
 

1 

 

 
 

Aus der Arbeitsgruppe Cellular Neurosciences des Max-Delbrück-
Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft und 
dem Aflac Cancer and Blood Disorders Center der Emory University 

 
 

DISSERTATION 

 
 

 Subtype-specific differences in the cellular glioblastoma 
microenvironment 

 
 

 
zur Erlangung des akademischen Grades  

Doctor medicinae (Dr. med.) 
 
 
 
 

vorgelegt der Medizinischen Fakultät  
Charité – Universitätsmedizin Berlin 

 
 
 

von  
 

Ioannis Kaffes 
 

aus Larisa 
 
 
 
 

Datum der Promotion: 25.11.2022 
 
 
 

  



 

2 
 

Table of Contents 

List of Abbreviations ..................................................................................................... 3 

Abstract .......................................................................................................................... 4 

Synopsis......................................................................................................................... 8 

Introduction ................................................................................................................ 8 

Methods .................................................................................................................... 11 

The Cancer Genome Atlas ..................................................................................... 11 

Human GBM tissue samples .................................................................................. 11 

Subtype assignment using NanoString nCounter Technology ............................... 11 

Immunohistochemistry (IHC) .................................................................................. 12 

Image acquisition and quantification ...................................................................... 12 

Microglia/TAM shape analysis ................................................................................ 14 

Subtype prediction model ....................................................................................... 14 

Statistics ................................................................................................................. 15 

Results ...................................................................................................................... 16 

Analysis of TCGA gene expression and survival data ............................................ 16 

Immune cell infiltration in human GBM and control samples .................................. 19 

Tumor-associated macrophages and T cells in GBM subtypes .............................. 20 

GBM subtype prediction model based on immune cell infiltration .......................... 25 

TAM plasticity in the peri-tumor area of GBM ......................................................... 27 

Discussion ................................................................................................................ 29 

Bibliography ............................................................................................................. 33 

Statutory Declaration .................................................................................................. 40 

Declaration of contribution to the top-journal publication ...................................... 41 

Extract from the Journal Summary List..................................................................... 42 

Copy of the publication ............................................................................................... 50 

Curriculum Vitae Ioannis Kaffes ................................................................................ 61 

List of Publications ..................................................................................................... 63 

Acknowledgments ....................................................................................................... 64 

 

  



 

3 
 

List of Abbreviations 

 
BMDM Bone marrow-derived macrophage 

CI Confidence Interval 

CL  Classical 

CSF-1 Colony stimulating factor 1 

EGFR Epidermal Growth Factor Receptor 

FFPE Formalin-fixed, paraffin-embedded 

FOXP3 Forkhead box P3  

GBM Glioblastoma 

GBW Gehan-Breslow-Wilcoxon test 

G-CIMP Glioma-CpG Island Methylator Phenotype 

IBA1 Ionized calcium binding adapter molecule 1 

IDH1 Isocitrate dehydrogenase 1 

IHC Immunohistochemistry 

MC Log-rank (Mantel-Cox) test  

MCP Monocyte chemoattractant protein 

MES Mesenchymal 

NF1 Neurofibromin 1 

NFκB Nuclear factor kappa B 

NL Neural 

PDGFB Platelet-derived growth factor subunit B 

PDGFRA Platelet-derived growth factor receptor alpha  

PN Proneural 

TAM Tumor-associated macrophage 

TCGA The Cancer Genome Atlas 

TNF Tumor necrosis factor 

Treg Regulatory T cell 

   



 

4 
 

Abstract 

Background 

Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor 

in adults. In order to improve our understanding of its complex pathophysiology and 

facilitate the advancement of personalized treatment options, recent research efforts 

have been undertaken to identify clinically relevant subgroups. As a result, three 

molecular subtypes have been consistently proposed: Proneural, Mesenchymal, and 

Classical GBM. Concurrently, constituents of the tumor microenvironment and their 

tumor-promoting properties have received growing attention. Special emphasis has 

been placed on tumor-associated macrophages (TAMs), a mixed cell population of 

activated brain-resident microglia and infiltrating monocyte-derived macrophages, as 

well as on different T cell populations. The aim of this study was to investigate how the 

cellular immune profile differs among the GBM subtypes. 

 

Methods 

Gene expression data obtained from The Cancer Genome Atlas (TCGA) were utilized to 

analyze subtype-specific differences in the immune profiles as well as the effects of 

marker levels on patient survival. Subsequently, human formalin-fixed, paraffin-

embedded tumor samples were molecularly characterized using NanoString nCounter 

Technology and assigned to the three GBM subtypes. Automated immunohistochemical 

staining was performed for IBA1, a specific marker of TAMs, as well as CD3, CD8 and 

FOXP3, which represent different T cell-populations. Image analysis was then carried 

out to quantify immune cell infiltration. Furthermore, the marker combination was 

employed to develop a statistical model to predict the GBM subtype of a tumor based 

on its immune profile. 

 

Results 

TCGA and immunohistochemical analyses demonstrated stark differences in the 

composition of the immune cell compartment among the GBM subtypes. Mesenchymal 

GBM was characterized by significantly higher levels of TAMs as well as cytotoxic, 

helper and regulatory T cells. Moreover, a positive correlation between TAM and T cell 

infiltration was observed. Survival analysis based on TCGA data revealed a converse 

effect of AIF1, a gene encoding the TAM-marker IBA1, in Proneural and Mesenchymal 

GBM: in the former, high expression was associated with a worse prognosis, while 
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conferring a survival benefit in the latter. The subtype prediction-model was able to 

identify Mesenchymal tumors with a high sensitivity. 

 

Conclusion 

In order to improve patient outcomes, therapies that take into account tumor diversity 

are required. In this study, we demonstrated that GBMs are characterized not only by 

differences in their molecular profile, but also by a considerable heterogeneity of their 

immune microenvironment. This will hopefully contribute to the development of more 

effective immunotherapeutic approaches. Further research is required to illuminate the 

subtype-specific functional role that immune cells play in GBM pathogenesis.    
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Einleitung 

Das Glioblastom ist der häufigste und aggressivste maligne hirneigene Tumor. Um das 

Verständnis der Pathophysiologie der Erkrankung zu verbessern sowie die Entwicklung 

personalisierter Therapiestrategien voranzutreiben, hat sich die Forschung intensiv um 

die Identifizierung klinisch relevanter Subgruppen bemüht. Eine der häufigsten 

Klassifizierungen basiert auf unterschiedlichen Genexpressionsprofilen und unterteilt 

Glioblastome in die Subtypen Proneural, Mesenchymal und Klassisch. Auch die 

zellulären Bestandteile des Tumormikromilieus und ihr Einfluss auf das 

Tumorwachstum sind zunehmend in den Fokus der wissenschaftlichen Arbeit gerückt. 

Insbesondere Tumor-assoziierte Makrophagen (TAM), eine gemischte Zellpopulation, 

welche sich aus aktivierten Mikroglia und eingewanderten Monozyten zusammensetzt, 

sowie T-Zellen spielen dabei eine übergeordnete Rolle. Das Ziel dieser Studie war es, 

die Immunzellinfiltration in den jeweiligen Subtypen des Glioblastoms zu 

charakterisieren.   

 

Methodik 

Genexpressionsdaten des The Cancer Genome Atlas (TCGA) wurden hinsichtlich der 

unterschiedlichen Immunprofile der Subtypen sowie ihrer Auswirkungen auf das 

Patientenüberleben analysiert. Zudem wurden Formalin-fixierte, Paraffin-eingebettete 

Gewebeproben mittels NanoString nCounter Technologie auf molekularer Ebene 

charakterisiert und den jeweiligen Subgruppen zugeordnet. Daraufhin wurde eine 

automatisierte immunhistochemische Färbung mit Antikörpern gegen IBA1, einem 

spezifischen Marker Tumor-assoziierter Makrophagen, sowie gegen die T-Zellproteine 

CD3, CD8 und FOXP3 durchgeführt. Die Quantifizierung der Immunzellinfiltration 

erfolgte mithilfe einer standardisierten Bildanalyse. Anhand der genannten Marker-

Kombination wurde zudem ein mathematisches Modell entwickelt, mit welchem der 

Subtyp eines Glioblastoms vorhergesagt werde sollte. 

 

Ergebnisse 

Die Analysen sowohl auf Ebene der Genexpression als auch der Immunhistochemie 

offenbarten große Unterschiede in der Zusammensetzung der Immunzellen im 

Mikromilieu der Glioblastom-Subtypen. Mesenchymale Tumoren zeichneten sich durch 

eine signifikant erhöhte Infiltration von TAM sowie zytotoxischer, Helfer- und 

regulatorischer T-Zellen aus. Zudem wurde eine positive Korrelation zwischen TAM und 
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den jeweiligen T-Zellpopulationen festgestellt. In der Überlebenszeitanalyse, basierend 

auf Daten des TCGA, zeichnete sich ein gegenteiliger Effekt hoher AIF1-Werte, eines 

Gens, welches für IBA1 kodiert, in Proneuralen und Mesenchymalen Tumoren ab: in 

Ersteren waren hohe Expressionsniveaus mit einer schlechteren Prognose 

vergesellschaftet, während sie bei Letzteren mit einem Überlebensvorteil einhergingen. 

Das statistische Prädiktionsmodell konnte Mesenchymale Glioblastome mit einer hohen 

Wahrscheinlichkeit identifizieren. 

 

Schlussfolgerungen 

Um die Prognose von Glioblastom-Patienten zu verbessern sind gezielte 

Therapiestrategien notwendig, welche die Heterogenität der Entität berücksichtigen. Die 

Ergebnisse dieser Studie untermauern die Hypothese, dass es unterschiedliche 

Subtypen des Glioblastoms gibt, und dass diese sich nicht nur hinsichtlich ihres 

molekularen Profils, sondern auch in der Zusammensetzung ihres zellulären Immun-

Mikromilieus unterscheiden. Diese Ergebnisse werden hoffentlich zur Entwicklung 

effektiverer Immuntherapien beitragen. Zukünftige Studien sind erforderlich, um die 

Subtyp-spezifischen Funktionen der Immunzellen in der Pathogenese des Glioblastoms 

zu beleuchten.   
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Synopsis 
 

Introduction 

Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor 

in the adult population (1). Despite an aggressive standard treatment protocol consisting 

of surgical resection followed by concomitant radiochemotherapy and adjuvant 

chemotherapy with the alkylating agent temozolomide, prognosis remains dismal, with a 

median survival rate of less than two years (2, 3). GBM used to be conceived of as a 

uniform entity with pseudopalisading necrosis, microvascular proliferation, high mitotic 

activity, and diffuse infiltration of the brain parenchyma constituting the main histological 

hallmarks (4). However, with the advent of high-throughput molecular sequencing, it has 

become increasingly evident that these tumors are defined by high levels of genetic and 

epigenetic heterogeneity. Thus, efforts have focused on identifying clinically relevant 

subgroups. The most widely recognized classification has been put forward by The 

Cancer Genome Atlas (TCGA) Research Network, which initially proposed four 

molecular subtypes, Proneural (PN), Mesenchymal (MES), Classical (CL), and Neural 

(NL) GBM, with the latter now being regarded as an artifact of healthy tissue sampling 

(5-7). The three remaining subtypes differ significantly with respect to their molecular 

profiles: While MES tumors harbor deletions of the region encoding the tumor 

suppressor neurofibromin 1 (NF1) and show an upregulation of genes related to the 

TNF and NFκB pathways, the CL subtype is characterized by a marked amplification of 

the epidermal growth factor receptor (EGFR) and significantly fewer mutations in the 

TP53 gene. PN GBM is defined by an amplified platelet-derived growth factor receptor 

alpha (PDGFRA). A subset of PN tumors displays a glioma-CpG Island Methylator 

Phenotype (G-CIMP), which frequently harbors mutations in isocitrate dehydrogenase 1 

(IDH1) and may indicate GBMs that arise from lower grade II or III gliomas and are 

associated with younger age as well as improved survival rates compared to primary 

GBMs (7, 8). Interestingly, single-cell analyses have revealed that multiple subtypes can 

co-exist within the same tumor (9). Nonetheless, the identified profiles represent the 

dominant subgroups at a given point in time.  

Like other human cancers, GBMs consist not only of neoplastic tumor cells, but rather of 

complex cellular networks that also include, among others, stromal cell constituents 

such as endothelial cells, pericytes, fibroblasts, astrocytes, and immune cells. 

Collectively, these cells and their products are commonly referred to as the tumor 
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microenvironment (10). Neoplastic and non-neoplastic cells together form anatomically 

and functionally distinct niches, which drive tumor invasiveness and treatment 

resistance (11).  Especially the role of immune cells in GBM has recently been the 

subject of growing research interest. One group of immune cells in particular, tumor-

associated macrophages (TAMs), has generated excitement as a possible target for 

novel therapies. This mixed population of brain-resident yolk-sac derived activated 

microglia and infiltrating bone marrow-derived monocytes (BMDMs) has been shown to 

constitute up to 45% of cells in GBM (12, 13). They are recruited to gliomas through 

factors such as CSF-1 or members of the monocyte chemoattractant protein (MCP) 

family, which are secreted by neoplastic tumor cells (14, 15). In turn, these immune 

cells have been shown to switch to an immunosuppressive phenotype and are co-opted 

to promote GBM growth and invasion though reciprocal interactions with tumor cells 

(13, 16, 17).  

The role of different T cell subpopulations in GBM, especially CD4+ T helper, CD8+ 

cytotoxic, and FOXP3+ regulatory T cells, has also attracted significant attention, 

especially given the success of immunotherapeutic approaches in other entities such as 

malignant melanoma (18-21).  

Given the relevance of the immune microenvironment in GBM pathogenesis, the 

question arises to what extent the GBM subtypes differ with respect to their immune cell 

composition. Previous gene expression studies have demonstrated an increased 

enrichment of immune response-related genes in human MES tumors compared to the 

other GBM subtypes (6, 7, 22, 23). Leveraging the RCAS/tv-a somatic gene transfer 

system, our group has been able to model the three GBM profiles by focusing on the 

main genetic driver mutations PDGFB-overexpression, NF1-silencing, and EGFRvIII-

expression. With the help of these immunocompetent mouse models, which accurately 

recapitulate the transcription patterns associated with human PN, MES, and CL GBM 

respectively, we have demonstrated increased levels of TAMs in the MES subtype (24, 

25).  

The aim of this study was to investigate whether immune cell infiltration also differs 

among the distinct GBM subtypes in human GBM (26). Based on gene expression and 

immunohistochemical data, we identified significantly higher levels of TAMs and T cells 

in human MES GBM. Furthermore, we revealed that high levels of AIF1, a gene 

encoding the TAM-marker IBA1, have a positive effect on the survival of patients with 

MES tumors, but confer a survival disadvantage in PN GBM. Finally, we were able to 
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create a predictive model that accurately identified MES GBMs based on their immune 

cell profile. 
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Methods 

The Cancer Genome Atlas  

TCGA has compiled publicly available molecular information pertaining to a variety of 

cancer types, including GBM. Gene expression levels related to the cells of interest 

(AIF1, CD8B, CD4, CD3G, FOXP3) as well as survival data generated by TCGA were 

obtained in August 2016 using the following pathway from the tool “cBioPortal for 

Cancer Genomics”: Cancer Study: Glioblastoma Multiforme (TCGA, Provisional), 

Genomic Profiles: mRNA Expression z-Scores (microarray) (27, 28). The analysis was 

limited to the 357 primary GBM samples with complete gene expression and subtype 

information as described by Verhaak et al (7). Of these, 69 belonged to the PN, 106 to 

the MES, and 101 to the CL subtype. 55 specimen that showed a NL signature and 26 

that were G-CIMP positive were not included in the subtype-specific analysis. In order to 

determine the effect of high and low expression levels of the genes of interest on patient 

survival, these levels were defined as the average of all samples in a given subtype 

plus/minus 0.5 standard deviation. 

 

Human GBM tissue samples 

Formalin-fixed, paraffin-embedded (FFPE) human glioblastoma as well as post-mortem 

naïve brain samples along with anonymized clinical information were supplied for this 

study by Emory University, Memorial Sloan Kettering Cancer Center, Uppsala 

University, and the University of Washington Medical Center. The GBM specimen were 

graded by board-certified pathologists based on the 2007 World Health Organization 

Classification of Tumors of the Central Nervous System (4). Primary and recurrent 

tumor samples were included in the study. Ethical approval by institutional review 

boards was obtained prior to the commencement of the present study. 

 

Subtype assignment using NanoString nCounter Technology 

mRNA was extracted from the human GBM samples and gene expression levels were 

analyzed by NanoString nCounter Technology (NanoString Technologies, Seattle, 

U.S.A.) using custom-made probes for 152 genes designed by Cameron Brennan and 

Jason T. Huse (29). Subsequently, subtypes were assigned based on differential 

expression patterns. 
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Immunohistochemistry (IHC) 

The FFPE GBM and control samples were sectioned at 5 micrometers. Automatic 

immunohistochemical staining was performed using the DISCOVERY XT platform 

(Ventana Medical Systems, Inc., Tucson, U.S.A) to ensure consistency. TAM and 

microglia were stained with antibodies that bind to ionized calcium binding adapter 

molecule 1 (IBA1), a protein involved in membrane ruffling and phagocytosis. 

Antibodies targeting CD3 and CD8, both of which function as co-receptors for the T cell 

receptor, stained the entire T cell population and cytotoxic T cells, respectively. 

Regulatory T (Treg) cells were stained with the help of antibodies directed at forkhead 

box P3 (FOXP3), a key transcription factor for the development and function of these 

cells. Due to the absence of a validated and consistent antibody targeting CD4, the 

number of T helper cells was estimated to be the difference between CD3+ and CD8+ 

cells, as has been described previously (30). Since CD8+ and CD4+ cells are subsets of 

the CD3+ T cell population, the former should individually or collectively not exceed the 

number of the latter. However, in six cases, the number of CD8+ T cells was higher or 

the same as the CD3+ T cell number. As a consequence, the CD4+ T cell population 

was assumed to be equal to the FOXP3+ T cell number, which constitutes a part of the 

CD4+ population. The following primary antibodies were used: Anti-IBA1 (1:500, rabbit 

polyclonal, #019–19741, Wako Pure Chemical Ind., Ltd., Osaka, Japan); anti-human 

FOXP3, clone 259D (1:100, mouse monoclonal, #320202, BioLegend, San Diego, 

U.S.A); anti-human CD8, clone C8/144B (1:100, mousemonoclonal, code M7103, Dako, 

Glostrup, Denmark); antihuman CD3 (1:100, rabbit polyclonal, code A0452, Dako, 

Glostrup, Denmark). 

 

Image acquisition and quantification 

The stained tissue sections were converted into digital files with the help of the 

Nanozoomer 2.0HT (Hamamatsu Photonic K.K., Hamamatsu, Japan). In order to 

ensure consistency and reproducibility during cell quantification, a standardized process 

was performed on all tissue samples (Figure 1). First, based on the overall area of the 

sample, the total number of representative images to be obtained was calculated, with a 

minimum of five images per tumor. Second, given the high degree of intratumoral 

heterogeneity, each tissue sample was subdivided into regions of relatively 

homogeneous staining. These regions were then attributed a specific percentage of the 

total number of images as a function of their relative size. The image software Fiji was 
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employed for cell quantification (31). Given the abundance of TAMs in some GBM 

samples, it was not feasible to identify and quantify them individually. As a result, for 

this cell type the percentage of stained area per field was analyzed. CD3+, CD8+, and 

FOXP3+ T cells on the other hand were quantified as the total number per field. A 

magnification of 20x was used to capture the selected images. Since two different 

screens were used for quantification, this equaled an area of 0.3828 mm2 and 0.4263 

mm2. Pixel width of the images was 454 nanometers and final values were standardized 

to an area of one mm2. Necrotic tumor areas as well as peritumor regions were 

excluded from the analysis. In order to avoid confounding effects, the investigators were 

blinded to the tissue subtype during the quantification process.  

 

Figure 1. Schematic depicting the quantification process for IBA1+ TAM. The tumor 

sections were subdivided into regions of homogeneous staining intensity (left), which 

were subsequently allocated a percentage of the overall number of images based on 

their relative size. Representative images were obtained and the percentage of IBA1-

positive area (seen here as a red coloration) was quantified using the software Fiji.  
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Microglia/TAM shape analysis 

Four GBM tissue samples stained for IBA1 with clearly demarcated adjacent non-tumor 

brain tissue were selected to further investigate changes in microglia/macrophage 

morphology. In every sample, three representative images of each of the three regions 

of interest were obtained: the tumor, non-tumor, and peri-tumor area. The latter was 

defined as a 20x field in which one half resembled tumor and the other non-tumor 

regions based on cellular density and macrophage morphology. Since the number of 

primary processes per IBA1+ cell constitutes a surrogate parameter for TAM activation 

(low number of processes indicates a higher level of activation), they were counted and 

averaged in each field (32). It should be noted that the numbers of processes calculated 

in this study only represent relative values in a two-dimensional space. In order to 

further illustrate the changes in TAM density at the tumor edges, we created plot profiles 

measuring IBA1 staining intensity in four neighboring fields (non-tumor – peri-tumor – 

tumor – tumor) in each of the four GBM samples and plotted the mean and standard 

deviation with MatLab software (The MathWorks, Inc., Natick, U.S.A). Finally, IBA1 

intensity was compared between the five control brain samples and the non-tumor 

tissue adjacent to eleven GBM samples to investigate differences in microglia density. 

 

Subtype prediction model 

On the basis of the markers used in this study, namely IBA1, CD3, CD8, and FOXP3, a 

threshold-based multinomial subtype prediction model with the three possible outcomes 

PN, MES, and CL was generated. Since the CD4 numbers were a function of CD3 and 

CD8, they were not included. Two independent binary regressions were fit for a training 

set of 29 samples, with the subtype PN as the reference. The two binary regression 

equations and the equation P(CL) + P(MES) + P(PN) = 1, with P indicating the 

probability for each subtype, were used to identify the parameter estimates. 
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Binary regression equations estimated from the multinomial model: 
 

log ቆP(CL)
P(PN)ቇ =  −Ͳ.͹͹ʹʹ + Ͳ.Ͳ͵ͷͲ ∗ IBAͳ − Ͳ.ͲͲ͸͹ ∗ FOXP3 + Ͳ.Ͳͳ͸ͳ ∗ CD3 − Ͳ.ͲͲͶͲ∗ CD8  

 
 

log ቆP(MES)
P(PN) ቇ =  −ͺ.ͺͺ͹͵ + Ͳ.ͷͶͻ͸ ∗ IBAͳ + Ͳ.ʹͶͳ͹ ∗ FOXP3 + Ͳ.Ͳ͵ͳͳ ∗ CD3 − Ͳ.ͲͷͻͶ∗ CD8 

 
  
The parameters from the model were then applied to a test set of 21 samples to 

generate the predicted probabilities for each subtype. The subtype with the highest 

predicted probability was considered the predicted subtype in a given sample. 

 

Statistics 

All statistical analyses were performed and graphs created using GraphPad Prism 6.0b 

and 7.04 (GraphPad Software Inc., La Jolla, U.S.A). A one-way analysis of variance 

(ANOVA) as well as Tukey’s multiple comparisons test were used when more than two 

groups were compared. The non-parametric Dunn’s multiple comparisons test and two-

tailed Mann-Whitney U test were applied for analyses with small samples sizes. 

Correlation analysis was performed with the Pearson correlation coefficient (r). The 

Logrank (Mantel-Cox) test and Gehan-Breslow-Wilcoxon test were used for survival 

analyses. Significance levels were indicated as follows: ns (not significant); * (P < .05); 

** (P < .01); *** (P < .001); **** (P < .0001). Further information is included in the figure 

legends. 
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Results 

Analysis of TCGA gene expression and survival data 

As a first step in the analysis of differences in immune cell infiltration in the distinct GBM 

subtypes, we retrieved gene expression data from The Cancer Genome Atlas as 

described above and selected genes that encode the specific cell markers that were 

employed for the subsequent immunohistochemical analyses. The following genes were 

chosen: AIF1, which encodes the TAM-marker IBA1, FOXP3 as a protein predominantly 

expressed by Tregs, the beta-chain of the cytotoxic T cell receptor CD8 (CD8B), CD4 as 

a marker for T helper cells, and the gamma chain of CD3 (CD3G), a surface receptor 

expressed by all T cells. As was anticipated based on previously published data (22), 

AIF1, CD3G, and CD4 were significantly upregulated in the MES tumors of our TCGA 

sample (Figure 2). We did not, however, see any difference with respect to the 

expression levels of CD8B or FOXP3. 

 

 

 

 

 

 

 

Figure 2. Box plots representing mRNA expression levels of immune-related genes in 

different GBM subtypes obtained from TCGA. The genes encode the following proteins: 

IBA1 (AIF1), beta-chain of CD8 (CD8B), CD4 (CD4), FOXP3 (FOXP3), as well as 

gamma-chain of CD3 (CD3G). MES GBM shows a significant upregulation of TAM, 

CD3+ and CD4+ T cell markers. Expression levels are depicted as Log2-Z-scores, with 

Z-scores describing the number of standard deviations that a value differs from the 

mean of a given population. Sixty-nine PN, 106 MES, and 101 CL samples were 

included (26). 

 

 

 

 

 

 

CD3G

PN MES CL

**** ****AIF1

PN MES CL

-5.0

-2.5

0.0

2.5

5.0

L
o

g
2
-Z

-s
c
o

re **** ****

FOXP3

PN MES CL

CD8B

PN MES CL

CD4

PN MES CL

**** ****



 

17 
 

In order to determine the impact of differences in expression levels and, by extension, 

cell infiltration, in general as well as within each subtype on overall survival, we divided 

the marker levels into groups of high and low expression. The combination of all TCGA 

GBM samples, including NL and G-CIMP-positive tumors, yielded a survival benefit for 

those patients with high expression levels of CD3G and FOXP3 (Figure 3). 

 

 

 

  

 

 

 

 

 

Figure 3. Kaplan-Meier curves displaying differences in overall survival of GBM patients 

independently of subtype, relative to high and low gene expression levels of immune-

related markers. High expression of FOXP3 and CD3G is associated with a significantly 

improved survival in GBM patients. Data obtained from TCGA. The average of all 

samples ± 0.5 standard deviations defined high and low expression levels. For practical 

purposes, the x-axis ends at 60 months. MS (mo) = Mean survival in months, MC = 

Log-rank (Mantel-Cox) test, GBW = Gehan-Breslow-Wilcoxon test (26). 

 

In the PN subset, the only gene with prognostic value was AIF1, high levels of which 

were associated with a worse outcome (median survival high AIF1: 7.80 months, low 

AIF1: 10.56 months) (Figure 4).  
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Figure 4. Kaplan-Meier curves comparing the overall survival of patients with PN GBM 

based on their expression levels of immune-related genes. Patients with low AIF1 

expression levels show a significantly longer overall survival compared to those with 

high AIF1 levels (26).  

 

Interestingly, high AIF1 levels conferred a significant survival benefit in the MES cohort 

(high AIF1: 14.36 months, low AIF1: 7.31 months). The pan-T cell marker CD3G also 

proved beneficial in this subtype (median survival high CD3G: 14.36 months, low 

CD3G: 10.43 months) (Figure 5).  

 

 

 

 

 

 

 

 

 

Figure 5. Kaplan-Meier curves comparing the overall survival of patients with MES 

GBM based on their expression levels of immune-related genes. High expression levels 

of AIF1 and CD3G confer an improved survival in patients with MES GBM (26). 

 

In CL samples, no survival differences were observed (Figure 6). 
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Figure 6. Kaplan-Meier curves showing no difference in overall survival of patients with 

CL GBM based on their expression levels of immune-related genes (26). 

 

In conclusion, in our TCGA analysis we observed an increased expression of markers 

of TAM and certain T cell populations in MES GBM as well as distinct effects of 

expression levels related to immune cell constituents on patient survival. 

 

Immune cell infiltration in human GBM and control samples 

In spite of the unequivocal value of high-throughput sequencing endeavors, gene 

expression studies are associated with certain disadvantages such as the inability to 

characterize the cellular origin of expression patterns or to distinguish between an 

increasing number of cells and an upregulation of genes on a stable cell population. 

Hence, in a second step we pursued an immunohistochemical approach to further 

investigate immune cell infiltration in GBM and its subtypes.  

Fifty-six GBM and five control brain samples were stained for IBA1, CD8, FOXP3, and 

CD3. Initially, all tumors were collectively compared against the controls (Figure 7). In 

GBM samples, IBA-positivity was significantly increased (mean area of all GBM 

samples: 13.9%, Controls: 3.9%) as were the numbers of CD8+ (GBM: 20.3 cells/mm2, 

controls: 2.2 cells/mm2), FOXP3+ (GBM: 3.1 cells/mm2, controls: 0.25 cells/mm2), and 

CD3+ T cells (GBM: 44.6 cells/mm2, controls: 1.3 cells/mm2). The slightly lower number 

of CD3+ T cells in the naïve brains compared to the CD8+ T cell infiltration can be 

attributed to the very low levels of T cell infiltrates in healthy brains, likely beneath the 

level of accurate quantification using our method. We thus confirmed that our GBM 

samples were characterized by substantially higher levels of TAM and T cells. At the 

same time, we observed significant variability among the GBM samples. Consequently, 

we interrogated subtype-specific differences in immune cell infiltration. 
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Figure 7. GBM shows increased infiltration of immune cells compared to naïve brain 

samples. (A) Representative images depicting different immune cell populations in 

naïve brains. (B – E) Dot plots demonstrating significantly higher infiltration of IBA1+ 

microglia/TAM, CD3+ T cells, CD8+ cytotoxic, and FOXP3+ regulatory T cells in GBM 

samples than in naïve control brains. Each dot represents an individual sample. Scale 

bars indicate lengths of 100 micrometers and 50 micrometers (inserted images) (26). 

 

Tumor-associated macrophages and T cells in GBM subtypes 

The subtype of the 56 GBM samples was determined using NanoString nCounter 

Technology as was described above. Thirteen tumors were found to be PN, 18 were 

characterized as MES, and 19 as CL. Six samples displayed a glioma-CpG Island 

Methylator Phenotype and were excluded from this analysis. In order to investigate 

TAM-infiltration in the three GBM subtypes, IBA1-positivity per mm2 was analyzed as a 

surrogate parameter using Fiji. Quantification revealed significant differences, with an 

average of 19.2% IBA1-positive area in MES GBM compared to 9% in PN and 12% in 

CL tumors (Figure 8). 
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Figure 8. MES GBM is characterized by an increased presence of TAM compared to 

the PN and CL subtypes. (A) Kaplan-Meier curves created using data provided by 

TCGA comparing the effects of different expression levels of AIF1 on overall survival in 

GBM subtypes. High AIF1 expression levels confer a worse prognosis in the PN 

subtype, but bestow a survival benefit in MES tumors. No effect is seen in patients with 

CL GBM. High and low expression levels were defined as the average of all samples in 

each subtype ± 0.5 standard deviations. MC = Log-rank (Mantel-Cox) test, GBW = 

Gehan-Breslow Wilcoxon test. (B) Tumor sections (scale bars represent 5 mm) and 

representative images of GBM samples demonstrating differential immunohistochemical 

IBA1 staining among distinct GBM subtypes. IBA1 labels TAM in dark brown and nuclei 

are counterstained in blue using hematoxylin. Scale bar lengths correspond to 100 

micrometers and 50 micrometers (inserted images). (C) Quantification of the 

percentage of IBA1-positive area in the different GBM subtypes. Each data point 

represents the average of one tumor. PN = Proneural, MES = Mesenchymal, CL = 

Classical (26). 
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Owing to their lower overall infiltration levels and clearer demarcation, T cells were 

quantified as absolute numbers per mm2. Since CD3 labels all T cell populations, CD3+ 

cells unsurprisingly were found at the highest rate of all T cells in each subtype. Their 

levels were significantly elevated in MES tumors (76.1 cells/mm2) in comparison to PN 

and CL GBM (PN: 20.2 cells/mm2, CL: 39 cells/mm2). When specific T cell 

subpopulations were investigated, a similar pattern emerged. CD4+ T cells, which 

constituted the most frequent subset, showed a markedly increased presence in the 

MES subtype (PN: 11.3, MES: 43.2, CL: 21.5 cells/mm2), as did CD8+ cells (PN: 9.4, 

MES: 32.9, CL: 18.6 cells/mm2). It is worth noting, though, that the difference in CD8+ 

numbers between MES and CL tumors was not significant (p = 0.08). The smallest 

subpopulation of T cells were FOXP3+ Tregs, with MES GBM again demonstrating 

significantly higher levels (PN: 0.7, MES: 6.3, CL: 2.2 cells/mm2) (Figure 9). 
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Figure 9. T cells preferentially infiltrate MES GBM. (A) Representative images depicting 

infiltrated CD3+, FOXP3+ and CD8+ T cells (arrows) in different GBM subtypes. Scale 

bars indicate a length of 100 micrometers and 50 micrometers (inserted images). (B) 

Quantification of the number of CD3+ cells reveals a higher density in MES GBM, with 

CD3 staining all T cells. (C) Infiltration of CD8+ T cells differs significantly between the 

PN and MES subtypes. CD8+ T cell numbers were also higher in MES than CL tumors, 

but not significantly (p = .08). (D, E) Dot plots demonstrating FOXP3+ and CD4+ T cells 

appear in significantly higher numbers in MES GBM. PN and CL GBM show similar 

levels of infiltration. The average of each tumor is represented by one data point (26). 

 

Taken together, these findings provide evidence for a markedly increased infiltration of 

TAMs and T cells in the MES profile of GBM. This is further underscored by our data 

showing a significant positive correlation between IBA1+ TAMs and all T cell 

populations, raising important questions regarding mechanism of infiltration and the 

interaction of these cell types (Figure 10). 
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Figure 10. TAMs positively correlate with different T cell populations in GBM. (A) 

Pearson correlation demonstrating a positive association between the infiltration of 

TAM, represented by the percentage of IBA1-positive area, and the number of CD3+ T 

cells. The same relationship can be observed with distinct subpopulations of T cells, 

including CD4+ (B), CD8+ (C) and FOXP3+ T cells (D). r = Pearson r (26). 

 

Lastly, we also compared the immune cell profile of the six G-CIMP-positive tumors in 

our set to all non-GCIMP tumors and were able to demonstrate significantly higher 

levels of CD3+ T cells (G-CIMP: 20.2, non-G-CIMP: 47.5 cells/mm2) and CD4+ T cells 

(G-CIMP: 9.5, non-G-CIMP: 26.7 cells/mm2) in the latter (Figure 11). However, caution 

should be exercised when interpreting these findings given the unequal group sizes. 
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Figure 11.  Infiltration of T cells is significantly decreased in GBM that display a glioma-

CpG Island Methylator Phenotype (G-CIMP). (A, B) Quantification of the number of 

CD3+ and CD4+ T cells reveals a significantly lower density in G-CIMP GBM compared 

to non-G-CIMP tumors. (C, D, E) No significant differences can be seen in the infiltration 

of IBA1+ TAM, CD8+ and FOXP3+ T cells. Each dot represents the average of one GBM 

sample. Mann-Whitney U test was performed due to the low sample number of G-CIMP 

tumors (26). 

 

GBM subtype prediction model based on immune cell infiltration 

Given the increased infiltration of distinct immune cell populations in the MES subtype, 

we investigated the possibility of using the markers IBA1, CD3, CD8, and FOXP3 to 

create the aforementioned multinomial model to predict the subgroup of our GBM 

samples. In the training set, which consisted of 9 PN, 11 MES, and 9 CL GBM samples, 

the subtype of 18 out of the 29 tumors (62.1%) was accurately identified. MES GBM 

were predicted correctly with a sensitivity of 90.9%, but PN and CL tumors only with a 

sensitivity of 55.5% and 33.3%. When applied to a test set consisting of 4 PN, 10 CL, 

and 7 MES tumors, 13 samples were correctly classified (61.9%). The model 

successfully predicted PN and MES samples with a sensitivity of 100% and 71.4%, 

respectively. It had less success with the CL subtype (sensitivity of 40%). Wald-type 

tests showed that no marker alone was significantly associated with any particular 
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subtype. While these results indicated the potential of the model to predict MES GBM 

using IHC, further validation is required with larger sample sizes and independent 

investigators (Tables 1-3). 

 

Table 1. Sensitivity and specificity for each subtype within the multinomial model (Training set) 
(26). 
 

Subtype Sensitivity (95% CI) Specificity (95% CI) 

PN 55.5% (22.7%-84.7%) 75.0% (50.6%-90.4%) 
CL 33.3% (9.0%-69.1%) 85.0% (61.1%-96.0%) 

MES 90.9% (57.1%-99.5%) 83.3% (57.7%-95.6%) 
 
CI: Confidence Interval, PN: Proneural, CL: Classical, MES: Mesenchymal 
 
 
Table 2. Sensitivity and specificity for each subtype within the multinomial model (Test set) (26). 
 

Subtype Sensitivity (95% CI) Specificity (95% CI) 

PN 100.0% (39.6%,100.0%) 82.4% (55.8%, 95.3%) 
CL 40.0% (13.7%, 72.6%) 90.9% (57.1%, 99.5%) 

MES 71.4% (30.3%, 94.9%) 71.4% (42.0%, 90.4%) 
 
CI: Confidence Interval, PN: Proneural, CL: Classical, MES: Mesenchymal 
 
 
Table 3. Wald-type tests for each biomarker within the multinomial model (26). 
 
Biomarker p-value 

IBA1 0.156 
FOXP3 0.637 

CD3 0.847 
CD8 0.714 
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TAM plasticity in the peri-tumor area of GBM 

GBMs are infiltrated by vast numbers of tumor-associated macrophages. Consequently, 

we decided to analyze the morphological changes that microglia/TAM undergo in the 

infiltrating zone in the manner described in the methods section. We observed a gradual 

decrease in the number of primary processes per cell as we moved from healthy brain 

into tumor tissue (non-tumor: 2.2, peri-tumor: 1.6, tumor: 1.1 primary processes/cell), 

indicating an increasing state of TAM/microglia activation. Furthermore, IBA1-positivity 

was analyzed in these fields and was shown to increase significantly in tumor direction 

(non-tumor: 5.9%, peri-tumor: 8.7%, tumor: 19.9%), which was also visualized by the 

plot profile in Figure 12. Taken together, these findings provide further evidence for the 

increased activation and infiltration of TAM in GBM compared to naïve brain tissue. In 

addition, IBA1-positivity was calculated in the adjacent brain tissue of eleven GBM 

samples and compared to the five control brain samples in order to investigate 

differences in microglia infiltration. However, no statistically significant variance was 

found (naïve control brains: 3.9%, non-tumor tissue of GBM samples: 4.5%). 
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Figure 12. Tumor-associated macrophages (TAM) exhibit distinct morphologies in 

tumor and non-tumor regions. (A) Image of a GBM section with adjacent brain tissue 

stained with IBA1. The black rectangles represent images captured to quantify 

differences in the morphology of TAM in non-tumor (left), peri-tumor (mid), and tumor 

(right) areas, as well as changes in IBA1-positivity. Peri-tumor areas were defined as a 

field in which half of the area is non-tumor and the other half is tumor tissue based on 

macrophage morphology and cellular density. Scale bar corresponds to a length of 10 

millimeters. (B) The number of primary processes per IBA1+ cell, a marker for 

macrophage shape and activation, changes incrementally from non-tumor to tumor 

areas. The data points represent average numbers of processes per cell in each area of 

different tumors. (C) Quantification shows the percentage area covered by IBA1+ TAM 

gradually increases from non-tumor to tumor areas, with each dot representing the 

average of one sample. Dunn´s multiple comparisons test was performed. (D) Plot 

profile demonstrating a gradual increase in relative IBA1 immunopositivity with 

increasing proximity to the tumor parenchyma. The solid dark blue line indicates mean 

intensity and the shades represent ± one standard deviation (n = 4 independent 

samples). Examples of TAM highlight their morphological plasticity. The section below 

the plot profile exemplifies the areas used for this analysis. Staining intensity increases 

from left (non-tumor) to right (tumor). The scale bar indicates a length of 100 

micrometers. (E) Quantification of the percentage of the IBA1-positive area in control 

brains and non-tumor areas adjacent to GBM indicated no significant difference. Dots 

represent averages of each sample. Mann-Whitney U test was performed (26). 
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Discussion 

Glioblastomas are almost uniformly fatal tumors and very little progress has been made 

in the last decades in improving median survival rates (2, 3), warranting advances on all 

clinical and scientific fronts. In this study, we provided evidence that GBMs are not only 

molecularly diverse, but also highly heterogeneous with respect to the composition of 

their cellular immune microenvironment (26). Leveraging TCGA data and 

immunohistochemical analyses, we were able to demonstrate significantly increased 

infiltration of tumor-associated macrophages as well as cytotoxic, helper, and regulatory 

T cells in the Mesenchymal GBM subtype. 

In a study comparing MES with all non-MES tumors, Engler et al. also demonstrated 

increased TAM levels in the former, but unequal group sizes impeded a conclusive 

judgment (23). Beier et al. and Sorensen et al. likewise found higher TAM numbers in 

MES compared to PN tumors, but both had small sample sizes and determined the 

GBM subtype based solely on IHC markers (33, 34). Previous studies on T cell 

infiltration yielded less consistent results. While Prins et al. showed higher levels of 

CD8+ and CD3+ cells in MES vs. PN GBM, Han et al. did not find any subtype-specific 

differences in CD4+ and CD8+ T cell infiltration (19, 35). However, it is worth mentioning 

that both groups referred to different molecular classifications (7, 36). Our own study 

included adequate sample sizes and used validated NanoString nCounter Technology 

to identify the three recognized GBM subtypes (6). As a result, we were able to provide 

the first fairly comprehensive analysis of immune cell infiltration in human GBM based 

on immunohistochemistry rather than gene expression or flow cytometry data (6, 37). A 

recently published IHC study by Martinez-Lage et al. confirmed our findings of 

increased TAM and CD4+ T cell levels, but did not observe any differences in CD8+ T 

cell infiltration (38). Interestingly, we also did not detect a significant difference between 

the MES and CL subtype regarding the latter.  

Furthermore, our analysis of TCGA revealed opposite survival effects of high AIF1-

levels, which indicate increased TAM infiltration, in the MES and the PN subtypes. 

Patients with MES GBM and high expression survived significantly longer than those 

with low levels. In PN tumors this relationship was reversed. This interesting finding 

implies that TAM content is not in itself a predictor of survival. Rather, it raises questions 

regarding the specific composition of this diverse cell population and their functions in 

distinct GBM subtypes. Our RCAS/tv-a murine models have allowed our group to 

answer this question by using Cx3cr1GFP/WT; Ccr2RFP/WT reporter mice (24, 39). Since 
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bone marrow-derived monocytes express both Cx3cr1 and Ccr2, but brain-resident 

microglia only the former, this approach allowed for the investigation of the specific 

composition of the TAM population in each subtype. The results showed that, while PN 

and CL GBM were mostly infiltrated by BMDMs, activated microglia constituted the main 

TAM population in MES tumors (24, 39). Whether or not this sufficiently explains the 

survival difference seen in this analysis is debatable. These findings do, however, 

highlight the need for further mechanistic studies investigating functional differences in 

these cell types. RNA analysis of genes differentially expressed by BMDMs and 

microglia in the PN GBM model demonstrated an increased enrichment of genes 

related to cell migration in the former, while microglia showed an upregulation of genes 

associated with metabolism and inflammation, underscoring their distinct functional 

contributions to gliomagenesis (39). The necessity for subtype-specific mechanistic 

analyses of TAMs in GBM is exemplified by a clinical trial using PLX3397, an inhibitor of 

the colony stimulating factor 1 receptor (CSF1R), a molecule involved in macrophage 

polarization, in non-stratified recurrent GBM patients, which did not demonstrate a 

significant improvement in progression-free survival, in spite of a striking therapeutic 

efficacy documented in mouse models of PN GBM (40, 41).  

In addition, emphasis has to be put on understanding the mechanisms underlying 

differential immune cell infiltration and their interactions with each other as well as 

glioma cells. As an example, an experimental study demonstrated the ability of TAMs to 

attract CCR4+ Treg cells through the secretion of the chemokine CCL2, possibly 

explaining the significant correlation between the two seen in our cohort (42).  

Our findings highlight the heterogeneity of GBMs and demonstrate the potential to 

stratify patients according to their specific tumor profile. We therefore created an 

affordable and easily applicable subtype prediction model. Even though an immediate 

adjustment of current therapeutic standards based on molecular profiles is not likely, 

studies such as a retrospective analysis of the AVAglio (Avastin in Glioblastoma) trial, 

which tested the addition of the VEGF inhibitor Bevacizumab in the first-line treatment of 

GBM and demonstrated a benefit in overall survival for patients with PN GBM as well as 

an improved progression-free survival for MES and PN GBM, highlight the fact that 

affordable and feasible patient stratification according to molecular subtypes is already 

relevant (43). 
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While the results of the present study paint a convincing picture of subtype-specific 

differences in GBM immune cell infiltration and are in line with other publications, it is 

associated with both technical and substantive limitations. The use of 

immunohistochemistry allows for the investigation of differences in immune profiles on 

the cellular level, a clear advantage to correlative gene expression studies. However, it 

also represents a rather subjective method, adding an element of uncertainty to the 

levels of cell infiltration described above. We addressed this challenge by creating a 

standardized pathway of image acquisition and by having a single investigator perform 

all of the image analyses, thus ensuring consistency. Furthermore, despite multiple 

attempts with various antibodies, we were not able to identify a reliable CD4 marker, 

leading us to estimate T helper cell levels by subtracting CD8+ from CD3+ T cell 

numbers. Even though this approach has been published before (30), it does constitute 

a relevant shortcoming. Our subtype-prediction model offers the intriguing possibility to 

identify MES tumors solely based on their immune cell content. Given the high costs 

and limited availability still associated with high-throughput molecular sequencing 

technologies, this approach might constitute a feasible alternative. Further studies 

involving larger sample sizes and multiple independent investigators are, however, 

required for validation. On a more substantive level, our study was not able to 

distinguish between the different TAM populations owing to a lack of validated markers 

in human samples. Moreover, the use of GBM subtype classifications has been 

criticized, especially since the recognition that multiple subtypes can co-exist within a 

single tumor (9). Nevertheless, this and other studies clearly demonstrate a biological 

correlate of these distinct gene expression patterns.  

Future studies will have to further elucidate the reciprocal interactions of immune and 

neoplastic cells in the context of inter- and intratumoral molecular and cellular 

heterogeneity. Special emphasis ought to be placed on the mechanisms underlying the 

functions of the different TAM and T cell populations. Moreover, the role of the immune 

cell compartment in driving immune evasion and its subtype-specific therapeutic 

potential need to be investigated given the success immunotherapies have 

demonstrated in other entities. This is underscored by the disappointing results of 

immune checkpoint inhibitors in GBM, which have been partly attributed to the 

exhausted phenotype of intratumoral T cells and the immunosuppressive environment 

created by TAMs (44-47). Addressing these research questions will hopefully contribute 

to a better understanding of GBM pathogenesis and lead to the development of the next 
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generation of treatments that will give new hope to patients suffering from this dreadful 

disease.   
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