill-posed.

1.3.2 Measuring errors

Going ahead, we implement an algorithm in a software (for instance in Matlab/Octave, Python, For-
tran, C++, Java) using a computer. In the end, several error sources need to be addressed.

1. The set of numbers that can be represented in a computer is finite, therefore a numerical calcu-
lation is limited by machine precision, which results in round-off errors.

2. The memory of a computer (or cluster) is finite and thus functions and equations can only
be represented through approximations. Thus, continuous information has to be represented
through discrete information, which results in investigating so-called discretization errors or
more generally approximation errors.

3. Interpolation errors appear when complicated functions are interpolated to simpler functions.

4. All further simplifications of a numerical algorithm (in order to solve the discrete problem), with
the final goal to reduce the computational time, result into iteration / truncation errors. One
example is the stopping criterion, which decides after how many steps an iteration is stopped.
These can be further divided into linear and nonlinear iteration errors.

5. Regularization errors appear when ill-posed models are modified in order to become well-
posed.

6. Homogenization errors arise when full-scale models are reduced to larger scale (homogenized)
such that they are computationally simpler to solve.

7. Implementation errors, better known as bugs, appear when mistakes are made implementing
algorithms into a software. These errors can simply cause the program to abort. Then it is more
or less simple to find the place with the help of a debugger. But there are also subtle errors,
which cannot be easily found when the program runs nonetheless, but showing strange results or
behaviors.

8. Model errors: In order to make a ‘quick guess’ of a possible solution and to start the develop-
ment of an algorithm aimed at addressing at a later stage a difficult problem, often complicated
(nonlinear) equations are reduced to simple (in most cases linear) versions, which results in the
so-called model error.

9. Data errors and uncertainties: the data (e.g., input data, boundary conditions, parameters)
are obtained from experimental measurements and may be inaccurate themselves.

18 CHAPTER 1. GUIDING QUESTIONS IN NUMERICAL MODELING

10. Inaccurate experimental setups that yield wrong reference solutions to which numerical
solutions should be compared with.

It is very important to understand that we never can avoid all these errors. The important
aspect is to control these errors and to provide answers if these errors are sufficiently big to influence
the interpretation of numerical simulations or if they can be assumed to be small. A big branch of
numerical mathematics is to derive error estimates that allow to predict about the size of arising errors.

1.3.3 Illustration of three errors (experimental, theory, numerical) with the clothes-
line problem

You need to understand a bit of French for the words, but the figure might be self-explaining.

Figure 1.1: Errors in experiments, theory and numerical modeling.

1.3.4 Measuring distances: metrics and norms

To determine the accuracy and quantify the previous errors, we need to frame our problem statements
in appropriate spaces that allow us to measure distances. The distance we are interested in is usually
between the ‘exact’ solution u and its numerical approximation ũ, i.e., it is related to the difference

u− ũ.

However, this expression is nearly useless since it can be negative (what does a negative distance
mean?) and u and ũ might be vectors. Consequently, we need something like

‖u− ũ‖.

In order to define ‖ · ‖, we first introduce metric spaces. A metric space is a set X with a metric on it.
This metric associates with any pair of elements (i.e., points), say a, b ∈ X, a distance. The concept
of distance is more general than that of norm, in that it does not require the structure of vector space
(in particular the difference need not be defined).

1.3. FIRST RELATED MATHEMATICAL NOTIONS 19

Definition 1.2 (Metric space). A metric space is a pair (X, d) where X is a set and d is a metric (or
distance) on X. The function d is defined on X ×X, where × denotes the Cartesian product of sets
(whose definition is recalled in the next chapter). For all x, y, z ∈ X, it is assumed (axioms defining a
distance):

1. d is real-valued, finite and nonnegative;

2. d(x, y) = 0 if and only if x = y;

3. d(x, y) = d(y, x);

4. d(x, y) ≤ d(x, z) + d(z, y).

Example 1.1. On the real line R the usual metric is defined by

d(x, y) = |x− y|.

Example 1.2. The Euclidean space R3 consists of the set of ordered triples of real numbers x =
(x1, x2, x3) and y = (y1, y2, y3) and so forth. The Euclidean metric is defined by

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Example 1.3. On the surface of the earth (which is not a vector space but a manifold) we can define
the geodesic distance as the length of the shortest path joining two given points.

In numerical analysis, the framework is usually that of vector spaces and the distances of interest
are typically induced by norms.

Definition 1.3 (Normed space). A normed space X is a vector space with a norm. A norm on a real
or complex vector space X is a real-valued function on X whose value at x ∈ X is denoted by ‖x‖ and
which has the following properties:

1. ‖x‖ ≥ 0

2. ‖x‖ = 0⇔ x = 0

3. ‖αx‖ = |α|‖x‖

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖
where x, y ∈ X and α is any scalar from the underlying field R or C.

Reminders on vector spaces and complements on norms will be given in chapter 6.

Definition 1.4 (Norm vs. metric). A norm on X induces a metric d on X, which is defined by

d(x, y) = ‖x− y‖.

With the help of these definitions it is easy to infer that indeed a norm induces a metric. Therefore,
normed spaces are in particular metric spaces. It holds:

Proposition 1.1. The norm is continuous, that is x 7→ ‖x‖ is a continuous mapping of (X, ‖ · ‖) into
R.

Distances, induced or not by a norm, can now be employed to study the accuracy of mathematical
models and their numerical approximations. Consequently, we are now able to give a meaning to the
distance

d(u, ũ)

between the ‘exact’ solution u and its numerical approximation ũ.
We finally add an important refinement when errors are evaluated through a norm:

Definition 1.5. Let x̃ ∈ X be an approximation of x ∈ X. With ‖e‖ = ‖x̃−x‖ we denote the absolute
error, and with ‖e‖/‖x‖ we denote the relative error.

In most cases, relative errors are of greater importance. For instance, an error of 200m is small if
we measure the distance between amphi Painlevé and the moon, but 200m are big if we measure the
distance between amphi Painlevé and the CMAP corridor.

20 CHAPTER 1. GUIDING QUESTIONS IN NUMERICAL MODELING

1.3.5 Application in numerical mathematics

In numerical mathematics, the key task is often to design appropriate norms for measuring the distance
between a numerical approximation uh and the continuous (exact) solution u. These norms give
quantitative information about the error for deciding when an approximation is sufficiently close to
our sought solution:

‖u− uh‖ → 0 (h→ 0),

where h indicates the approximation parameter. In particular, iteration error measurements in certain
norms allow to decide when numerical algorithms can be stopped:

‖u− ul‖ → 0 (l→∞),

where l indicates the iteration index. Very often, we have a mixture of situations in which h, repre-
senting typically a discretization parameter, and l, the number of iterations, appear simultaneously.

A natural question is whether different norms yield similar answers. Here, one must distinguish
between finite-dimensional vector spaces and infinite-dimensional spaces. The latter results into the
branch of functional analysis. Therein, norms are in general not equivalent (a precise definition of
this notion is given in chapter 6). Consequently, it does matter which norm is adopted. In finite-
dimensional spaces, it can be shown, however, that norms are indeed equivalent. We emphasize that
we speak here of the vector space in which the exact solution lives, even if the approximate one is
sought in a finite-dimensional subspace. Dealing with two equivalent norms implies that convergence
for one norm is equivalent to convergence for the other one. However, of course, both errors are not
equal, therefore in quantitative error analysis the choice of the norm matters even for intrinsically
finite-dimensional problems.

1.3.6 Notation for the complexity and convergence orders: Landau symbols

Definition 1.6 (Landau symbols). (i) Let g(n) be a function with g →∞ for n→∞. Then f ∈ O(g)
if and only if when

lim sup
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ <∞
and f ∈ o(g) if and only if

lim
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ = 0.

(ii) Let g(h) be a function with g(h)→ 0 for h→ 0. As before, we define f ∈ O(g) and f ∈ o(g):

lim sup
h→0

∣∣∣∣f(h)

g(h)

∣∣∣∣ <∞ ⇔ f ∈ O(g),

and
lim
h→0

∣∣∣∣f(h)

g(h)

∣∣∣∣ = 0 ⇔ f ∈ o(g).

(iii) Specifically:
lim sup
h→0

|f(h)| <∞ ⇔ f ∈ O(1),

and
lim
h→0
|f(h)| = 0 ⇔ f ∈ o(1).

Often, the notation f = O(g) is used rather than f ∈ O(g) and similarily f = o(g) rather than f ∈ o(g).

Example 1.4. Seven examples:

1. 1
x = o(1

x2
) (x→ 0) ,

2. 1
x2

= o(1
x) (|x| → ∞),

1.4. DIFFERENTIAL EQUATIONS AS AN EXAMPLE AND GUIDING QUESTIONS 21

3. e−x = o(x−26) (x→∞).

4. Let ε→ 0 and h→ 0. We write
h = o(ε)

when
h

ε
→ 0 for h→ 0, ε→ 0,

which means that h tends faster to 0 than ε.

5. Let us assume that we have the error estimate (see for instance Chapter 17)

‖y(tn)− yn‖2 = O(k).

Here the O notation means nothing else than

‖y(tn)− yn‖2
k

→ C for k → 0.

6. Let
c1k

1 + c2k
2 + c3k

3 + . . .

be a development in powers of k. We can shortly write:

c1k
1 +O(k2).

7. Complexity of algorithms, e.g., LR

O(n3) for n→∞.

Here the fraction converges to a constant C (and not necessarily 0!), which illustrates that O(·) conver-
gence is weaker than o(·) convergence. On the other hand, this should not yield the wrong conclusion
that ‖y(tn)− yn‖2 may not tend to zero. Since k → 0, also ‖y(tn)− yn‖2 → 0 must hold necessarily.

1.4 Differential equations as an example and guiding questions

As an example of the previously mentioned concepts, we consider differential equations (later in detail
in Part IV), which arise in numerous applications in science and engineering and are well-known in
continuum mechanics.

1.4.1 Definitions of differential equations

Let us first roughly define the meaning of a differential equation:

Definition 1.7. A differential equation is a mathematical equation that relates the function with certain
of its derivatives.

Differential equations can be split into two classes:

• Ordinary differential equations. An ordinary differential equation (ODE) is an equation (or
equation system) involving an unknown function of one independent variable and certain of its
derivatives.

• Partial differential equations. A partial differential equation (PDE) is an equation (or equa-
tion system) involving an unknown function of two or more variables and certain of its partial
derivatives.

22 CHAPTER 1. GUIDING QUESTIONS IN NUMERICAL MODELING

1.4.2 Some important questions and tasks with regard to numerical concepts

1. What are the underlying physics?

2. What is the mathematical model? Which kind of differential equation are we dealing with?
Linear diff. eq.? Coupled system? Nonlinearities? Types of coupling? Order?

3. What discretization scheme is appropriate? Physics-based discretization, i.e., are the physics
conserved after discretization in time and/or space?

4. Design of principle algorithms

5. Can we prove that these algorithms really work?

6. Accuracy, efficiency, robustness of algorithms

7. Error-controlled adaptivity or model-order reduction (e.g., with the help of SVD - singular value
decomposition; computation of eigenvalues)

8. Linear and/or nonlinear solution schemes? Direct, iterative solution? Multigrid schemes? Com-
putational cost?

9. Analyzing the numerical results: is the numerical solution correct? What does it mean ‘correct’?
Is it close enough (appropriate norm!) to some known solution? Comparison with experimental
results possible? Comparison with analytical or manufactured solutions u and the numerical
solution ukh:

‖u− ukh‖ → 0 for h, k → 0,

where k and h are the temporal and spatial discretization parameters, respectively.

10. Advanced postprocessing techniques: quantities of interest rather global norms (see e.g., [20])?
Plotting graphical solutions (gnuplot, vtk, ...)? Computational convergence analysis?

The forthcoming sections of these notes aim at refreshing (and perhaps complementing) the mathe-
matical notions needed to address such questions. Applications will mainly be seen through the projects
and further courses.

Chapter 2

Basic ingredients: sets and numbers

2.1 Sets

Set theory relies on a series of axioms, which are usually considered as the foundations of mathemat-
ics. It includes in particular the definition of natural numbers. This is a very abstract theory, but
fortunately it is not needed to know it in details for a practical use of mathematics (rather advanced
mathematics existed far before the axiomatic construction). We gather below the main points to be
known.

Intuitively, a set is a collection of objects (of any nature) called elements. A set can be finite or
not. The empty set, which contains no element, is denoted ∅. To write the list of the elements of a set
we use the notation

A = {1, 2, 3}.

This means that the set A is made of the numbers 1, 2 and 3. The ordering is irrelevant. To say that
1 belongs to A (or 1 is in A) and 4 does not belong to A we write

1 ∈ A, 4 /∈ A.

Given two sets A and B, we say that A is included in B, denoted A ⊂ B, if all the elements of A
belong to B:

A ⊂ B ⇐⇒ ∀x ∈ A, x ∈ B.

The symbol "∀" means "for all". When A ⊂ B and B ⊂ A we say that A and B are equal (A = B).
The union of two sets A and B, denoted A∪B, is the set of elements that are either in A or in B:

A ∪B = {x, x ∈ A or x ∈ B}.

The intersection of two sets A and B, denoted A ∩B, is the set of elements that are at the same time
in A and in B:

A ∩B = {x, x ∈ A and x ∈ B}.

The difference of two sets A and B, denoted A \B, is the set of elements that are in A but not in B:

A \B = {x, x ∈ A and x /∈ B}.

The Cartesian product of two sets A and B, denoted A×B, is the set of pairs (x, y) with x ∈ A and
y ∈ B:

A×B = {(x, y), x ∈ A and y ∈ B}.

23

24 CHAPTER 2. BASIC INGREDIENTS: SETS AND NUMBERS

2.2 Classical sets of numbers

Natural numbers:
N = {0, 1, 2, · · · };

N∗ = N \ {0} = {1, 2, · · · }.

Integers:
Z = {· · · − 2,−1, 0, 1, 2, · · · }.

Rational numbers:

Q =

{
p

q
, p ∈ Z, q ∈ N∗

}
.

Real numbers: they are the classical numbers we deal with. The set of real numbers is usually denoted
by R. It includes the rational numbers but not only. An example is

√
2. The set R is constructed by

"completion" of Q. For further definitions and derivations, we refer to classical textbooks on real-valued
analysis or calculus.
Complex numbers:

C = {x+ iy, (x, y) ∈ R× R}.

In the next sections, we recapitulate real and complex numbers. In addition, we also recall some
useful things to know when dealing with numbers with the help of computers.

2.3 Real numbers and their usage in computers: floating-point num-
ber system

2.3.1 Round-off errors and machine precision

In numerical mathematics it is important to understand that real numbers cannot be represented
in their full length by a computer. They are cut (i.e., rounded) according to the so-called machine
precision. The floating-point system is based on the IEEE-754 standard set in the year 1985. It
consists of floating numbers, zero, Inf and NaN.

Example 2.1. To warm up, please have a try yourself using for instance MATLAB, Octave, Python
and type in some real numbers. For instance 1/9 and see what happens.

Floating-point numbers have usually the form

x = (−1)s · (0.a1a2 . . . at) · βe = (−1)s ·m · βe−t, a1 6= 0,

which exactly means

x = (−1)s(a1β
−1 + a2β

−2 + · · ·+ atβ
−t)βe = (−1)s(a1β

t−1 + a2β
t−2 + · · ·+ atβ

0)βe−t.

Therein, we have:

1. sign: s is either 0 or 1

2. basis: β ≥ 2 (being an integer). Computers work with β = 2 and our usual decimal system has
β = 10

3. mantissa: m = a1β
t−1 +a2β

t−2 + · · ·+atβ
0 ∈ N. It has length t, which is the maximum number

of digits ai, with 0 ≤ ai ≤ β − 1 that can be stored

4. exponent: e ∈ {emin, · · · , emax} ⊂ Z

2.3. REAL NUMBERS AND THEIR USAGE IN COMPUTERS: FLOATING-POINT NUMBER SYSTEM25

An important quantity is the so-called machine precision ε, which is defined as

ε = β1−t

and provides the distance between 1 and the closest floating-point number greater than 1. The machine
precision depends on the operating system (i.e., your computer) and not on your software.

Example 2.2. An example of machine (double) precision is ε = 2.2204e − 16. This can be obtained
for instance in octave with

eps

or in python with

import numpy
print(numpy.finfo(float).eps)

2.3.2 Influence of machine precision in numerical mathematics

The previous explanations need considerations once algorithms are implemented in a software and
computer simulations are carried out. Why? Often, we deal with large numbers, e.g., Young’s modulus
of steel is E = 190PA = 190 × 109PA. Here, we have numbers of order 109. For linear equations
system due to condition numbers (see below), we also easily deal with very large numbers. Therefore
it is important to know what are the biggest numbers the computer can deal with. As overflow we
denote the situation when the absolute value of a number is greater than the greatest machine number
of the computer.

On the other hand, we are concerned with underflow, which denotes the situation when a number
unequal to zero is rounded to zero. Many numerical algorithms are requested to terminate once the
distance between numerical approximation and sought solution is (very) small, e.g., ‖x̃− x‖ ≈ 0. But
zero is too small due to machine precision. What to choose else? We define a tolerance TOL such that

‖x̃− x‖ < TOL.

In order to avoid difficulties due to machine precision we must choose TOL� ε. For instance:

• we have for machine epsilon ε ≈ 10−16 in double precision

• Reasonable tolerances are in the range of TOL = 10−8, ..., 10−12.

Finally, due to round-off some mathematical laws may become violated on a computer. Due to the
finite representation of numbers in the computer, the mathematical law of associativity

a+ (b+ c) = (a+ b) + c

may be violated; for instance in the case of overflow or underflow.

Example 2.3. In Section 12.5.3, we provide numerical solutions to Newton’s method for computing
a root-finding problem. Therein, the tolerance TOL must be chosen. We show in the following the
interaction of ε and TOL. For a classical choice TOL = 1e− 12 we obtain

Iter x f(x)
5 1.414214e+00 4.751755e-14

This means that we need 5 iterations to converge to a root value |f(x)| = 4.75e−14. For TOL = 1e−12

Iter x f(x)
4 1.414214e+00 6.156754e-07

26 CHAPTER 2. BASIC INGREDIENTS: SETS AND NUMBERS

This means that we need 4 iterations (the scheme is more efficient!) to converge to a root value
|f(x)| = 1.53e−07 (the final root is less accurate!). Here, we already see the trade-off between efficiency
and accuracy. Now let us choose TOL = 1e− 16, a value of the order of the machine precision. Then:

Iter x f(x)
...
6502 1.414214e+00 -4.440892e-16
6503 1.414214e+00 4.440892e-16
6504 1.414214e+00 -4.440892e-16
6505 1.414214e+00 4.440892e-16
...
16368 1.414214e+00 -4.440892e-16
16369 1.414214e+00 4.440892e-16
16370 1.414214e+00 -4.440892e-16
16371 1.414214e+00 4.440892e-16
...

The computation did not stop (endless loop) because of round-off errors due to machine precision such
that the tolerance cannot be met. This shows indeed that we must stay away with TOL from ε and
should choose TOL > ε.

Example 2.4. Previously, we wrote that ε depends on the hardware. Nonetheless, the actual precision
in a program can be changed. The standard machine epsilon is double precision. But we can change to
single precision. The value for single precision can be obtained in python with

print(numpy.finfo(numpy.float32).eps)

and yields ε = 1.1920929e− 07. If we re-do the above calculations, then we even should not obtain the
result for TOL = 1e− 12. Indeed

Iter x f(x)
...
12270 1.414214e+00 -1.192093e-07
12271 1.414214e+00 -1.192093e-07
12272 1.414214e+00 -1.192093e-07
12273 1.414214e+00 -1.192093e-07
...

we obtain an endless loop. Convergence is again achieved for TOL > ε as for example TOL = 1e− 5:

Iter x f(x)
4 1.414214e+00 7.152557e-07

Whether such low tolerances are sufficiently accurate depends on the problem and on the other hand on
the memory (of course single precision needs less memory to store numbers). For instance in machine
learning algorithms, often single precision is used.

2.3.3 Stability and condition number

Related to the machine precision is the stability of algorithms. Due to round-off errors, numerical
algorithms can yield wrong results. How severe they are can be estimated with the so-called condition
number.

Consider a function f : R→ R and let us evaluate its values in the standard way:

x 7→ f(x).

2.3. REAL NUMBERS AND THEIR USAGE IN COMPUTERS: FLOATING-POINT NUMBER SYSTEM27

Due to round-off (or other, i.e., discretization, iterations, etc.) errors the function f(x) is not evaluated
at x, but at x̃ = x + ∆x. The question is how this input error influences the result, i.e., the output
error. We denote by

∆y = f(x+ ∆x)− f(x)

the absolute error in the function f . If f ∈ C1(R) (one times continuously differentiable), we obtain
with the mean value theorem:

∆y = f(x+ ∆x)− f(x) = f ′(ξ)∆x

where ξ ∈ [x, x+∆x]. We observe that f ′(ξ) plays the role of an (absolute) amplification factor between
∆y and ∆x. However, in applications, the relative error is by far more important. Consequently, a
representation for the relative amplification factor is:

∆y

y
≈ f ′(x)

∆x

f(x)
=

(
f ′(x)

x

f(x)

)
∆x

x
.

Definition 2.1 (Condition number). The number κabs = |f ′(x)| is the absolute condition number of
the problem x 7→ f(x). For xf(x) 6= 0 the relative condition is defined as

κrel =

∣∣∣∣f ′(x)x

f(x)

∣∣∣∣ .
The condition numbers describe the amplification of input errors of a given problem in relation to the
output errors. If

κrel � 1

then the problem is ill-conditioned. If κrel ≈ 1 the problem is well conditioned.

Example 2.5. 1. Addition, subtraction: f(x, y) = x+ y (here we evaluate in relation to x):

κf,x =

∣∣∣∣ x

x+ y

∣∣∣∣ =

∣∣∣∣ 1

1 + y
x

∣∣∣∣ .
If x ≈ −y, then the (relative) condition number of the addition (x ≈ y for subtraction) can
become arbitrarily big. An example is:

x = −1.019, y = 1.021 ⇒ x+ y = 0.002.

Let x̃ = −1.020 be a perturbed argument. The relative error x is very small: |1.019−1.020|/|1.019| ≤
0.1%. We obtain the perturbed result

x̃+ y = 0.001

and an error of 100%. The big amplification of the addition of two numbers with the same absolute
value is the so-called cancellation.

2. Multiplication: f(x, y) = x · y. This operation is always well-conditioned:

κf,x =

∣∣∣∣y xxy
∣∣∣∣ = 1.

3. Division: f(x, y) = x/y. Same conclusion:

κf,x =

∣∣∣∣∣1y xxy
∣∣∣∣∣ = 1, κf,y =

∣∣∣∣∣ xy2

y
x
y

∣∣∣∣∣ = 1.

4. Square root: f(x) =
√
x:

κf,x =

∣∣∣∣ 1

2
√
x

x√
x

∣∣∣∣ =
1

2
.

An input error is even reduced.

28 CHAPTER 2. BASIC INGREDIENTS: SETS AND NUMBERS

2.4 Complex numbers: a brief reminder

The set of complex numbers is denoted by C. A complex number is written as

z = x+ iy

where x = <(z), y = =(z) ∈ R are the real part and the imaginary part of z, respectively. The
imaginary unit is defined as i2 = −1. The main reason to define complex numbers was for solving the
quadratic equation

x2 + px+ q = 0 (2.1)

with coefficients p, q ∈ R. For values only in R, this quadratic equation has not always solutions. With
complex numbers, we can compute as with real numbers for addition, subtraction, multiplication and
division. Let us define

a = x+ iy

b = u+ iv.

Then, the addition gives us:

a+ b = x+ iy + (u+ iv) = x+ u+ i(y + v),

with x, y, u, v ∈ R. The subtraction yields:

a− b = x+ iy − (u+ iv) = x− u+ i(y − v).

The multiplication yields:

a ∗ b = (x+ iy) ∗ (u+ iv) = xu+ ixv + iyu+ i2yv = xu− yv + i(xv + yu).

For the division we first introduce the conjugate

ā = x− iy

and the squared modulus
|a|2 = aā = x2 + y2.

Then, we can write the reciprocal as
1

b
=

b̄

bb̄
=

u− iv
u2 + v2

and the division as
a

b
=
ab̄

bb̄
=

1

u2 + v2
((ux+ vy) + i(uy − vx)).

The modulus (or absolute value) has been defined by

r = |a| =
√
x2 + y2.

The notation r indicates that this quantity can be identified as the radius of a with respect to the
origin in the complex plane. To this end, a can be represented with the help of trigonometric functions:

a = r(cosφ+ i sinφ),

where φ, the argument of a, denotes the angle of 0 to a on the positive real axis. With the help of
Euler’s formula,

eiα = cosα+ i sinα

for α ∈ R, we obtain the following representation for a complex number a:

a = reiφ.

2.4. COMPLEX NUMBERS: A BRIEF REMINDER 29

This notation is convenient to handle multiplications, powers and divisions. Indeed trigonometric rules
entail

eiφeiθ = ei(φ+θ), (eiφ)n = einφ,
eiφ

eiθ
= ei(φ−θ).

Going back to (2.1), when the discriminant satisfies ∆ := p2 − 4q ≤ 0 we have the complex solutions

x =
−p± i

√
|∆|

2
.

In general a computer stores a complex number as a pair of floating-point numbers.

30 CHAPTER 2. BASIC INGREDIENTS: SETS AND NUMBERS

Chapter 3

Exercises

Concepts in numerical mathematics

Exercise 3.1. What is the concept for measuring distances? Recapitulate the properties and provide
an example of (function) set.

Exercise 3.2. Explain the concepts of approximation, stability and efficiency in your own words.

Exercise 3.3. We defined different sources of errors. Which errors are specifically related to computer
simulations?

Exercise 3.4. Let C[a, b] be the space of continuous real-valued functions defined over the closed
interval [a, b]. Define a metric on C[a, b] and verify the metric properties.

Sets

Exercise 3.5. Let A,B,C be three sets. Show that

1. (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C);

2. (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C);

3. A ∪B = A ∩B ⇒ A = B.

Real numbers in computers

Exercise 3.6. In this exercise, we give some ideas for testing how numbers are treated in a computer.

1. Test the law of associativity on your computer (e.g., Python, C++, Octave/MATLAB,...) taking
a = 1.0e+ 308, b = 1.1e+ 308, c = −1.001e+ 308.

2. Compute ((1 + x)− 1)/x for x = 1e− 15 (something close to machine precision) and observe if
there is a cancellation of significant digits.

3. Find out the machine precision of your personal computer.

Complex numbers

Exercise 3.7. Let a = 8 + 6i and b = 1 + 2i be given. Compute (by hand!)

1. a+ b

2. a− b

31

32 CHAPTER 3. EXERCISES

3. a · b

4. a/b

5. ā

6. |a|

7. a2

8. the two square roots of a (complex numbers c such that c2 = a)

9. the exponential representation of z = a+ 2b

10. z2 using the Cartesian (real and imaginary parts) and exponential representations

Part II

Linear algebra and related numerical
notions

33

Chapter 4

Linear systems and matrices

The numerical solution of large linear systems is one of the two main problems of numerical linear
algebra, the other problem being the computation of eigenvalues discussed in chapter 5. Linear systems
occur in particular after the approximation (the so-called discretization procedure) of linear differential
equations (an introduction to this very wide topic is given in part IV). Even nonlinear problems are
usually solved through the construction of a sequence of linear problems, typically by the Newton
method (see section 12.4). The precision of the approximation is directly related to the number of
unknowns, since it is usually associated with spatial or time resolution. It is common to address linear
systems with several thousands (or even millions) of unknowns.

The numerical solution of linear systems is classified in two categories. The first one gathers the
so-called direct methods such as Gaussian elimination and LU or Cholesky decompositions. Such
methods are exact up to round-off errors made during the calculations. The second category contains
the iterative methods as we discuss in Section 7.2. They consist in the construction of a sequence
of approximate solutions, converging to an exact solution only when the number of iterations tends
to infinity. Some methods are mostly appropriate for systems with specific properties (symmetry,
sparsity, block structure, very large systems, systems with indirect knowledge of the coefficients...), or
for special computing architectures. The Gaussian elimination method is often considered as the most
competitive for general "not too large" systems. The LU decomposition is a kind of reformulation of
the Gaussian elimination procedure which is mostly of interest when several systems with the same
matrix need to be solved. The Cholesky decomposition is a simplification of the LU decomposition
for symmetric (or Hermitian) positive definite matrices. Iterative methods must be used for very large
systems (because of the cost complexity and memory requirements), or when one is interested in a
quick approximate solution. Moreover, iterative methods serve as so-called smoothers in geometric
multigrid methods, which may attain optimal cost complexity in solving linear systems; see e.g. [16].

In the following, unless otherwise specified, the letter K is used to designate either the set R of real
numbers or the set C of complex numbers.

4.1 Gaussian elimination for solving linear systems

4.1.1 General definitions

Definition 4.1. A linear system of m equations and n unknowns is a set of equations of form

a11x1 + a12x2 + · · · + a1nxn = b1 (R1)
a21x1 + a22x2 + · · · + a2nxn = b2 (R2)

...
...

...
...

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm (Rm)

. (4.1)

The numbers aij ∈ K are the coefficients of the system. The numbers bi ∈ K are the coefficients of the
right hand side. The numbers xj ∈ K are the unknowns of the system.

35

36 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

Definition 4.2. A solution of the system (4.1) is an n-tuple (x1, ..., xn) which simultaneously satisfies
the m equations R1, ..., Rm.

Definition 4.3. If all the coefficients bi are equal to zero then the system is said to be homogeneous.

Definition 4.4. We say that the system is compatible (or possible) if it admits at least one solution.
Otherwise we say that the system is incompatible (or impossible).

Remark 4.1. Every homogeneous system is compatible since (0, ..., 0) is a solution.

Definition 4.5. We say that two systems are equivalent if the have the same set of solutions.

4.1.2 Elementary row operations, row echelon systems

Proposition 4.1. The following operations, said to be elementary, transform a linear system into an
equivalent one:

1. swapping the rows Ri and Rk, denoted by Ri ↔ Rk,

2. multiplying the row Ri by some α 6= 0, denoted by Ri ← αRi,

3. replacing the row Ri by Ri + βRj, j 6= i, denoted by Ri ← Ri + βRj.

Definition 4.6. A linear system is in row echelon form if the number of leftmost vanishing coefficients
in each row is increasing, or possibly constant if this number is n+ 1 (row equal to 0).

There are two types of row echelon systems:

1. the last non-vanishing row is of the form

αrxr + ...+ αnxn = β (αr 6= 0), (4.2)

2. the last non-vanishing row is of the form

0 = β (β 6= 0).

The system is compatible in case 1, incompatible in case 2.

4.1.3 The Gaussian elimination method

The Gaussian elimination method transforms a linear system into a row echelon equivalent one with
the help of elementary operations.

There are several steps. Let us describe the first one, which itself consists in two sets of elementary
operations.

1. First we possibly swap the row R1 with another row Rk such that ak1 6= 0 (pivoting). We obtain
an equivalent linear system of form

a′11x1 + a′12x2 + · · · + a′1nxn = b′1 (R′1)
a′21x1 + a′22x2 + · · · + a′2nxn = b′2 (R′2)

...
...

...
...

...
...

...
...

a′m1x1 + a′m2x2 + · · · + a′mnxn = b′m (R′m)

(4.3)

with a′11 6= 0. This coefficient a′11 is called the first pivot.

4.2. VECTORS AND MATRICES 37

2. Then we replace each row Rp, p ≥ 2, by Rp −
a′p1
a′11

R1 (elimination). This leads to an equivalent

system of form

a
(1)
11 x1 + a

(1)
12 x2 + · · · + a

(1)
1n xn = b

(1)
1 (R

(1)
1)

a
(1)
22 x2 + · · · + a

(1)
2n xn = b

(1)
2 (R

(1)
2)

...
...

...
...

...
...

a
(1)
m2x2 + · · · + a

(1)
mnxn = b

(1)
m (R

(1)
m)

. (4.4)

Step 2 consists in applying the above procedure to rows R(1)
2 , ..., R

(1)
m , obviously choosing the pivot

in the second column.
We continue in this way until obtaining a full row echelon system. If this row echelon system is

compatible, with last row of form (4.2), then we write the r unknowns x1, ..., xr in terms of the other
ones, going upwards from the last row to the first one (backward substitutions).

In the numerical implementation of the Gaussian elimination method, small (in absolute value /
modulus compared to other coefficients) pivots are undesirable, because they may lead to significant
errors in the floating point arithmetic (an illustration is given as exercise). Therefore, pivoting is often
performed so as to select the largest available pivot. To improve accuracy, column swapping is generally
also performed. This procedure is called total pivoting.

4.2 Vectors and matrices

4.2.1 Basic definitions

Matrices

Definition 4.7. A matrix with coefficients in K of type (m,n) is a table with m rows and n columns
represented as

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 .

The numbers aij ∈ K are the coefficients of the matrix. Sometimes we denote A = (aij).

Definition 4.8. We denote by Mmn(K), or Km×n, the set of matrices with coefficients in K of type
(m,n).

Definition 4.9. Two matrices A = (aij) ∈ Mmn(K) and B = (bij) ∈ Mmn(K) are equal if they have
the same coefficients, i.e., aij = bij ∀(i, j) ∈ {1, ...,m} × {1, ..., n}.

Definition 4.10. A zero matrix, denoted by 0, is a matrix with all coefficients equal to 0. Hence, if
A = (aij) ∈Mmn(K), then

A = 0⇐⇒ aij = 0 ∀(i, j) ∈ {1, ...,m} × {1, ..., n}.

Special matrices

a) Row matrix, also called row vector

A =
(
a11 · · · a1n

)
∈M1n(K)

38 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

b) Column matrix, also called column vector

A =

a11
...

am1

 ∈Mm1(K)

c) Square matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 ∈Mnn(K) =:Mn(K)

Some square matrices have themselves special features.
i) Lower triangular matrix

A =


a11 0 · · · 0
...

.
...

...
. . . 0

an1 · · · · · · ann


ii) Upper triangular matrix

A =


a11 · · · · · · a1n

0
. . .

...
...

.
...

0 · · · 0 ann


iii) Diagonal matrix

A =


a11 0 · · · 0

0
.

...
...

. 0
0 · · · 0 ann

 = diag(a11, ..., ann)

iv) Identity matrix

In =


1 0 · · · 0

0
.

...
...

. 0
0 · · · 0 1

 = diag(1, ..., 1) ∈Mn(K)

In contrast to vectors and matrices, the elements of K are called scalars.

Submatrix

Definition 4.11. A submatrix of a matrix A is a matrix obtained by removing some rows and some
columns from A.

4.2.2 Operations on matrices

Addition, multiplication by a scalar

Definition 4.12. Let A = (aij) and B = (bij) be two matrices in Mmn(K). The matrix A + B is
defined by

A+B = (aij + bij) ∈Mmn(K).

4.2. VECTORS AND MATRICES 39

Definition 4.13. Let A = (aij) ∈Mmn(K) and α ∈ K. We define the matrix αA by

αA = (αaij) ∈Mmn(K).

Proposition 4.2. Let A,B,C ∈Mmn(K) and α ∈ K. We have

A+B = B +A
(A+B) + C = A+ (B + C)
α(A+B) = αA+ αB.

Multiplication of matrices

Definition 4.14. Let A = (aij) ∈ Mmn(K) and B = (bij) ∈ Mnp(K). We define the matrix C =
AB ∈Mmp(K) by C = (cij) with

cij =
n∑
k=1

aikbkj .

Remark 4.2. 1. Be careful with the compatibility of dimensions: the number of columns of the left
matrix must be equal to the the number of rows of the second matrix.

2. The product AB may be defined whereas the product BA is not. Even if AB and BA are both
defined, in general AB 6= BA. If AB = BA, then we say that A and B commute.

3. It may happen that AB = 0 while A 6= 0 and B 6= 0!

Proposition 4.3. Let A,B,C be three matrices. We have, under the condition of compatible dimen-
sions, the associativity

(AB)C = A(BC).

Proposition 4.4. Let A ∈Mmn(K). We have AIn = ImA = A.

Distributivity

Proposition 4.5. Let A,B,C be three matrices and α ∈ K. We have, under the condition of compatible
dimensions,

A(B + C) = AB +AC
(A+B)C = AC +BC
α(AB) = (αA)B = A(αB).

Transposition

Definition 4.15. Let A = (aij) ∈Mmn(K). The transpose of A, denoted by AT , is the matrix

AT = (aji) ∈Mnm(K).

Example 4.1. (
1 2
3 4

)T
=

(
1 3
2 4

)

Definition 4.16. A matrix A ∈ Mn(R) such that A = AT is called a symmetric matrix. A matrix
A ∈ Mn(C) such that A = ĀT , where Ā is the complex conjugate matrix of A (obtained by taking the
conjugate of each coefficient), is called a Hermitian matrix.

Proposition 4.6. 1. Let A,B ∈Mmn(K). We have (A+B)T = AT +BT .

2. Let A ∈Mmn(K) and α ∈ K. We have (αA)T = αAT .

40 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

k = 0 k = 1 k = 2 k = 3

p = 0 1
p = 1 1 1
p = 2 1 2 1
p = 3 1 3 3 1

Table 4.1: Binomial coefficients Ckp for p ≤ 3 (Pascal’s triangle)

3. Let A ∈Mmn(K) and B ∈Mnp(K). We have (AB)T = BTAT .

4. Let A ∈Mmn(K). We have (AT)T = A.

Definition 4.17. Let A ∈ Mn(K) be a Hermitian (symmetric if K = R) matrix. We say that A is
positive semi-definite if x̄TAx ≥ 0 for all x ∈ Kn. We denote A ≥ 0. We say that A is positive definite
if x̄TAx > 0 for all x ∈ Kn \ {0}. We denote A > 0.

Trace of a square matrix

Definition 4.18. Let A = (aij) ∈Mn(K). The trace of A, denoted by tr A, is the sum of the diagonal
coefficients of A, i.e.

tr A =
n∑
i=1

aii.

Proposition 4.7. 1. Let A,B ∈Mn(K). We have tr(A+B) = tr A+ tr B.

2. Let A ∈Mn(K) and α ∈ K. We have tr(αA) = α tr A.

3. Let A ∈Mmn(K), B ∈Mnm(K). We have tr(AB) = tr(BA).

Power of a square matrix

Definition 4.19. Let A ∈Mn(K) and p ∈ N. We define

Ap = A×A× · · · ×A︸ ︷︷ ︸
p factors

,

with the convention A0 = In.

Remark 4.3. Be careful not to confuse the matrix power with the power of the coefficients. However,
if A is diagonal, then (diag(λ1, ..., λn))p = diag(λp1, ..., λ

p
n).

For two commuting matrices, we have the following binomial formula.

Proposition 4.8. Let A,B ∈Mn(K) be two matrices such that AB = BA and p be a natural number.
The binomial formula

(A+B)p =

p∑
k=0

CkpA
kBp−k

holds, where Ckp =

(
p
k

)
=

p!

(p− k)!k!
are the binomial coefficients.

The binomial formula is formally the same as for scalars. Remind that, due to the property
Ck+1
p+1 = Ck+1

p + Ckp , the binomial coefficients can be obtained from Pascal’s triangle, see Table 4.1.

4.2. VECTORS AND MATRICES 41

4.2.3 Matrix of a linear system

Let A = (aij) ∈ Mmn(K) and b = (b1, ..., bm)T ∈ Mm1(K). Solving the equation Ax = b of unknown
x = (x1, ..., xn)T is equivalent to solving the linear system

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

. (4.5)

We say that A is the matrix of the system (4.5).

4.2.4 Invertible matrices

Definition and first properties

Definition 4.20. A matrix A ∈ Mn(K) is said to be invertible (or nonsingular, or regular) if there
exists B ∈ Mn(K) such that AB = BA = In. In this case, B is unique and it is called the inverse
matrix of A, denoted by A−1.

Proposition 4.9. Let A,B ∈Mn(K). If AB = In or BA = In, then A is invertible and B = A−1.

Remark 4.4. If A is invertible then Ax = b ⇐⇒ x = A−1b. The knowledge of A−1 permits to
straightforwardly solve any linear system whose matrix is A. However, as we will see, numerically
computing A−1 is usually much harder than solving a linear system of the matrix A.

Calculation of the inverse

Let A ∈ Mn(K). In order to know whether A is invertible and, if possible, calculate its inverse, the
classical approach when doing the calculations by hand consists in solving the linear system Ax = y
of unknown x = (x1, ..., xn)T and right hand side y = (y1, ..., y1)T arbitrary. If this system admits a
solution x∗ without any condition on y, this means that A is invertible. From x∗ = A−1y we infer A−1

by identification.
If the computations are done numerically then the above technique does not apply directly. A

possible reformulation is to solve the matrix equation AB = In, of unknown B ∈ Mn(K). This is
equivalent to solving n linear systems of matrix A and corresponding to each column of B and In.
Even if LU / Cholesky decompositions are helpful for this, numerically inverting a large matrix is to
be avoided unless it is explicitly needed. In particular, do not invert a matrix in order to solve
a linear system! In addition to CPU time, it often happen that A be sparse and A−1 be full and
impossible to store in memory.

Example 4.2. Compute the inverse of the matrix

A =

(
3 1
5 2

)
.

To do so let us solve the linear system {
3x1 + x2 = y1

5x1 + 2x2 = y2.

By Gaussian elimination the unique solution is found as(
x1

x2

)
=

(
2y1 − y2

−5y1 + 3y2

)
=

(
2 −1
−5 3

)(
y1

y2

)
.

42 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

It follows that A is invertible with inverse

A−1 =

(
2 −1
−5 3

)
.

The equivalent matrix formulation is(
3 1
5 2

)(
x1

x2

)
=

(
1 0
0 1

)(
y1

y2

)
often denoted

(
3 1 1 0
5 2 0 1

)
.

After Gaussian elimination this is found equivalent to(
1 0
0 1

)(
x1

x2

)
=

(
2 −1
−5 3

)(
y1

y2

)
denoted

(
1 0 2 −1
0 1 −5 3

)
,

from which A−1 is readily obtained.

Some algebraic rules

Proposition 4.10. 1. In is invertible of inverse In.

2. If A is invertible then A−1 is invertible and (A−1)−1 = A.

3. If A,B are invertible then AB is invertible and (AB)−1 = B−1A−1.

4. If A is invertible then AT is invertible and (AT)−1 = (A−1)T =: A−T .

5. If A = diag(λ1, ..., λn), then A is invertible if and only if all coefficients λi do not vanish. In this
case A−1 = diag(λ−1

1 , ..., λ−1
n).

4.3 Linear subspaces of Kn

4.3.1 Definitions and first properties

Definition 4.21. A set F ⊂ Kn is a linear subspace of Kn if

1. 0 ∈ F ,

2. ∀v, w ∈ F, v + w ∈ F ,

3. ∀v ∈ F,∀λ ∈ K, λv ∈ F .

Such sets appear naturally when solving underdetermined homogeneous linear systems, as stated
below.

Proposition 4.11. The set of solutions of a linear homogeneous system of the unknown v = (v1, ..., vn) ∈
Kn (here v1, . . . , vn denote the components of the vector v) is a linear subspace of Kn.

In the following, elements of Kn are called vectors, whatever they are considered as row vectors or
column vectors.

Hereafter, be careful with the number of vectors indexed by m and the corresponding number of
components of each vector that is indicated by n.

Definition 4.22. Let w, v1, ..., vm be vectors from Kn. Each of these vectors has n components. We
say that w is a linear combination of v1, ..., vm if there exist scalars λ1, ..., λm such that

w = λ1v1 + ...+ λmvm.

Proposition 4.12. Let v1, ..., vm be vectors. The set of linear combinations of v1, ..., vm is a linear
subspace of Kn. It is called the linear subspace spanned by v1, ..., vm, it is denoted by Span(v1, ..., vm).

4.4. DETERMINANT 43

4.3.2 Bases

Definition 4.23. A family (v1, ..., vm) of vectors is said to be linearly independent if, for all families
(λ1, ..., λm) of scalars,

λ1v1 + ...+ λmvm = 0 =⇒ λ1 = ... = λm = 0.

Otherwise it is said to be linearly dependent.

Definition 4.24. Let F be a linear subspace of Kn and (v1, ..., vm) be a family of vectors. If Span(v1, ..., vm) =
F we say that (v1, ..., vm) spans F , or that it is a spanning set of F .

Example. The vectors (e1, ..., en) defined by ei = (e1
i , ..., e

n
i), eji = 1 if i = j, eji = 0 if i 6= j obviously

span Kn. For instance for n = 3:

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

Proposition 4.13. Let F be a linear subspace of Kn. If (v1, ..., vm) spans F then all family of m+ 1
vectors of F is linearly dependent.

Corollary 4.14. A family of n+ 1 vectors of Kn is linearly dependent.

Definition 4.25. Let F be a linear space of Kn. We say that a family (v1, ..., vm) of vectors is a basis
of F if it is linearly independent and a spanning set of F .

Theorem 4.15. All linear subspace of Kn different from {0} admit a basis.

Example. The family (e1, ..., en) defined above is a basis of Kn, called canonical basis.

Proposition 4.16. Let F be a linear subspace of Kn and (v1, ..., vm) be a basis of F . Any vector x
of F can be decomposed in a unique way as x = λ1v1 + ... + λmvm with λ1, ..., λm ∈ K. The scalars
λ1, ..., λm are called the coordinates of x in the basis (v1, ..., vm).

4.3.3 Dimension

Here is the "theorem of the dimension".

Theorem 4.17. Let F be a linear subspace of Kn different from {0}. All the bases of F contain the
same number of vectors.

Definition 4.26. Let F be a linear subspace of Kn different from {0}. We call dimension of F , denoted
by dimF , the number of vectors of any basis of F . By convention, dim{0} = 0.

Proposition 4.18. We have dimKn = n and dimF ≤ n for all linear subspace F of Kn.

Proposition 4.19. Let F be a linear subspace of Kn such that dimF = m.

1. If p vectors of F are linearly independent then p ≤ m.

2. If m vectors of F are linearly independent then they form a basis of F .

3. If p vectors of F span F then p ≥ m.

4. If m vectors of F span F then they form a basis of F .

Corollary 4.20. Let F be a linear subspace of Kn such that dimF = n. Then F = Kn.

4.4 Determinant

The mathematical construction of the notion of determinant is a lengthy procedure. Here we only
recall the main properties of the determinant of a square matrix.

44 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

4.4.1 Expansion with respect to a row or a column

The determinant of a square matrix A ∈Mn(K) is a scalar detA ∈ K. We adopt a practical definition
by induction on n.

We begin with the trivial case n = 1.

Definition 4.27. For A = (a) ∈M1(K) we set detA = a.

We now assume that the determinant is defined for all matrix of type (n− 1, n− 1).

Definition 4.28. Let A ∈Mn(K) et i, j ∈ {1, ..., n}. We call

• minor (i, j) of A the scalar
∆ij(A) = det Ã

where the Ã is the submatrix of A obtained by removing the row i and the column j;

• cofactor (i, j) of A the scalar
Cofij(A) = (−1)i+j∆ij(A).

Definition 4.29. Let A = (aij) ∈Mn(K). Given i0 ∈ {1, ..., n} we call expansion of the determinant
of A with respect to the row i0 the scalar

Ri0(A) =

n∑
j=1

ai0,jCofi0,j(A).

Likewise, given j0 ∈ {1, ..., n} we call expansion of the determinant of A with respect to the column j0
the scalar

Cj0(A) =

n∑
i=1

ai,j0Cofi,j0(A).

Definition 4.30. Let A ∈Mn(K). We set

detA = R1(A).

The definitions 4.27 to 4.30 define unambiguously detA for any matrix A ∈Mn(K). The following
theorem permits to sometimes simplify its calculation.

Theorem 4.21. Let A = (aij) ∈Mn(K). For any i0, j0 ∈ {1, ..., n} we have

detA = Ri0(A) = Cj0(A).

Notation. If A = (aij) ∈Mn(K), we usually write

detA =

∣∣∣∣∣∣∣
a11 · · · a1n
...

...
an1 · · · ann

∣∣∣∣∣∣∣ .
Example 4.3.

A =

∣∣∣∣ a b
c d

∣∣∣∣ .
We have the minors

∆11(A) = d, ∆12(A) = c, ∆21(A) = b, ∆22(A) = a,

the cofactors
Cof11(A) = d, Cof12(A) = −c, Cof21(A) = −b, Cof22(A) = −a,

the determinant
det(A) = R1(A) = R2(A) = C1(A) = C2(A) = ad− bc.

4.4. DETERMINANT 45

4.4.2 Properties

Proposition 4.22. Let A ∈ Mn(K). We denote by A1, ..., An the columns of A and we write A =
(A1, ..., An).

1. Swapping two columns of A multiplies its determinant by −1.

2. If C is an arbitrary column vector then

det(A1, ..., Ai−1, Ai + C,Ai+1, ..., An)

= det(A1, ..., Ai−1, Ai, Ai+1, ..., An) + det(A1, ..., Ai−1, C,Ai+1, ..., An).

3. If λ ∈ K then

det(A1, ..., Ai−1, λAi, Ai+1, ..., An) = λ det(A1, ..., Ai−1, Ai, Ai+1, ..., An).

Remark 4.5. 1. If A and B are two matrices then in general det(A+B) 6= detA+ detB.

2. If λ ∈ K then det(λA) = λn detA.

Corollary 4.23. Let A ∈Mn(K).

1. If a column of A is zero then detA = 0.

2. If two columns of A are equal then detA = 0.

3. If we add to a column of A a linear combination of the other columns of A then the determinant
is unchanged.

4. If the columns of A are linearly dependent then detA = 0.

Proposition 4.24. Let A ∈Mn(K). We have

detA = detAT .

Consequently, the assertions of proposition 4.22 and corollary 4.23 apply also row-wise.
Calculating a determinant via recursive expansions is usually tedious. Only special matrices permit

an easy calculation.

Proposition 4.25. The determinant of a (lower or upper) triangular matrix is equal to the product of
its diagonal coefficients.

In particular, this applies to diagonal matrices. Notably, det In = 1.

4.4.3 Determinant of a product, characterization of invertible matrices

The following algebraic property is remarkable.

Theorem 4.26. Let A,B ∈Mn(K). We have

det(AB) = detAdetB.

It leads to a very useful characterization of invertible matrices.

Corollary 4.27. Let A ∈Mn(K). Then A is invertible if and only if detA 6= 0. In this case we have

det(A−1) =
1

detA
.

46 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

4.5 LU decomposition (complement)

4.5.1 Matrix representation of Gaussian elimination

In this section, we formulate the Gaussian elimination method as a series of matrix operations. These
concepts are very useful in computer implementations.

We recall the Gauss elimination principle:


∗ ∗ ∗ · · · ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
...

. . .
...

∗ ∗ ∗ · · · ∗

→

∗ ∗ ∗ · · · ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
...

. . .
...

0 ∗ ∗ · · · ∗

→ · · · →

∗ ∗ ∗ · · · ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
...

. . .
...

0 0 · · · 0 ∗


Using the upper triangular matrix U ∈ Mn(K) (U = (uij)

n
i,j=1 with uij = 0 for i > j), we can solve

the reduced system

Ux = b̃,

using backward substitution. Here, b̃ is the modification of the right hand side b through the elimination
process. Let us consider the backward substitution in more detail:

Listing 4.1: Backward substitution
Let U ∈ Mn(K) be a regular upper triangular matrix, i.e., uii 6= 0. The solution x ∈ Kn of Ux = b is
given by:

| Set | xn = u−1
nnbn .

| For | i | from | n− 1 | u n t i l | 1

xi = u−1
ii

(
bi −

∑n
j=i+1 uijxj

)
It holds

Proposition 4.28 (Backward substitution). Let U ∈ Mn(K) be an upper triangular matrix with
uii 6= 0. Then, the matrix U is regular and the backward substitution requires

NU (n) =
n2

2
+O(n)

elementary operations on numbers.

Proof. It holds det(U) =
∏
uii 6= 0. Also the matrix U is regular.

Each step of the backward substitution consists of additions, multiplications and divisions of the
diagonal elements. For uii 6= 0 each step is well-defined.

For the computation of xi, we need n− i multiplications and additions. Furthermore, we have one
division per step. This yields

n+
n−1∑
i=1

(n− i) = n+ (n− 1)n− (n− 1)n

2
=
n2

2
+
n

2
.

4.5. LU DECOMPOSITION (COMPLEMENT) 47

The transformation of A to a triangular structure is obtained through row-based elimination:

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33
. . . a3n

...
...

.
...

an1 an2 an3 . . . ann


→



a11 a12 a13 . . . a1n

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n

0 a
(1)
32 a

(3)
33

. . . a
(1)
3n

...
...

.
...

0 a
(1)
n2 a

(1)
n3 . . . a

(1)
nn


→

→



a11 a12 a13 . . . a1n

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n

0 0 a
(2)
33

. . . a
(2)
3n

...
...

.
...

0 0 a
(2)
n3 . . . a

(2)
nn


→ · · · → A(n−1) =: U.

Starting from A(0) := A, we obtain successively the matrices A(i) with A(n−1) =: U . Therein, in step
i, we eliminate the ith column of A(i−1) below the diagonal. This is obtained through subtraction of
the g(i)

k -fold of the ith row from the kth row. Here, it holds for k = i+ 1, . . . , n

g
(i)
k :=

a
(i−1)
ki

a
(i−1)
ii

,

and the new row is computed as

a
(i)
kj = a

(i−1)
kj − g(i)

k a
(i−1)
ij , k = i+ 1, . . . , n, j = i, . . . , n.

These instructions are well-defined if a(i−1)
ii 6= 0. This follows not necessarily from the regularity of A

and all A(i). First of all, we assume that a(i−1)
ii 6= 0 holds true, and discuss later the general case. In

the ith elimination step, the first i− 1 rows and columns remain unchanged. The ith elimination step
is written in compact form with the help of a matrix-matrix multiplication

A(i) = F (i)A(i−1).

Here, the elimination matrix is

F (i) :=



1
. . .

1

−g(i)
i+1

. . .
...

. . .
−g(i)

n 1


, g

(i)
k :=

a
(i−1)
ki

a
(i−1)
ii

.

Therein, all non-specified entries are zero. Multiple applications yield

U = A(n−1) = F (n−1)A(n−2) = F (n−1)F (n−2)A(n−3) = F (n−1) · · ·F (1)︸ ︷︷ ︸
=:F

A(0) = FA. (4.6)

Matrices F (i) with this structure are called Frobenius matrices. It holds

48 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

Proposition 4.29 (Frobenius matrix). Each Frobenius matrix F (i) ∈ Rn×n is regular and it holds

F (i) :=



1
. . .

1

−gi+1
. . .

...
. . .

−gn 1


⇒ [F (i)]−1 :=



1
. . .

1

gi+1
. . .

...
. . .

gn 1


For two Frobenius matrices F (i1) and F (i2) with i1 < i2, it holds

F (i1)F (i2) = F (i1) + F (i2) − I =



1
. . .

1

−g(i1)
i1+1 1
...

. . .
... 1
... −g(i2)

i2+1

. . .
...

...
. . .

−g(i1)
n −g(i2)

n 1



.

Proof. Follows from component-wise calculations.

Multiplying Frobenius matrices, we should take into account that these are not commutative. It
holds

F (i2)F (i1) 6= F (i1) + F (i2) − I for i1 < i2.

Careful observations yield for i1 < i2 < i3 the simple generalization:

F (i1)F (i2)F (i3) = F (i1)(F (i2) + F (i3) − I) = F (i1)F (i2) + F (i1)F (i3) − F (i1)

= F (i1) + F (i2) − I + F (i1) + F (i3) − I − F (i1)

= F (i1) + F (i2) + F (i3) − 2I.

We now continue with (4.6). With F−(i) := [F (i)]−1 and using Proposition 4.29, we obtain that F as
product of two regular matrices is itself regular. If follows

A = F−1U = [F (n−1) · · ·F (1)]−1U = F−(1) · · ·F−(n−1)︸ ︷︷ ︸
=:L

U.

The matrix L is with the help of the generalization of Proposition 4.29 a lower triangular matrix with
the diagonal entries 1:

L =



1

g
(1)
2 1

g
(1)
3 g

(2)
3 1

g
(1)
4 g

(2)
4 g

(3)
4 1

...
...

.

g
(1)
n g

(2)
n · · · · · · g

(n−1)
n 1


.

We summarize our results:

4.5. LU DECOMPOSITION (COMPLEMENT) 49

Proposition 4.30 (LU decomposition). Let A ∈ Mn(K) be a regular matrix. We assume that all
diagonal entries a(i−1)

ii arising through the elimination process are nonzero. Then, there exists a unique
decomposition A = LU with an upper triangular matrix U ∈ Mn(K) and a lower trianglar matrix
L ∈ Mn(K) with diagonal entries 1. The computational cost to construct the LU decomposition
requires

1

3
n3 +O(n2)

elementary operations.

Proof. (i) Uniqueness. Let us assume there exist two LU decompositions

A = L1U1 = L2U2 ↔ L−1
2 L1 = U2U

−1
1 .

The product of triangular matrices is again a triangular matrix. The product L−1
2 L1 has only values

of 1 on the diagonal. It follows
L−1

2 L1 = U2U
−1
1 = I,

and therefore L1 = L2 and U1 = U2.

(ii) Feasibility. Each step of the elimination is well-defined as long as we do not need to divide by
a

(i−1)
ii = 0. The matrix F is per construction regular and therefore the matrix L exists.

(iii) Computational cost. In the ithe elimination step

A(i) = F (i)A(i−1)

we have first of all n − i arithmetic operations for the computation of g(i)
j for j = i + 1, . . . , n. The

matrix-matrix multiplication applies to all elements akl with k > i and l > i. It holds

a
(i)
kl = a

(i−1)
kl − g(i)

k a
(i−1)
il , k, l = i+ 1, . . . , n.

Here, we need (n − i)2 arithmetic operations. In total, the computational cost in the n − 1 steps
sums-up to

NLU (n) =

n−1∑
i=1

{
n− i+ (n− i)2

}
=

n−1∑
i=1

{
i+ i2

}
,

and with the well-known summation rules, it follows

NLU (n) =
n3

3
+
n

3
.

The LU decomposition can be used to solve linear equation system:

Listing 4.2: Solving Ax = b with the LU decomposition
Let A ∈Mn(R) be a regular matrix which admits an LU decomposition.
Construct the LU decomposit ion A = LU
Forward sub s t i t u t i o n : Ly = b
Backward s ub s t i t u t i o n : Ux = y

The forward substitution is similar to Algorithm 4.1 and requires O(n2) operations according to Propo-
sition 4.28. This is an interesting observation. The solution process is much cheaper than constructing
the LU decomposition itself. For this reason, if possible, the LU decomposition is only constructed
when needed, but in many applications it can be used several times (to solve several systems with the
same matrix). This should be considered in implementations and reduces significantly the computa-
tional cost for large problems.

50 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

Remark 4.6 (Practical aspects). The matrix L is a lower triangular matrix with values 1 on the
diagonal. These values are not required to be stored. Similarly, the zero-elements of A(i) below the
diagonal are not required to be stored either. Consequently, both matrices L and U can be stored in a
common square matrix. In step i, it holds

Ã(i) =



a11 a12 a13 · · · · · · · · · a1n

l21 a
(1)
22 a

(1)
23

...

l31 l32 a
(2)
33

. . .
...

...
.

...
... li+1,i a

(i)
i+1,i+1 · · · a

(i)
i+1,n

...
...

. . .
...

ln1 ln2 · · · ln,i a
(i)
n,i+1 . . . a

(i)
nn


.

The bold entries are the entries of L. The values above the line do not change anymore during the
algorithm and form already the respective entries of L and U .

The algorithm reads:

Listing 4.3: LU decomposition of a matrix A without additional memory
Let A = (aij)ij ∈Mn(K) be a regular matrix for which the LU decomposition exists

| For | i | from | 1 | u n t i l | n
| For | k | from | i+ 1 | u n t i l | n
aki = aki/aii
| For | j | from | i+ 1 | u n t i l | n
akj = akj − aki · aij

The element a(i−1)
ii is the so-called Pivot element . Until now, this element was assumed to be non-zero.

For regular matrices this is however in general not the case. Let us consider the following example:

A :=

1 4 2
2 8 1
1 2 1

 .

In the first step of the construction, we have a(0)
11 = 1 and it holds

A(1) = F (1)A =

 1 0 0
−2 1 0
−1 0 1

1 4 2
2 8 1
1 2 1

 =

1 4 2
0 0 −3
0 −2 −1



At this step, the algorithm aborts, because we have a(1)
22 = 0. We could have continued the algorithm

with the choice a(i)
32 = −2 as a new Pivot element. This approach can be applied in a systematic manner

and is called pivoting. In the ith step of the scheme, we search first for an appropriate Pivot element
aki in the ith column with k ≥ i. The kth and ith rows are switched and the LU decomposition can

4.5. LU DECOMPOSITION (COMPLEMENT) 51

be continued. Switching of the kth and ith rows is achieved by multiplying with a Pivot matrix:

P ki :=



1
. . .

1
0 0 . . . 0 1
0 1 0
...

. . .
...

0 1 0
1 0 · · · 0 0

1
. . .

1


It holds pkijj = 1 for j 6= k and j 6= i and pkiki = pkiik = 1; all other elements are zero. We collect now
some properties of P :

Proposition 4.31 (Pivot matrices). Let P = P ki be the Pivot matrix with P kijj = 1 for j 6= k, i and
P kiki = P kiik = 1. Applying P kiA from left switches the kth and ith row of A. Applying AP ki from right
switches kth and ith column. It holds

P 2 = I hence P−1 = P.

Proof. It is left to the reader.

In step i of the LU decomposition, we search first the Pivot element:

Listing 4.4: Pivot search In step i, search index k ≥ i, such that
| Search | Index k ≥ i , such that
|aki| = maxj≥i |aji|

| Set | P (i) := P ki .

Afterward, we determine A(i) as
A(i) = F (i)P (i)A(i−1).

Pivoting ensures that all elements g(i)
k = a

(i−1)
ki /a

(i−1)
ii of F (i) are bounded by 1 in their absolute value.

In summary, we obtain
U = A(n−1) = F (n−1)P (n−1) · · ·F (1)P (1)A. (4.7)

The Pivot matrices are not commutative with A and F (i). A straightforward transit to the LU
decomposition is therefore not possible. We define

F̃ (i) := P (n−1) · · ·P (i+1)F (i)P (i+1) · · ·P (n−1).

The matrix F̃ (i) is obtained through multiple switches of rows and columns of F (i). Specifically, only
rows and columns with j > i are switched. The matrix F̃ (i) has the same pattern as F (i) and in
particular only values of 1 on the diagonal. This means that it is again a Frobenius matrix and
Proposition 4.29 still holds true. Only the entries in the ith column below the diagonal are permuted.
For the inverse, it holds correspondingly

L̃(i) := [F̃ (i)]−1 = P (n−1) · · ·P (i+1)L(i)P (i+1) · · ·P (n−1).

The simultaneous switch of rows and columns yields unchanged diagonal elements. The matrix L̃(i) is
again a Frobenius matrix and only the elements in the column lij , i > j are permuted. We form (4.7)
through smart insertion of permutation matrices:

U = F̃ (n−1)F̃ (n−2) . . . F̃ (1) P (n−1) . . . P (1)︸ ︷︷ ︸
=:P

A

52 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

We illustrate this process with the help of a simple example:

U = F (3)P (3)F (2)P (2)F (1)P (1)A

= F (3)P (3)F (2) P (3)P (3)︸ ︷︷ ︸
=I

P (2)F (1) P (2)P (3)P (3)P (2)︸ ︷︷ ︸
=I

P (1)A

= F (3)︸︷︷︸
=F̃ (3)

P (3)F (2)P (3)︸ ︷︷ ︸
=F̃ (2)

P (3)P (2)F (1)P (2)P (3)︸ ︷︷ ︸
=F̃ (1)

P (3)P (2)P (1)︸ ︷︷ ︸
=P

A

With L̃(i) = [F̃ (i)]−1 it holds
L̃(1) · · · L̃(n−1)︸ ︷︷ ︸

=:L̃

U = PA.

Since L̃(i) are again Frobenius matrices, it holds further with Proposition 4.29:

L̃ = L̃(1) · · · L̃(n−1)

=

n−1∑
i=1

L̃(i) − (n− 2)I

= P (n−1)
(
L(n−1) + P (n−1)

(
L(n−2) + . . .

+ · · ·+ P (2)F (1)P (2)
)
. . . P (n−2)

)
P (n−1) − (n− 2)I.

For the construction of the LU decomposition not only do we need to permute the A(i), but we also
need to change the L(i) that have been computed so far. We summarize:

Proposition 4.32 (LU decomposition with pivoting). Let A ∈ Mn(K) be a regular matrix. Then,
there exists an LU decomposition

PA = LU,

where P is a product of Pivot matrices, L is a lower triangular matrix with values 1 on the diagonal
and U an upper triangular matrix. The LU decomposition without pivoting P = I is unique in case it
exists.

Proof. The proof is left for the reader.

We recall that pivoting yields a well-defined construction of the LU decomposition. But there is
a second advantage. With the help of pivoting, we can increase the numerical stability of Gaussian
elimination. Through the choice of a Pivot element aki with maximal relative value (with respect to
the row), we can reduce the risk of cancellation.

Example 4.4 (LU decomposition without pivoting). Let:

A =

2.3 1.8 1.0
1.4 1.1 −0.7
0.8 4.3 2.1

 , b =

 1.2
−2.1
0.6

 ,

and the solution of Ax = b is given by (five-digit accuracy):

x ≈

+0.34995
−0.98023
+2.1595

 .

For the matrix A it holds cond∞(A) = ‖A‖∞ ‖A−1‖∞ ≈ 7.2 · 1.2 ≈ 8.7. This problem is well-
conditioned. The amplification factor is 8.7 and we expect an amplification of the error of about one

4.5. LU DECOMPOSITION (COMPLEMENT) 53

digit. First, we construct the LU decomposition (three-digit accuracy). The entries of L are in bold
letters:

F (1) =

 1 0 0
−1.4

2.3 1 0
−0.8

2.3 0 1

 ≈
 1 0 0
−0.609 1 0
−0.348 0 1

 ,

[L(1), A(1)] ≈

 2.3 1.8 1.0
0.609 0.0038 −1.31
0.348 3.67 1.75

 .

In the second step, we obtain

F (2) =

1 0 0
0 1 0
0 − 3.67

0.0038 1

 ≈
1 0 0

0 1 0
0 −966 1

 ,

[L(2)L(1), A(2)] ≈

 2.3 1.8 1.0
0.609 0.0038 −1.31
0.348 966 1270

 .

The LU decomposition is then

L =

 1 0 0
0.609 1 0
0.348 966 1

 , U :=

2.3 1.8 1.0
0 0.0038 −1.31
0 0 1270

 .

We solve the linear equation system through forward and backward substitution:

Ax̃ = L Ux̃︸︷︷︸
=y

= b

First, we have

y1 = 1.2, y2 = −2.1− 0.609 · 1.2 ≈ −2.83,

y3 = 0.6− 0.348 · 1.2 + 966 · 2.83 ≈ 2730.

And finally, we obtain

x̃3 =
2730

1270
≈ 2.15,

x̃2 =
−2.83 + 1.31 · 2.15

0.0038
≈ −3.55,

x̃1 =
1.2 + 1.8 · 3.55− 1 · 2.15

2.3
≈ 2.37.

For the solution x̃ it holds

x̃ =

 2.37
−3.55
2.15

 ,
‖x̃− x‖2
‖x‖2

≈ 1.4,

which is a relative error of 140%. Here, we only considered round-off errors and not yet perturbed
entries!

The previous example shows the significance of pivoting. In the second step, we chose as Pivot
element 0.0038, which is close to 0. For this reason, we obtained values of different orders in the
matrices L and U . This yields instabilities in the computation.

Example 4.5 (LU decomposition with pivoting). We continue the previous example in step 2 and
search now first the Pivot element:

[L(1), A(1)] =

 2.3 1.8 1.0
0.609 0.0038 −1.31

0.348 3.67 1.75

 , P (2) =

1 0 0
0 0 1
0 1 0

 .

54 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

Then:

[L̃(1), Ã(1)] =

 2.3 1.8 1.0
0.348 3.67 1.75
0.609 0.0038 −1.31

 .

It follows

F (2) =

1 0 0
0 1 0
0 −0.0038

3.67 1

 ≈
1 0 0

0 1 0
0 −0.00104 1

 ,

[L(2)L̃(1), Ã(2)] ≈

 2.3 1.8 1.0
0.348 3.67 1.75
0.609 0.00104 −1.31

 .

We obtain the decomposition L̃U = PA as

L̃ :=

 1 0 0
0.348 1 0
0.609 0.00104 1

 , U :=

2.3 1.8 1.0
0 3.67 1.75
0 0 −1.31

 , P :=

1 0 0
0 0 1
0 1 0

 .

The linear equation system, we solve in the form:

PAx = L̃ Ux︸︷︷︸
=y

= Pb.

For the right hand side, it holds b̃ = Pb = (1.2, 0.6,−2.1)T and forward substitution in L̃y = b̃ yields

y1 = 1.2,

y2 = 0.6− 0.348 · 1.2 ≈ 0.182,

y3 = −2.1− 0.609 · 1.2− 0.00104 · 0.182 ≈ −2.83.

As approximation x̃, we obtain

x̃ =

 0.350
−0.980
2.160


with a relative error

‖x̃− x‖2
‖x‖2

≈ 0.0002,

which is now only 0.02% rather than 140% as in the previous example.

These examples show that the constructed LU decomposition is not really a truly decomposition,
but only an approximation of A ≈ LU due to round-off errors. Computing LU easily yields the test
and we can compute the error A− LU .

As we emphasized at the beginning of this section, the LU decomposition is one of the most
important schemes for solving linear equation systems. Due to third order computational cost, however,
computing time exceeds easily the capacities of modern computers - despite faster and bigger machines!
For instance, we obtain as illustration:

Within the discretization of differential equations we usually obtain very large linear equation
systems with n ∼ 106 − 109. The good news are that these systems have a special structure, such
as symmetry or a sparse pattern with just a few non-zero entries. This is for instance the case for
the finite element discretization of Poisson’s problem (Chapter 17). Here, in contrast to the previous
table, we may have n = 1 000 000, but thanks to these structural properties, we can solve such systems
within one minute.

4.6. CANONICAL INNER PRODUCT, EUCLIDEAN NORM, MATRIX NORM 55

n Operations (≈ 1
3n

3) Time LU decomposition

100 300 · 103 30 µs
1 000 300 · 106 30 ms
10 000 300 · 109 30 s
100 000 300 · 1012 10 h

1 000 000 300 · 1015 1 year

Table 4.2: Computational time for constructing the LU decomposition of a non-sparse matrix A ∈
Mn(K) on a computer with 10 GigaFLOPS with optimal load-balancing.

4.5.2 LU decomposition for diagonal-dominant matrices

Proposition 4.32 showed us that the LU decomposition for arbitrary regular matrices with pivoting
exists. On the other hand, there are many matrices for which the LU decomposition is stable without
pivoting. Examples are positive definite or diagonal dominant matrices:

Definition 4.31 (Diagonal dominant matrices). A matrix A ∈ Mn(K) is called diagonal dominant,
if

|aii| ≥
∑
j 6=i
|aij |, i = 1, . . . , n.

A diagonal dominant matrix has the largest (absolute) value on the diagonal. For regular matrices
the diagonal is moreover always nonzero.

Proposition 4.33 (LU decomposition of diagonal dominant matrices). Let A ∈ Mn(K) be a regular
and diagonal dominant matrix. Then, the LU decomposition can be constructed without pivoting and
all Pivot elements a(i−1)

ii are non-zero.

4.5.3 Case of Hermitian positive definite matrices: Cholesky decomposition

In the case of a Hermitian positive definite matrix A, a variant of the LU decomposition can be
obtained, namely the Cholesky factorization. It has the form

A = C̄TC,

where C is an upper triangular matrix with real positive diagonal entries.

4.6 Canonical inner product, Euclidean norm, matrix norm

4.6.1 Canonical inner product and Euclidean norm

The general definition of a norm has been given in Definition 1.3, and the general definition of an inner
product will be given in chapter 6. In this chapter dedicated to linear algebra in Kn we restrict ourselves
to the canonical inner product and the associated Euclidean norm which are the most standard ones.

Definition 4.32. The canonical inner (or scalar) product of two vectors (x1, · · · , xn) ∈ Kn and
(y1, · · · , yn) ∈ Kn is defined by

〈x, y〉 := x1y1 + · · ·+ xnyn.

The Euclidean norm of (x1, · · · , xn) ∈ Kn is defined by

‖x‖2 :=
√
〈x, x〉 =

√
|x1|2 + · · ·+ |xn|2.

Obviously, for real vectors, conjugacy and moduli can be dropped.

56 CHAPTER 4. LINEAR SYSTEMS AND MATRICES

Next, we have the classical Cauchy-Schwarz inequality for vectors of Kn:

Proposition 4.34. For all x, y,∈ Kn we have

|〈x, y〉| ≤ ‖x‖2‖y‖2.

4.6.2 Matrix norm

Definition 4.33. A matrix norm onMn(K) is a norm ‖ · ‖ on the vector spaceMn(K) that satisfies

‖AB‖ ≤ ‖A‖‖B‖ ∀A,B ∈Mn(K).

As example we first mention the Frobenius norm, which is associated with an inner product (see
chapter 6).

Definition 4.34. The inner product of A = (aij) ∈Mn(K) and B = (bij) ∈Mn(K) is defined by

〈A,B〉 := tr(A
T
B) =

n∑
i=1

n∑
j=1

aijbij .

The Frobenius norm of A = (aij) ∈Mn(K) is defined by

‖A‖F :=
√
〈A,A〉 =

√√√√ n∑
i=1

n∑
j=1

|aij |2.

There are also the so-called induced norms, which are more appropriate for some applications.
These norms are constructed from a vector norm.

Definition 4.35. Let ‖.‖ be a vector norm on Kn. The induced norm onMn(K) is defined by

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

. (4.8)

It is an easy exercise to check that such norms are indeed matrix norms. However they are not
associated with an inner product on matrices, even if the Euclidean vector norm is considered.

Solving the maximization problem (4.8) is in principle not an easy task. However, when the
Euclidean vector norm is used, it can be reformulated as an eigenvalue problem.

Proposition 4.35. The matrix norm induced by the Euclidean norm satisfies

‖A‖2 =
√
%(ĀTA)

= %(A) if A is Hermitian (or real symmetric),

where % stands for the spectral radius (Definition 5.4 in the next chapter). It is called the spectral norm.

By definition an induced norm satisfies

‖Ax‖ ≤ ‖A‖‖x‖ ∀x ∈ Kn.

When a matrix norm and a vector norm satisfy the above relation they are said to be compatible.

Chapter 5

Diagonalization of square matrices and
applications

Diagonalization of matrices has many applications. The major purpose is to simplify some given matrix
(in case it is diagonalizable) to a diagonal matrix by conserving important properties such as the
rank, characteristic polynomial, determinant, trace, and eigenvalues and their algebraic multiplicities.
Mathematically, diagonalization is the process to construct a similar matrix. Similar matrices represent
the same linear mapping under two different bases.

5.1 Eigenvalues, eigenvectors, diagonalization

5.1.1 Eigenvalues and eigenvectors

Let A ∈Mn(K) with in general K = C.

Definition 5.1. Let λ ∈ K. We say that λ is an eigenvalue of A if there exists a column vector x ∈ Kn,
x 6= 0, such that

Ax = λx.

Such an x is called an eigenvector associated with the eigenvalue λ.

Proposition 5.1. The function

K → K
λ 7→ PA(λ) := det(A− λIn)

is a polynomial of degree n. It is called the characteristic polynomial of A.

Proposition 5.2. Let λ ∈ K. Then λ is an eigenvalue of A if and only if PA(λ) = 0.

Determining the eigenvalues of a matrix amounts to finding the roots of its characteristic poly-
nomial. However this is not an easy task, since characteristic polynomials have no special property1.
Explicit formulas exist only for n ≤ 4. For the numerical approximation of eigenvalues iterative meth-
ods are used. They are usually not based on the characteristic polynomial. The simplest method, the
power method, is described in section 5.3.

Definition 5.2. Let λ be an eigenvalue of A. We call an eigenspace of A associated with the eigenvalue
λ the set

EA(λ) = {x ∈ Kn s.t. Ax = λx} .

It is a linear subspace of Kn.

In other words, EA(λ) is the set of eigenvectors associated with λ and the zero vector.
1Given an arbitrary polynomial P one can always construct a matrix, called companion matrix, whose characteristic

polynomial is P , up to a multiplicative constant.

57

58 CHAPTER 5. DIAGONALIZATION OF SQUARE MATRICES AND APPLICATIONS

5.1.2 Diagonalization

Definition 5.3. A matrix A ∈Mn(K) is diagonalizable if there exists an invertible matrix P ∈Mn(K)
such that D := P−1AP is diagonal.

Remark 5.1. The matrix D := P−1AP corresponds to a change of coordinate system (or change of
basis) in the map x 7→ Ax. Indeed, if x = Px̃, y = P ỹ and y = Ax then ỹ = P−1APx̃. Therefore
P is called a change of basis matrix (or transition matrix). Its columns contain the coordinates of the
new basis vectors in the former (here canonical) basis. The relation D = P−1AP is straightforwardly
inverted into A = PDP−1.

Proposition 5.3. A matrix A ∈ Mn(K) is diagonalizable if and only if there exists a basis B =
(v1, ..., vn) such that each each vi is an eigenvector associated with an eigenvalue λi of A. In this case,
if P is the matrix made columnwise of the vectors (v1, ..., vn), then

P−1AP =

λ1

. . .
λn

 =: diag(λ1, ..., λn).

Therefore it is to be remembered that the columns of a transition matrix associated with a diago-
nalization form a basis of eigenvectors.

Remark 5.2. The diagonal coefficients λi need not be distinct.

Proposition 5.4. Eigenvectors associated with distinct eigenvalues are linearly independent.

Corollary 5.5. If A ∈Mn(K) admits n distinct eigenvalues then A is diagonalizable.

The fact that a matrix be diagonalizable is related to the number of its eigenvalues and their order
of multiplicity2. We do not enter into these developments, which are extremely classical and well-
documented. We only stress that a real matrix may be diagonalizable on C while it is not on R, due
to a possibly larger number of eigenvalues. The case of symmetric and Hermitian matrices is of special
interest.

5.1.3 Case of Hermitian matrices

Theorem 5.6. If A is Hermitian then A is diagonalizable with the help of real eigenvalues. Moreover
the transition matrix P can be chosen such that P−1 = P̄ T (this is called a unitary matrix).

This theorem has a direct consequence on the characterization of Hermitian positive (semi-) definite
matrices.

Corollary 5.7. If A ∈Mn(K) be a Hermitian matrix, then A is positive semi-definite (resp. positive
definite) if and only if all its eigenvalues are ≥ 0 (resp. > 0).

5.2 Applications

The diagonalization has many applications. One of them, the expression of matrix power, turns out
to be very important in the analysis of iterative methods.

Proposition 5.8. If A = PDP−1 with D = diag(λ1, ..., λn) then, for all k ∈ N, we have Ak =
PDkP−1 with Dk = diag(λk1, ..., λ

k
n).

2The notion of order of multiplicity is related, but not equivalent, to the fact that an eigenvalue may appear in several
places in the diagonal form.

5.3. THE POWER METHOD (COMPLEMENT) 59

When k goes to infinity the behavior of Ak is governed be the λki ’s. If |λi| < 1 for all i then clearly
Ak → 0 when k → +∞. If |λi0 | > 1 for some index i0 then, calling vi0 an eigenvector associated with
λi0 , we have Akvi0 = λkvi0 , whose norm goes to infinity when k → +∞.

Definition 5.4. The largest modulus of the eigenvalues (on C) of a (real or complex) matrix A is
called spectral radius and is denoted by ρ(A) with ρ = maxλ∈σ(A) |λ|.

A fairly similar reasoning can be made concerning the analysis of first order linear differential
systems with constant coefficients, where diagonalization uncouples the system, leading to explicit
solutions:

y′ = Ay ⇔ (P−1y)′ = D(P−1y)⇔
{
y = Pz, z = (z1, ..., zn)T

z′i = λizi ∀i = 1, ..., n
.

Here the signs of the real parts of the eigenvalues govern the asymptotic behavior of the solutions.

5.3 The power method (complement)

There exist many more or less sophisticated methods for the numerical approximation of all or some
eigenvalues of a given matrix. The extremal eigenvalues (in modulus or in real part) often carry the
most important information, as mentioned in section 5.2. The power method is an elementary method
aiming at computing the largest modulus of the eigenvalues.

Let A ∈Mn(R). The power method consists in defining two sequences (xn) and (yn) by

• x0 ∈ Rn given,

• for all k ∈ N∗
yk = Axk−1, xk =

yk
‖yk‖

.

Here, ‖.‖ is an arbitrary norm on Rn, typically the Euclidean norm is used.

Theorem 5.9. We assume that A is diagonalizable (possibly on C), with basis of eigenvectors (e1, ..., en),
chosen to be of unit norm, associated with the eigenvalues (λ1, ..., λn). We assume further that

|λ1| ≤ |λ2| ≤ ... ≤ |λn−1| < |λn|.

If x0 =
n∑
i=1

βiei with βn 6= 0, then

lim
k→+∞

‖yk‖ = |λn|.

Moreover, if λn is real and positive, en ∈ Rn, then limk→+∞ xk = ±en.

Remark 5.3. 1. There is a priori no way to ensure that x0 admits a nonzero coordinate along en,
since by definition en is unknown. However, because of round-off errors in a numerical imple-
mentation, such a component will automatically appear in the vector xk after some iterations.

2. A variant, the inverse power method, aims at computing the smallest modulus of the eigenvalues.

60 CHAPTER 5. DIAGONALIZATION OF SQUARE MATRICES AND APPLICATIONS

Chapter 6

Vector spaces and elements of topology

Here again, K stands either for R or for C.

6.1 Vector spaces

6.1.1 General definition

We have defined linear subspaces of Kn in section 4.3, however there is a more general and axiomatic
definition of the concept of vector space.

Definition 6.1. A vector space on K is a set X, whose elements are called vectors, equipped with two
operations

(x, y) ∈ X2 7→ x+ y ∈ X,

(λ, x) ∈ K×X 7→ λx ∈ X,

satisfying the following properties:

∀x, y, z ∈ X, (x+ y) + z = x+ (y + z),

∀x, y ∈ X, x+ y = y + x,

there exists a vector denoted by 0 such that 0 + x = x for all x ∈ X,

for all x ∈ X there exists a vector denoted by −x such that x+ (−x) = 0 ,

∀(λ, µ, x) ∈ K×K×X, (λµ)x+ λ(µx),

∀x ∈ X, 1x = x,

∀(λ, x, y) ∈ K×X ×X, λ(x+ y) = λx+ λy,

∀(λ, µ, x) ∈ K×K×X, (λ+ µ)x = λx+ µx.

Clearly, Kn equipped with its standard operations is a vector space on K. This also holds true
for all its subspaces. We speak of real vector space when K = R, and of complex vector space when
K = C.

61

62 CHAPTER 6. VECTOR SPACES AND ELEMENTS OF TOPOLOGY

6.1.2 Vector spaces of finite dimension

Definition 6.2. Let X be a vector space and (ui)i∈I be a family (not necessarily finite) of elements of
X. A vector x ∈ X is said to be a linear combination of (ui)i∈I if there exist a finite subfamily (ui)i∈J
and a family (αi)i∈J of elements of K such that

x =
∑
i∈J

αiui.

Definition 6.3. A vector space X is said to be of finite dimension if there exists a finite family
(u1, · · · , un) such that every vector of X is a linear combination of (u1, · · · , un).

Of course, Kn is of finite dimension. But function spaces are usually not of finite dimension.
For instance C([a, b],R), the set of continuous real-valued functions on [a, b] is a vector space but it is
not of finite dimension. There are exceptions, however. For instance the space of polynomial functions
of degree ≤ n is of finite dimension: it is spanned by the monomials (xk)0≤k≤n.

6.2 Basic topology

6.2.1 Norms and balls

Definition 6.4. Let X be a vector space. A norm on X is a function

x ∈ X 7→ ‖x‖ ∈ R+

that satisfies:
∀x ∈ X, ‖x‖ = 0⇔ x = 0,

∀(x, α) ∈ X ×K, ‖αx‖ = |α|‖x‖,

∀(x, y) ∈ X2, ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (6.1)

A vector space endowed with a norm is called a normed vector space.

On X = K, the canonical norm is the modulus (or absolute value) | · |.
The triangle inequality (6.1) implies other inequality

∀(x, y) ∈ X2, |‖x‖ − ‖y‖| ≤ ‖x− y‖. (6.2)

Due to this property, we say that the norm is a 1-Lipschitz (or non-expansive) function.
When there is no confusion the notation ‖x‖ will be systematically used for the norm of x on its

underlying space.

Example 6.1. On Kn the most classical norms are defined, for x = (x1, · · · , xn), by

‖x‖1 =

n∑
i=1

|xi|, ‖x‖2 =

√√√√ n∑
i=1

|xi|2, ‖x‖∞ = max
i=1,··· ,n

|xi|.

For instance, for x = (−1, 2) we obtain ‖x‖1 = 3, ‖x‖2 =
√

5, ‖x‖∞ = 2.

The norm ‖ · ‖2 has already been mentioned, and it is the most classical norm because it has a
noticeable property: it is associated with the canonical inner product of Kn. Actually, to check that
the norms from example 6.1 are indeed norms according to Definition 6.4, the only nontrivial task is
to check the triangle inequality (6.1) for ‖ · ‖2. For this we use the expression of the norm in terms of
the canonical inner product and the Cauchy-Schwarz inequality from Proposition 4.34 to obtain

‖x+ y‖22 = 〈x+ y, x+ y〉 = ‖x‖22 + ‖y‖22 + 2<〈x, y〉 ≤ ‖x‖22 + ‖y‖22 + 2|〈x, y〉|
≤ ‖x‖22 + ‖y‖22 + 2‖x‖2‖y‖2 = (‖x‖2 + ‖y‖2)2.

6.2. BASIC TOPOLOGY 63

Definition 6.5. Let X be a normed vector space, z ∈ X and ρ > 0. The open ball of center z and
radius ρ is the set

Bρ(z) = {x ∈ X s.t. ‖x− z‖ < ρ}.

The closed ball of center z and radius ρ is the set

B̄ρ(z) = {x ∈ x s.t. ‖x− z‖ ≤ ρ}.

When the radius ρ is chosen equal to 1 and the center is fixed at the origin, the balls B1(0) and
B̄1(0) are called the (open or closed) unit balls. See Fig. 6.1.

Figure 6.1: Unit balls of R2 for the norms (from left to right): ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞.

Definition 6.6. Let X be a normed vector space and z ∈ X. A subset U of X is said to be a
neighborhood of z if there exists ρ > 0 such that Bρ(z) ⊂ U .

6.2.2 Open sets, closed sets (complement)

Definition 6.7. Let X be a normed vector space. A subset A of X is said to be open if

∀z ∈ A ∃ρ > 0 s.t. Bρ(z) ⊂ A,

i.e., A is a neighborhood of all its points.
More generally, a subset A ⊂ E ⊂ X is said to be open relatively to the set E if

∀z ∈ A ∃ρ > 0 s.t. Bρ(z) ∩ E ⊂ A,

i.e., A is a relative neighborhood of all its points.

Definition 6.8. Let X be a normed vector space. A subset A of X is said to be closed if its comple-
mentary set X \A is open.

A subset A ⊂ E ⊂ X is said to be closed relatively to E if E \A is open relatively to E.

It is a classical exercise to show that open balls are indeed open sets, and that closed balls are
closed sets.

On R (equipped with the absolute value), all intervals of the form]a, b[,]−∞, b[,]a,+∞[are open,
and all intervals of the form [a, b],]−∞, b], [a,+∞[are closed. Intervals of the form [a, b[or]a, b] are
neither open nor closed. The interval]−∞,+∞[= R is open and closed.

The following proposition is straightforward and also applies to relative open / closed sets.

Proposition 6.1. An arbitrary union of open sets is an open set. A finite intersection of open sets is
an open set.

An arbitrary intersection of closed sets is a closed set. A finite union of closed sets is a closed set.

64 CHAPTER 6. VECTOR SPACES AND ELEMENTS OF TOPOLOGY

6.2.3 Closure, interior (complement)

Definition 6.9. Let X be a normed vector space and A be a subset of X. The closure of A, denoted
by Ā, is the subset of X defined by

∀x ∈ X, x ∈ Ā⇔ ∀ρ > 0, Bρ(x) ∩A 6= ∅.

The closure of a set A is always closed, in fact it is the smallest (in the sense of inclusion) closed
set containing A. If A is closed then Ā = A.

Definition 6.10. Let X be a normed vector space and A be a subset of X. The interior of A, denoted
by intA is the subset of X defined by

∀x ∈ X, x ∈ intA⇔ ∃ρ > 0, Bρ(x) ⊂ A.

The interior of a set A is always open, in fact it is the largest open set contained in A. If A is open
then intA = A.

It is classical to show that X \ Ā = int(X \ A) and X \ intA = X \A. In addition, the closure of
an open ball is the closed ball of the same center and radius. The interior of a closed ball is the open
ball of the same center and radius.

6.2.4 Converging sequences (complement)

The notion of convergence in normed vector spaces extends that of real-valued sequences, only replacing
the absolute value by the norm.

Definition 6.11. Let X be a normed vector space and (xn) be a sequence of elements of X. We say
that (xn) is converging to x ∈ X if

∀ε > 0 ∃N ∈ N s.t. n ≥ N ⇒ ‖xn − x‖ < ε.

This can be phrased as: xn becomes arbitrarily close to x provided that n be large enough.

6.2.5 Equivalent norms

Definition 6.12. Two norms ‖ · ‖a and ‖ · ‖b on X are said to be equivalent if there exists α, β > 0
such that

α‖x‖a ≤ ‖x‖b ≤ β‖x‖a ∀x ∈ X.

Proposition 6.2. If two norms ‖ · ‖a and ‖ · ‖b on X are equivalent then a subset of X is open for
the norm ‖ · ‖a if and only if it is open for the norm ‖ · ‖b. Of course, the same holds for closed sets.
Likewise, if the norms ‖ · ‖a and ‖ · ‖b are equivalent, a sequence of X is converging for the norm ‖ · ‖a
if and only if it converges for the norm ‖ · ‖b.

Theorem 6.3. If X is a vector space of finite dimension then all norms on X are equivalent.

This property is convenient, however it only holds in finite dimensional spaces. Be careful!

6.3 Special normed spaces (complement)

6.3.1 Inner product spaces

Definition 6.13. Let X be a vector space. A function

(x, y) ∈ X2 7→ 〈x, y〉 ∈ K

is said to be an inner product (or scalar product) if

∀(x, y) ∈ X2, 〈x, y〉 = 〈y, x〉,

6.3. SPECIAL NORMED SPACES (COMPLEMENT) 65

∀(x, x′, y) ∈ X3,∀α ∈ K, 〈αx+ x′, y〉 = α〈x, y〉+ 〈x′, y〉,

∀x ∈ X \ {0}, 〈x, x〉 > 0.

A vector space endowed with an inner product is called inner product space.

Observe that two above properties imply

〈x, αy + y′〉 = α〈x, y〉+ 〈x, y′〉.

Therefore one gets the standard linearity of the inner product with respect to the second argument,
while one sometimes speaks of antilinearity with respect to the first argument because of the conjugacy.
Prescribing the antilinearity with respect to the first argument, hence the linearity with respect to the
second one, is a matter of (non-universal) convention. Of course, when K = R this discussion is
irrelevant.

Typical inner products are those defined in section 4.6 (in the case of matrices, consideringMn(K)
as a vector space).

Theorem 6.4. If X is an inner product space then it is a normed space for the norm defined by

‖x‖ =
√
〈x, x〉.

In addition we have the Cauchy-Schwarz inequality

∀(x, y) ∈ X2, |〈x, y〉| ≤ ‖x‖‖y‖.

The norm defined above will be considered as canonical in any inner product space.
If x, y belong to an inner product space then simple algebra yields the expansion formula

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉,

the parallelogram equality
‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2),

and the polarization identity

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

If A is an arbitrary subset of X then we define the orthogonal of A by

A⊥ = {x ∈ X s.t. 〈x, y〉 = 0 ∀y ∈ A}.

It is always a closed linear subspace of X. When A is a singleton we often write a⊥ for {a}⊥.

6.3.2 Banach and Hilbert spaces

Let us first extend the notion of real-valued Cauchy sequence.

Definition 6.14. Let X be a normed vector space and (xn) be a sequence of elements of X. We say
that (xn) is a Cauchy sequence if

∀ε > 0 ∃N ∈ N s.t. n,m ≥ N ⇒ ‖xn − xm‖ < ε.

Definition 6.15. A normed vector space such that every Cauchy sequence is converging is said to be
a Banach space. When it is at the same time an inner product space, it is called a Hilbert space.

Note that a Banach space remains a Banach space when changing the norm to an equivalent one.
But in general, the choice of the norm is crucial when defining a Banach space.

Theorem 6.5. A normed vector space of finite dimension is a Banach space.

66 CHAPTER 6. VECTOR SPACES AND ELEMENTS OF TOPOLOGY

6.3.3 Complement on matrix norms

In order to establish the convergence of sequences of vectors of Kn the choice of the norm is irrelevant, as
explained in section 6.2.5. When such sequences arise from matrix operations it comes the question of
the choice of a compatible matrix norm (see section 4.6.2). Optimal convergence results take advantage
of this freedom thanks to the following convenient theorem. It highlights the prominent role played by
the spectral radius (see Definition 5.4).

Theorem 6.6. Let A be a square matrix with coefficients in K.

1. It holds for every matrix norm ‖ · ‖
%(A) ≤ ‖A‖.

2. For all ε > 0 there exists an induced matrix norm ‖ · ‖ such that

‖A‖ ≤ %(A) + ε.

As example of application we immediately see that the sequence (An) goes to 0 as soon as ρ(A) <
1, since ‖An‖ ≤ ‖A‖n ≤ (%(A) + ε)n and ε can be taken arbitrarily small. The if and only if
statement holds also true by definition of an eigenvalue. We underline that it is not requested that A
be diagonalizable.

Chapter 7

Linear equation systems and iterative
solvers (complement)

7.1 Stability analysis of linear equation systems

7.1.1 Motivation

Previously, we have shown how to solve linear equation systems. Tacitly we assumed that we deal with
‘nice’ numbers. However, in practice the computer will solve these systems for us and in most cases
we deal with floating point numbers from R. As we discussed in the introduction (Chapters 1 and 2),
we now deal with round-off errors.

The question comes, how such round-off errors may influence the solution of Ax = b. As an
example, let us consider (

0.988 0.960
0.992 0.963

)(
x
y

)
=

(
0.084
0.087

)
with the solution (x, y)T = (3,−3)T . We compute the solution with a precision of three correct digits
using Gauss elimination: ()

0.988 0.960 0.084
0.992 0.963 0.087 ×0.988/0.992()
0.988 0.960 0.084
0.988 0.959 0.0866 ↓ −()
0.988 0.959 0.084

0 0.001 −0.0026 .

We now have the typical triangular system of A. The right hand side b was accordingly modified.
Through backward substitution we obtain

0.001y = −0.0026 ⇒ y = −2.6

0.988x = 0.087− 0.959 · (−2.6) ≈ 2.58 ⇒ x = 2.61.

Here, we have (x, y) = (2.61,−2.60). The relative error of the numerical approximation is more
than 10%. It seems that the solution of linear equation systems is either ill-conditioned (see the
general concept of condition numbers in the chapter 2) or the Gaussian elimination is numerically
unstable. The conditioning and stability will be addressed of the following subsection. In addition, in
many applications, we deal with very large linear equation systems, where A ∈ Rn×n with n� 106 and
larger. For this reason, the efficiency and memory requirements play a crucial role and therefore, direct
methods (such as Gaussian elimination) are unfortunately not always feasible, and rather iterative
methods come into play.

67

68CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

7.1.2 Stability analysis

We are given A ∈ Rn×n and b ∈ Rn and consider

Ax = b.

Through numerical errors, round-off errors, false input data or experimental errors, A and b may be
perturbed:

Ãx̃ = b̃.

Here, Ã = A+ δA and b̃ = b+ δb with the perturbations δA and δb, respectively.
We derive now results for the conditioning and error amplification for the solution of linear equation

systems. Errors can be in the matrix A as well as in the right hand side b.
We first consider errors in the right hand side vector.

Proposition 7.1 (Perturbation of the right hand side b). Let A ∈ Rn×n be a regular matrix and
b ∈ Rn. With x ∈ Rn we denote the solution of Ax = b. Let δb be a perturbation of the right hand
side b̃ = b+ δb and x̃ the solution of the perturbed system Ax̃ = b̃. Furthermore, we denote with ‖ · ‖ a
matrix norm that is compatible with the vector norm ‖ · ‖. Then, it holds

‖δx‖
‖x‖

≤ cond(A)
‖δb‖
‖b‖

,

with the condition number of the matrix, i.e.,

cond(A) = ‖A‖ · ‖A−1‖.

Proof. Let ‖·‖ be an arbitrary matrix norm with compatible vector norm ‖·‖. For the solution x ∈ Rn
and the perturbed solution x̃ ∈ Rn, we have

x̃− x = A−1(Ax̃−Ax) = A−1(b̃− b) = A−1δb

Thus:
‖δx‖
‖x‖

≤ ‖A−1‖‖δb‖
‖x‖

· ‖b‖
‖b‖

= ‖A−1‖‖δb‖
‖b‖

· ‖Ax‖
‖x‖

≤ ‖A‖ · ‖A−1‖︸ ︷︷ ︸
=:cond(A)

‖δb‖
‖b‖

.

Remark 7.1. The condition number of a matrix is very important in numerical linear algebra. Let
us also consider the matrix-vector multiplication y = Ax. With perturbed input x̃ = x+ δx, we obtain,
since obviously cond(A) = cond(A−1):

‖δy‖
‖y‖

≤ cond(A)
‖δx‖
‖x‖

.

Note that by definition the condition number of a matrix depends on the chosen norm. are also equiv-
alent. For symmetric matrices it can be inferred that cond2(A):

cond2(A) = ‖A‖2 · ‖A−1‖2 =
max{|λ|, λ eigenvalue of A}
min{|λ|, λ eigenvalue of A}

.

In the second step, we consider now a perturbation δA of the matrix A. First, we need to ensure
that Ã = A+ δA is still regular.

Lemma 7.2. Let ‖ · ‖ be the matrix norm induced by the vector norm. Let B ∈ Rn×n be a matrix with
‖B‖ < 1. Then, the matrix I +B is regular and it holds the estimate

‖(I +B)−1‖ ≤ 1

1− ‖B‖
.

7.1. STABILITY ANALYSIS OF LINEAR EQUATION SYSTEMS 69

Proof. It holds
‖(I +B)x‖ ≥ ‖x‖ − ‖Bx‖ ≥ (1− ‖B‖)‖x‖.

Since 1− ‖B‖ > 0, the mapping I +B is one-to-one. Thus, I +B is regular. Furthermore, we have

1 = ‖I‖ = ‖(I +B)(I +B)−1‖ = ‖(I +B)−1 +B(I +B)−1‖
≥ ‖(I +B)−1‖ − ‖B‖ ‖(I +B)−1‖ = ‖(I +B)−1‖(1− ‖B‖) > 0.

With this result, we address now the perturbation of a matrix A:

Proposition 7.3 (Perturbation of the matrix A). Let A ∈ Rn×n be a regular matrix, and b ∈ Rn.
Furthermore, let x ∈ Rn be the solution of Ax = b and let Ã = A + δA a perturbed matrix with
‖δA‖ ≤ ‖A−1‖−1. For the perturbed solution x̃ = x+ δx of Ãx̃ = b, it holds

‖δx‖
‖x‖

≤ cond(A)

1− cond(A)‖δA‖/‖A‖
‖δA‖
‖A‖

.

Proof. It holds for x and the perturbed solution x̃ and the error δx := x̃− x:

(A+ δA)x̃ = b

(A+ δA)x = b+ δAx
⇒ δx = −[A+ δA]−1δAx.

According to our assumption ‖A−1δA‖ ≤ ‖A−1‖ ‖δA‖ < 1, it follows with the Lemma 7.2:

‖δx‖ ≤ ‖[I +A−1δA]−1A−1δA‖ ‖x‖ ≤ ‖A−1‖
1− ‖A−1δA‖

‖δA‖ ‖x‖

≤ cond(A)

1− ‖A−1‖‖δA‖
‖δA‖
‖A‖

‖x‖.

We establish the assertion with the expansion ‖A‖/‖A‖.

The combination of the two previous perturbation propositions yields the main result:

Theorem 7.4 (Perturbation theorem for linear equation systems). Let A ∈ Rn×n be a regular matrix
and b ∈ Rn a right hand side vector. Furthermore, let x ∈ Rn be the solution of Ax = b with the
regular matrix A ∈ Rn×n. For the solution x̃ ∈ Rn of the perturbed system Ãx̃ = b̃ with δb = b̃− b and
δA = Ã−A and the assumption

‖δA‖ < 1

‖A−1‖
it holds the estimate

‖δx‖
‖x‖

≤ cond(A)

1− cond(A)‖δA‖/‖A‖

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
with the condition number

cond(A) = ‖A‖ ‖A−1‖.

Proof. We combine the results from Proposition 7.1 and 7.3. To this end, let x be the solution of
Ax = b, x̃ the perturbed solution Ãx̃ = b̃ and x̂ the solution to the perturbed right hand side Ax̂ = b̃.
Then, we obtain

‖x− x̃‖ ≤ ‖x− x̂‖+ ‖x̂− x̃‖ ≤ cond(A)
‖δb‖
‖b‖
‖x‖+

cond(A)

1− cond(A)‖δA‖‖A‖

‖δA‖
‖A‖

‖x‖.

Taking into account ‖δA‖ < ‖A−1‖−1, we have

0 ≤ cond(A)
‖δA‖
‖A‖

< ‖A‖ ‖A−1‖ 1

‖A‖ ‖A−1‖
= 1.

70CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

Therefore,

cond(A) ≤ cond(A)

1− cond(A)‖δA‖‖A‖

,

which shows the assertion.

With this theorem, we re-consider our motivating example from the beginning of this section. We
recall

A =

(
0.988 0.959
0.992 0.963

)
⇒ A−1 ≈

(
8302 −8267
−8552 8517

)
.

Employing the maximum row sum ‖ · ‖∞ it holds

‖A‖∞ = 1.955, ‖A−1‖∞ ≈ 17069, cond∞(A) ≈ 33370.

Solving linear equation systems is indeed often ill-conditioned. As a consequence, round-off errors
may be significantly amplified. This also shows that the difficulty is an intrinsic part of the problem
statement, but not necessarily a stability issue with the Gaussian elimination (provided appropriate
pivoting is performed!). These are partially good news and the reason why Gaussian elimination is
often used for moderate sizes of the matrix A.

7.2 Basic solvers

For a moderate number of unknowns a so-called direct solver (LU decomposition, Cholesky) is a good
choice to solve AU = B. Such methods are always available in most software packages such as Matlab,
octave, python, etc:

U = sp.sparse.linalg.spsolve(A,B) // in Python
U = A\B // in octave / Matlab

For big systems, iterative solvers are the methods of choice because they require less memory and
less computational cost than direct solvers. In addition, they serve as smoothers in so-called multigrid
methods, which may yield optimal complexities O(n), where n is the number of unknowns. We provide
a brief introduction to iterative solvers in the following section.

7.2.1 Fixed-point solvers: Richardson, Jacobi, Gauss-Seidel

A large class of schemes is based on so-called fixed point methods for solving:

f(x) = x.

We provide in the following a brief introduction that is based on [15]. First, we have

Definition 7.1. Let A ∈ Rn×n, b ∈ Rn and C ∈ Rn×n. For an initial guess x0 ∈ Rn we iterate for
k = 1, 2, . . .:

xk = xk−1 + C(b−Axk−1).

Please be careful that k does not denote the power, but the current iteration index. Furthermore, we
introduce:

B := I − CA and c := Cb.

Then:
xk = Bxk−1 + c.

7.2. BASIC SOLVERS 71

Thanks to the construction of

g(x) = Bx+ c = x+ C(b−Ax)

it is trivial to see that in the limit k →∞, it holds

g(x) = x

with the solution
Ax = b.

Remark 7.2. Thanks to Banach’s fixed point theorem (see section 12.3), we can investigate under
which conditions the above scheme will converge. Actually it should hold

‖B‖ < 1,

for a matrix norm such that
‖g(x)− g(y)‖ ≤ ‖B‖ ‖x− y‖.

A similar condition appears in the stability analysis of the schemes for solving ODEs, as reported in
the numerical tests of Section 17.5 (blow-up, zig-zag solution and converged solution). A big problem
(which is also true for the ODE cases) is that different norms may predict different results. For instance
it may happen that

‖B‖2 < 1 but ‖B‖∞ > 1.

Discussions can be found for instance in [15]. In particular, if the spectral radius of B is %(B) < 1
then ‖B‖ < 1 for some induced matrix norm and %(B) > 1 implies ‖B‖ > 1 for all matrix norm.

We concentrate now on the algorithmic aspects. The two fundamental requirements for the matrix
C (defined above) are:

• It should hold C ≈ A−1 and therefore ‖I − CA‖ � 1;

• It should be simple to construct C.

Of course, we easily see that these two requirements are conflicting statements. As always in numerics
we need to find a trade-off that is satisfying for the developer and the computer.

Definition 7.2 (Richardson iteration). The simplest choice of C is the identity matrix, i.e.,

C = I

Then, we obtain the Richardson iteration

xk = xk−1 + ω(b−Axk−1)

with a relaxation parameter ω > 0.

Further schemes require more work and we need to decompose the matrix A first:

A = L+D + U.

Here, L is a lower-triangular matrix, D a diagional matrix, and U an upper-triangular matrix. In more
detail:

A =


0 . . . 0

a21
. . .

...
.

an1 . . . an,n−1 0


︸ ︷︷ ︸

=:L

+


a11 . . . 0

. . .
. . .

0 . . . ann


︸ ︷︷ ︸

=:D

+


0 a12 . . . a1n

.
...

. . . an−1,n

0 . . . 0


︸ ︷︷ ︸

=:U

.

With this, we can now define two very classical schemes:

72CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

Definition 7.3 (Jacobi method). To solve Ax = b with A = L+D+U let x0 ∈ Rn be an initial guess.
We iterate for k = 1, 2, . . .

xk = xk−1 +D−1(b−Axk−1)

or in other words J := −D−1(L+ U):

xk = Jxk−1 +D−1b.

Definition 7.4 (Gauss-Seidel method). To solve Ax = b with A = L+D+U let x0 ∈ Rn be an initial
guess. We iterate for k = 1, 2, . . .

xk = xk−1 + (D + L)−1(b−Axk−1)

or in other words H := −(D + L)−1U :

xk = Hxk−1 + (D + L)−1b.

To implement these two schemes, we provide the presentation in index-notation:

Theorem 7.5 (Index-notation of the Jacobi and Gauss-Seidel methods). One step of the Jacobi method
and Gauss-Seidel method, respectively, can be carried out in n2 + O(n) operations. For each step, in
index-notation for each entry it holds:

xki =
1

aii

bi − n∑
j=1,j 6=i

aijx
k−1
j

 , i = 1, . . . , n,

i.e., (for the Gauss-Seidel method):

xki =
1

aii

bi −∑
j<i

aijx
k
j −

∑
j>i

aijx
k−1
j

 , i = 1, . . . , n.

7.2.2 Gradient descent

An alternative class of methods is based on so-called descent or gradient directions, which further
improve the previously introduced methods. So far, we have:

xk+1 = xk + dk, k = 1, 2, 3, . . .

where dk denotes the direction in which we go at each step. For instance:

dk = D−1(b−Axk), dk = (D + L)−1(b−Axk)

for the Jacobi and Gauss-Seidel methods, respectively. To improve these kind of iterations, we have
two possiblities:

• introduce a relaxation (or so-called damping) parameter ωk > 0 (possibly adapted at each step)
such that

xk+1 = xk + ωkdk,

• and/or to improve the search direction dk such that we reduce the error as best as possible.

We restrict our attention to positive definite symmetric matrices as they appear naturally many prob-
lems. A key point is another view on the problem by regarding it as a minimization problem for
which Ax = b is the first-order necessary condition and consequently the sought solution. Imagine for

7.3. CONJUGATE GRADIENT METHOD 73

simplicity that we want to minimize f(x) = 1
2ax

2 − bx. The first-order necessary condition is nothing
else than the derivative f ′(x) = ax− b. We find a possible minimum via f ′(x) = 0, namely

ax− b = 0 ⇒ x = a−1b, if a 6= 0.

That is exactly the same how we would solve a linear matrix system Ax = b. By regarding it as
a minimum problem we understand better the purpose of our derivations: How does minimizing a
function f(x) work in terms of an iteration? Well, we try to minimize f at each step k:

f(x0) > f(x1) > . . . > f(xk).

This means that the direction dk (to determine xk+1 = xk +ωkdk) should be a descent direction. This
idea can be applied for solving linear equation systems. We first define the quadratic form

Q(y) =
1

2
(Ay, y)− (b, y),

where (·, ·) is the Euclidian scalar product. Then, we can define

Algorithm 7.6 (Descent method - basic idea). Let A ∈ Rn×n be positive definite and x0, b ∈ Rn.
Then for k = 0, 1, 2, . . .

• Compute dk;

• Determine ωk as minimum of ωk = argminQ(xk + ωkdk);

• Update xk+1 = xk + ωkdk.

For instance dk can be determined via the Jacobi or Gauss-Seidel methods.

Another possibility is the gradient method in which we use the gradient to obtain search directions
dk. This brings us to the gradient method:

Algorithm 7.7 (Gradient descent). Let A ∈ Rn×n positive definite and the right hand side b ∈ Rn.
Let the initial guess be x0 ∈ R and the initial search direction d0 = b−Ax0. Then k = 0, 1, 2, . . .

• Compute the vector rk = Adk;

• Compute the relaxation

ωk =
‖dk‖22

(rk, dk)
;

• Update the solution vector xk+1 = xk + ωkdk;

• Update the search direction vector dk+1 = dk − ωkrk.

One can show that the gradient method converges to the solution of the linear equation system Ax = b
(see for instance [15]).

7.3 Conjugate gradient method

The previous gradient descent method may converge slowly in most cases because search directions
are in general dk 6⊥ dk+2. An improvement is the conjugate gradient method in which all directions
are conjugate in a certain sense. During this procedure another subspace is constructed for which this
method belongs to so-called Krylov subspace methods. The standard textbook with all information is
from Saad [16]. In the following, we closely follow to the second author’s co-authored book [15][Section
7.8]

74CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

7.3.1 Formulation of the CG scheme.

In order to enhance the performance of gradient descent, the conjugate gradient (CG) scheme was
developed. Here, the search directions {d0, . . . , dk−1} are pairwise orthogonal. The measure of orthog-
onality is achieved by using the A scalar product:

(Adr, ds) = 0 ∀r 6= s.

At step k, we seek the approximation xk = x0 +
∑k−1

i=0 αid
i as the minimum of all α = (α0, . . . , αk−1)

with respect to Q(xk):

min
α∈Rk

Q

(
x0 +

k−1∑
i=0

αid
i

)
= min

α∈Rk

{
1

2

(
Ax0 +

k−1∑
i=0

αiAd
i, x0 +

k−1∑
i=0

αid
i

)
−

(
b, x0 +

k−1∑
i=0

αid
i

)}
.

The stationary point is given by

0
!

=
∂

∂αj
Q(xk) =

(
Ax0 +

k−1∑
i=0

αiAd
i, dj

)
− (b, dj) = −

(
b−Axk, dj

)
, j = 0, . . . , k − 1.

Therefore, the new residual b − Axk is perpendicular to all search directions dj for j = 0, . . . , k − 1.
The resulting linear equation system

(b−Axk, dj) = 0 ∀j = 0, . . . , k − 1 (7.1)

has the feature of "Galerkin orthogonality", similar to FEM schemes.
While constructing the CG method, new search directions should be linearly independent of the

current dj . Otherwise, the space would not become larger and consequently, the approximation cannot
be improved.

Definition 7.5 (Krylov space). We choose an initial approximation x0 ∈ Rn and set d0 := b − Ax0.
The Krylov space Kk(d

0, A) is

Kk(d
0, A) := span{d0, Ad0, . . . , Ak−1d0}.

Here, Ak means the k-th power of A.

It holds:

Lemma 7.8. Assume Akd0 ∈ Kk(d
0, A). Then, the solution x ∈ Rn of Ax = b is an element of

Kk(d0, A).

Proof. Let xk ∈ x0 + Kk(d
0, A) be the best approximation, which fulfills the Galerkin equation (7.1)

Let rk := b−Axk. Since

rk = b−Axk = b−Ax0︸ ︷︷ ︸
=d0

+A (x0 − xk)︸ ︷︷ ︸
∈Kk(d0,A)

∈ d0 +AKk(d
0, A)

it holds rk ∈ Kk+1(d0, A). Supposing that Kk+1(d0, A) ⊂ Kk(d
0, A), we obtain rk ∈ Kk(d

0, A). The
Galerkin equation yields rk ⊥ Kk(d

0, A), from which we obtain rk = 0 and Axk = b.

If the CG scheme aborts since it cannot find new search directions, the solution is found. Let
us assume that the A-orthogonal search directions {d0, d1, . . . , dk−1} have been found, then we can
compute the next CG approximation using the basis representation xk = x0 +

∑
αid

i and employing
the Galerkin equation:(

b−Ax0 −
k−1∑
i=0

αiAd
i, dj

)
= 0 ⇒ (b − Ax0, dj) = αj(Ad

j , dj) ⇒ αj =
(d0, dj)

(Adj , dj)
.

The A-orthogonal basis {d0, . . . , dk−1} of the Krylov space Kk(d
0, A) can be computed with the

Gram-Schmidt procedure. However, this procedure has a high computational cost; see e.g., [15]. A
better procedure is a two-step recursion formula, which is efficient and stable:

7.3. CONJUGATE GRADIENT METHOD 75

Lemma 7.9 (Two-step recursion formula). Let A ∈ Rn×n symmetric positive definite and x0 ∈ Rn
and d0 := b−Ax0. Then, for k = 1, 2, . . . , the iteration

rk := b−Axk, βk−1 := − (rk, Adk−1)

(dk−1, Adk−1)
, dk := rk − βk−1d

k−1

constructs an A-orthogonal basis with (Adr, ds) = 0 for r 6= s. Here xk in step k defines the new
Galerkin solution (b−Axk, dj) = 0 for j = 0, . . . , k − 1.

Proof. See [15].

We collect now all ingredients to construct the CG scheme. Let x0 be an initial guess and d0 :=
b−Ax0 the resulting defect. Suppose thatKk := span{d0, . . . , dk−1} and xk ∈ x0+Kk and rk = b−Axk
have been computed. Then, we can compute the next iterate dk according to Lemma 7.9:

βk−1 = − (rk, Adk−1)

(dk−1, Adk−1)
, dk = rk − βk−1d

k−1. (7.2)

For the new coefficient αk in xk+1 = x0 +
∑k

i=0 αid
i holds with testing in the Galerkin equation (7.1)

with dk:b−Ax0︸ ︷︷ ︸
=d0

−
k∑
i=0

αiAd
i, dk

 = (b−Ax0, dk)−αk(Adk, dk) = (b−Ax0+A(x0 − xk)︸ ︷︷ ︸
∈Kk

, dk)−αk(Adk, dk).

That is

αk =
(rk, dk)

(Adk, dk)
, xk+1 = xk + αkd

k. (7.3)

This allows to compute the new residual rk+1:

rk+1 = b−Axk+1 = b−Axk − αkAdk = rk − αkAdk. (7.4)

We summarize (7.2 − 7.4) and formulate the classical CG scheme:

Algorithm 7.10. Let A ∈ Rn×n symmetric positive definite and x0 ∈ Rn and r0 = d0 = b − Ax0 be
given. Iterate for k = 0, 1, . . . :

1. αk = (rk,dk)
(Adk,dk)

2. xk+1 = xk + αkd
k

3. rk+1 = rk − αkAdk

4. βk = (rk+1,Adk)
(dk,Adk)

5. dk+1 = rk+1 − βkdk

Without round-off errors, the CG scheme yields after (at most) n steps the solution of a n-
dimensional problem and is in this sense a direct method rather than an iterative scheme. However,
in practice for huge n, the CG scheme is usually stopped earlier, yiedling an approximate solution.

Proposition 7.11 (CG as a direct method). Let x0 ∈ Rn be any initial guess. Assuming no round-off
errors, the CG scheme terminates after (at most) n steps with xn = x. At each step, we have:

Q(xk) = min
α∈R

Q(xk−1 + αdk−1) = min
y∈x0+Kk

Q(y)

i.e.,
‖b−Axk‖A−1 = min

y∈x0+Kk
‖b−Ay‖A−1

with the norm
‖x‖A−1 = (A−1x, x)

1
2 .

76CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

Proof. That the CG scheme is a direct scheme follows from Lemma 7.8.
The iterate is given by

Q(xk) = min
y∈x0+Kk

Q(y),

with is equivalent to (7.1). The ansatz

xk = x0 +
k−1∑
k=0

αkd
k−1 = x0 + yk−1︸︷︷︸

∈Kt−1

+αt−1d
k−1

yields
(b−Axk, dj) = (b−Ayk−1, dj)− αt−1(Adk−1, dj) = 0 ∀j = 0, . . . , t− 1

that is
(b−Ayk−1, dj) = 0 ∀j = 0, . . . , t− 2,

and therefore yk−1 = xk−1 and

Q(xk) = min
α∈R

Q(xk−1 + αdk−1).

Finally, employing symmetry A = AT , we obtain:

‖b−Ay‖2A−1 = (A−1[b−Ay], b−Ay) = (Ay, y)− (A−1b, Ay)− (y, b)

= (Ay, y)− 2(b, y),

i.e., the relationship ‖b−Ay‖2A−1 = 2Q(y).

Remark 7.3 (The CG scheme as iterative scheme). As previosously mentioned, in pratice the CG
scheme is (always) used as iterative method rather than a direct method. Due to round-off errors the
search directions are never 100% orthogonal.

7.3.2 Convergence analysis of the CG scheme

We now turn our attention to the convergence analysis, which is a nontrivial task. The key is the
following characterization of one iteration xk = x0 +Kk by

xk = x0 + pk−1(A)d0,

where pk−1 ∈ Pk−1 is a polynomial in A:

pk−1(A) =

k−1∑
i=0

αiA
i

The characterization as minimization of Proposition 7.11 can be written as:

‖b−Axk‖A−1 = min
y∈x0+Kk

‖b−Ay‖A−1 = min
q∈Pk−1

‖b−Ax0 −Aq(A)d0‖A−1 .

When we employ the ‖ · ‖A norm, we obtain with d0 = b−Ax0 = A(x− x0)

‖b−Axk‖A−1 = ‖x− xk‖A = min
q∈Pk−1

‖(x− x0)− q(A)A(x− x0)‖A,

that is
‖x− xk‖A = min

q∈Pk−1

‖[I − q(A)A](x− x0)‖A.

In the sense of the best approximation property, we can formulate this task as:

p ∈ Pk−1 : ‖[I − p(A)A](x− x0)‖A = min
q∈Pk−1

‖[I + q(A)A](x− x0)‖A. (7.5)

7.3. CONJUGATE GRADIENT METHOD 77

The characterization as best approximation is key in the convergence analysis of the CG scheme. Let
q(A)A ∈ Pk(A). We seek a polynomial q ∈ Pk with q(0) = 1, such that

‖xk − x‖A ≤ min
q∈Pk, q(0)=1

‖q(A)‖A‖x− x0‖A. (7.6)

The convergence of the CG method is related to the fact whether we can construct a polynomial
q ∈ Pk with p(0) = 1 such that the A norm is as small as possible. First, we have:

Lemma 7.12 (Bounds for matrix polynomials). Let A ∈ Rn×n symmetric positive definite with the
eigenvalues 0 < λ1 ≤ · · · ≤ λn, and p ∈ Pk a polynomials with p(0) = 1:

‖p(A)‖A ≤M, M := min
p∈Pk, p(0)=1

sup
λ∈[λ1,λn]

|p(λ)|.

Proof. See [15].

Employing the previous result and the error estimate (7.6), we can now derive a convergence result
for the CG scheme.

Proposition 7.13 (Convergence of the CG scheme). Let A ∈ Rn×n be symmetric positive definite.
Let b ∈ Rn a right hand side vector and let x0 ∈ Rn be an initial guess. Then:

‖xk − x‖A ≤ 2

(
1− 1/

√
κ

1 + 1/
√
κ

)k
‖x0 − x‖A, k ≥ 0,

with the spectral condition number κ = cond2(A) of the matrix A.

Remark 7.4. We see immediately that a large condition number κ� 1 yields

1− 1/
√
κ

1 + 1/
√
κ
→ 1

and deteriorates significantly the convergence rate of the CG scheme. This is the key reason why
preconditioners of the form P−1 ≈ A−1 are introduced that re-scale the system; see Section 7.4:

P−1A︸ ︷︷ ︸
≈I

x = P−1b.

Proof of Prop. 7.13. From the previous lemma and the estimate (7.6) it follows

‖xk − x‖A ≤M‖x0 − x‖A

with
M = min

q∈Pk, q(0)=1
max

λ∈[λ1,λn]
|q(λ)|.

We have to find a sharp estimate of the size of M . That is to say, we seek a polynomial q ∈ Pk
which takes at the origin the value 1, i.e., q(0) = 1 and which simultaneously has values near 0 in the
maximum norm in the interval [λ1, λn]. To this end, we work with the Tschebyscheff approximation
(see e.g., [15] and references therein for the original references). We seek a best approximation p ∈ Pk
of the zero function on [λ1, λn]. Such a polynomial should have the property p(0) = 1. For this reason,
the trivial solution p = 0 is not valid. A Tschebyscheff polynomial reads:

Tk = cos
(
k arccos(x)

)
and has the property:

2−k−1 max
[−1,1]

|Tk(x)| = min
α0,...,αk−1

max
[−1,1]

|xk +

k−1∑
i=0

αix
k|.

78CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

We choose now the transformation:
x 7→ λn + λ1 − 2t

λn − λ1

and obtain with

p(t) = Tk

(
λn + λ1 − 2t

λn − λ1

)
Tk

(
λn + λ1

λn − λ1

)−1

a polynomial of degree k, which is minimal on [λ1, λn] and can be normalized by

p(0) = 1.

It holds:

sup
t∈[λ1,λn]

|p(t)| = Tk

(
λn + λ1

λn − λ1

)−1

= Tk

(
κ+ 1

κ− 1

)−1

(7.7)

with the spectral condition:

κ :=
λn
λ1
.

We now employ the Tschebyscheff polynomials outside of [−1, 1]:

Tn(x) =
1

2

[
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

]
.

For x = κ+1
κ−1 , it holds:

κ+ 1

κ− 1
+

√(
κ+ 1

κ− 1

)2

− 1 =
κ+ 2

√
κ+ 1

κ− 1
=

√
κ+ 1√
κ− 1

and therefore
κ+ 1

κ− 1
−

√(
κ+ 1

κ− 1

)2

− 1 =

√
κ− 1√
κ+ 1

.

Using this relationship, we can estimate (7.7):

Tk

(
κ+ 1

κ− 1

)
=

1

2

[(√κ+ 1√
κ− 1

)k
+

(√
κ− 1√
κ+ 1

)k]
≥ 1

2

(√
κ+ 1√
κ− 1

)k
.

It follows that

sup
t∈[λ1,λn]

Tk

(
κ+ 1

κ− 1

)−1

≤ 2

(√
κ− 1√
κ+ 1

)k
= 2

(
1− 1√

κ

1 + 1√
κ

)k
.

This finishes the proof.

7.4 Preconditioning

Very often in practice the matrix A has a bad condition number for which iterative solvers fail to
converge or converge very slowly. Therefore, one can precondition the system with a matrix P−1 that
has something to do with the inverse of A. In practice left- and right-preconditioning are known,
respectively:

P−1Ax = P−1b,

AP−1u = b, u = Px.

The key question is how to design P−1. The two extreme cases are

P−1 = I

P−1 = A−1

7.4. PRECONDITIONING 79

Therefore, the ‘best’ lies somewhere in between, since P−1 = I will not do the job and P−1 = A−1

means that we actually would construct the inverse of A, which means that we can ‘solve’ the system
by Gaussian elimination or LU and do not need any iterative solver.

In the following, we concentrate first on the CG scheme and in the section later, we will also
see preconditioned GMRES solvers. For instance, we recall that for second-order operators (such as
Laplace) we have a dependence on the mesh size O(h−2) = O(N) (in 2D). For the CG scheme it holds:

ρCG =
1− 1√

κ

1 + 1√
κ

= 1− 2√
κ

+O

(
1

κ

)
.

Preconditioning reformulates the original system with the goal of obtaining a moderate condition
number for the modified system. Let P ∈ Pn×n be a matrix with

P = KKT .

Then:
Ax = b ⇔ K−1A(KT)−1︸ ︷︷ ︸

=:Ã

KTx︸ ︷︷ ︸
=:x̃

= K−1b︸ ︷︷ ︸
=:b̃

,

which is
Ãx̃ = b̃.

In the case of
cond2(Ã)� cond2(A)

and if the application of K−1 is cheap, then the consideration of a preconditioned system Ãx̃ = b̃ yields
a much faster solution of the iterative scheme. The condition P = KKT is necessary such that the
matrix Ã keeps its symmetry.

The preconditioned CG scheme (PCG) can be formulated as:

Algorithm 7.14. Let A ∈ Rn×n symmetric positive definite and P = KKT a symmetric precondi-
tioner. Choosing an initial guess x0 ∈ Rn yields:

1. r0 = b−Ax0

2. Pp0 = r0

3. d0 = p0

4. For k = 0, 1, . . .

(a) αk = (rk,dk)
(Adk,dk)

(b) xk+1 = xk + αkd
k

(c) rk+1 = rk − αkAdk

(d) Ppk+1 = rk+1

(e) βk = (rk+1,pk+1)
(rk,gk)

(f) dk+1 = pk+1 + βkd
k

At each step, we have as additional cost the application of the preconditioner P . We recall that P
allows the decomposition into K and KT even if they are not explicitely used.

We seek P such that
P ≈ A−1.

On the other hand
P ≈ I,

such that the construction of P is not too costly. Obviously, these are two conflicting requirements.
Typical preconditioners are:

80CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

• Jacobi preconditioning
We choose P ≈ D−1, where D is the diagonal part of A. It holds

D = D
1
2 (D

1
2)T ,

which means that for Dii > 0, this preconditioner is admissible. For the preconditioned matrix,
it holds

Ã = D−
1
2AD−

1
2 ⇒ ãii = 1

• SSOR preconditioning

The SSOR scheme is a symmetric variant of the SOR method (successive over-relaxation) and is
based on the decomposition:

P = (D + ωL)D−1(D + ωU) = (D
1
2 + ωLD−

1
2)︸ ︷︷ ︸

K

(D
1
2 + ωD−

1
2U)︸ ︷︷ ︸

=KT

.

For instance, for the Poisson problem, we can find an optimal ω (which is a non-trivial task) such
that

cond2(Ã) =
√

cond2(A)

can be shown. Here, the convergence improves significantly. The number of necessary steps to
achieve a given error reduction by a factor of ε improves to

tCG(ε) =
log(ε)

log(1− κ−
1
2)
≈ − log(ε)√

κ
, t̃CG(ε) =

log(ε)

log(1− κ−
1
4)
≈ log(ε)

4
√
κ
.

Rather than having 100 steps, we only need 10 steps for instance, in case an optimal ω can be
found.

7.5 GMRES - generalized minimal residual method

The iterative GMRES algorithm [17, 16] is suited for solving nonsymmetric linear systems. Let A ∈
Rn×n be a regular matrix, but not necessarily symmetric. We demonstrate first an option, which turns
out to be not feasible when n is large. A symmetric version of the problem

Ax = b

can be achieved by multiplication with AT :

ATAx = AT b.

The matrix B = ATA is positive definite since

(Bx, x)2 = (ATAx, x)2 = (Ax,Ax)2 = ‖Ax‖2.

In principle, we could now apply the CG scheme to ATA. Instead of one matrix-vector multiplication,
we would need two such multiplications per step. However, using ATA, the convergence rate will
deteriorate since

κ(B) = cond2(ATA) = cond2(A)2.

For this reason, the CG scheme is not really an option.

7.5. GMRES - GENERALIZED MINIMAL RESIDUAL METHOD 81

Pure GMRES

Let us now prepare the ingredients for the GMRES scheme. The main part is Arnoldi’s method [1]
in which the (modified) Gram-Schmidt method (see Numerik 1, e.g. [15] for the modified Gram-
Schmidt see e.g., [16]) is used for orthonormalization of the basis {v1, . . . , vk} of the Krylov space
Kk = span{v1, Av1, . . . , A

k−1v1}.

Algorithm 7.15 (Arnoldi). Choose some initial vector v1 with ‖v1‖ = 1. Iterate for j = 1, 2, . . . , do

1. hi,j = (Avj , v)2, i = 1, 2, . . . , j

2. v̂j+1 = Avj −
∑j

i=1 hi,jvi

3. hj+1,j = ‖v̂j+1‖

4. vj+1 = v̂j+1/hj+1,j

We then define
Vk = {v1, . . . , vk} ∈ Rn×k

and Hk = V T
k AVk ∈ Rk×k is the upper Hessenberg matrix, with entries hij just computed by Arnoldi’s

algorithm.
Recall the task: Solve

Ax = b, A ∈ Rn×n

Using a Galerkin method with an l2-orthonormal basis (produced by Arnoldi’s algorithm), we seek xk
of the form

xk = x0 + zk

where x0 is some initial guess and zk comes from the Krylov space Kk = span{r0, Ar0, . . . , A
k−1r0}

with the usual initial residual r0 = b−Ax0.
In order to prepare for GMRES, we assume that after k steps of Arnoldi’s algorithm, we have

• an orthonormal system Vk+1 = {v1, . . . , vk+1}

• a matrix H̄k ∈ R(k+1)×k with the non-zero elements hij .

We have
AVk = Vk+1H̄k. (7.8)

With this, we are interested in solving the following least squares problem:

min
z∈Kk

‖b−A[x0 + z]‖ = min
z∈Kk

‖r0 −Az‖. (7.9)

Introducing the variable z = Vky we obtain the following minimization problem:

min J(y) = min ‖βv1 −AVky‖, β = ‖r0‖.

We notice that (using (7.8))

b−Ax = b−A(x0 + Vky) = r0 −AVky = βv1 − Vk+1H̄ky = Vk+1(βe1 − H̄ky)

This brings us to
J(y) = ‖Vk+1[βe1 − H̄ky]‖

with the unit vector e1 ∈ R(k+1)×(k+1). Since Vk+1 is orthonormal we have

J(y) = ‖βe1 − H̄ky‖, y ∈ Rk.

The solution to (7.9) is given by
xk = x0 + Vkyk

where yk minimizes J(y). This minimizer yk is inexpensive since it requires to solve a (k + 1) × k
least-squares problem, where k is typically small.

82CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

Algorithm 7.16. GMRES:

1. Choose the initial guess x0. Compute r0 = b−Ax0 and v1 = r0/‖r0‖.

2. Iterate: For j = 1, 2, . . . , k, . . . until some stopping criterion:

(a) hi,j = (Avj , vi)2, i = 1, 2, . . . , j

(b) v̂j+1 = Avj −
∑j

i=1 hi,jvi

(c) hj+1,j = ‖v̂j+1‖. If hj+1,j = 0 set k := j and go to Step 3 (Hessenberg matrix)

(d) vj+1 = v̂j+1/hj+1,j

3. Define the (k + 1)× k Hessenberg matrix H̄k = {hij}1≤ik+1,1≤j≤k;

4. Compute minimizer yk of J(y);

5. Set as approximate solution xk = x0 + Vkyk.

Unfortunately, for increasing k the storage of vectors becomes an issue and increases like k. More-
over, the arithmetic cost increases as 1/2k2n. Consequently, there exists a restared version, say after
m steps, denoted by GMRES(m):

Algorithm 7.17. GMRES(m):

1. Choose the initial guess x0. Compute r0 = b−Ax0 and v1 = r0/‖r0‖.

2. Iterate: For j = 1, 2, . . . ,m do:

(a) hi,j = (Avj , vi)2, i = 1, 2, . . . , j

(b) v̂j+1 = Avj −
∑j

i=1 hi,jvi

(c) hj+1,j = ‖v̂j+1‖
(d) vj+1 = v̂j+1/hj+1,j

3. Set as approximate solution xm = x0 + Vmyk where ym minimizes ‖βe1 − H̄my‖ for y ∈ Rm.

4. Restart:

• Compute rm = b−Axm; if satisfied, stop
• else compute x0 := xm, r1 := rm/‖rm‖ and go to step 2.

Remark 7.5. Of course in both versions, still the minimization problem J(y) must be solved, which
can be done by the QR method. For more details, we refer the reader to [16].

Left-preconditioned GMRES

The left-preconditioned scheme reads
P−1Ax = P−1b.

Then, we have

Algorithm 7.18. Left-preconditioned GMRES:

1. Compute r0 = P−1(b−Ax0), β = ‖r0‖2, and v1 = r0/β

2. For j = 1, . . . , k do

(a) Compute w := P−1Avj

(b) For i = 1, . . . , j do

7.5. GMRES - GENERALIZED MINIMAL RESIDUAL METHOD 83

i. hi,j := (w, vi)

ii. w := w − hi,jvi
(c) Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

3. Define Vk := {v1, . . . , vk} and H̄k = {hi,j}1≤i≤j+1,1≤j≤k

4. Compute yk = argminy‖βe1 − H̄ky‖2

5. Set xk = x0 + Vkyk

6. If satisfied stop (solution found), else set x0 := xk and go to Step 1.

Right-preconditioned GMRES

The right-preconditioned scheme reads

AP−1u = b, u = Px.

Then, we have

Algorithm 7.19. Right-preconditioned GMRES:

1. Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β

2. For j = 1, . . . , k do

(a) Compute w := AP−1vj

(b) For i = 1, . . . , j do

i. hi,j := (w, vi)

ii. w := w − hi,jvi
(c) Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

3. Define Vk := {v1, . . . , vk} and H̄k = {hi,j}1≤i≤j+1,1≤j≤k

4. Compute yk = argminy‖βe1 − H̄ky‖2

5. Set xk = x0 + P−1Vkyk

6. If satisfied stop (solution found), else set x0 := xk and go to Step 1.

The difference to the left-preconditioned version is that the residual norm is taken with respect to the
initial system b− Axk (without P−1). The reason is that the algorithm obtains the residual implicitly
b−Axk = b−AP−1uk. Moreover, the right-preconditioned version can be extended to FGMRES (where
‘F’ stands for ‘flexible’) in which the preconditioner P−1 can be changed at each iteration step [16].

84CHAPTER 7. LINEAR EQUATION SYSTEMS AND ITERATIVE SOLVERS (COMPLEMENT)

Chapter 8

Convex sets and systems of linear
inequalities

Throughout this chapter, all vector spaces will be considered as real.

8.1 Convex sets: definition and first properties

Definition 8.1. Let X be a (real) vector space. A set A ⊂ X is said to be convex if

∀(x, y) ∈ A2,∀θ ∈ [0, 1], θx+ (1− θ)y ∈ A.

The interpretation is the following. The set {θx+ (1− θ)y, θ ∈ [0, 1]} is the line segment joining x
to y. The definition means that this line segment is contained in A as soon as x and y belong to A,
see fig. 8.1.

x

y

A

Figure 8.1: Convex set

The following fact is a straightforward consequence of the definition.

Proposition 8.1. An (arbitrary) intersection of convex sets of X is convex.

On the contrary, a union of convex sets is not convex in general, see fig. 8.2.
Due to the triangle inequality:

Proposition 8.2. If X is a normed vector space then all balls (open or closed) of X are convex.

85

86 CHAPTER 8. CONVEX SETS AND SYSTEMS OF LINEAR INEQUALITIES

Figure 8.2: Intersection vs union of convex sets

8.2 Convex combinations and convex hull (complement)

8.2.1 Convex combinations

Definition 8.2. Let X be a vector space. A convex combination of m elements x1, ..., xm ∈ X is an
element y ∈ X that can be decomposed as

y =
m∑
i=1

θixi with (θ1, ..., θm) ∈ (R+)m,
m∑
i=1

θi = 1.

In particular a convex combination is a linear combination, but we ask more. In fig. 8.3, the convex
combinations of {x1, x2, x3} form the triangle.

Proposition 8.3. If A is convex then any convex combination of elements of A belongs to A.

Proposition 8.3 is illustrated by fig. 8.3: take A as the closed triangle and consider the points
x1, x2, x3.

x1

x2

x3

zy

Figure 8.3: y is a convex combination of {x1, x2, x3}, but not z.

Theorem 8.4 (Carathéodory). In a vector space of dimension n, all convex combinations of m ele-
ments, m > n+ 1, can be written as a convex combination of at most n+ 1 of these elements.

Carathéodory’s theorem in dimension n = 2 is illustrated in fig. 8.4.

8.2.2 Convex hull

Since an intersection of convex sets is a convex set, the following definition makes sense.

Definition 8.3. Let X be a vector space and A be a subset of X. The convex hull of A, denoted by
convA, is the smallest (in the sense of inclusion) convex subset of X containing A. It is the intersection
of all convex sets containing A.

8.2. CONVEX COMBINATIONS AND CONVEX HULL (COMPLEMENT) 87

x1

x2

x3

x4

x

Figure 8.4: Carathéodory’s theorem: x is a convex combination of {x1, x2, x3, x4}, but it is also a
convex combination of {x2, x3, x4}, or {x1, x3, x4}.

Figure 8.5: A set (hatched) and its convex hull (yellow)

The above construction (see fig. 8.5) can be qualified as external. It admits an internal counterpart:

Proposition 8.5. The convex hull of A is the set of all convex combinations of elements of A.

Proposition 8.5 can be combined with Carathéodory’s theorem: if A is a subset of a vector space of
dimension n, then the convex hull of A is the set of all convex combinations of at most n+ 1 elements
of A, see fig. 8.6.

x1 x2

x3

x4

x

x

Figure 8.6: The convex hull of {x1, x2, x3, x4} in dimension 2 is the set of all convex combinations of
at most 3 vectors taken among {x1, x2, x3, x4}.

Proposition 8.6. Let X,Y be two vector spaces, A ⊂ X, B ⊂ Y . We have

conv(A×B) = convA× convB.

88 CHAPTER 8. CONVEX SETS AND SYSTEMS OF LINEAR INEQUALITIES

Proposition 8.6 is illustrated in fig. 8.7. A straightforward application is that

conv({0, 1}n) = (conv{0, 1})n = [0, 1]n.

x1 x2

y1

y2

(x1, y1) (x2, y1)

(x1, y2) (x2, y2)

Figure 8.7: The convex hull of {x1, x2} × {y1, y2} = {(x1, y1), (x2, y1), (x1, y2), (x2, y2)} is [x1, x2] ×
[y1, y2].

8.3 Projection

Theorem 8.7. Let X be a Hilbert space (typically Rn equipped with the canonical inner product and
the associated Euclidean norm) and A be a nonempty closed convex subset of X. For all x ∈ X there
exists a unique y ∈ A such that

‖x− y‖ = min
z∈A
‖x− z‖. (8.1)

This element is characterized by the variational inequality (see fig. 8.8)

〈x− y, z − y〉 ≤ 0 ∀z ∈ A. (8.2)

It is called the projection of x onto A, denoted by y = PA(x).

x
y

z

A

Figure 8.8: Projection onto a convex set

Computing a projection is often difficult (one has to solve an optimization problem), however we
discuss below two easy and very useful cases, where the variational inequality (8.2) is easily solved.
The first one deals with linear subspaces and corresponds to the standard orthogonal projection, see
fig. 8.9..

8.4. CONES 89

x

y
M

Figure 8.9: Orthogonal projection onto a linear subspace

Proposition 8.8. Let X be a Hilbert space and M be a closed linear subspace of X (typically X = Rn
and M is a linear subspace of Rn). The projection y = PM (x) ∈M is characterized by

〈x− y, v〉 = 0 ∀v ∈M. (8.3)

The second case is related to the positive orthant

Rn+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0 ∀i},

and corresponds to the positive part.

Proposition 8.9. It holds for all x = (x1, . . . , xn) ∈ Rn

PRn+(x) = x+ = (x+
1 , . . . , x

+
n),

with x+
i = max(0, xi).

8.4 Cones

8.4.1 Definitions

Definition 8.4. A subset C of a vector space X is said to be a cone if

∀(α, x) ∈ R+ × C, αx ∈ C.

Cones can be convex or not, see fig. 8.10.

Figure 8.10: Non-convex cone (left) and convex cone (right)

The positive orthant Rn+ is an example of convex cone.

90 CHAPTER 8. CONVEX SETS AND SYSTEMS OF LINEAR INEQUALITIES

8.4.2 Normal cone (complement)

Definition 8.5. Let A be a convex set of a Hilbert space X and let a ∈ A. The normal cone of A at
point a is the set

NA(a) = {x ∈ X s.t. 〈x, y − a〉 ≤ 0 ∀y ∈ A} .

It generalizes the notion of outward normal, see Fig. 8.11. Clearly, if a is in the interior of A then
NA(a) is reduced to {0}.

A

NA(a)a
A

NA(b)

b

Figure 8.11: Normal cones

8.4.3 Polar cones (complement)

Definition 8.6. Let C be a cone of a Hilbert space X, with inner product 〈·, ·〉. The positive and
negative polar (or dual) cones of C are respectively defined by (see fig. 8.12)

C+ = {x ∈ X s.t. 〈x, y〉 ≥ 0 ∀y ∈ C} , C− = {x ∈ X s.t. 〈x, y〉 ≤ 0 ∀y ∈ C} .

Of course those two cones have similar properties. The negative polar cone is somehow more
standard, we will simply call it polar cone. It is clear from the definition that a polar cone is always
closed and convex.

C

C+ C

C−

Figure 8.12: Positive and negative polar cones

Example 8.1. For the positive orthant it is easily checked that

(Rn+)+ = Rn+, (Rn+)− = Rn−.

8.5. SYSTEMS OF LINEAR INEQUALITIES, INTRODUCTION TO LINEAR PROGRAMMING91

Let us now consider reiterated polarity. The definition shows that C ⊂ C−− for every cone C, and
even that C ⊂ C−− since C−− is closed. The following theorem deals with the other inclusion.

Theorem 8.10. If C is a convex cone of a Hilbert space X then

C−− = C.

8.5 Systems of linear inequalities, introduction to linear programming

8.5.1 Linear inequality systems: Fourier-Motzkin elimination

Here we discuss a practical way of solving linear inequality systems of form Ax ≤ b, with unknown
x ∈ Rn and matrix A ∈ Rm×n. The inequality is meant componentwise. This kind of problem is often
known as a feasibility problem: the inequalities are interpreted as constraints and the questions are

1. to know whether it is possible to satisfy all these constraints simultaneously;

2. to describe the feasible set, when it is not empty.

Let
C = {x ∈ Rn|Ax ≤ b}.

As an intersection of m affine half-spaces (corresponding to each inequality), the set C is convex.
Specifically it is called a convex polyhedron. When b = 0, C is clearly a cone and we call this a
polyhedral cone.

One possibility to compute feasible solutions (in case they exist) is the Fourier-Motzkin algorithm,
which is a basic method.

The Fourier-Motzkin elimination works like Gaussian elimination: eliminate from n-variables to
n − 1-variables in an equivalent fashion. This procedure is then recursively applied until 1-variable.
Here, we can compute all numbers between the given bounds. By backward substitution we then
compute the values of the other variables.

Example 8.2. Consider the system 
x1 + x2 ≤ 1
2x1 − x2 ≤ 4
x1 + 2x2 ≤ 8.

(8.4)

In order to eliminate x2 we write the equivalent system
x2 ≤ 1− x1

x2 ≥ 2x1 − 4
x2 ≤ 4− 1

2x1

⇐⇒ 2x1 − 4 ≤ x2 ≤ min(1− x1, 4−
1

2
x1).

This is possible if and only if {
2x1 − 4 ≤ 1− x1

2x1 − 4 ≤ 4− 1
2x1

⇔ x1 ≤
5

3
.

We obtain the (nonempty) set of solutions{
(x1, x2) | x1 ≤

5

3
, 2x1 − 4 ≤ x2 ≤ min(1− x1, 4−

1

2
x1)

}
.

See Fig. 8.13.

Remark 8.1. If we now consider the ’positively homogeneous’ system{
x1 + x2 ≤ 0
2x1 − x2 ≤ 0,

92 CHAPTER 8. CONVEX SETS AND SYSTEMS OF LINEAR INEQUALITIES

then we get the set of solutions

{(x1, x2) | x1 ≤ 0, 2x1 ≤ x2 ≤ −x1} .

This is clearly a cone of R2, as expected from the structure of the system: a solution remains a solution
when it is multiplied by a nonnegative number. See Fig. 8.14

x1

x2

Figure 8.13: Set of solutions in example 8.2 (it is not bounded on the left side).

8.5.2 Conical hull and Farkas lemma (complement)

Here are a few useful results.

Lemma 8.11. Let a1, . . . , am ∈ Rn be given vectors. Then, the set

cone(a1, . . . , am) := {x1a1 + . . .+ xmam|xi ≥ 0 ∀i = 1, . . . ,m}

is a convex cone in Rn. It is the conical hull of a1, . . . , am. The vectors a1, . . . , am are generators of
the cone.

In the example from Remark 8.1, the vectors (−1, 1) and (−1,−2) are generators of the set of
solutions.

Figure 8.14: Cone of solutions in Remark 8.1

Lemma 8.12. Let A ∈ Rm×n. Then, the set

K := {y ∈ Rn|y = ATx, x ≥ 0}

(the inequality is meant component-wise) is a non-empty, closed and convex cone.

8.5. SYSTEMS OF LINEAR INEQUALITIES, INTRODUCTION TO LINEAR PROGRAMMING93

The following is a consequence of Theorem 8.10.

Lemma 8.13 (Farkas). Let A ∈ Rm×n and b ∈ Rn be given. Then, the following two statements are
equivalent:

1. The system ATx = b, x ≥ 0 has a solution.

2. The inequality bTd ≥ 0 holds true for all d ∈ Rn with Ad ≥ 0.

8.5.3 Introduction to linear programming (complement)

Linear programming deals with optimization problems with linear objective function and linear (or
affine) constraints. We provide a brief introduction following [11].

Definition 8.7 (Standard form). A linear program in standard form is:

minimize cTx, s.t. Ax = b, x ≥ 0,

where c ∈ Rn, x ∈ Rn, b ∈ Rm and A ∈ Rm×n.

In the above problem the function x 7→ cTx is the objective function, the expression Ax = b is the
equality constraint and the expression x ≥ 0 is the inequality constraint.

Other problem statements can be transformed into this form. For instance

minimize cTx, s.t. Ax ≤ b,

is an example in which the constraint Ax ≤ b represents a linear inequality system. By using the
so-called slack variable z inequality constraints can be converted into equalities. Then, we obtain

minimize cTx, s.t. Ax+ z = b, z ≥ 0.

However, we do not yet deal with the standard form, because x has no sign. To this end, we must split
the vector x into nonnegative and nonpositive parts:

x = x+ − x−

with x+ = max(x, 0) and x− = max(−x, 0). With these notations, we finally arrive at the following
standard form:

minimize

 c
−c
0

T x+

x−

z

 s.t.
[
A −A I

] x+

x−

z

 = b,

x+

x−

z

 ≥ 0.

Remark 8.2. Further inequality constraints of the form x ≤ u or Ax ≥ 0 can be converted by similar
derivations while introducing again slack variables.

94 CHAPTER 8. CONVEX SETS AND SYSTEMS OF LINEAR INEQUALITIES

Chapter 9

Exercises

Linear systems

Exercise 9.1. Solve the following linear systems using the Gauss elimination method.

(a)


8x− 2y + z = 3
12x+ y − 2z = 1
96x− 16y + 5z = 29,

(b)


2x− 2y + z − t+ u = 1
x+ 2y − z + t− 2u = 1
4x− 10y + 5z − 5t+ 7u = 1
2x− 14y + 7z − 7t+ 11u = −1,

(c)


2x1 + 3x2 + 5x3 = 3
x1 − 3x2 − 6x3 = 2
3x1 − x3 = 4,

(d)


2x1 + 3x2 − x3 = −1
x1 − 5x2 + x3 = 6
3x1 + 3x2 + 7x3 = 0
x1 + 2x2 − 4x3 = −1.

Exercise 9.2. We consider the system {
10−4x+ y = 1
−x+ y = 2.

Solve this system in floating point arithmetic with 3 digits (for the mantissa, in basis 10)

1. without pivoting,

2. with row pivoting.

Conclusion?

Matrix algebra

Exercise 9.3. Compute the matrix multiplication AB with

A =

3 1 2
4 1 1
5 2 2

 and B =

7 2 3
2 2 2
4 5 6

 .

95

96 CHAPTER 9. EXERCISES

Exercise 9.4. Compute the matrix multiplication AB with

A =

(
1 −1 2
3 −2 4

)
and B =

 1 2 11 4
−2 3 0 2
3 1 4 0

 .

Exercise 9.5. Consider the matrix

A =

 2 2 −1
0 2 2
0 0 2

 .

1) Calculate B ∈M3(R) such that A = 2I +B.
2) Calculate B2 and B3.
3) Deduce an expression of An for all n ∈ N.

Exercise 9.6. Let m be a real number. When it is possible calculate the inverse of the matrix

A =

 1 m −2
1 m+ 1 m− 2
2 2m+ 1 2m− 4

 .

Exercise 9.7. Consider the matrices

P =

(
1 1
1 −1

)
, A =

(
2 −1
−1 2

)
.

1) Calculate P−1.
2) Calculate B = P−1AP .
3) Show that An = PBnP−1for all n ∈ N. Deduce an expression of An.

Linear spaces

Exercise 9.8. Let (e1, e2, e3) be the canonical basis of R3. Let a1, a2, a3 be three vectors of R3 defined
by a1 = (0,−2, 3), a2 = (1, 2, 1), a3 = (3, 0,−4).
1) Show that (a1, a2, a3) is a basis of R3.
2) Let u be the vector of coordinates (1, 1, 1) in the basis (a1, a2, a3). What are the coordinates of u in
the basis (e1, e2, e3)?
3) Let v be the vector of coordinates (1, 1, 1) in the basis (e1, e2, e3). What are the coordinates of v in
the basis (a1, a2, a3)?

Determinants

Exercise 9.9. Calculate the following determinants and give a necessary and sufficient condition on
the real numbers a, b, c for d2 being equal to 0:

d1 =

∣∣∣∣∣∣
1 2 3
2 3 1
3 1 2

∣∣∣∣∣∣ , d2 =

∣∣∣∣∣∣
1 1 1
a b c
a2 b2 c2

∣∣∣∣∣∣ .
Exercise 9.10. Calculate the determinant of order n:

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1
1 1 0 . . . 0
... 0

.
...

...
...

. . . 1 0
1 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

97

Exercise 9.11. Let a 6= b be two real numbers. Calculate the determinant of order n

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a+ b ab 0 . . . 0

1 a+ b ab
. . .

...

0 1 a+ b
. . . 0

...
. ab

0 . . . 0 1 a+ b

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Indication: show by induction that ∆n = an+1−bn+1

a−b .

LU decomposition (complement)

Exercise 9.12. Let the matrix A and the right hand side vector b given as follows:

A =

2 1 0
4 3 2
0 1 1

 , b =

1
5
2

 .

1. Construct the LU decomposition of the matrix A.

2. Solve Ax = b with the LU decomposition.

3. Use the Jacobi and Gauss-Seidel iterative methods and evaluate by hand the first two steps. Take
as initial guess vector x0 = (0, 0, 0).

Diagonalization

Exercise 9.13. Let

A =

(
1 2
−1 4

)
.

1) Determine the eigenvalues of A and show that A is diagonalizable on R.
2) Diagonalize A (give the diagonal form and the transition matrix).
3) Calculate An for all n ∈ N.

Exercise 9.14. 1) Calculate the complex eigenvalues of the matrices

A =

 0 1 −6
1 0 2
1 0 2

 , B =

 1 −1 −1
−1 1 −1
−1 −1 1

 , C =

 2 1 0
0 1 −1
0 2 4

 .

2) Show that A is diagonalizable on C and B is diagonalizable on R.
3) What are the spectral radii of A, B and C?

Normed spaces

Exercise 9.15 (complement). We define onMn(R) the map

A = (aij) 7→ N(A) = nmax
ij
|aij |.

Show that this defines a matrix norm.

98 CHAPTER 9. EXERCISES

Exercise 9.16 (complement). Let A ∈Mn(R) be symmetric positive definite. We define the map

(x, y) ∈ Rn × Rn 7→ 〈x, y〉A = 〈Ax, y〉,

where 〈·, ·〉 is the canonical inner product of Rn.
1. Show that this defines an inner product on Rn.
2. We denote by ‖ · ‖A the associated norm. Give tight constants α, β, in terms of the eigenvalues of
A, such that

α‖x‖2 ≤ ‖x‖A ≤ β‖x‖2 ∀x ∈ Rn.

Exercise 9.17. We consider the space C([0, 1],R) of continuous functions from [0, 1] into R. Show
that the quantities

‖f‖1 =

∫ 1

0
|f(t)|dt, ‖f‖2 =

√∫ 1

0
|f(t)|2dt, ‖f‖∞ = sup

t∈[0,1]
|f(t)|

define norms such that
‖f‖1 ≤ ‖f‖2 ≤ ‖f‖∞.

Remarks. 1. One can show that these norms are nevertheless not equivalent.
2. Knowing how to prove the triangle inequality for ‖ · ‖2 is not mandatory.

Stability of linear systems and iterative methods (complement)

Exercise 9.18. We perform a stability analysis of the following linear system. Let

A =

(
6 −2

11.5 −3.85

)
, b =

(
10
17

)
and Ã =

(
6 −2

11.5 −3.84

)
.

In this exercise you may perform the calculations using a computer and a software such as
Python, Matlab, or Octave.

1. Compute the solutions x and x̃ of the systems

Ax = b, Ãx̃ = b.

2. What do you observe by comparing x and x̃ and comparing the matrices A and Ã?

3. We know the stability theorem:

‖x− x̃‖
‖x̃‖

≤ cond(A)
‖A− Ã‖
‖A‖

. (9.1)

Compute the factors
cond2(A) = ‖A−1‖2‖A‖2

and
‖A− Ã‖2
‖A‖2

.

4. Compute the right hand side of the estimate (9.1) and interprete the result in view of the relative
error of the solutions x und x̃, i.e.,

‖x− x̃‖2
‖x̃‖2

.

5. Is the lastly obtained solution plausible?

99

6. (optional alternative by hand) You may replace the spectral norm by the maximal row sum
norm, which is defined as ‖A‖∞ = maxi=1,...,n

∑n
j=1 |aij | for A ∈ Rn×n. Then, you can re-do

steps No. 1-5 again by hand. You may finally also compare the results using the ‖ · ‖2 and ‖ · ‖∞.

Exercise 9.19. Implement (in a software) the descent method, Jacobi and Gauss-Seidel approaches
for solving

A =

 2 −1 0
−1 2 −1
0 −1 2

 , b =

 2
−3
4


As initial guess take x0 = 0 and compute for each method 10 steps. As information, the exact solution
is x = (1, 0, 2)T .

Convex sets

Exercise 9.20. Show that the simplex

Sn =

{
x = (x1, ..., xn) ∈ Rn+ s.t.

n∑
i=1

xi = 1

}
,

(see fig. 9.1) is a convex set.
Complement: show that Sn = conv{e1, ..., en}, where (e1, ..., en) is the canonical basis of Rn.

Figure 9.1: Simplex of R3

Exercise 9.21. Let v1, ..., vn be arbitrary vectors of a vector space. Show that

K :=

{
n∑
i=1

αivi, αi ≥ 0 ∀i

}
.

is a convex cone.
Complement: Show that

K = conv

(
n⋃
i=1

hi

)
with the half-lines

hi = R+vi = {tvi, t ≥ 0}.

Exercise 9.22. Let

M =

{
x = (x1, . . . , xn) ∈ Rn :

n∑
i=1

xi = 0

}
.

Describe the projection operator onto M .

100 CHAPTER 9. EXERCISES

Linear inequalities

Exercise 9.23. Using the Fourier-Motzkin elimination, find out whether these systems admit solutions:

(a)


x1 + 2x2 ≤ 4
−2x1 − x2 ≤ 2
x1 − x2 ≤ 1,

(b)


x1 + 2x2 ≤ 2
−2x1 − x2 ≤ 4
4x1 + x2 ≤ −16.

Part III

Functions and related numerical notions

101

Chapter 10

Functions of one or several variables

10.1 Basic concepts

A real-valued or complex-valued function on a set U is a mapping f which associates to each x ∈ U a
unique number f(x) ∈ K, K = R or K = C. We write

f : U → K
x 7→ f(x).

The set U is the definition set and f(U) := {f(x) ∈ K : x ∈ U} is the image set. The graph of f is the
set

G(f) := {(x, f(x)) : x ∈ U} ⊂ U ×K.

We will mainly work in the situation where U is a subset of Rd, hence the variable is represented
by a point in Rd, denoted by

x = (x1, . . . , xd),

actually there are d independent space variables. For instance they can be space and time variables.
The canonical inner product in Rd is denoted by 〈x, y〉 = x · y =

∑d
i=1 xiyi.

We can similarly consider vector-valued functions, namely functions taking values in an arbitrary
vector space. Actually, studying{

f : U → Rm (or Cm)
x 7→ f(x) = (f1(x), . . . , fm(x))

amounts to studying the m functions f1, . . . , fm. This is why the number of variables deserves much
more mathematical care than the number of values, at least when this number is finite. We also insist
on the fact that we will only consider real variables. Dealing with complex variables is a completely
different story!

10.2 Differentiation

10.2.1 Partial derivatives

Let f be a (scalar, vector or matrix-valued) function of a variable x = (x1, . . . , xd) ∈ Rd. We recall that
the partial derivative of f with respect to (w.r.t.) one of these variables is obtained after differentiating
f (i.e. each component or entry of f) with respect to this variable, the other variables being fixed. We
frequently use the notations:

∂f

∂xi
= ∂xif (partial derivative w.r.t. xi),

∂2f

∂xi∂xj
= ∂xixjf (second partial derivative w.r.t. xj then xi),

103

104 CHAPTER 10. FUNCTIONS OF ONE OR SEVERAL VARIABLES

∂2f

∂xi∂xi
= ∂2

xif (second partial derivative w.r.t. xi).

10.2.2 Fréchet derivative, Jacobian matrix

There are several notions of differentiability, here we will merely use the most classical notion of Fréchet
differentiability. This concept can be defined for functions from an arbitrary real vector space to an
arbitrary real or complex vector space, however for simplicity we restrict ourselves here to functions
from Rn to Rm.

Definition 10.1. Let f : U ⊂ Rn → Rm and x ∈ U . We say that f is Fréchet differentiable at point
x if there exists L ∈Mmn(R) such that

lim
h→0

‖f(x+ h)− f(x)− Lh‖
‖h‖

= 0.

In this case the matrix L is unique, it is called the Jacobian matrix of f at x, denoted by Df(x) or
df(x) or Jf(x). The linear map y ∈ Rn 7→ Lx ∈ Rm is the Fréchet derivative of f at point x.

If the map x ∈ U 7→ Df(x) is continuous we say that f is continuously Fréchet differentiable.

Note that due to the equivalence of norms (Theorem 6.3), any norm on Rm and Rn can be indif-
ferently chosen.

The Jacobian matrix can be inferred from the partial derivatives.

Proposition 10.1. 1. If f : x = (x1, ..., xn) ∈ U ⊂ Rn 7→ f(x) = (f1(x), ..., fm(x)) ∈ Rm is Fréchet
differentiable at x ∈ U then

Df(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

...
∂fm
∂x1

(x) . . . ∂fm
∂xn

(x)

 .

2. If all partial derivatives of f exist and are continuous functions on U , then f is continuously Fréchet
differentiable.

10.2.3 Chain rule

Next, we introduce the chain rule for differentiating compositions of functions. Essentially, it says that
the Jacobian matrix of a composition is the product of the Jacobian matrices.

Theorem 10.2. Let f : U ⊂ Rn → V ⊂ Rm and g : V → Rp be Fréchet differentiable in a and
b = f(a), respectively. Set h = g ◦ f , i.e. h(x) = g(f(x)). Then h is Fréchet differentiable in a with

Dh(a) = Dg(b)Df(a).

Here is a special case.

Corollary 10.3. Let f : I ⊂ R → V ⊂ Rm be differentiable in a and g : V → R be differentiable in
b = f(a). Then, h := g ◦ f is differentiable in a with the derivative

h′(a) = Dg(b)f ′(a) =
m∑
i=1

∂ig(b) f ′i(a).

For instance in physics, if a quantity depends on the temperature and the pressure, say g =
g(T, P), while T, P both depend on the space position x (say in 1d for simplicity), then we write
h(x) = g(T (x), P (x)) and

dh

dx
=
∂g

∂T

dT

dx
+
∂g

∂P

dP

dx
.

10.3. CLASSICAL DIFFERENTIAL OPERATORS 105

10.2.4 Schwarz’ theorem

We now provide a result for second-order partial derivatives and when they can be interchanged.

Theorem 10.4 (Schwarz). Let the function f have in a neighborhood of a ∈ Rn the partial derivatives
∂if, ∂jf and ∂jif . Let ∂jif be continuous in a. Then, there exists ∂ijf and it holds

∂ijf(a) = ∂jif(a).

Example 10.1. Given f(x, y) = x3y + exy
2. Compute ∂xf, ∂yf, ∂xxf, ∂xyf, ∂yxf, ∂yyf . For instance,

for the mixed second-order derivatives it holds

fxy = fyx = 3x2 + 2yexy
2
(1 + xy2).

This shows that Schwarz’ theorem holds true in this example.

10.2.5 Multiindex notation (complement)

For a general description of ODEs and PDEs the multiindex notation is commonly used.

• A multiindex is a vector α = (α1, . . . , αn), where each component αi ∈ N0. The order is

|α| = α1 + . . .+ αn.

• For a given multiindex we define the partial derivative:

Dαu(x) := ∂α1
x1 · · · ∂

αn
xn u.

If k ∈ N0, we define the set of all partial derivatives of order k:

Dku(x) := {Dαu(x) : |α| = k}.

Example 10.2. Let the problem dimension n = 3. Then, α = (α1, α2, α3). For instance, let α =
(2, 0, 1). Then |α| = 3 and Dαu(x) = ∂2

x∂
1
zu(x).

10.3 Classical differential operators

Well-known in physics, it is convenient to work with the nabla-operator to define derivative expres-
sions:

∇ =

∂x1...
∂xd

 .

Very often in applications, when space and time variables are involved, the classical differential oper-
ators apply to the space variables only.

The gradient of a single-valued function is the vector of partial derivatives

∇u =

∂x1u...
∂xdu

 .

The gradient of a vector-valued function v : Rd → Rn reads:

∇v =

∂x1v1 . . . ∂xdv1
...

...
∂x1vn . . . ∂xdvn

 .

106 CHAPTER 10. FUNCTIONS OF ONE OR SEVERAL VARIABLES

It corresponds exactly with the Jacobian matrix! Note the (universal but a little confusing) fact that
for single-valued functions the gradient is the transpose of the Jacobian matrix (a row matrix).

The divergence is defined for vector-valued functions v : Rd → Rd by

div v := ∇ · v := ∇ ·

v1
...
vd

 =
d∑

k=1

∂xkvk.

The divergence for a matrix-valued function σ : Rd →Md(R) is defined as:

∇ · σ =
(d∑
j=1

∂σij
∂xj

)
1≤i≤d.

The Laplace operator of a scalar-valued function u : Rd → R is defined as

∆u =

d∑
k=1

∂xkxku.

For a vector-valued function u : Rd → Rn, we define the Laplace operator component-wise as

∆u = ∆

u1
...
un

 =


∑d

k=1 ∂xkxku1
...∑d

k=1 ∂xkxkun

 .

Let us recall the cross product of two vectors u, v ∈ R3:u1

u2

u3

×
v1

v2

v3

 =

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 .

With the help of the cross product, we can define the rotational of v : R3 → R3 by

curl v = ∇× v =

∂x1∂x2
∂x3

×
v1

v2

v3

 =

∂x2v3 − ∂x3v2

∂x3v1 − ∂x1v3

∂x1v2 − ∂x2v1

 .

10.4 Taylor expansions, Hessian matrix

If f : R→ R is of class Cn around some point a then we have the classical Taylor-Young formula:

f(x) =

n∑
j=0

f (j)(a)

j!
(x− a)j + o(|x− a|n).

The remainder o(|x− a|n) (Landau notation) is a function such that

lim
x→a

o(|x− a|n)

|x− a|n
= 0.

There is also the Taylor-Lagrange formula, if f is of class Cn+1 :

f(x) =

n∑
j=0

f (j)(a)

j!
(x− a)j +

f (n+1)(y)

(n+ 1)!
(x− a)n+1,

for some intermediate point y between a and x.
For functions of several variables we limit ourselves to the Taylor-Young formula of order 2.

10.5. CONVEX FUNCTIONS 107

Proposition 10.5. Let f : U ⊂ Rn → R be a C2 function. Let a, x ∈ U points such that the line
segment joining a and x is in U . Then

f(x) = f(a) +Df(a)(x− a) +
1

2
(x− a)TD2f(a)(x− a) + o(‖x− a‖2),

with Df(a) the Jacobian (row) matrix of f at a and D2f(a) (or ∇2f(a), or f ′′(a)) the Hessian (square)
matrix of f at a given by

D2f(a) =

∂x1x1f(a) . . . ∂x1xnf(a)
...

∂xnx1f(a) . . . ∂xnxnf(a)

 .

Remark 10.1. 1. Under the assumptions made the Hessian matrix is symmetric (Schwarz theorem
10.4).
2. The first order term can be rewritten as

Df(a)(x− a) = 〈∇f(a), x− a〉.

10.5 Convex functions

10.5.1 Definitions

A geometrical way to define the convexity of a function is through the notion of epigraph. This point
of view is very useful in convex analysis, a branch of mathematics related to optimization. Again we
place ourselves in the framework of real vector spaces, mostly Rn.

Definition 10.2. Let X be a vector space and f : X → R. The epigraph of f is the set (see fig. 10.1)

epi f = {(x, ξ) ∈ X × R s.t. ξ ≥ f(x)} .

Figure 10.1: Epigraph

Definition 10.3. Let X be a vector space and f : X → R. The function f is said to be convex if its
epigraph is convex.

The following characterization is extremely standard, see fig. 10.2.

Proposition 10.6. A function f : X → R is convex if and only if

∀x, y ∈ X, ∀θ ∈ (0, 1), f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (10.1)

A little refinement is the notion of strict convexity.

Definition 10.4. A function f : X → R is strictly convex if and only if

∀x, y ∈ X,x 6= y, ∀θ ∈ (0, 1), f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y).

108 CHAPTER 10. FUNCTIONS OF ONE OR SEVERAL VARIABLES

x z y

Figure 10.2: Algebraic characterization of convex functions: if z = θx + (1 − θ)y for 0 < θ < 1 then
f(z) ≤ θf(x) + (1− θ)f(y).

10.5.2 Characterization

Proposition 10.7. Let f : X = Rn → R be a Fréchet differentiable function. The following assertions
are equivalent:

(i) f is convex;

(ii) f(y)− f(x) ≥ 〈∇f(x), y − x〉 ∀(x, y) ∈ X2;

(iii) 〈∇f(y)−∇f(x), y − x〉 ≥ 0 ∀(x, y) ∈ X2;

(iv) D2f(x) ≥ 0 (positive semi-definite) ∀x ∈ X, when f is C2.

10.6 Integration by parts

10.6.1 Substitution rule

One of the most important formulas in calculus, numerical mathematics, calculus of variations, and
continuum mechanics is the substitution rule that allows to transform integrals from one domain to
another.

In 1D

Proposition 10.8. Let I = [a, b] be given. To transform this interval to a new interval, we use a
mapping T : [a, b]→ [α, β] with T (a) = α and T (b) = β. If T is of class C1 we have the transformation
rule: ∫ β

α
f(y) dy =

∫ T (b)

T (a)
f(y) dy =

∫ b

a
f(T (x))T ′(x) dx.

Remark 10.2. In case that T (a) = β and T (b) = α the previous proposition still holds true, but with
a negative sign:∫ β

α
f(y) dy =

∫ T (a)

T (b)
f(y) dy = −

∫ T (b)

T (a)
f(y) dy =

∫ b

a
f(T (x)) (−T ′(x)) dx.

Both cases can be summarized as:

Theorem 10.9. Let I = [a, b] be given. To transform this interval to a new interval [α, β], we employ
a monotone mapping T such that T ([a, b]) = [α, β]. If T is of class C1, it holds:∫

T (I)
f(y) dy :=

∫ β

α
f(y) dy =

∫ b

a
f(T (x)) |T ′(x)| dx =

∫
I
f(T (x)) |T ′(x)| dx.

10.6. INTEGRATION BY PARTS 109

Remark 10.3. We observe the formal relation between the integration increments:

dy = |T ′(x)| dx.

In higher dimensions

We have the following generalization of the substitution rule in arbitrary dimension (also known as
change of variables under the integral):

Theorem 10.10. Let Ω ⊂ Rn be an open, measurable, domain. Let the function T : Ω→ R be of class
C1, one-to-one (injective) and Lipschitz continuous. Then:

• The domain Ω̂ := T (Ω) is measurable.

• The function f(T (·))| detT ′(·)| : Ω→ R is (Riemann)-integrable.

• For all measurable subdomains M ⊂ Ω it holds the substitution rule:∫
T (M)

f(y) dy =

∫
M
f(T (x))|detT ′(x)| dx,

and in particular as well for M = Ω.

Remark 10.4. The determinant of the Jacobian matrix is sometimes called Jacobian determinant.
The formal relation between increments then reads dy = |detT ′(x)|dx. This formula is usually stated
and proved in the framework of measure theory, thus it involves particular notions of regularity. Here
and in the next sections we do not specify the regularity assumptions, which are anyway very mild.

10.6.2 Integration by parts and Green’s formulae

Let Ω ⊂ Rd be a bounded domain with ’smooth’ boundary ∂Ω. We denote by n its outward unit
normal vector. One of the most important formula in applied mathematics, physics and continuum
mechanics is integration by parts, which for u, v : Rd → R reads:∫

Ω
∇uv dx = −

∫
Ω
u∇v dx+

∫
∂Ω
uvn ds.

We can obtain further results, which are very useful, directly based on the integration by parts.
For instance the following one is at the basis of the finite element method:∫

Ω
∇u · ∇v dx = −

∫
Ω

∆u v dx+

∫
∂Ω
v ∂nu ds.

Here, ∂nu := ∇u · n is called normal derivative. Very much related and well-known in physics is the
divergence formula, valid for u : Rd → Rd:∫

Ω
divu dx =

∫
∂Ω
u · nds.

110 CHAPTER 10. FUNCTIONS OF ONE OR SEVERAL VARIABLES

Chapter 11

Introduction to nonlinear optimization

11.1 General concepts

11.1.1 Brief classification of optimization problems

Optimization aims at finding points that minimize or maximize a given function f : U → V . We
distinguish between single objective optimization when V = R and multi-objective optimization when
V is a more general vector space equipped with an order relation. We will place ourselves in the first
class, and up to a change of sign we will focus on minimization problems. As to the admissible (or
feasible) set U , it is usually either a "smooth enough" subset of a vector space (continuous optimiza-
tion), or a countable set (discrete optimization). We focus on the first category. Further, we speak of
unconstrained optimization if U is the full vector space, and of constrained optimization otherwise. We
mainly develop the first one. In the case where f is a convex function and U is a convex set we are in
the field of convex optimization.

11.1.2 Problem setting

As said above, we consider an unconstrained continuous optimization problem of form

minimize
x∈X

f(x) (11.1)

where f : X → R is an arbitrary function and X is a normed vector space. This function is usually
called cost function, or objective function, or criterion. Solving (11.1) not only means finding the value
of the minimum (or infimum), but also finding minimizers, if there are some, namely points where the
minimum is attained. In some cases, which will be specified, we will assume that X = Rn.

11.1.3 Global and local minimizers

Definition 11.1. We say that a ∈ X is a global minimizer of f : X → R if

f(a) ≤ f(x) ∀x ∈ X.

Definition 11.2. We say that a ∈ X is a local minimizer of f : X → R if there exists ε > 0 such that

f(a) ≤ f(x) ∀x ∈ Bε(a),

where Bε(a) is the (open) ball of center a and radius ε. In words, a minimizes f over a neighborhood
of a. An illustration is given in fig. 11.1.

Obviously the problem stated in (11.1) deals with global minima. However, the conditions of
optimality we are going to write as well as the output of most algorithms do not allow to distinguish
between global and local minima. Finding global minima is often a very difficult task, requiring

111

112 CHAPTER 11. INTRODUCTION TO NONLINEAR OPTIMIZATION

global

local

Figure 11.1: Global vs local minimizer

extremely costly numerical methods. We will see later that these bothering facts disappear under
convexity assumptions.

More finely, when in definitions 11.1 and 11.2 the inequalities can be made strict for x 6= a we
say that a is a strict global / local minimizer. In Figure 11.2 we plot a function which has all these
different minima:

f(x) =


sin(4x) + sin(x) + 1

4x
2 x < x∗

sin(4x∗) + sin(x∗) + 1
4x

2
∗ x∗ ≤ x ≤ x∗ + 1

2

sin(4(x− 1
4)) + sin(x− 1

4) + 1
4(x− 1

4)2 x > x∗

with x∗ ≈ 2.72086.

-2

-1

0

1

2

3

4

5

6

7

-4 -2 0 2 4

◦

◦

◦

◦

◦

×

Figure 11.2: Function with different minima. With ◦, we denote strict local minima, with × the global
(strict) minimum and the fat region characterizes a non-strict local minimium.

11.1.4 Optimality conditions

For the construction and the justification of numerical algorithms, we introduce the optimality con-
ditions. They are essentially consequences of the Taylor-Young formula (Proposition 10.5). Here it is
assumed that X = Rn.

Theorem 11.1 (Necessary optimality conditions of first and second order).

• Let f : Rn → R be continuously differentiable and x ∈ Rn be local minimizer of f . Then it holds
the first-order necessary condition

∇f(x) = 0.

11.2. CONVEX CASE (COMPLEMENT) 113

We say that x is a critical or stationary point.

• Let f : Rn → R be a two times continuously differentiable function. Let x ∈ Rn be a local
minimizer of f . Then it holds the necessary second order optimality condition:

D2f(x) ≥ 0

(the Hessian is positive semi-definite).

We next state sufficient optimality conditions:

Theorem 11.2 (Sufficient optimality condition of second order). Let f : Rn → R be a two times
continuously differentiable function and x ∈ Rn. If ∇f(x) = 0 (critical point) and D2f(x) > 0 (the
Hessian is positive definite) then x is a strict local minimizer.

Definition 11.3. A stationary point which is neither a local minimizer nor a local maximizer is called
local saddle point.

Recall that, given a symmetric matrix A ∈ Rn×n, it holds

• A > 0⇔ all eigenvalues are > 0

• A < 0⇔ all eigenvalues are < 0

• A ≥ 0⇔ all eigenvalues are ≥ 0

• A ≤ 0⇔ all eigenvalues are ≤ 0.

In dimension is n = 2 we have the following criterion. Let

A =

(
a b
b c

)
.

The two eigenvalues λ1, λ2 satisfy λ1λ2 = detA and λ1 + λ2 = trA, hence:

• A > 0⇔ det(A) > 0 and trA > 0

• A < 0⇔ det(A) > 0 and trA < 0

• A ≥ 0⇔ det(A) ≥ 0 and trA ≥ 0

• A ≤ 0⇔ det(A) ≥ 0 and trA ≤ 0.

11.2 Convex case (complement)

11.2.1 Specific aspects of convex optimization

A major feature of convexity is that it makes local minimizers automatically global ones.

Proposition 11.3. Let f : X → R be convex. Every local minimizer of f is a global minimizer.

Proposition 11.4. Let f : X → R be strictly convex. If f admits a global minimizer, then it is unique.

Another outstanding property of convex functions is that the stationarity condition becomes suffi-
cient. We will state this next in a more general form, with possible convex constraints.

114 CHAPTER 11. INTRODUCTION TO NONLINEAR OPTIMIZATION

11.2.2 Towards constrained optimization

Proposition 11.5. Let f : Rn → R be Fréchet differentiable and convex and U be a closed convex
subset of Rn. Then a point a ∈ U is a global minimized of f over U if and only if

−∇f(a) ∈ NU (a),

where NU (a) is the normal cone of U in a.

Of course, if U = Rn, then NU (a) = {0} and the optimality condition boils down to the stationarity
∇f(a) = 0.

But in general, describing the normal cone is likely to be a highly non-trivial task. This is typically
achieved through Lagrange multipliers and needs to be studied in specialized courses.

11.3 Steepest descent method

11.3.1 Descent methods

A general algorithm for the minimization of a continuous function f : Rn → R is:

Listing 11.1: Descent for minimization of continuous functions
Let f : Rn → R a continuous function.
Choose an i n i t i a l guess x0 ∈ Rn
| For | k | from | 1, 2, . . .

Determine descent d i r e c t i o n dk ∈ Rn
Determine a step l ength sk ∈ R
Compute new approximation
xk = xk−1 + skd

k

with
f(xk) < f(xk−1)

This is a general abstract scheme, which must be specified for the search direction dk ∈ Rn and the step
length sk ∈ R. The iteration number in xk and dk is here written as a superscript to avoid confusion
with the vectors components. A descent direction is a vector dk such that

f(xk−1 + sdk) < f(xk−1)

as soon as s > 0 is small enough. If f is continuously differentiable, it holds the Taylor expansion

f(xk−1 + sdk) = f(xk−1) + s∇f(xk−1) · dk + o(s).

We infer the (sufficient) condition for dk to be a descent direction:

∇f(xk−1) · dk < 0. (11.2)

11.3.2 Steepest descent

A steepest descent direction at a point x is a direction d of unit norm that minimizes the expression
∇f(x) ·d. Whereas it heavily depends on the chosen norm, for the Euclidean norm the following holds.

Theorem 11.6 (Optimal descent direction). Let f : Rn → R be a continuously differentiable function.
Let x ∈ Rn with ∇f(x) 6= 0. The direction of steepest descent in x is uniquely determined as

d = − ∇f(x)

‖∇f(x)‖
.

11.3. STEEPEST DESCENT METHOD 115

Proof. It holds for arbitrary d ∈ Rn with ‖d‖ = 1

∇f(x) · d ≥ −‖∇f(x)‖ ‖d‖ = −‖∇f(x)‖.

In the case d = −∇f(x)/‖∇f(x)‖ it holds an equality

∇f(x) · d = −‖∇f(x)‖.

Therefore, −∇f(x)/‖∇f(x)‖ characterizes a unique normalized direction of steepest descent.

With this, we obtain in a natural way the steepest descent or gradient descent scheme, which is a
descent algorithm with optimal descent direction:

Listing 11.2: Minimization with gradient descent Let f : X → R continuously differentiable.
Choose x0 ∈ X
| For | k | from | 1, 2, . . .

| Abort | , i f ∇f(xk−1) = 0

Determine descent d i r e c t i o n dk = −∇f(xk−1)/‖∇f(xk−1)‖
Choose a step l ength sk ∈ R
Determine new approximation
xk = xk−1 + skd

k

with
f(xk) < f(xk−1)

11.3.3 Line search

We have now a more specific scheme, but the step length is still an open question. Let us recall descent
schemes for solving linear equation systems. Given a symmetric positive semidefinite matrix A, solving

Ax = b

is equivalent to the minimization of the quadratic functional (just double-check yourself that ∇Q(x) =
Ax− b)

Q(x) =
1

2
(Ax, x)− (b, x).

For such a quadratic function, the optimal step length sk ∈ R with given direction dk is the minimum
of the scalar-valued function

h(s) := Q(xk−1 + sdk),

which is just obtained through a second order algebraic equation. For a general function, this procedure
is not as simple. The step length is rather determined by another numerical procedure known as line
search, also used in Newton-type methods (e.g., damped Newton method). The general idea is to make
trials in an organized way.

A classical line search technique is the Armijo rule (see e.g., [11]).

Listing 11.3: Armijo step length rule
Let β, γ ∈ (0, 1) be given. We denote the previous step by xk−1 ∈ Rn and by dk ∈ Rn the chosen
descent direction.
I n i t i a l i z e s

(0)
k

| For | l | from | 0, 1, 2, . . .

| Abort | , i f f(xk−1 + s
(l)
k d

k) < f(xk−1) + γs
(l)
k ∇f(xk−1) · dk

s
(l+1)
k = βs

(l)
k

116 CHAPTER 11. INTRODUCTION TO NONLINEAR OPTIMIZATION

k xk yk ‖∇f(xk)‖ f(xk)

0 -1. 1.5 356
1 -1.212 1.3675 4.9958 9.5597
2 -1.0898 1.3940 4.7929 6.3382
3 -1.1373 1.3533 4.6039 1.9585
4 -1.0384 1.2768 4.5494 5.7600
5 -1.0836 1.2337 4.3770 1.9861

· · ·

k xk yk ‖∇f(xk)‖ f(xk)

· · ·
100 1.0050 1.0100 2.55e-05 0.012493
101 1.0048 1.0101 2.52e-05 0.012492
102 1.0049 1.0099 2.48e-05 0.012491
103 1.0047 1.0099 2.44e-05 0.012491
104 1.0049 1.0097 2.41e-05 0.012490
105 1.0046 1.0098 2.37e-05 0.012489

Table 11.1: Results for the approximation of the Rosenbrock function. The table is taken from [15].

The Armijo rule ensures that we really approach the minimum. One typically chooses β = γ = 1/2. It
can be shown that this algorithm terminates after a finite number of steps and always finds a suitable
step length:

Theorem 11.7 (Armijo step length rule). Let f : Rn → R be continuously differentiable. Let γ ∈ (0, 1)
and d ∈ Rn a descent direction at a point x ∈ X, just satisfying

∇f(x) · d < 0.

For any s0 > 0 there exists m ∈ N such that

f(x+ βms0d)− f(x) ≤ γβms0∇f(x) · d.

Proof. It holds

f(x+ sd)− f(x)

s
− γ∇f(x) · d→ (1− γ)∇f(x) · d < 0 (s→ 0).

It follows from the continuity of ∇f that there exists an ε > 0 such that for all s < ε:

f(x+ sd)− f(x)

s
− γ∇f(x) · d ≤ 0 ∀|s| < ε.

Given β ∈ (0, 1) we find a minimal m ∈ N such that s = βms0 < ε holds true.

The gradient descent scheme converges slowly, and is therefore not very efficient (see our numerical
concepts at the beginning of these lecture notes). However it is very robust and easy to implement,
hence it is often used for complicated or high dimensional problems where more sophisticated methods
are hardly applicable.

In Figure 11.3, we show the convergence behavior with the help for the so-called Rosenbrock
function. This example is a typical test case in numerical optimization:

min
x,y∈R

{f(x, y) = 10(y − x2)2 + (1− x)2}.

We choose as initial guesses x0 = (−1, 1.5) and x0 = (2,−2). For the first test case, we summarize the
convergence behavior in Table 11.1.

11.4 Gradient descent with projection (complement)

Here we discuss the problem:
minimize

x∈U
f(x) (11.3)

11.4. GRADIENT DESCENT WITH PROJECTION (COMPLEMENT) 117

21.510.50-0.5-1-1.5-2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

21.510.50-0.5-1-1.5-2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

Figure 11.3: Convergence behavior of the gradient scheme for the approximation of the minimum of
the Rosenbrock functionf(x, y) = 10(y−x2)2 +(1−x)2 with different initial values. Figure taken from
[15].

where U is a (closed) convex subset of Rn, and f : Rn → R is a two-times continuously differentiable
function. For clarity and simplicity we also assume that f is convex, but this assumption is not crucial.
One way to cope with the constraint x ∈ U is to replace the iteration xk = xk−1 + skd

k by

xk = PU (xk−1 + skd
k),

where PU is the projection operator onto U , see section 8.3. This method is appropriate if we have
at disposal an efficient means to compute the projection. In this case we speak of simple constraints,
examples of which have been discussed in section 8.3.

In order to guaranty the descent property

f(PU (xk−1 + sdk)) < f(xk−1) for small s > 0,

the condition (11.2) turns out not to be sufficient. Luckily:

Proposition 11.8. The direction dk = −∇f(xk−1)/‖∇f(xk−1)‖ is a descent direction, unless xk−1 is
a minimizer.

Proof. We have for any s > 0

f(PU (xk−1 + sdk))− f(xk−1) = ∇f(xk−1) · (PU (xk−1 + sdk)− xk−1) +O(‖PU (xk−1 + sdk)− xk−1‖2).

Setting ys = xk−1 + sdk the first order term rewrites as

∇f(xk−1) · (PU (ys)− xk−1) = −‖∇f(xk−1)‖
s

(ys − xk−1) · (PU (ys)− xk−1)

= −‖∇f(xk−1)‖
s

(
(ys − PU (ys)) · (PU (ys)− xk−1) + ‖PU (ys)− xk−1‖2

)
≤ −‖∇f(xk−1)‖

s
‖PU (ys)− xk−1‖2,

118 CHAPTER 11. INTRODUCTION TO NONLINEAR OPTIMIZATION

using the variational inequality (8.2). It follows that

f(PU (xk−1 + sdk))− f(xk−1) ≤ ‖PU (ys)− xk−1‖2
(
−‖∇f(xk−1)‖

s
+O(1)

)
.

Moreover, using again (8.2) we obtain

PU (ys) = xk−1 ⇔ (ys − xk−1) · (z − xk−1) ≤ 0 ∀z ∈ U ⇔ −∇f(xk−1) ∈ NU (xk−1),

which is the optimality condition stated in Proposition 11.3. We conclude the desired strict inequality
f(PU (xk−1 + sdk))− f(xk−1) < 0 for small s, unless xk−1 is a minimizer.

11.5 Application of Newton-type methods (complement)

We go back to the unconstrained problem (11.1) with X = Rn. There are many more methods for
increasing the efficiency of the gradient descent scheme. We simply refer to the standard literature [11]
and discuss the Newton method and a few variants.

11.5.1 Newton’s method for optimization

If the governing function f(x) is two-times continuously differentiable, then the Newton scheme, see
section 12.4 for a general presentation, can be adopted for the numerical solution of the minimization
problem. As previously discussed, the necessary optimality condition is given by

F (x) := ∇f(x)
!

= 0.

The Newton iteration for solving the above system from an initial guess x0 ∈ X, reads for k = 1, 2, 3, . . .

DF (xk)(xk+1 − xk) = −F (xk).

Here it holds
DF (xk) = D2f(xk),

where D2f(xk) denotes the Hessian of f . We arrive at

xk+1 = xk −D2f(xk)−1∇f(xk).

In order to apply Newton schemes, the cost functional f(x) must be twice continuously differentiable.
In order to apply the classical Newton-Kantorovich theorem (see later) the second order derivative
must be even Lipschitz continuous.

Remark 11.1. Often in practice the strict Newton assumptions cannot be made or it is even clear
that these do not hold true. Nonetheless, Newton’s method can be used. Indeed, it often still yields
satisfactory results. This shows that between mathematical rigorous results and practical applications
might be often a gap.

In Figure 11.4 we plot the convergence behavior of Newton’s method for the Rosenbrock function.
Our findings are summarized in Table 11.2.

In both cases, the minima could be approximated in only a very few steps. In the values of the
table, we also observe that Newton’s method is in general not a descent method. The iterates f(xk)
do not monotonically converge to the minimum.

In numerical optimization (but also mildly and highly nonlinear PDE problems) the biggest problem
is often the small convergence radius of Newton’s method; i.e., the initial guess must be quite close to
the solution to expect convergence. Here, we need so-called globalization strategies such as line search
method or trust region concepts [11] or see also [4] for PDE problems. Another alternative is a mixture
of gradient descent methods and Newton type methods: we first approach a good initial guess by using
the robust gradient descent scheme. Once we are in the convergence region, we switch to Newton’s
method.

11.5. APPLICATION OF NEWTON-TYPE METHODS (COMPLEMENT) 119

k xk yk ‖∇f(xk)‖ f(xk)

0 -1 1.5 18.86 6.5
1 -1.222 1.444 6.92 4.963
2 -0.104 -1.239 26.08 16.84
3 -0.063 0.002 2.128 1.127
4 0.963 -0.123 45.51 11.03
5 0.965 0.931 7.05e-02 0.00124
6 0.999 0.999 5.56e-02 1.55e-05
7 1.000 1.000 9.67e-08 2.34e-15

k xk yk ‖∇f(xk)‖ f(xk)

0 2 -2 496.71 361
1 1.992 3.966 1.988 0.983
2 1.001 0.021 43.91 9.620
3 1.001 1.002 2.57e-03 1.65e-06
4 1.000 1.000 7.41e-05 2.74e-11

Table 11.2: Convergence behavior of Newton’s method for the Rosenbrock function. The results are
taken from [15].

21.510.50-0.5-1-1.5-2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

21.510.50-0.5-1-1.5-2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

Figure 11.4: Convergence behavior of Newton’s method for the approximation of the minimium of the
Rosenbrock function f(x, y) = 10(y − x2)2 + (1− x)2. These figures are taken from [15].

11.5.2 Quasi-Newton methods

For problems of large dimension, or when the Hessian matrix is out of reach, we can use quasi-Newton
methods which mimick Newton’s methods without computing the exact Hessian. They extend the
secant method to higher dimension. They have the general expression∣∣∣∣∣∣

dk = −Hk−1∇f(xk−1),
sk minimizes α 7→ f(xk−1 + αdk),
xk = xk−1 + skd

k,

where Hk−1 is some symmetric positive definite approximation of ∇2f(xk−1)−1. The DFP method
starts with some H0 then uses the construction:∣∣∣∣∣∣∣∣∣∣

δk = xk − xk−1 = skd
k,

γk = ∇f(xk)−∇f(xk−1),

Hk = Hk−1 +
δk(δk)T

(δk)Tγk
− Hk−1γk(γk)THk−1

(γk)THk−1γk
.

120 CHAPTER 11. INTRODUCTION TO NONLINEAR OPTIMIZATION

For the BFGS variant, which is very popular, we modify the above by:

Hk = Hk−1 +

(
1 +

(γk)THk−1γk

(δk)Tγk

)
δk(δk)T

(δk)Tγk
− δk(γk)THk−1 +Hk−1γk(δk)T

(δk)Tγk
.

Of course, the line search is done approximately, using e.g. Armojo’s rule or simply requiring a
decrease of the cost function.

Chapter 12

Solving nonlinear equations

Solving nonlinear equations is one of the most-found tasks in numerical mathematics, but also in the
mathematical analysis via fixed-point theorems. Examples are

• Root-finding of nonlinear functions, e.g., f(x) = ax3 + bx2 + cx+ d

• Solution of (nonlinear) differential equations

• Solution of nonlinear optimization problems, e.g., classical tasks or more recently in machine
learning.

Analytical results are again rarely achievable and for this reason, numerical algorithms are used.
These are iterations in which an initial guess is chosen and from this guess, further approximations are
calculated.

12.1 Introduction to iterative methods

Consider a function f : I ⊂ R → R. We search, if it exists, some point x ∈ I such that f(x) = 0.
In general, such an equation can only be solved approximately. Iterative methods consist in the
construction of a sequence (xn) such that xn → x when n → +∞ with f(x) = 0. Moreover, the
speed of convergence of the sequence is of interest. It can be represented by the notion of order of
convergence.

Let (xn) be a sequence of real numbers that converges to some x, and let r ≥ 1 be a real number.

Definition 12.1. (i) The convergence of the sequence (xn) is said to be of order at least r if there
exist C ≥ 0 and N ∈ N such that

|xn+1 − x| ≤ C|xn − x|r ∀n ≥ N.

(ii) The convergence is said to be of order r exactly if, in addition, there exist c > 0 and N ′ ∈ N such
that

|xn+1 − x| ≥ c|xn − x|r ∀n ≥ N ′.

It is immediately seen that, if there exists λ > 0 such that

|xn+1 − x|
|xn − x|r

→ λ,

then the convergence is of order r exactly.
Obviously, the larger the order of convergence is, the better it is. In the case of r = 1, however,

the constant 0 < C < 1 must be bounded. When the convergence is of (exact) order 1, we also speak
of linear convergence. For C := Cn → 0 for n→∞, we have so-called superlinear convergence. When
it is of order 2 we speak of quadratic convergence.

121

122 CHAPTER 12. SOLVING NONLINEAR EQUATIONS

12.2 The bisection method

Let f : [a, b] → R be a continuous function such that f(a)f(b) < 0. The bisection method consists in
the construction of three sequences (an), (bn) and (xn) according to the following procedure

1. Initialization: set a0 = a, b0 = b, x0 = (a+ b)/2.

2. Iteration k: set
ak+1 = ak, bk+1 = xk if f(xk)f(ak) < 0,
ak+1 = xk, bk+1 = bk if f(xk)f(bk) < 0,

xk+1 =
ak+1 + bk+1

2
.

If f(xk+1) = 0 then an exact solution is obtained and the iterations stop. Otherwise the iterations
are continued.

It is not difficult to establish the following result.

Proposition 12.1 (Bisection). Let f ∈ C[a, b] with f(a)f(b) < 0. Let an, bn, xn the sequence con-
structed through the above algorithm. It holds

xn → z, f(z) = 0,

and the error estimate.
|xn − z| ≤

b− a
2n+1

.

Proof. (i) For a < b, it holds

a ≤ a1 ≤ · · · ≤ an ≤ an+1 ≤ xn ≤ bn+1 ≤ bn ≤ · · · ≤ b1 ≤ b.

Thus, the scheme can be constructed. The sequence xn is bounded through an und bn. Therefore
(classical result in Analysis), the sequence xn converges. The algorithm terminates when f(xn) = 0,
i.e., xn = z is the sought root.

(ii) It holds

bn+1 − an+1 =

{
xn − an = bn−an

2 f(an)f(xn) < 0

bn − xn = bn−an
2 f(an)f(xn) > 0

.

In both cases, it follows

|bn − an| =
|b0 − a0|

2n
. (12.1)

Due to
an ≤ xn ≤ bn

it follows the convergence of xn → z towards z ∈ [an, bn] ⊂ [a, b].

(iii) For the limit z it holds thanks to continuity f(·)

0 ≤ f(z)2 = lim
n→∞

f(an)f(bn) ≤ 0 ⇒ f(z) = 0.

Therefore, the limit is the sought root. Finally, we can derive the from (12.1) the error estimate:

|xn − z| ≤
|bn − an|

2
≤ |b− a|

2n+1
.

12.3. FIXED POINTS 123

Remark 12.1 (A priori error estimate). In Proposition 12.1 we have the a priori error estimate

|xn − z| ≤
b− a
2n+1

.

Such an estimate can be evaluated before the computation. For instance, we obtain a guess for the
required number of iterations n.

Exercise 12.1 (Bisection). We consider I = [0, 1]. The a priori error estimate yields for different
n ∈ N the bounds

|x9 − z| < 10−3, |x19 − z| < 10−6, |x29 − z| < 10−9.

This means that in iteration 29 we can expect an accuracy of TOL = 10−9. Compare this result to
Newton’s method (no matter its construction) in which a similar accuracy is obtained in approx. 4 steps.
This shows that Newton’s method can be more efficient than bisection. More specifically, bisection has
a linear order of convergence and Newton’s method it quadratically convergent.

Finally, we discuss an a posteriori result for which f must be continuously differentiable.

Proposition 12.2 (A posteriori error estimate). Let f ∈ C1[a, b] with f(a)f(b) < 0 and f(z) = 0 for
z ∈ [a, b]. The derivative is assumed to be bounded:

0 < m ≤ |f ′(x)| ≤M <∞

For the root z of f and the sequence (xn)n∈N, it holds

|f(xn)|
M

≤ |xn − z| ≤
|f(xn)|
m

.

Proof. With Taylor expansion, it holds

f(xn) = f(z) + f ′(ξ)(xn − z) = f ′(ξ)(xn − z) (12.2)

with an intermediate value ξ ∈ [an, bn]. It follows

|f(xn)|
max |f ′(x)|

≤ |xn − z| ≤
|f(xn)|

min |f ′(x)|
.

Exercise 12.2. Given f(x) = (x−3)2−1. Take a = 0 and b = 3.5 and compute the root via bisection.
Make first a sketch of the function curve. Check whether bisection can be applied. Compute three steps
per hand. Optional: implement the code. Complement: is there only one root? If not, how can be
approximate the other(s)?

Exercise 12.3. Given f(x) = (x− 3)2. Take again a = 0 and b = 3.5. Can bisection be applied?

12.3 Fixed points

12.3.1 Reminder: the (Banach) fixed point theorem

Definition 12.2. A function F : U ⊂ R→ R is said to be Lipschitz continuous with Lipschitz constant
k ≥ 0 if

|F (x)− F (y)| ≤ k|x− y| ∀x, y ∈ U.

If F is Lipschitz continuous with Lipschitz constant k < 1 then F is said to be contracting.

Definition 12.3. We say that x is a fixed point of F if F (x) = x.

124 CHAPTER 12. SOLVING NONLINEAR EQUATIONS

Note that the equation f(x) = 0 can always be equivalently rewritten as F (x) = x, for instance
with F (x) = f(x) + x.

Theorem 12.3 (fixed point). Let F : U → U be contracting, with U ⊂ R closed (for instance a closed
interval [a, b]). Then F admits a unique fixed point x∗ in U . Moreover, the sequence (xn) defined by
x0 ∈ U and xn+1 = F (xn) converges to x∗, and we have

|xn − x∗| ≤
kn

1− k
|x1 − x0| ∀n ∈ N.

12.3.2 Attractive and repulsive fixed points

Let I be an open interval of R, F : I → R be a function of class C1, and x ∈ I be a fixed point of F .
With the mean value theorem in analysis, we have∣∣∣∣xn+1 − x

xn − x

∣∣∣∣ =

∣∣∣∣F (xn+1)− F (x)

xn − x

∣∣∣∣→ |F ′(x)| for n→∞

From this it follows that the asymptotic convergence rate is linear and the limit is |F ′(x)|. Specifically,
in the case of |F ′(x)| = 0, we have at least superlinear convergence. From these considerations we
obtain

Definition 12.4. We say that

• x is an attractive fixed point if |F ′(x)| < 1,

• x is a repulsive fixed point if |F ′(x)| > 1.

This notion gives an information on whether F is contracting or not in a neighborhood of x. It is
therefore not surprising to have the following two results.

Proposition 12.4. Let x be an attractive fixed point of F . There exists h > 0 such that F ([x− h, x+
h]) ⊂ [x−h, x+h] ⊂ I and that all sequence defined by x0 ∈ [x−h, x+h] and xn+1 = F (xn) converges
to x. Moreover, for such a sequence, the convergence is of order at least 1.

Proposition 12.5. Let x be a repulsive fixed point of F and (xn) be a sequence such that xn+1 =
F (xn) ∀n ∈ N. Then

• either there exists an integer N such that xn = x ∀n ≥ N ,

• or (xn) does not converge to x.

12.3.3 Calculating fixed points

The algorithm to compute fixed-points is simple:

xn+1 = F (xn), n = 0, 1, 2, 3, . . .

where x0 is the initial guess, therein F is the so-called iteration function.

Exercise 12.4. Take for instance F (x) = cos(x) as an example for an iteration function.

Exercise 12.5 (Root-finding problem). Fixed-point problems are naturally root-finding problems since
x = F (x) is equivalent to x− F (x) = 0.

Exercise 12.6. Given again f(x) = (x−3)2−1. Take x0 = 0 as initial guess and design first the fixed
point iteration function F (x). The introduce the iteration scheme and a relaxation parameter ω > 0.
The latter one is required such that we deal with an attractive fixed point with |F ′(x)| < 1. Compute for
ω = 1 and ω = 0.1 the first three iterations x1, x2, x3. Justify theoretically for which ω the condition
|F ′(x)| < 1 holds true.

12.4. THE NEWTON METHOD 125

12.4 The Newton method

There exist many variants and simplifications, globalizations (Newton’s method is a priori only a local
method) as well as different names depending on we work with scalar equations, in Rn, or even in
infinite-dimensional function spaces.

Let us come back to the root-finding problem

f(x) = 0.

We assume that f is differentiable. We construct a sequence of iterates (xn)n∈R and hopefully reach
at some point

|f(xn)| < TOL, where TOL is again small, e.g., TOL = 10−10.

One has to start with a Taylor expansion. In our lecture we do this as follows. Let us assume that we
are at xn and can evaluate f(xn). Now we want to compute this next iterate xn+1 with the unknown
value f(xn+1). Taylor gives us:

f(xn+1) = f(xn) + f ′(xn)(xn+1 − xn) + o(xn+1 − xn)2

We assume that f(xn+1) = 0 (or very close to zero f(nk+1) ≈ 0). Then, xn+1 is the sought root and
neglecting the higher-order terms we obtain:

0 = f(xn) + f ′(xn)(xn+1 − xn),

i.e.,

xn+1 = xn −
f(xn)

f ′(xn)
.

If (xn) converges, the Taylor-Young formula yields f(xn+1) = o(xn+1 − xn), hence a fast convergence
of f(xn) to 0 is expected.

Exercise 12.7. Given again f(x) = (x−3)2−1. Take x0 = 0 as initial guess and use Newton’s method
to compute the first three iterates x1, x2, x3. Compare with your results the speed of convergence for
bisection, fixed-point and Newton.

Exercise 12.8 (Newton’s method as fixed-point iteration). The previous algorithm can be stated in
terms of a fixed-point iteration with the iteration function

F (x) = x− f(x)

f ′(x)
.

Theorem 12.6. Let I be an open interval and f : I → R be a function of class C2. We assume that
there exist positive real numbers m, k such that

|f ′(y)| ≥ m ∀y ∈ I,

|f ′′(y)| ≤ k ∀y ∈ I.

Let x ∈ I be such that f(x) = 0. If 0 < h < 2m/k, x0 ∈]x− h, x+ h[⊂ I and

xn+1 = xn −
f(xn)

f ′(xn)
∀n ∈ N,

then

1. xn ∈]x− h, x+ h[∀n ∈ N,

2. xn → x,

3. the convergence is of order at least 2.

126 CHAPTER 12. SOLVING NONLINEAR EQUATIONS

In the practical use of the Newton method, the constants m and k are usually not known (it is
even not always clear that such constants exist). Therefore it is very difficult to ensure that x0 is taken
sufficiently close to x (recall also that x is by definition also unknown) in order to have convergence.
This is the major drawback of the Newton method. However, when it converges, the convergence is
fast. In contrast, the bisection method guarantees the convergence under the condition f(a)f(b) < 0,
which is easy to check, but the convergence is slow. Efficient methods often combine several techniques,
with Newton-type iterations performed as last stage.

12.5 Generalization to higher dimensions (complement)

The fixed point and Newton methods admit rather straightforward extensions to higher dimensions,
i.e., for solving F (x) = 0 or f(x) = x with F, f : Rn → Rn. In Newton’s method, the derivative is
replaced by the Jacobian matrix DF (x), hence the iteration becomes

xn+1 = xn −DF (xn)−1F (xn).

It is actually not needed to compute the full inverse of DF (xn), but only the solution of the system
DF (xn)h = F (xn) has to be found to obtain DF (xn)−1F (xn). Still, for large problems, this may yield
a significant computational cost, more or less balanced by the fast convergence of the sequence.

12.5.1 Newton’s method: going from R to higher dimensions

Overview:

• Newton-Raphson (1D), find x ∈ R via iterating k = 0, 1, 2, . . . such that xk ≈ x via:

Find δx ∈ R : f ′(xk)δx = −f(xk),

Update: xk+1 = xk + δx.

• Newton in Rn, find x ∈ Rn via iterating k = 0, 1, 2, . . . such that xk ≈ x via:

Find δx ∈ Rn : F ′(xk)δx = −F (xk),

Update: xk+1 = xk + δx.

Here we need to solve a linear equation system to compute the update δx ∈ Rn.

Often, Newton’s method is formulated in terms of a defect-correction scheme. To illustrate this
more clearly we consider the problem f(x) = y instead of f(x) = 0.

Definition 12.5 (Defect). Let x̃ ∈ R an approximation of the solution f(x) = y. The defect (or
similarly the residual) is defined as

d(x̃) = y − f(x̃).

Definition 12.6 (Newton’s method as defect-correction scheme).

f ′(xk)δx = dk, dk := y − f(xk),

xk+1 = xk + δx, k = 0, 1, 2,

The iteration is finished with the same stopping criterion as for the classical scheme. To compute the
update δx we need to invert f ′(xk):

δx = (f ′(xk))
−1dk.

This step seems trivial but is the most critical one if we deal with problems in Rn with n > 1 or
in function spaces. Because here, the derivative becomes a matrix. Therefore, the problem results in
solving a linear equation system of the type Aδx = b.

12.5. GENERALIZATION TO HIGHER DIMENSIONS (COMPLEMENT) 127

Remark 12.2. This previous form of Newton’s method is already very close to the schemes that are
used in research. In higher dimensions it applies to deal with problems such as nonlinear PDEs or
optimization. The ’only’ aspects that are however big research topics are the choice of

• good initial Newton guesses;

• globalization techniques.

Two very good books on these topics, including further materials as well, are [4, 11].

12.5.2 A basic algorithm for a residual-based Newton method

In this type of methods, the main criterion is a decrease of the residual in each step. We denote
F (x) = −d(x) = f(x)− y.

Algorithm 12.7 (Residual-based Newton’s method). Given an initial guess x0. Iterate for k =
0, 1, 2, . . . such that

Find δx ∈ Rn : F ′(xk)δxk = −F (xk),

Update: xk+1 = xk + λkδxk,

with λk ∈ (0, 1] (see the next sections how λk can be determined). A full Newton step corresponds
to λk = 1. The criterion for convergence is the contraction of the residuals measured in terms of a
discrete vector norm:

‖F (xk+1)‖ < ‖F (xk)‖,
here ‖ · ‖ is a norm associated to the function space, here Rn, for instance ‖ · ‖l2. In order to save some
computational cost, close to the solution x∗, intermediate simplified Newton steps can be used. In the
case of λk = 1 we observe

θk =
‖F (xk+1)‖
‖F (xk)‖

< 1.

If θk < θmax, e.g., θmax = 0.1, then the old Jacobian F ′(xk) is kept and used again in the next step
k + 1. Otherwise, if θk > θmax, the Jacobian will be assembled. Finally the stopping criterion is one
of the following (relative preferred!):

‖F (xk+1)‖ ≤ TOLN (absolute)
‖F (xk+1)‖ ≤ TOLN‖F (x0)‖ (relative)

If fulfilled, set x∗ := xk+1 and the (approximate) root x∗ of the problem F (x) = 0 is found.

12.5.3 Example of the basic Newton method

We illustrate the basic Newton schemes with the help a numerical example in which we want to solve

x2 = 2 in R

We reformulate this equation as root-finding problem:

f(x) = 0,

where
f(x) = x2 − 2.

For Newton’s method we need to compute the first derivative, which is trivial here,

f ′(x) = 2x,

but can become a real challenge for complicated problems. To start Newton’s method (or any iterative
scheme), we need an initial guess (similar to ODE-IVP). Let us choose x0 = 3. Then we obtain as
results:

128 CHAPTER 12. SOLVING NONLINEAR EQUATIONS

Iter x f(x)
==============================
0 3.000000e+00 7.000000e+00
1 1.833333e+00 1.361111e+00
2 1.462121e+00 1.377984e-01
3 1.414998e+00 2.220557e-03
4 1.414214e+00 6.156754e-07
5 1.414214e+00 4.751755e-14
==============================

We see that Newton’s method converges very fast, i.e., quadratically, which means that the correct
number of digits roughly doubles at each iteration step.

12.5.4 Example using a Newton defect-correction scheme including line search

In this second example, we present Newton’s method as defect correction scheme as introduced in
Definition 12.6. Additionally we introduce a line search parameter ω ∈ [0, 1]. If the initial Newton
guess is not good enough we can enlarge the convergence radius of Newton’s method by choosing ω < 1.
Of course for the given problem here, Newton’s method will always converge, because the underlying
function is convex. Despite the fact that ω is not really necessary in this example, we can highlight
another feature very well. In the optimal case (as seen above in the results), Newton’s method will
converge quadratically. Any adaptation will deteriorate the performance. Thus, let us choose ω = 0.9.
Then we obtain as result only linear convergence:

Iter x f(x)
==============================
0 3.000000e+00 7.000000e+00
1 1.950000e+00 1.802500e+00
2 1.534038e+00 3.532740e-01
3 1.430408e+00 4.606670e-02
4 1.415915e+00 4.816699e-03
5 1.414385e+00 4.840133e-04
6 1.414231e+00 4.842504e-05
7 1.414215e+00 4.842742e-06
8 1.414214e+00 4.842766e-07
9 1.414214e+00 4.842768e-08
10 1.414214e+00 4.842768e-09
11 1.414214e+00 4.842771e-10
12 1.414214e+00 4.842748e-11
==============================

And if we choose ω = 0.5 we only obtain (perfect) linear convergence:

Iter x f(x)
==============================
0 3.000000e+00 7.000000e+00
1 2.416667e+00 3.840278e+00
2 2.019397e+00 2.077962e+00
3 1.762146e+00 1.105159e+00
4 1.605355e+00 5.771631e-01
5 1.515474e+00 2.966601e-01
...
32 1.414214e+00 2.286786e-09
33 1.414214e+00 1.143393e-09

12.5. GENERALIZATION TO HIGHER DIMENSIONS (COMPLEMENT) 129

34 1.414214e+00 5.716965e-10
35 1.414214e+00 2.858482e-10
36 1.414214e+00 1.429239e-10
37 1.414214e+00 7.146195e-11
==============================

In summary, using a full Newton method we only need 5 iterations until a tolerance of TOLN = 10−10

is reached. Having linear convergence with a good convergence factor still 12 iterations are necessary.
And a linear scheme does need 37 iterations. This shows nicely the big advantage of Newton’s method
(i.e., quadratic convergence) in comparison to linear or super-linear convergence.

12.5.5 Newton’s method in higher dimensions and the Newton-Kantorovich the-
orem

In this section, we now study Newton’s method in Rn from the theoretical side including proofs and
further extensions such as globalization techniques.

Let f : D ⊂ Rn → Rn. We seek a solution to the root-finding f(x) = (f1(x), . . . , fn(x)) = 0. We
take an initial guess x(0) ∈ D and iterate x(k) → x(k+1). The derivation is based on the one-dimensional
situation. Around the iteration x(k) we linearize the function f(·) with the help of the Taylor up to
the first order. In an arbitrary direction, it holds w(k) ∈ Rn

f(x(k) + w(k)) = f(x(k)) +
n∑
j=1

∂f

∂xj
(x(k))w

(k)
j +O(|w(k)|2).

The new iterate x(k+1) = x(k)+w(k) is defined as root of the linearization. Therefore, we seek a solution
w(k) ∈ Rn of the linear equation system

n∑
j=1

∂fi
∂xj

(x(k))w
(k)
j = −fi(x(k)), i = 1, . . . , n.

The Jacobian Df : Rn → Rn×n reads

Df =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
. . .

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


and consequently, we obtain in compact notation as linear equation system

Df(x(k))w(k) = −f(x(k)).

Consequently, the Newton iteration with initial guess x(0) ∈ D for k = 0, 1, 2, . . . reads

x(0) ∈ D, Df(x(k))w(k) = −f(x(k)), x(k+1) = x(k) + w(k). (12.3)

The biggest difference to the one-dimensional case is that we now deal with a matrix for the derivative.
Specifically, we need to compute n2 derivatives. Rather than just dividing, we need to solve a linear
equation system with the coefficient matrix Df(xk) ∈ Rn×n.

The central convergence results of this Newton method is the Newton-Kantorovich theorem. Let
f : D ⊂ Rn → Rn be a differentiable mapping. With ‖ · ‖ we denote the Euclidian vector norm and
the induced matrix norm; here the spectral norm. We search a root z ∈ D such that f(z) = 0.

130 CHAPTER 12. SOLVING NONLINEAR EQUATIONS

Theorem 12.8 (Newton-Kantorovich). Let D ⊂ Rn be an open and convex set. Moreover, let f : D ⊂
Rn → Rn be continuously differentiable.
(1) Let the Jacobian matrix Df be uniformly Lipschitz-continuous for all x, y ∈ D:

‖Df(x)−Df(y)‖ ≤ L‖x− y‖, x, y ∈ D, (12.4)

with L <∞.
(2) Let the Jacobian on D be a uniformly bounded inverse

‖Df(x)−1‖ ≤ β, x ∈ D, (12.5)

with β <∞.
(3) For the initial guess x(0) ∈ D, assume

q := αβL <
1

2
, α := ‖Df(x(0))−1f(x(0))‖. (12.6)

(4) For r := 2α suppose that the closed ball

Br(x0) := {x ∈ Rn : ‖x− x0‖ ≤ r}

is contained in the set D.
Then, the function f has a unique root z ∈ Br(x0) and the Newton iteration

Df(x(k))δx = −f(x(k)), x(k+1) = x(k) + δx, k = 0, 1, 2, . . . ,

converges quadratically to the root z. Furthermore, we have the a priori error estimate

‖x(k) − z‖ ≤ 2αq2k−1, k = 0, 1, . . .

Proof. We translate the proof from [15], which was based on [14], which is itself close to Kantorovich [8].
Alternative proofs can be found in [4] for instance.

The proof is complicated and we first make an outline:

(i) Derivation of some auxiliary lemma.

(ii) We then show that all iterates x(k) are contained in the ball Br(x0). Furthermore, we then obtain
the a priori error estimate.

(iii) We show that the iterates (x(k))k∈N form a Cauchy sequence and have consequently a limit z.

(iv) Next, we establish that this limit z is a root of f

(v) Finally, we show that we have one and only one root in Br(x0).

(i) Let x, y, z ∈ D. Since D is convex, it holds for all x, y ∈ D

f(x)− f(y) =

∫ 1

0
Df
(
y + s(x− y)

)
(x− y) ds.

We subtract on both sides Df(z)(x− y):

f(x)− f(y)−Df(z)(x− y) =

∫ 1

0

((
Df(y + s(x− y)

)
−Df(z)

)
(x− y) ds

With the Lipschitz continuity of the Jacobian Df , it follows

‖f(y)− f(x)−Df(z)(y − x)‖ ≤ L‖y − x‖
∫ 1

0
‖s(x− z) + (1− s)(y − z)‖ ds

≤ L

2
‖y − x‖

(
‖x− z‖+ ‖y − z‖

)
.

12.5. GENERALIZATION TO HIGHER DIMENSIONS (COMPLEMENT) 131

For the choice z = x, we obtain

‖f(y)− f(x)−Df(x)(y − x)‖ ≤ L

2
‖y − x‖2, ∀x, y ∈ D. (12.7)

And for z = x0, it yields

‖f(y)− f(x)−D(x0)(y − x)‖ ≤ rL‖y − x‖, ∀x, y ∈ Br(x0). (12.8)

(ii) Next, we show that all iterates are contained in the ball Br(x(0)). These derivations also yield as
byproduct the a priori error estimate. We establish the proof using induction and show that

‖x(k+1) − x(0)‖ ≤ r, ‖x(k+1) − xk‖ ≤ αq2(k)−1, k = 1, 2, . . . (12.9)

Let us begin with k = 0. It holds for the Newton iteration x(1) − x(0) = −Df(x(0))−1f(x(0)) with the
condition (12.6)

‖x(1) − x(0)‖ = ‖Df(x(0))−1f(x(0))‖ = α =
r

2
< r,

d.h. x(1) ∈ Br(x(0)), and it holds the estimate

‖x(1) − x(0)‖ ≤ α = αq20−1.

Induction step from k → k + 1. According to the induction assumption, both equations (12.9)
are true for k ≥ 0. Consequently, it holds x(k) ∈ Br(x

(0)) such that the Newton iterate x(k+1) is
well-defined. Then, we infer with the condition (12.5), with the estimate (12.7) and the induction
assumption (12.9) with the definition of q the following estimates:

‖x(k+1) − x(k)‖ = ‖Df(x(k))−1f(x(k))‖
≤ β ‖f(x(k))‖
= β‖f(x(k))−f(x(k−1))−Df(x(k−1))(x(k) − x(k−1))︸ ︷︷ ︸

=0

‖

≤ βL

2
‖x(k) − x(k−1)‖2︸ ︷︷ ︸

Induction

≤ βL

2

(
αq2(k−1)−1

)2

=
α

2
q2(k)−1 < αq2(k)−1

Hence, we have

‖x(k+1) − x(0)‖ ≤ ‖x(k+1) − x(k)‖+ . . .+ ‖x(1) − x(0)‖

≤ α
(
1 + q + q3 + q7 + . . .+ q2(k)−1

)
≤ α

1− q
≤ 2α = r.

Thus, x(k+1) ∈ Br(x
(0)). This shows that induction step from k → k + 1, i.e., the two inequalities

(12.9) hold true for k + 1.

(iii) We now show that the iterates x(k) ∈ Br(x(0)) form a Cauchy sequence. Let m > 0. Since q < 1
2 ,

it holds
‖x(k) − xk+m‖ ≤ ‖x(k) − x(k+1)‖+ . . .+ ‖xk+m−1 − xk+m‖

≤ α
(
q2(k)−1 + q2(k+1)−1 + . . .+ q2m+k−1−1

)
= αq2(k)−1

(
1 + q2(k) + . . .+ (q2(k))2m−1−1

)
≤ 2αq2(k)−1.

(12.10)

132 CHAPTER 12. SOLVING NONLINEAR EQUATIONS

This shows that indeed (x(k)) ⊂ D form a Cauchy sequence because q < 1
2 . In the Banach space Rn,

the limit
z = lim

k→∞
x(k) ∈ Rn

exists. Passing to the limit k →∞, we obtain with (12.9)

‖z − x(0)‖ ≤ r,

such that z ∈ Br(x0). For the limit m→∞ in (12.10) we establish the error estimate

‖x(k) − z‖ ≤ 2αq2(k)−1, k = 0, 1, . . .

(iv) It remains to show that z ∈ Br(x
(0)) is a root of f . The Newton iteration rule as well as the

condition (12.4) yield

‖f(x(k))‖ = ‖Df(x(k))(x(k) − x(k−1))‖
≤ ‖Df(x(k))−Df(x(0)) +Df(x(0))‖ ‖x(k+1) − x(k)‖

≤
(
L‖x(k) − x(0)‖+ ‖Df(x(0))‖

)
‖x(k+1) − x(k)‖ → 0 (k →∞).

Hence, it holds
f(x(k))→ 0, k →∞.

The continuity of f implies f(z) = 0.

(v) Finally, we show that the root z ∈ Br(x0) is unique. This is obtained with the help of the
contraction property and the formulation of the Newton scheme as fixed-point iteration. Each root of
f(·) is a fixed-point of the simplified Newton iteration

g(x) := x−Df(x(0))−1f(x)

The fixed-point iteration function g(·) is Lipschitz continuous. With (12.8), it holds

g(x)− g(y) = x− y −Df(x(0))−1f(x) +Df(x(0))−1f(y)

= Df(x(0))−1(f(y)− f(x)−Df(x(0))(y − x))

≤ ‖Df(x(0))−1‖︸ ︷︷ ︸
≤β

rL‖y − x‖

≤ βLr‖y − x‖.

With r = 2α, it follows βLr ≤ 2αβL ≤ 2q < 1. This yields that g is a contraction. Banach’s fixed-point
theorem yields that we have only one fixed-point and consequently only one root.

Remark 12.3. The Newton-Kantorovich theorem differs in several points from well-posedness results
for one-dimensional Newton schemes. For instance, the root is not an assumption, but follows within
the proof. Moreover, the Newton-Kantorovich theorem only requires a Lipschitz continuous first deriva-
tive, but not a twice differentiable function.

From Thoerem 12.8, the following convergence result can be inferred:

Corollary 12.9. Let D ⊂ Rn be open and f : D ⊂ Rn → Rn be twice continuously differentiable. We
assume that z ∈ D is a root with regular Jacobian Df(z). Then, Newton’s method is locally convergent,
i.e., there exists a neighborhood B around z such that the Newton scheme converges for all starting
values x(0) ∈ B.

12.5. GENERALIZATION TO HIGHER DIMENSIONS (COMPLEMENT) 133

Example 12.1 (Newton’s method in Rn). We seek the root of the function

f(x1, x2) =

(
1− x2

1 − x2
2

(x1 − 2x2)/(1/2 + x2)

)
with the Jacobian

Df(x) =

(
−2x1 −2x2

2
1+2x2

− 4+4x1
(1+2x2)2

)
.

The roots of f are given by
x ≈ ±(0.894427, 0.447214).

We start the iteration with x(0) = (1, 1)T and obtain the iterates

x1 ≈
(

1.14286
0.357143

)
, x2 ≈

(
0.92659
0.442063

)
,

x3 ≈
(

0.894935
0.447349

)
, x4 ≈

(
0.894427
0.447214

)
.

After only four iterations, the first six digits are exact.

12.5.6 Globalization of Newton’s method

Each step of Newton’s method consists of the parts

1. Computation of the Jacobian;

2. Solving the linear equation system;

3. Update and monitoring the convergence.

In contrast to the one-dimensional case, the computation of the derivative in Rn may be cumbersome,
since n2 partial derivatives must be calculated:

(Df)ij =
∂fi
∂xj

, i, j = 1, . . . , n.

This can be a non-neglibible computational cost. In the second step of Newton’s method, we must
solve a linear equation system. Using for instance LU decomposition (as we discussed before in detail),
it requires O(n3) operations. The solution requires then O(n2) operations.

As well we can work with simplified Newton methods. If the derivative f ′(x(k)) is not computed
according to the current right hand side, but to some other value f ′(c), we still have convergence, but
only with a linear order. In the higher-dimensional case, we obtain

Listing 12.1: (Simplified Newton’s method)
Let f ∈ C1(D) be given, an initial guess x(0) ∈ D and c ∈ D.
Compute the Jacobian Df(c)
Construct LU decomposit ion Df(c) = L(c)R(c)
I t e r a t e f o r k = 1, 2, . . .

L(c)R(c)w(k) = −f(x(k−1))

x(k) = x(k−1) + w(k)

The two expensive steps of Newton’s method are only required once. The iteration can be performed
efficiently with forward and backward substitution. This can be further improved when the linearization
point c ∈ Rn is selected in a dynamic way, for instance at c = x(3), c = x(6), . . . or when the convergence
behavior detoriates. As monitor, we can observe the residual of two subsequent iterates

ρk =
|f(x(k))|
|f(x(k−1))|

.

134 CHAPTER 12. SOLVING NONLINEAR EQUATIONS

If ρk > ρ0 (bad convergence), then with c = x(k), we perform an update of the Jacobian.
The second challenge is the choice of a good initial guess. Enlarging the convergence radius, i.e.,

globalization, can be obtained with damping. Here, step 5) in Algorithm 12.1 is replaced by

x(k) = x(k−1) + ωkw
(k)

with a damping parameter ωk ∈ (0, 1]. For the Newton iteration, this reads

x(k+1) = x(k) − ωkDf(x(k))−1f(x(k)).

Proposition 12.10 (Damped Newton’s method). Let the assumptions from Theorem 12.8 hold true
except for the condition on the initial value (12.6). The damped Newton iteration

Df(x(k))δx = −f(x(k)), x(k+1) = x(k) + ωkδx

with
ωk := min{1, 1

αkβL
}, αk := ‖Df(x(k))−1f(x(k))‖

(ωk is the so-called line search parameter) generates a sequence (x(k))k∈N, for which after k∗ steps

q∗ := αk∗βL <
1

2

is fulfilled. For k > k∗ the squence x(k) converges quadratically and we have the a priori error estimate

‖x(k) − z‖ ≤ α

1− q∗
q2(k)−1
∗ , k ≥ k∗.

Proof. We show the monotone convergence in the sense of ‖f(x(k+1))‖ ≤ ‖f(x(k))‖ of the damped
Newton iteration. For x(0), the set

D0 := {x ∈ D : ‖f(x)‖ ≤ ‖f(x(0))‖}

is closed and non-empty. We define the damped iteration

xω = gω(x) := x− ωDf(x)−1f(x).

For x ∈ D0, let ωmax ≤ 1 be the maximal damping parameter such that

f(xω) ≤ f(x(0)) 0 ≤ ω ≤ ωmax ≤ 1.

We define
h(ω) := f(xω)

with h(0) = f(x). For h(·) it holds further

h′(ω) =
d

dω
f(x− ωDf(x)−1f(x)) = −Df(xω)Df(x)−1f(x).

With h′(0) = −f(x) = −h(0), it follows

f(xω)− f(x) = h(ω)− h(0) =

∫ ω

0
h′(s) ds = −

∫ ω

0
Df(xs)Df(x)−1f(x) ds

= −
∫ ω

0

{
(Df(xs)−Df(x))Df(x)−1f(x) + f(x)

}
ds.

Hence,

f(xω) =

(
−
∫ ω

0
(Df(xω)−Df(x))Df(x)−1 ds

)
f(x) + (1− ω)f(x)

12.5. GENERALIZATION TO HIGHER DIMENSIONS (COMPLEMENT) 135

and we estimate

‖f(xω)‖ ≤ (1− ω)‖f(x)‖+ βL

∫ ω

0
‖xs − x‖ ds‖f(x)‖

= (1− ω)‖f(x)‖+ βL

∫ ω

0
s‖Df(x)−1f(x)‖ ds‖f(x)‖

≤
(

1− ω + αxβL
ω2

2

)
‖f(x)‖, αx = ‖Df(x)−1f(x)‖.

Now, we determine 0 ≤ ω ≤ ωmax ≤ 1 such that the expression

ρ(ω) :=

∣∣∣∣1− ω + αxβL
ω2

2

∣∣∣∣
is minimal. The minimum is obtained for

ωmin = min

{
1,

1

αxβL

}
.

Then, it holds

1− ωmin +
ω2
min

2
αxβL ≤ 1− 1

2αxβL
< 1.

For this choice of the damping parameter, we have monotone convergence:

‖f(x(k+1))‖ ≤
(

1− 1

2αkβL

)
‖f(x(k))‖

After a finite number of steps, it holds

αkβL

2
≤ β2L

2
‖f(x(k))‖ < 1

and we arrive at the quadratic convergence radius.

Remark 12.4 (Globalization). The damped Newton scheme is a globalization strategy. The condition
for the initial guess

x(0) ∈ D : ‖Df(x(0))−1f(x(0))‖︸ ︷︷ ︸
=α0

βL <
1

2

is not required to be necessarily fulfilled. If this product is too big, we can iterate with the damped iter-
ation until αkβL with αk = ‖Df(x(k))−1f(x(k))‖ fulfills the condition. As said, globalization strategies
yield convergence in a larger region, but therein, however, the convergence is initially usually slow with
the rate

ρ ≤ 1− 1

2αkβL
.

For large αk, we can choose ρ close to 1.
It is important that the switch to fast convergence be in an automated fashion. Here, this is given

since
αkβL <

1

2
⇒ ωk = min

{
1,

2

αkβL

}
= 1.

A difficulty remains however as to the choice of the damping parameter ωk. Indeed the values

αk = ‖Df(x(k))−1f(x(k))‖, β = max
x∈D
‖Df(x)−1‖,

and the Lipschitz constant of Df(x) are in general not computable. A common strategy (see also in
numerical optimization [11]) is a line-search technique.

136 CHAPTER 12. SOLVING NONLINEAR EQUATIONS

Listing 12.2: (Line-Search)
We are given f ∈ C1(D), and x(0) ∈ D and a parameter σ ∈ (0, 1) and a maximal number of line
search steps Lmax ∈ N.
1 For k = 0, 1, 2, . . . , we i t e r a t e
2 Df(xk)w(k) = −f(x(k))

3 Set ωk0 = 1
4 For l = 0, 1, . . . , Lmax i t e r a t e
5 x(k+1) = x(k) + ωlw

(k)

6 Stop , i f ‖f(x(k+1))‖ < ‖f(x(k))‖
7 ω

(k)
l+1 = σω

(k)
l

Using line search we enforce a monotonic contraction of the residuals. We first try a full Newton step
with ω = 1. As long as ‖f(x(k+1))‖ > ‖f(x(k))‖, we reduce ω. Common values for σ are σ = 1

2 or
σ = 1

4 . Further modifications are described in numerical optimization [11] and also so-called error-
oriented Newton methods going back to [4] and recently applied in coupled variational inequality
systems in the monograph [19].

12.6 Newton’s method for a coupled, nonlinear system of ODEs (com-
plement)

We discuss an example motivated from the later Chapter 17. Therein, ordinary differential equations
(ODEs) shall be solved at some time point tn. Often, such systems result into nonlinear problems,
which can be solved by methods introduced in the current chapter. We neglect all details concerning
ODEs and refer the reader to Chapter 17, but concentrate on all relevant steps for the nonlinear
solution.

We look for two unknowns p(t) : [0, T] → R and s(t) : [0, T] → R, which are determined by a
coupled nonlinear system of two ODEs:

p′(t) = rpp(t)− αs(t)p(t)
s′(t) = rss(t) + µαp(t)s(t)

The derivatives are defined with respect to time, i.e., p′(t) := d
dtp(t) and s′(t) := d

dts(t). Furthermore,
we deal with the parameters rp > 0, α > 0, rs > 0, µ > 0, which are independent of the time t.

When we discretize the time-continuous derivatives by an implicit procedure (taking the unknown
as well on the right hand side), we obtain

pn − pn−1

∆t
= rpp

n − αsnpn

sn − sn−1

∆t
= rss

n + µαpnsn,

where ∆ = tn − tn−1 is the time step size (difference between two time points). Since we look
simultaneously for the time-discretized pn and sn, we easily see that the system is nonlinear due to the
couplings snpn (1st equation) and pnsn (2nd equation).

One possibility to solve this nonlinear system is to formulate a root-finding problem of the form

F (pn, sn) = 0

with

F (pn, sn) =

(
pn − pn−1 −∆t[rpp

n − αsnpn]
sn − sn−1 −∆t[rss

n + µαpnsn]

)
.

12.7. ITERATION SCHEMES IN NONLINEAR OPTIMIZATION (COMPLEMENT) 137

For Newton’s method, we introduce the iteration index j. Formally, we have: set pn,0 := pn−1 and
sn,0 := sn−1 as initial guess. Then, a defect-correction variant reads:

F ′(pn,j , sn,j)(w, v)T = −F (pn,j , sn,j)

(pn,j+1, sn,j+1)T = (pn,j , sn,j)T + (w, v)T

until some stopping criterion, e.g.,

max(‖pn,j+1 − pn,j‖2, ‖sn,j+1 − sn,j‖2) < TOL

with for instance TOL = 1e − 10. The derivative F ′ is the Jacobian matrix; here F ′ ∈ R2×2. The
crucial point is how the Jacobian reads in detail. Formally, we have

F ′(pn, sn) =

(
∂pF1, ∂sF1

∂pF2, ∂sF2

)
Specifically, for the above system, we obtain

∂pF1 = 1− 0−∆t[rp − αsn]

∂sF1 = 0− 0−∆t[−αpn]

∂pF2 = 0− 0−∆t[µαsn]

∂sF2 = 1− 0−∆t[rs + µαpn]

The full Newton system at a time point tn for the iteration j then reads:(
1−∆t[rp − αsn,j] −∆t[−αpn,j]
−∆t[µαsn,j] 1−∆t[rs + µαpn,j]

)(
w
v

)
= −

(
pn,j − pn−1 −∆t[rpp

n,j − αsn,jpn,j]
sn,j − sn−1 −∆t[rss

n,j + µαpn,jsn,j]

)
(
pn,j+1

sn,j+1

)
=

(
pn,j

sn,j

)
+

(
w
v

)
.

Until ∥∥∥∥(pn,j+1

sn,j+1

)
−
(
pn,j

sn,j

)∥∥∥∥
2

< TOL

With this procedure, we then have obtained the solution for the current time point and set

pn := pn,j+1, sn := sn,j+1.

Afterward, we can proceed to the next time point tn+1; for details we refer to Chapter 17.
We finally notice as well that a simplifed (approximate) Newton scheme is obtained by neglecting

the off-diagonal terms. Then, the defect step reads(
1−∆t[rp − αsn,j] 0

0 1−∆t[rs + µαpn,j]

)(
w
v

)
= −

(
pn,j − pn−1 −∆t[rpp

n,j − αsn,jpn,j]
sn,j − sn−1 −∆t[rss

n,j + µαpn,jsn,j].

)

12.7 Iteration schemes in nonlinear optimization (complement)

12.7.1 Linear regression

A typical situation for approximation problems is linear regression. Here, often given data in form of
(xn, pn) for n = 1, . . . , N is available and a function of the form

p(x) = b+mx

is sought that best approximates in some mathematical sense (choice of the norm!) these data. The
specific goal is to determine the parameters b ∈ R and m ∈ R.

138 CHAPTER 12. SOLVING NONLINEAR EQUATIONS

Here, a least-squares approximation is one possibility:

S := S(m, b) =
1

N

N∑
n=1

(pn − (b−mxn))2.

The function S is the so-called cost (or objective) functional. The goal is solution of the minimization
problem:

min
m,b

S(m, b).

We also refer the reader back to chapter 11 for an introduction to nonlinear optimization. For the
numerical solution, we present two options.

The first one is the steepest descent method. We just need to calculate the two partial derivatives
with respect to m and b:

∂S

∂m
=

2

N

N∑
k=1

−xk(pk − (mxk + b)) (12.11)

∂S

∂b
=

2

N

N∑
k=1

−(pk − (mxk + b)). (12.12)

The final algorithm is then given by: for l = 1, 2, 3, . . . , Nmax, iterate such thatml+1

bl+1

 =

ml

bl

− ρ
∂S(ml,bl)

∂m
∂S(ml,bl)

∂b

 .

The second option consists in exploiting the fact the cost function is quadratic, hence the first order
optimality condition

∇S(m, b) = 0

is a simple linear system given by (12.11)-(12.12). It can be solved directly.

12.7.2 Neural networks

In the solution of machine learning problems with the area of neural networks, the task is mathe-
matically exactly the same as in the previous subsection, except that linearity is lost. For a concise
introduction from a mathematical viewpoint, we refer to [7]. We need to determine weights w and
biases b. Determining those two quantities is called training. Let us put both of them into a function
a[L] := a[L](w, b), which is the global activation activation function at the output layer L. Let N pieces
of data (training points) and corresponding target outputs be denoted as (xn, yn), n = 1, . . . , N . Then,
a quadratic cost functional (as before) can be defined:

C =
1

N

N∑
n=1

1

2
‖yn − a[L](xn)‖22.

This problem can be solved as in the previous section by gradient descent. However, since usually N is
very big (i.e., a big data problem) the computational cost may be prohibitively high. For this reason, a
so-called stochastic gradient method is often employed in which the individual gradients running over
all training points N is replaced by a single randomly chosen, training point. There is a vast literature
on machine learning and neural networks because of its enormous applications in science, technical
applications, and our society. The important message in the frame of this class is that the concepts,
and numerical methods presented here, are already the key ingredients of algorithms used for machine
learning.

12.7. ITERATION SCHEMES IN NONLINEAR OPTIMIZATION (COMPLEMENT) 139

Let us now have a look at the activation functions that are classically used. To fix ideas, consider
a single layer (L = 1). Typically, writing as subscripts the components of vectors, one considers

(a[L](x))i = S

 M∑
j=1

wijxj − bi


with the sigmoid function

S(t) =
1

1 + e−t
,

see Fig. 12.1. This function approximates the thresholding phenomenon that occurs in natural neurons,
while being differentiable (very helpful for optimization!).

In the above notation M is the number of inputs, and i covers the number of outputs.

Figure 12.1: Sigmoid function.

We can incorporate intermediate or hidden layers just by composing such operations. The gradient
is obtained by the chain rule, and performing Jacobian matrix multiplications in a clever ordering
(actually from output to input) is called error back-propagation. Machine learning and neural networks
are very active research fields for which we refer to other teaching materials for an introduction and
further references [9].

140 CHAPTER 12. SOLVING NONLINEAR EQUATIONS

Chapter 13

Interpolation and approximation

In this chapter, we discuss interpolation and approximation. The former consists in constructing a sim-
ple function (often a polynomial) through certain given points. With the help of such simple functions
further operations such as numerical differentiation and numerical integration can be constructed. Ap-
proximation is more general and does not necessarily need to fit in certain given points. One example
is linear regression.

13.1 Polynomial interpolation

13.1.1 Introduction

Let (x0, ..., xn) and (y0, ..., yn) be two families of real numbers, with the so-called nodes xi’s pairwise
distinct. We denote by Pn the set of polynomial functions of degree ≤ n. We investigate the following
issues:

1. Does there exist a polynomial P ∈ Pn such that P (xi) = yi ∀i = 0, ..., n? What about uniqueness?

2. How to calculate it?

3. How does it behave in between the points xi?

13.1.2 Existence, uniqueness, expression

Theorem 13.1. There exists a unique P ∈ Pn such that P (xi) = yi ∀i = 0, ..., n. It is called Lagrange
interpolating polynomial.

Let us write the interpolating polynomial as P (x) =
∑n

k=0 akx
k. The coefficients must solve the

linear system 
a0 + a1x0 + · · ·+ anx

n
0 = y0

a0 + a1x1 + · · ·+ anx
n
1 = y1

...
...

a0 + a1xn + · · ·+ anx
n
n = yn,

which admits the matrix representation
1 x0 · · · xn0
1 x1 · · · xn1
...

...
...

1 xn · · · xnn




a0

a1
...
an

 =


y0

y1
...
yn

 .

The determinant of the matrix of this system, called Vandermonde determinant (a particular case was
given as exercise), is equal to

Dn =
∏

06i<j6n

(xj − xi) 6= 0.

141

142 CHAPTER 13. INTERPOLATION AND APPROXIMATION

Hence this system admits a unique solution. In fact, there is a direct expression of the interpolating
polynomial, given by

P (x) =
n∑
j=0

yjϕj(x), ϕj(x) =
∏
k 6=j

x− xk
xj − xk

.

Indeed, the functions ϕ0, ..., ϕn belong to Pn and satisfy ϕi(xj) = δij , with δij = 1 if i = j, δij =
0 if i 6= j (Kronecker symbol).

An example is shown in Fig. 13.1.

Figure 13.1: Interpolating polynomial of degree 3. The data points are the red squares.

13.1.3 Interpolation error (complement)

For a given function f we now assume that the data points are such that yj = f(xj) ∀j = 0, ..., n. A
natural question is then: how does the Lagrange interpolating polynomial of the families (x0, ..., xn)
and (f(x0), ..., f(xn)), called Lagrange interpolating polynomial of f , approximate f? An answer is
provided by the following theorem.

Theorem 13.2. Let f be a function of class Cn+1 on [a, b] and P be its Lagrange interpolating poly-
nomial at the points x0, x1, . . . , xn ∈ [a, b]. Then, for all x ∈ [a, b], there exists ξ ∈ [a, b] such that

f(x)− P (x) =
f (n+1)(ξ)

(n+ 1)!
πn+1(x), πn+1 =

n∏
j=0

(x− xj).

We obviously always have |πn+1(x)| ≤ (b − a)n+1. If the points are equidistant, i.e. xj = a + jh,
h = (b− a)/n, then we have the finer estimate |πn+1(x)| ≤ n!hn+1/4. This yields

|f(x)− P (x)| ≤ max
ξ∈[a,b]

|f (n+1)(ξ)| hn+1

4(n+ 1)
.

We could expect that f(x)− P (x)→ 0 when n→ +∞. However this is not always the case since the
derivatives |f (n+1)(ξ)| may increase quickly when n grows. It can even happen that |f(x)−P (x)| −→
+∞: this is called the Runge phenomenon, due to oscillations of P between the points xi.

A classical example is the function f : t 7→ 1
1+25t2

on [−1, 1], see figure 13.2.

13.2. NUMERICAL DIFFERENTIATION 143

Figure 13.2: Runge phenomenon. The function f is depicted in solid line. The Lagrange interpolating
polynomials of f of degree 5 and 10 with equidistant points are depicted in dashed and dotted lines,
respectively.

13.2 Numerical differentiation

13.2.1 Approximation of the first derivative

Consider a "sufficiently smooth" function f : R → R and two prescribed points x0, x1 ∈ R where f
takes known values. Hence we can interpolate f linearly at the nodes x0 and x1 by

p1(x) =
x− x1

x0 − x1
f(x0) +

x− x0

x1 − x0
f(x1).

Now we can approximate the derivative f ′(x) through the corresponding derivative of the polynomial

p′1(x) =
f(x1)− f(x0)

x1 − x0
.

Proposition 13.3 (Difference quotient of the first derivative). Let f ∈ C2[a, b]. For two points
x0, x1 ∈ [a, b] with h := x1 − x0 > 0 we have the left-sided and right-sided difference quotients

f(x1)− f(x0)

h
= f ′(x0) +

1

2
hf ′′(x0) +O(h2),

f(x1)− f(x0)

h
= f ′(x1)− 1

2
hf ′′(x0) +O(h2).

For f ∈ C4[a, b], it holds x0, x0 − h, x0 + h ∈ [a, b] for the central difference quotient

f(x0 + h)− f(x0 − h)

2h
= f ′(x0) +

1

4
h2f (iv)(x0) +O(h3).

Proof. (i) With Taylor expansion, it holds

f(x0 ± h) = f(x0)± hf ′(x0) +
1

2
h2f ′′(x0)± 1

6
h3f ′′′(x0) +

1

24
h4f (iv)(ξ)

with some ξ ∈ [a, b]. It follows for the right-sided difference quotient

f(x0 + h)− f(x0)

h
=
hf ′(x0) + 1

2h
2f ′′(x0) +O(h3)

h
= f ′(x0) +

1

2
hf ′′(x0) +O(h2).

The proof for the left-sided difference quotient is similar.

144 CHAPTER 13. INTERPOLATION AND APPROXIMATION

(ii) For the central difference quotient, the even powers of h cancel due to symmetry:

f(x0 + h)− f(x0 − h) = 2f ′(x0) +
1

3
h3f ′′′(x0) +O(h4).

This yields the final result.

We see in the previous proofs that the choice of the nodal values plays a crucial role. If they are
chosen in some clever way, we obtain better convergence than expected. This phenomenon is known
as super-convergence, which is the case for the central difference quotient. The key point is symmetry.
This can be seen as follows: let the derivative in x0 be constructed through x0 − h and x0 + 2h (no
symmetry). Then, Taylor around x0 yields

f(x0 + 2h)− f(x0 − h)

3h

= f ′(x0) +

(
2hf ′′(x0) +

8

6
h2f ′′′(x0)

)
−
(

1

2
hf ′′(x0)− 1

6
h2f ′′′(x0)

)
+O(h3)

f ′(x0) +
3

2
hf ′′(x0) +O(h2).

In this case, higher order powers of h do not cancel and we only obtain linear convergence, but not
quadratic.

13.2.2 Approximation of the second derivative (complement)

We interpolate f with the help of three points x0 − h, x0, x0 + h using a quadratic polynomial:

p2(x) = f(x0 − h)
(x0 − x)(x0 + h− x)

2h2

+ f(x0)
(x− x0 + h)(x0 + h− x)

h2
+ f(x0 + h)

(x− x0 + h)(x− x0)

2h2
.

In x = x0 it holds for the first and second derivative:

p′2(x0) =
f(x0 + h)− f(x0 − h)

2h
, p′′2(x0) =

f(x0 + h)− 2f(x0) + f(x0 − h)

h2
.

For the first derivative, we obtain the same result as in the previous subsection.
With Taylor, we obtain for the second derivative

p′′2(x0) =
−2f(x0) + f(x0 − h) + f(x0 + h)

h2
= f ′′(x0) +

1

12
h2f (iv)(x0) +O(h4).

Using p2 we can also derive a one-sided difference quotient for the second derivative. Thus, we approx-
imate f ′′(x0 − h) ≈ p′′2(x0 − h). With Taylor, we obtain

p′′(x0 − h) = f ′′(x0 − h) + hf ′′′(x0 − h) +O(h2),

which is only an approximation of first order. Again, the choice of good support points is crucial.

13.3 Numerical integration (complement)

13.3.1 Goal

Let f : [a, b]→ R be a continuous function. Our goal is to calculate∫ b

a
f(x) dx.

In general, we do not know any explicit function F such that F ′ = f . Then we have to content
ourselves with an approximation of the integral.

13.3. NUMERICAL INTEGRATION (COMPLEMENT) 145

13.3.2 General principle

We first introduce a subdivision σ = (x0, x1, · · · , xN) of [a, b] (i.e., x0 = a < x1 < · · · < xN = b). The
stepsize of the subdivision σ is denoted by :

h = max
06k6N−1

|xk+1 − xk|.

Obviously the integral can be decomposed as∫ b

a
f(x) dx =

N−1∑
k=0

∫ xk+1

xk

f(x) dx. (13.1)

Each integral
∫ xk+1

xk
f(x) dx will be approximated by a so-called elementary quadrature formula.

Note that the change of variable

x = xk +
xk+1 − xk

2
(t+ 1) , t ∈ [−1, 1],

yields ∫ xk+1

xk

f(x) dx =
xk+1 − xk

2

∫ 1

−1
gk(t) dt (13.2)

with gk(t) = f(xk +
xk+1−xk

2 (t+1)). Therefore it is sufficient to define elementary quadrature formulas
for the standard interval [−1, 1].

13.3.3 Elementary quadrature formula

Let g : [−1, 1] → R be a continuous function. Our goal is to approximate
∫ 1
−1 g(x) dx by a number

J(g).

Definition 13.1. An elementary quadrature formula is defined by

• points t0, ..., tL such that −1 ≤ t0 < t1 < ... < tL ≤ 1 called nodes,

• coefficients w0, w1, ..., wL ∈ R called weights.

It reads

J(g) =
L∑
j=0

wjg(tj).

13.3.4 Simplest rules: box, mid-point, trapezoidal, Simpson

Let us work on the interval [a, b]. The simplest quadrature rules are the left-sided box rule

I0(f) = (b− a)f(a),

the right-sided box rule
I0(f) = (b− a)f(b),

the mid-point rule

I0(f) = (b− a)f(
a+ b

2
),

the trapezoidal rule

I1(f) =
b− a

2
(f(a) + f(b)),

and the Simpson rule

I2(f) =
b− a

6
(f(a) + 4f(

a+ b

2
) + f(b)).

146 CHAPTER 13. INTERPOLATION AND APPROXIMATION

13.3.5 Composite quadrature formula

In view of (13.1) and (13.2) it is natural to set the following definition.

Definition 13.2. The composite quadrature formula associated with the subdivision σ and the elemen-
tary quadrature formula J(g) =

∑L
j=0wjg(tj) is :

Iσ,J(f) =
N−1∑
k=0

xk+1 − xk
2

L∑
j=0

wjf(ξk,j) with ξk,j = xk +
xk+1 − xk

2
(tj + 1).

Here are classical examples.

elementary formula J(g) corresponding composite formula Iσ,J(f)

leftpoint formula 2g(−1)
∑N−1

k=0 (xk+1 − xk)f(xk)

rightpoint formula 2g(1)
∑N−1

k=0 (xk+1 − xk)f(xk+1)

midpoint formula 2g(0)
∑N−1

k=0 (xk+1 − xk)f(
xk+xk+1

2)

trapezoidal formula g(−1) + g(1)
∑N−1

k=0
xk+1−xk

2

(
f(xk) + f(xk+1)

)
13.3.6 Order of a quadrature formula

Definition 13.3. An elementary quadrature formula J is said to be of order at least n if it is exact
for polynomials in Pn, i.e.,

J(g) =

∫ 1

−1
g(t) dt ∀g ∈ Pn.

It is of order exactly n if, in addition, there exists g ∈ Pn+1 such that

J(g) 6=
∫ 1

−1
g(t) dt.

For the previous examples it holds:

exact order
left/right-point formula 0
midpoint formula 1
trapezoidal formula 1

It might seem surprising that the midpoint and trapezoidal formulas have the same order (super-
convergence). This is due to the fact that the midpoint is at a special location that enables to gain
orders for a fixed number of nodes. Such a node is called a Gauss point. We will not enter into this
(beautiful and classical) theory.

13.3.7 Interpolatory quadrature

All examples of quadrature formulas we have mentioned so far belong to the class of interpolatory
quadrature formulas, which is the standard way of constructing quadrature formulas.

Definition 13.4. An interpolatory quadrature formula is an elementary quadrature formula such that

J(g) =

∫ 1

−1
Pg(t) dt,

where Pg is the Lagrange interpolating polynomial of g at the points t0, ..., tN .

Then, from

Pg(t) =
L∑
j=0

g(tj)ϕj(t), ϕj(t) =
∏
k 6=j

t− tk
tj − tk

,

13.3. NUMERICAL INTEGRATION (COMPLEMENT) 147

we obtain the expression

J(g) =
L∑
j=0

wjg(tj), wj =

∫ 1

−1
ϕj(t) dt.

By construction, the formula is of order at least L. It is easy to prove the reciprocal statement.

Theorem 13.4. The elementary quadrature formula J(g) =
∑L

j=0wjg(tj) is of order at least L if and
only if it is an interpolatory quadrature formula.

13.3.8 Gauss quadrature

We finally discuss a class of quadrature rules that are often used in practice. So far, the order (of
convergence) of a quadrature rule was determined through the number of support points and the
polynomial function that was constructed using these points. The question is whether the quadrature
order can be further enhanced or whether our developments are optimal.

A careful revision entails that the mid-point rule has a better convergence order than expected
despite the fact that the number of support points is the same as for the box rule. The reason is
symmetry (see also the section on difference quotients; super-convergence).

This raises the question whether this is a general principle that an optimal distribution of the
support points enhances the convergence order. The answer is positive and leads to the so-called
Gauss quadrature.

So far a quadrature rule for n+1 support points x0, . . . , xn ∈ [a, b] had the order n+1. This means
that polynomials with degree n are exactly integrated. For instance, the box rule integrates constant
polynomials exactly (degree n = 0). The trapezoidal rule integrates linear polynomials exactly (degree
n = 1).

As intermediate summary, we note: so far the order of a quadrature rule for n+ 1 support points
is n+ 1.

An optimal distribution (Gauss quadrature) yields however the much better result:

Proposition 13.5. An interpolatory quadrature rule with n + 1 support points has at most the order
2n+ 2.

In practice the key question is how such quadrature rules can be constructed. This can be achieved
via orthogonalization. More information about the construction can be found in standard numerical
analysis books.

148 CHAPTER 13. INTERPOLATION AND APPROXIMATION

Chapter 14

Trigonometric interpolation, Fourier series
and Fourier transform

14.1 Trigonometric interpolation: discrete Fourier transform

We address here a similar problem as in section 13.1, but instead of classical algebraic polynomials
we consider trigonometric polynomials. Such polynomials are better suited to the approximation of
periodic functions, and more generally oscillatory phenomena.

Let a function f : [0, 2π] → C such that f(0) = f(2π) be given. A trigonometric polynomial is a
function of form

P (x) =
M∑

k=−M
cke

ikx,

for some M ∈ N and coefficients c−M , ..., cM ∈ C. Note that P is by construction continuous and
2π-periodic on R, this is why we have assumed f(0) = f(2π). Obviously, the period 2π is chosen for
convenience and can be changed by rescaling.

We now define the equidistant nodes x0, ..., xn ∈ [0, 2π[by

xj =
2jπ

n+ 1
.

Our goal is to determine P in order to interpolate f at these nodes, i.e., to satisfy

P (xj) = f(xj) ∀j = 0, ..., n. (14.1)

This yields n+ 1 equations, and since there are 2M + 1 coefficients to fix, it is natural to assume that

n = 2M.

If n is odd, it is possible to choose M = [n/2] + 1 ([x] stands for the greatest integer ≤ x) and impose
an additional condition on the coefficients, see e.g. [13]. For simplicity, we assume that n is even and
fix M = n/2.

We have the following result.

Proposition 14.1. The relations (14.1) are satisfied if and only if

ck =
1

n+ 1

n∑
j=0

f(xj)e
−ikxj , k = −M, ...,M. (14.2)

Proof. Suppose that (14.1) holds true. Multiplying (14.1) by e−imxj and summing over j yields

n∑
j=0

M∑
k=−M

cke
i(k−m)xj =

n∑
j=0

e−mxjf(xj).

149

150CHAPTER 14. TRIGONOMETRIC INTERPOLATION, FOURIER SERIES AND FOURIER TRANSFORM

We can interchange the summations to obtain

M∑
k=−M

ck

n∑
j=0

ei(k−m)xj =
n∑
j=0

e−mxjf(xj). (14.3)

Now, we remark that

n∑
j=0

ei(k−m)xj =
n∑
j=0

ei(k−m)j 2π
n+1 =

n∑
j=0

(
ei(k−m) 2π

n+1

)j
.

This is a geometric sum, equal to

n+ 1 if k = m,

1−
(
ei(k−m) 2π

n+1

)n+1

1− ei(k−m) 2π
n+1

=
1− ei(k−m)2π

1− ei(k−m) 2π
n+1

= 0 if k 6= m.

We infer from (14.3) the claimed expression

(n+ 1)cm =

n∑
j=0

e−mxjf(xj).

Suppose now (14.2) holds true. We compute

P (xl) =

M∑
k=−M

cke
ikxl =

M∑
k=−M

1

n+ 1

n∑
j=0

f(xj)e
−ikxjeikxl =

1

n+ 1

n∑
j=0

f(xj)

M∑
k=−M

eik(xl−xj).

By the same arguments as previously the inner sum is equal to 2M + 1 = n+ 1 if j = l, 0 else. This
entails (14.1).

The family of coefficients (c−M , ..., cM) is called the discrete Fourier transform of f relatively to
the nodes x0, ..., xn, and the resulting trigonometric polynomial P is the interpolating trigonometric
polynomial of f .

There exist fast algorithms to compute these coefficients. They are termed fast Fourier transform
(in short FFT) algorithms. One of them (the Cooley-Tukey algorithm) can be studied as project (see
Chapter 19).

Remark 14.1. If f is real-valued, we infer from (14.2) that c−k = ck. The Euler formula (Chapter
2) entails

P (x) =
a0

2
+

M∑
k=1

[ak cos(kx) + bk sin(kx)] ,

with the real coefficients

ak = ck + c−k = 2<(ck) =
2

n+ 1

n∑
j=0

f(xj) cos(kxj),

bk = i(ck − c−k) = −2=(ck) =
2

n+ 1

n∑
j=0

f(xj) sin(kxj).

An example of trigonometric interpolation with n = 4, M = 2, is shown in Fig. 14.1.

14.2. FOURIER SERIES 151

Figure 14.1: Trigonometric interpolation (solid line) vs polynomial interpolation (dashed line). The
data points are the red squares. Observe that the trigonometric interpolation extends to a periodic
smooth (C∞) function, unlike the polynomial interpolation.

14.2 Fourier series

In the above considerations, assume that M (thus also n) goes to infinity. Formally it appears that

P (x)→
+∞∑

k=−∞
cke

ikx

and, recognizing the leftpoint quadrature formula with stepsize xj+1 − xj = 2π/(n+ 1),

ck →
1

2π

∫ 2π

0
f(x)e−ikxdx.

These ideas admit a strong mathematical background: the Fourier series theory.

14.2.1 Series

Definition 14.1. A series is an expression of form

S =

+∞∑
k=0

ak, meaning exactly S = lim
n→+∞

n∑
k=0

ak.

By extension,

S =

+∞∑
k=−∞

ak, means S = lim
n→+∞

n∑
k=−n

ak.

For series of functions, several types of convergence can be considered. Here we will only speak of
pointwise convergence, i.e., convergence of the series of numbers when the function is evaluated at a
fixed (but arbitrary) point.

14.2.2 Convergence of Fourier series

For the pointwise convergence of Fourier series one has the following result, known as Dirichlet theorem.

Theorem 14.2. Let f : R → C be a continuous and 2π-periodic function. Let x ∈ R such that f
admits a left and right derivative at x. We have

f(x) =
+∞∑

k=−∞
cke

ikx (14.4)

152CHAPTER 14. TRIGONOMETRIC INTERPOLATION, FOURIER SERIES AND FOURIER TRANSFORM

with

ck =
1

2π

∫ 2π

0
f(x)e−ikxdx. (14.5)

The expression (14.4) is called Fourier series of f and the ck’s from (14.5) are called Fourier
coefficients of f .

Remark 14.2. Similarly to remark 14.1, if f is real-valued, we have c−k = ck, whereby

f(x) =
a0

2
+

+∞∑
k=1

[ak cos(kx) + bk sin(kx)] ,

with

ak = 2<(ck) =
1

π

∫ 2π

0
f(x) cos(kx)dx, bk = −2=(ck) =

1

π

∫ 2π

0
f(x) sin(kx)dx.

Remark 14.3. If f is only piecewise continuous then we have at a discontinuity point x0

+∞∑
k=−∞

cke
ikx0 =

1

2

(
lim
x→x−0

f(x) + lim
x→x+0

f(x)

)
.

14.2.3 Parseval’s equality

Parseval’s equality states that the Fourier coefficients carry the ’energy’ of the function.

Theorem 14.3. Let f : R→ C be a continuous and 2π-periodic function (square integrable on [0, 2π]
is actually sufficient) and call ck its Fourier coefficients. We have

1

2π

∫ 2π

0
|f(x)|2dx =

+∞∑
k=−∞

|ck|2.

14.2.4 Applications

Fourier series are a very important tool in mathematical analysis and signal processing. The main
reason of their usefulness is that the basis functions

ϕk(x) = eikx

are ’eigenfunctions’ for the differentiation operator: indeed it holds ϕ′k = ikϕk. Therefore they appear
as special solutions of many differential equations. They are also orthogonal, in the sense that∫ 2π

0
ϕk(x)ϕl(x)dx = 0 ∀k 6= l.

It is thus natural to decompose a given function on this ’basis’ (to be rigorous the notion of Hilbert
basis must be considered, allowing for infinite linear combinations).

14.3 Fourier transform

14.3.1 General concept

Fourier series admit a generalization to non-periodic functions defined over the whole real line: the
Fourier transform. In this case the frequencies are no longer discrete, and the series becomes an
integral. When the integrals below are well defined 1 one has

f̂(ω) =
1

2π

∫ +∞

−∞
f(x)e−iωxdx, f(x) =

∫ +∞

−∞
f̂(ω)eiωxdω.

1Basically one needs that
∫ +∞
−∞ |f(x)|dx < +∞ and

∫ +∞
−∞ |f̂(ω)|dω < +∞, however, using generalized integrals,∫ +∞

−∞ |f(x)|
2dx < +∞ works also.

14.3. FOURIER TRANSFORM 153

We call f̂ the Fourier transform of f , and the latter equality is known as the Fourier inversion formula.
In some cases the above expressions do not have a classical meaning and can be understood in the
framework of distribution theory. The Fourier inversion formula holds true for what we call ’tempered
distributions’. This is a fairly involved theory that we will not develop. For practical use it is enough
to handle the prototype tempered distribution: the so-called Dirac distribution. It is described in the
last paragraph.

Let us go back to classical functions and state two properties.

• If f is square integrable over R, i.e.
∫ +∞
−∞ |f(x)|2dx < +∞, then Parseval’s equality holds:

1

2π

∫ +∞

−∞
|f(x)|2dx =

∫ +∞

−∞
|f̂(ω)|2dω.

• The Fourier transform of a derivative is formally obtained through integration by parts: if f is
differentiable and f , f ′ admit Fourier transforms, then

f̂ ′(ω) = iωf̂(ω).

This property is also recovered by differentiating the inversion formula. Due to this, as for Fourier
series, the Fourier transform is very useful to construct special solutions to differential equations.

Remark 14.4. There is a noticeable symmetry between the definition of the Fourier transform and
the inversion formula. Actually, passing to the conjugate in this latter yields

f(x) =

∫ +∞

−∞
f̂(ω)e−iωxdω = 2π

̂̂
f(x). (14.6)

In particular, if f is real-valued as well as its Fourier transform, then f = 2π
̂̂
f . Note that placing the

normalization coefficient 1/2π in the definition of the Fourier transform rather than in the inversion
formula is a matter of (non-universal) convention. Sometimes, 1/

√
2π is placed in front of both.

14.3.2 A glimpse on the Dirac distribution

As mentioned above, it is sometimes convenient to apply the Fourier transform to distributions rather
than functions. We will not give a rigorous definition of the concept of distribution, we will content
ourselves with the formal description of the most classical one: the Dirac distribution. Intuitively, the
Dirac distribution δ is a generalization of a function that is equal to 0 everywhere except at point 0,
and with ’integral’ equal to 1. More precisely, it satisfies∫ +∞

−∞
δ(x)ϕ(x)dx = ϕ(0)

for all smooth function ϕ. Indeed, choosing this (so-called test function) ϕ identically equal to 1 yields∫ +∞
−∞ δ(x)dx = 1, while choosing ϕ arbitrary but vanishing at 0 yields δ(x) = 0 for all x 6= 0. It is
to be stressed that the integral notation used above is abusive in full rigor, but it suggests to a large
extent correct ideas and calculations. An intuitive understanding of this concept is to see the Dirac
distribution as the limit of a sequence of nonnegative functions of integral 1 that concentrate at 0, see
Fig. 14.2.

We obtain from the definition and the inversion formula in the form (14.6)

δ̂ =
1

2π
, 1̂ = δ.

One may remark that the function 1 is neither integrable nor square integrable over R (in fact, it is
another example of tempered distribution). Its Fourier transform has been determined so as to satisfy
the inversion formula, which is the main goal of the construction.

154CHAPTER 14. TRIGONOMETRIC INTERPOLATION, FOURIER SERIES AND FOURIER TRANSFORM

Figure 14.2: Illustration of the Dirac distribution as the limit of a sequence of functions that become
thiner and thiner, and higher and higher. Here a Gaussian function with standard deviation going to
0 is considered.

Chapter 15

Exercises

Functions of one or several variables

Exercise 15.1. Calculate the gradient (Jacobian matrix), the divergence, the rotational and the Lapla-
cian of the following vector fields:

f(x, y, z) =

3x2 + y + z
x2 − y2 − z
x+ z2

 , g(x, y, z) =

y2 + z2

x2 + z2

x2 + y2

 .

Exercise 15.2. For the following scalar fields calculate the gradient, the Hessian matrix, the critical
points and their nature (local minimum/maximum...):

f(x, y) = 3x2 + 2y2 + 2xy + 1,

g(x, y) = x2 − 2y2 + xy − 9x.

Exercise 15.3 (Integration). Evaluate ∫ 1

0
exp(x) · x dx.

Evaluate ∫ 2

0
2xexp(x2) dx.

Hint: Use integration by parts and substitution rules.

Exercise 15.4 (Taylor). Write down the Taylor polynomials of degree 4 in x0 = 0 for

1. f(x) = sin(x),

and for x0 = 1 for

2. f(x) = exp(2x).

Exercise 15.5. Let us define

f(x, y) =

{
xy

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Is this function continuous or discontinuous in (0, 0). Justify your answer.

155

156 CHAPTER 15. EXERCISES

Nonlinear equations

Exercise 15.6. Find the fixed points of the following functions and give their nature (attractive,
repulsive). Give a graphical illustration of the convergence (or not) of a sequence of type xn+1 = f(xn).

1. f : x ∈ R∗+ 7→ f(x) =
√
x,

2. f : x ∈ R 7→ f(x) = 1− x2.

Exercise 15.7 (complement). Describe the sequence generated by Newton’s method for solving log x =
0, with initial point x0 > 0. Show that it converges if and only if x0 ∈]0, e[.

Exercise 15.8. Let the function f(x, y) = y2(x − 1) + x2(x + 1) be given. Compute the stationary
points and check which kind of extremum point we deal with.

Exercise 15.9. Let f : R→ R with f(x) =
√
x2 + 1.

1. Compute the minimum of f(x).

2. That is to solve f ′(x) = 0.

3. Write down Newton’s method.

4. Perform some steps (per hand) for different initial guesses x0 = 0.5 and x0 = 2 respectively.

5. (optional) Implement Newton’s method and compute the solution x̂ to a tolerance TOL = 1e−10.

Exercise 15.10. Let L : R3 → R with

L(x, y, λ) = f(x)− λc(x) = −x− 0.5y2 − λ(1− x2 − y2)

be given.

1. Find the stationary point of L. What needs to be done?

2. Formulate Newton’s method (formally; without implementation) for the previous minimization
problem.

Exercise 15.11 (This exercise is half of a project because implementation is required). Develop a
Newton scheme in R2 to find the root of the problem:

f : R2 → R2, f(x, y) =
(

2xay2, 2(x2 + κ)ay
)T
,

where κ = 0.01 and a = 5.

1. Justify first that integration of f yields F (x, y) = (x2 + κ)ay2. What is the relation between f
and F?

2. Compute the root of f by hand. Derive the derivative f ′ and study its properties.

3. Finally, design the requested Newton algorithm. As initial guess, take (x0, y0) = (4,−5).

4. What do you observe with respect to the number of Newton iterations?

5. How could we reduce the number of Newton steps?

157

Polynomial interpolation

Exercise 15.12. Consider the points xn = n for all n ∈ N. Let f : R → R be a continuous function
such that f(xn) = 1

2(1 + (−1)n+1) for all n ∈ N. Calculate the Lagrange interpolating polynomial
P ∈ P4 of f at the points x0, x1, x2, x3, x4.

Exercise 15.13. Let the following data set be given:

i 0 1 2
xi -1 0 2
yi -1 0 1

Construct the piece-wise linear and quadratic interpolation polynomials, respectively.

Exercise 15.14 (complement). Let T > 0. We consider the function defined by f(x) = sin(2π
T x) for

all x ∈ [0, 1].
Let n ∈ N?. We denote by Pn ∈ Pn the Lagrange interpolating polynomial of f at the n + 1 points
0, 1/n, 2/n . . . , 1.

1. Determine an upper bound of |f (n+1)(x)|. Deduce an upper bound of the error |f(x)−Pn(x)| for
all x ∈ [0, 1].

2. Let ε > 0 and T > 0 be given. Provide a condition on n ensuring that the error is less than ε for
all x ∈ [0, 1]. Make explicit this condition for T = 2π and ε = 0.1.

Numerical integration (complement)

Exercise 15.15. We place ourselves on the reference interval [−1, 1] and we consider the elementary
quadrature formula

J(g) = w0g(−1) + w1g(0) + w2g(1).

Fix the weights w0, w1, w2 so that the formula is of maximal order (this is the Simpson formula). What
is this order?

Exercise 15.16. Evaluate the integral ∫ 1

0

1

1 + x
dx

with the mid-point rule, trapezoidal rule and the Simpson rule, respectively.

Trigonometric interpolation, Fourier series, Fourier transform

Exercise 15.17. Let the function f : [0, 2π]→ R be defined by f(x) = sin(2x). For M ∈ N, n = 2M ,
and

xj =
2jπ

n+ 1
j = 0, ..., n,

let PM be the interpolating trigonometric polynomial of f associated with these nodes.
1. Calculate P0 and P1. Without calculation, determine PM for any M ≥ 2.
2. For f(x) = sin(mx), indicate a relation between the pulsation m and the number of nodes needed
to guaranty an exact representation of f by its trigonometric interpolant. This a simplified version of
Shannon’s theorem.

Exercise 15.18. Let the function f : [0, 2π]→ R be defined by

f(0) = f(2π) = 1,
f(x) = 0 otherwise.

158 CHAPTER 15. EXERCISES

Let M ∈ N, n = 2M , and

xj =
2jπ

n+ 1
j = 0, ..., n.

1. Calculate the discrete Fourier transform of f associated with the above nodes.
2. Show that the interpolating trigonometric polynomial of f admits the expression

PM (x) =
1

2M + 1

cos(Mx)− cos((M + 1)x)

1− cosx
.

Plot this function for M = 8 and M = 16. What do you observe concerning the minimal value of PM?
3. (optional) Calculate PM (3π

2M+1) and its limit when M → +∞. What do you conclude?

Exercise 15.19 (complement). Let the function f : [0, 2π]→ R be defined by

f(x) = x(2π − x).

1. Calculate the Fourier coefficients ck, ak, bk of f .
2. Deduce the value of

+∞∑
k=1

1

k2
.

3. (optional) Using Parseval’s equality calculate

+∞∑
k=1

1

k4
.

Exercise 15.20. Consider the function r : R→ R defined by

r(x) =

{
1 if − 1 ≤ x ≤ 1
0 otherwise.

1. Calculate the Fourier transform r̂ of r.
2. (optional) Formulate Parseval’s equality.
3. (optional) Show that ∫ ∞

−∞
|ωr̂(ω)|2 = +∞. (15.1)

This shows in a quantitative way that the spectrum of r decays slowly at infinity. How do you qualita-
tively interpret the high frequencies? Interpret (15.1) using Parseval’s equality.
4. Provide the expression of the spatial Fourier transform û(t, ω) of the function u(t, x) solution of the
heat equation (see also next chapter for a review on differential equations) ∂u

∂t
(t, x)− ∂2u

∂x2
(t, x) = 0 ∀(t, x) ∈ R+ × R

u(0, x) = r(x) ∀x ∈ R.

What about the decay of the spectrum? Give a physical interpretation.
5. Same question when r is replaced by the Dirac distribution δ. Optional: give an expression of the
function u itself.

Optimization

Exercise 15.21. We consider the minimization problem:

minimizeu∈Rn J(u),

where J : Rn → R is a continuously differentiable function.
We will specifically work with the 3 following functions defined on R2:

159

• the quadratic function
J1(x, y) = (x− 1)2 + p(y − 1)2,

• the Rosenbrock function
J2(x, y) = (x− 1)2 + p(x2 − y)2,

• the radial function
J3(r) = e−r + r, r =

√
x2 + y2.

In the first 2 cases the positive parameter p can be chosen equal to 10. Of course those are academic
examples for which the solution is obvious.

1. Define the above functions, for instance in Python:[
def J(x,y):

return (x-1)**2+p*(y-1)**2

2. Plot isovalues, for instance:

import numpy as np
import matplotlib.pyplot as plt
h=0.025
xx=np.arange(-1,1.5,h)
yy=np.arange(-0.5,2,h)
X,Y=np.meshgrid(xx,yy)
Z=J(X,Y)
fig, ax=plt.subplots()
CS=ax.contour(X,Y,Z,20)
ax.clabel(CS,inline=1,fontsize=10)

3. Implement the steepest descent method with the following special case of Armijo’s line search:∣∣∣∣∣∣∣∣∣∣∣∣

Set dk = −∇J(uk−1), α0 = 1

While J(uk−1 + αid
k) > J(uk−1) + 1

2αi∇J(uk−1) · dk

αi+1 = αi/2
end
Set sk = αi

The stopping criterion of the main loop will be the satisfaction of one of the conditions:

• an optimality criterion: ‖∇J(uk)‖ ≤ ε where ε = 10−7‖∇J(u0)‖,

• a maximal number of iterations maxiter = 5000, in order to stop the algorithm if it does
not converge.

Display the obtained minimizers and plot the trajectories.

4. Play with the initial guess and the algorithmic parameters (such as the stopping criterion and
parameters within Armijo’s rule). What are your conclusions?

160 CHAPTER 15. EXERCISES

Part IV

Differential equations

161

Chapter 16

Introduction to ODEs (ordinary
differential equations)

This chapter is on purpose short. We introduce a few examples of ODEs and some analytical properties.
For more detailed introductions, we refer the reader to [2] or [5].

16.1 An introductory example

Let us compute the growth of a species (for example human beings) with a very simple (and finally
not that realistic) model. But this shows that reality can be represented to some extent at least by
simple models, and that continuous comparisons with other data is also necessary. Furthermore, this
also shows that mathematical modeling often starts with a simple equation and is then continuously
enriched with further terms and coefficients. In the end we arrive at complicated formulae.

To get started, let us assume that the population number is y = y(t) at time t. Furthermore, we
assume constant growth g and mortalities rates m, respectively. In a short time frame dt we have a
relative increase of

dy

y
= (g −m)dt

of the population. Re-arranging and taking the limit dt→ 0 yields:

lim
dt→0

dy

dt
= (g −m)y

and thus
y′ = (g −m)y.

This is the so-called Malthusian law of growth. For this ordinary differential equation (ODE), we
can even explicitly compute the solution:

y(t) = c exp((g −m)(t− t0)).

This can be formally obtained through:

y′ =
dy

dt
= (g −m)y (16.1)

⇒
∫
dy

y
=

∫ t

t0

(g −m)dt (16.2)

⇒ log |y|+ C = (g −m)(t− t0) (16.3)
⇒ y = exp[C] · exp[(g −m)(t− t0)]. (16.4)

163

164 CHAPTER 16. INTRODUCTION TO ODES (ORDINARY DIFFERENTIAL EQUATIONS)

In order to work with this ODE and to compute the future development of the species we need an
initial value at some starting point t0:

y(t0) = y0.

With this value, we can further work to determine the constant c = exp(C):

y(t0) = c exp[(g −m)(t0 − t0)] = c = y0. (16.5)

Let us say in the year t0 = 2021 there have been two members of this species: y(2021) = 2.
Supposing a growth rate of 25 per cent per year yields g = 0.25. Let us say m = 0 - nobody will die.
In the following we compute two estimates of the future evolution of this species: for the year t = 2024
and t = 2032. We first obtain:

y(2024) = 2 exp(0.25 ∗ (2024− 2021)) = 4.117 ≈ 4.

Thus, four members of this species exist after three years. Secondly, we want to give a ‘long term’
estimate for the year t = 2022 and calculate:

y(2022) = 2 exp(0.25 ∗ (2032− 2021)) = 31.285 ≈ 31.

In fact, this species has an increase of 29 members within 11 years. If you translate this to human
beings, we observe that the formula works quite well for a short time range but becomes somewhat
unrealistic for long-term estimates though.

Remark 16.1. An improvement of the basic population model is the logistic differential equation
that was proposed by Verhulst; see e.g., [2].

16.2 The model ODE

In the previous example (setting a = g −m), we introduced one of the most important ODEs:

y′ = ay, y(t0) = y0. (16.6)

This ODE serves often as model problem and important concepts such as existence, uniqueness, sta-
bility are usually introduced in terms of this ODE. It is linear with a possibly variable coefficient a.
The unique solution can be expressed as

y(t) = y0 exp(

∫ t

t0

a(s)ds). (16.7)

For a non-homogeneous ODE of form y′ = ay + b, the general expression of the solution becomes

y(t) = ȳ(t) + α exp(

∫ t

t0

a(s)ds),

where ȳ(t) is any particular solution and α is a constant. The classical way to find a particular solution
is the method of ’variation of the constant’, which means searching a solution in the form

ȳ(t) = α(t) exp(

∫ t

t0

a(s)ds).

Then one finds ȳ′(t) = a(t)ȳ(t) + α′(t) exp(
∫ t
t0
a(s)ds), whereby α can be obtained through α′(t) =

b(t) exp(−
∫ t
t0
a(s)ds).

For nonlinear ODEs of form y′ = f(t, y) the existence of solutions is much less trivial and often relies
on the Cauchy-Lipschitz theorem. We will not enter into these notions. There are also higher order
differential equations, which involve second or higher order derivatives of the unknown. Introducing
some of these derivatives as additional unknowns, they can be reduced to a system of first order
differential equations. Therefore we will subsequently mostly focus our attention to first order ODEs.
We only give below a short reminder on exact solutions for second order linear ODE’s with constant
coefficients.

16.3. WELL-POSEDNESS 165

16.3 Well-posedness

In ODE lectures, we usually learn first the theorem of Peano, which ensures existence (but not unique-
ness) of an ODE solution. In these notes, we consider directly the Cauchy-Lipschitz (sometimes called
Picard-Lindelöf) theorem, which establishes existence and uniqueness.

Consider the n-dimensional case:
y′(t) = f(t, y(t))

where y(t) = (y1, . . . , yn)T and f(t, x) = (f1, . . . , fn)T . Let an initial point (t0, y0) ∈ R×Rn be given.
Furthermore, define

D = I × Ω ⊂ R1 × Rn

and let f(t, y) be continuous on D. We seek a solution y(t) on a time interval I = [t0, t0 + T] that
satisfies y(t0) = y0.

A crucial aspect for uniqueness is a Lipschitz condition on the right hand side f(t, y): The function
f(t, y) on D is said to be (uniformly) Lipschitz continuous if for L(t) > 0 it holds

‖f(t, x1)− f(t, x2)‖ ≤ L(t)‖x1 − x2‖, (t, x1), (t, x2) ∈ D.

The function is said to be (locally) Lipschitz continuous if the previous statement holds on every
bounded subset of D.

Theorem 16.1 (Cauchy-Lipschitz). Let f : D → Rn be Lipschitz-continuous. Then there exists for
each (t0, y0) ∈ D an ε > 0 and a solution y : I := [t0 − ε, t0 + ε]→ Rn of the IVP such that

y′(t) = f(t, y(t)), t ∈ I, y(t0) = y0.

16.4 Second order linear ODE’s with constant coefficients

We consider the differential equation
y′′ + ay′ + by = 0, (16.8)

where a, b are fixed real numbers. We call S the set of solutions.

Definition 16.1. The algebraic equation

r2 + ar + b = 0 (16.9)

is called characteristic equation of (16.8).

Theorem 16.2. 1. If the characteristic equation (16.9) admits two distinct real solutions α and β,
then

S =
{
t 7→ λeαt + µeβt, λ, µ ∈ R

}
.

2. If the characteristic equation (16.9) admits a double root α then

S =
{
t 7→ (λt+ µ)eαt, λ, µ ∈ R

}
.

3. If the characteristic equation (16.9) admits two distinct conjugate complex roots ρ+ iω and ρ− iω
then

S =
{
t 7→ eρt[λ cos(ωt) + µ sin(ωt)], λ, µ ∈ R

}
.

Examples.
If a = 0 and b = ω2 > 0 then S = {t 7→ λ cos(ωt) + µ sin(ωt), λ, µ ∈ R}.
If a = 0 and b = −ω2 < 0 then S =

{
t 7→ λeωt + µe−ωt, λ, µ ∈ R

}
.

166 CHAPTER 16. INTRODUCTION TO ODES (ORDINARY DIFFERENTIAL EQUATIONS)

Chapter 17

Finite differences for ODEs

Finite differences have been very popular in the past and are still used to solve initial-value problems
(IVP) and boundary value problems (BVP). Often finite differences are used in combination with
other discretization methods as for example finite elements. For example in a time-dependent PDE,
we need to discretize in time and space. Using the Rothe method (horizontal method of lines) temporal
discretization is often based on finite differences and spatial discretization on finite elements. In these
notes we restrict ourselves to single-step methods.

17.1 Problem statement of an IVP (initial value problem)

We consider ODE initial value problems of the form: find a differentiable function y(t) for 0 ≤ t <
T <∞ such that

y′(t) = f(t, y(t)),

y(0) = y0.

The second condition is the so-called initial condition. Furthermore, y′(t) = d
dty is the time derivative

with respect to time.
The model problem of an ODE is

y′ = λy, y(0) = y0, y0, λ ∈ R. (17.1)

This ODE has the solution:
y(t) = exp(λt)y0.

Furthermore, Problem (17.1) is an example of an autonomous and linear ODE. It is autonomous
because the right hand side does not explicitly depend on the variable t, i.e., f(t, y) = f(y) = λy. And
this ODE is linear because the coefficient λ is independent of the solution y. One further classification
can be made in case the right hand side f = 0. Then we say that the ODE is homogeneous. Lastly,
the coefficient λ is here a constant: we say that it is a linear ODE with constant coefficient. It is a
particular case of the ODE with variable coefficient briefly discussed in (16.6), (16.7).

17.2 Stiff problems

An essential difficulty in developing stable numerical schemes, is associated with stiffness, which we
shall define in the following. Stiffness is very important in both ODE and (time-dependent) PDE
applications.

Stiff problems are characterized as ODE solutions that contain various components with (signif-
icant) different evolutions over time. A very illustrative example can be found in [18] in which for
instance a solution to an ODE problem may look like:

y(t) = exp(−t) + exp(−99t).

167

168 CHAPTER 17. FINITE DIFFERENCES FOR ODES

Here, the first term defines the trajectory of the solution whereas the second term requires very small
time steps in order to resolve the very rapid decrease of that function.

Such behaviors specifically appear in ODE systems in which we seek y(t) ∈ Rn rather than y(t) ∈ R.
Then the following definition can be adopted. An IVP is called stiff (along a solution y(t)) if the
eigenvalues λ(t) of the Jacobian f ′(t, y(t)) of f w.r.t. y yield the stiffness ratio:

κ(t) :=
max<λ(t)<0 |<λ(t)|
min<λ(t)<0 |<λ(t)|

� 1.

17.3 One-step schemes

17.3.1 The Euler method

The Euler method is the simplest scheme. It is an explicit scheme and also known as forward Euler
method.

We consider again the IVP from above with right hand side that satisfies again a Lipschitz condition.
According to Theorem 16.1, there exists a unique solution on some neighborhood of t0. Here we suppose
in addition the existence of a global solution on [t0, t0 + T].

For a numerical approximation of the IVP, we first select a sequence of discrete (time) points:

t0 < t1 < . . . < tN = t0 + T.

Furthermore we set
In = [tn−1, tn], kn = tn − tn−1, k := max

1≤n≤N
kn.

The derivation of the Euler method is as follows: approximate the derivative with a forward difference
quotient (we sit at the time point tn−1 and look forward in time):

y′(tn−1) ≈ y(tn)− y(tn−1)

kn
.

Yet y′(tn−1) = f(tn−1, yn−1(tn−1)). Then the ODE can be approximated as:

y(tn)− y(tn−1)

kn
≈ f(tn−1, yn−1(tn−1)).

Setting the approximation yn ≈ y(tn) we obtain the scheme:

Definition 17.1 (Euler method). For a given starting point y0 := y(0) ∈ Rn, the Euler method
generates a sequence {yn}n∈N through

yn = yn−1 + knf(tn−1, yn−1), n = 1, . . . N.

17.3.2 Implicit schemes

With the same notation as introduced in Section 17.3.1, we define two further schemes. Beside the
Euler method, low-order simple schemes are the implicit Euler and the trapezoidal rule. The main
difference is that in general a nonlinear equation system needs to be solved in order to compute the
solution. On the other hand we have better numerical stability properties in particular for stiff problems
(an analysis will be undertaken in Section 17.4).

The derivation of the implicit (or backward) Euler method is derived as follows: approximate the
derivative with a backward difference quotient (we sit at tn and look back to tn−1):

y′(tn) ≈ y(tn)− y(tn−1)

kn
.

17.4. NUMERICAL ANALYSIS 169

Consequently, we take the right hand side f at the current time step y′(tn) = f(tn, yn(tn)) and obtain
as approximation

y(tn)− y(tn−1)

kn
= f(tn, yn(tn)).

Consequently, we obtain a scheme in which the right hand side is unknown itself, which leads to a
formulation of a nonlinear system:

Definition 17.2 (Implicit Euler). The implicit Euler scheme is defined as:

y0 := y(0),

yn − knf(tn, yn) = yn−1, n = 1, . . . , N.

In contrast to the Euler method, the ‘right hand side’ function f now depends on the unknown
solution yn. Thus the computational cost is (much) higher than for the (forward) Euler method. But
on the contrary, the method does not require a time step restriction as we shall see in Section 17.4.1.

To derive the trapezoidal rule (or Crank-Nicolson scheme), we take again the difference quotient
on the left hand side but approximate the right hand side through its mean value:

yn − yn−1

kn
=

1

2

(
f(tn, yn(tn)) + f(tn−1, yn−1(tn−1))

)
,

which yields:

Definition 17.3 (Trapezoidal rule). The trapezoidal rule reads:

y0 := y(0),

yn = yn−1 +
1

2
kn

(
f(tn, yn) + f(tn−1, yn−1)

)
, n = 1, . . . , N.

It can be shown that the trapezoidal rule is of second order, which means that halving the step size
kn leads to an error that is four times smaller. This is illustrated with the help of a numerical example
in Section 17.5.

17.4 Numerical analysis

In the previous section, we have constructed algorithms that yield a sequence of discrete solution
{yn}n∈N. In the numerical analysis our goal is to derive a convergence result of the form

‖yn − y(tn)‖ ≤ Ckα

where α is the order of the scheme. This result will tell us that the discrete solution yn really ap-
proximates the exact solution y and if we come closer to the exact solution at which rate we come
closer.

The model problem

To derive error estimates we work with the model scalar problem:

y′ = λy, y(0) = y0, y0, λ ∈ R. (17.2)

170 CHAPTER 17. FINITE DIFFERENCES FOR ODES

Splitting into stability and consistency

For linear numerical schemes the convergence is composed by stability and consistency. First of all
we have from the previous section that yn is obtained for the forward Euler method as:

yn = (1 + kλ)yn−1

= BEyn−1, BE := 1 + kλ.

Let us write the error at each time point tn as:

en := yn − y(tn) for 1 ≤ n ≤ N.

It holds:

en = yn − y(tn)

= BEyn−1 − y(tn)

= BE(en−1 + y(tn−1))− y(tn)

= BEen−1 +BEy(tn−1)− y(tn)

= BEen−1 +
k(BEy(tn−1)− y(tn))

k

= BEen−1 − k
y(tn)−BEy(tn−1)

k︸ ︷︷ ︸
=:ηn−1

.

Therefore, the error can be split into two parts:

Definition 17.4 (Error splitting of the model problem). The error at step n can be decomposed as

en := BEen−1︸ ︷︷ ︸
Stability

− kηn−1︸ ︷︷ ︸
Consistency

. (17.3)

The first term, namely the stability, provides an idea how the previous error en−1 is propagated from
tn−1 to tn. The second term ηn−1 is the so-called truncation error (or local discretization error), which
arises because the exact solution does not satisfy the numerical scheme and represents the consistency
of the numerical scheme. Moreover, ηn−1 yields the speed of convergence of the numerical scheme.

In fact, for the forward Euler scheme in (17.3), we observe for the truncation error:

ηn−1 =
y(tn)−BEy(tn−1)

k
=
y(tn)− (1 + kλ)y(tn−1)

k

=
y(tn)− y(tn−1)

k
− λy(tn−1)

=
y(tn)− y(tn−1)

k
− y′(tn−1). (17.4)

Thus,

y′(tn−1) =
y(tn)− y(tn−1)

k
− ηn−1, (17.5)

which is nothing else than the approximation of the first-order derivative with the help of a difference
quotient plus the truncation error. We investigate these terms further in Section 17.4.2 and concentrate
first on the stability estimates in the very next section.

17.4. NUMERICAL ANALYSIS 171

17.4.1 Stability

The goal of this section is to control the term BE = (1 + kλ). Specifically, we will justify why
|BE | ≤ 1 should hold. The stability is often related to non-physical oscillations of the numerical
solution. Otherwise speaking, a nonstable scheme shows artificial oscillations as for example illustrated
in Figure 17.2.

We introduce (absolute) stability and A-stability. From the model problem

y′(t) = λy(t), y(t0) = y0, λ ∈ C,

we know the solution y(t) = y0 exp(λt). For t→∞ the solution is characterized by the sign of <λ:

<λ < 0 ⇒ |y(t)| = |y0| exp(t<λ)→ 0,

<λ = 0 ⇒ |y(t)| = |y0| exp(t<λ) = |y0|,
<λ > 0 ⇒ |y(t)| = |y0| exp(t<λ)→∞.

In the first two cases it is particularly interesting to know whether a numerical scheme can produce a
bounded discrete solution, as the continuous solution is bounded.

Definition 17.5 ((Absolute) stability). A (one-step) method is absolute stable for λk 6= 0 if its ap-
plication to the model problem produces in the case <λ ≤ 0 a sequence of bounded discrete solutions:
supn≥0 |yn| <∞.

To find the stability region, we work with the stability function R(z), z = λk, such that BE = R(z).
The region of absolute stability is defined as:

SR = {z ∈ C : |R(z)| ≤ 1}.

The stability functions to explicit Euler, implicit Euler and trapezoidal rule are given by:

Proposition 17.1. For the simplest time-stepping schemes forward Euler, backward Euler and the
trapezoidal rule, the stability functions R(z) read:

R(z) = 1 + z (forward Euler),

R(z) =
1

1− z
(backward Euler),

R(z) =
1 + 1

2z

1− 1
2z

(trapezoidal rule).

Let us look at the proof. We take again the model problem y′ = λy. We recall the discretization
of this problem with the forward Euler method:

yn − yn−1

k
= λyn−1 (17.6)

⇒ yn = (yn−1 + λk)yn−1 (17.7)
= (1 + λk)yn−1 (17.8)
= (1 + z)yn−1 (17.9)
= R(z)yn−1. (17.10)

For the implicit Euler method we obtain:
yn − yn−1

k
= λyn (17.11)

⇒ yn = yn−1 + λkyn (17.12)

⇒ yn =
1

1− λk
yn−1 (17.13)

⇒ yn =
1

1− z︸ ︷︷ ︸
=:R(z)

yn−1. (17.14)

The procedure for the trapezoidal rule is again the analogous.

172 CHAPTER 17. FINITE DIFFERENCES FOR ODES

Definition 17.6 (A-stability). A difference method is A-stable if its stability region is part of the
absolute stability region:

{z ∈ C : < z ≤ 0} ⊂ SR.

In other words: Let {yn}n the sequence of solutions of a difference method for solving the ODE
model problem. Then, this method is A-stable if for arbitrary λ ∈ C− = {λ : <(λ) ≤ 0} the
approximate solutions are bounded for arbitrary, but fixed, step size k. That is to say:

|yn+1| ≤ |yn| <∞ for n = 1, 2, 3, . . .

Remark 17.1. A-stability is an attractive property since in particular for stiff problems we can compute
with arbitrary step sizes k and do not need any step size restriction.

Proposition 17.2. The explicit Euler scheme cannot be A-stable.

Indeed, for the forward Euler scheme, we have R(z) = 1 + z. For |z| → ∞ is holds R(z) → ∞
which is a violation of the definition of A-stability.

Remark 17.2. More generally, explicit schemes can never be A-stable.

On the contrary:

Proposition 17.3. The implicit Euler scheme and the trapezoidal rule are A-stable.

Example 17.1. We illustrate the previous statements.

1. In Proposition 17.1 we have seen that for the forward Euler method it holds:

yn = R(z)yn−1,

where R(z) = 1 + z. A necessary condition of convergence of the sequence is

|R(z)| ≤ |1 + z| ≤ 1. (17.15)

Thus if the absolute value of λ (in z = λk) is very big, we must choose a very small time
step k in order to achieve |1 − λk| < 1. Otherwise the sequence {yn}n will increase and thus
diverge (recall that stability is defined with bounded continuous solutions and consequently the
numerical approximation should be bounded, too). In conclusions, the forward Euler scheme is
only conditionally stable, i.e., it is stable provided that (17.15) is fulfilled.

2. For the implicit Euler scheme, we see that a large |λ| and large k even both help to stabilize
the iteration scheme (but be careful, the implicit Euler scheme actually stabilizes sometimes too
much. Because it computes contracting sequences also for case where the continuous solution
would grow). Thus, no time step restriction is required. Consequently, the implicit Euler scheme
is well suited for problems with large parameters/coefficients λ and also for stiff problems.

Remark 17.3. The previous example shows that a careful design of the appropriate discretization
scheme requires some work: there is no a priori best scheme. Some schemes require time step size
restrictions in case of large coefficients (explicit Euler). On the other hand, the implicit Euler scheme
does not need step restrictions but may have in certain cases too much damping. Which scheme should
be employed for which problem depends finally on the problem itself and must be carefully thought for
each problem again.

17.4. NUMERICAL ANALYSIS 173

17.4.2 Consistency / local discretization error - convergence order

We address now the second ‘error source’ in (17.3). The consistency determines the precision of the
scheme and will finally carry over the local rate of consistency to the global rate of convergence. To
determine the consistency we assume sufficient regularity of the exact solution such that we can apply
Taylor expansion. The idea is then that discrete schemes contain some dominant terms. The lowest
order remainder term determines finally the local consistency of the scheme.

Let us analyze the forward Euler scheme. The truncation error ηn−1 in (17.5) is given through:

y′(tn−1) + ηn−1 =
y(tn)− y(tn−1)

k
.

We need information about the solution at the old time step tn−1 in order to eliminate y(tn). Thus we
use Taylor-Lagrange (see section 10.4) and develop y(tn) at the time point tn−1:

y(tn) = y(tn−1) + y′(tn−1)k +
1

2
y′′(τn−1)k2.

We obtain the difference quotient of forward Euler by the following manipulation:

y(tn)− y(tn−1)

k
= y′(tn−1) +

1

2
y′′(τn−1)k.

We observe that the first terms correspond to the right hand side of (17.4). Thus the remainder term
is

1

2
y′′(τn−1)k

and therefore the truncation error ηn−1 can be estimated as

|ηn−1| ≤ max
t∈[0,T]

1

2
|y′′(t)|k = O(k).

17.4.3 Convergence

With the help of the two previous subsections, we can easily show the following error estimates:

Theorem 17.4 (Convergence of implicit/explicit Euler). We have

max
tn∈I
|yn − y(tn)| ≤ c(T, y)k = O(k),

where k := maxn kn.

The proof does hold for both schemes, except that when we plug-in the stability estimate one
should recall that the backward Euler scheme is unconditionally stable and the forward Euler scheme

174 CHAPTER 17. FINITE DIFFERENCES FOR ODES

is only stable when the step size k is sufficiently small. It holds for 1 ≤ n ≤ N :

|yn − y(tn)| = |en| = k|
n−1∑
k=0

Bn−k
E ηk|

≤ k
n−1∑
k=0

|Bn−k
E ηk| (triangle inequality)

≤ k
n−1∑
k=0

|Bn−k
E | |ηk|

≤ k
n−1∑
k=0

|Bn−k
E | Ck (consistency)

≤ k
n−1∑
k=0

1 Ck (stability)

= kN Ck

= T Ck, where we used k = T/N

= C(T, y)k

= O(k).

In Section 17.5 we demonstrate in terms of a numerical example that the forward Euler scheme will
fail when the step size restrication is not satisfied, consequently the scheme is not stable and therefore,
the convergence result does not hold true.

Theorem 17.5 (Convergence of trapezoidal rule). We have

max
tn∈I
|yn(tn)− y(tn)| ≤ c(T, y)k2 = O(k2).

The main message is that the Euler schemes both converge with order O(k) (which is very slow)
and the trapezoidal rule converges quadratically, i.e., O(k2).

17.5 Detailed numerical tests

In this section we demonstrate the previous concepts in terms of a numerical example. The program-
ming code is written in octave (which is the open-source sister of MATLAB).

17.5.1 Problem statement

We solve our ODE model problem numerically. Let a = g −m be a = 0.25 (test 1) or a = −0.25 (test
2) or a = −10 (test 3). The IVP is given by:

y′ = ay, y(t0 = 2011) = 2.

The end time value is T = 2014. The tasks are:

• Use the forward Euler (FE), backward Euler (BE), and trapezoidal rule (CN) for the numerical
approximation.

• Observe the accuracy in terms of the discretization error.

• Observe for (stiff) equations with a large negative coefficient a = −10 � 1 the behavior of the
three schemes.

17.5. DETAILED NUMERICAL TESTS 175

Figure 17.1: Example 17.5.1: on the left, the solution to test 1 is shown. In the middle, test 2 is
plotted. On the right, the solution of test 3 with N = 16 (number of intervals) is shown. Here, N = 16
corresponds to a step size k = 0.18 which is slightly below the critical step size for convergence (see
Section 17.5.3). Thus we observe the instable behavior of the forward Euler method, but also see slow
convergence towards the continuous solution.

17.5.2 Discussion of the results for test 1 with a=0.25

In the following, we present our results for the end time value yN (corresponding to T = 2014) for test
case 1 (a = 0.25) on three mesh levels:

Scheme #steps(N) k y_N
===
FE 8 0.37500 4.0961
BE 8 0.37500 4.3959
CN 8 0.37500 4.2363

FE 16 0.18750 4.1624
BE 16 0.18750 4.3115
CN 16 0.18750 4.2346

FE 32 0.093750 4.1975
BE 32 0.093750 4.2720
CN 32 0.093750 4.2341
===

• In the second column, i.e., 8, 16, 32, the number of steps (= number of intervals, i.e., so called
mesh cells - speaking in PDE terminology) are given.

• In order to compute numerically the convergence order α with the help of formula (17.30), we
work with k = kmax = 0.375. Then we identify in the third column of the above table that
P (kmax) = P (0.375), P (kmax/2) = P (0.1875) and P (kmax/4) = P (0.09375). Formula (17.30)
yields α = 0.9175 for FE, α = 1.0921 for BE, α = 2.0022 for CN. This confirms linear convergence
in the first two cases, and quadratic convergence in the last one.

• A further observation is that the forward Euler scheme is unstable for N = 16 and a = −10 and
has a zig-zag curve, whereas the other two schemes follow the exact solution and the decreasing
exp-function. But for sufficiently small step sizes, the forward Euler scheme is also stable which
we know from our A-stability calculations. These step sizes can be explicitely determined for
this ODE model problem and shown below.

176 CHAPTER 17. FINITE DIFFERENCES FOR ODES

Figure 17.2: Example 17.5.1: tests 3a,3b,3d: Blow-up, constant zig-zag non-convergence, and conver-
gence of the forward Euler method.

17.5.3 Investigating the instability of the forward Euler method: test 3 with a=-
10

With the help of Example 17.1 let us understand how to choose stable step sizes k for the forward
Euler method. The convergence interval reads:

|1 + z| ≤ 1 ⇒ |1 + ak| ≤ 1

In test 3, a = −10, which yields:

|1 + z| ≤ 1 ⇒ |1− 10k| ≤ 1

Thus, we need to choose a k that fulfills the previous relation. In this case this, k < 0.2 is calculated.
This means that for all k < 0.2 we should have convergence of the forward Euler method and for
k ≥ 0.2 non-convergence (and in particular no stability!). We perform the following additional tests:

• Test 3a: N = 10, yielding k = 0.3;

• Test 3b: N = 15, yielding k = 0.2; exactly the boundary of the stability interval;

• Test 3c: N = 16, yielding k = 0.1875; from before;

• Test 3d: N = 20, yielding k = 0.15.

The results of test 3a,3b,3d are provided in Figure 17.2 and visualize very nicely the theoretically
predicted behavior.

17.6 A BVP: boundary value problem

17.6.1 A 1D model problem: Poisson

We study in this section a finite difference discretization for the one-dimensional Poisson problem:
Find u ∈ C2([0, L]) such that
−u′′(x) = f ,∀x ∈ (0, L),
u(0) = a,
u(L) = b,

(17.16)

where f is a given right hand side function C0([0, L]) and a, b ∈ R.
For f = −1 and a = 0 and L = 1 we obtain a situation as sketched in Figure 17.3.

17.6.2 Well-posedness of the continuous problem

We investigate in the following well-posedness, the maximum principle and the regularity of the con-
tinuous problem.

17.6. A BVP: BOUNDARY VALUE PROBLEM 177

f

0 1

0 1u(x)

Figure 17.3: The clothesline problem: a uniform force f = −1 acts on a 1D line yielding a displacement
u(x).

Green’s function and well-posedness

We start with Green’s function that represents the integral kernel of the Laplace operator (here the
second-order derivative in 1D). Using Green’s function, we obtain an explicit representation formula
for the solution u. We define Green’s function as:

G(x, s) =


s(L− x)

L
if 0 ≤ s ≤ x ≤ L,

x(L− s)
L

if 0 ≤ x ≤ s ≤ L.
(17.17)

We now integrate two times the differential equation (17.16). For all ∀x ∈ [0, L], we obtain

u(x) = −
∫ x

0

(∫ t

0
f(s)ds

)
dt+ C1x+ C2, (17.18)

where C1 and C2 are integration constants. Using Fubini’s theorem (see analysis lectures), we obtain∫ x

0

(∫ t

0
f(s)ds

)
dt =

∫ x

0

(∫ x

s
f(s)dt

)
ds =

∫ x

0
(x− s) f(s)ds

and therefore
u(x) = −

∫ x

0
(x− s) f(s)ds+ C1x+ C2.

Using the boundary conditions from (17.16), we can determine C1 and C2:

u(x) = −
∫ x

0
(x− s)f(s)ds+

x

L

∫ L

0
(L− s)f(s)ds+ a

L− x
L

+ b
x

L

=

∫ x

0

(
−L(x− s)

L
+
x

L
(L− s)

)
f(s)ds+

x

L

∫ L

x
(L− s)f(s)ds+ a

L− x
L

+ b
x

L

=

∫ L

0
G(x, s)f(s)ds + a

(L− x)

L
+ b

x

L

(17.19)

in which we employed Green’s function G defined in (17.17).
Now, we are able to investigate the well-posedness (see Section 1.3.1 for the meaning of well-

posedness):

Proposition 17.6. Problem (17.16) has a unique solution and depends continuously on the problem
data via the following stability estimate:

‖u‖C2 = max(‖u‖C0 , L‖u′‖C0 , L2‖u′′‖C0) ≤ C1‖f‖C0 + C2|a|+ C3|b|,

where the constants may be different than before. If a = b = 0 (homogeneous Dirichlet conditions), the
estimate simplifies to:

‖u‖C2 ≤ C1‖f‖C0 .

178 CHAPTER 17. FINITE DIFFERENCES FOR ODES

Proof. Existence and uniquness follow immediately from the representation of the solution as

u(x) =

∫ L

0
G(x, s)f(s) ds + a

(L− x)

L
+ b

x

L
. (17.20)

The stability estimate follows via the following arguments. Green’s function G(x, s) is positive in (0, L)
and we can estimate as follows:

|u(x)| ≤ ‖f‖C0

∫ L

0
G(x, s) ds+ |a| + |b|

and ∀x ∈ [0, L], we have

∫ L

0
G(x, s) ds =

(L− x)

L

∫ x

0
sds+

x

L

∫ L

x
(L− s)ds (17.21)

(17.22)

=
(L− x)x2

2L
+
x(L− x)2

2L
=

(L− x)x

2
≤ L2

8
, in x = L/2, (17.23)

yielding

‖u‖C0 = max
x∈[0,L]

|u(x)| ≤ L2

8
‖f‖C0 + |a|+ |b|.

All values on the right hand side are given by the problem data and are therefore known. However,
the estimate is not yet optimal in the regularity of u. In the following we will see that we can even
bound the second-order derivative of u by the right hand side f .

Indeed, by differentiating the solution (17.20) (actually better to see for the G(x, s) function in
(17.21)), we obtain ∀x ∈ [0, L]:

u′(x) = − 1

L

∫ x

0
sf(s)ds+

1

L

∫ L

x
(L− s)f(s)ds− a

L
+
b

L
.

Since the integrand is still positive, we can again estimate:

|u′(x)| ≤ ‖f‖C0

1

L

∫ x

0
s ds+

1

L

∫ L

x
(L− s)ds +

|a|
L

+
|b|
L

and ∀x ∈ [0, L], the Green’s function part yields:

1

L

∫ x

0
s ds+

1

L

∫ L

x
(L− s)ds =

x2

2L
+

(L− x)2

2L
≤ L

2

thus
‖u′‖C0 = max

x∈[0,L]
|u′(x)| ≤ L

2
‖f‖C0 +

|a|
L

+
|b|
L
.

Differentiating a second time, we obtain (of course) ∀x ∈ [0, L] :

u′′(x) = −f(x)

i.e., our original PDE. Therefore, we obtain the third estimate as:

‖u′′‖C0 = max
x∈[0,L]

|u′′(x)| ≤ ‖f‖C0 .

Consequently, the solution depends continuously on the problem data and therefore the problem is
well-posed.

17.6. A BVP: BOUNDARY VALUE PROBLEM 179

Maximum principle on the continuous level

Since G(x, s) is positive in (0, L), the representation (17.20) yields immediately the maximum principle.
That is to say:

f ≥ 0, a ≥ 0, b ≥ 0 ⇒ u ≥ 0.

Remark 17.4. Intuitively this is immediately clear. Just consider a parabola function u(x) = 1
2(−x2 +

x), which is −u′′(x) = 1, where f = 1. The function is positive with maximum in 0.5 and has its minima
on the boundaries 0 and 1.

Moreover, the maximum principle yields also uniqueness of the solution. Assume that u1 and u2

are two different solutions. Their difference is w := u1 − u2. Of course the original PDE, namely
−u′′(x) = f , also holds for w. Thus: −w′′(x) = f . We apply f, a, b and −f,−a,−b and obtain
−∆w = f from which we get w ≥ 0 and −∆(−w) = −f from which we get w ≤ 0, respectively.
Consequently, w = 0 and therefore u1 = u2.

Regularity of the solution

The regularity in the case of Poisson’s problem carries over from the right hand side. If f ∈ C0([0, L]) we
have shown that u ∈ C2([0, L]). For higher regularity k ≥ 1, if f ∈ Ck([0, L]), therefore for 1 ≤ k′ ≤ k,
u(k′+2) = −f (k′) ∈ C0([0, L]) and consequently u ∈ Ck+2([0, L]). The solution is always two orders
more regular than the right hand side data f .

17.6.3 Spatial discretization

After the previous theoretical investigations we address now a finite difference discretization for Pois-
son’s problem. As previously mentioned, using finite differences, derivatives are approximated via
difference quotients. For simplicity we consider homogeneous Dirichlet boundary values. We recall the
corresponding problem:

Formulation 17.7. 
Find u ∈ C2([0, L]) such that
−u′′(x) = f ∀x ∈ (0, L),
u(0) = 0,
u(L) = 0.

(17.24)

In the first step, we need to discretize the domain by introducing discrete support points. Let
n ∈ N and the step size (spatial discretization parameter) h (the distance between two support points)
and the support points xj be defined as

h =
L

n+ 1
, xj = jh for all 0 ≤ j ≤ n+ 1.

By this construction, we have

• n inner points;

• n+ 2 total points (including the two boundary points);

• n+ 1 intervals (so-called mesh or grid elements).

The difference quotient for approximating a second order derivative is given by (recall classes to the
introduction of numerical methods, e.g., [15]):

u′′(xj) ≈
Uj+1 − 2Uj + Uj−1

h2
,

180 CHAPTER 17. FINITE DIFFERENCES FOR ODES

where we used a capitel letter U to distinguish the discrete solution from the exact solution u. In the
following, be careful with the minus sign since we approximate the negative second order derivative of
u:

−u′′(xj) ≈
−Uj+1 + 2Uj − Uj−1

h2
.

Consequently, the approximated, discrete, PDE reads:

−Uj+1 + 2Uj − Uj−1

h2
= f(xj), 1 ≤ j ≤ n,

with U0 = Un+1 = 0. Going from j = 0, . . . n, we obtain a linear equation system

1

h2



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. 0

...
. . . −1 2 −1

0 · · · 0 −1 2


︸ ︷︷ ︸

=A∈Rn×n



U1

U2
...
...

Un−1

Un


︸ ︷︷ ︸

=U∈Rn

=



f(x1)
f(x2)

...

...
f(xn−1)
f(xn)


︸ ︷︷ ︸

=F∈Rn

In compact form:
AU = F.

The ‘only’ remaining task consists now in solving this linear equation system. The solution U vector
will then contain the discrete solution values on the corresponding support (inner) points.

Remark 17.5. We could have formulated the above system for all points (including the two boundary
points):

1

h2



h2 0 · · · · · · 0
−1 2 −1 0 · · · · · · 0
... −1 2 −1

. . .
...

0
. 0

...
. . . −1 2 −1 0

0 · · · 0 −1 2 −1
0 0 · · · 0 0 0 h2


︸ ︷︷ ︸

=A∈R(n+2)×(n+2)



U0

U1

U2
...
...

Un−1

Un
Un+1


︸ ︷︷ ︸
=U∈Rn+2

=



0
f(x1)
f(x2)

...

...
f(xn−1)
f(xn)

0


︸ ︷︷ ︸

=F∈Rn+2

But we see immediately that we can save this slightly bigger matrix since the boundary values are already
known and can be computed immediately.

17.6.4 Solving the linear equation system

Depending on the fineness of the discretization (the smaller h, the smaller the discretization error as
we will see later), we deal with large matrices A ∈ Rn×n for n ∼ 106 and larger. For moderate sizes, a
direct solution à la LU or Cholesky is competitive. For large n, due to

• computational cost,

• and memory restrictions,

we have to approximate U with the help of iterative solution schemes such as Jacobi, Gauss-Seidel,
conjugate gradient, multigrid, and so forth.

17.6. A BVP: BOUNDARY VALUE PROBLEM 181

17.6.5 Well-posedness of the discrete problem

We now investigate well-posedness of the discrete problem.

Existence and uniqueness of the discrete problem

We first show that the matrix A is symmetric (A = AT , where AT is the transpose), positive definite.
A direct calculation for two vectors X,Y ∈ Rn yields

< AX,Y >n =

n∑
i=1

n∑
j=1

AijXjYi

=
1

h2

n∑
i=1

(−Xi−1 + 2Xi −Xi+1)Yi (apply entries of A to Xj)

=
1

h2

n∑
i=1

(Xi −Xi+1)Yi +
1

h2

n∑
i=1

(Xi −Xi−1)Yi

=
1

h2

n∑
i=0

(Xi −Xi+1)Yi +
1

h2

n+1∑
i=1

(Xi −Xi−1)Yi (index shift due to bc)

=
1

h2

n+1∑
i=1

(Xi−1 −Xi)Yi−1 +
1

h2

n+1∑
i=1

(Xi −Xi−1)Yi

=
1

h2

n+1∑
i=1

(Xi −Xi−1)(Yi − Yi−1)

=
n+1∑
i=1

Xi −Xi−1

h

Yi − Yi−1

h

=
n+1∑
i=1

Yi − Yi−1

h

Xi −Xi−1

h
(switch factors)

= . . . (do all steps backwards)
= < X,AY >n,

with X0 = Y0 = Xn+1 = Yn+1 = 0. This first calculation shows the symmetry. It remains to show that

< AX,Y >n

is positive definite. We now consider the term

< AX,Y >= . . . =
1

h2

n+1∑
i=1

(Xi −Xi−1)(Yi − Yi−1)

from the previous calculation. Setting Y = X yields:

< AX,X >n=
n+1∑
i=1

(
Xi −Xi−1

h

)2

≥ 0.

This shows the positivity. It remains to show the definiteness: < AX,X >n= 0 when X = 0. For all
1 ≤ i ≤ n+ 1, we first obtain

X0 = X1 = · · · = Xi−1 = Xi = · · · = Xn = Xn+1,

and the zero boundary conditions finally yield X = 0. Consequently, the matrix A is symmetric
positive definite. The eigenvalues are in R and strictly positive. Therefore, A is regular (recall the
results from linear algebra!) and thus invertible, which finally yields:

Proposition 17.8 (Existence and uniqueness of the discrete problem). The discrete problem
−Uj+1 + 2Uj − Uj−1

h2
= f(xj) 1 ≤ j ≤ n, (17.25)

with U0 = Un+1 = 0, has one and only one solution for all F ∈ Rn.

182 CHAPTER 17. FINITE DIFFERENCES FOR ODES

Maximum principle on the discrete level

As previously stated, the maximum principle on the continuous level has a discrete counterpart. Let
F be given such that Fj ≥ 0 for 1 ≤ j ≤ n. We perform an indirecte proof and show that µ :=
min

1≤j≤n
Uj ≥ 0. We suppose µ < 0 and take i ∈ {1, · · · , n} as one index (it exists at least one!) such

that the minimum is taken: Ui = min
1≤j≤n

Uj = µ. If 1 < i < n, and U is solution of AU = F , the ith

row can be written as:
2Ui − Ui+1 − Ui−1 = h2Fi ≥ 0

under the assumption on F being positive. Therefore, we split

0 ≤ (Ui − Ui+1) + (Ui − Ui−1) = (µ− Ui+1) + (µ− Ui−1) ≤ 0

because Ui = µ is the minimum value, which we assumed to be negative. To satisfy this inequality
chain it must hold:

Ui−1 = Ui = Ui+1 = µ,

which shows that also the neighboring indices i − 1 and i + 1 satisfy the minimum. Extending this
idea to all indices yields finally, U1 = Un = µ. Therefore, we can investigate the first or the last row of
the matrix A:

0 ≤ F1 = 2U1 + U2 = U1 + (U1 − U2) ≤ U1 = µ < 0.

But
0 ≤ U1 = µ < 0

is a contradiction. Consequently, µ > 0. Respecting the boundary conditions, we notice that for
U0 = Un+1 = 0 and Fj ≥ 0 for all 1 ≤ j ≤ n, we have the desired result

µ = min
0≤j≤n+1

Uj ≥ 0

showing that we have a discrete maximum principle.

Proposition 17.9 (Monotone inverse). The matrix A corresponding to the finite difference discretiza-
tion is a so-called M matrix (inverse-monotone), i.e., the inverse A−1 is element-wise non-negative,
i.e.,

A−1 ≥ 0.

Proof. For 1 ≤ j ≤ n, we fix F j = (0 · · · 1 · · · 0) = (δij)1≤i≤n, where δij is the Kronecker symbol and
Xj is the solution of AXj = F j . By construction, Xj = A−1F j and for 1 ≤ i ≤ n, the ith row can be
written as

Xj
i =

n∑
k=1

A−1
ik F

j
k =

n∑
k=1

A−1
ik δkj = A−1

ij . (17.26)

Using the maximum principle, we know that for 1 ≤ i, j ≤ n and F ji = δij ≥ 0, the solution is positive,
i.e.,

Xj
i ≥ 0

(j is the jth solution and i is the component of that solution). Thanks to (17.26), we have Xj
i = A−1

ij ,
and we obtain

A−1
ij ≥ 0,

which means that the inverse of the matrix A is an M matrix.

17.6.6 Numerical analysis: consistency, stability, and convergence

We finally investigate the convergence properties of the finite difference discretization. As we know
from ODE numerics, for linear schemes, consistency plus stability will yield convergence.

17.6. A BVP: BOUNDARY VALUE PROBLEM 183

Basics in error estimation

We recall the basics. Let Āx̄ = b̄ the continuous problem and Ax = b the discrete approximation.
Then, we define:

• Approximation error: e := x̄− x

• Truncation error: η := Ax̄− b (exact solution into numerical scheme)

• Residual (defect): ρ := Āx− b̄ (discrete solution into continuous problem)

Furthermore, when the underlying numerical scheme is linear (see ODE lectures), we have:

• Truncation error plus stability yields convergence.

In the following, it will be the same procedure that we use.

Truncation error

We first derive an expression for the truncation error η (the local discretization error), which is
obtained by plugging in the exact (unknown) solution into the numerical scheme.

Let
ej = Uj − Ūj for 1 ≤ j ≤ n,

where Ūj = (Ūi)1≤i≤n = (u(xi))1≤i≤n ∈ Rn. Then, we have for 1 ≤ i ≤ n:

(Ae)i =
[
A(U − Ū)

]
i

= (F −AŪ)i = f(xi)− (AŪ)i

= −u′′(xi)−
−Ūi+1 + 2Ūi − Ūi−1

h2

=
u(xi+1)− 2u(xi) + u(xi−1)

h2
− u′′(xi)

and thus
Ae = η (17.27)

where η ∈ Rn is the local truncation error that arises because the exact solution u does not satisfy
the numerical scheme (it is only the discrete solution U that is a solution of the discrete scheme!).
Consequently, for all 1 ≤ i ≤ n, we have

ηi :=
u(xi+1)− 2u(xi) + u(xi−1)

h2
− u′′(xi).

Consistency

The consistency is based on estimates of the local truncation error. The usual method to work with
is a Taylor expansion. We have previously established that for f ∈ C2([0, L]), we have u ∈ C4([0, L]).
Consequently, we can employ a Taylor expansion up to order 4 at the point xi, 1 ≤ i ≤ n. This brings
us to:

u(xi+1) = u(xi) + hu′(xi) +
h2

2
u′′(xi) +

h3

6
u(3)(xi) +

h4

24
u(4)(τ+

i)

u(xi−1) = u(xi)− hu′(xi) +
h2

2
u′′(xi)−

h3

6
u(3)(xi) +

h4

24
u(4)(τ−i)

with τ+
i ∈ [xi, xi+1] and τ−i ∈ [xi−1, xi]. It follows that for all 1 ≤ i ≤ n

|ηi| =
∣∣∣∣h2

24
u(4)(τ+

i) +
h2

24
u(4)(τ−i)

∣∣∣∣ ≤ h2

12
‖u(4)‖C0 =

h2

12
‖f ′′‖C0

in which we used that u(4) = −f ′′. As final result, we obtain:

184 CHAPTER 17. FINITE DIFFERENCES FOR ODES

Proposition 17.10. The local truncation error of the finite difference approximation of Poisson’s
problem can be estimated as

‖η‖∞ := max
1≤i≤n

|ηi| ≤ Cf h2, with Cf =
1

12
‖f ′′‖C0 (17.28)

Therefore, the scheme (17.25) is consistent with order 2.

Remark 17.6. We notice that the additional order of the scheme (namely order two and not one)
has been obtained since we work with a central difference quotient to approximate the second order
derivative. Of course, here it was necessary to assume sufficient regularity of the right hand side f and
the solution u.

Remark 17.7. The requirements on the regularity of the solution u to show the above estimates is much
higher than the corresponding estimates for the finite element method (FEM). In practice, such a high
regularity can only be ensured in a few cases, which is a drawback of finite differences in comparison
to finite elements. But still, we can use the method in practice, but one has to be careful whether the
results are still robust and reliable.

Stability in L∞

We now investigate the stability of the finite difference scheme. We recapitulate the matrix norm ‖.‖∞
(maximum row sum) for M ∈ Rn,n defined by

‖M‖∞ = max
1≤i≤n

n∑
j=1

|Mij |

Moreover, we denote by w(x) the exact solution for the problem in which f = 1 on [0, L]. The choice
of f = 1 is only for simplicity. More general f work as well, but will require more work in the proof
below.

Proposition 17.11. It holds:
‖A−1‖∞ = ‖W̄‖∞,

and

‖A−1‖∞ ≤
L2

8
.

Proof. For f = 1, the second derivative vanishes: f ′′ = 0. From Section 17.6.6 with (17.28) we know
that in this case

‖η‖∞ = 0

and therefore
0 = Ae = A(W − W̄)

where W ∈ Rn denotes the discrete solution corresponding to f = 1 (the full right hand side vector is
denoted by F1 in the following). Moreover, we denote W̄ = (w(xi))1≤i≤n ∈ Rn the continuous solution.
Consequently,

A(W − W̄) = 0 ⇒ AW = AW̄ ⇒ F1 = AW̄

⇒ W̄ = A−1F1 = A−1.

The last step holds because we work with f = 1 and therefore F1 = 1. For 1 ≤ i ≤ n, we obtain

W̄i =

n∑
j=1

A−1
ij (F1)i =

n∑
j=1

A−1
ij =

n∑
j=1

|A−1
ij |

17.6. A BVP: BOUNDARY VALUE PROBLEM 185

The last step holds because A is an M -matrix. Otherwise, we would not be allowed to take absolute
signs. We finally obtain:

‖A−1‖∞ = max
1≤i≤n

n∑
j=1

|A−1
ij | = max

1≤i≤n
|W̄i| = ‖W̄‖∞.

The exact solution to the problem −w′′(x) = 1 on (0, L) with homogeneous Dirichlet conditions is

w(x) =
x(L− x)

2
, which atteins its maximum at x = L/2. This yields max(w) = L2/8 and therefore,

‖A−1‖∞ ≤
L2

8
,

which shows the assertion.

Remark 17.8. The case f = 1 with η = Ae = 0 has a very practical implication. Here, the discrete
solution matches the continuous solution in the support points xi, 1 ≤ i ≤ n. This can be confirmed by
numerical simulations; see e.g., Setion 17.6.7. But be careful, this correspondance is in general only
true for f ′′ = 0 and only in 1D cases.

Remark 17.9. The previous result can be extended to other right hand sides f , which are not neces-
sarily f = 1.

Convergence L∞

With the previous two results, we can now proof convergence of the finite difference scheme. We assume
as before f ∈ C2([0, L]) and obtain:

Proposition 17.12. For the convergence of the finite difference scheme (17.25), it holds:

‖e‖∞ = ‖A−1η‖∞ ≤ ‖A−1‖∞‖η‖∞ ≤
L2

8
Cf h

2 =
L2

96
‖f ′′‖C0h2 = O(h2),

where we employed the stability and consistency estimates and (17.28). Consequently, we have quadratic
convergence as h tends to zero.

Convergence L2

In this final section, we proof a second convergence result, but now in the L2 norm. We define two
norms:

‖X‖A =

n+1∑
j=1

1

h
|Xj −Xj−1|2

 1
2

‖X‖2 =

 n∑
j=1

h|Xj |2
 1

2

and notice that < . >A and < . >2 are the corresponding scalar products.

Proposition 17.13. It holds for each X ∈ Rn:

‖X‖2 ≤ L1/2‖X‖∞ ≤ L‖X‖A.

Proof. Let X ∈ Rn for all 1 ≤ i ≤ n and we set as usually X0 = Xn+1 = 0. Then:

|Xi| =

∣∣∣∣∣∣X0 +
i∑

j=1

(Xj −Xj−1)

∣∣∣∣∣∣ =
i∑

j=1

h
Xj −Xj−1

h
∗ 1 =<

Xj −Xj−1

h
, 1 >i

≤

 i∑
j=1

h

∣∣∣∣Xj −Xj−1

h

∣∣∣∣2
1/2 i∑

j=1

h|1|2
1/2

≤ ‖X‖AL1/2

186 CHAPTER 17. FINITE DIFFERENCES FOR ODES

where we used the Cauchy-Schwarz inequality. It follows that

‖X‖∞ ≤ L1/2‖X‖A.

Moreover,

‖X‖22 =

 n∑
j=1

h|Xj |2
 ≤ ‖X‖2∞

 n∑
j=1

h

 ≤ ‖X‖2∞L.
We finally obtain

‖X‖2 ≤ ‖X‖∞L1/2 ≤ L‖X‖A.

Remark 17.10. We notice that ‖X‖2 ≤ L‖X‖A holds because X0 = 0 and
i∑

j=1

h|1|2 is bounded.

Otherwise the previous result would be not correct.

Proposition 17.14. Let X,Y ∈ Rn. For a symmetric, positive, definite matrix A, we can define the
so-called A-norm; see also Section 7.3. It holds

< X,Y >A=< AX,Y >2

and
‖e‖A ≤ L‖η‖2.

Proof. We already have shown that for all X,Y ∈ Rn, it holds

< AX,Y >n=
n+1∑
i=1

Xi −Xi−1

h

Yi − Yi−1

h
.

Therefore,

< AX,Y >2= h < AX, Y >n= h
n+1∑
i=1

Xi −Xi−1

h

Yi − Yi−1

h
=< X,Y >A

from which follows

‖e‖2A =< e, e >A=< Ae, e >2=< η, e >2≤ ‖η‖2‖e‖2 ≤ L‖η‖2‖e‖A

in which we used again the Cauchy-Schwarz inequality. This shows the assertion.

Proposition 17.15. It holds:

‖e‖A ≤ L‖η‖2 ≤ L3/2‖η‖∞ ≤ L3/2Cf h
2

and
‖e‖2 ≤ L‖e‖A ≤ L5/2Cf h

2.

In other words: the scheme (17.25) converges in the L2 norm and the A norm with order 2 when h
tends to zero.

17.6.7 Numerical test: 1D Poisson

We finish this 1D section with a numerical test implemented in octave [6].

17.6. A BVP: BOUNDARY VALUE PROBLEM 187

Homogeneous Dirichlet boundary conditions

Formulation 17.16. Let Ω = (0, 1)
Find u ∈ C2(Ω) such that
−u′′(x) = f in Ω
u(0) = 0,
u(1) = 0.

(17.29)

where f = −1. The continuous solution can be computed here and is

u(x) =
1

2
(−x2 + x).

For the discretization we choose n = 4. Thus we have five support points

x0, x1, x2, x3, x4

and h = 1/4 = 0.25.

With these settings we obtain for the matrix A (see Section (17.6.3)) including boundary conditions:

1 0 0 0 0
-16 32 -16 0 0
0 -16 32 -16 0
0 0 -16 32 -16
0 0 0 0 1

and for the right hand side vector b:

0
-1
-1
-1
0

We use the famous backslash solution operator (in fact an LU decomposition):

U = A\b

and obtain as solution U = (U0, U1, U2, U3, U4):

0.00000
-0.09375
-0.12500
-0.09375
0.00000

A plot of the discrete solution is provided in Figure 17.4. Moreover, the continuous solution can be
evaluated in the support as well. Here, we see that both solutions match. This was already suggested
by our numerical analysis; see in particular Remark 17.8.

188 CHAPTER 17. FINITE DIFFERENCES FOR ODES

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0 0.2 0.4 0.6 0.8 1

FD solution

Figure 17.4: Solution of the 1D Poisson problem with f = −1 using five support points with h = 0.25.
We observe that the approximation is rather coarse. A smaller h would yield more support points and
more solution values and therefore a more accurate solution.

Nonhomogeneous Dirichlet boundary conditions u(0) = u(1) = 1

We change the boundary conditions to

u(0) = u(1) = 1.

The right hand side then reads b = (1,−1,−1,−1, 1)T . We obtain as solution:

1.00000
0.90625
0.87500
0.90625
1.00000

Nonhomogeneous Dirichlet boundary conditions u(0) = 3 and u(1) = 2

We change the boundary conditions to

u(0) = 3 , u(1) = 2.

The right hand side then reads b = (3,−1,−1,−1, 2)T .
We obtain as solution:

3.0000
2.6562
2.3750
2.1562
2.0000

17.7. COMPUTATIONAL CONVERGENCE ANALYSIS (COMPLEMENT) 189

Figure 17.5: Solution of the 1D Poisson problem with f = −1 and nonhomogeneous boundary condi-
tions.

How can we improve the numerical solution?

An important question is how we can improve the numerical solution? A five-point approximation as
employed in Figure 17.4 is obviously not very accurate. After all previous subsections in this chapter,
the answer is clear: increasing the number of support points xn, i.e., n → ∞ in the given domain Ω
will yield h → 0 (recall h = xj+1 − xj). According to our findings in the numerical analysis section,
the discretization error will become very small and we have therefore an accurate approximation of
the given problem. On the other hand, large n will require a lot of computational resources. We have
finally to find a compromise between accuracy of a numerical solution and computational cost (recall
the concepts outlined at the beginning of these lecture notes.

17.7 Computational convergence analysis (complement)

We provide some tools to perform a computational convergence analysis. In these notes we faced two
situations of ‘convergence’:

• Discretization error: Convergence of the discrete solution uh towards the (unknown) exact
solution u;

• Iteration error: Convergence of an iterative scheme to approximate the discrete solution uh
through a sequence of approximate solutions u(k)

h , k = 1, 2,

In the following we further illustrate the terminologies ‘first order convergence’, ‘convergence of order
two’, ’quadratic convergence’, ’linear convergence’, etc.

17.7.1 Discretization error

Before we go into detail, we discuss the relationship between the degrees of freedom (DoFs) N and the
mesh size parameter h. In most cases the discretization error is measured in terms of h and all a priori
and a posteriori error estimates are stated in a form

‖u− uh‖ = O(hα), α > 0.

In some situations it is however better to create convergence plots in terms of DoFs vs. the error.
One example is when adaptive schemes are employed with different h. Then it would be not clear to
which h the convergence plot should be drawn. But simply counting the total numbers of DoFs is not
a problem though.

190 CHAPTER 17. FINITE DIFFERENCES FOR ODES

Relationship between h and N (DoFs)

The relationship of h and N depends on the basis functions (linear, quadratic), whether a Lagrange
method (only nodal points) or Hermite-type method (with derivative information) is employed. More-
over, the dimension of the problem plays a role.

We illustrate the relationship for a Lagrange method with linear basis functions in 1D,2D,3D:

Proposition 17.17. Let d be the dimension of the problem: d = 1, 2, 3. It holds

N =
(1

h
+ 1
)d

where h is the mesh size parameter (lengh of an element or diameter in higher dimensions for instance),
and N the number of DoFs.

Proof. Sketch. No strict mathematical proof. We initialize as follows:

• 1D: 2 values per line;

• 2D: 4 values per quadrilaterals;

• 3D: 8 values per hexahedra.

Of course, for triangles or primsms, we have different values in 2D and 3D. We work on the unit cell
with h = 1. All other h can be realized by just normalizing h. By simple counting the nodal values,
we have in 1D

h N
=======
1 2
1/2 3
1/4 5
1/8 9
1/16 17
1/32 33
...
=======

We have in 2D

h N
=======
1 4
1/2 9
1/4 25
1/8 36
1/16 49
1/32 64
...
=======

We have in 3D

h N
=======
1 8
1/2 27
1/4 64
...
=======

17.7. COMPUTATIONAL CONVERGENCE ANALYSIS (COMPLEMENT) 191

Discretization error

With the previous considerations, we have now a relationship between h and N that we can use to
display the discretization error.

Proposition 17.18. In the approximate limit it holds:

N ∼
(1

h

)d
yielding

h ∼ 1
d
√
N

These relationships allow us to replace h in error estimates by N .

Proposition 17.19 (Linear and quadratic convergence in 1D). When we say a scheme has a linear
or quadratic convergence in 1D, (i.e., d = 1) respectively, we mean:

O(h) = O
(1

N

)
or

O(h2) = O
(1

N2

)
In a linear scheme, the error will be divided by a factor of 2 when the mesh size h is divided by 2 and
having quadratic convergence the error will decrease by a factor of 4.

Proposition 17.20 (Linear and quadratic convergence in 2D). When we say a scheme has a linear
or quadratic convergence in 2D, (i.e., d = 2) respectively, we mean:

O(h) = O
(1√

N

)
or

O(h2) = O
(1

N

)
17.7.2 Computationally-obtained convergence order

In order to calculate the convergence order α from numerical results, we make the following derivation.
Let P (k) → P for k → 0, where k is the discretization parameter (here rather the time step size
k = tn− tn−1, but it could also be the spatial discretization parameter h) be a converging process and
assume that

P (k)− P̃ = O(kα).

Here P̃ is either the exact limit P (in case it is known) or some ‘good’ approximation to it. Let us
assume that three numerical solutions are known (this is the minimum number if the limit P is not
known). That is

P (k), P (k/2), P (k/4).

Then, the convergence order can be calculated via the formal approach P (k) − P̃ = ckα with the
following formula:

Proposition 17.21 (Computationally-obtained convergence order). Given three numerically-obtained
values P (k), P (k/2) and P (k/4), the convergence order can be estimated as:

α =
1

log(2)
log
(∣∣∣ P (k)− P (k/2)

P (k/2)− P (k/4)

∣∣∣). (17.30)

The order α is an estimate and heuristic because we assumed a priori a given order, which strictly
speaking we have to proof first.

192 CHAPTER 17. FINITE DIFFERENCES FOR ODES

Proof. We assume:

P (k)− P (k/2) = O(kα),

P (k/2)− P (k/4) = O((k/2)α).

First, we have

P (k/2)− P (k/4) = O((k/2)α) =
1

2α
O(kα)

We simply re-arrange:

P (k/2)− P (k/4) =
1

2α

(
P (k)− P (k/2)

)
⇒ 2α =

P (k)− P (k/2)

P (k/2)− P (k/4)

⇒ α =
1

log(2)

P (k)− P (k/2)

P (k/2)− P (k/4)

Example: Temporal order for FE,BE,CN in ODEs

In the following we present results for the (absolute) end time error of an ODE problem (but it could
be any other PDE problem as well) on three mesh levels (different time step sizes k) with three schemes
(FE - forward Euler, BE - backward Euler, CN - Crank-Nicolson):

Scheme #steps k Error at t_N
===
FE err.: 8 0.36 0.13786
BE err.: 8 0.36 0.16188
CN err.: 8 0.36 0.0023295
FE err.: 16 0.18 0.071567
BE err.: 16 0.18 0.077538
CN err.: 16 0.18 0.00058168
FE err.: 32 0.09 0.036483
BE err.: 32 0.09 0.037974
CN err.: 32 0.09 0.00014538
===

We monitor that doubling the number of intervals (i.e., halving the step size k) reduces the error in
the forward and backward Euler scheme by a factor of 2. This is (almost) linear convergence, which is
confirmed by using Formula (17.30) yielding α = 0.91804. The CN scheme is much more accurate (for
instance using n = 8 the error is 0.2% rather than 13− 16%) and we observe that the error is reduced
by a factor of 4. Thus quadratic convergence is detected. Here the ‘exact’ order on these three mesh
levels is α = 1.9967.

17.7.3 Spatial discretization error

We simply use now h and then

α =
1

log(2)
log
(∣∣∣ P (h)− P (h/2)

P (h/2)− P (h/4)

∣∣∣) (17.31)

in order to obtain the computational convergence order α. Here,

P (h) := uh, P (h/2) := uh/2, P (h/4) := uh/4,

where u is the discrete PDE solution.

17.7. COMPUTATIONAL CONVERGENCE ANALYSIS (COMPLEMENT) 193

17.7.4 Temporal discretization error for fixed spatial numerical solution

If in time-dependent PDEs, no analytical solution can be constructed, the convergence can again be
purely numerically determined. However, we have now influence from spatial and temporal components.
Often, the spatial error is more influential than the temporal one. This requires that a numerical
reference solution must be computed for sufficiently small h and k. If now ‘coarse’ temporal solutions
are adopted (k coarse!), the spatial mesh must be sufficiently fine, i.e., h small!, because otherwise we
see significant influences by the spatial components. Then, we perform the procedure from the previous
sections: bisection of k and observing the descrease in the corresponding norm or goal functional. That
is to say, observe for a discrete PDE solution u:

uk,hfixed,small , uk/2,hfixed,small , uk/4,hfixed,small , . . . , ukref ,hfixed,small

With this, we can set:

P̃ := ukref ,hfixed,small , P (k) = uk,hfixed,small , P (k/2) = uk/2,hfixed,small .

Of course, using P (k/4) is also an option. But keep in mind that always h must be sufficiently small
and fixed while the time step size is varied.

17.7.5 Extrapolation to the limit

In case, there is no manufactured solution, the numerical reference value can be improved by extrapo-
lation:

Formulation 17.22. Let h1 and h2 two mesh sizes with h2 < h1. The functionals of interest are
denoted by Jh1 and Jh2. Then, the extrapolation formula reads:

Jextra =
(h1 ∗ h1 ∗ Jh2 − h2 ∗ h2 ∗ Jh1)

h1 ∗ h1 − h2 ∗ h2

The value for Jextra can then be used as approximation for P̃ from the previous subsection.
A specific example from [15] realized in octave is:

% Octave code for the extrapolation to the limit
format long

h1 = 1/2^3 % Mesh size h1
h2 = 1/2^4 % Mesh size h2

% Richter/Wick, Springer, 2017, page 383
p1 = 0.784969295 % Functional value J on h1
p2 = 0.786079344 % Functional value J on h2

% Formula MHB, page 335 (Romberg/Richardson)
% See also Quarteroni, Saleri, Ger. 2014, Springer, extrapolation

pMaHB = p2 + (p2 - p1) / ((h1*h1)/(h2*h2) - 1)

% Formula Richter/Wick for extrapolated value
pRiWi = (h1*h1 * p2 - h2*h2 * p1) / (h1*h1 - h2*h2)

194 CHAPTER 17. FINITE DIFFERENCES FOR ODES

17.7.6 Iteration error

Iterative schemes are used to approximate the discrete solution uh. This has a priori nothing to do with
the discretization error. The main interest is how fast can we get a good approximation of the discrete
solution uh. One example can be found for solving implicit methods for ODEs in which Newton’s
method is used to compute the discrete solutions of the backward Euler scheme.

To speak about convergence, we compare two subsequent iterations:

Proposition 17.23. Let us assume that we have an iterative scheme to compute a root z. The iteration
converges with order p when

‖xk − z‖ ≤ c ‖xk−1 − z‖p, k = 1, 2, 3, . . .

with p ≥ 1 and c = const. In more detail:

• Linear convergence: c ∈ (0, 1) and p = 1;

• Superlinear convergence: c := ck → 0, (k →∞) and p = 1;

• Quadratic convergence c ∈ R and p = 2.

Cupic and higher convergence are defined as quadratic convergence with the respectice p.

Remark 17.11 (Other characterizations of superlinear and quadratic convergence). Other (but equiv-
alent) formulations for superlinear and quadratic convergence, respectively, in the case z 6= xk for all
k, are:

lim
k→∞

‖xk − z‖
‖xk−1 − z‖

= 0,

lim sup
k→∞

‖xk − z‖
‖xk−1 − z‖2

<∞.

Corollary 17.24 (Rule of thumb). A rule of thumb for quadratic convergence is: the number of correct
digits doubles at each step. For instance, a Newton scheme to compute f(x) = x −

√
2 = 0 yields the

following results:

Iter x f(x)
==============================
0 3.000000e+00 7.000000e+00
1 1.833333e+00 1.361111e+00
2 1.462121e+00 1.377984e-01
3 1.414998e+00 2.220557e-03
4 1.414214e+00 6.156754e-07
5 1.414214e+00 4.751755e-14
==============================

Chapter 18

Exercises

Basic notions on ODEs

Exercise 18.1. Solve:

1. y′ + y = tet, y(0) = 1;

2. y′ − y = − 1
(t+1)2

et, y(0) = 0.

Exercise 18.2. Solve:

1. y′ + y = tety, y(0) = 1;

2. On]0,+∞[, ty′ + 3y − 2t5 = 0, y(2) = 1.

Exercise 18.3. Give the general solutions of:

1. y′′ − 2y′ − 3y = 0;

2. y′′ + 4y′ + 4y = 0;

3. y′′ − 2y′ + 5y = 0.

Numerical schemes for ODEs

Exercise 18.4. Given the ordinary differential equation u′(t) = f(t, u), derive basic numerical schemes
by taking the forward and backward difference quotient for approximating u′, respectively.

Exercise 18.5. Derive stability estimates for the Crank-Nicolson scheme.

Exercise 18.6. Recapitulate and complete the steps in the BVP:

• Derive step-by-step the explicit form (17.18);

• Determine C1 and C2 and convince yourself that (17.19) holds true;

• Convince yourself by an explicit computation that u′′(x) = −f(x) follows from (17.20).

Exercise 18.7. Given the ODE problem in Section 16.1, formulate the backward Euler (BE), forward
Euler (FE), and Crank-Nicolson (trapezoidal rule) schemes and ‘compute by hand’ three steps. The
initial time is t0 = 2021 with y0 = 2 and we are interested in tN = 2024. The time step size is k = 1
(year). What do you obtain, how to you interpret the results?

195

196 CHAPTER 18. EXERCISES

Part V

Projects on numerical modeling in teams

197

Chapter 19

Project work

The second half of this class consists of numerical projects done in pairs. The idea is to develop
algorithms for a given mathematical problem statement. These algorithms then must be implemented
and carefully analyzed from a computational point of view. As programming language we encourage
to use an open-source package as for instance python, octave, or C++. Matlab (linked to octave as it
is known) is also possible in case you have a personal license, but École Polytechnique will not provide
you a license because the school supports open-source programming solutions.

19.1 Idea and formal aspects

Please have a careful look on the different projects listed below. They are related to the different topics
presented previously (mandatory sections as well as complement sections). In case you have questions,
before your choice, please let us know.

Once you made a choice and have built a team (2 or exceptionally 3 persons), you may start
working on your project. Please be careful that until the mid-term exam, you also work still
on course materials (exercises!) of the previous chapters.

19.1.1 Choice of your project and contact email addresses

Projects are in principle to be chosen among those listed below, including the topics from the previous
years. It is also possible that you devise your own project, in this case speak with us.

At latest, please make your choice on the day of the mid-term exam such that you can
immediately start working afterward. In all cases, please write us

• samuel.amstutz@polytechnique.edu

• thomas.wick@polytechnique.edu

an email to indicate:

• Subject line of this email: MAP502: choice of project

• Names of all group members;

• Your project number (Section number from below).

In the meetings No. 7,8,9, we will advise the different groups and provide further help on the specific
projects. This will be individual group work and no more lectures.

199

samuel.amstutz@polytechnique.edu
thomas.wick@polytechnique.edu

200 CHAPTER 19. PROJECT WORK

19.1.2 Final exam mid December

The end-term exam (for each group) consists of:

• A report (word or latex/pdf) of your task, which contains the problem statement, the numerical
approach(es), set-up of the numerical example(s), analysis/interpretation of the numerical results;

• A 20 minutes presentation (beamer/PowerPoint);

• Questions from our side to your presentation.

19.2 List of projects (to be confirmed)

19.2.1 Direct and iterative solution of linear equation systems

In this exercise, we develop numerical schemes for solving linear equation systems Ax = b. Let
A ∈ Rn×n with

A =
1

h2



h 0 . . .

−1 2 −1
...

0
. 0

... −1 2 −1
. . . 0 h


(19.1)

and the right hand side b ∈ Rn with b = (1, . . . , 1)T with h = 1. This matrix arises in solving for
instance the Poisson problem with finite differences or finite elements.

1. Implement Gaussian elimination and solve the above system for n = 10 and 100.

2. Implement now numerical fixed-point schemes: the Richardson iteration, Jacobi method and
Gauss-Seidel (see Section 7.2)

3. Compare iteration numbers and wall clock times for all four schemes. Which scheme is the
most efficient one? Hint: please also recall the principal differences between direct and iterative
schemes.

4. Change h = 0.5, 0.25, 0.125. What do you observe?

5. Extend A to n = 106 and solve again the problem. How much memory on your computed is
needed and what are now the wall clock times? Hint: Consider straightforward implementations
of the matrix A (each entry is stored and uses memory) as well as so-called sparse matrices in
which only non-zero entries are stored.

6. For using Richardson’s iteration, the largest eigenvalue λmax must be computed. How can this
be done efficiently? Please try to understand that two numerical methods (solving Ax = b with
Richardson and computing the eigenvalue) interact. Of course, having λmax at hand, gives a very
efficient Richardson approach, but obtaining λmax itself might be very costly. For this reason, a
trade-off in the computational cost must be envisaged.

7. Implement the LU decomposition. Can you see any difference in wall clock time / memory
consumption for (i) constructing the LU decomposition and (ii) solving Ax = b as LUx = b with
the two-step algorithm from Section 4.5.1.

8. Optional Implement the Cholesky decomposition and compare whether it is really only half of
the computational cost in comparison to the LU decomposition.

9. Optional Implement the conjugate gradient (CG) scheme according to Section 7.3. This scheme
is known to perform very well for the above system.

19.2. LIST OF PROJECTS (TO BE CONFIRMED) 201

19.2.2 Numerical methods for eigenvalues

In this exercise, we develop schemes for computing numerically eigenvalue problems. Let A ∈ Rn×n
with

A =
1

h2


2 −1
−1 2 −1

.
−1 2 −1

−1 2

 , h =
1

n+ 1
(19.2)

with h = 1e−1, 1e−3, 1e−6. See e.g. [13] chap. 9 for an interpretation of this matrix in the framework
of finite differences and also [21] for connections with vibrating strings / wave equation.

1. Implement the power method to compute the largest eigenvalue of A.

2. The inverse power method is the power method applied to A−1, without explicitly computing
A−1 since it is actually enough for that to solve linear systems of matrix A, see details in
[13]. Implement the inverse power method to compute the smallest eigenvalue of A. It is also
interesting to plot a corresponding eigenvector and compare with the notions of eigenfrequency
/ eigenmode you may know from physics.

3. To compute all eigenvalues, we adopt the so-called method of QR iterations, see e.g. [13]. In
order to construct the orthogonal matrix Q, the Gram-Schmidt procedure (easy to implement,
but numerically not stable) or Householder matrices can be used, see e.g. [21]. Further hints and
materials will be given for the groups working on this project.

4. (Optional) Implement Lanczos’ method for computing the eigenvalues, see e.g. [21].

5. Compare your implemented methods in terms of accuracy, efficiency (number of iterations), and
give an interpretation which method you would recommend to use based on your observations.

Hint 1: The power method and QR iterations are already implemented in many scientific computing
libraries. The goal is not to use such built-in commands, but to implement the methods by yourself.
Hint 2: It can be proven that for the given matrix A the eigenvalues admit the analytical expression

λk =
4

h2
sin2 kπ

2(n+ 1)
, k = 1, ..., n.

This can be used for comparisons.

19.2.3 Image compression with SVD (singular valued decomposition) - related to
eigenvalues

An interesting application of eigenvalues is the extension to non-quadratic matrices in which singular
values must be computed. The first task in this project is to work through and understand the basics
of SVD, e.g., with [13][Section 6.5]. The goal is then to study in detail Example 6.9 in [13]. A specific
emphasis shall be on the following tasks:

1. Work out the theoretical-algorithmic details of the singular value decomposition (SVD)

2. What exactly happens when using [U,S,V]=svd(A) in octave/MATLAB? If you use python,
please search for these commands in the python library descriptions.

3. After the implementation: What are the memory requirements?

4. Computational cost (wall clock time)?

5. Accuracy: how many singular values result into an acceptable accuracy?

6. Make a literature research and study another image.

202 CHAPTER 19. PROJECT WORK

19.2.4 Numerical optimization and application to regression problems

This project elaborates on exercise 15.21, where the steepest descent method was illustrated. Here we
go further and explore Newton-type methods as well as some aspects of constrained optimization.

Unconstrained optimization: Newton-type methods

∗ Newton’s method
Newton’s method in unconstrained optimization consists in solving the first order optimality con-

dition ∇J(u) = 0. With the notation of chapter 11 (listing 11.1) and exercise 15.21 it is defined by
the search direction and the stepsize:∣∣∣∣ dk = −∇2J(uk−1)−1∇J(uk−1),

sk = 1,

where ∇2J(u) is the Hessian matrix of J at point u. Note that in practice we do not compute the
inverse of ∇2J(uk−1), but ’just’ solve the linear system

∇2J(uk−1)dk = −∇J(uk−1).

Newton’s method is not necessarily a descent method (this depends whether ∇2J(uk−1) is positive
definite or not). Let us recall that convergence is only expected when the initial guess is sufficiently
close to the solution. Of course, when J is quadratic, it converges in one iteration.

1. Define for each example from exercise 15.21 or for your own examples the function ddJ(x,y)
which at point u = (x, y) provides the matrix ∇2J(u).

2. Implement Newton’s method, display the obtained solution and plot the trajectory.

3. Test the convergence when the initial point is varying. Show that convergence is not guaranteed
even for a convex function.

∗ Quasi-Newton’s methods
We refer to section 11.5.

1. Implement the DFP method and display the results and the trajectories, with H0 = I and
Armijo’s line search with γ = 0 (i.e. only check for descent).

2. Test the convergence depending on the initial point.

3. Do the same with BFGS.

∗ Comparisons
Compare the running times and recapitulate the pros and cons of each method.

Constrained optimization

We consider the least square approximation problem :

min
u∈K

J(u) =
1

2
‖u− p‖2, (19.3)

where p ∈ Rn is given, ‖.‖ is the standard Euclidean norm and K is a polyhedral convex set defined
by

K = {u ∈ Rn, Au ≤ b}.

Therefore, our goal is to compute the projection of p onto K. Note that except in some very specific
cases (we have seen the case A = I, b = 0), we have no formula for this projection.

19.2. LIST OF PROJECTS (TO BE CONFIRMED) 203

We will develop a method based on the Lagrangian

L(u, λ) = J(u) + λ · (Au− b).

The underlying idea is to penalize the constraint Au − b ≤ 0 with a weight vector λ ∈ Rm+ called
Lagrange multiplier. We expect that, by a well-chosen Lagrange multiplier λ∗, minimizing L(u, λ∗)
with respect to u in Rn will provide a solution to (19.3). Intuitively, for each individual scalar constraint
(Au− b)i ≤ 0, a two small Lagrange multiplier λi would lead to constraint violation, while a two large
one would lead to a sub-optimal solution. The question of finding an appropriate Lagrange multiplier
will be the purpose of the so-called dual problem. To introduce this we need the concept of saddle
point. We say that the pair (u∗, λ∗) ∈ Rn × Rm+ is a saddle point of L if:

L(u∗, λ) ≤ L(u∗, λ∗) ≤ L(u, λ∗) ∀(u, λ) ∈ Rn × Rm+ .

∗ A bit of theory

1. Show that if (u∗, λ∗) ∈ Rn × Rm+ is a saddle point of L then u∗ solves (19.3). Hint: see that
λ∗ · (Au∗ − b) = 0.
Note: we will admit the existence and even the uniqueness of a saddle point.

2. Given λ ∈ Rm+ , give an expression of the unique solution uλ to

min
u∈Rn

L(u, λ).

Deduce an expression of the dual criterion

D(λ) = min
u∈Rn

L(u, λ).

3. The dual problem is
max
λ∈Rm+

D(λ). (19.4)

How is this related to the notion of saddle point?

4. Uzawa’s method is the steepest ascent method with projection applied to the dual problem (19.4).
Here the projection is known! Show that this method can be written as

uk = p−ATλk−1,

λk =
(
λk−1 + α(Auk − b)

)+

(we use a fixed stepsize considering the non-normalized gradient as ascent direction).

It can be proved that if α is such that

0 < α <
2

‖A‖22
then uk converges to the solution of (19.3). Here, we use the matrix norm ‖A‖2 =

√
%(ATA) where

%(B) is the spectral radius of B.

∗ Implementation

1. Implement Uzawa’s algorithm projection(A,b,p,alpha) with stopping criterion:

‖uk+1 − uk‖ < 10−6.

2. Test with
K = {u ∈ R2, ‖u‖∞ ≤ 1}.

Check the convergence result.

204 CHAPTER 19. PROJECT WORK

Application: regression

∗ Isotonic and convex regression
Let p = (p1, ..., pn) ∈ Rn and

K = {(u1, ..., un) ∈ Rn, ui+1 ≥ ui ∀1 ≤ i < n}.

1. Construct the corresponding matrix A.

2. Use projection(A,b,p,alpha) in this case for some examples of vector p. This is isotonic
regression. Provide a graphical output.

3. Do the same with the convex regression:

K = {(u1, ..., un) ∈ Rn, ui ≤
1

2
(ui−1 + ui+1) ∀1 < i < n}

∗ Application to statistics
We want to sell honey glasses and we are interested in the optimal price to maximize both the sales

volume and our profit. To this end, we go to different cities in France and offer glasses for different
prices and take notes how many glasses were sold. These measurement data are listed in Table 19.1.

No x of sold honey glasses 50 30 25 22 27 30 26 32 28 26 21 16 8 4
Price p(x) per glass 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Table 19.1: Data of 14 measurements of different prices and the corresponding number of sold glasses.

On the same graph display the linear regression (see section 12.7.1), the isotonic (decreasing)
regression, the convex regression and the concave regression. Be careful that the implementation of
convexity / concavity must be adapted due to non-uniform x data.

19.2.5 Neural network for image classification

Implement an artificial neural network for the classification of the handwritten digits 0 and 1, for
instance taken from the MNIST database. Use a single hidden layer (see section 12.7.2) and a classical
steepest descent method for training. The detailed structure of the network and the computation of
the gradient (backpropagation) is to be discussed with us. Training is performed with a subset of the
database and testing with another subset. Study the accuracy of the classifier with respect to the
number of neurons in the hidden layer and the number of training samples. Of course, if time allows,
the classification of more digits or other images could be addressed.

19.2.6 Numerical methods for root-finding problems (I)

Develop a nonlinear iteration schemes (fixed-point and Newton) in R2 to find the root of the problem:

f : R2 → R2, f(x, y) =
(

2xay2, 2(x2 + κ)ay
)T
, (19.5)

where κ = 0.001 and a = 3.

1. Justify first that an antiderivative of f is F (x, y) = (x2 + κ)ay2. What is the relation between f
and F?

2. Compute the root of f by hand. Derive the derivative f ′ and study its properties.

3. Finally, design the requested Newton algorithm. As initial guess, take (x0, y0) = (3, 6).

19.2. LIST OF PROJECTS (TO BE CONFIRMED) 205

4. What do you observe with respect to the number of Newton iterations?

5. How could we possibly reduce the number of Newton steps?

6. Implement as a second example the system

f : R2 → R2, f(x, y) =
(

exp(x2 + y2)− 3, x+ y − sin(3(x+ y))
)T
. (19.6)

and solve the root-finding problem f(x, y) = (0, 0). How does Newton’s method perform here?

19.2.7 Numerical methods for root-finding problems (II)

We are given the Beale function

f(x, y) := (x(y − 1) +
3

2
)2 + (x(y2 − 1) +

9

4
)2 + (x(y3 − 1) +

21

8
)2.

The task is to compute the minimum min f(x, y) with the help of nonlinear solvers.

1. Implement Newton’s method.

2. Implement Newton’s method with line search.

3. Implement a quasi-Newton method (BFGS).

4. What is the minimum? Use as initial guess (x0, y0) = (0, 0).

5. How do both methods perform? Study the number of iterations.

6. Vary the initial guesses, e.g., (x0, y0) = (1,−3) to start the iterations: what do you observe in
terms of iterations? Do you still approach the same minimum?

19.2.8 Shape optimization for fluids using FreeFem++

This project is intended to students willing to make use of concepts of differential calculus and opti-
mization in infinite dimensional vector spaces. The free software FreeFem++ will be used.

The goal of this project is to design optimal shapes for Navier-Stokes flows using as main building
block the code

https://github.com/flomnes/optiflow

related to the paper [3] (an online version is freely available).

1. Explain in your own words the notion of shape derivative.

2. Explain the main aspects of the algorithm described in [3].

3. Test the algorithm on the built-in examples and study the role of some algorithmic parameters.

4. Implement your own examples, with geometries and physical parameters of your choice.

206 CHAPTER 19. PROJECT WORK

19.2.9 Discrete Fourier transform

This project deals with discrete Fourier analysis applied to signal and image processing.

1. Implement the discrete Fourier transform of a set of pairs

(xj , yj = f(xj)), xj =
2jπ

n+ 1
, 0 ≤ j ≤ n.

Test on easy cases and plot the corresponding interpolating trigonometric polynomial.

2. Apply it to the function of exercise 14.18. What are your conclusions?

3. Apply it to the function of exercise 14.17 and discuss Shannon’s theorem. Illustrate the aliasing
phenomenon for f(x) = sin(x) + sin(5x) with 9 nodes. How many nodes do we need for an exact
representation of f(x) = cos(x) cos(5x)?

4. Improve the implementation using a simple form of Cooley-Tukey’s algorithm [21]. Hint: assume
that n + 1 is a power of 2, in particular n is odd (n = 2M − 1), see [13], and using periodicity
compute ck for indices k = 0, ..., n. Discuss the computer effort in comparison with the basic
implementation.

5. Illustrate the effect of truncating the discrete Fourier transform (i.e. omitting high frequencies).
Discuss some applications in signal compression.

6. Implement the discrete Fourier transform in two dimensions [21], first in a basic way then op-
tionally in an improved way inspired from question 4.

7. Show the effect of truncating the DFT on greyscale images. Give illustrations in the context of
image denoising / compression.

8. Possible continuation: FFT for solving linear PDEs with applications in image denoising. To be
discussed with us.

19.2.10 Numerical solution of ODEs with finite differences

Let the following ODE initial-value problem be given:

y′(t) = ay(t), y(t0) = y0 (19.7)

on the time interval (t0, T) where t0 = 1 and T = 4. Let the initial value be y0 = 2. Furthermore
consider two different test cases with a = −0.25 (test 1) and a = −10 (test 2).

1. Implement the Euler method, backward Euler method, and the Crank-Nicolson method in octave
or python.

2. Recapitulate the stability regions for these three numerical schemes and compute the critical
(time) step size for the (forward) Euler scheme for test 1 and test 2.

3. Using the backward Euler method and the Crank-Nicolson method, an implicit system arises.
Formulate this system as root finding problem and formulate Newton’s method to solve these
implicit systems.

4. Using different (time) step sizes, investigate and analyze the findings (instability of the Euler
method) by evaluating the end time value y(T). Compare these values for different time step
sizes and determine computationally the convergence order (see Section 17.7).

19.2. LIST OF PROJECTS (TO BE CONFIRMED) 207

5. When the above system is running, please test your solver(s) at the nonlinear equation:

y′ = ay − by2, y(t0) = y0. (19.8)

For population growth, usually a � b. For instance, one example for the growth of the world
population is:

t0 = 1965, y0 = 3.34× 109, a = 0.029, b = 2.695× 10−12.

What was the expected world population in the year t = 2000? What is the expected world
population in t = 2021? Are these numerical solutions reasonable?

6. Optional In case of interest and time, implement higher order time-stepping schemes such as
Runge-Kutta schemes. Determine and compare the accuracy by again evaluating the end time
value y(T).

19.2.11 Predator-prey systems

In this project, we consider in more detail two coupled ODEs, namely predator-prey systems: Find
prey p(t) : [0, T]→ R and predators s(t) : [0, T]→ R such that

p′(t) = rpp(t)− αs(t)p(t) in I = (0, T]

s′(t) = rss(t) + µαp(t)s(t) in I = (0, T]

p(t0) = p0

s(t0) = s0

where rp > 0 is the prey growth rate, rs < 0 is the predator growth rate, α ∈ [0, 1] the per-capita
predation rate, and µ the conversion rate. A good and recent nice introduction can be found in
[12][Chapter 6], which is strongly recommended since useful background information is provided. In
Section 6.5.3 of [12], the following values are chosen:

rp = 0.6, rs = −0.2, α = 0.001, µ = 0.01.

and the initial values p(t0) = 5000 and s(t0) = 40.
We have the following tasks in mind:

1. Implement the Euler method, backward Euler method, and the Crank-Nicolson method in octave
or python.

2. Run simulations with the above given ODE system, parameters and initial values for T = 80
years.

3. Using the backward Euler method and the Crank-Nicolson method, an implicit system arises.
Formulate this system as root finding problem and formulate Newton’s method to solve these
implicit systems. Hints are given in Section 12.6.

4. Using different (time) step sizes, investigate and analyze the findings (instability of the Euler
method) by evaluating the end time value p(T) and s(T). Compare these values for different
time step. sizes and determine computationally the convergence order (see Section 17.7)

5. Extend the predator-prey model and include the internal interaction rates σp and σs, [12][p.
183ff].

6. Run again numerical simulations.

208 CHAPTER 19. PROJECT WORK

19.2.12 Neural network approximation of ODEs

Implement a neural network to approximate the solution of an ODE problem. The performance shall
be compared to a classical implementation using finite differences as we have studied previously in
class. As direction use the work presented in [10] (available via open access).

The problem statement is:

u′(x) = u(x)− u(x)2, in (0, T]

u(0) = 0.5

with T = 10.
The specific tasks are:

1. Read and understand [10].

2. Formulate a root-finding problem of the form F (x, u) = 0 and formulate the least-squares problem

E(w) =
1

2

N∑
i=1

‖ti − yi‖2

where w is the neural network weight vector, ti contains given information (initial conditions
and simply zeros because of F (x, u) = 0) and yi the unknown information (initial data and the
discrete values of F (xi, y) = 0) to be approximated (see [10], Section 3).

3. Please make clear and understand how the weight vector w is trained, how the collocation points
x1, . . . , xN2 (make clear yourself why N2 and not simply N is taken here) are chosen, and how it
is possible to determine with this approach a solution of the ODE in the time interval [0, T].

4. Implement a neural network approximation for the previous problem statement.

5. Implement a finite difference (e.g., forward Euler) for the previous problem statement.

6. Compare the computational cost: which one is faster?

7. Study in more detail initial weights for the neural network.

8. Study the learning rate in more detail.

9. Except the computational cost, what are other advantages and/or shortcomings of using neural
networks for solving ODEs.

10. Apply the neural network and also finite differences to a second problem:

u′(x) = sin(x)− u(x)

x
, in (0, T]

u(π) = 1

with T = 4 and T = 12.

19.3 Practical hints during the project work and final presentation

19.3.1 Typical guideline questions

During the projects, some typical aspects of interest are:

• Why does the algorithm converge/not converge?

• Could the algorithm be more efficient? Why/why not?

19.3. PRACTICAL HINTS DURING THE PROJECT WORK AND FINAL PRESENTATION 209

• Are there alternative algorithms? Do they converge better?

• Try to explain your observations either mathematically or in a rigorous computational fashion.

• What do you observe? What is your personal interpretation of the results?

These (and possibly more) results shall be presented in a presentation and a written report. For more
guideline questions, please also see Section 1.4.2.

19.3.2 Hints for presenting results in a talk (final exam)

We collect some hints to make good presentations using, for instance, Beamer Latex or PowerPoint:

1. Structure your talk clearly: what is the goal? How did you manage to reach this goal? What are
your results? What is your interpretation? Why did you choose specific methods (advantages /
shortcomings in comparison to other existing techniques)?

2. Title page: title, author names, co-authors (if applicable), your institute/company, name of event
you are talking.

3. Page 2: list of contents.

4. Conclusions at the end: a few take-home messages.

5. Rule of thumb: one minute per slide. For a 20 minutes presentation a good mean value is to
have 20 slides.

6. A big risk of beamer/Power-Point presentations is that we rush over the slides. You are the
expert and know everything! But your audience is not. Give the audience time to read the slide!

7. Taylor your talk to the audience!

8. Put a title on each slide!

9. In plots and figures: make lines, the legend, and axes big enough such that people from the back
can still read your plots. A good no go, bad example is shown in Figure 17.1 in which the
legend is by far too small. Do not do that!

10. Tables with numbers: if you create columns of numbers do not put all of them. If you have many,
you may mark the most important in a different color to highlight them.

11. Do not glue to your slides. Despite you have everything there, try to explain things in a free
speech.

12. Less is more:

(a) Do not put too much text on each slide!
(b) Do not write full sentences, but use bullet points!
(c) Do not use too fancy graphics charts, plots, etc, where everything is moving, etc.
(d) Do not try to pack everything you have learnt into one presentation. Everybody believes

that you know many, many things. The idea of a presentation is to present in a clear way
a piece of your work!

13. As always: the first sentence is the most difficult one: practice for yourself some nice welcome
words to get smoothly started.

14. Practice your final presentation ahead of time either alone, with friends or colleagues.

15. Just be authentic during the presentation.

16. If you easily become nervous, avoid coffee before the presentation.

210 CHAPTER 19. PROJECT WORK

19.3.3 Some example pages of a presentation

Figure 19.1: Title page. In the footline, the name, topic, and page number is displayed. Page numbers
help the audience to point more precisely to a specific page when the talk is open for questions.

Figure 19.2: Page 2.

19.3. PRACTICAL HINTS DURING THE PROJECT WORK AND FINAL PRESENTATION 211

Figure 19.3: Some page with precise statements; not overpacked, bullet points, if not too exhausting
colors may be used, ...

Figure 19.4: When switching to a new section, you may want to display the table of contents again to
focus on this new section.

212 CHAPTER 19. PROJECT WORK

Figure 19.5: Some page representing the configuration, goals, and references of a numerical example.

Figure 19.6: Some page with results. If too many lines in a table, please use . . . (dots). A reference
to published literature can be added as well. In such slides, please also interpret your findings: why
did you get those numbers? How did you obtain these findings? Do they make sense? Did you expect
something else? Do theory and algorithms (numerics) match?

19.3. PRACTICAL HINTS DURING THE PROJECT WORK AND FINAL PRESENTATION 213

Figure 19.7: Some other page with information on the software that was used to obtain the results.

Figure 19.8: Conclusions with short and precise take-home messages and summary of the key results.
If applicable (rather in a scientific research presentation and not in this class in terms of an exam),
you may want to add ongoing or future work.

214 CHAPTER 19. PROJECT WORK

Bibliography

[1] W. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenvalue problem.
Quart. Appl. Math., 9:17–29, 1951.

[2] M. Braun. Differential equations and their applications. Springer, 1993.

[3] C. Dapogny, P. Frey, F. Omnès, and Y. Privat. Geometrical shape optimization in fluid mechanics
using FreeFem++. Struct. Multidiscip. Optim., 58(6):2761–2788, 2018.

[4] P. Deuflhard. Newton Methods for Nonlinear Problems, volume 35 of Springer Series in Compu-
tational Mathematics. Springer Berlin Heidelberg, 2011.

[5] P. Deuflhard and F. Bornemann. Scientific computing with ordinary differential equations. Texts
in applied mathematics. Springer, New York, 2002.

[6] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring. GNU Octave version 3.8.1 manual: a
high-level interactive language for numerical computations. CreateSpace Independent Publishing
Platform, 2014. ISBN 1441413006.

[7] C. F. Higham and D. J. Higham. Deep learning: An introduction for applied mathematicians.
SIAM review, 61(4):860–891, 2019.

[8] L. Kantorovich and G. Akhilov. Functional analysis in normed spaces. Fizmatgiz, Moscow, 1959,
German translation: Berlin, Akademie-Verlag, 1964.

[9] S. Kinnewig, L. Kolditz, J. Roth, and T. Wick. Numerical Methods for Algorithmic Systems and
Neural Networks. Hannover : Institutionelles Repositorium der Leibniz Universität Hannover,
Lecture Notes. Institut für Angewandte Mathematik, Leibniz Universität Hannover, 2022.

[10] T. Knoke and T. Wick. Solving differential equations via artificial neural networks: Findings and
failures in a model problem. Examples and Counterexamples, 1:100035, 2021.

[11] J. Nocedal and S. J. Wright. Numerical optimization. Springer Ser. Oper. Res. Financial Engrg.,
2006.

[12] A. Quarteroni and P. Gervasio. A Primer on Mathematical Modelling. Springer, 2020.

[13] A. Quarteroni, F. Saleri, and P. Gervasio. Scientific computing with MATLAB and Octave, Fourth
Edition. Texts in computational science and engineering. Springer, 2014.

[14] R. Rannacher. Einführung in die numerische Mathematik (Numerische Mathematik 0). Vor-
lesungsskriptum, 2000.

[15] T. Richter and T. Wick. Einführung in die numerische Mathematik - Begriffe, Konzepte und
zahlreiche Anwendungsbeispiele. Springer, 2017.

[16] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[17] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3), 1986.

215

216 BIBLIOGRAPHY

[18] G. Strang. Computational Science and Engineering. Wellesley-Cambridge Press, 2007.

[19] T. Wick. Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers.
Radon Series on Computational and Applied Mathematics, de Gruyter, Vol. 28, 2020.

[20] T. Wick. Sergey I. Repin, Stefan A. Sauter: Accuracy of Mathematical Models. Jahresber. Dtsch.
Math. Ver., 122:269–274, 2020.

[21] Wikipedia. Wikipedia. https://www.wikipedia.org/. Online; accessed XX XX 2021.

https://www.wikipedia.org/

Index

A norm, 186
A-stability, 172
Accuracy, 13, 22
Algorithm

Analysis, 13
Algorithms, 22
Approximation, 14
Armijo step length rule, 115

Backward Euler method, 168
Ball, 62
Banach spaces, 65
Basis

Canonical, 43
basis, 43
Big O, 20
bisection, 122
Boundary value problem, 176
BVP, 176

Canonical basis, 43
Change of variables, 109
closed set, 63
Clothesline problem, 15
compatible norms, 56
Complex numbers, 24
complex numbers, 28
Computational convergence, 189
Computational convergence analysis, 189
Computational cost LU decomposition, 48
Computational cost LU solution, 46
Concepts

In numerics, 14
Condition number

Matrix, 68, 69
condition number, 26
cone, 89
Consistency, 170, 173, 183
Convergence, 14, 173
convergence (sequence), 64
Convergence order

Computationally obtained, 191
Cost function, 111
Crank-Nicolson, 169
Critical point, 112

Cross product, 106

Damped Newton, 134
damping parameter, 72
Defect, 126
descent method, 73
Descent methods, 72
determinant, 43
Diagonal dominant, 55
Diagonal-dominant matrix, 55
Diagonalization, 57
Difference quotient, 143
Differential equations, 21
dimension, 43
Direct solution linear systems, 35
Discrete Fourier transform, 149
Discretization

Finite differences, 179
Spatial, 179

Discretization error, 17, 191
Divergence, 106
double precision, 25

Efficiency, 13, 22
Eigenspace, 57
Eigenvalues, 57

Power method, 59
Eigenvectors, 57
equivalent norms, 64
Error, 17

Discretization, 17
Implementation, 17
Interpolation, 142
Model, 17
Numerical quadrature, 17
Programming, 17
Regularization, 17
Round-off, 17

Errors, 14
Errors in numerical mathematics, 17
Euler

Backward, 169
Implicit, 169

Euler method, 168
Existence

217

218 INDEX

Finite differences, 181
Explicit schemes, 168
Extrapolation to the limit, 193

Fast Fourier transform, 149
FD, 167
FFT, 149
Finite differences, 167
fixed point, 123
Fixed point methods, 70
Floating point numbers, 24
floating-point numbers, 24
Forward Euler method, 168
Fourier series, 151

Convergence, 151
Fourier transform, 152
Frobenius matrix, 47

Galerkin orthogonalty, 74
Gauss elimination, 46
Gauss quadrature, 147
Gauss-Seidel, 70
Gauss-Seidel method, 72
Gaussian elimination, 35
Generalized minimal residual, 80
GMRES, 80
Gradient descent, 72, 73
gradient descent

projection, 116
Green’s function, 177
Growth of a species, 163
Guiding questions

In differential equations, 21

Hermitian matrix, 39, 58
Hermitian positive definite matrix, 55
Hessian, 106
Hilbert spaces, 65

Implicit Euler method, 168
Implicit schemes, 168
induced norm, 56
Interpolation

Polynomial, 141
Interpolation error, 142
Inverse matrix, 41
Iteration error, 194
Iterative solution, 70
IVP, 167

Jacobi, 70
Jacobi method, 72
Jacobian, 105
Jacobian matrix, 129

Krylov space, 74

Landau symbols, 20
Line search, 134, 135
linear convergence, 121
Linear regression, 137
Linear systems, 35

Direct solution, 35
LU decomposition, 46

Little o, 20
Local truncation error, 183
LU, 48

Computational cost, 48
LU decomposition, 46

M matrix, 182
machine epsilon, 25
Machine learning, 138
Machine precision, 25
machine precision, 25
Mathematical modeling, 13
Matrices, 35, 37

Invertible, 41
Properties, 37

matrix norm, 56, 66
Maximum principle

Continuous level, 179
Discrete, 182

Metric, 18, 19
Metric space, 18
metric space, 18
Minimum

strict, 113
Multiindex notation, 105

Nabla operator, 105
Neural network, 138, 204
Newton globalization, 135
Newton’s method, 118, 125, 136

Damped, 134
Globalization, 133
Line search, 134
Defect-correction, 126
overview, 126

Newton-Kantorovich theorem, 130
Norm, 19
norm, 55, 62, 66
Normal cone, 90
Normed space, 18
normed space, 19
Norms, 18
Numbers

Complex, 24

INDEX 219

Floating point, 24
Real, 24

numbers, 24
Numerical analysis

Finite differences, 182
ODE, 169

Numerical concepts, 14, 22
Guiding questions, 21

numerical differentiation, 143
first derivative, 143
second derivative, 144

Numerical integration, 144
Numerical methods, 13
numerical modeling, 13
Numerical projects, 199
Numerical quadrature, 144

Interpolatory, 146

Objective function, 111
octave, 186
ODE, 167

A-stability, 172
Boundary value problem, 176
Consistency, 173
Convergence, 173
Finite differences, 167
First order, 164
Logistic, 164
Model problem, 164, 169
Newton’s method, 136
Nonlinear coupled system, 136
Second order, 165
System, 136
Well-posedness, 165
Model problem, 164

One-step θ, 168
One-step schemes, 168
Open set, 63
Optimality conditions, 112
Optimization

Constrained, 111
Continuous, 111
Discrete, 111
Unconstrained, 111

order of convergence, 121
Overflow, 25

Parseval equality, 152
PCG, 79
Pivot element, 50
Pivot matrix, 51
Pivoting, 50, 52
Poisson

1D simulations, 186
Poisson problem, 176
Polynomial interpolation, 141
Population, 163
Positive definite matrix, 40
positive orthant, 89
Power method, 59
Preconditioning, 78

CG, 79
GMRES, 82

Programming, 199

quadratic convergence, 121
Quadrature formula, 144

Composite, 146
Order, 146

Real numbers, 24
real numbers, 24
Regression

Linear, 137
Regularity

Poisson 1D, 179
Relationship mesh size and DoFs, 190
relaxation parameter, 72
Research software, 13
Richardson, 70
Richardson extrapolation, 193
Robustness, 13, 22

Saddle point, 113
Schwarz’ theorem, 105
scientific computing, 13
Search direction, 72
set, 23
single precision, 25
Software, 13
Software development, 199
spectral norm, 56
spectral radius, 58, 59, 66
Stability, 170, 171, 184
Stationary point, 112
Stiffness, 167
Symmetric matrix, 39
symmetric matrix, 58

Taylor expansion, 183
tolerance, 25
Trapezoidal rule, 169
Trigonometric interpolation, 149
Truncation error, 183

Underflow, 25
Uniqueness

220 INDEX

Finite differences, 181

vector space, 61
vectors, 37

Well-posedness
Finite differences, 181
Poisson in 1D, 177

well-posedness, 17

	I Introduction
	Guiding questions in numerical modeling
	What is numerical modeling?
	Concepts in numerical mathematics
	Definitions
	Examples

	First related mathematical notions
	Well-posedness
	Measuring errors
	Illustration of three errors (experimental, theory, numerical) with the clothesline problem
	Measuring distances: metrics and norms
	Application in numerical mathematics
	Notation for the complexity and convergence orders: Landau symbols

	Differential equations as an example and guiding questions
	Definitions of differential equations
	Some important questions and tasks with regard to numerical concepts

	Basic ingredients: sets and numbers
	Sets
	Classical sets of numbers
	Real numbers and their usage in computers: floating-point number system
	Round-off errors and machine precision
	Influence of machine precision in numerical mathematics
	Stability and condition number

	Complex numbers: a brief reminder

	Exercises

	II Linear algebra and related numerical notions
	Linear systems and matrices
	Gaussian elimination for solving linear systems
	General definitions
	Elementary row operations, row echelon systems
	The Gaussian elimination method

	Vectors and matrices
	Basic definitions
	Operations on matrices
	Matrix of a linear system
	Invertible matrices

	Linear subspaces of Kn
	Definitions and first properties
	Bases
	Dimension

	Determinant
	Expansion with respect to a row or a column
	Properties
	Determinant of a product, characterization of invertible matrices

	LU decomposition (complement)
	Matrix representation of Gaussian elimination
	LU decomposition for diagonal-dominant matrices
	Case of Hermitian positive definite matrices: Cholesky decomposition

	Canonical inner product, Euclidean norm, matrix norm
	Canonical inner product and Euclidean norm
	Matrix norm

	Diagonalization of square matrices and applications
	Eigenvalues, eigenvectors, diagonalization
	Eigenvalues and eigenvectors
	Diagonalization
	Case of Hermitian matrices

	Applications
	The power method (complement)

	Vector spaces and elements of topology
	Vector spaces
	General definition
	Vector spaces of finite dimension

	Basic topology
	Norms and balls
	Open sets, closed sets (complement)
	Closure, interior (complement)
	Converging sequences (complement)
	Equivalent norms

	Special normed spaces (complement)
	Inner product spaces
	Banach and Hilbert spaces
	Complement on matrix norms

	Linear equation systems and iterative solvers (complement)
	Stability analysis of linear equation systems
	Motivation
	Stability analysis

	Basic solvers
	Fixed-point solvers: Richardson, Jacobi, Gauss-Seidel
	Gradient descent

	Conjugate gradient method
	Formulation of the CG scheme.
	Convergence analysis of the CG scheme

	Preconditioning
	GMRES - generalized minimal residual method

	Convex sets and systems of linear inequalities
	Convex sets: definition and first properties
	Convex combinations and convex hull (complement)
	Convex combinations
	Convex hull

	Projection
	Cones
	Definitions
	Normal cone (complement)
	Polar cones (complement)

	Systems of linear inequalities, introduction to linear programming
	Linear inequality systems: Fourier-Motzkin elimination
	Conical hull and Farkas lemma (complement)
	Introduction to linear programming (complement)

	Exercises

	III Functions and related numerical notions
	Functions of one or several variables
	Basic concepts
	Differentiation
	Partial derivatives
	Fréchet derivative, Jacobian matrix
	Chain rule
	Schwarz' theorem
	Multiindex notation (complement)

	Classical differential operators
	Taylor expansions, Hessian matrix
	Convex functions
	Definitions
	Characterization

	Integration by parts
	Substitution rule
	Integration by parts and Green's formulae

	Introduction to nonlinear optimization
	General concepts
	Brief classification of optimization problems
	Problem setting
	Global and local minimizers
	Optimality conditions

	Convex case (complement)
	Specific aspects of convex optimization
	Towards constrained optimization

	Steepest descent method
	Descent methods
	Steepest descent
	Line search

	Gradient descent with projection (complement)
	Application of Newton-type methods (complement)
	Newton's method for optimization
	Quasi-Newton methods

	Solving nonlinear equations
	Introduction to iterative methods
	The bisection method
	Fixed points
	Reminder: the (Banach) fixed point theorem
	Attractive and repulsive fixed points
	Calculating fixed points

	The Newton method
	Generalization to higher dimensions (complement)
	Newton's method: going from R to higher dimensions
	A basic algorithm for a residual-based Newton method
	Example of the basic Newton method
	Example using a Newton defect-correction scheme including line search
	Newton's method in higher dimensions and the Newton-Kantorovich theorem
	Globalization of Newton's method

	Newton's method for a coupled, nonlinear system of ODEs (complement)
	Iteration schemes in nonlinear optimization (complement)
	Linear regression
	Neural networks

	Interpolation and approximation
	Polynomial interpolation
	Introduction
	Existence, uniqueness, expression
	Interpolation error (complement)

	Numerical differentiation
	Approximation of the first derivative
	Approximation of the second derivative (complement)

	Numerical integration (complement)
	Goal
	General principle
	Elementary quadrature formula
	Simplest rules: box, mid-point, trapezoidal, Simpson
	Composite quadrature formula
	Order of a quadrature formula
	Interpolatory quadrature
	Gauss quadrature

	Trigonometric interpolation, Fourier series and Fourier transform
	Trigonometric interpolation: discrete Fourier transform
	Fourier series
	Series
	Convergence of Fourier series
	Parseval's equality
	Applications

	Fourier transform
	General concept
	A glimpse on the Dirac distribution

	Exercises

	IV Differential equations
	Introduction to ODEs (ordinary differential equations)
	An introductory example
	The model ODE
	Well-posedness
	Second order linear ODE's with constant coefficients

	Finite differences for ODEs
	Problem statement of an IVP (initial value problem)
	Stiff problems
	One-step schemes
	The Euler method
	Implicit schemes

	Numerical analysis
	Stability
	Consistency / local discretization error - convergence order
	Convergence

	Detailed numerical tests
	Problem statement
	Discussion of the results for test 1 with a=0.25
	Investigating the instability of the forward Euler method: test 3 with a=-10

	A BVP: boundary value problem
	A 1D model problem: Poisson
	Well-posedness of the continuous problem
	Spatial discretization
	Solving the linear equation system
	Well-posedness of the discrete problem
	Numerical analysis: consistency, stability, and convergence
	Numerical test: 1D Poisson

	Computational convergence analysis (complement)
	Discretization error
	Computationally-obtained convergence order
	Spatial discretization error
	Temporal discretization error for fixed spatial numerical solution
	Extrapolation to the limit
	Iteration error

	Exercises

	V Projects on numerical modeling in teams
	Project work
	Idea and formal aspects
	Choice of your project and contact email addresses
	Final exam mid December

	List of projects (to be confirmed)
	Direct and iterative solution of linear equation systems
	Numerical methods for eigenvalues
	Image compression with SVD (singular valued decomposition) - related to eigenvalues
	Numerical optimization and application to regression problems
	Neural network for image classification
	Numerical methods for root-finding problems (I)
	Numerical methods for root-finding problems (II)
	Shape optimization for fluids using FreeFem++
	Discrete Fourier transform
	Numerical solution of ODEs with finite differences
	Predator-prey systems
	Neural network approximation of ODEs

	Practical hints during the project work and final presentation
	Typical guideline questions
	Hints for presenting results in a talk (final exam)
	Some example pages of a presentation

	Bibliography
	Index

