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Chapter 1

Introduction

1.1 Background
The downsizing of computers and the decreasing price of sensors have led to the
widespread use of IoT devices equipped with sensors. IoT devices reached a market
size of $33.06 billion in 2020 and are expected to reach $1.5 trillion by 2030, while
the total number of Internet-connected things is expected to reach 24.1 billion [1].
Representative examples of IoT devices include voice assistants that control home
appliances by voice and smartwatches that manage a person’s health status. With
the spread of smartphones and wearable devices connected to the cloud, the number
of sensor-equipped IoT devices is expected to increase further.
IoT device has three main elements: sensors, controllers, and actuators. Sensors

and actuators are shown as the interface between physical space and cyberspace.
Sensors are the interface that inputs the analog signal generated in the physical
space to the device, and actuators are the interface that outputs the data processed
in the device to the physical space. Controllers analyze the information received
from the sensor and operate the actuator according to the results. Data transmission,
analysis, and decision-making by controllers can be done through networks.
Although the widespread adoption of IoT devices can result in substantial benefits

to society, many security threats that exploit the physical sensors inherent in IoT
devices [2, 3, 4, 5, 6, 7, 8, 9, 10] have been identified. These threats are caused by
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analog signals present in the physical world. A common problem caused by analog
signal threats is that incorrect values injected into sensors can cause devices to make
incorrect authentication or control decisions. There are two main types of problems
caused by incorrect value injection: (1) Spoofing, and (2) Jamming [11]. A spoofing
attack is an attack in which a false signal is intentionally presented to a sensor to
mislead its decision making. An injection Attack is a method to input values to a
sensor in an incorrect way in order to perform a spoofing attack. For example, in the
case of sound signals, the replay attack authenticates by emitting a recorded voice of
another person from a loudspeaker. Voice synthesis attack [12, 13] creates a voice for
authentication by synthesizing a recorded voice when the voice for authentication
cannot be obtained. Voice conversion attack [14] creates a model to convert the
attacker’s voice into the target’s voice. Replay attack and voice synthesize attack
both use ordinary dynamic speakers, thus the threat level is low because they can be
noticed if other people are in the same environment. Inaudible attack, which attacks
without the user’s knowledge, has been proposed as an attack with a high threat level.
The DolphinAttack [8], which uses ultrasonic waves to achieve voice recognition
by the user secretly, and Hidden voice commands [9, 15], which process the noises
that cause voice recognition. Analog signals point out threats not only to voice, but
also to light, biometric signals, and a wide range of other types of analog signals.
LightCommands [6] that perform voice recognition by injecting light signals into
a microphone sensor, ECG attacks [16] that use biometric signals obtained from
the human body to regenerate the subject’s biometric signals, SigR attacks [17]
that estimate Photoplethysmogram (PPG) waves from facial videos to break through
victim’s PPG authentication. These sensors are embedded in medical devices [18]
and vehicles, such as self-driving cars [19], and misjudgment due to incorrect sensor
values may affect human health and human life.
A novel problemwith analog signal threats is that they can occur even if the owner

or creator of the device does not intend the attack. Ding et al. report that analog
signals from IoT devices pose 162 different threats to other sensors in the same
physical space [20]. The same threat was pointed out for radio signals. However,
since laws for operating radio signals were established, and technical standards
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conformity defined the regulations to be followed at the time of shipment, it was
unrealistic to expect threats to appear in the real world. On the other hand, analog
signals may pose a threat after shipment because technical standards conformity and
other regulations do not specify standards for how analog signals should be output.
As the number of IoT devices with sensors and actuators increases, similar threats
are expected to increase.
Previous security solutions for threats to sensors have been proposed and imple-

mented mainly for digital signals after A/D conversion on the input side [2, 21, 22,
4, 23, 8, 24, 25, 26, 27, 28]. In [24], when speech is input to a microphone, a
feature called pop noise occurs when speech is input from the mouth, is used for
detection. In [29], in order to detect voice spoofing attacks, a deep learning model
is created for digital signals input to sensors to determine whether or not they are
attacks. Furthermore, [28] proposes a detection method by using high-frequency
regions that are difficult to represent by speakers as features. For sensors in VR
devices, an approach to control is also taken on the input side of the sensor [30]．
These countermeasures usually focused on sensor input data regardless of sensor

type, presenting the following shortcomings: (1) Attack detection accuracy may be
reduced considerably by the noise generated in the physical space [31, 4, 13] and
(2) It is difficult to accurately detect an attack that exploits circuit nonlinearity of
input-processing data [32, 8, 33] (3) Input-based approaches do not directly block
the source of the attack. Security measures against threats in the analog signal
domain before digitization have not been considered.

1.2 Objective & Research Targets
Under these situations, this thesis aims to solve the security problems caused by
analog signals. We focus on the security threats posed by analog signals to address
the problems described above. Specifically, experiments and evaluations were con-
ducted to identify countermeasures against threats posed by analog signals. The
areas targeted by this research are described following and shown in Figure 1.1.
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Fig. 1.1 The area of main research targets and previous research.

Analog signal security is defined as the area of security threats and counter-
measures caused by analog signals. It is essential to survey previous research on
threats posed by sound and light to identify new threats that could be caused. The
difference between analog signal security and conventional security techniques is
that analog signals do not have explicit attributes. When controlling the output of a
digital signal, the object has explicit attributes, making it easy to implement controls
such as if-then rules [34, 30]. On the other hand, time series data related to analog
signals do not have explicit attributes. In this study, we design a method to explicitly
attribute analog signals to facilitate security control in Chapter 3. In this thesis, we
focus on the spoofing attack threat using sound signals in analog signal security and
discuss its threats and countermeasures in Chapter 2 as audio security.
Sensor security
This research aims to reduce the total number of threats that appear in the real

world through a new approach by analyzing the output side of the signal, regardless
of the type of analog signal. In Chapter 3, we develop a framework that generalizes
standard analysis and countermeasuremethods by using analog signals as time-series
signals and conduct a case study using audio signals as an example to show that
comprehensive countermeasures can be performed regardless of the type of analog
signal.
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1.3 Contributions
The contributions of this thesis are as follows.
Contribution 1: Evaluating Threat Caused by Analog Signals
We propose a novel attack, called an “Audio Hotspot Attack,” which performs an

inaudible malicious voice command attack, by targeting voice assistance systems,
e.g., smart speakers or in-car navigation systems. The key idea of the approach is
to leverage directional sound beams generated from parametric loudspeakers, which
emit amplitude-modulated ultrasounds that will be self-demodulated in the air. Our
work goes beyond the previous studies of inaudible voice command attack in the
following three aspects: (1) the attack can succeed on a long distance (3.5 meters
in a small room, and 12 meters in a long hallway), (2) it can control the spot of the
audible area by using two directional sound beams, which consist of a carrier wave
and a sideband wave, and (3) the proposed attack leverages a physical phenomenon
i.e.,non-linearity in the air, to attack voice assistance systems. This study presents
and verifies an attack using physical phenomena and reveals a new perspective: the
possibility of analog signal threats in physical formulas for the first time. To evaluate
the feasibility of the attack, we performed extensive in-lab experiments and a user
study involving 20 participants. The results demonstrated that the attack was feasible
in a real-world setting. We discussed the extent of the threat, as well as the possible
countermeasures against the attack.
Contribution 2: Preventing Threat Caused by Analog Signals
Based on the knowledge obtained from the contribution 1, this work developed a

new security framework named Cyber-Physical Firewall (CPFW), which provides a
generic and flexible access control mechanism for regulating the malicious analog
signals that target cyber-physical system (CPS) devices. This framework enables
the defeat of various attacks that make use of malicious analog signals against CPS
devices; e.g., stealth voice command injection attack using ultrasonic waves or ad-
versarial examples, or attacks to crash drones in flight using malicious sound waves.
Based on relevant previously reported findings, we first defined the requirements
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and design specifications of the CPFW framework. In order to detect and regulate
analog signals, this study focuses on signal attributes, the acquisition of which has
not been explicitly defined in the previous research, and establishes a mechanism for
acquiring attributes and a method for detecting and regulating them. Then, we built
a prototype CPFW framework and demonstrated its feasibility through extensive
performance evaluations and case-study experiments using three real-world attacks;
ultrasonic attacks (DolphinAttack), noise attacks (AudioAdversarial Examples), and
resonant attacks (WALNUT).

1.4 Outline
The structure of this thesis is as follows. In Chapter 2, we discuss sound signals
as a typical threat posed by analog signals and show the potential for new threats
based on physical phenomena in the air. In Chapter 3, after identifying the security
threats posed by analog signals, such as light, biometric signals, wireless signals, etc.
we propose a framework for implementing countermeasures as the Cyber-Physical
Firewall. The framework was designed, implemented, and evaluated, and a case
study was conducted using sound signals as an example. Chapter 4 describes the
limitations in analog signal security and provides an overview of future directions.
Chapter 5 summarizes this thesis.
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Chapter 2

Contribution1: Evaluating Threat

Caused by Analog Signals

2.1 Introduction
Voice assistance systems, such as Siri [35], Google Assistant [36], and Amazon
Alexa [37] have become increasingly popular as a means to establish user-friendly
human–computer interactions. Voice assistance systems are now supported on var-
ious devices, e.g., smartphones/tablets, smart speakers, automobiles, smart homes,
smart watches, smart TVs, media boxes, and laptops/desktops. Voice assistance
systems can integrate speech recognition to demonstrate various skills such as pro-
viding recommendations to restaurants, reading out schedules, and even purchasing
products when an appropriate voice command is given.
While these voice assistance systems have clear benefits in daily life activities,

they also raise intrinsic security and privacy concerns. One of the most serious
security issues related to the use of voice assistance systems is the lack of a rigorous
mechanism to guarantee the trustworthiness of the voice source that operates the
system. As previous studies have demonstrated [15, 8], voice assistance systems
are vulnerable to “inaudible voice command attacks.” Here, an attacker can issue
voice commands to a voice assistance device unbeknownst to the device owner.
For instance, if an attacker generates an inaudible voice command that adjusts the
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Fig. 2.1 Overview of theAudioHotspotAttack. Top: Attackwith one parametric
loudspeaker (linear attack). Bottom: Attack with two parametric loudspeakers
(cross attack). In the yellow colored area, you can hear the sound.

volume of the music player set in a car to its maximum, the driver may be surprised
or momentarily distracted, thus increasing the likelihood of an accident. Recent
studies have leveraged existing vulnerabilities of the device or software. In Ref. [8],
the authors found that ultrasound can be used to convey inaudible voice command
attacks, by using the vulnerability of the amplifier. Hidden voice commands [15]
used the vulnerability of machine learning models that incorrectly recognize noise
as normal commands.
We propose a novel inaudible voice attack, named Audio Hotspot Attack, which

leverages the physical phenomena. In this attack, attackers attempt to input direc-
tional sound to voice assistance systems as shown in Figure 2.1. Directional sound is
generated by using the nonlinearity of ultrasonic waves in the air. When the modu-
lated ultrasound passes through the air, which acts as a nonlinear medium, the signal
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is demodulated into audible sound even if a demodulation circuit is not prepared.
It is well known that the demodulated sound signals exhibit higher directivity than
those emitted from a normal loudspeaker [38, 39]. To generate directional sound,
we make use of a parametric loudspeaker, which composes of an array of ultrasound
transducers.
The attack proposed in this paper is different from previously proposed attacks

in that it leverages physical phenomena that cannot be modified or eliminated. As
the previous attacks use vulnerabilities associated with hardware or software, they
can be fixed, e.g., by modifying the machine learning algorithm or eliminating the
nonlinearity of the microphone. In contrast, the nonlinearity of air is a natural
phenomenon, and it is impossible to take measures against it using conventional
approaches.
Furthermore, the adoption of parametric loudspeakers enables an attacker to

perform a unique form of the attack, called a cross attack. As shown at the bottom
of Figure 2.1, an attacker sets two parametric loudspeakers in different places and
transmits directional sound beams to the target voice assistance device. The two
sound beams are inaudible because each sound beam consists of a carrier wave or
sideband wave with ultrasound frequency. The sound beams become audible where
the two beams cross at a point; i.e., they become an AM sound wave. An attacker
can take control of the cross point by adjusting the sources of the two sound beams.
To evaluate the feasibility of the attack, we pose the following research questions:

RQ1: Is the Audio Hotspot Attack feasible at long distance with off-the-shelf voice
assistant devices?

RQ2: Does the Audio Hotspot Attack succeed in noisy practical environments?
RQ3: Is the attack stealthy for nearby people and unrecognizable for them?

We aim to answer these questions through extensive experiments and user studies
involving 20 participants.
The contributions of this work can be summarized as follows:

• We proposed a novel inaudible voice command attack that targets voice assis-
tance systems, leveraging the directional sound beams to create a “hotspot”
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of the attack success area (Section 2.3).
• We carefully designed and controlled our experiments. We used a room and
equipment dedicated to acoustic experiments (Section 2.4).

• We demonstrated that the attack could succeed at a long distance. We discov-
ered that the attacks were tolerant of environmental noise. For both devices,
the attack success rate remained high at a noise sound pressure level. We
showed that the cross attack was also feasible (Section 2.5).

• Through the extensive user studies, we demonstrated that people could not
recognize the attacker’s voice (Section 2.6).

• We discussed potential threats that may arise in the future as well as the
possible countermeasures against the attack (Section 2.7).

To the best of our knowledge, this work is the first to make use of directional
sound beams as a means of attacking voice-controlled systems. This perspective
sheds new light on security and privacy issues for systems that make use of sound.

2.2 background
In this section, we describe the three key technologies that constitute our attack: the
voice assistance system, parametric loudspeakers, and voice presentation attack.

2.2.1 Voice Assistance Systems

Currently, a typical voice assistance system has two action phases for device opera-
tion: activation and recognition. In the first phase, a user speaks a specific wake-up
word to activate the system, e.g., “OK Google” for Google Assistant, “Alexa” for
Amazon Alexa, and “Hey Siri” for Apple Siri. In the second phase, a user transmits
a voice command to the system. The system applies speech recognition to the re-
ceived voice data and executes a command extracted from this data. The available
voice commands include common operations such as turning on a light, answering
questions, reading the news, or privacy-sensitive operations that access personal
resources such as reading out schedules, sending a text message, making a phone
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call, or purchasing a product.
Many of the smart speakers today offer speaker recognition functionality so that

each person in the household can enjoy the device in a customizable way. For
instance, each person using the Amazon Echo can link their own Amazon account
to the device. The device identifies each person by leveraging voiceprints to employ
biometric verification. To be enrolled in the device’s speaker recognition, an owner
of the device first needs to register his or her voiceprint, typically by saying awake-up
word multiple times. By comparing the wake-up word against a previously created
voiceprint, the voice assistance system verifies a person’s identity. Although a third
person who is not registered can still attempt to use the device, his or her usage will
be limited to non-personalized common services such as reading news or weather
forecasts.
As we will discuss in Section 2.3, speaker recognition technology is vulnerable to

voice presentation attacks [4]. These attacks attempt to bypass voice authentication
using voice replay/synthesis/conversion technique fraudulently (See Section 2.2.3).

2.2.2 Mechanism of parametric loudspeakers

A parametric loudspeaker can generate directional sound using ultrasound. It con-
sists of an array of many ultrasound transducers installed in parallel [40]. Figure 2.2
presents a parametric loudspeaker used throughout the experiments. Each ultra-
sonic transducer transmits ultrasound that modulates the original sound wave with
amplitude modulation (AM). The generated ultrasound is self-demodulated in the
air and becomes audible even if we do not prepare a demodulation circuit (called
self-demodulation [38]). Next, we present the self-demodulation mechanism, also
known as the parametric phenomenon.
Let 𝑝 = 𝑝(𝑥, 𝑡) be the sound pressure caused by sound wave originating from a

parametric loudspeaker, where 𝑥 is the distance from the loudspeaker and 𝑡 is time.
As the sound wave is AM-modulated, it has three major frequencies, i.e., carrier
frequency, 𝑓𝑐, and adjacent sideband, 𝑓𝑠− , 𝑓𝑠+ where 𝑓𝑠− = 𝑓𝑐 − 𝑓𝑚, 𝑓𝑠+ = 𝑓𝑐 + 𝑓𝑚.
𝑓𝑚 represents the frequency of the sound wave to be injected by an attacker. We
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Fig. 2.2 A parametric loudspeaker. This loudspeaker can generate directional
sound. It consists of an array of ultrasonic-emitting loudspeakers arranged in a
grid. A parametric loudspeaker emits sounds on a narrow spatial range containing
a targeted device.

focus on lower sideband to simplify. Primary wave 𝑝 is expressed as

𝑝 = 𝑝𝑐 sin (2𝜋 𝑓𝑐𝑡 ′) + 𝑝𝑠− sin
(
2𝜋 𝑓𝑠− 𝑡

′) (2.1)

𝑝𝑐 and 𝑝𝑠− are the amplitudes of the carrier wave and the sidebandwave, respectively.
where 𝑡 ′ = 𝑡 − 𝑥/𝑐0 is a retarded time; the retarded time is the time when the sound
wave began to propagate from the sound source.
Burger’s equation is one of the fluidmodels that represents the nonlinear dynamics

of sound waves [41]. The dynamics of ultrasound generated from an array of
transducers can be modeled with Burger’s equation:

𝜕𝑝

𝜕𝑥
=

𝛽

𝜌0𝑐
3
0

𝜕

𝜕𝑡 ′
𝑝2 + 𝛿

2𝑐30

𝜕2𝑝

𝜕𝑡 ′2
, (2.2)

where 𝛽 is the coefficient of nonlinearity, 𝜌0 is the density of air, and 𝑐0 is the
sound speed. The first term on the right side has nonlinearity. By substituting
Eq. 2.1 into 𝑝, we have

𝜕

𝜕𝑡 ′
𝑝2 =

𝜕

𝜕𝑡 ′
[𝑝2𝑐 sin2 (2𝜋 𝑓𝑐𝑡 ′) + 𝑝2𝑠− sin

2 (2𝜋 𝑓𝑠− 𝑡 ′)

+2𝑝𝑐𝑝𝑠− sin(2𝜋 𝑓𝑐𝑡 ′) sin(2𝜋 𝑓𝑠− 𝑡 ′)], (2.3)
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For simplicity, we calculate only the third term of Eq. 2.3, from which, we can
derive 𝑓𝑚. *1

𝜕

𝜕𝑡 ′
(2𝑝𝑐𝑝𝑠− sin(2𝜋 𝑓𝑐𝑡 ′) sin(2𝜋 𝑓𝑠− 𝑡 ′))

= 2[2𝜋 𝑓𝑠− 𝑝𝑐𝑝𝑠− sin(2𝜋 𝑓𝑐𝑡 ′) cos(2𝜋 𝑓𝑠− 𝑡 ′)

+2𝜋 𝑓𝑐𝑝𝑐𝑝𝑠−𝑐𝑜𝑠(2𝜋 𝑓𝑐𝑡 ′) sin(2𝜋 𝑓𝑠− 𝑡 ′)],

= −2𝜋𝑝𝑐𝑝𝑠− [( 𝑓𝑐 + 𝑓𝑠− ) sin(2𝜋( 𝑓𝑐 + 𝑓𝑠− )𝑡 ′)

+( 𝑓𝑐 − 𝑓𝑠− ) sin(2𝜋( 𝑓𝑐 − 𝑓𝑠− )𝑡 ′),

= −2𝜋𝑝𝑐𝑝𝑠− [( 𝑓𝑐 + 𝑓𝑠− ) sin(2𝜋( 𝑓𝑐 + 𝑓𝑠− )𝑡 ′)

+ 𝑓𝑚 sin(2𝜋 𝑓𝑚𝑡 ′)], (2.4)

Eq. 2.4 contains two terms. The first term, which contains sin(2𝜋( 𝑓𝑐 + 𝑓𝑠− )𝑡 ′), will
be removed by low–pass filter. Thus, remaining term is a sine function with the
frequency of the original modulation wave, 𝑓𝑚. By substituting Eq. 2.4 into Eq. 2.2,
we derive that 𝜕𝑝/𝜕𝑥 contain the following term,

2𝛽𝜋𝑝𝑐𝑝𝑠− 𝑓𝑚
𝜌0𝑐03

sin(2𝜋 𝑓𝑚𝑡 ′) (2.5)

By integrating the term with respect to 𝑥, we derive that 𝑝 contains the following
term

2𝛽𝜋𝑝𝑐𝑝𝑠− 𝑓𝑚
𝜌0𝑐03

𝑥 sin(2𝜋 𝑓𝑚𝑡 ′) (2.6)

which indicates that the observed sound pressure includes the component of the
original modulation wave. This is how the nonlinearity of the air demodulates the
modulated sound wave.
Figure 2.3 presents an overview of the parametric phenomenon. After emitted

from a parametric loudspeaker, the sound pressure of the audible sound wave, 𝑓𝑚,
gradually increases. Although both the audible sound wave and inaudible ultrasound

*1 If we compute the partial differentiation of the first and second terms in a way like Eq 2.4, sine
functions with the frequencies of 2 𝑓𝑠− , 2 𝑓𝑐 , and so on, appear. Because these frequencies are not
associated with 𝑓𝑚 and will be removed by the low–pass filter on the microphone, all these sine
functions can be omitted in the remaining calculation.
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Fig. 2.3 Illustration of the demodulation in the air. 𝑓𝑐 is a carrier frequency and
𝑓𝑠− is a sideband frequency, where 𝑓𝑠− = 𝑓𝑐 − 𝑓𝑚 and 𝑓𝑚 represents a frequency
of the sound wave to be injected by an attacker. In a short distance, the sound
pressure of the demodulated sound, 𝑓𝑚 will increase in proportion to the distance,
𝑥, following Eq. 2.6. However, due to the attenuation of the ultrasonic wave, the
sound pressure of the demodulated sound will decrease over a long distance.

wave are to be attenuated over time, inaudible ultrasound waves attenuate faster due
to the fact that in the air, high frequency sound wave attenuates faster compared to
low frequency sound waves. The parametric phenomenon is observed only along
the direction in which the ultrasound was emitted because the waves have the same
phase along the path.
Finally, we show the intuitive explanation of the formation of directional sound

beam. The demodulated sound traveling in the forward direction is amplified because
the phase is aligned. On the other hand, sound traveling in a direction other than the
forward direction is not amplified because the phase is not aligned. Themathematical
description of the theory can be found in Refs [38, 39].

2.2.3 Voice Presentation Attack

In the ISO/IEC standard, presentation attacks are defined as "presentation to the
biometric data capture subsystem with the goal of interfering with the operation of
the biometric system. [42]" There have been several approaches for evading speaker
recognition or, more broadly, voice authentication. These attacks are known as voice
presentation attacks [4]. Well-known voice presentation attacks include the replay
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attack [13, 43], speech synthesis attack [13], and voice conversion attack [14].
During a replay attack, an attacker pre-records the speech of the victim in advance.

The attacker then replays the recorded speech to the target device. Distinguishing
between genuine and replayed speech from the time-domain and spectrum-domain
representations of speech data is difficult task [44]. The drawback of a replay attack
is that an attacker needs to pre-record speech, including voice commands for both
activation and recognition. Speech synthesis and Voice conversion are techniques
that alleviate this limitation. Speech synthesis (Text-to-speech, TTS) is a technique
to generate natural speech sound from the text. Wavenet [45] is one example that
creates synthesized voices by using deep learning models. Voice conversion aims to
convert an attacker’s voice to a victim’s voice in real time. We do not need to prepare
text, unlike in TTS. These attacks offer an effective way to generate synthetic speech
in a manner such that the generated output is perceived as a sentence uttered by a
target. In [14], the author demonstrated that an attacker can successfully execute
a voice impersonation attack by using an off-the-shelf voice-conversion tool, even
against state-of-the-art voice verification systems. They reveal that the attacker can
convert his/her voice if they collect just a few minutes’ worth of audio.
While these attack techniques aim at impersonating the victim’s voice, our goal

focuses on the different attack vector, i.e., secretly delivering the voice signal to the
target voice assistant device. As our attack is agnostic to the voice content, voice
presentation attack techniques can be directly mounted on our attack.

2.3 Threat model and assumptions
In this section, we describe the Audio Hotspot Attack threat model bymaking several
assumptions to evaluate the threat.
Target of the attack
The goal of an attacker is to manipulate the target voice assistance device without

being noticed by people. Although the attack is applicable to various voice assistance
systems in principle, a smart speaker is used herein as an example of the target device.
Because smart speakers can control smart home devices, the attack vector ranges
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Smartphone

Parametric Loudspeaker

Circuit(AM & Amplifier)

Battery

Fig. 2.4 An example of device setup. We use a battery to allow attackers to use
this device anywhere. The circuit contains amplifier and amplified modulator.
The details of the circuit are presented in Fig. 2.5.

are widespread. We evaluated the attack using two smart speakers, Amazon Echo
and Google Home. For these devices, an attacker must activate the device with a
wake-up word, and then transmit a voice command. In this study, we assume that
the target device is not moving (i.e., it is set on a fixed place, for example, on the
table). This assumption is natural in the case of smart speakers.
Attacker’s equipment
As shown in Figure 2.1, the Audio Hotspot Attack has the two attack modes:

linear attack and cross attack. An attacker needs to setup a parametric loudspeaker
for the linear attack, and two parametric loudspeakers for the cross attack. The
parametric loudspeaker that performs the attack is small and portable. The attacker
also needs to carry a smartphone in order to generate malicious voice commands
from the parametric loudspeakers. Figure 2.4 shows an example of a device setup
used by an attacker to execute an attack.
Speaker recognition
As mentioned in Section 2.2, modern devices equipped with voice assistance

systems such as smartphones or smart speakers have increasingly adopted the speaker
recognition functionality. If the owner of a device has turned on this functionality, an
attacker may not be able to succeed in the attack even when he/she has successfully
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transmitted an inaudible voice command to the target device.
Here, the attacker collects voice samples by being in close physical proximity to

the target, by making a phone call, or by searching for clips online. For the purposes
of this work, we assumed that an attacker was able to bypass the speaker recognition
by leveraging voice presentation attacks, which are discussed in Section 2.2.3. As
shown in Section 2.7.2, there are some methods that detect presentation attacks
(PAD method). We assume that the voice assistance systems do not have a PAD
method. We confirm that presentation attacks are successful on practical devices,
i.e., Google Home and Amazon Echo, before the experiments.

2.4 Experimental setup
In this section, we describe the design of our experiments, including details pertain-
ing to the devices, equipment, and software used, together with their settings.

2.4.1 Materials

Experiment room
Sound wave dynamics depend on the material makeup of the room. As these attacks
were performed using sound waves, the choice of the experiment room was key.
Otherwise, the obtained results will be valid only for a specific environment. To
overcome this concern, we used a room designed for acoustic experimentation. To
eliminate the effects of the material makeup of the room, all wall and ceiling surfaces
were made of sound-absorbing material (Appendix B, Figure 2).
The average sound pressure level (SPL) of the room was around 12 dB(A). Here,

dB(A) denotes A-weighted SPL, which is applied to instrument-measured sound
levels. A-weighting is used because the human ear is less sensitive to lower audible
frequencies.

Target devices
Following the assumption that the target device is stationary, Google Home and
Amazon Alexa are the primary target devices used for the analysis. These devices
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Fig. 2.5 Circuit diagram. The circuit first applies AM to the input soundwave,
using the generated ultrasonic wave as a carrier wave. Next, the sound pressure
of the AM wave will be amplified. The amplified soundwave will be the output
for the parametric loudspeaker.

were chosen because they accounted for more than 95% of the smart speaker market
share in 2018 [46].

Equipment used for the experiments
Table 2.1 shows a list of equipment used for the experiments. While there are sev-
eral commercial parametric loudspeaker products, we intended to take a white-box
approach. That is, as the details of the board and elements are publicly available
on the manufacturers’ websites, we can obtain the technical specifications of the
speaker, such as frequency response. To this end, the Switch Science Super di-
rectional speaker [47] was adopted as a primary parametric loudspeaker. The kit
comprises two printed circuit boards (PCBs). One PCB has an AM circuit, an
amplifier circuit, an audio input (3.5 mm stereo mini jack), and a power input (DC
12V/1A). Figure 2.5 presents a diagram of the circuits. Another PCB implements
49 ultrasonic ceramic transducers connected in parallel. The first PCB applies the
AM to the input sound wave and then amplifies the signal level. The amplified signal
is transmitted to the second PCB, i.e., ultrasound transducers. Another parametric
loudspeaker—directional speaker ACOUSPADE—is also used, to study the maxi-
mum distance at which the attack can succeed. The sound level meter is capable
of measuring the SPL of 28–138 dB(A) for a frequency range of 20 Hz to 20 kHz.
The meter was used to measure the SPL of several areas in the experiment room
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Table 2.1 A list of equipment used for the experiments.

Equipment manufacturer / model number

Parametric loudspeaker Switch Science / SSCI-018425 [47]
Amplifier Accuphase / Power Amplifier PRO-

15 [48]

Parametric loudspeaker
Ultrasonic audio technologies / Direc-
tional Speaker Acouspade [49]

Dynamic loudspeaker
YAMAHA / MONITOR SPEAKER
MS101 III [50]

Sound level meter RION / NL-32 [51]
Ultrasonic microphone B&K / 4939-A-011 [52]

Audio Interface MOTU / UltraLite mk4 [53]

under various conditions. The ultrasonic microphone was also used for measuring
the ultrasonic components in the measured sound waves.

2.4.2 Voice generation

To generate a malicious voice speech command, we used Amazon Polly [54], a
cloud service that turns text into natural sounding speech. As the basis for the
analysis, the voice named “Ivy” was used, which is a female, US English accent.
The voice parameters (e.g., speaking rate or fundamental frequency) were set to
default values. All voice assistance systems that were tested to check whether they
accept synthesized voice commands. As speech synthesis services can change in the
future, we plan to make our data available to any researchers who wish to replicate
or extend our work.

2.5 Evaluation of the attack
We evaluated attack feasibility using the following aspects: maximum successful
attack distance, noise tolerance of the attack, and the impact of voice commands.
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Fig. 2.6 Experimental setup of distancemeasurement experiments. The distance
measured was between the parametric loudspeaker and the microphone of the
voice assistance systems.

For simplicity, and to evaluate the impact of these factors, we applied a linear attack.
For the cross attack, we evaluated attack feasibility using the parameters obtained
through the linear attack experiments. The attack success depends on the type of
voice command (i.e., activation or recognition). Therefore, for each attack mode, we
applied both types of voice commands. In general, activation commands (“wake-up
words”) are more likely to succeed.

2.5.1 Distance versus Attack success rate

The aim of this study was to clarify how the distance between the target device and
adversary’s parametric loudspeaker affected the success rate of the Audio Hotspot
Attack. Throughout the experiments, the SPL of the output power from the para-
metric loudspeaker was fixed. In particular, the audible sound of the parametric
loudspeakers was adjusted to 60 dB(A), and the SPL of the ultrasound was 100
dB at a point 3 m away from the parametric loudspeaker. Figure 2.6 presents the
experimental setup. The distance measured was between the parametric loudspeaker
and the microphone of the voice assistance systems.
Tomeasure the distance, we used the experiment room (described in section 2.4.1).

We extended the study to three different locations, including a hallway, seminar-
room, and outdoors.
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Fig. 2.7 Distance versus attack success rate. Noise SPL is set to 60 dB(A). For
Google Home, the longest distance was 3.5 m. Activation voice commands were
more likely to be accepted compared to recognition voice commands.

Measurement within the experiment room
The distance between the target device and the parametric loudspeaker was altered
from 0.1 m to 5 m in increments of 50 cm (i.e., 0.1, 0.5, 1.0,..., 5.0 m). By adjusting
the output power of the dynamic speakers, we were able to adjust the SPL of the
noise measured in the room to 60 dB(A) with error bounds within 1 dB(A). Notably,
a SPL of 60 dB(A) corresponds to an environment where a person’s speech is
heard at a distance of 1 m. Thus, the noise level was fairly high. This setting
was purposively chosen to conservatively evaluate attack success rate (i.e., a higher
attack success rate could be expected in quieter settings). We note that the 1/f noises
better suited to emulate a realistic environment than the white noise because it is
natural that signals with the lower or higher frequencies have more or less power
respectively.
For a given distance, a pair of activation and recognition voice commands were

generated. This processwas repeated 25 times. For each voice command, we noted if
the command was accepted by the voice assistance system by observing the response
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of the device. For the activation commands, “Ok Google” for Google Home and
“Alexa” for Amazon Echo were used. For the recognition voice commands, “What’s
on my next schedule?” for Google Home and “What’s on my schedule?” for Amazon
Echo*2 were used.
The attack success rates were calculated, and the results are shown in Figure 2.7.

For a certain range of distances, the attack was highly successful for both devices.
This was particularly true for Google Home, the longest distance was 3.5 m. Ac-
tivation voice commands were more likely to be accepted than recognition voice
commands. This makes sense given the fact that the recognition voice commands
are much more variable than activation voice commands. In the short distance, the
success rate becomes low because the acoustic sound was too loud to be properly
processed by the voice assistance systems. Finally, Google Home featured a higher
attack success rate than Amazon Echo. As these commercial products are black box
in nature, their behaviors can be difficult to interpret. It is possible that circuits and
software used for Amazon Echo are somehow resistant to the Audio Hotspot Attack;
therefore, they will be investigated in future studies.

Extended measurement in practical environments.
Next, we studied the distances of successful attacks using different locations: a
hallway, a seminar room, and outside. The hallway and the room have much higher
reverberation compared to the room dedicated for acoustic experiments. We used
a commercial parametric loudspeaker product [49], as listed in Table 2.1. The
parametric loudspeaker can emit full frequency-range speech with the audible SPL
of 62–63 dB(A) at a distance of 3 m. For reference, the location photos are shown in
Appendix B. Note that for these locations, we did not add synthesized noise sounds.
The average SPL measured in the hallway was 39.3 dB(A), the seminar room was
55.2 dB(A), and the average outside SPL was 52.5 dB(A). The conditions outside
were as follows: the weather on the day was fine, with temperature was 23.2 ◦C
(73.8 ◦F), a humidity of 36%, and a wind speed of 6 m/s southward. Note that, we
do not use synthesized noise in this measurement, to evaluate the effect of noise on

*2 At the time of the experiment, Alexa did not support the ‘next’ voice command for the calendar.
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Table 2.2 The longest distance the attack was effective at a hallway, a seminar
room, and outside. In the hallway experiment, the attackwas effective at a distance
of 10+ m. In the case of the hallway and room, the longest distance is 4+ m. We
show the picture of each place in Appendix.

Hallway [m] Room [m] Outside [m]
Devices Acti. Recog. Acti. Recog. Acti. Recog.

Google
15.0 11.7 4.2 4.0 4.2 4.2

Home
Amazon

19.9 12.1 4.8 4.0 5.8 4.2
Echo

realistic environments. The purpose of the experiment was to determine the longest
distance at which the attack is still effective, with the effectiveness being determined
using the following criteria: if three consecutive voice commands are all accepted
for a given distance, the attack is regarded as effective for the distance. For each
location, the starting distance was 1 m and the tests were repeated until there was an
attack failure. Tables 2.2 summarize our results.
The hallway experiment demonstrated that the attack was effective at a distance

of 10+ m. The seminar room and outside experiment demonstrated that the attack
was effective to a distance of 4+ m. The difference in the attack success distances
reflects the respective noise levels within each location. These results indicated
that the Audio Hotspot Attack was feasible in three real-world scenarios. We can
succeed in the attack in two environments with reverberation, i.e., the hallway and
inside the room. We also showed that the experiment was successful outside the
room. In addition, the attack success distances achieved were much longer than
the state-of-the-art inaudible voice command attack that uses ultrasound [8], which
indicated that the maximum distance for Amazon Echo averaged 1.65 m with a
background noise of 55 dB SPL.
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2.5.2 Noise tolerance

We studied how the noise affects the attack success rate. For this study, we used the
experiment room, as described in Section 2.4.1. Because we were examining the
effects of noise, the sound generated by the parametric loudspeaker was fixed at 60
dB(A) and the distance between the parametric loudspeaker and the target device
was 1.5 m.

Stationary noise
Using the dynamic speaker, we generated 1/ 𝑓 noise with an SPL ranging from 45
dB(A) to 78 dB(A) (the maximum SPL for the dynamic speaker). the common
environmental noise levels are shown in [55]. To calculate the signal-to-noise ratio
(SNR), we use the following formula Eq. 2.7 [56]

SNR dB = SPL of sound dB − SPL of noise dB (2.7)

We use the sound level meter to measure the SPL of voice command and noise.
Figure 2.8 shows the results. For both devices, the attack was most successful when
the noise SNR was over than 0 dB, i.e., when the input command and noise have
the same volumes. Activation voice commands were more tolerant of noise. This
observation agrees with those previously-described in Section 2.5.1.

Nonstationary noise
We evaluate noise tolerance in an environment that has nonstationary noise. As
nonstationary noise, we adopt babble noise. We used the room dedicated for acoustic
experiments. We chose three types of noise settings: Default, Speech Blocker, and
Chic dinner, which are taken fromRef. [57]. These noise types contain conversations
in English. We summarize the results in Figure 2.9. We attempt to input the voice
command 10 times in each setup. For both devices, the attack was successful when
SNR was -5 dB and over. When the SNR is 0 dB, i.e., when the volumes of input
command and noise are same, attacks sometimes failed. In other cases, these results
follow the observation of Fig 2.8.
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Fig. 2.8 Stationary noise versus attack success rate. The audible sound from the
parametric loudspeaker was fixed to 60 dB(A). The attack was most successful
when the SNR was larger than 0 dB.
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Fig. 2.9 Non stationary noise versus attack success rate. We used the recognition
command for each device. These results follow the observation of Fig 2.8.
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2.5.3 Impact of voice commands

To study the impact of voice commands, various commands are inputted into the
target devices. In this experiment, the distance between the parametric loudspeaker
and the target devices was fixed at 1.5 m. Again, the output audible SPL of the
parametric loudspeaker was set to 60 dB(A). Each command was tested 10 times.
Table 2.3 shows the results. As indicates by the results, the attack success rate

was high for commands of short lengths. We note that although the lengths of these
commands were short, they can be used for malicious purposes; for example, by
starting with the recognition command “Set volume 0,” an attacker can improve the
probability of success for the next attacks as a voice response from the device will
not be heard by a nearby person. The attacker can also turn IoT devices on/off. If this
device is a piece of heating equipment, considerable physical damage is possible.
In contrast, for longer commands, the attack success rate was low.
We conjecture that there are several reasons behind this observation, e.g., the

occurrences of infrequent words or the accumulation of recognition errors. These
results agree with [8], who showed that longer commands, emitted as ultrasounds,
were prone to failure.

2.5.4 Evaluation of the cross attack

To perform the cross attack, the AM sound wave was separated into the carrier wave
and the lower sideband wave using MATLAB [58]. The two sound waves were
amplified and emitted through the two parametric loudspeakers. The amplifiers
were adjusted so that the SPL of the audible sound was at its maximum at the target
area (center of the room). The average SPL of audible sound was 42.7 dB(A). The
cross attack was tested by changing the position of the target device, as shown in
Figure 2.10 (Right). In the figure, the blue circles indicate measurement points,
where a sound level meter was set. Two parametric loudspeakers were set so that
they would cross at the center point. Unlike the linear attack setup, this setup was
not symmetrical and each parametric loudspeaker transmitted a different signal (i.e.,

26



2.5 Evaluation of the attack

Table 2.3 Attack success rates for various voice commands. The attack success
rate was high for commands of short length (2–5 words.) The commands “turn
on / off [ device name ]” are used for many smart home devices. The commands
“turn in to 0” or “Set volume 0” change the volume minimum, which can make
the output of device stealthy.

Device Voice commands Success rate

Google

OK Google 10/10
Max volume 10/10
Turn in to 0 10/10
What’s on my next schedule 10/10
Turn on the light 10/10
Turn off the light 10/10
Play some music 10/10
Tell everyone my password is abc 5/10
Broadcast my credit card number

3/10
is 1234567890

Amazon

Alexa 10/10
Pair devices 10/10
play some music 10/10
What’s on my next schedule 9/10
Set volume 0 9/10
Turn on the light 9/10
Turn off the light 10/10
Tell everyone my password is abc 2/10
Broadcast my credit card number

1/10
is 1234567890

a carrier wave and a sideband wave, respectively). We established 5 × 5 = 25
measurement points. As shown in the figure, we installed four dynamic speakers
to fine-tune the SPL of ambient room noise. We configured the directions of the
dynamic speakers such that noises were equally distributed throughout the room.
We fixed the distance between the target device and two parametric loudspeakers to
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Fig. 2.10 Overview of the experimental setup. Left: user study of the linear
attack in the acoustic room. Right: user study of the cross attack in the acoustic
room. We use four dynamic speakers to adjust the noise level.

2
√
2 m, and the SPL of noise was set to 43 dB(A).
At each position, the attack was repeated 10 times, with the number of successes

counted. Figure 2.11 shows the results. The first finding was that the attack was
successful only in the area targeted by the cross attack. Second, for the activation
voice command, the attack success was 100% for both devices. Finally, although
the success rate was low for voice recognition (“what’s on my next schedule?”), it
remains a realistic threat, given the fact that an adversary can repeat the attack until
it succeeds.

2.5.5 Summary

Throughout this section, we evaluated attack feasibility. First, the experiments
demonstrated that the attacks were successful over long distances. In the experiment
room (500 cm × 500 cm), Google Home attacks were 100% successful at 350
cm and Amazon Echo attacks were more than 90% successful at 150 cm. The
hallway experiments demonstrated that, for both devices, attacks were successful at
distances greater than 10 m. Second, we discovered that the attacks were tolerant of
environmental noise. For both devices, the attack success rate remained high at a
noise SPL of 60 dB(A). This SPL corresponded to the SPL used for the experiments
described in Section 2.6. Finally, the attacks were successful with various types and
lengths of voice commands.
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Fig. 2.11 Number of successful cross attacks at each position (max is 10). Top:
Activation and Bottom: Recognition. Left: Google Home, and Right: Amazon
Echo. The demodulation point was adjusted to the center, point (200, 200).

2.6 Human study experiments
In psychoacoustics, hearing is different from objective SPL measurements [59].
We tested to confirm whether the directional sound generated from parametric
loudspeakers could be perceived by humans around the targeted device. To this end,
we conducted extensive user study experiments to answer the RQ3: “Is the attack
stealthy for nearby people and unrecognizable for them?” To complement the results
of our human studies (subjective evaluation), SPL measurements were taken with
the sound level meter (objective evaluation).
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2.6.1 Experimental setups

Figure 2.10 presents an overview of the experimental setup. For the linear attack
mode, both a parametric loudspeaker and a dynamic speaker were used to observe
their differences. In the figure, the blue circles indicate measurement points, where
a participant was seated. As the setup was symmetric in nature, 3 × 5 = 15
measurement points were set only in the right half. We omitted the left half to
reduce the workload of the participants without sacrificing the generality of the
results. The distance between the measurement points was set to 1 m. For the
cross attack, two parametric loudspeakers were set so that they would cross at the
center point. We established 5 × 5 = 25 measurement points, with a chair at each
measurement point (See Appendix B, Figure 2).
The output power of the adversary’s parametric / dynamic loudspeakers was

adjusted so that the SPL of the audible sound (not the ultrasound) measured 3 m
away from the parametric loudspeaker was 60 dB(A). Accounting for the inaudible
sound wave, the total SPL was 120—130 dB(A) for all these settings. Finally, for
the four dynamic speakers that generate 1/ 𝑓 noise, we adjusted the output power
such that the audible SPL was 60 dB(A) at a distance of 3 m. For reference, the
SPLs of common environmental noises are summarized in [55].

2.6.2 Human study overview

Participants
For the user study, we recruited 20 normal-hearing participants. Of these, 12 were
female and eight were male, with ages ranging from 19 to 27. Thus, the participants
were younger on average. Because younger people tend to have better hearing, we
selected a severe condition to evaluate recognizability.
The participants consist of students at our university. We let the participants

choose the preferred language from the two choices, Japanese and English. While
16 participants who selected Japanese are all native speakers of Japanese, other three
participants who selected English were fluent in English but not necessary were the
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native speakers of English. Two of them are from Indonesia and the other is from
China. For each participant, consentwas obtained before enrolment. All participants
were informed that they could quit the experiment whenever they desired. Other
ethical considerations are discussed in section 2.7.

Procedure
For each setup, each participant was first directed to sit in a chair set at the position
marked with the star symbol in Figure 2.10. Then, the height of loudspeaker(s)
was adjusted so that the participant’s sitting height matched the position of the
loudspeaker(s). For each participant, the heights and angles of the speakers were
fixed throughout the experiments. After the beginning of a session, a random word
is emitted twice from the speaker at a randommoment in time. A participant reports
whether they recognize the word. If they recognize it, they write down the word that
they recognized.
From the set of random words, those containing between 3 and 6 phonemes were

selected. It was also ensured that the words would be difficult to predict beforehand,
e.g., wake-up words typically used for voice assistance systems were avoided. Each
participant repeated the sessions after moving to another chair.
To ensure the quality of the subjective evaluations, we used a silent task with each

participant. During the silent task, no voice sounds were emitted. If a participant
reported that they heard something during the silent task, the other results reported
by the participant were considered unreliable and removed. Consequently, two
participants’ results were removed from the final analyses.

Evaluation of recognizability
To quantify the recognizability reported by the participants, we used a Jaccard index
for the sets of letters in two words 𝑡 and 𝑟 , which are a test word and a reported word,
respectively. For instance, if a test speech word is ‘fest’ and the reported word is
‘test’, the Jaccard index is computed as 𝐽 (‘fest’, ‘test’) = 3/5 = 0.6. For reference,
a randomly sampled answer sheet reported by one of the participants is shown in
Appendix B.
In total, for each measurement point, we collected 18 scores reported by the 18
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participants. At least one score for each measurement point was In total, for each
measurement point, we collected 18 scores , reported by the 18 participants. At least
one score for each measurement point was omitted, as there was one silent task for
each participant. To quantify the recognizability, the average of the reported scores
was taken for each measurement point.

2.6.3 Results of the human study

Figure 2.12 shows the linear attack results. The heat maps represent the average
Jaccard index scores. Notably, for the dynamic loudspeaker experiment, most
participants successfully recognized the test speech words across a wide range. In
fact, the test words were audible even behind the speaker. On the other hand, for the
parametric loudspeaker experiment, the audible space was limited to a narrow area
(i.e., the direction of directional sound propagation). The generated sound wave was
somewhat inaudible over a short range owing to the fact that the generated ultrasonic
beam moved forward before it was demodulated in the air.
Figure 2.13 shows the cross attack results. It is important to note that there seem

to be no audible spaces in the room. However, as shown in the previous subsec-
tion 2.5.4, the cross attack was successful in emitting malicious voice commands to
the voice assistance systems. This contradiction can be explained as follows: as the
cross point was limited to a very narrow area, it did not“hear” the areas close to
the participant’s ears. Even if a participant was able to catch either a carrier wave
or a lower sideband wave, they would not recognize them unless they caught both
sound waves at a cross point. To complement the results of the human study, the
results of the objective sound level meter evaluations are presented in Figure 2.14.

2.6.4 Summary

In this section, we examined the recognizability of sounds generated from para-
metric loudspeakers. For comparison, we also examined the characteristics of the
sound generated by a dynamic speaker. Both the subjective and objective evalua-
tions revealed that the directional sound generated from the parametric loudspeakers
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Fig. 2.12 Average Jaccard index scores of the linear attack measured in a 200
cm × 400 cm area. Left: dynamic speaker and Right: parametric loudspeaker.
The point (0, 0) is defined as the location of the loudspeaker. User cannot hear
the on space except in front of the parametric loudspeaker.

Fig. 2.13 Average Jaccard index scores for the cross attack measured in a of 400
cm × 400 cm area. The point (200, 200) is defined as the demodulation point.
We found that the users cannot hear sound waves everywhere except in the center.
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Fig. 2.14 SPL measured for the three attack modes. The unit for the numerical
values is dB(A). The setup is same as in the human study. We have the speaker
on the point (0,0) in the case of the dynamic speaker and linear attack. In the case
of the X-Audio attack, (0, 0) is the demodulation point for voice commands.

achieved sufficient unrecognizability to perform the Audio Hotspot Attack. Specif-
ically, the sound generated with the cross attack was difficult for a human near the
target device to perceive.

2.7 Discussion
In this section, we discuss the limitations and extensions of Audio Hotspot At-
tack, possible countermeasures against it, and ethical issues considered during the
experiments.
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2.7.1 Limitations and possible extensions

Because the Audio Hotspot Attack uses sound wave(s) to inject malicious voice
commands, it will not succeed if there is an obstacle between the target device
and the parametric loudspeaker(s) (e.g., a wall or a window). This limitation also
applies to other inaudible voice command attacks [9, 60, 61]. One possible method
of overcoming this limitation would be to install parametric loudspeaker(s) on a
ceiling, thus creating a“sound shower.” In fact, parametric loudspeakers are often
mounted on ceilings to make sounds audible only at one point in the room, without
the risk of interruption form an obstacle. Even when it is unrealistic to mount a
parametric loudspeaker on the ceiling, it would still be effective to place it at a raised
or a side position to ensure that the sound wave emitted avoids obstacles.
We used two smart speakers, Google Home and Amazon Echo, as examples

of popular devices with voice assistance systems. Other types of voice assistance
systems include smartphones, in-car navigation systems, and commercially available
medical devices. Studying the effectiveness of the Audio Hotspot Attack on most of
these other devices will be conducted in future studies; however, we did verify that
the attack worked on several smartphones. Although the evaluation of the latter is
not as thorough as that presented in section 2.5, some results have been given in the
Appendix for reference.
Finally, although we sought to make these studies scientifically reproducible, the

target devices are updated regularly. Furthermore, as the majority of the off-the-
shelf voice assistant devices today run the speech recognition on the server side, it
is prone to change over time. Therefore, once changes are made to the hardware or
software in the voice assistance devices, other results may differ from the ones we
obtained. As off-the-shelf products are“black box” in nature, it is difficult to fully
understand how input sound waves are processed by the device’s hardware and/or
software. Therefore, to make the results of the experiments to be invariable and
reproducible, it would be desirable to develop open-source hardware and software
platforms, which would allow researchers to share and compare results using similar
tools. At present, we are developing such a platform so that interested researchers
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Fig. 2.15 Spectrogram of a speech signal emitted from a parametric loudspeaker.
The signal was recorded with an ultrasonic microphone. The frequency range was
set above 20 kHz (inaudible frequency). The content is “OK Google”.

can conduct further work on security and privacy issues related to voice assistance
systems.

2.7.2 Countermeasures

Audio Hotspot Attack leverages the natural phenomenon of ultrasound self-
demodulation in the air; therefore, it is not practical to try to block voice commands
before they reach the target device. One possible solution is to detect the voice
commands and differentiate them from others that are legitimate. There are two
ways to achieve this goal. An easy and effective approach is to employ speaker
recognition; in fact, smart speakers such as Google Home or Amazon Echo have
already adopted this functionality. However, as discussed in Section 2.3, such
approaches are still vulnerable to advanced replay or voice-morphing attacks.
Therefore, we require methods that can detect voice commands being emitted
from parametric loudspeakers. In the following section, we discuss three potential
approaches to achieve this goal.
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Fig. 2.16 Spectrogram of a speech signal emitted from a dynamic loudspeaker
(top) and a parametric loudspeaker (bottom). The signals were recorded with
a normal microphone. The frequency range was set below 20 kHz (audible
frequency). We can see the folding noise at 10 kHz and 20 kHz in the bottom
spectrogram. The content is “OK Google”.

Detecting ultrasonic sounds
Although the ultrasounds emitted from a parametric loudspeaker are demodulated
in air, there are un-demodulated ultrasonic components in the observed sound wave.
Figure 2.15 shows the spectrogram of a speech signal emitted from a parametric
loudspeaker. The original speech data was “Ok Google,” which was generated using
Amazon Polly (Ivy). In the spectrogram, the power of the ultrasonic component is
around 40 kHz, which corresponds to the carrier frequency of the AM-modulated
sound. A harmonic overtone around 80 kHz was also observed. Thus, even ul-
trasound is self-demodulated in the air, and it is possible to observe ultrasonic
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Fig. 2.17 Speech signals generated from a dynamic loudspeaker (top), a paramet-
ric loudspeaker (middle, linear attack), and Bottom: two parametric loudspeakers
(bottom, cross attack). The content is “OK Google”.

components of sound waves.
A straightforward approach to detecting such ultrasonic components is to apply

an ultrasonic sensor. Although ultrasonic microphones are expensive, ultrasonic
sensors are cheap and readily available. As Zhang et al. suggested [60], using
MEMS microphones on mobile devices could be an alternative solution, as these
microphones can sense acoustic sounds with frequencies higher than 20 kHz. Once
a device detects the non-negligible amounts of ultrasonic components of a received
sound wave, it may suspend the operation and require interaction with the device
owner to resume the operation.

Analyzing the frequency patterns of audible sounds
Figure 2.16 presents the spectrograms of a voice signal (“OK Google” as spoken by
Amazon Polly) emitted from a dynamic loudspeaker and a parametric loudspeaker.
Although the original voice data was the same, there are different characteristics
in the frequency patterns of the observed sound waves. As can be seen in Eq. 2.4
(Section 2.2), the SPL of the sound wave generated from a parametric loudspeaker
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is proportional to the frequency of the original sound signal. This indicates that
if the sound is emitted from a parametric loudspeaker, higher or lower frequency
components are more or less likely to be observed, respectively, at the target. The
horizontal lines shown in the lower spectrogram correspond to the folding noise,
which is also known as aliasing. We can detect attacks if we observe the folding
noise in spectrograms. To validate the effectiveness of this approach, we performed
a brief experiment. From a given sound wave, we extracted components that had the
frequencies above 10 kHz, which is over the audible frequency of 8 kHz. We then
computed the power of the extracted sound wave. While the normal sound wave
had almost zero power, the sound wave of the directional sound beam had non-zero
power. By simply applying a threshold-based detection, we were able to distinguish
the sound emitted by a loudspeaker from the one emitted by a parametric speaker
with 100% accuracy.
Figure 2.17 shows speech signals emitted from a dynamic loudspeaker and para-

metric loudspeakers. Again, these speech signals were generated by the same orig-
inal voice signal (“OK Google”), via Amazon Polly (Ivy). For the speech signals
emitted from parametric loudspeakers (middle and lower panels in the figure), there
is an intrinsic spike at the beginning of the speech signal. These spikes can be used
as a fingerprint for detecting speech generated from a parametric loudspeaker. These
spikes and other intrinsic characteristics can be used to differentiate speech gener-
ated from a parametric loudspeaker compared to speech generated from a regular
voice using heuristics or machine learning-based approaches.

Voice Presentation Attack Detection (PAD) method
As inaudible voice command attacks will be combined with the presentation attacks,
we can apply the presentation attack detection (PAD) method, which we assumed
our target voice assistant systems had not implemented, to detect an Audio Hotspot
Attack [4]. The ultimate countermeasure against such an attack is to be able to
distinguish a synthesized voice from an authentic human voice. Liveness detec-
tion [62, 60, 63], which judges whether an input voice has come from a human
or a dynamic speaker, is an example of the PAD method that could achieve this
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goal. In real environments, attacks on speech recognition devices are by means of
the latter. Therefore, it would be sufficient for a voice assistance system to be able
to judge whether a sound comes from a human or a dynamic speaker, even if it is
unable to identify a specific individual. Voice Gesture [60], as proposed by Zhang
et al., attempts to detect the movement of a person’s mouth, by using changes
in ultrasonic waves that occur as a consequence of the mouth movements and the
position of the tongue when an approximately 20 kHz ultrasonic wave is emitted
from a smart device (e.g., a smartphone or tablet) to the mouth of the user. This
method detects differences in movement between a mouth and a dynamic speaker.
The mouth movement changes for each pronunciation variation, whereas the surface
of a dynamic speaker exhibits very little movement. The liveness detection method
could be used to detect an Audio Hotspot Attack because ultrasonic transducers use
fewer movements than the human mouth.
In our experiments, we have shown that simple rule-based or threshold-based

detection work as countermeasures against the Audio Hotspot Attack. However,
more robust countermeasures will be required in realistic environments. In [4], some
typical countermeasure methods using the machine learning model are proposed.
On the contrary, in [31], the authors pointed out that the machine-learning model
does not work well for the datasets obtained in different setups. Overcoming the
problem of overfitting to the specific datasets and/or environments is left for future
work.

2.7.3 Ethical Considerations

Human study research
We performed a human study to test the unrecognizability of the Audio Hotspot
Attack using parametric loudspeakers. The experiments were carefully designed
such that they did not impose a burden on either the hearing or psychological states
of the participants. The procedure for the human study was approved by the ethical
review board at Waseda University. Prior to the experiments, we performed a pilot
study to ensure the validity of our measures. Then, Participants were provided with
all information required to make a meaningful decision as to whether or not they
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were willing to participate in the experiment (informed consent). We explained the
reasons for conducting the study, what the experimental procedures, potential risks
and benefits were, and the ways in which participants could get more information on
the study. The SPL of the sound waves was sufficiently low such that it did not cause
the participants any discomfort. Participants were also given two-minute breaks
every ten minutes and were able to stop participating at any time without incurring
any penalty.

Offensive security research
The objective of this work was to explore the feasibility of the threats caused by in-
audible voice command attacks. It was demonstrated that inaudible voice command
attacks are viable through methods such as an Audio Hotspot Attack. Although this
attack was proof of concept, we have also provided potential countermeasures by
which they can be counteracted. Furthermore, with the aid of the national CERT,
we have initiated communication regarding this with several manufacturers of voice
assistance systems. Feedback, including plans for implementing the countermea-
sures within the products concerned, has been received. By the time of publication,
vendor reaction will have been received and will also be reportable.

2.8 Related Works

Voice command attacks

DolphinAttack [8, 61] is an attack that inputs inaudible commands on a target mi-
crophone by AMmodulating the sound, with the ultrasound as the carrier wave. The
basic idea is based on the fact that the output of the MEMS and ECM microphones
that are mounted on smartphones has nonlinearity [32, 9]. A nonlinear term is
obtained by squaring the input signal in the output signal when an AM ultrasonic
signal by the prepared voice is inputted to the microphone. That is, the output
of the microphone receiving the AM-modulated ultrasound includes the frequency
component of the original speech signal, and the speech recognition algorithm of
the system that received the low-pass filtered signal is applied as recognized speech,

41



Chapter 2 Contribution1: Evaluating Threat Caused by Analog Signals

even though the input signal only generates high-frequency waves. The output gen-
erated by the nonlinear term has a smaller voltage value than the normal output and
therefore it is easy to detect.
On the other hand, in an Audio Hotspot Attack, there is a marked difference

in that audible sounds, which have been self-demodulated from the ultrasound
waves, are received by a target device. This phenomenon is established because
air is nonlinear and demodulates the AM-modulated ultrasonic signal, as shown
in Section 2.2. Indeed, we cannot eliminate nonlinearity from the air because
it is a natural phenomenon. In other words, even if microphone nonlinearity is
completely removed, Audio Hotspot Attacks are still feasible even though inaudible
voice commands are infeasible. In addition, Audio Hotspot Attacks can be employed
from greater distances than DolphinAttacks because ultrasound has higher-than-
audible frequencies, and therefore, it decays faster.

Audio adversarial examples

Audio Adversarial Examples [64] apply Image Adversarial Example [65, 66] tech-
niques to voice waves. Adversarial examples are input to machine learning models
that an attacker has intentionally designed to cause the model to make a mistake.
The recognition results of the machine learning model are easily affected by a small
amount of perturbation (small noise). Adding a small amount of noise to the original
sound intentionally results in erroneous recognition. Therefore, Audio Adversarial
Examples can be misidentified as arbitrary commands. The user cannot notice the
subtle additional noise and targeted malicious commands are therefore executed on
the voice assistant.
Existing attacks assume that software or hardware vulnerabilities are related to

attack successes. Hidden voice commands and Audio adversarial examples use the
vulnerabilities inherent to machine learning, and DolphinAttack uses vulnerabili-
ties of MEMS microphones. On the other hand, the Audio Hotspot Attack uses a
physical phenomenon i.e.,non-linearity in the air. Audio Hotspot Attack counter-
measures are therefore more difficult to create given they do not rely on any existing
vulnerabilities.
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2.9 Conclusion
In this work, we proposed a new inaudible voice command attack named “Audio
Hotspot Attack.” Its feasibility was evaluated through extensive user studies and
reproducible experiments. We demonstrated that when directional sounds are emit-
ted from parametric loudspeakers and not perceived by a nearby person, attacks can
succeed over relatively long distances (2–4 m in a small room and up to 10+ m in a
hallway); further, these attacks are tolerant against environmental noises. Although
the Audio Hotspot Attack is currently a proof-of-concept, possible countermeasures
to render the threats unsuccessful have been provided. The proposed attack uses
ultrasound self-demodulation, which is a parametric phenomenon. We believe that
this concept sheds new light onto ongoing security research focused on mobile and
IoT devices, from the viewpoint of acoustic inputs.

2.10 Additional Results of Section 5.1.2
We tested the Audio Hotspot Attack to several other devices, in addition to Google
Home and Amazon Echo. We measured the maximum distance at which the attack
succeeded in a hallway. All the experimental conditions are the same as those stated
in Section 5.1.2. Table 2.4 summarizes the results. We note that as the smartwatch
did not recognize the activation command (“Hey Siri”) even when uttered by the
owner, we skipped the activation command by manually launching the recognition
mode and tested the attack. We notice that while the attack succeeded for all the
devices, the maximum distance becomes smaller, as compared to the smart speaker.
As these devices (smartphones and a smart watch) are handheld devices with small
microphones, it is natural that the distance at which a speech can be recognized
decreases even when a normal audible sound is inputted.

2.11 Additional Images of Section 5.1.2 and Section 6
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Table 2.4 Longest distance at which the attack was effective in a hallway. Google
assistant was installed to ASUS Zenfone, SONY Xperia and SHARP AQUOS
SHV37 from google play. Siri was used in the experiment of Apple watch.

Longest distance [m]
Devices Activation Recognition

ASUS Zenfone 2 6.1 5.5
SONY Xperia Z4 1.0 3.9
SHARP AQUOS SHV37 1.1 2.2
Apple Watch – 7.5

Fig. 2.18 Experiments in a hallway (left) and outside (right). We install the
parametric loudspeaker and smart speaker at the same height. The detail result
was presented in Sec 5.1.2, Table 2.

Parametric 
Loudspeaker
(Sideband wave)

Parametric
Loudspeaker
(Carrier wave)

Fig. 2.19 A setup of the user study (cross attack). The left side of parametric
loudspeaker emits the sideband wave, and the right side of parametric loudspeaker
emits the carrier wave.
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Fig. 2.20 Answer sheet reported by one of the participants. Top: answer sheet
for cross attack. Bottom left: answer sheet for linear attack. Bottom right: voice
attack with a dynamic speaker. The participants reported the word when they can
hear. X means that “the participant cannot hear any sound”, and △ means that
“the participant hears the sound, but he/she cannot recognize the word.”
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Chapter 3

Contribution2: Preventing against

threats caused by analog signals

3.1 Introduction
Cyber-physical systems (CPSs) are used to realize seamless interactions between
physical and cyber spaces. Smart homes, robotic vehicles (e.g., self-driving cars and
autonomous drones), medical devices, and various other IoT devices equipped with
voice recognition capabilities are promising examples. Although the widespread
adoption of CPSs can result in substantial benefits to society, many security threats
that exploit the physical sensors inherent in CPSs [2, 3, 4, 5, 6, 7, 8, 9, 10] have been
identified.
The threats range from bringing unauthorized input to the sensors of the CPS,

causing it to make malicious behaviors, to taking control of the device itself; e.g.,
the threat of analog signals generated by commands from IFTTT [67] applications,
becoming inputs to other CPS devices and causing malicious behavior [20], and
the threat of injecting inaudible voice command into voice assistant devices by
modulating voice signals into the laser output [6], or capacitors [10].
Thus, as application-centric CPS services such as IFTTT and Voice App become

more prevalent, the risk of unauthorized control of CPS devices increases, making
it difficult for device developers and users to be aware of such threats.
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Fig. 3.1 Overview of the CPFW framework for the ingress access control of
input signals (top, previous studies) and egress access control of output signals
(bottom, our research).

To mitigate these threats, previous studies typically adopted an approach of de-
tecting and mitigating attacks by analyzing sensor input [2, 21, 22, 4, 23, 8, 24, 25,
26, 27]. These countermeasures usually focused on sensor input data regardless of
sensor type, presenting the following shortcomings: (1) Attack detection accuracy
may be reduced considerably by the noise generated in the physical space [31, 4, 13]
and (2) It is difficult to accurately detect an attack that exploits circuit nonlinearity
of input-processing data [32, 8, 33] (3) Input-based approaches do not directly block
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Table 3.1 Features of Ingress and Egress Access Control.

Features Ingress Egress
Effect of difference of noise or environment △ Mitigated by noise filtering ◦ No output
Effect of A/D converter × Nonlinearity exists ◦ Not via A/D converter
Versatility of countermeasures △ ◦ Solved in this paper
Realtime processing △ ◦ Solved in this paper
Scalability and Sharing knowledge ◦ Numerous previous researchs ◦ Solved in this paper
Negative effects of analog signals on humans

× Cannot prevent ◦ No output
(hearing loss, burns, etc.)

the source of the attack.
In order to address the above issues, we developed a framework named “Cyber-

Physical Firewall” (CPFW) to provide an access control mechanism for analog
signals. The unique feature of CPFW is that it adopts an approach to implement
“egress access control,” which aims to employ the policy enforcement on the at-
tacker’s or exploited device so that it will not emit a malicious analog signal to
the physical space*1 (Figure 3.1). Specifically, it detects and regulates signals with
patterns not originally intended to be emitted from the device, and are therefore
likely to be exploited by an attacker, before they are actually output into the physical
space, with the goal of defeating the security threats described above.
CPFW targets the digital signal before output as an analog signal. This approach

avoids the factors that make threat detection difficult, i.e., attacks based on nonlin-
earities inherent in the device receiving the signal and the effects of environmental
noise. CPFW also has the advantage of embedding a defense mechanism directly
into the device, which can be exploited by an attacker and potentially become the
source of an attack, thereby realizing a root cause countermeasure. The advantages
and disadvantages of ingress and egress access control are shown in Table 3.1.
Egress access control enables control that is difficult to address by ingress access
control.
Typical access control mechanisms, such as firewalls and secure operating sys-

*1 Like the conventional approaches, the CPFW framework also supports “ingress access control, ”
which apply the policy enforcement to the analog signal received by a victim’s device.
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tems, generally target structured digital data. The challenge of CPFW is to realize a
general and flexible access control mechanism for unstructured analog data with a
high degree of freedom, which is sent and received in physical space. To tackle such
a challenge, we first define the requirements and design specifications necessary
to realize the CPFW framework. The key ideas are the partitioning of input data
into blocks, feature extraction for analog signals, adoption of policy-based access
control, and graphical policy description interface. We implement a prototype of the
CPFW framework based on the defined specifications, and demonstrate that access
control for analog signals can be properly realized and that real-time processing is
possible. We will demonstrate that the CPFW framework can prevent real-world
attacks against CPS devices, such as ultrasonic wave attacks (DolphinAttack [8]),
noise attacks (AudioAdversarial Example [3]), and resonant attacks (WALNUT [7]).
The contributions of this study are summarized as follows:

• We developed the CPFW framework to provide generic and flexible access
control for regulating malicious analog signals targeting CPS devices.

• The egress access control approach facilitates overcoming several challenges,
e.g., noisy environments, exploitation of nonlinearity of data processing
circuits, and direct regulation of the attack sources, which are otherwise
difficult to address with conventional ingress access control approaches.

• Extensive experiments with a prototype implementation were employed to
demonstrate the feasibility of the CPFW framework.

3.2 Threat Model
In this section, we first present our target, a CPS device and its inherent security
threats. An assumption regarding the attacker’s resources and abilities is then made.

3.2.1 Target CPS device

Cyber Physical System (CPS) makes decisions and performs actions based on the
data exchanged between Physical Space and Cyber Space. CPS devices include IoT
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Fig. 3.2 Overview of a CPS device.

home appliances like voice assistant systems, medical devices like health monitoring
sysmtes, and driver assistance and self-driving cars.
As shown in Figure 3.2, a CPS device has three key elements: input interfaces

(e.g., sensors, microphone, and camera), controllers, and output interfaces (e.g.,
speaker, light display, and motors). Input interfaces read analog signals generated in
the physical space and send them to the controller. Output interfaces receive analog
signals sent from a digital-to-analog converter and output them to the physical space.
A controller receives data sent from the input interfaces, process it, and generates the
output through the output interface. Notably, security threats and attacks conducted
between cloud services and devices are outside the scope of this research.

3.2.2 Target Security Threats

In this study, we focused on the security threats caused by the malicious analog
signals, which would be read by the input interfaces of a CPS device, leading to
unintended/non-authorized behaviors. Stealth voice command injection attacks such
as DolphinAttack [8], Light Commander [6], audio adversarial examples (AEs) [3]
, are typical examples of such attack. These attacks aim to inject malicious voice
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Table 3.2 Classification of Security Threats.

threat types threat name
Ultrasonic DolphinAttack [8], Inaudible voice commands [33], Audio Hotspot Attack [68]
Noise Audio Adversarial Examples [3], Hidden Voice Commands [69], Jamming [11]
Resonant WALNUT [7], Rocking Drones [5]

commands unbeknownst to the device owner. Another example is the misuse of
sonic waves to inject malicious noise into the sensors of autonomous vehicles. For
instance, Son et al. demonstrated that drones could be attacked with sound waves in
a frequency range that can be emitted by off-the-shelf loudspeakers [5]. Table 3.2
shows the classification of the attack methods using analog signals, including the
research cases mentioned above. The three types of attacks shown in Table 3.2, i.e.,
ultrasonic, noise, and resonance, are typical covering a wide range of attacks using
analog signals.
The goal of this study is to develop a firewall that can mitigate the malicious

analog signals, such as the ones described above. As mentioned in the introduction,
the originality of our approach lies in the fact that it provides egress access control.
In other words, even if an attacker attempts to exploit an off-the-shelf device to
emit the malicious signal, the built-in CPFW mechanism can prevent the attack. In
such a scenario, the device manufacturer can pre-configure the CPFW according to
the device’s intended use and possible misuse patterns; For example, a loudspeaker
manufacturer may want to inhibit the generation of very high frequency sound waves
that would be inaudible to humans but could be used for inaudible voice command
attacks. Moreover, CPFW can be applied to the input signal as well, that is, CPFW
can be configured on the victim device.

3.2.3 Attacker’s Resources and Ability

In concurrence with the majority of recent studies on the security threats of CPS
devices, we believe that it is a reasonable assumption that an attacker would use/-
exploit off-the-shelf equipment to emit malicious analog signals. In fact, previous
studies on audio AEs [3], replay attack [4], rocking drones [5], and WALNUT [7]
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were demonstrated using off-the-shelf equipment, which were all inexpensive and
commercially available.
We assume that when an attacker wants to use external hardware to emit malicious

signals, they cannot directly embed an adversarial circuit into a target device circuit,
but they can connect an adversarial circuit that generates malicious signals to the
input interface of the target device. We also assume that the CPFW is implemented
such that it is tamper-resistant and cannot be bypassed to emit signals. An attacker
can also install a malicious application on the equipment to emit malicious analog
signals; i.e., the attacker may use software for performing the attack. Cases wherein
an attacker leverages custom-developed hardware, which does not allow developers
to pre-install our CPFW framework, are outside the scope of this research.
We consider two main attacker objectives.

1. Spoofing: An attacker inserts incorrect values to sensors. (e.g. replay attacks:
recording another person’s voice to use for authentication)

2. DoS: An attacker interferes with sensor readings. (e.g. resonant attacks:
using ultrasonic waves to interfere with accelerometer values)

In the CPFW framework, we provide a suitable countermeasure regardless of the
purpose of attack.

3.3 Design of Cyber-Physical Firewall
In this section, we first clarify the requirements of the CPFW framework (i.e., what to
develop). Then, we present the design specifications derived from the requirements
(i.e., how to develop). Finally, we outline the overall architecture to be built based
on the design specifications.

3.3.1 Requirements Specification (What)

To meet the objectives of the CPFW framework outlined in Section 3.1, we set the
following three fundamental requirements, R1–R3.
R1: Real-Time Data Processing
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The CPFW framework inspects the received data, and if it finds that a policy is
violated, it applies the appropriate control, such as noise reduction or lowpass filter,
and transmits the data to the subsequent stages. Therefore, to avoid reducing the
quality of service, it is necessary to operate in real time.
R2: Flexible Access Control
As mentioned earlier, the physical space has a high degree of freedom, and so

does the freedom of attacks using analog signals. Therefore, the access control
mechanism must be flexible and generic so that it can cope with various attack
patterns. Similarly, because there are a variety of devices to which the CPFW
framework can be applied, it is necessary to be flexible enough to support the
various input–output (I/O) interfaces installed in the devices.
R3: Extensibility
Ideally, the necessary policies will be built into the device beforehand based on

the principle of security-by-design. However, in reality, it is common for new threats
to arise after the device has been shipped. Therefore, it is essential that the CPFW
framework be extensible so that it can cope with new threats that may arise in the
future.

3.3.2 Design Specification (How)

Next, based on the three requirements shown above, we derived the following design
specification (D1–D4):
D1: Block-based data processing
In response to requirement R1, we adopted an approach that divides the input

data stream to the CPFW into blocks and processes the data on a block-by-block
basis. Here, a block consists of 𝑁 sample points (referred to as frames). 𝑁 is
a parameter that is determined by the trade-off between the number of samples
required to statistically determine whether an analog signal violates a policy and its
tractable size for real-time processing.
D2: Attribute definition/extraction
In response to requirements R1, R2, and R3, we developed a method of defining

and extracting the information (attributes) needed to apply policy-based control
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from the blocks. We can define various attributes based on statistics obtained from
time series data, such as mean and variance, statistics obtained from frequency
analysis, and outputs obtained by applying advanced data processing mechanisms,
such as speech recognition to the signals contained in blocks. Notably, the attribute
extraction process must be fast so that it can work in real time.
D3: Policy-based access control
In response to requirement R2, we adopted a policy-based access-control ap-

proach. This approach is a common method that has various applications, such as
network firewalls and secure operating systems. The advantage of this approach
is that arbitrary policies can be defined by using a data process description model,
which we introduce as the specification D4. We adopted the if–then rule as a
method of realizing policy-based access control and implemented a policy violation
detection (if) and a policy enforcement mechanism (then).
D4: Policy description interface
In response to requirements R2 and R3, we introduced a policy description

interface for expressing policies. In particular, we adopted a graphical user interface
(GUI), such as the GNURadio Companion GUI [70]. The adoption of a GUI has the
advantage of being intuitively configured for complex data processing, consisting of
multiple signal processing. The description interface has the advantage of enabling
effective policy sharing and reuse.

3.3.3 Overall architecture with integrated design specifications

Figure 3.3 shows the overall architecture of the CPFW framework, which integrates
the aforedescribed design specifications. The CPFW first receives the data and
divides them into blocks consisting of 𝑁 frames (D1). Next, it extracts attributes for
each block (D2). The attributes to be retrieved are defined in a policy written using
a policy description interface (D4). The framework checks whether the extracted
attribute violates the policy and executes policy enforcement if it finds a violation
(D3). The process is completed by outputting the final block as a data stream (D1).
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Fig. 3.3 Overall architecture.

Table 3.3 List of General attribute and their usage.

Class Attribute name Usage
Base Info Amplitude Volume

FFT Frequency distribution analysis
Sampling Rate Determine the max output frequency

Power Total Power Total power
Mean Power Mean Power

Frequency Mean frequency [71] Mean of frequency distribution
Median Frequency [71] Median of frequency distribution
Peak Frequency [71] Derive the strongest frequency
Variance of Central Frequency [71] Variance of frequency distribution
Max Frequency Detect maximum frequency

Rate Threat Frequency Rate Derive percentage of threat signal power
Zero Crossing Rate [72] Voice Part Extraction

Energy Short Time Energy (STE) [73] Voice Part Extraction

3.4 Descriptions of System Implementation
We present the implementation details of the CPFW framework according to the
design specifications shown in section 3.3. The following description assumes the
egress access control, that is, we adopted a case wherein the CPFW framework
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Table 3.4 List of attacks that can be countered by the policy-enforcement schemes.

Enforcement scheme Countable attacks

Decrease Amplitude
Replay Attack [4], Voice Synthesis [4],
WALNUT [7], Rocking Drones [5]

Lowpass Filter
DolphinAttack [8], WALNUT [7],
Rocking Drones [5], Audio Hotspot Attack [68]

Noise Reduction
Audio Adversarial Examples [3],
Hidden Voice Commands [69], Jamming [11]

aims to prevent the emission of malicious analog signals from the device owned or
exploited by an attacker.

3.4.1 Implementation of block-based data processing (D1)

To achieve block-based data processing, we sample and process the digital input
data at a sampling frequency of 𝑓 , which can be set to any value according to the
signal processing capability of the device. In this study, we used values of 𝑓 = 48
or 96 kHz. The number of quantization bits is fixed at 𝑞 = 16 bits. The number
of frames, which comprise a block is set to a power of two, which is suitable for
applying a fast-Fourier transform (FFT). In this study, we adopted 𝑁 = 1, 024 as the
result of preliminary experiments using a Raspberry Pi 3 Model B+. We confirmed
that 𝑁 = 2, 048, 4, 096 is also suitable.

3.4.2 Implementation of attribute definition/extraction (D2)

Using a set of values recorded in𝑁 frames, various statistical values can be calculated
as attributes. For example, common statistical values, such as mean, variance,
median, maximum, and minimum, can be used as attributes. One can also apply
FFT to obtain statistics based on frequency analysis, such as average frequency,
median frequency, variance of central frequency, average power, peak frequency,
and maximum frequency. Statistics specific to speech recognition, such as zero
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crossing rate, can be calculated and used as attributes. Table 3.3 summarizes the
list of general attributes that can be extracted from the observed signals and their
usage. We have confirmed that all these attributes can be extracted with low latency
through experiments using the Raspberry Pi.
A policy can be defined by using a combination of these statistical values. For

example, to define a policy for regulating the emission of ultrasonic waves that could
be exploited for hidden voice-command injection attacks, such as DolphinAttack [8],
the average frequency can be used. If the value exceeds 20 kHz, we consider that
the policy is violated.
When a signal having a specific frequency is subject to regulation, we can intro-

duce several metrics, such as threat frequency rate (TFR), which is defined as the
ratio of the threat signal to the total power for 𝑁 frames. Assuming that the threat
signal is detected in the range of [ 𝑓𝐿 , 𝑓𝐻 ] Hz, and 𝑋 (𝑛) is the 𝑛-th component of
the FFT result, TFR is computed as

𝑇𝐹𝑅( 𝑓𝐷𝐿 , 𝑓𝐷𝐻 ) =
𝐹−1 ( 𝑓𝐷𝐻 )∑

𝑛=𝐹−1 ( 𝑓𝐷𝐿 )
𝑋 (𝑛)

/ 𝑁∑
𝑛=0

𝑋 (𝑛), (3.1)

where 𝐹−1 ( 𝑓 ) is a function that extracts the component number of the FFT result
from a given frequency, 𝑓 .
In addition to the statistical values calculated from the frames, the output of high-

level data processing can be used as attributes. For example, if the target is a speech
signal, we adopt the outputs of speech recognition (i.e., text data) as the attributes.
For the recognition text, we used the results obtained from the Google speech-to-text
API [74]. The text output can be used to detect voice command attacks, which make
use of wake-up words such as “Ok Google” or “Alexa.” The text can also be used to
prevent the output of privacy-sensitive or offensive words by applying the NG word
lists.

3.4.3 Implementation of policy-based access control (D3)

The policy-based access control is implemented according to the if–then rule, which
comprises policy violation detection (if) and enforcement (then). During the detec-
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Fig. 3.4 Overview of enforcement schemes. ‘%’ represents the enforcement level.

tion phase, we use criteria that can be preset or adjusted per user. In Section 3.5,
we present an example case to set the criteria (threshold) for detecting ultrasonic
attacks.
Although various methods can be employed for policy enforcement, this paper

describes three typical methods: signal-strength attenuation, lowpass filters, and
noise removal [75]. An overview of each enforcementmethod is shown in Figure 3.4.
Enforcement level is defined as a real number between 0 and 1, where 0 represents

no policy enforcement, and 1 represents the maximum policy enforcement. We
can adjust the level to meet the condition that the enforcement is effective and
does not damage the quality of service. When amplitude regulation is used, the
enforcement level is defined by the ratio of the amplitude after regulation to the
original amplitude. In the case of lowpass filter regulation, the enforcement level
is calculated as ( 𝑓𝐷 − 𝑓𝐶 )/ 𝑓𝐷 , where 𝑓𝐷 is the frequency at which regulation is
applied, and 𝑓𝐶 is the cutoff frequency at which regulation is required. In the case
of noise removal, the enforcement level is defined by how much the amplitude of
the noise to be removed is attenuated relative to the noise amplitude. When level =
1, the noise is completely removed. When level = 0.5, the noise signal is processed
so that the amplitude of the noise is reduced to half.
We summarize the attacks that can be countered by the enforcement schemes in

Table 3.4.
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3.4.4 Implementation of policy description interface (D4)

MATLAB’s Simulink [76] and the GNU Radio Companion [70] are well-known
systems that allow developers to define complex data-processing flows using an
intuitive GUI. This study is inspired by these existing systems and implemented a
graphical analog policy diagram (APD) description interface. Themain components
of the APD are shown in Figure 3.5 (top). An example implementation of a policy
using the mean frequency as an attribute is shown in Figure 3.5 (bottom). APD
defines a description language internally, which can then be linked to any external
programming languages.
We defined Analog Policy Language (APL) as an intermediate language for

converting APD into processable if-then rules program. Listing 3.1 shows the
definition of APL in Backus-Naur Form (BNF).
Figure 3.6 demonstrates the relationship between APD, APL, and the policy

system. Policy description is a sentence written in natural language. The policy
description preset for sound is shown in Table 3.5. These descriptions summarize
the elements that are assumed by the sound security and privacy threats presented
in previous studies. To implement the policy description, users select the attribute,
threshold, and enforcement method, and convert them to if-then rules. If-then style
policies convert to APD by using if-then block in Figure 3.5. We show the APD
policy example in Figure 3.7.
The block diagram described in APD is converted to JSON format APL and

loaded into the policy system. The framework can be used in the following three
ways by using APD and APL.

1. Use preset policies (Examples in Table 3.5)
2. Adapt the parameters of the preset policy to user’s environment.
3. Create a new policy (customized policy)

Figure 3.7 presents an example of APL and APD, wherein LPF is employed to
regulate signals if the mean frequency exceeds 20 kHz.
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Fig. 3.5 APD basic design (top) and example of the APD structure of mean
frequency block (bottom). 𝑓𝑠 is the sampling frequency, and 𝑓 (𝑛) is the frequency
of frame 𝑛.

Fig. 3.6 Overview of the implementation of policy description Interface.

Listing 3.1 Analog Policy Language (APL) in BNF. “+” indicates one or more
occurrences and “*” indicates zero or more occurrences.
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Fig. 3.7 Examples of APD (top) and APL (bottom), in which an LPF is used to
regulate signals if the mean frequency exceeds 20 kHz. The top figure shows an
example of passing a signal through LPF when the if-then block condition is true
(T) and passing raw output when it is false (F). APD (top) is converted to APL
format (bottom).

⟨policy⟩ ::= ⟨attributeExtractor⟩⟨policyDetector⟩⟨Enforcement⟩

⟨attributeExtractor⟩ ::= [⟨function⟩⟨input⟩]+

⟨input⟩ ::= ⟨attribute⟩ | ⟨Nframes⟩

⟨policyDetector⟩ ::= [⟨expression⟩]+

⟨expression⟩ ::= ⟨attribute⟩⟨operator⟩⟨threshold⟩

⟨operator⟩ ::= >| <| ≤ | ≥ | in | =

⟨Enforcement⟩ ::= ⟨function⟩⟨enforcement-level⟩[⟨argument⟩]*
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Table 3.5 Examples of egress access control policy description for audio signals.
Category Class Description Condition examples for detection

Voice
Ultrasound [8, 33] Restrict output sound frames that contain ultrasonic waves above 20 kHz. getMNF(Nframes) ≥ 20000
Noise [69, 11] Restrict sound output with amplitude less than 0.1. getAmplitude(Nframes) ≥ 0.1
Replay [24, 13, 2] Restrict output sounds that contain voice command. getZCR(Nframes) ≥ 0.2

Privacy [77] Information
Restrict output sound frames that contain voices. getZCR(Nframes) ≥ 0.2
Restrict voice output content to be delivered as message cards. getZCR(Nframes) ≥ 0.2

Sensor
Resonant Attack

Restrict sound sources that exceed the specified frequency (ex. 4 kHz). getMDF(Nframes) ≥ 4000
[7, 5]

3.4.5 Specification of the prototype implementation

We implemented a prototype of the CPFW framework in Python running on Rasp-
berry OS Lite. The hardware used is a Raspberry Pi 3 Model B+ (Element14, CPU:
Cortex-A53 64-bit, 1.4GHz, memory: 1GB). We implemented a prototype of the
CPFW framework in Python running on Raspberry OS Lite [78]. The prototype was
implemented using a microphone with the Voice AIY kit [79] as the CPS input inter-
face, a Raspberry Pi 3B+ (Element14, CPU: Cortex-A53 64-b, 1.4 GHz, memory: 1
GB) [80] as the controller, and a dynamic speaker with a 6 cm diameter as the output
interface. We used numpy and scipy as our scientific computing libraries. The FFT
algorithm used for the frequency analysis was SciPy’s rfft() function. For noise
reduction, we used the algorithms described in [75]. For audio I/O processing, we
used the asynchronous processing mode of pyaudio. The total number of lines of
code implemented was 492. The entire line is expected to increase depending on the
number of preset attributes and enforcement methods. A photo of a prototype of the
CPFW framework implemented on a custom CPS device is shown in Figure 3.8.

3.4.6 System Implementation Model of CPFW

We present a system implementation model of the CPFW framework. CPFW is
implemented as a function of the OS or Firmware. Figure 3.9 shows an example
of the system implementation model. In this model, the developer installs the
CPFW in the OS or Firmware before the product is shipped. The functions and
initial settings of the CPFW cannot be circumnavigated or modified by malicious
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Fig. 3.8 An photo of the prototype implementation of the CPFW framework.

Fig. 3.9 Examples of system implementation of CPFW (OS and firmware) and
two threat cases (software threat and hardware threat).
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users. As a mechanism to prevent bypassing the CPFW functions, firmware TPM
(Trusted Platform Modules) can be used to ensure that the input/output and internal
processing of the CPFW is tamper-resistant, i.e., impossible to analyze.
In addition, the configuration of the CPFW can be changed by following the

regular procedure shown below. Specifically, CPFW updates and settings must
be verified by signature. Updates and settings with signatures are limited to only
those license holders who can properly handle analog signals. The license for analog
signals is the same as that granted for radio signals, and it is the right of a government
agency or specific government authorized organization to grant permission to change
the configuration of a CPFW to a specific person or entity that meets the required
conditions.
Previously, utilization of the licensing system for the output of analog signals,

except for radio signals, has not been considered. While licensing systems for
regulation radio signal emission have been widely deployed in the world, similar
licensing system for regulating the emission of generic analog signals has not been
adopted. However, the threats to CPS devices caused by malicious analog signals
have become vital these days. Therefore, device management under a licensing
system appears to be a promising approach. The licensing and legal system for
analog signals is discussed in further detail in Section 3.7.
Figure 3.9 shows an example of CPFW implementation and cases where CPFW

is applied to a threat. Case 1 shows an example of a malware application running
on CPS that creates a malicious analog signal threat. We prevent malicious signals
from being emitted from the output interface by adding detection and regulation
processing to device driver processing. CPFW can also handle case 1 with firmware
implementation. Case 2 shows an attacker who connects an external circuit to the
device and adds a malicious signal. In this case, it may not be straightforward to
detect at the OS level. Implementing CPFW as firmware for CPS devices ensures
that monitoring the added signal is possible at the lower level.
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3.5 Feasibility Experiments
In this section, we detail the experiments performed to evaluate the feasibility of
the CPFW framework. The evaluation was conducted from the following three
perspectives: real-time performance, attribute extractor metrics testing, and policy
violation detection accuracy.

3.5.1 Evaluation of real-time performance

We first evaluated the runtime overhead of CPFW to verify that countermeasures
can be taken in real time (Requirement 1). We measured the following three runtime
overhead items: (1) process time required to extract each attribute, (2) process
time required to perform each enforcement method, and (3) end-to-end process
time required from the beginning of attribute extraction to the completion of policy
enforcement. For (3), we adopted a policy where output sound frames should not
contain more than 20-kHz ultrasonic waves. To enforce this policy, we applied a
low-pass filter with a cutoff frequency of 20 kHz. For experiments (1) and (2), we
adopted a chirp signal as input. The chirp signal changes frequency from 0 to 30
kHz over 1 min. For the experiment (3) the input was a randomly generated 20+
kHz ultrasonic waves that lasts for 1 min.
Table 3.6 and 3.7 show the mean time required to extract each attribute and to

perform each enforcement method, respectively. Figure 3.10 shows the end-to-end
processing time of CPFW framework. These results demonstrate that the runtime
overhead is very small and stable. For the end-to-end process time, the mean and
maximum times required were 5.42 and 26.34 ms, respectively. According to the
International Telecommunication Union’s (ITU) Telecommunication Standardiza-
tion Sector (T) standard for speech transmissions delay [81], a delay in the range of
0–150 ms is acceptable to most users. In the case of hearing aids, usability can be
ensured if the delay of the hearing aid output is within 0–10 ms [82]. Thus, we
conclude that the runtime overhead of CPFW application is sufficiently small.
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Fig. 3.10 End-to-end processing time measurement of the framework.

Table 3.6 Runtime overhead for attribute extraction per 𝑁 = 1024 frames. Mean
time 𝑚 [ms] and standard deviation 𝜎.

Attribute 𝑚 𝜎

Amplitude 0.121 0.019
Sampling Rate 0.057 0.013
Zero crossing 0.260 0.048
FFT 1.258 0.240
MNF 1.385 0.271
MDF 2.677 0.451
TFR 2.192 0.452

Table 3.7 Runtime overhead for enforcement methods per 𝑁 = 1024 frames.
Mean time 𝑚 [ms] and standard deviation 𝜎.

Enforcement Method 𝑚 𝜎

Decrease Amplitude 1.694 0.082
Lowpass Filter 3.219 0.140
Noise Reduction 8.471 0.689
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3.5.2 Validity of the extracted attribute values

We verify that the attributes extracted by the CPFW framework could provide useful
information for detecting attacks. The purpose of the evaluation was to verify
whether the extracted attributes correctly capture an attack when a malicious audio
signal is applied to a normal audio signal. As a normal audio signal, we used the first
30 s of J.S. Bach’s Goldberg Variation Aria BWV988. Then, we prepared speech
data in which a speaker utters “OK Google, What’s on my next schedule?” The
speech data is amplitude modulated with 25 kHz ultrasonic waves as the malicious
signal. The length of the malicious signal was about 2.5 s. Notably, this malicious
audio signal is a replication of the DolphinAttack [8] injected at 10 and 15 s after
the start of the normal audio signal.
Figure 3.11 shows the results. First, in the top panel of the figure, we can ob-

serve that all three frequency statistical attributes (i.e., mean/median/max frequency)
correctly captured the malicious audio signal around 25 kHz. Precisely, mean fre-
quencies (MNFs) and median frequencies (MDFs) were more stable and responded
precisely to the attack signal, whereas max frequency was more sensitive to noise
and oscillated, even in areas where the attack signal was not present. Next, in the
middle panel of the figure, we can observe that both threat-frequency rate (TFR)
and zero crossing rate (ZCR) correctly captured the attack range. In summary, we
confirmed the utility of the attributes by applying audio signals to the framework.
Preliminary experiments demonstrated that it also works well with other analog
signals.

3.5.3 Accuracy of policy-based access control

We evaluate the accuracy of policy violation detection using sine waves. The policy
to be set is simple: reject sound waves above 4 kHz, which reflects the case study
shown in Section 3.6.3. We adopt TFR, which was defined in Eq. 3.1, as an attribute
to detect the violation. We experiment and compare results for two scenarios: (1)
Egress access control: the CPFW framework runs on the attacker’s or exploited
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Fig. 3.11 Top: attributes based on frequency statistics, Middle: TFR and ZCR,
Bottom: spectrogram of the original sound wave.

device and detects a policy violation before outputting the signal as an analog signal.
(2) Ingress access control: the CPFW framework runs on the victim’s CPS device
and detects a policy violation after the output analog signal has been generated on
the attacker’s device and delivered/input to the target CPS device. To evaluate the
accuracy, we adopt the ROC (Receiver Operating Characteristic) Curve [2]. We
note that the ROC curve can also be used to extract useful information for adjusting
the threshold.
We first generate sound wave data for the two scenarios as follows:

(1) Egress access control: We generated 3 seconds single-tone sine waves at
frequencies from 1 Hz to 8 kHz at intervals of 1 Hz.
(2) Ingress access control: While the egress access control scenario does not
involve the external noises, we need to consider the intrinsic noise that arise in the
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Fig. 3.12 A setup for generating the sound waves of the ingress access control scenario.

Fig. 3.13 ROC curves for the two scenarios: egress and ingress access controls.

physical space for the ingress access control scenario. Figure 3.12 presents a setup
to generate the data for the ingress access control scenario. Each sine wave was
played from a loudspeaker [50], and recorded at a distance of 50 cm in the dedicated
acoustic experiment room. We changed the average noise level from 25 dB to 80
dB.
For each of the generated sound waves, we assign labels to the corresponding

frames, i.e., ‘T’ for violation and ‘F’ for non-violation.
Figure 3.13 shows the results. In the case of egress access control, the policy

violation detection was successful without error. This high success rate is attributed
to the fact that no physical noise was applied inside the system; the high accuracy
is a notable advantage of the egress access control approach. On the other hand,

70



3.6 Case Study

the accuracy of ingress access control in detecting policy violations is degraded.
Especially when the required FPR is low, the achievable TPR becomes low, implying
that the framework tends to fail the policy violation detection. For example, when
FPR = 0.01, TPR = 0.800, and when FPR = 0.001, TPR = 0.584.

3.6 Case Study
In this section, we demonstrate that the CPFW framework can mitigate real-world
threats. Specifically, we targeted three types of attacks shown in Table 3.2, i.e.,
noise attacks (Audio AE [3]), ultrasonic attacks (DolphinAttack [8]), and resonant
attacks (WALNUT [7]). For the audio AE, we employed noise reduction to elim-
inate the maliciously crafted perturbation. For the DolphinAttack, we employed
bandpass-filter regulation so that no ultrasonic waves with maliciously modulated
voice commands were emitted. Finally, for WALNUT, we employed a bandpass
filter to regulate audio signals that attempted to perform a resonant attack on the
accelerometer used in self-positioning systems. In the following experiments, we
implement the CPFW framework as egress access control, i.e., we evaluate the ef-
fectiveness of the framework by employing the policy enforcement to the generated
malicious signals before they are output from the attacker’s or exploited device.

3.6.1 Preventing noise attacks

In this section, we took countermeasures against audio AE [3] as a typical example
of noise attacks. We show the results of applying noise reduction to the audio AE.
In this experiment, the generation of audio AE, policy enforcement by the CPFW
framework, and speech recognition of the final output audio is performed in software.
In other words, this is not an over-the-air experiment where audio is transmitted in
physical space. The software experiment approach eliminates the effects of noise in
the physical space, and allows us to simulate the ideal conditions for a successful
attack. We show that the CPFW framework works well under such conditions.
As the audioAEs, we adopt the dataset developed byCarlini et al. [3]. The analysis

of the dataset revealed that the average amplitude of the AE noise is 4.5 × 10−4 and
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Table 3.8 Speech recognition results for each audio data.

Data DeepSpeech Google Speech to text
original without the dataset the article is useless without the data set the article is used
AE ok google open evil dot com without the data set the art of course Eustis
denoised AE without the davaset nordclice waspes without the data set the articles used to

has the equal intensity at different frequencies. Based on these results, we conclude
that the adversarial perturbations have characteristics similar to white noise. We
prepared a mask based on the enforcement level and the distribution of white noise.
We then apply a mask to remove the white noises.
Figure 3.14 presents the spectorograms of the original audio (top), audio AE

(middle), and the audio AE after the policy enforcement (bottom). Table 3.8 presents
the results for speech recognition for each data. We used DeepSpeech [83] and
Google Speech-to-Text [74] as the speech recognition implementations. For the
DeepSpeech model, we used the one trained by Carlini [3]. Table 3.8 shows the
results of the speech recognition. The audio AE generated by injecting perturbations
to the original sound source data has succeeded in altering the speech recognition
results. And by applying the policy enforcement to the audio AE, the speech
recognition results are almost restored to the original recognition results. We found
that the output of speech recognition by DeepSpeech is sensitive to the input data.
Therefore, as a comparison, we examined the speech recognition results using
Speech-to-Text on the same data. In all cases, the recognition results were close to
each other. We deem that the reason for the lack of an exact match is due to the
fact that the original audio is a bit unclear. To summarize, these results demonstrate
that our framework successfully mitigated the threat of audio AE attack without
compromising the original speech information.

3.6.2 Preventing ultrasonic attacks

The policy enforcement method for preventing the ultrasonic attacks was a low-pass
filter that cuts off frequencies above 20 kHz. We reproduced the Dolphinattack [8]
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Fig. 3.14 Spectrograms of the original audio (top), audio AE (middle), and audio
AE after the policy enforcement (bottom).

as an example of ultrasonic attacks, and verified the countermeasures. We evaluated
the effectiveness of the countermeasure by the results of spectrogram and speech
recognition results even for the over-the-air situation. The recording of DolphinAt-
tack was performed with a distance of 50 cm between the microphone and the attack
speaker.
The ultrasonic signal of DolphinAttack [8] is generated by the amplitude modula-

tion of the voice data (transcript: “OK Google, what’s on my next schedule”) at the
frequency of 40 kHz, which causes inaudible voice command injection by exploit-
ing the nonlinearity of the microphone circuit. Figure 3.15 presents the observed
spectrograms. We see that the waveform caused by the DolphinAttack is no longer
observable after the policy enforcement. In fact, the speech-to-text service [74] did
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Fig. 3.15 Spectrograms of the DolphinAttack signal (top), policy-enforced sig-
nal before transmission (middle), and denoised audio signal after over-the-air
transmission (bottom).

not detect the recorded sound as a voice. Thus, the CPFW successfully prevented
the emission of DolphinAttack.

3.6.3 Preventing sensor resonance attacks

In this experiment, we prevent a sensor resonance attack on an accelerometer [7].
The experimental setup is shown in Figure 3.16.
First, to reproduce the resonance attack performed by the WALNUT [7] attack,

we adopted a 9-axis sensor module, MPU9250 [84], which is equipped with an
accelerometer, a gyro sensor, and a magnetometer. The speaker [85] and the am-
plifier [86] was used to emit the sine wave to cause resonance and was set 10-cm
above the top of the target sensor. The loudspeaker emitted a pure-single tone be-
tween 50 Hz and 30 kHz at intervals of 50 Hz, and the sensor value at the time of
each emission was recorded. As shown in the figure, the acceleration values were
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Fig. 3.16 Resonant signal injection attack setup.

read via an Arduino [87] connected to MPU9250. The sound pressure level of the
emitted sound waves was adjusted to an average of 100 dB, following the setup used
in the previous studies [7, 5]. Next, we identified the resonant frequency of the
sensor by emitting sound waves at various frequencies. Resonance was observed at
frequencies of 5.2–5.8, 14.0–14.1, 20.25–20.6, 21.3–21.95, and 22.15–22.6 kHz.
Figure 3.17 presents the result for an experiment targeting the frequency of 5650

Hz. In this setup, the Y-axis component exhibited the highest resonance. As
indicated by the orange line, the resonance phenomenon that occurred in the Y-axis
was successfully restricted, and the sensor value was stabilized. It is thus possible
to prevent the resonance attack to the sensor in advance by applying the CPFW
framework.

3.7 Discussion

3.7.1 Evaluation Using Generic Analog Signals & Secondary Effect

As we presented in Section 3.3, the design specification of the CPFW framework is
generic; it is designed to target any type of analog signals that can be represented in
a sequence of data. As an example of an analog signal that has a large impact on
CPS security threats, we adopted the audio signal for our experiments. Evaluation
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Fig. 3.17 Policy enforcement for resonant attack at 5,650 Hz. Each panel corre-
sponds to an axis (X, Y, Z). The blue line shows the case where sine waves were
emitted as the resonance attack, and the orange line shows the case where the
sensor value was recorded after the sound waves with frequencies above 4 kHz
were filtered out.

for other analog signal output is left for our future study. We note that analog signals
exhibit the “secondary effects. ” For example, the heat or vibration generated by an
actuator that outputs sound or light can be an unexpected input to other CPS devices.
Since the characteristics of secondary effects vary from device to device and are
often affected by the environment, it is difficult to predict their behavior accurately
[88]. A study of access control mechanisms that consider the effects of secondary
effects is a future challenge.

3.7.2 Limitation of the CPFW framework

When controlling analog signals, there are caseswhere feedback control, such as PID
control orKalman filter, is effective, as they are used in various sensor-based systems.
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Since feedback control is a method based on past measurements, it introduces an
overhead necessary for state management. The CPFW framework does not support
the feedback control at present. This limitation can be resolved by employing a
module that performs feedback control inside the framework. Evaluation of the
effectiveness of such an approach is a topic for future work.

3.7.3 Statistical Anomaly DetectionModel &Machine LearningModel

In this paper, we adopt basic statistical values for attributes to detect threat signals. In
addition to the attributes illustrated in this paper, anomaly detection score can also be
adopted as an attribute. For example, in the anomaly detection ChangeFinder [89]
using the auto regressive model, the change point score is used to detect changes.
It can be used as an attribute by applying it to the frequency statistical attributes.
Furthermore, the score obtained from machine learning models [90, 91] can also
be used as attributes. These methods compromise real-time performance for basic
statistical value. The trade-off between the complexity of the attribute and the real-
time performance, in the case of machine learning and anomaly detection at the
output side, is a subject for future work.

3.7.4 Ingress vs. Egress Access Control

We mainly focused on egress access control in our experiment. We raised the
problem that few devices have countermeasures on the output side and proposed a
framework as a mechanism to make it easier to introduce egress access control. The
primary objective of this research was to increase the number of devices that imple-
ment output-side countermeasures, and reduce the number of options for attackers.
If the countermeasure is not possible on the output side, such as custom-develop
hardware, then we will use in combination the conventional ingress access control
shown in Section 3.8.2.
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3.7.5 Legal regulation of analog signal output

Legal systems for transmitting radio signals have been developed in many countries,
and government agencies have introduced licensing systems. The regulation of
wireless signals is intended to ensure that the shared resource of the radio spectrum
is operated safely and to prevent users from transmitting radio waves that could
interfere with other communication systems. Such regulations help to prevent
misuse of the airwaves, such as jamming attacks and spoofing. As threats exist such
as spoofing and DoS in the analog signals generated by CPS devices, regulating the
output power is a promising defense measure, similar to radio waves. In addition,
it would be effective for companies that manufacture CPS devices to regulate the
bandwidth and output power of the interfaces that generate analog signals through
a licensing system based on appropriate laws. A combination of litigation with
the CPFW framework could regulate the misuse of devices capable of generating
ultrasonic waves at extremely high intensities.

3.7.6 Proposal for Policy Sharing System

We have presented some preset policies in this study. Policy diagrams are designed
to allow developers and users to develop their own policies. We believe that sharing
new policies defined by users and developers is useful. Future work may include
providing a mechanism for users to share and reuse such policies. A good start-
ing point is to look at similar community-based rule-sharing schemes such as the
community ruleset of Snort [92].

3.8 Related Work
In this section, we review several related works and clarify the advantages of our
framework.
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3.8.1 Analog Signal Injection Attack

There have been a few research papers aimed at building a generic defending mecha-
nism against the threat posed bymalicious analog signal inputs to sensors. Giechask-
iel et al. proposed a framework to prevent signal injection attacks [21]. Yan et al.
proposed a scheme to formulate injection attacks on sensors [23]. The significant
difference between our study and these studies is that we developed a generic and
extensible policy-based access control framework that includes egress and ingress
access control, while prior studies focus only on ingress access control.

3.8.2 Policy Frameworks for Physical Attacks to IoT Device

Some policy frameworks for monitoring physical interactions have been proposed to
address threats caused by physical interactions between internet-of-things devices.
Ding et al. defined IoTMon [20], a framework for discovering physical interaction
chains that can arise in applications such as IFTTT [67]. Celik et al. created IoT-
GUARD [93] as a framework for API-based blocking of these physical interactions.
To eliminate the errors on the ingress side countermeasures due to noise in the envi-
ronment, we have extended it to the framework for egress access control in addition
to the existing ingress access control.
Although the scope of these studies is different from our study, we believe that

their findings help address the “secondary effect” discussed in Section 3.7.1.

3.8.3 AR Input & Output Security

Threats to the sensor input of AR devices have been recognized in previous re-
search [94]. Jana et al. have developed a Recognizer OS that protects the privacy of
sensor information and does not give developers information that is not needed for
the application [30].
The secure framework named Arya has been proposed to prevent threats from AR

output [34, 95]. The AR policy defined in Arya eliminates the AR output threats
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to people and provides safe AR Frames. Since AR digital objects have attributes,
there is no need to create a specific function to obtain attributes. In our study, we
defined attributes to analog signals that do not have explicit attributes. In addition,
AR Output Security protects against threats to humans. We extended the scope of
threats from humans to devices that target CPS devices. The output of devices will
cause security threats not only to people but also to nearby devices. Our research is
positioned as the first research to prevent the effects of analog output.

3.9 Summary
We have developed the CPFW framework, a generic and flexible access control
mechanism for malicious analog signals targeting CPS devices. The uniqueness of
this framework is that it supports both egress and ingress access control mecha-
nisms. This innovation solves the problems of existing ingress access control-based
approaches for analog signals, such as degradation of policy violation detection ac-
curacy due to physical noise and difficulty of attack detection due to the nonlinearity
of data processing circuits. We also conducted experiments using a prototype of the
CPFW framework and demonstrated that it is possible to achieve practical perfor-
mance. We also demonstrated that the framework could be applied to prevent attacks
using malicious analog signals against sensors in CPS devices, e.g., DolphinAttack,
adversarial audio example, andWALNUT. Further experiments using general analog
signals other than audio signals, developments of more advanced policy violation
detection techniques, and building an effective policy sharing scheme for the CPFW
framework are left for future challenges.
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Chapter 4

Discussion

The limitations and future directions of this study are summarized below.

4.1 Limitations

4.1.1 Evaluation Using Generic Analog Signals

As an example of an analog signal that has a large impact on security threats, we
adopted the audio signal for our experiments. Evaluation of threats and counter-
measures for other analog signal is left for our future study. It is possible to prevent
many analog signal threats in physical space that were not addressed in this thesis, by
using our design for light, motor, and wireless signals. We note that analog signals
exhibit the “secondary effects. ” For example, the heat or vibration generated by an
actuator that outputs sound or light can be an unexpected input to other CPS devices.
Since the characteristics of secondary effects vary from device to device and are
often affected by the environment, it is difficult to predict their behavior accurately
[88].

4.1.2 Analog signal transmission in an obstructed environment

The threats verified in this study are based on the assumption that there are no
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obstacles in the path of the analog signal. In addition to the countermeasures
presented in our study, another option is to physically cover the sensor since most
threats cannot be concluded when there is an obstacle between the signal and the
sensor. However, this is not a comprehensive countermeasure because biometric
sensors in wearable devices may not be able to measure without direct contact with
the skin. Light can pass through transparent obstacles such as glass to reach the
sensor as an exception. Even in this case, it is necessary to know where the sensor
is located in the room [6].

4.1.3 Multi Factor Authentication

This thesis assumed that all authentication systems are single factor authentication,
and verified threat models, conducted experiments, and proposed countermeasure
models. In cases where a security threat arises against a single sensor, the threat
may be mitigated by introducing multi-factor authentication. We did not discuss
multi-factor authentication in this study because only mitigating the threats does not
lead to a fundamental solution and the number of targets to be discussed is massive
due to the combination. The discussion of multi factor authentication is left as future
work.

4.2 Future Directions

4.2.1 Physical Security

This study presents the first security threat using the physical phenomena of sound
nonlinearity. In the future, security threats or security countermeasure methods
based on physics phenomena are expected to increase in response to technological
developments using physics phenomena, such as quantum computers. For example,
the qubits used in a quantum computer do not use a threshold value to determine the
value of a bit, but use the analog value directly, making them less resistant to noise
than conventional computers [96]. The noise injection attack shown in this study
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may be performed on quantum computers in the future. In addition to the above
possibilities, collaborative research between physicists and security researchers may
encourage novel and meaningful research.

4.2.2 Safety Engineering for robots

This thesis describes countermeasures against the possibility of analog signals un-
intentionally harming sensors. The standards and laws in the field of safety en-
gineering, such as the Three Principles of Robotics, are all designed to "prevent
harm to humans," and the possibility of a robot causing harm to other robots or IoT
devices by its actuators is not a concern of the safety engineering field [97, 98].
For example, ISO 12100 specifies a standard for safety evaluation of systems, but
its content is limited to human bodily harm and health risks [98]. In the field of
safety engineering, it will be necessary for the future to discuss standards to prevent
equipment from creating hazards for other sensors and IoT devices.

4.2.3 Security & Privacy of the Bio Signals

As the number of wearable devices that acquire signals from the human body in-
creases, security threats targeting bio-signals are expected to increase. As the use of
bio-signals becomes more widespread, their application to advertising technology is
also considered [99]. Bio-signals should be protected with privacy countermeasures
like other personal information.
In previous research, the acquisition of biometric signals has only been threat-

ened by direct access to the sensors or by malware to obtain the sensor values.
Recently, however, methods for estimating biometric signals using the information
other than biometric sensors and generating false signals have been explored [17].
Remote estimation techniques for biometric signals, such as estimation of pulse
wave signals by video, were initially studied to reduce the cost of sensors and for
convenience [100, 101]. For example, remote Photoplethysmography (rPPG) is a
technique for estimating PPG signals from information other than PPG sensors. As
a spoofing attack using the rPPG technique, [17] uses CHROM [101], which esti-
mates the PPG signal using the target’s video, to trick the system into using PPG
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authentication. Similar techniques may be proposed to estimate voice information
and EEG signals from appearance information in the future. It is necessary to
discuss what can be inferred from the movie, image, and voice information.
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Chapter 5

Conclusion

To solve security threats posed by analog signals, as described in Chapter 1, the
security threats are clarified using voice as a representative example, and a new
approach to countermeasures is proposed to reduce the total number of threats by
introducing a new approach to control at the “output side”.

In Chapter 2, we focused on sound signals as a threat posed by analog signals
and reveal the world’s first example of a security threat that takes advantage of
nonlinearity in the air, i.e., physical phenomena. Its feasibility was evaluated through
extensive user studies and reproducible experiments. We demonstrated that when
directional sounds are emitted from parametric loudspeakers and not perceived
by a nearby person, attacks can succeed over relatively long distances (2–4 m in
a small room and up to 10+ m in a hallway); further, these attacks are tolerant
against environmental noises. Although the Audio Hotspot Attack is currently a
proof-of-concept, possible countermeasures to render the threats unsuccessful have
been provided. The proposed attack uses ultrasound self-demodulation, which is a
parametric phenomenon.
In Chapter 3, we developed the CPFW framework, a generic and flexible ac-

cess control mechanism for malicious analog signals targeting CPS devices. The
uniqueness of this framework is that it supports both egress and ingress access con-
trol mechanisms. This innovation solves the problems of existing ingress access
control-based approaches for analog signals, such as degradation of policy violation
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detection accuracy due to physical noise and difficulty of attack detection due to
the nonlinearity of data processing circuits. We also conducted experiments using
a prototype of the CPFW framework and demonstrated that it is possible to achieve
practical performance. We also demonstrated that the framework could be applied
to prevent attacks using malicious analog signals against sensors in CPS devices,
e.g., DolphinAttack, adversarial audio example, and WALNUT.
The advantages of this doctoral thesis are that (1) it classifies threats caused by

analog signals and identifies threats caused by physical phenomena for the first time,
(2) it implements countermeasures to detect threat signals and identifies problems
commonly found in the countermeasures, and (3) it presents a framework to analyze
potential threat analog signals at the output side to solve problems found in (2). The
contribution of this doctoral thesis has led to the development of a new academic field
of security and privacy of biometric signals and physical security, which is being
developed by the knowledge of physics. This work is the first step in research to
solve security and privacy problems at the interface between physics and informatics.
In terms of contributions to society, we reported our findings of threats to physical
analog signals to Goodle and LINE, and asked them tomake improvements. We have
summarized our presentation in IEEE spectrum to alert the public. Furthermore,
by presenting the design of the framework, we were able to provide a guideline
for future standardization of analog signals. We believe that we have provided an
opportunity to stimulate discussion and design of what should be required to make
analog signals and outputs safe. We hope that this research will further develop
analog signal security and physical security.
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