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Abstract

Carbohydrates, proteins and lipids are the three essential substances of life. Protein as

one of them participates in almost all life activities. Protein function is the sum of all

the behaviors of proteins and the behaviors that happen through proteins. Therefore,

protein function prediction is of great significance for many biological studies. How-

ever, the entire experimental prediction methods have taken a lot to identify the function

information but with little success. On the other hand, structural genomics projects ex-

ponentially increase the number of protein sequences by the high-throughput method

in genome-wide strategies. Thus, more and more researches focus on computational

prediction methods using protein sequences.

Protein function prediction can be carried out in many ways. This dissertation mainly

discusses three cases: protein GO (gene ontology) annotation prediction, subcellular

localization prediction, and PPI (protein-protein interaction) prediction. GO annota-

tion is a description category of the whole functions. GO annotation prediction is a

complicated multi-label classification task because there are thousands of GO classes

and proteins usually have more than one annotation. Subcellular localization describes

the proteins in different locations corresponding to the cellular functions. Finally, the

protein interaction, as the critical point of forming protein macromolecular, includes

PPI prediction and protein complex detection. They play an essential role in studying

molecular functions.

Applying machine learning methods for protein function prediction has become popu-

lar in recent years. The superiority of machine learning has been proved many times.

However, a powerful deep learning method is not yet successful in protein function pre-

diction tasks. On one hand, since the prediction tasks are usually very complicated

multi-label classification problems, it is crucial to implement deep neural networks

for the tasks. However, experimentally annotated proteins are not available for most

species. As a result, it requires to perform a transfer learning based on the experimen-

tally annotated proteins available for some few type species. On the other hand, it has

been known that it is difficult to implement a transfer learning in bioinformatics tasks

because of the overfitting problems due to limited training samples.

To address the above problems, we develop a novel deep convolution neural network

(CNN) model with multi-head and multi-end (MHME) to implement a class of classi-

fiers in one model. The deep MHME CNN model shares a deep CNN feature extractor
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in a class of different prediction tasks, that make the transfer learning possible. The pro-

posed model is then applied for three protein function prediction tasks: GO annotation

prediction, subcellular localization prediction and PPI prediction based on a transfer

learning from different tasks and different species.

The dissertation contains five chapters as follows:

Chapter 1 first introduces the background of proteins and protein functions. Then we

discuss the three prediction issues and the related researches and summarize the chal-

lenges. At last, the goal of deep modeling for protein function predictions and our

proposal are listed.

Chapter 2 develops a deep hierarchical model for GO annotation prediction. GO annota-

tion can be formulated as a very complicated hierarchical multilabel classification tasks

consisting of a set of related local classifiers. A novel hierarchical multi-label classifier

is proposed to implement the whole set of hierarchically organized local classifiers in

one deep MHME CNN model. The proposed model consists of three parts: the body

part of a deep CNN model shared by different local classifiers for feature extracting and

mapping; the multi-end part of a set of autoencoders performing feature fusion trans-

forming the input vectors of different local classifiers to feature vectors with the same

length to share the feature mapping part; and the multi-head part of a set of linear multi-

label classifiers. In this way, by sharing a deep CNN with multiple local classifiers, we

can extract common feature and construct more powerful local classifiers for each level

with limited training samples and achieve better classification performance. Experi-

ment results on various benchmark datasets from Uniprot show that the proposed deep

CNN based model has better performance than the state-of-the-art traditional models.

Moreover, it gives rather good performance even under transfer learning of same tasks,

but different species.

Chapter 3 introduces a deep protein subcellular localization predictor enhanced with

transfer learning of GO annotation. GO annotations have been shown to be helpful

for the subcellular localization prediction. However, experimentally annotated proteins

are not always available. It is motivated to perform deep learning of GO annotations

on the available experimentally annotated proteins for some type species and transfer

it to subcellular localization prediction on other species. The proposed deep protein

subcellular localization predictor consists of a linear classifier and a deep CNN feature

extractor. By using the deep MHME CNN model, a deep CNN feature extractor is first

shared and pretrained in a deep GO annotation predictor, and then is transferred to the
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subcellular localization predictor with fine-tuning using protein localization samples.

In this way, we have a deep protein subcellular localization predictor enhanced with

transfer learning of GO annotation. The proposed method has good performances on

the Swiss-Prot datasets when transfer learning using the protein samples both within

and out species. Moreover, it outperforms the state-of-the-art traditional methods on

benchmark datasets.

Chapter 4 proposes a deep PPI predictor and reconstructs a PPI network based on deep

transfer learning for protein complex detection. The completeness of a PPI network is

crucial for the detection of protein complexes. However, complete PPI networks are

not available for most species because experimentally identified PPIs are usually very

limited. To solve the problem, a deep learning based PPI predictor is proposed to es-

timate the unknown PPIs, and construct a complete PPI network, from which protein

complexes are detected using a spectral clustering method. Considering the facts that

the similarities of GO annotations contribute to protein interactions, and the differences

of subcellular localizations contribute to negative interactions, the deep MHME CNN

model is used to pretrain a deep CNN feature extractor in a class of deep GO annota-

tion and subcellular localization predictors using datasets from the type species, then

transfer it to the PPI prediction model for fine-tuning, so as to have a deep PPI detector

enhanced with transfer learning of GO annotation and subcellular localization predic-

tion. Experimental results on benchmark datasets CYC2008 and MIPS show that the

proposed method outperforms the state-of-the-art methods.

Chapter 5 concludes the contributions of this dissertation and provides future works.

In summary, this dissertation proposes a deep MHME CNN model and applies it to

the predictions of protein GO annotation, subcellular localization and PPI based on a

transfer learning from different tasks and different species.
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Chapter 1

Introduction

1.1 Proteins

Protein, one of the three essential substances of life, participates in most of the life

activities. We briefly introduce proteins from their synthesis, structure and function.

1.1.1 Protein Biosynthesis

Protein biosynthesis is a step of gene expression, it occurs continuously in cells to main-

tain the normal life activities. As we known, cells are the smallest units of life. Different

tissue cells that make up living organisms have different physiological functions. Gene

is the basis unit that carries genetic information, it is a fragment from the sequence

of Deoxyribonucleic Acid (DNA) or Ribonucleic Acid (RNA). These are thousands of

gene fragments which expressed in specific tissue cells determine what the cell can do

by synthesized different varieties or numbers of protein.

During gene expression, DNA first unwinds into two single strands, each stand is com-

posed of four different bases (adenine [A], guanine [G], cytosine [C], and thymine [T ])

and link in series. One DNA sequence transcribes into a messenger RNA (mRNA) se-

quence following the complementary base pairing rules (A pairs with U uracil, T pairs

with A, C pairs with G, G pairs with C). In a eukaryote, this RNA sequence will export

1
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FIGURE 1.1: Protein biosynthesis.

TABLE 1.1: 20 Amino Acids and the corresponding RNA three-letter codons

Full name Three-letter One-letter RNA codons
Alanine ala A GCU GCC GCA GCG
Arginine arg R CGU CGC CGA CGG AGA AGG

Asparagine asn N AAU AAC
Aspartic acid asp D GAU GAC

Cysteine cys C UGU UGC
Glutamic acid glu E GAA GAG

Glutamine gln Q CAA CAG
Glycine gly G GGU GGC GGA GGG

Histidine his H CAU CAC
Isoleucine ile I AUU AUC AUA
Leucine leu L UUA UUG CUU CUC CUA CUG
lysine lys K AAA AAG

Methionine met M AUG
Phenylalanine phe F UUU UUC

Proline pro P CCU CCC CCA CCG
Serine ser S UCU UCC UCA UCG AGU AGC

Threonine thr T ACU ACC ACA ACG
Tryptophan trp W UGG

Tyrosine tyr Y UAU UAC
Valine val V GUU GUC GUA GUG

out of the nucleus to the cytoplasm, then decipher as a series of three-letter codons.

And each codon corresponds to a particular amino acid [4, 5]. The process of protein

biosynthesis shows in Figure 1.1. There are 20 common amino acids, the informations

of corresponding RNA three-letter codons the amino acid names shows in Table 1.1.

1.1.2 Protein Structure

As mentioned previously, the 20 amino acids are translated from the mRNA and formed

the protein molecules. And these big protein molecules could contain more than 2000
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FIGURE 1.2: Four levels of protein structure.[1]

amino acids. Linked by chemical bonds, amino acids make up various protein struc-

tures, and these structures could help to understand the functions and other necessary

information of proteins. The structures of protein are generally divided to four levels:

the primary structure is the amino acid sequence; the secondary structure includes α-

helix and β-sheet; the tertiary structure is the 3D structure of protein, and the quaternary

structure is the protein complex [6]. The four levels of structures shown in Figure 1.2.

Protein structures could help to understand the function and other necessary informa-

tion. Although the higher-level structures determines the functions easier, structure

annotation is still an arduous task in protein bioinformatics field. Meanwhile, protein

sequence analysis became popular as an approach to studying protein characteristics,

function, and other bioinformatics. Due to the development of high-throughput [7]

production methods for protein sequences, the speed of adding new sequences to the

database has increased exponentially. Such a collection of sequences itself does not

increase the biological understanding of researchers. However, comparing these new

sequences with those functions annotated sequences is a meaningful way to study the

biology of the organism from which the new sequences are derived, by the similarities

between different sequences. The methods used include sequence alignment, searches

for biological databases, and other methods.
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1.1.3 Protein Functions

Protein function is the most important information for protein, since it is the sum of all

the behaviors of proteins and the behaviors that happen through proteins [8, 9]. The

main protein functions are known as: Antibodies, recognize antigens to help the im-

mune system protect the body from viruses and bacteria. Enzymes, promote thousands

of chemical reactions in cells [10]. Structural protein, confers stiffness and rigidity to

otherwise-fluid biological components, such as hairs, nails, and some animal shells.

Messenger proteins, transmit signals to coordinate biological processes between totally

different cells, tissues, and organs, like some hormones. More importantly, DNA self-

regulates its function also by adjusting the number and type of proteins it produces. So

far, protein functions can be divided into three categories according to their properties:

• Molecular function: Biochemical functions of proteins are like connection, bind-

ing, catalytic biochemical reactions and conformational changes.

• Cellular function: Multiple proteins aggregate to perform complex physiological

functions, such as the operation of metabolic pathways and signal transduction,

to maintain the regular operation of various components of organisms.

• Phenotypic function: The integration of physiological subsystems composed of

proteins that perform their cellular functions, and the interaction of the integrated

system with environmental stimuli determine the phenotypic properties and be-

haviors of organisms.

Due to the wide range of protein functions, only a careful division can make each func-

tion work in biological research. Although the three categories of functions contain all
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the behaviors of proteins, they are far away from a systematical, particular division of

functions. The definition of protein function was a very subjective concept initially, and

different researchers may have different representations of protein function. At the very

beginning, natural language is used to label proteins [11]. Because it has great variabil-

ity, the naming system is not suitable for analysis by human beings, much less com-

puters. Therefore, the demand for standardized functional labeling schemes is crucial.

Then Ouzounis et al. [12], Rison et al. [13], and the other works proposed many excel-

lent classification schemes for standardized protein function annotation. Among them,

the most popular schemes are those that are not designed for any particular species but

are based on the general biological phenomena occurring in various species, including

eukaryotes. Like FunCat [14], one of the frequently-used functional schemes, because

it covers a wide range and the hierarchy is standardized. Gene ontology (GO) by Ash-

burner et al. [15, 16] is a recently proposed functional classification system based on

reliable computer science and biological principles. It is quickly considered the most

common solution for functional annotation technology across various biological data.

Nowadays, the knowledge of protein function is a critical link in many types of research,

such as the development of pharmaceuticals and vaccines, prevention of complex dis-

eases; better crops; and synthesizing biofuels or other biochemical products. However,

two problems have to be solved before we apply protein function knowledge freely:

• Due to the complexity and quantity of protein functions, defining the functions of

all proteins in organisms is one of the main objectives of biology in the present

and future decades [17].

• More than 114 million proteins in NCBI data [18] are not identified with functions

until now.

Therefore, protein function prediction has become one of the main tasks of bioinfor-

matics, which can help solve a wide range of biological problems.
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1.2 Protein Function Prediction

The research of various biological fields eventually constitutes the current status of pro-

tein function research, because the proteins have a large number of functions involving

a wide range of life activities. Generally, the frequently-used function catalogues have

been mentioned are the predicting tasks, like EcoCyc [19], FunCat or GO annotations.

They investigate the functions though protein structure, sequences or the other features

directly. These are still some related tasks. They are the bioinformatics point to func-

tions, which could help to prediction, such as subcellular localization [20] for predicting

cellular functions, protein-protein interaction [21] and ligand-protein interactions [22]

for predicting molecular functions, and so on.

1.2.1 Prediction Tasks

In this dissertation, we investigate protein function prediction in three aspects: protein

GO annotation prediction, localization prediction and interaction predictions.

1.2.1.1 GO Annotation

The GO (gene ontology) database was developed to systematically describe the func-

tional properties of gene products (gene products include protein, complex, and RNA,

this dissertation focuses on protein) across species and facilitate the computational pre-

diction of gene function. It is a framework composed of controlled words describing

the function of gene products in three aspects: Biological Process, Molecular Function,

and Cell Component [23]. Biological Process (BP) describes biological goals accom-

plished by one or more ordered assemblies of molecular functions, like DNA repair or

signal transduction. Molecular Function (MF) terms describe the activities that occur at

the molecular level, such as catalysis or transport. Cellular Component (CC) describes

locations at the levels of subcellular structures and macromolecular complexes, such as

nucleus or organelles in cytoplasm [16].
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FIGURE 1.3: Hierarchical GO terms [2] describing the functional properties of gene
products across species.

The structure of GO terms can be described by a directed acyclic graph (DAG) shown in

the right part of Figure1.3, where each GO term is a node, and the relationship between

terms is the edge between nodes. GO has a loose hierarchy, and the term ‘child’ is more

specialized than the term ‘parent’. However, unlike the strict hierarchy, a term may have

multiple ‘parent’ terms. In addition, terms are structured to support the classification of

‘is-a’ , ‘involved in’ and ‘part-of’ relationships. There are more than 44,000 GO terms

until now, and each protein is annotated by at least one term. Therefore, the protein GO

annotation is a very complicated multi-label classification problem. In this dissertation,

we will discuss the prediction of a part of GO annotations, there are about 4000 terms,

and they are high-frequently annotated in proteins.

1.2.1.2 Protein Subcellular Localization

Protein function is determined by subcellular localization because the organelles pro-

vide different chemical environments and interaction partners. The locations are relative

to cellular structures in which a gene product performs a function, either cellular com-

partments (e.g., mitochondrion), or stable macromolecular complexes of which they

are parts (e.g., the ribosome). Therefore, many biological processes involve changes in

protein subcellular localization to regulate protein activity [24]. Subcellular localiza-

tion as an essential study area in molecular cell biology, it is closely related to protein

function, metabolic pathway, signal transduction and biological process. Protein cell
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FIGURE 1.4: Proteins in the organelles. [3]

location information plays an important role in drug discovery, drug design, basic bio-

logical research and biomedicine research [25]. Like the studies of [26] visualized the

subcellular locations of SARS-CoV-2 proteins (The proteins of COVID-19) and might

provide novel insights into the viral proteins’ biological functions.

Most of the biological activities of proteins take place in the organelles. The mark of eu-

karyotic cells is that they are divided into different membrane-bound organelles. There

are 14 subcellular locations are usually discussed in eukaryotic subcelullar localiza-

tion prediction: ‘Membrane’, ‘Nucleus’, ‘Cytoplasm’, ‘Cell membrane’, ‘Endoplasmic

reticulum’, ‘Golgi apparatus’, ‘Mitochondrion’, ‘Secreted’, ‘Chromosome’, ‘Plastid’,

‘Peroxisome’, ‘Lysosome’, ‘cytoskeleton’ and ‘endosome’. Figure 1.4 shows proteins

works in the eukaryote. The same protein usually appears in different subcellular loca-

tions, representing different functional properties, so subcellular location prediction is

also a multilabel classification problem.

1.2.1.3 Protein-Protein Interaction & Protein Complex

Proteins rarely act alone because their functions tend to regulate each other. Protein-

protein interaction (PPI) is a particular physical or genetic contact between two or more

protein molecules. Many of these interactions are related to the protein functions in

the cell or specific biomolecular environment. On the other hand, proteins always play

their functions in groups, so the detection of PPI and protein complexes is also a part of

protein function prediction[27]. Figure 1.5 shows the proteins, PPI and protein complex.
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FIGURE 1.5: Protein, PPI and protein complex.

Many important life activities are inseparable from PPI, including DNA replication and

transcription, protein synthesis and secretion, signal transduction and metabolism, etc.

Abnormal PPI is the basis of many cluster-related diseases, such as Creutzfeldt-Jakob

and Alzheimer’s disease[28].

Protein-protein interactions forms a PPI network essential for many protein studies.

Seattle Center for Structural Genomics [29] Infectious disease scientists model more

than 1,000 complex proteins to help develop treatment methods for infectious diseases.

However, these centrality calculation methods have defects, because the proportion of

false positive and false negative data in the protein-protein interaction network is very

high. More importantly, these methods ignore the intrinsic biological significance of

essential proteins. Therefore, high-throughput calculation method is needed to identify

PPI with high quality and accuracy. Predicting the protein pairs are interacted or not is

a binary classification problem.

1.2.2 Prediction Approaches

This part introduces the main approaches of function predictions: from experimental

identification to computational approach. Protein sequence analysis as the most popular

part of computational approach will be introduced individually.

1.2.2.1 Experimental Identification

Earlier, protein function predictions were entire experimental identification. They fo-

cused on a specific target gene or protein or a small set of proteins forming natural
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groups such as protein complexes. These approaches included gene knockout, targeted

mutations and the inhibition of gene expression [30]. Experimental identifications cost

substantial financial resources, however, even large-scale experimental annotation pro-

grams like the EUROFAN project [31] are not sufficient to annotate important parts of

proteins that have become available due to the rapid development of genome sequencing

technologies.

Structural Genomics Project [32] determined the sequences of many proteins by the

high-throughput method in genome-wide strategies. Compared with the experiments

of sequencing proteins, the experimental procedure of protein bioinformatic annotation

is essentially low throughput. This led to a widening sequence-function gap in the

proteins found. Figure 1.6 shows the growing gap of protein sequences and GO function

annotations from UniProt [33] and Gene Ontology Consortium [2] in these 20 years.

FIGURE 1.6: The numbers of protein sequence and annotation.

Thus, developing computational approaches that analyze simple features, like protein

sequences, can have enough discrimination to build practical algorithms that are ex-

pected to solve the problems in function prediction.

1.2.2.2 Computational Approach

The existing computational approach methods used to predict protein function from

protein sequence, micro-array expression [34], protein families [35], especial protein

structure [36]. Jacob et al. [22] propose a systematic method to predict ligand-protein
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interactions, even for targets with no known 3D structure and few or no known ligands.

Besides sequences, however, the other features are difficult to obtain or unavailable for

most of proteins.

Although protein structure information is essential for understanding the function, the

speed of protein structure determination lags far behind the increase of sequences due to

the technical difficulties and laborious nature of structural biology experiments. On the

one hand, the high-throughput sequencing technique makes protein sequences cheaply

available, and many computational models are based on protein primary sequences only

in computational proteomics. On the other hand, data integration has become a popular

method to integrate diverse biological data. Thus, developing efficient algorithms that

can predict protein functions by primary sequence-based data is probably the avenue to

fill the gap. More and more algorithms are used to predict functions from the protein

sequences. For this reason, some recent predictive models are deliberately designed to

integrate multiple heterogeneous data sources for exploiting multi-aspect protein fea-

ture information. However, protein sequences as one of the main data sources, the

algorithms that focus on protein sequence analysis have been paid more attention.

1.2.2.3 Protein Sequence Analysis

In the domain of automated prediction, sequences have been heavily utilized in both di-

rect homology-based and indirect subsequence-and feature-based approaches. Specif-

ically, techniques that predict protein function, localization, and interaction from se-

quences can be categorized into three classes, namely, sequence homology-based ap-

proaches, subsequence-based approaches and feature-based approaches, which are ex-

plained below:

• Homology-based approaches

Protein bioinformatics commonly used tools, like BLAST [37, 38], FASTA [39],

which are related to searching sequence databases by sequence similarity. Based

on the biological rationale for homology transfer, If two sequences are highly sim-

ilar, they evolved from a common ancestor and had similar annotations [40]. With
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the increase in the number of sequences in the database, however, homology-

based transfer fails in three aspects: high sequence similarity can be wrong;

sequence-based tools are not sensitive enough; propagation of incorrect anno-

tation in the whole database [41, 42].

• Subsequence-based Approaches

Many studies have shown that it’s not usually the entire sequence but rather spe-

cific segments of it that are important for determining the function of a given

protein. Therefore, the method in this category regards these fragments or subse-

quences as the features of protein sequences and constructs a model to map these

features to protein functions. Many approaches based on this idea have been pro-

posed, starting with the methods of Hannenhalli et al [43] which tried to identify

regions of a sequence that best distinguish a certain function or sub-type.

• Feature-based Approaches

Homology-based and subsequence-based approaches discussed above predict pro-

tein function from original sequences, namely, as strings. However, these se-

quences can be transformed into more biologically meaningful features, making

it easier to divide proteins with different functional categories. This is the view-

point of feature-based methods. It uses the standard classification algorithm to

learn the functional class model from the transformed feature set and then uses

the model to predict uncharacterized proteins. These methods attempt to take ad-

vantage of the view that amino acid sequences are unique proteins and identify

several of their physical and functional characteristics. These features are used to

construct a prediction model, which can map the eigenvalue vector of the query

protein to its function.

Our research focus on the feature-based approaches combining with machine learning

method, and we will discuss these approaches in the following section particularly.
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1.3 Related Works

In the era of big data, it becomes more and more critical to transform massive data

into valuable knowledge in various fields [44], and bioinformatics is no exception. In

order to extract knowledge from big data of bioinformatics, machine learning has be-

come widely used and achieved success. Machine learning algorithms train data to

discover potential patterns, build models and predict based on the best fitting model.

For example, State-of-the-arts protein function predictors have used some well-known

algorithms, like, support vector machine (SVM) [45, 46], decision tree [47], hidden

Markov model [48], clustering[49].

Machine learning methods for predicting functions involve two major aspects: to derive

protein features and to design a predictive model. Deep learning, as a branch of machine

learning, can independently analyze features from big data and has been successful in

many fields. However, there is still much room for the development of deep models for

protein detection. This section will introduce some effective algorithms applied to GO

annotation, Localization, and interaction predictions.

1.3.1 Sequence Encoding Methods

Vectorized protein sequence is the first step of protein sequence analysis by machine

learning methods. Considering that a protein sequence consists of 20 different amino

acids, which is similar to a natural language [50]. There are some frequently-used way

for encoding sequences:

• The n-gram algorithm utilized to encode proteins is defined as the appearance

frequency of n consecutive amino acids [51, 52]. The n-gram method generated

from natural language processing is now developed in the bioinformatics field.

• Protein sequences also have been represented as one-hot encoding [53] in units of

the 20 amino acids with the sequence length of 1000 (input: 20 ∗1000, the work

ignored the sequences larger than 1000).
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• Amino acids background frequency (AABF) [54] is utilized for presenting the

biological feature of a protein by calculating the frequency of each amino acid in

the whole sequence, and combined them to be a frequency vector [55].

Comparing with the other two methods, n-gram encoding is the most popular method

because it takes account of the entire sequences with units of amino acids, dipeptides or

even more.

1.3.2 Hierarchical Multilabel Classification

As mentioned in Section 1.1.1, GO annotation prediction is a multi-label classification

problem which has complex functional tags that make up an undirected graph. Many

conventional methods have tried to solve it with hierarchical multilabel classification

(HMC). HMC is a classification task where the classes to be predicted are hierarchically

organized. Each instance can be assigned to classes belonging to more than one path in

the hierarchy.

In the work of Cerri et al. [56, 57], a preliminary HMC-LMLP was built, where a

multilayer perceptron (MLP) for each level was associated together. For the first level,

they used the instances as input; and from the second level onwards, each MLP was

fed only with the output provided by the previous MLP. However, there is a problem

in the series of HMC-LMLP methods, the structure of MLP is too simple to address

this issues. GO annotation, as a very complex hierarchical multilabels classification

problem with thousands of classes, applying deep learning models to extract features

would be more reasonable.

1.3.3 Deep Learning Methods

Due to the lack of annotated protein sequences, a good sequence analysis model be-

comes essential. In this way, a deep learning model which could extract better features

is needed. With the vectorized protein sequence, a feature extractor is usually needed

to extract and map the feature to space where it is more linearly separable. A neural
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network, especially deep convolutional neural network (CNN), can be used as such a

feature extractor.

The DeepGO model [58] is an effective deep learning model for GO annotation. The

authors investigated larger numbers of protein GO function annotations dealing with

convolutional neural networks. Protein sequences have been represented as one-hot en-

coding in tripeptide units, and a single layer CNN model is used as a feature extractor.

After that, it is improved by the work of DeepGOPlus [59]. Compared with DeepGO,

the one CNN layer with fixed a filter length which was extended to several CNN layers

with different filter lengths. DeepGOPlus also used a flat classification layer instead of

hierarchical classifier in DeepGO. The method of CONV A-BLSTM [53]achieve a suc-

cess in subcellular localization prediction. The authors investigated protein sequences

dealing with some deep learning models. The method consists of four parts, one layer

of CNN, one hidden state layer and one attention decoding layer of long short-term

memory (LSTM), one dense layer of the fully-connected network and the predictor of

hierarchical tree likelihood. And the study of Sun et al.[60] built a deep predictor which

consist a stacked autoencoder with a SVM classifier on sequence-based feature.

Although the existing methods used some deep learning techniques for protein sequence

analysis like CNN, RNN, etc., shallow or even single layer networks are unable to map

protein features into separable spaces. Compared with the deep models of the mature

fields, the algorithms of protein function prediction have much room for improvement.

Admittedly, the deep model cannot be applied to the hierarchical multi-label model,

since the situation will make the computational burden problems of hierarchical classi-

fication even worse.

1.3.4 Data Integration Methods

More and more researches proved that predicting function using sequence-based feature

alone is imperfect.

Many predictive models are deliberately designed to integrate heterogeneous data sources [61,

62]. As the entire function category across species, Gene Ontology uses a controlled
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vocabulary to depict biological molecules or gene products in terms of biological pro-

cess, molecular function, and cellular component. On the other hand, with the rapid

expansion of annotated proteins, Gene ontology has been shown to help improve the

prediction accuracy of protein localization and interaction [63, 64]. Figure 1.7 shows

the scope of Localization, PPI and complex described in the GO function catalog. The

blue shadow covers the function of describing Localization, and the green shadow cov-

ers the function of describing PPI and Complex.

FIGURE 1.7: The scopes of the three special functions described in the GO catalog
respectively.

The subcellular localization prediction methods achieved better performance by protein

sequence and GO annotations [65, 66]. X. Cheng et al. (2018) [67] and K.C. Chou et

al.(2001) [68] investigated the cases like the proteins of human beings, fungus where

GO annotation is available by applying both sequence-based and annotation-based fea-

ture for localization prediction and found that it is better than using only sequence fea-

ture. Furthermore, Gene ontology as the well-organized biological knowledge also par-

ticipates in subcellular localization [69, 70]. For PPI prediction, similar GO functions

can confirm interaction, and different subcellular localizations are non-interactive [71].

Gavin et al.(2006) [72] suggests that a protein complex consists of two parts, protein-

complex core, and attachments. Proteins in a core generally are highly co-expressed

and share a high functional similarity. Since proteins in the same complex are highly

interactive with each other, protein complexes generally correspond to dense subgraphs
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in the PPI network [73, 74, 75] and many previous studies have been proposed based on

this observation.

Multiple heterogeneous data sources increases the prior knowledge for prediction, while

in the same-time, increases the difficulties of feature extraction and selection. However,

as mentioned in the previous section, the deep learning methods for protein function

prediction are not yet able to deal with complex features. Furthermore, the experimen-

tally identified annotations are not always available, there are only some type species

have complete annotations.

1.4 Challenges

These years, the superiority of deep learning in data analysis fields has been proved,

such as in image processing, semantic segmentation. Compared with these mature

fields, the deep learning methods of protein sequence analysis has not obtained a signifi-

cant improvement based on the related works. Even if the number of protein sequencing

has already reached a certain scale. That is because the following challenges need to be

faced:

• Prediction tasks are complicated:

Function predictions are usually complicated multi-label classification problems.

Especially GO annotation prediction has thousands of classes.

Solution: Building a deep learning model to deal with these kind of problem is

easy to considered.

• Training samples are limited:

Training an efficient deep model need large numbers of training samples. Actu-

ally, most of the proteins don’t have experimental annotated function labels, only

a very little part samples from some type species have been annotated.

Solution: It may be natural to consider employing transfer learning in the cases

when training samples is limited.
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• Transfer learning is hard to implement:

However, transfer learning of protein data is much harder than the other mature

fields. Protein function prediction has too many tasks and each task has very

few instances. That makes the implementing model is easy to overfit and hard to

extract common features.

We can see that, how to build an efficient deep learning model to implement transfer

learning for function prediction is the biggest problem.

1.5 Motivation and Formulation

Unlike most of the existing methods only applied the normal machine learning mod-

els for prediction, we propose that developing a deep learning model which focused

on function prediction via protein sequence analysis. This dissertation develops a novel

deep convolution neural network (CNN) model with multi-head and multi-end (MHME)

to implement a class of classifiers in one model. The deep CNN feature extractor plays

two roles: extracting features from the vectorized protein sequence and mapping the

feature onto a feature space where it is more linearly separable. Thus, this deep CNN

model with MHME shares this deep CNN feature extractor in a class of different pre-

diction tasks and makes the transfer learning possible. This novel model is employed to

the three function prediction tasks, protein GO annotation, localization and interaction

predictions, based on a transfer learning from different tasks and different species.

This novel deep model is defined by

yi = fn(φ(xi)) (1.1)

where xi is the input, the vectorized protein sequences calculated by a ‘1-gram+2-gram’

encoding method which shows in the following; yi is the output, the function labels of

xi, and fn(φ(·)) represents the predictors fn for different tasks with a sharing deep feature

extractor φ.
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This dissertation uses a ‘1-gram + 2-gram’ encoding method to obtain an appearance

frequency vector as the input of the machine learning model. The encoding method en-

codes the protein sequences of amino acids seqi (i = 1, ...,N) into appearance frequency

vectors, xi (i = 1, ...,N), which are column vectors with a length of 420, the number of

20 amino acids and 400 dipeptides.

FIGURE 1.8: An image of ’1-gram + 2-gram’ encoding based feature extraction of
protein sequences.

Figure 1.8 shows an image of the ‘1-gram + 2-gram’ encoding method. For a given

protein sequence seqi, the appearance time vector ti is first obtained by counting the

number of times of each amino acid and dipeptide appearing in the protein sequence

seqi. Then the appearance frequency vector xi is defined by

xi =
ti

dim(xi)
(1.2)

where dim(xi) = 201 +202 = 420. xi (i = 1, ...,N) is the vectorized sequence, where N is

the number of protein samples.

1.6 Thesis Outlines and Main Contributions

This dissertation presents my cumulative works over my doctor career through five

chapters. Chapter 1 shows the background materials, authors’ proposals and a disserta-

tion outline. Chapter 2 develops a deep CNN model with Multi-head and Multi-end to

realize a deep hierarchical multi-classifier for predicting protein GO annotation. Chap-

ter 3 proposes a new protein subcellular localization predictor which is enhanced by
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transfer learning of GO annotation. Chapter 4 detects protein complex from a recon-

structing PPI network which is built via a transfer learning PPI predictor. Chapter 5

summarizes the whole dissertation and discusses the potential applications and future

study. The flow of this dissertation is depicted in Fig.1.9, in which the indexes represent

the published paper in Publication List.

FIGURE 1.9: Flow diagram of this dissertation

Chapter 2 proposes a novel hierarchical multi-label classifier implementing the hierar-

chically organized local classifiers in one deep convolution neural network (CNN)

model with multiple heads and multiple ends (MHME). The proposed MHME

CNN model consists of three parts: the body part of a deep CNN model shared

by different local classifiers for feature extraction and feature mapping; the multi-

end part of a set of autoencoders performing feature fusion transforming the in-

put vectors of different local classifiers to feature vectors with the same length to

share the feature mapping part; and the multi-head part of a set of linear multi-

label classifiers. Furthermore, a sophisticated recursive algorithm is designed to

train the MHME CNN model to realize the functions of a set of hierarchically or-

ganized local classifiers. In this way, by sharing a deep CNN model with multiple

local classifiers, we can construct more powerful local classifiers for each level

with limited training samples and realize a deep transfer learning from different

species to achieve better classification performance.

The main contributions related to the deep MHME CNN model are shown as

follows:
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• This proposed deep CNN feature extractor maps the feature onto a feature

space where it is more linear separable.

• Multi-head and multi-end parts realize the local classifiers and a global clas-

sifier to capture the two-way relationship of hierarchy GO annotations.

Chapter 3 proposes a deep protein subcellular localization predictor which is enhanced

in a transfer learning way. The deep predictor consists a linear classifier and

a deep feature extractor of a convolution neural network. GO annotations have

been proved that it is helpful in subcellular localization prediction. So, the deep

CNN feature extractor is first pretrained by a deep GO annotation predictor which

realized by the deep MHME CNN model. It is then transferred to the subcellu-

lar localization predictor with fine-tuning using protein localization samples. In

this way, we have a deep protein subcellular localization predictor enhanced with

transfer learning of GO annotation.

The main contributions related to this enhanced deep predictor are shown as fol-

lows:

• A deep localization predictor is trained successfully with a large set of ex-

perimentally annotated proteins which we collect from various species.

• Pretraining the deep CNN model by the GO annotation predictor is to trans-

fer the common feature from different tasks and species, which improves

the performance of localization prediction.

Chapter 4 introduces a new method of detecting protein complexes from a recon-

structed PPI network using spectral clustering. In order to complete the raw PPI

network, we propose a deep PPI predictor consisting of a semi-supervised SVM

classifier and a deep CNN feature extractor to predict the unknown PPIs. This

deep CNN feature extractor is enhanced by a deep GO & localization annotation

predictor in a transfer learning way by the deep MHME CNN model, because the

similarities of GO annotations contribute to protein interactions and the differ-

ence in subcellular localizations contribute to negative interactions. In this way,

we got a deep PPI detector enhanced with transfer features from different tasks

and different species.
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The main contributions related to this transfer learning model for PPI prediction

and protein complex detection are shown as follows:

• We develop a deep PPI predictor which contains a transfer DCNN feature

extractor and an inductive semi-supervised SVM classifier.

• Deep CNN feature extractor learns the knowledge from GO and localization

annotation tasks and protein from type species in a transfer learning way.

• Spectral clustering is applied to detect complex from the reconstructed PPI

network and achieve a better performance.

Chapter 5 concludes this work, summarizes the dissertation and gives suggestions for

further research.



Chapter 2

GO Annotation Prediction Using a

Deep MHME CNN Model

2.1 Background

1 Chapter 2 investigates protein function by gene ontology (GO) annotation, the most

commonly used function catalog system. As gene ontology reveals, individual genes

contribute to the biology of an organism at the molecular, cellular and organism levels.

GO annotation plays an essential role in many biomedical studies [76]. However, with

the GO functions being enriched, the number of GO functions that could be annotated

is more than 40 thousand. Therefore, entirely experimental protein annotation becomes

time-consuming and cost-consuming; automatic prediction with the help of a machine

learning method is widely considered more practical. Compared to the biological ex-

periment methods, the machine learning method is more economical and convenient.

The automatic GO annotation method is a process to predict the GO functions (classes)

as a multilabel classification task [77] by checking the combination of proteins. It could

be impossible to address this issue with a standard classification method, however, since

the GO annotation classes are very complicated. Not only the number of GO functions is

1This chapter mainly extends the Journal paper: X.Yuan, E.Pang, K.Lin and J.Hu. “Hierarchical
Multilabel Classification for Gene Ontology Annotation using Multi-head and Multi-end Deep CNN
model”, IEEJ Trans. on Electrical and Electronics Engineering, Vol.15, No.7 pp.1057-1064, July, 2020.

23
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huge, but also the functions are arranged in a hierarchy: typically a direct acyclic graph

(DAG) [78] where each node represents a function. These functions could be divided

into different levels according to the grade. It is based on the ’is-a’ relationship [79].

Hierarchical multilabel classification is one kind of algorithms known to have better

performance [80], since it is a method ranking labels into a hierarchical structure and

performing classification on each level independently.

Hierarchical multilabel classification (HMC) [81, 82, 83], is a kind of method which

separates the labels into hierarchical levels and apply the classifiers to different levels,

respectively. Multiform HMC methods could be divided into two circumstances, lo-

cal hierarchical classification approach and global hierarchical classification. The local

approach, also called top-down approach [84, 85, 86] trains the hierarchical structure

network from the higher level to the lower level. The global approach uses a classifi-

cation algorithm that learns a global classifier about the whole classes. For example,

the authors of Ref. [87] investigated the flat classification algorithm naive Bayes ap-

plied in protein function prediction. Flat classification is the simplest approach in HMC

methods, but it ignores class-relationship. However, the local approach is applied to

solve protein function prediction, as it is used augmented versions of dealing with the

problem which has hierarchical classes [88].

With a local approach, R. Cerri et al. [56, 57, 89, 90] applied the hierarchical multilabel

classification to the protein function prediction problem. It is a set of multilayer percep-

tron (MLP) classifiers trained for each level separately. The local-based classification

model trains MLPs for each level called a hierarchical multilabel classification with lo-

cal MLP (HMC-LMLP). In this HMC-LMLP method, MLP predictions at a given level

are used as inputs to the neural network responsible for the prediction in the next level.

These methods focused on optimizing the model by training it level-by-level and propa-

gating the positive signal from the previous output. Although the HMC-LMLP achieves

state-of-the-art performance, it is difficult to construct more powerful local classifiers

due to the limited training samples available in each class level.

Following the basic idea of HMC with local neural network models and the analyzing
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method of protein sequences, in this chapter, we propose a novel hierarchical multil-

abel classifier implementing the whole set of hierarchically organized local classifiers

in one deep convolution neural network (CNN) model with multiple heads and multiple

ends (MHME). For this purpose, the proposed MHME CNN model consists of three

parts: the body part, the multi-end part, and the multi-head part. The body part is a deep

CNN model shared by different local classifiers for feature extraction and mapping. The

multi-end part is a set of autoencoders performing feature fusion and dimension reduc-

tion, which transforms the input vectors of different local classifiers to feature vectors

with the same length to share the feature mapping of the deep CNN model. Finally, the

multi-head part is a set of linear multilabel classifiers realizing the multilabel protein

function prediction. Furthermore, we design a sophisticated recursive algorithm that

trains the MHME CNN model to perform the functions of a set of hierarchically orga-

nized local classifiers. In this way, we are able to design a better hierarchical multilabel

classifier by increasing the complexity of the feature mapping model via sharing a deep

CNN with multiple local classifiers and achieve better annotation performance.

The rest of chapter is organized as follows. Section 2.2 introduces the ‘1-gram+2-gram’

encoding method and formulates local classifiers for each level. Section 2.3 describes

the details of the MHME CNN model and the training algorithm. Section 2.4 introduce

the training process of the proposed model. Section 2.5 carries out experiments on

various benchmark datasets and compares the proposed MHME CNN model with the

related existing methods. Finally, Section 2.6 has a summary showing the conclusions

of this chaper.

2.2 Problem Formulation

In this section, we first introduce the notations and then formulate the problem.



Chapter 2. GO Annotation Prediction Using Deep MHME CNN Model 26

FIGURE 2.1: The formulation of HMC with local classifers.

2.2.1 The Notation and the Problem

Suppose we denote the protein instances by S = {seq1, seq2, seq3, ...seqi|i = N}, N is the

number of instance, and seqi represent the protein sequence of instance i. Protein func-

tions are denoted by G = {g1,g2,g3, ...g j| j = G}, G is the category number of functions.

Here we use a xi to represent the vectorized seqi by a ‘1-gram + 2-gram’ encoding in-

troduced in Section 1.5 Different from the normal binary classification and multiclass

classification, in hierarchical classification databases used D = {(xi, yi),1 ≤ i ≤ N} to

express the instance in different levels, if xi is belong to function g j, then g j = 1, or

g j = 0. We use yn = {g1,g2,g3,g4, ...g j| j = G} to express the label matrix. At label

space, we assume that the number of level of the hierarchy classes is q, expressed as

Y = {Yg1,Yg2,Yg3, ...Ygn|n = q}. For label in level q is that Ygq = {gq1,gq2, ...gqn|gqn ∈G}.

2.2.2 Local Classifiers for Each Level

Figure 2.1 shows the formulation of HMC with local classifiers. The local classifiers

are designed to be hierarchically organized way so as to capture a top-down relation-

ship of labels between different levels. The local classifier for level 1 (classifier 1) has

the input vector of I1 = x and the output vector of Zg1 = Yg1. The local classifier for

level 2 (classifier 2) has the input vector of I2 = [x, Ŷg1] = [x, Ẑg1], combined x with

the output vector of classifier 1, and the output vector of Z2 = [Yg1,Yg2]. In this way,

the local classifier for level n (n = 1, ...,q) (classifier n) will have the input vector of
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In = [x, Ŷg1, Ŷg2, ..., Ŷgn−1] = [x, Ẑgn−1], combined x with the output vector of classifier

n−1, and the output vector of Zgn = [Yg1,Yg2, ...,Ygn]. Traditionally, the classifiers 1 to n

are implemented by using simple MLP models due to the limitation of training samples

in each level.

2.2.3 An Additional Global Classifier

There exists not only a top-down relationship of labels between different levels but

also a button-up label relationship. In order to capture both top-down relationship and

button-up relationship of labels between different levels, in the proposed model, we

add another global classifier which has the input vector of Iq+1 = [x, Ẑgq], combined

x with the output vector of the last level classifier q, and the output vector ofZgq+1 =

[Yg1,Yg2, ...,Ygq].2

Traditionally, one constructs q + 1 neural network classifiers separately for the above q

local classifiers and one global classifier.

Zgn = Fn(In), n = 1, ...,q + 1 (2.1)

where I1 = x and In = [x, Ẑgn−1]. In the next section, we will design a deep CNN model

with multiple heads and multiple ends to implement both the q local classifiers and

the additional global classifier in one deep neural network, and design a sophisticated

recursive algorithm to train the MHME CNN model to perform a set of hierarchically

organized powerful classifiers with the limited training samples.

2.3 The Deep MHME CNN Model

Figure 2.2 shows the structure of deep CNN model with multiple ends and multiple

heads (MHME) to implement the q + 1 hierarchically related classifiers using one deep

2Ẑg1, Ẑg2, ..., Ẑgq are the prediction values of Zg1,Zg2, ...,Zgq by the local classifiers.
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FIGURE 2.2: The structure of the multi-head and multi-end deep CNN model.

CNN model. The MHME CNN model consists of three parts: the body part, the multi-

end part and the multi-head part, which realizes the q + 1 classifiers with sharing the

body part, referred to Figure 2.2.

Zgn = fn
(
Ω

(3)
n ,φ

(
Ω(2),An

(
Ω

(1)
n , In

)))
, (2.2)

where n = 1, ...,q+1, φ(Ω(2), ·), An(Ω(1)
n , ·) and fn(Ω(3)

n , ·) denote the body part, the multi-

end part and the multi-head part, and Ω(2), Ω
(1)
n , Ω

(3)
n are the parameters, respectively.

2.3.1 The Multi-End Part: A Set of Autoencoders

The multi-end part corresponds to the inputs of the q + 1 hierarchically related clas-

sifiers. As can be seen from the description of the previous section, the local classi-

fiers and the additional global classifier have their input vectors with different lengths.

Therefore, to share the body part for feature extraction, these input vectors should be

transformed into a set of feature vectors with the same length at the specific feature

space.  A1 = x

An = an(Ω(1)
n , In), n = 2, ...,q + 1

(2.3)

where An is the outputs of multi-end part. For simplicity, we set dim(An) = dim(x).

Due to no teacher signals for An, we apply autoencoders [91], which realizes the trans-

forming of Eq.(2.3) by minimizing the information loss. As shown in Figure 2.3, an



Chapter 2. GO Annotation Prediction Using Deep MHME CNN Model 29

FIGURE 2.3: The structure of autoencoder an.

autoencoder neural network is an unsupervised learning algorithm that applies back-

propagation [92] by setting the target values equal to the inputs. The general idea of the

autoencoder is to represent the data through a nonlinear encoder to a hidden layer and

use the hidden units as the new feature representations. The major purpose of autoen-

coder is to learn an approximation to the identity of original protein representation by

encouraging its output to be as similar to its input as possible. Recently, the variants of

the original autoencoder have drawn increasing attention as a compelling feature extrac-

tor or descriptor [93]. The autoencoder plays two roles: feature fusion and dimension

reduction.

2.3.2 The Body Part: A Deep CNN Model

The rectangle in the middle of Figure 2.2 represents the body part, which realizes a

feature mapping or feature extraction. CNN outperforms in dealing with spatial in-

formation like graphs, texts, etc. Recently, it has also been shown to be effective in

extracting features from protein sequences in some related work [58, 94]. The proteins

are described as the frequency of amino acids and dipeptides to demonstrate the or-

dered arrangement of protein sequences. Moreover, the GO terms (predictions of linear

classifiers, mentioned in the second section) added in input during the training make

the features very high-dimensional. Compared with the one-layer CNN model used in

Ref. [58], a deep CNN model is more reasonable for our purposes of feature extraction

and feature mapping. The structure of the deep CNN model in the experiments will

describe in Subsection2.5.2.1.

Φn = φ(Ω(2),An), n = 1, ...,q + 1 (2.4)
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where φn is the output of the body part.

2.3.3 The Multi-Head Part: A Set of Linear Classifiers

The multi-head part consists of a set of linear multilabel classifiers with input vectors

from the outputs of the body part. As the linear multilabel classifiers, we use a linear

network with logistic sigmoid outputs.

Zgn = fn(Ω(3)
n ,Φn), n = 1, ...,q + 1 (2.5)

2.4 Training Method

The output of hierarchical multilabel classifier Zgq+1 is calculated recursively by

Zg1 = f1
(
Ω

(3)
1 ,φ

(
Ω(2),a1

(
Ω

(1)
1 , I1

)))
, I1 = x

Zg2 = f2
(
Ω

(3)
2 ,φ

(
Ω(2),a2

(
Ω

(1)
2 , I2

)))
, I2 = [x,Zg1]

· · ·

Zgq+1 = fq+1
(
Ω

(3)
q+1,φ

(
Ω(2),aq+1

(
Ω

(1)
q+1, Iq+1

)))
,

Iq+1 = [x,Zgq]. (2.6)

1) Training of Parameters Ω
(1)
n

Ω
(1)
n (n = 1, ...,q + 1) are the parameters of autoencoders. As shown in Figure 2.3, they

are trained in an unsupervised manner by optimizing the mean squared error (MSE) loss

function En = εMS E(În, In). Let z be the input of encoder and ẑ be the output of decoder.

Then εMS E is defined by

εMS E(ẑ,z) =
1
N

N∑
i=1

(ẑi− zi)2 (2.7)

where N is the number of samples.
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2) Training of Parameters Ω(2) and Ω
(3)
n

Ω(2) and Ω
(3)
n (n = 1, ...,q + 1) are the parameters of deep CNN and the linear network

with logistic outputs. They are trained in a supervised manner by optimizing the sig-

moid cross-entropy (SCE) loss function E =
∑n

i=1 εS CE(Ẑgn,Zgn). In this formulation,

εS CE is defined by

εS CE(ẑ,z) =−
1
N

N∑
i=1

Cn∑
j=1

[zi j× log(ẑi j)

+ (1− zi j)× log(1− ẑi j)]

(2.8)

and Cn = dim(Zgn).

However, as we can see from Eq.(2.6) that the q+1 classifiers are hierarchically related.

A sophisticated training algorithm is needed to train the parameters of Ω
(1)
n , Ω(2) and

Ω
(3)
n (n = 1, ...,q + 1). The training algorithm consists of the following three steps.

• Step 1: Pretraining of Ω(2) and Ω
(3)
n

Set an = x (n = 1, ....,q+1). Then train Ω(2) and Ω
(3)
n based on Eqs. (2.4), (2.5) and

(2.8). After the pretraining, we are able to calculate the approximated predictions

Ẑgn (n = 1, ....,q + 1) using Eqs. (2.4) and (2.5);

• Step 2: Training of Ω
(1)
n

Let I1 = x and In = [x, Ẑgn−1] (n = 2, ...q + 1). Then train Ω
(1)
n based on Eqs. (2.3)

and (2.7).

• Step 3: Training of Ω(2) and Ω
(3)
n

Let I1 = x and In = [x, Ẑgn−1] (n = 2, ...q + 1). Then train Ω(2) and Ω
(3)
n based on

Eqs. (2.6) and (2.8). After the training, we calculate the predictions Ẑgn (n =

1, ....,q + 1) using Eq. (2.6);

• Step 4: Repeat Steps 2 and 3, until an appropriate stop condition is satisfied.
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2.5 Experiments

In this section, the proposed MHME CNN model is applied to various benchmark pro-

tein function datasets, and the results are compared with the state-of-the-art traditional

methods.

2.5.1 Evaluation Metrics

The evaluation metrics for multi-label classification include the multi-label precision(MPre),

the multi-label recall(MRe), the multi-label F1-score(MF1) [95] and the multi-label G-

means(MG). Considering that the multi-label classification method in our work is a

combination of multi-binary classifiers for each class, MPre and MRe are the averages

for the precious and recall of all classes. They correspond to the micro average of the

multilabel precision and the multilabel recall. Let us assume that D is a multilabel

dataset, and the sample in |D| is (xi, yi), i = 1...|D|, yi ∈ {0,1}m is the set of labels. Sup-

pose zi ∈ {0,1}m be the set of labels predicted by HMC classifier for sample xi. The

definitions of the evaluation metrics are given by

MPre =
1
m

|D|∑
i=1

|yi∩ zi|

|zi|
(2.9)

MRe =
1
m

|D|∑
i=1

|yi∩ zi|

|yi|
(2.10)

MF1 =
2∗MPrecision∗MRecall

MPrecision + MRecall
(2.11)

MG =
√

MPrecision∗MRecall (2.12)

In the multilabel classification, considering that the number of labels is imbalanced, so

the result of MF-score and MG-means are more important.
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2.5.2 Experiment Settings

2.5.2.1 Details of the deep CNN model

By referring VGG16 network [96], we design a 1-d deep CNN as the feature extrac-

tor, consisting of six blocks as shown in Fig 2.4. Block 1 is the input block with

two convolution layers with the size of 1×420 and 64 channels (1×420×64). Block

2 consists of a max-pooling layer (pool-size: 1×2) and two convolutional layers of

1×210×128. Blocks 3 to 5 consist of a max-pooling layer and three convolutional

layers of 1×105×256, 1×53×512, 1×27×512, respectively. The final block is a fully

connected layer of 1×1×512. All the convolutional layers and one fully connected layer

use the ReLU activation function. Furthermore, regularization [97] is introduced to the

deep network to reduce independence by adding batch normalization [98] and 0.4-ratio

dropout to each network layer. In this way, the deep CNN feature extractor is a model

with an input size 1×420 and output size 1×512.

FIGURE 2.4: The structure of the deep CNN model.

2.5.2.2 Details on the supervised and unsupervised training algorithms

For the modeling environment, this training algorithm is implemented in Python. The

deep CNN model is built via Chainer, developed by Community, Preferred Networks,

Inc. [99]. In the experiments, each dataset is divided into three sets: training set, vali-

dation set and test set.
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The training set is used to train the models. Since the hyper-parameters are not so sensi-

tive for the proposed model training in our experiments, the default values suggested by

the deep learning framework, Chainer are used. When supervised leaning of the body

part and the multi-head part by using the algorithm described as Step 1 and Step 3 in

Section 4, the initial learning rate used is 0.0075 and training process stops after 120

epochs where the performance is not improved anymore for the validation set. On the

other hand, when the unsupervised learning of the autoencoders of the multi-end part

by using the algorithm described as the Step 2, the initial learning rate used is 0.05 and

the learning was stopped after 30 epochs where the performance for validation set stops

improving.

The Step 2 and Step 3 of training process was repeated 2 times where the performance

for validation set stopped improving. Finally, the trained models are evaluated on test

set. In the experiments, efforts are made to prevent the training of models stuck at a

local minimum. The proposed model and the conventional models are compared under

a condition of being well-trained. All the results shown are an average of 10 trials, but

the standard deviations are ignored since they are rather small in our experiments.

2.5.3 Comparison Results with the State-of-the-Art Methods

Three datasets of protein sequences are used in this comparison, which are from the

paper of DeepGO [58]. Table 2.1 describes the details of datasets. For the classes,

GO functions are divided into three independent groups: the molecular functions (MF),

that represent the activities performed by gene products; the cellular component (CC)

functions, that describe the locations relative to cellular structures; and the biological

process (BP) functions, that describe some ‘biological programs’ [16].

TABLE 2.1: Datasets used in the paper of DeepGO

Datasets Training Validation Testing Classes Levels Classes per level
DeepGO(BP) 20000 9000 10000 932 5 30/180/292/477/932
DeepGO(CC) 20000 8800 10000 439 4 18/126/260/439
DeepGO(MF) 20000 6300 5000 589 5 23/160/261/392/589
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TABLE 2.2: Comparison results of the proposed MHME-CNN model with the HMC-
LMLP, the DeepGO and the simple DCNN models

Datasets Evaluation Metrics Methods

MPre MRe MF1 MG
DeepGO[58] 0.3900 0.3400 0.3600 0.3700

DeepGO(BP) simple DCNN 0.4885±0.0043 0.4971±0.0013 0.4906±0.0095 0.4951±0.0045
HMC-LMLP[57] 0.4847±0.0081 0.5005±0.0042 0.4921±0.0037 0.4935± 0.0021
DCNN-MHME 0.7934±0.0059 0.5530±0.0098 0.6317±0.0091 0.6605±0.0034

DeepGO[58] 0.6600 0.6100 0.6300 0.6400

DeepGO(CC) simple DCNN 0.5047±0.0032 0.4909±0.0046 0.5014±0.0047 0.5017±0.0023
HMC-LMLP[57] 0.4973±0.0035 0.5068±0.0089 0.5066±0.0067 0.5021± 0.0021
DCNN-MHME 0.9101±0.0003 0.6646±0.0064 0.6788±0.0034 0.7231±0.0032

DeepGO[58] 0.6000 0.3800 0.4600 0.5100

DeepGO(MF) simple DCNN 0.5005±0.0010 0.4998±0.0073 0.4974±0.0089 0.5001±0.0035
HMC-LMLP[57] 0.4941±0.0024 0.5010±0.0052 0.4975±0.0046 0.4998 ±0.0035
DCNN-MHME 0.5987±0.0007 0.5238± 0.0042 0.5158±0.0052 0.5548±0.0014

When applying the proposed MHME CNN model, according to the hierarchy of GO

functions, the labels are divided into 5 levels for BP and MF functions, 4 levels for

CC functions. Table 2.1 shows the numbers of classes per level for each dataset. The

autoencoder used for each level is a one-layer MLP with a size of dim(In)× dim(x).

The CNN model used is described in Figure 2.3.

After training, the MHME CNN model is evaluated on test data. Table 2.2 shows the

experimental results on the three datasets. For comparison, the first row is the results of

DeepGO model copied from the DeepGO paper [58]. The second row shows the results

of simple DCNN (deep CNN) model, whose structure is similar to

Zgq+1 = fq+1
(
Ω

(3)
q+1,φ

(
Ω(2), x

))
, (2.13)

a deep CNN model without considering the label hierarchical relationship; and the third

row is the result of the HMC-LMLP method [57]. The last row is the results of the

proposed MHME CNN model.

For each model, these were calculated from the 10 resampled estimates produced by

repeated cross-validation, and Table 2.2 shows the results: mean ± standard deviation.

From the results of Table 2.2, we can see that the proposed MHME CNN model per-

forms better than the state-of-the-art models. The results of HMC-LMLP stand out
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TABLE 2.3: UniProt datasets (Number of samples)

Gene Ontology Human Mouse Thaliana Cerevisiae
BP 3229 2743 488 488
CC 7194 6055 2149 2149
MF 3024 2756 776 776

when the dataset has more GO terms (BP, 932). Because it is the model trained GO

terms level by level, whose result is influenced by GO terms more. The DeepGO or

simple DCNN model does well when the dataset has less GO terms (CC, 439; MF,

589). As these two methods are concentrating on the feature extraction of protein se-

quences. The proposed MHME CNN model improves the performance by taking into

account both hierarchy GO training and feature extraction.

2.5.4 Performance with Transfer Learning

The proposed MHME CNN models trained on the three DeepGO datasets in the previ-

ous subsection are applied to other datasets picked up from the UniProt [100]. Table 2.3

shows the details of these datasets. These 4 new datasets are not used in the training

and only used for testing.

Table 2.4 shows the results. Same to previous subsection, 10 resampled estimates pro-

duced by repeated cross-validation. The proposed MHME CNN model is compared

with the simple DCNN model and the HMC-LMLP model. From Table 2.4, we can

see that the proposed MHME CNN model performs much better than other two meth-

ods. Moreover, the simple DCNN model outperforms over the HMC-LMLP model

in transfer learning, which also proves that the deep learning based method has better

performance in the case of transfer learning. Further studies are needed to show the

potential applications of our proposed MHME CNN model based on transfer learning.
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TABLE 2.4: Results of the proposed MHME CNN model under transfer learning

Datasets Functions Methods Evaluation Metrics

MPre MRe MF1 MG
simple DCNN 0.5214±0.0003 0.5107±0.0006 0.5025±0.0004 0.5232±0.0003

BP HMC-LMLP 0.4968±0.0003 0.4989±0.0003 0.4978±0.0001 0.4979±0.0002
MHME-CNN 0.7131±0.0005 0.6981±0.0002 0.6999±0.0006 0.7003±0.0009
simple DCNN 0.5322±0.0002 0.5301±0.0001 0.5166±0.0010 0.5314 ±0.0006

Human CC HMC-LMLP 0.4929±0.0002 0.4977±0.0005 0.4953±0.0006 0.4957±0.0005
MHME-CNN 0.6702±0.0003 0.6616±0.0005 0.6773±0.0002 0.6610±0.0004
simple DCNN 0.5190±0.0004 0.5002±0.0002 0.5178±0.0004 0.5244±0.0003

MF HMC-LMLP 0.4952±0.0005 0.5000±0.0004 0.4976±0.0006 0.4977±0.0005
MHME-CNN 0.6955±0.0002 0.6412±0.0001 0.6777±0.0002 0.6670±0.0002
simple DCNN 0.5103±0.0003 0.4940±0.0001 0.4989±0.0006 0.5002±0.0005

BP HMC-LMLP 0.4977±0.0003 0.4994±0.0004 0.4981±0.0002 0.4985±0.0002
MHME-CNN 0.6888±0.0004 0.7011±0.0002 0.6899±0.0002 0.6823±0.0003
simple DCNN 0.5222±0.0003 0.5049±0.0005 0.5113±0.0002 0.5232±0.0002

Mouse CC HMC-LMLP 0.4927±0.0003 0.4977±0.0007 0.4952±0.0005 0.4951±0.0005
MHME-CNN 0.6716±0.0003 0.6600±0.0004 0.6621±0.0002 0.6599±0.0004
simple DCNN 0.5002±0.0004 0.5375±0.0001 0.5202±0.0004 0.5181±0.0003

MF HMC-LMLP 0.4949±0.0002 0.5000±0.0001 0.4975±0.0005 0.4974±0.0003
MHME-CNN 0.6434±0.0002 0.6610±0.0001 0.6404±0.0002 0.6398±0.0002
simple DCNN 0.5398±0.0003 0.5020±0.0001 0.5219±0.0001 0.5160±0.0003

BP HMC-LMLP 0.4974±0.0002 0.4989±0.0003 0.4981±0.0006 0.4982±0.0002
MHME-CNN 0.8708±0.0002 0.8903±0.0004 0.8761±0.0002 0.8732±0.0005
simple DCNN 0.5594±0.0002 0.5241±0.0005 0.5335±0.0003 0.5306±0.0007

Thaliana CC HMC-LMLP 0.4940±0.0002 0.4977±0.0004 0.4958±0.0003 0.4959±0.0003
MHME-CNN 0.7849±0.0003 0.7998±0.0002 0.7752±0.0003 0.7900±0.0002
simple DCNN 0.5282±0.0002 0.5208±0.0003 0.5069±0.0004 0.5101±0.0003

MF HMC-LMLP 0.4958±0.0003 0.5001±0.0002 0.4979±0.0005 0.4980±0.0001
MHME-CNN 0.8007±0.0002 0.8449±0.0003 0.8104±0.0002 0.7939±0.0005
simple DCNN 0.5401±0.0003 0.5343±0.0006 0.5321±0.0002 0.5181±0.0005

BP HMC-LMLP 0.4973±0.0003 0.4989±0.0001 0.4980±0.0002 0.4981±0.0002
MHME-CNN 0.8419±0.0004 0.8900±0.0002 0.8508±0.0003 0.8449±0.0003
simple DCNN 0.5277±0.0001 0.5345±0.0005 0.5223±0.0003 0.5403±0.0007

Cerevisiae CC HMC-LMLP 0.4940±0.0009 0.4976±0.0004 0.4957±0.0005 0.4956±0.0003
MHME-CNN 0.8020±0.0003 0.7797±0.0001 0.7745±0.0004 0.7648±0.0002
simple DCNN 0.5559±0.0002 0.5087±0.0003 0.5335±0.0003 0.5253±0.0002

MF HMC-LMLP 0.4962±0.0003 0.5000 ±0.0002 0.4981±0.0003 0.4981±0.0005
MHME-CNN 0.8209±0.0003 0.7915±0.0007 0.8005±0.0003 0.8160±0.0002

2.6 Summary

This chapter introduces the proposed deep CNN model with multi-head and multi-end

(MHME) for GO annotation to improve the performance of complex hierarchical mul-

tilabel classification. The deep CNN MHME model shares one deep CNN model with

a set of linear classifiers, in which autoencoders are applied to fuse the features and re-

duce the dimension of feature vectors. Furthermore, the MHME CNN model is trained

level-by-level to realize a set of local classifiers corresponding to the hierarchy labels

and one global classifier to capture the two-way relationship of labels.
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The simulation results show that our proposed MHME CNN model works well and

performs better than the state-of-the-art traditional methods. Moreover, our pre-built

MHME CNN model also performs well on other GO annotation examples based on

transfer learning.



Chapter 3

Localization Prediction with Transfer

Learning of GO Annotation

3.1 Background

1 This chapter investigates the protein function indirectly by the subcellular localization,

which significantly relates to the protein function. The prediction of eukaryotic protein

subcellular localization plays an important role in many biological processes since the

location information of protein reveals how a cell is working as a basic unit of life [101].

One of the applications is that it is utilized in studying targeted drugs. It has been

proved that one protein may appear in multi-locations which makes the prediction more

complex. In this situation, automatic prediction is required. The subcellular localization

prediction as a multilabel classification task, has been realized by using many machine

learning methods like support vector machine (SVM) [102, 103],autoencoder [104],

decision trees [105], etc.

When a one-hot or n-gram encoding method is used to vectorize protein sequences, a

feature extractor is usually needed to extract and map the feature to space where it is

more linearly separable. A neural network, especially deep CNN, can be used as such a

1This chapter mainly extends the Journal paper: X.Yuan, E.Pang, K.Lin and J.Hu. “Deep Protein
Subcellular Localization Predictor Enhanced with Transfer Learning of GO Annotation”, IEEJ Trans. on
Electrical and Electronics Engineering, Vol. 15, No. 4, pp.559-567, Apr. 2021.

39



Chapter 3. Localization Prediction with Transfer Learning of GO Annotation 40

feature extractor. However, it is inevitable to use a large dataset for the training, which

is difficult for many protein subcellular localization prediction cases. On the other hand,

gene ontology (GO) terms reveal that individual genes contribute to the biology of an

organism at the molecular, cellular, and organism levels. GO annotation, which in-

cludes the Cellular Component terms describe parts of cells and structures associated

with cells throughout the taxonomy range, if available, is useful genetic information for

predicting protein subcellular localization. X. Cheng et al. (2018) [67] and K.C. Chou

et al.(2001) [68] investigated the cases like the proteins of human beings, fungus where

GO annotation is available by applying both sequence feature and annotation feature for

localization prediction and found that it is better than using only sequence feature. The

works of Refs.[106, 107] encoded feature vectors by GO correlation information instead

of using the presence or frequency of GO terms. They exploit the hidden correlation

between the annotation features of proteins. However, experimentally annotated pro-

teins are not always available for many species. Fortunately, for some species such as

human, mouse, Arabidopsis thaliana, etc., experimentally annotated proteins are avail-

able [76]. It, therefore, is highly motivated to enhance predicting protein subcellular

localization by using a transfer learning of these available experimental GO annotations

from various related species.

A natural way may be considered to build a sequence-feature based prediction model for

GO annotation, then apply the predicted GO annotation to enhance predicting subcel-

lular protein localization, since there are available many machine learning methods for

GO annotations using protein sequence [58, 108]. The incorrect GO annotation predic-

tion, especially in the case of transfer learning, however, may result in poor performance

of protein subcellular localization prediction. The similarity of GO annotations plays

an essential role in many protein studies [109, 110, 111, 112]. Considering the sim-

ilarity between the predictions of protein sequence to GO annotation and subcellular

localization, another way to consider is to use the multitask learning method. The GO

annotation predictor and the subcellular localization predictor share a common feature

extractor, which improves the accuracy of each predictor by extracting the common

features. As the GO annotation information can improve localization prediction, the

multitask learning method is undoubtedly very suitable for this problem. However, the
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prediction task of GO annotation has more than 3000 labels, while the subcellular lo-

calization task has only less than 20 labels, which results in an imbalance problem. The

imbalance problem will decrease the performance of the task with fewer labels, which

is our target task.

This chapter proposes a new method of predicting subcellular localization by using a

transfer learning of GO annotation. It is structurally similar to the multitask learning

method. The GO annotation predictor and the subcellular localization predictor share a

deep CNN feature extractor, but they work in a pretraining and fine-tuning way. The GO

annotation predictor is a hierarchical multilabel model [57, 80, 90], consisting of a deep

CNN feature extractor and a set of linear multilabel classifiers [113]. It is trained by

a large amount of available experimental GO annotations from various related species.

The pretrained deep CNN feature extractor is then transferred to the subcellular local-

ization predictor. It will be fine-tuned by using a limited-sized subcellular localization

dataset. In the subcellular localization prediction model, the deep CNN feature extractor

plays two roles: extracting features from the vectorized protein sequence and mapping

the feature onto a feature space where it is more linearly separable. Therefore, the

transfer learning of GO annotation, especially on closely related species, is expected

to improve subcellular localization prediction significantly. The proposed method is

applied to Swiss-Prot datasets and the results are compared with the state-of-the-art

methods. Experiment results demonstrate the effectiveness of the proposed method.

The rest of this chapter is organized as follows. Section 3.2 introduces the problem for-

mulation. Section 3.3 introduces two parallel predictors of the subcellular localization

and the GO annotation, sharing a deep CNN feature extractor. Section 3.4 describes the

training processes in a pretraining and fine-tuning manner. Section 3.5 carries out ex-

periments on a set of Swiss-Prot datasets, and transfer learning experiments compared

with different methods. Finally, Section 3.6 has a summary showing the conclusions of

this chapter.
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FIGURE 3.1: An image of two parallel predictors of GO annotation and subcellular
localization, sharing a deep feature extractor.

3.2 Problem Formulation

3.2.1 Problem and notation

Suppose we are given a dataset of protein subcellular localization from a specific target

species, {xs(k), ys(k)|k = Ns}, where Ns is the size of dataset, xs(k) is vectorized protein

k, and ys(k) is the subcellular location vector, ys(k) = [s1, ..., sL]T , which L is the number

of localizations. The problem is to build a multilabel prediction model for predicting

protein subcellular localization.

For some species such as human, mouse and Arabidopsis thaliana, etc, there are avail-

able experimentally annotated proteins. Suppose we collect a large dataset of pro-

tein GO annotation from those species, {xg(k), yg(k)|k = Ng}, where Ng is the size of

dataset, xg(k) is vectorized protein k, and yg(k) is the hierarchical GO annotation vector,

yg(k) = [g(1)(k), ...,g(q)(k)]T , g(i)(k) = [g(i)
1 (k), ...,g(i)

ni (k)] (i = 1, ...,q) where q is the num-

ber of levels, and ni is the number of label in i level. The GO annotation dataset will

be used to help building a subcellular localization prediction model by using transfer

learning. A ‘1 gram + 2 gram’ encoding method (Section 1.5) encodes the protein se-

quence of amino acids into appearance frequency vector which is a column vector with

a length of 420.
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3.2.2 Enhanced subcellular localization predictor

When designing protein subcellular localization predictor, we consider two parallel pre-

dictors of GO annotation predictor and subcellular localization predictor sharing a pow-

erful deep CNN feature extractor, as shown in Figure 3.1, described by

Zg = fg
(
φ(Ig)

)
(3.1)

Zs = fs (φ(Is)) (3.2)

where Ig, Zg and Ig, Zg are the input-output vectors of GO annotation predictor (right

side of Figure 3.1) and subcellular localization predictor (left side of Figure 3.1), re-

spectively. Efforts are made to design a powerful deep CNN feature extractor, φ(·), to

extract and map to a feature space where it is more linearly separable. The deep CNN

feature extractor is first trained by using a large dataset of protein GO annotation from

various species, then it is transferred to subcellular localization predictor where being

fine-tuned by using the protein subcellular localization dataset. We will introduce the

details of the two predictors in the following sections.

3.3 Deep CNN Feature Extractor

With a powerful feature extractor, the subcellular localization predictor can be simply

designed as a linear multilabel classifier. We consider an ordinal 1-d deep CNN model

with fixed input and output size as the feature extractor, defined by

φ = φ(Ω(2), I) (3.3)

In our experiments, No = dim(I) = 512. Since the deep CNN model will first be trained

as feature extractor in the GO annotation predictor using a large dataset from various

related species, and then transferred to the subcellular localization predictor with fine-

tuning, it therefore is key point to avoid overfitting and to make it sure only extracting

common feature.
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3.3.1 The GO annotation predictor

As described in Chapter 2, labels in the GO annotation problem are organized in q

levels. An efficient way to capture the label relations at different levels is to design a

hierarchical multilabel classifier consisting of hierarchically organized q + 1 nonlinear

classifiers. By sharing a deep CNN with the q + 1 classifiers, we design a deep CNN

model with multiple heads and multiple ends (MHME) to implement the q+1 classifiers

in one deep neural network and design a sophisticated recursive algorithm to train the

MHME CNN model to perform a set of hierarchically organized powerful classifiers.

We briefly summarize as follows.

The MHME CNN model has three parts: the body part, the multi-end part and the

multi-head part, which realizes the q + 1 classifiers with sharing the deep CNN feature

extractor as the body part, and represented by:

Zgn = fgn
(
Ω

(3)
n , φ

(
Ω(2), an

(
Ω

(1)
n , Ign

)))
, (3.4)

where n = 1,2, ...,q + 1, fn, φ and an denote the body part, the multi-end part and the

multi-head part, and Ω
(3)
n , Ω(2), Ω

(1)
n are the parameters, respectively.

3.3.2 The subcellular localization predictor

As described in Section 3.2, labels in the subcellular localization problem are organized

in only one level. By using the deep CNN feature extractor transferred from the deep

GO annotation predictor, a hierarchical multilabel classifier can be designed by using a

linear network with logistic sigmoid outputs:

Zs1 = fs1
(
Ω

(3)
q+2, φ

(
Ω(2), xs

))
(3.5)

Zs = fs
(
Ω

(3)
q+3, φ

(
Ω(2), aq+3

(
Ω

(1)
q+3, Is1

)))
(3.6)

where Is1 = [xT
s , Ẑ

T
s1]T , Zs1 = ys, Zs = ys, and Ẑs1 denotes the prediction value of Zs1.
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3.4 Training Process

The training process consists of two parts: the pretraining and the fine-tuning.

3.4.1 Pretraining the deep CNN feature extractor

The GO annotation predictor which is a hierarchical multilabel model is represented by:

Zg1(k) = fg1
(
ω1, φ

(
W, Ig1(k)

))
, Ig1(k) = xg(k) (3.7)

Zg2(k) = fg2
(
ω2, φ

(
W, A2

(
λ2, Ig2(k)

)))
,

Ig2(k) = ag1(k) (3.8)

· · ·

Zgq(k) = fgq
(
ωq,φ

(
W,Aq

(
λq, Igq(k)

)))
,

Igq(k) = ag(q−1)(k) (3.9)

Zg(q+1)(k) = fg(q+1)
(
ωq+1,φ

(
W,Aq+1

(
λq+1, Ig(q+1)(k)

)))
,

Ig(q+1)(k) = ag(q)(k) (3.10)

The deep CNN feature extractor is pretrained during the training of the GO annotation

predictor, referred to Section2.4) for more details.

• Step 1 The training of the parameters Ω
(3)
1 , W from Eq.(3.7): Ω

(3)
1 is the parameter

of classifier fg1 and Ω(2) is the parameter of the deep CNN feature extractor. They

are trained in a supervised manner with logistic output by optimizing the sigmoid

cross-entropy (SCE) loss function E =
∑n

i=1 εS CE(Ẑg(n),Zg(n)). In this formulation,

εS CE is defined by

εS CE(ẑ,z) =−
1
N

N∑
i=1

Cn∑
j=1

[zi j× log(ẑi j)

+ (1− zi j)× log(1− ẑi j)]

(3.11)

where N is the number of samples and Cn = dim(Zn).
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Set the input Ig1 = xg, and after training we get the predictions Ẑg1 by Eq.(3.7).

• Step 2 The training of the parameters Ω
(1)
2 from Eq.(3.8): Ω

(1)
2 is the parameter of

the autoencoder a2 which is trained in an unsupervised manner by optimizing the

mean squared error (MSE) loss function En = εMS E(Îg(n), Ig(n)). Let z be the input

of encoder and ẑ be the output of decoder. Then εMS E is defined by

εMS E(ẑ,z) =
1
N

N∑
i=1

(ẑi− zi)2 (3.12)

where N is the number of samples.

Set Ig2 = [xT
g , Ẑ

T
g1]T , and after training the autoencoder we get the output A2.

• Step 3 The training of the parameters Ω(2), Ω
(3)
n ,Ω(1)

n , (n = 2,3, ...q + 1): Ω
(3)
n , Ω

(1)
n

are the parameters of the classifier fgn, the autencoder an respectively. Set the

input Ign = agn(k), and train the parameters Ω
(3)
n , Ω

(1)
n , Ω(2) based on Eqs.(3.9)-

(3.12), the training process is as the same as the Step 1 and Step 2. Then repeat

Step 2 and 3 until an appropriate stop condition is satisfied.

3.4.2 Fine-tuning the deep CNN feature extractor

With the pretrained deep CNN feature extractor φ(Ω(2), ·), we build the localization

predictor represent by Eq.(3.5) and Eq.(3.6). The deep CNN feature extractor is fine-

tuned during the training of subcellular localization predictor.

• Step 1 The training of the parameters Ω
(3)
q+2, Ω(2) from Eq.(3.5): Ω

(3)
q+2 is the pa-

rameter of classifier fs1 and they are trained in a supervised manner with lo-

gistic output by optimizing the Sigmoid Cross-Entropy (SCE) loss function E =∑n
i=1 εS CE(Ẑs1,Zs1). Set the input as xs, and train the parameters based on Eq.(3.5)

and Eq.(3.11). After training we get the predictions Ẑs1.

• Step 2 The training of the parameters Ω
(3)
q+3, Ω

(1)
q+3, W: Ω

(1)
q+3 is the parameter of the

autoencoder aq+2 which is trained in an unsupervised manner by optimizing the

Mean Squared Error (MSE) loss function En = εMS E(Îs1, Is1). Ω is the parameter
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TABLE 3.1: Swiss-Prot datasets

Dataset Sequences GO-terms locations
DataSet1 52774 3281 -
DataSet2 34300 - 14
DataSet3-z 2631 - 14
DataSet3-d 1078 - 14
DataSet3-c 2181 - 14
DataSet3-ch 643 - 14
DeepLoc 14004 - 10
HumT 379 - 12
Höglund 5959 - 11

of the classifier fs and the training method is the same as the Step 1. Same to Step

1, set the input Is1 = [xT
s , Ẑ

T
s1]T , and train the parameters based based on Eq.(3.6),

Eq.(3.11) and Eq.(3.12) until an appropriate stop condition is satisfied.

3.5 Experiment Results

In this section, the proposed subcellular localization predictor is applied to Swiss-Prot

datasets. Experiment results are compared with different methods.

3.5.1 Datasets

The proteins on the database Uniprot [100] included reviewed entries named Swiss-

Prot. In the experiments, we create several Swiss-Prot datasets as shown in Table 3.1.

DataSet1 consists of 52774 protein sequences from the eight type species2 with 3281

GO annotations [16] organized in 6 levels (q = 6). DataSet1 is used for pretraining the

deep CNN feature extractor by a transfer learning of a deep GO annotation predictor.

DataSet2 consists of 34300 protein sequence samples also from these 8 species with

14 subcellular locations (Names of locations shows in Section 1.2.1.2).DataSet2 will be

divided into 80% of training set, 10% of testing set and 10% of validation set, when

building the deep subcellular localization predictor. DataSet3’s are a set of datasets

consisting of protein sequences from different species: DataSet3-z from ‘zebrafish’,

2The eight different type species including human, mouse, rat, Arabidopsis thaliana, cerevisiae, rice,
fruit fly, and fungus.



Chapter 3. Localization Prediction with Transfer Learning of GO Annotation 48

DataSet3-d from ‘dog’, DataSet3-c from ‘cat’, DataSet3-ch from ‘chimpanzee’, which

will be used for testing the performance of transfer learning. Datasets of DeepLoc,

HumT and Höglund are three benchmark datasets used in Refs. [53, 107, 114], which

will be used to compare the proposed method with the state-of-the-art methods.

3.5.2 Evaluation metrics

The evaluation metrics for multilabel classification include the multilabel precision

(MPre), the multilabel recall (MRe), the multilabel F1-score (MF1) [95], the multil-

abel G-means (MG) and the multilabel Accuracy (MAcc). Considering that the mul-

tilabel classification method in our work is a combination of a multi-binary classifier

for each class, MPre and MRe are the averages for the Precision and Recall of all

classes. They correspond to the micro average of the multilabel precision and the mul-

tilabel recall. Let us assume that D is a multilabel dataset, and the sample in |D| is

(xi, yi), i = 1...|D|, yi ∈ {0,1}m is the set of labels. Suppose zi ∈ {0,1}m be the labels pre-

dicted by the multilabel classifier for sample xi. The definitions of the evaluation metrics

are given by

MPre =
1
m

|D|∑
i=1

|yi∩ zi|

|zi|
(3.13)

MRe =
1
m

|D|∑
i=1

|yi∩ zi|

|yi|
(3.14)

MF1 =
2∗MPre∗MRe

MPre + MRe
(3.15)

MG =
√

MPre∗MRe (3.16)

MAcc =
1
m

|D|∑
i=1

|yi∩ zi|

|yi∪ zi|
(3.17)

In the multilabel classification, considering that the number of labels is imbalanced, so

the result of MF-score and MG-means are more important.
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3.5.3 Experiment settings

For the modeling environment, this training algorithm is implemented in Python. The

deep CNN model is built via Chainer, developed by Community, Preferred Networks,

Inc. [99]. Each dataset is divided into three sets in the experiments: training set, vali-

dation set, and test set. We introduced the details of the deep CNN feature extractor in

Section 2.5.2.1.

Since the deep CNN feature extractor is designed by referring to the VGG16 model,

in our experiments, the default values of hyper-parameters suggested by the VGG16

model are used. But some hyper-parameters such as learning rate and stop epochs are

determined by using trial and error method. The training of the supervised learning

model: fgn
(
Ω

(3)
n , φ

(
Ω(2), ·

))
of the GO annotation predictor and fs1

(
Ω

(3)
n+1 φ

(
Ω

(3)
n+2, ·

))
,

fs
(
Ω

(3)
n+2, φ

(
Ω(2), ·

))
of the subcellular localization predictor, the initial learning rate

used is 0.0075 and training process stops after 120 epochs where the performance is

not improved anymore for the validation set. On the other hand, when the unsuper-

vised learning of the autoencoders : an(Ω(1)
n , ·) of the GO annotation predictor and

an+1(Ω(1)
n+1, ·) of the subcellular localization predictor, the initial learning rate used is

0.05 and the learning was stopped after 30 epochs where the performance for validation

set stops improving.

3.5.4 Comparisons with the state-of-the-art methods

In this subsection, the proposed enhanced subcellular localization predictor (enhanced-

SL) is applied to three benchmark datasets of subcellular localization, to compare with

the state-of-the-art methods. The results are also compared with a deep subcellular

localization predictor (SL-seq), which is used as a baseline. The deep subcellular local-

ization predictor has the same structure of the proposed model which is trained using

only the protein sequences of subcellular localization.

When building the proposed enhanced-SL model, the deep feature extractor is pre-

trained using DataSet1, then fine-tuned by using each benchmark dataset. When build-

ing the baseline (SL-seq) model, the deep feature extractor is trained only using the
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benchmark dataset. Table 3.2 shows the results of the three benchmark datasets. Two

state-of-the-art methods are considered for the comparisons. One is the CONV A-

BLSTM model which used multiply deep learning methods (CNN, RNN, LSTM) with-

out GO annotations features [53]. Row 1 in Table 3.2 shows the results of the CONV

A-BLSTM copied from Refs.[53] and [114]. The other state-of-the-art method is the

Hum-mPLoc3.0 model which is trained using more GO annotations also from swiss-

prot (GO: 14737) [107]. Row 2 in Table 3.2 shows the results of the Hum-mPLoc3.0

model copied from Refs. [107] and [114].

For each model, these were calculated from the 30 resampled estimates produced by

repeated cross-validation, and Table 3.2 shows the results: mean ± standard deviation.

Besides the five evaluation metrics, a statistical hypothesis test (Hypothesis test in Ta-

ble 3.2) is conducted to see if the new models are statistically significant based on the

baseline model. And in this case, the statistical significance is represented by the p-

value.

Table 3.2 shows the results of the baseline (SL-seq) and the proposed enhanced deep

subcellular prediction model (enhanced-SL) for the three benchmark datasets: DeepLoc,

HumT and Höglund. From the results in Table 3.2, we can see that the proposed en-

hanced deep subcellular prediction model not only has better performance than the base-

line, but also outperforms the two state-of-the-art methods. According to the hypothesis

test of the p-values, the proposed enhanced-SL model outperforms the two state-of-the-

art methods significantly. In the hypothesis test, the F1-score of SL-seq model is the

baseline and the enhanced-SL model performed significantly better than the other two

models, which we can find out by the p-values.
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3.5.5 Comparisons with different transfer learning methods

In this subsection, we perform experiments on DataSet1 and DataSet2 described in

Table 3.1. The target task is to build a multilabel subcellular localization classifier us-

ing DataSet2. Same to the way building the proposed enhanced-SL model in Subsec-

tion 3.5.4, the deep feature extractor is first pretrained using DataSet1, then fine-tuned

by using DataSet2. The proposed method is compared with the other two ways to trans-

fer the learning of GO annotation. One is building a GO annotation predictor, then

using the prediction of GO annotation as additional input features (SL-GoP). Another

is the multitask learning method (Multitask), parallelly building a GO annotation and a

subcellular localization predictor that sharing a deep feature extractor. Same to Subsec-

tion 3.5.4, 30 resampled estimates produced by repeated cross-validation, a statistical

hypothesis test (Hypothesis test in Table 3.3) is conducted to see if the new models are

statistically significant based on the baseline model (the state-of-the-art methods). And

the statistical significance is represented by the p-value.

Table 3.3 shows a comparison of different ways test on the testing set of DataSet2. The

first row of Table 3.3 shows the results of the baseline without the transfer learning of

GO annotation. We can see that both the multitask method and the transfer learning

methods are better than the baseline (SL-seq) which only uses protein sequence of sub-

cellular localization, without transfer learning of GO annotation. The multitask method

works better than the SL-GoP method but it could only apply to the problem in which

the protein samples have experimental GO annotations. The SL-GoP method has poor

performance maybe due to the overfitting of predicting GO annotations. The proposed

enhanced deep subcellular localization prediction model works the best and it could

transfer the feature extractor which carries the knowledge of predicting GO annotation

from different proteins to the subcellular localization predictor.
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3.5.6 Performance of transfer learning within or out species

As shown in Table 3.3, the experiments in Section 3.5.5 have proved that the learning

of GO annotation on some species can be transferred to significantly enhance the sub-

cellular localization predictors of the same species. This section shows the results of

transfer learning out species. That is, the learning of GO annotation on some species is

transferred to enhance the subcellular localization predictors of different species. The

three prediction models were trained in Section 3.5.5 using DataSet1 and DataSet2 are

directly applied to test on four other datasets from different species without any further

training. From the results shown in Table 3.4, we can see that the enhanced-SL model

has better performance than the SL-seq model and the SL-GoP model.

TABLE 3.4: Performance of transfer learning from different species

Datasets Methods Evaluation Metrics

MPre MRe MF1 MG MAcc
SL-seq 0.4674±0.0017 0.5212±0.0051 0.4914± 0.0013 0.4931±0.0021 0.8774±0.0013

DataSet3-z SL-GoP 0.4688±0.0005 0.5089±0.0013 0.4850± 0.0037 0.4877± 0.0029 0.8725±0.0013
Enhanced-SL 0.4752±0.0015 0.5133±0.0022 0.4906± 0.0016 0.4933±0.0014 0.8807±0.0022

SL-seq 0.5168±0.0011 0.5598±0.0027 0.5362±0.0015 0.5374±0.0029 0.8902±0.0012
DataSet3-d SL-GoP 0.5007±0.0008 0.5059±0.0016 0.4858±0.0023 0.5032± 0.0015 0.8846±0.0013

Enhanced-SL 0.5116±0.0015 0.5665±0.0026 0.5363±0.0027 0.5378±0.0017 0.9052±0.0021
SL-seq 0.4974±0.0004 0.4992±0.0033 0.4874±0.0015 0.4980±0.0018 0.8774±0.0019

DataSet3-c SL-GoP 0.4834±0.0001 0.5321±0.0015 0.5061 ± 0.0021 0.5070±0.0014 0.8871± 0.0027
Enhanced-SL 0.5033±0.0007 0.5390±0.0023 0.5199±0.0019 0.5206±0.0023 0.9214±0.0016

SL-seq 0.5091±0.0009 0.5016±0.0012 0.4726±0.0014 0.5049±0.0011 0.8807±0.0015
DataSet3-ch SL-GoP 0.5345±0.0013 0.5909±0.0018 0.5597±0.0016 0.5612±0.0015 0.8824±0.0013

Enhanced-SL 0.6113±0.0009 0.5788±0.0016 0.5615±0.0015 0.5933±0.0021 0.9046±0.0017

As mentioned before, the deep feature extractor plays two roles in the subcellular lo-

calization prediction. The first role is to extract features from the vectorized protein

sequence; the second role is to map the features onto a feature space where it is more lin-

early separable. Therefore, when enhancing the deep feature extractor by using transfer

learning, for the first role, any protein sequence-based prediction may be helpful, while

for the second role, a related function prediction is required in order to transfer useful

knowledge. Since the subcellular localization is related to GO annotation, we employ

the transfer learning of GO annotation on 8 different species to improve the prediction

of subcellular localization. In such a case, the species that are more closely related to

the 8 species are expected to get more improvement, while the species that are distantly
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related to the 8 species are expected to get less improvement. From the results shown in

Table 3.4, the three different datasets show different improvements demonstrating that

the enhanced feature extractor by transfer learning is effective:

• Distantly related species: From Table 3.4, we find that the DataSet-z is improving

very less. It is the data of zebrafish which is distantly related to the species of the

training data(DataSet1).

• Closely related species : The Dataset3-ch is improving more which is the data of

Chimpanzee. Considering that the similarity of genes in chimpanzee and human

(in the DataSet1), which is proved that the proposed method is more effective to

the samples of closely related species.

• Within species : From Table 3.3, the DataSet2 is the within species data which

has an obvious improvement by the proposed method.

3.6 Summary

In this chapter, we introduce the proposed subcellular localization predictor. It has a

powerful deep CNN feature extractor which is enhanced using a transfer learning of

GO annotation. The proposed method consists of two main steps: pretraining the deep

CNN feature extractor by building a deep GO annotation predictor, and fine-tuning the

deep CNN feature extractor when building the subcellular localization predictor. The

deep CNN GO annotation predictor consists of a set of hierarchical multilabel clas-

sifiers sharing one common deep CNN feature extractor. The deep CNN subcellular

localization predictor consists of a multilabel classifier and the deep CNN feature ex-

tractor which is transferred from the learning of GO annotation predictor. A large set

of experimentally annotated proteins from various species are used to pretrain the deep

CNN feature extractor, which then transfers the common feature mapping of annota-

tions to improve the performance of subcellular localization prediction. The proposed

method has good performance on the Swiss-Port datasets when transfer learning using
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the protein samples both within and out species. Furthermore, it outperforms the state-

of-the-art methods on all three benchmark datasets. Especially on dataset DeepLoc

our model is 12% enhanced of Accuracy than the CONV A-BLSTM method, and the

dataset Höglund 3% enhanced of F1-score than the Hum-mPLoc3.0 method.



Chapter 4

PPI Prediction Based on Transfer

Learning for Complex Detection

4.1 Background

1 In this chapter, we predict protein functions by the interaction of proteins: protein-

protein interaction (PPI) and protein complex. Protein complexes are molecular groups

of more than one functionally related protein, which are essential to biological pro-

cesses in a cell. The complexes exist in many biological processes and they perform a

vast amount of functions like cell cycle control, signaling, protein folding, etc. Since

the wrong protein complexes are clinical manifestations of the disease, protein complex

detection becomes an important indicator of the biological process. However, experi-

mental detections of protein complexes are expensive and inefficient. Therefore, com-

putational approaches, such as clustering-based methods, are widely adopted to detect

the complexes from protein-protein interaction networks.

Many previous works are clustering-based methods. MCODE detects complexes by

selecting an initial vertex of high local weight and iteratively adding neighbor vertices

with similar weights [115]. CFinder is a clique-finding algorithm that forms clusters

1This chapter mainly extends the Journal paper: X. Yuan, H. Deng and J. Hu, “Constructing a PPI
Network Based on Deep Transfer Learning for Protein Complex Detection”,IEEJ Trans. on Electrical
and Electronics Engineering, Vol.17, No.3, pp.436-444, March, 2022.

57
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FIGURE 4.1: Clustering images of the experimentally identified PPI network and the
reconstructed complete PPI network.

of fully connected subgraphs of different minimum clique sizes [116]. CDIP identifies

complexes by exploiting biological and topological properties for the complexes [117].

Ref. [55] defines a new condition for clustering proteins in density, diameter and cosine

similarity by selecting specific nodes as key nodes. These conventional clustering-based

methods for protein complexes have high requirements for the sample characteristics,

which are not conducive to large-scale detection. Therefore, spectral clustering may be

more suitable for protein complexes detection with finite samples during the modeling

compared with different clustering methods. One remarkable advantage of spectral

clustering is its ability to cluster nodes that are not necessarily vectors, and to use for

this a similarity, which is less restrictive than a distance [118].

A comprehensive and accurate PPI network plays an essential role in increasing the

accuracy of spectral clustering detection for protein complexes. However, since the

experimentally identified PPIs are usually very limited for most species, many unknown

PPIs exist in a given PPI network. As an example shown in the left of Figure 4.1, if

those unknown interactions are just set to be negative (also called protein-protein no-

interaction, PPNI), the incomplete PPI network may mislead the clustering algorithm to

give a wrong result. Therefore, it is highly motivated to develop a deep PPI predictor

to estimate those unknown PPIs and detect protein complexes from a reconstructed PPI

network.

Vectorized protein sequences are often applied as the input feature of a PPI prediction
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model. Yu et al. [55] used amino acid background frequency (AABF). And Rehman

et al. [54] used frequency compositions of amino acids (monopeptides), dipeptides &

tripeptides, which results in a huge feature set with the possibility of unimportant fre-

quency compositions. Considering that the frequency of tripeptides is too sparse to train

as the features, we will use a ‘1-gram + 2-gram’ encoding (monopeptides & dipeptides)

method to extract an appearance frequency as the input feature. After vectorizing the

protein sequences, we design a deep feature extractor based on a convolutional neural

network (CNN) to extract and map the feature to a space that is easier to deal with. On

the other hand, it usually needs a large dataset to train a deep CNN feature extractor.

For most species, there are available only limited experimentally identified PPIs. We

consider a transfer learning of the deep CNN feature extractor. Although deep transfer

learning is popular in deep learning based image processing, it is not easy to implement

deep transfer learning in the PPI prediction. We need to make sure that the deep CNN

model only extracts common features to avoid overfitting. For this purpose, we try to

share the deep CNN model 1) with some closely related prediction models; 2) in as

many prediction models as possible.

It has been known that the proteins with similar gene ontology (GO) annotations are

highly related to the interactions [71, 119]. And the proteins with different subcellu-

lar localization (SL) are often negatively interacted [120]. Therefore, it is natural to

consider that GO annotation and subcellular localization predictions are closely related

to the PPI predictions. Experimentally annotated proteins are not always available for

most species, however, they are fully available for some species such as human, mouse,

Arabidopsis thaliana, etc., which are called the type species. Moreover, GO annota-

tion and subcellular localization are multilabel prediction problems. An efficient way

to capture the label relations is to design a group of multilabel classifiers consisting

of hierarchically organized nonlinear classifiers. Therefore, by taking advantage of the

experimentally annotated proteins from type species, we will pretrain the deep CNN

feature extractor in the group of deep GO annotation and subcellular localization pre-

dictors and transfer it to the deep PPI predictor.

In summary, this chapter proposes a deep learning based PPI predictor to construct a
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PPI network, from which protein complexes are detected by using a spectral cluster-

ing method. The deep PPI predictor consists of a semi-supervised SVM classifier and

a deep CNN feature extractor. The deep CNN feature extractor is first pretrained in a

group of GO annotation and subcellular localization predictors implemented by a multi-

head and multi-end (MHME) deep CNN model [113, 121, 122], using datasets from the

type species, then fine-tuned in a binary PPI detector using experimentally identified

PPI samples. In this way, the unknown PPIs are predicted by a deep PPI predictor

enhanced with the transfer learning of GO and SL annotations. Finally, a spectral clus-

tering method detects protein complexes from a complete reconstructed PPI network.

The experiments of the proposed method on the two benchmark datasets show better

performance than the state-of-the-art methods.

The rest of this chapter is organized as follows. Section 4.2 is the problem description.

Section 4.3 introduces the transfer learning of the deep CNN model. Section 4.4 is the

PPI detection and the protein complex detection. Section 4.5 shows the training process

of the whole framework. Section 4.6 is the experiments on benchmark datasets. Finally,

Section 4.7 has a summary showing the conclusions of this chapter.

4.2 Problem Description

4.2.1 Protein Complex Detection

Suppose we collect a PPI network with N protein nodes and L interactions, an undi-

rected graph G = (V,E) is used to model it. E is an edge set which are the experimen-

tally identified interactions among these proteins by E = {en(xi, x j)|en(xi, x j) ∈ (0,1),n =

1,2, ...,L} and V is a protein node set by V = {xi, x j|i, j = 1,2, . . . ,N} that xi and x j are

vectorized protein sequences. There is a complex set C = {C1,C2, ...,Ci|i = k}, yi ∈ C,

where k is the number of the clusters. The problem is to determine which protein com-

plexes yi, the proteins are belonging to. Graph G is the input of the spectral clustering

algorithm for detecting the protein complexes. As shown in Figure 4.1, a PPI network

is usually constructed by taking individual proteins as vertices and pairwise interactions



Chapter 4. PPI Prediction Based on Transfer Learning for Complex Detection 61

between them as edges. Same to the previous chapters, a ‘1 gram + 2 gram’ encoding

(Section 1.5) method encodes the protein sequence of amino acids into an appearance

frequency vector.

4.2.2 PPI Prediction

A complete PPI network of N protein nodes contains C2
N edges, each corresponding to

a PPI. However, the collected experimentally identified PPIs are usually very limited,

resulting in an incomplete PPI network. Therefore, we propose a deep PPI detector

to predict the unknown PPIs to rebuild a complete PPI network so as to improve the

performance of protein complexes clustering.

The deep PPI predictor consists of a deep CNN model as feature extractor φ(·) and an

SVM classifier fsvm(·).

The predictor is represented by the following formulas:

Φ(xi, x j) = g(φ(xi),φ(x j)) (4.1)

Z(xi, x j) = fsvm(Φ(xi, x j)) (4.2)

where g(·, ·) is a 2-Norm based feature combination method that will be discussed in

Section 4.4.1, xi and x j are the vectorized inputs of protein pairs (xi, x j) and Z(xi, x j) is

the output of PPI e(xi, x j). By applying a deep CNN feature extractor, the features of

two inputs are first extracted and mapped to a space where it is easier to deal with, and

then are combined by a 2-Norm method to get the output Φ(xi, x j). Finally, an SVM

classifier is applied to obtain the interaction prediction.

4.2.3 Feature Extraction and Transformation

Training a deep CNN model needs a large number of samples. Since the experimentally

identified PPI samples are insufficient, the deep CNN feature extractor is trained in

a transfer learning manner. That is, we first pretrain the deep CNN feature extractor
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by an MHME model that implements a group of nonlinear predictors of GO and SL

annotations, using experimentally annotated proteins which from the eight type species

as mentioned in Section3.5.1, then fine-tune it with the experimentally identified PPI

samples.

Let us denote the group of predictors of GO annotation and subcellular localization by:

Zn = fn(φ(In)), n = 1,2, ... (4.3)

where In, Zn are the input vectors and output vectors of the predictors, the details of

which will be discussed in the next section. And φ(·) represents the CNN feature ex-

tractor. After pretraining in the deep CNN MHME models, the deep feature extractor is

fine-tuned in a binary classifier with the identified PPI samples.

In the following sections, we will introduce more details of the deep PPI detector and

spectral clustering.

4.3 Deep CNN Feature Extractor

A powerful deep feature extractor with a sample binary classifier is designed for PPI

prediction. Let us consider an ordinal 1-d deep CNN model with fixed input and output

size, defined by

Φi = φ(W, xi), (4.4)

where W is the weight and the input vector xi ∈ R420, the output vector Φi ∈ RN0 . In

our experiments, N0 = 512. Figure 2.4 in Section 2.5.2.1 shows the details of the model

structure. When pretraining the deep CNN model in a class of GO annotation predictors

and subcellular localization predictors using a large dataset from the type species, it is

important to avoid overfitting and to ensure it only extracting common feature. After

pretraining, the deep CNN model is then transferred to the PPI detector for further fine-

tuning.
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FIGURE 4.2: Deep transfer learning of the PPI detector.

4.3.1 Pretraining

The GO and SL annotations are multilabel classification problems. Suppose the la-

bels in the GO annotation problem are organized in q levels described by the vectors

vl, l = 1,2, ...q, and the labels of SL annotation are described by the vector vs. To cap-

ture efficiently the label relations, we may design a hierarchical multilabel classifier,

consisting of hierarchical organized q + 1 nonlinear classifiers for GO annotation pre-

dictor, and 2 nonlinear classifiers for SL annotation predictor. In order to share the deep

CNN feature extractor in these q + 3 classifiers, we design a deep CNN model with

multiple heads and multiple ends (MHME) to implement the q + 3 classifiers in one

deep neural network, and design a sophisticated recursive algorithm to train the MHME

CNN model to perform a set of hierarchically organized powerful classifiers. We briefly

summarize as follows. Section 2.3 for more details.

Figure 4.2 shows the deep transfer learning of the PPI detector in a pretraining and fine-

tuning way. The upper part of Figure 4.2 is a deep MHME CNN model which introduce

in Section 2.3. The model composes of three parts, represented by:

Zn = fn (ωn, φ (W, An (λn, In))) ,n = 1,2, ...,q + 3 (4.5)
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where φ denotes the body part, An the multi-end part, and fn the multi-head part, re-

spectively, and ωn, W, λn are the parameter sets of the three parts. In and Zn are the

input vectors and output vectors for the q + 3 classifiers.

In the pretraining, we share the deep CNN feature extractor in the q + 3 classifiers of

the GO and SL annotations so as to prevent overfitting and to ensure to extract only

common features. In our experiments, q = 6.

4.3.2 Fine-tuning

After pretraining the deep CNN feature extractor by the GO and SL annotation pre-

dictors, and before concatenating it with the PPI detector, the deep feature extractor is

fine-tuned with the experimentally identified known PPI samples. Firstly, the protein-

pairs are extracted feature by the deep CNN model and then combined by the 2-Norm

method according to Eq. (4.8). Then, a binary classifier is designed by using a linear

network with logistic sigmoid output:

Z(xi, x j) = fppi
(
Φ(xi, x j)

)
, (4.6)

Φ(xi, x j) = g(φ(W, xi),φ(W, x j))

where the output Z(xi, x j) is the label vector of the interaction.

4.4 PPI Prediction and PPI Network Clustering

After the transfer learning for the feature extractor, an RBF kernel SVM classifier is

constructed in a semi-supervised manner. A 2-Norm method, to combine the pair of

protein sequences, also introduce in this section. And at last, the spectral clustering to

detect the protein complexes.
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4.4.1 2-Norm Method

Assuming there is an interaction between protein seqi and seq j. A combining feature

calculated by 2-Norm method is defined by[51]

g(xi, x j) =

√
x2

i + x2
j , i, j = 1, ...,N (4.7)

Φ(xi, x j) =

√
Φ2

i +Φ2
j (4.8)

where xi and x j are the encoding vectors of protein seqi and seq j by the ‘1 gram + 2

+ gram’ encoding method. The Eq. (4.8) expresses the combining of the output feature

of the deep CNN model, where the output Φ(xi, x j) is the feature matrix of the protein

pairs.

4.4.2 SVM Classifier for PPI Detection

With the combined feature of protein pairs as input, the PPI detection is performed

using a binary classified of SVM with RBF kernel. The SVM classifier is trained in

an inductive semi-supervised learning way to take advantage of unlabeled data, which

improves classification performance. The bottom part of Figure 4.2 shows the structure

of the deep PPI detector. It is composed of two parts, the deep CNN feature extractor

and the RBF kernel SVM.

The following formula expresses the SVM classifier with the labeled feature from the

deep CNN model:

fsvm = KT (φi, j)α+ b, (4.9)

where K(·) is the kernel matrix of RBF kernel function, while α and b are the weight

and bias of the SVM, and φi, j = Φ(xi, x j) is the combined input vector of the classifier.

There are two parts of training data for semi-supervised training: the known PPI com-

bined feature φi, j with the label yt and the unknown PPI combined feature with the
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pseudo-label yu, which are defined as:


(φi, j, yt), e(xi, x j) ∈ E

(φi, j, yu), e(xi, x j) < E
(4.10)

The inductive semi-supervised SVM improves the accurate prediction of interactions,

ensuring that the reconstructed PPI network is complete. Adding with the predicted PPIs

by the SVM classifier, the last step is the spectral clustering from the reconstructed PPI

network.

4.4.3 Spectral Clustering of PPI Network

We construct an undirected graph via the reconstructed PPI network to detect protein

complexes by the spectral clustering. The graph G represents the PPI network, V rep-

resents the set of protein nodes vectors, and E represents the set of edges which are the

interactions:

G = Gu(V,E,W1), (4.11)

W1 is the weight matrix of the edges which is composed of the weights between protein

nodes, and is decided by the protein interaction:

wi, j =


1, yi, j = yt = 1

0.8, yi, j = yu = 1

0, yi, j = yt = 0, yi, j = yu = 0

(4.12)

where the weights of the identified positive interactions yt are 1, the predicted positive

interactions yu are set to be 0.8, and the negative interactions are 0. From the weight

matrix, we could get the degree di for each node vi ∈ V:

di =

n∑
j

wi, j, (4.13)
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With the degree of each node di we could get the degree matrix D which is a diagonal

matrix:

D =



d1 · · · · · ·

· · · d2 · · ·

...
...

. . .

· · · · · · dn


(4.14)

From the matrix W1 and D we get the main tools for spectral clustering, the Laplacian

matrix Q. We represent the weight matrix W1 of graph G as an adjacency matrix; then

we also can get the degree matrix D which is how many edges connect to a node, which

is

Q = D−W1. (4.15)

The spectral clustering model with the input of three special matrices W1,D,Q, the label

clusters Ci, and the output of Ai which are the prediction labels of protein complexes.

4.5 Training Process

This section is the training process of the proposed method.
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4.5.1 Supervised Learning of Deep CNN Feature Extractor

The GO and SL annotation predictor, which is a hierarchical multilabel model, is rep-

resented by:

Z1 = f1 (ω1, φ (W, I1)) , I1 = x (4.16)

Z2 = f2 (ω2, φ (W, A2 (λ2, I2))) ,

I2 = a1 (4.17)

· · ·

Zq+1 = fq+1
(
ωq+1,φ

(
W,Aq+1

(
λq+1, Iq+1

)))
,

Iq+1 = aq+1 (4.18)

Zq+2 = fq+2
(
ωq+2,φ

(
W,Aq+2

(
λq+2, Iq+2

)))
,

Iq+2 = aq+2 (4.19)

Zq+3 = fq+3
(
ωq+3,φ

(
W,Aq+3

(
λq+3, Iq+3

)))
,

Iq+3 = aq+3 (4.20)

(Eqs. (4.16)-(4.18)) represent the GO annotation predictors and (Eqs. (4.19), (4.20)) rep-

resent the subcellular localization predictor. We briefly describe the training steps as

follows:

• Step 1: Setting In = x, n = 1,2, ...,q + 3 in Eqs.(4.16)-(4.20), pretrain the param-

eters W, ωn, which is realized in a supervised manner with logistic output to op-

timize a sigmoid cross-entropy (SCE) loss function E =
∑n

i=1 εS CE(Ẑn,Zn), where

εS CE is defined by

εS CE(ẑ,z) =−
1
N

N∑
i=1

M∑
j=1

[zi j× log(ẑi j)

+ (1− zi j)× log(1− ẑi j)],

(4.21)

where N is the number of samples and M = dim(Zn).
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Set the inputs In (n = 1,2, ...,q + 3) to x, from Eqs. (4.16)-(4.20), we obtain the

estimates of Zn, Ẑn, which are used to train the autoencoders An(·, ·).

• Step 2: Train the parameters λn (n = 1,2, ...q + 3), by setting In = [xT , ẐT
n ]T . The

loss function for optimizing the autoencoder An(·, ·) is the mean squared error

(MSE) En = εMS E(În, In). Denoting z the input of encoder and ẑ be the output of

decoder, εMS E is defined by

εMS E(ẑ,z) =
1
N

N∑
i=1

(ẑi− zi)2, (4.22)

where N is the number of samples.

• Step 3: Train the parameters W, ωn (n = 1,2,3, ...q + 3) in Eqs.(4.16)-(4.20). In

this stage the inputs are set as In = an and the training process is the same as Step

1.

• Step 4: Repeat Step 2 and 3 until an appropriate stop condition is satisfied.

4.5.2 Semi-supervised Learning of PPI Predictor

To train the PPI predictor, we optimize the semi-supervised SVM by the following

objective function:

min
α,b

1
2

N∑
i, j=1

max(1−yi, j(KT (φi, j)α+ b),0)2 +
1
2
αT Kα, (4.23)

where yi, j and φi, j are the output label and the input combined protein vector of the

training data, N is the number of instances.

• Step 1: Pretraining the fsvm with known PPI samples (φi, j, yt) by function Eq. (4.23).

Then labeled the unknown PPI samples with pseudo-label yu by Eq. (4.9).

• Step 2: Training the parameters α, b with both known samples(φi, j, yt) and un-

known samples(φi, j, yu) by Eq. (4.23). After that, we update the pseudo labels by

Eq. (4.9).
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• Step 3: Repeat Step 2 until an appropriate stop condition is satisfied.

4.5.3 Unsupervised Learning of Protein Complex Detector

The steps of spectral clustering for protein clustering show in the following:

• Input:Similarity matrix of graph G, number k of clusters.

• Construct the weighted adjacency matrix W1 by Eq. (4.12).

• Compute the graph Laplacian L by Eq. (4.15), calculate the standard Laplacian

which is D−
1
2 LD−

1
2 .

• Compute the first k eigenvectors u1,u2, ...,uk of D−
1
2 LD−

1
2 .

• Let U ∈ Rn×k be the matrix containing the vectors u1,u2, ...,uk as columns.

• For i = 1, ...,n, let zi ∈ Rn be the vector corresponding to the i-th row of U.

• Cluster the points zi in Rn with the k-means algorithm into clusters C1, ...Ck

• Output: Clusters A1, ...,Ak with Ai = { j | z j ∈Ci}

4.6 Experiment Results and Discussions

4.6.1 Datasets

In our experiments, there are three groups of datasets, as shown in Table 4.1. The first

group is the datasets of protein complex detection. Two benchmark datasets of protein

complexes are applied to prove the experimental performance. CYC2008 [123] is a

catalogue of manually curated heteromeric protein complexes from Yeasts; MIPS [124]

provided the expert curation of genomes and interaction maps in plants, fungi, and

mammals by regular annotation of protein sequences. The second group is the exper-

imentally identified PPI datasets that are applied to train the PPI predictor by semi-

supervised learning. This PPI dataset comprises 12890 protein pairs, in which 6445
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positive interactions from the DIP dataset [125] and 6445 negative interactions from the

Negatome dataset (Negatome is a database of proteins and protein domains that are un-

likely to engage in physical interactions)[126]. The third group is the GO&SL dataset

for pretraining the deep feature extractor. It consists of 34000 protein sequences from

the eight type species with 3281 GO annotations organized in 6 levels (q = 6), and 14

subcellular localizations.

TABLE 4.1: Details of the three groups of datasets

Dataset proteins Pairs Interaction Clusters GO SL
CYC2008 387 - - 14 - -
MIPS 601 - - 22 - -
DIP 5742 6445 P - - -
Negatome 3297 6445 N - -
GO&SL 34000 - - - 3281 14

4.6.2 Evaluation Metrics

Three classical evaluation metrics, Precision, Recall and F-score, evaluate the efficiency

of the proposed method. Precision is the proportion of correct positive predictions;

Recall is the proportion of positive samples that are correctly predicted positive; F-score

gives the overall performance:

Precision =
T P

T P + FP
(4.24)

Recall =
T P

T P + FN
(4.25)

F-score =
2∗Precision∗Recall

Precision + Recall
(4.26)

where the true(T) or false(F) samples are protein pairs in a cluster. A true positive (TP)

decision assigns two interacted protein nodes to the same cluster, and a true negative

(TN) decision assigns two non-interacted nodes to different clusters. A false positive

(FP) decision assigns two non-interacted nodes to the same cluster, and a false negative

(FN) decision assigns two similar nodes to different clusters.
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4.6.3 Experimental Setting

For the modeling environment, this training algorithm is implemented in Python. The

deep CNN model is built via Chainer, developed by Community, Preferred Networks,

Inc. [99]. Classification model, SVM, invokes from the Scikit-learn library [127]. And

the spectral clustering is based on the Networkx Framework [128].

When applying the algorithm described in Subsection 4.5.2, the training algorithm starts

with a learning rate of 0.0075. The algorithm ends after 120 epochs when the perfor-

mance stops improving on the validation set. On the other hand, when implementing

the unsupervised learning of the autoencoders, An, the training algorithm starts with a

learning rate of 0.05. It ends after 30 epochs when the performance on the validation

set stops improving. The semi-supervised SVM is first pretrained by the training set of

the PPI dataset. Then, this semi-supervised learning uses a mini-batch manner of 5000

input by Eqs. (4.9) and (4.23) to ensure the accuracy of the SVM classifier.

4.6.4 Comparisons with the State-of-Art Methods

4.6.4.1 Results of PPI prediction

We compare the semi-supervised PPI predictor with four state-of-the-art methods on

two benchmark datasets, and Table 4.2 shows the results. Zeng et al.[51] applied n-gram

to extract feature and discussed the different feature selection way on predicting PPIs.

Wei et al.[52] investigated the prediction of negative interactions by n-gram feature

extraction, feature selection and ranking, and k-means clustering acts as a classifier.

Sun et al.[60] built a deep predictor which consist a stacked autoencoder with a SVM

classifier on sequence-based feature. And in the works of Bandyopadhyay et al.[109],

they predicted PPI with GO annotation-based feature on SVM classifier. All results

of the four state-of-the-art methods are copied from their papers. We can see that the

proposed method has better performance on both of the datasets.
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TABLE 4.2: Comparisons of PPI prediction accuracy with different methods

Datasets Methods

Zeng et al.[51] Wei et al.[52] Sun et al.[60] Bandyopadhyay et al.[109] Ours
DIP 0.9594 - 0.9377 0.8700 0.9762
Negatome - 0.8580 - - 0.9680

4.6.4.2 Results of protein complex detection

We compare the results of applying three state-of-the-art clustering methods and our

method to the reconstructed PPI network, and the results of applying to the raw PPI net-

work. Table 4.3 shows the results. MCODE[115] method is based on vertex weighting

by local neighborhood density and outward traversal from a locally dense seed protein.

CFinder[116] detecting complex by reading the protein interactions, performs a search

for protein dense subgraphs. PCD-BEns[54] employs Multi-Dimensional Scaling for

the grouping of known complexes by exploring inter-complex relations. We can see

that comparing with the results on the raw PPI network, all the methods achieve a better

performance on the reconstructed PPI network.

TABLE 4.3: Comparison results of protein complex detection on the raw and recon-
structed PPI Networks

Datasets Methods Raw PPIN Reconstructed PPIN

Precision Recall F-score Precision Recall F-score
MCODE[115] 0.3930 0.2143 0.2664 0.4531 0.2656 0.3221

MIPS CFinder[116] 0.2730 0.2470 0.2507 0.3652 0.2917 0.3021
PCD-BEns[54] 0.4097 0.4782 0.4425 0.5321 0.4752 0.5211
DCNN+GO+SL 0.5487 0.3169 0.4018 0.7333 0.5432 0.6041
MCODE[115] 0.3561 0.2458 0.3167 0.3972 0.3741 0.3772

CYC2008 CFinder[116] 0.3367 0.3056 0.3180 0.3656 0.2917 0.3314
PCD-BEns[54] 0.5125 0.4980 0.4997 0.5123 0.5523 0.5414
DCNN+GO+SL 0.5714 0.3945 0.4667 0.8125 0.5909 0.6842

4.6.5 Ablation Studies

In this part, we carry out an ablation study under different features of transfer learning.

The baseline is the deep CNN feature extractor of the random initial value parameter

with no transfer learning (DCNN). Then we also compare to the deep CNN feature
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FIGURE 4.3: Ablation studies of the inductive semi-supervised PPI prediction

extractor transfer learning from GO prediction (DCNN+GO), and from SL prediction

(DCNN+SL).

4.6.5.1 Results of PPI prediction

Section 4.6.4.1 shows the comparison results of PPI prediction with state-of-the-art

methods. This section is the results of the semi-supervised PPI prediction in differ-

ent ratios of labels. Figures 4.3(a) and 4.3(b) show the results of dataset CYC2008 and

MIPS, respectively. The DCNN+GO model transfers only from the GO annotation pre-

dictors and the DCNN+SL model and transfers only from the SL predictors, which we

can see perform better than the baseline model. And transfer learning from both of them

outperforms in all the methods obviously. The accuracy of detecting by the proposed

PPI predictor can respectively reach 93.96% for the CYC2008 dataset and 92.30% for

the MIPS dataset, indicating that this method can be employed to predict the unknown

PPI.

4.6.5.2 Results of protein complex detection

Table 4.4 shows the results of ablation studies of the proposed method with transfer

learning based on both GO and SL. DCNN+GO denotes the transfer learning based
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TABLE 4.4: Results of ablation studies

Datasets Methods Evaluation Metrics Hypothesis test (F-score)

Precision Recall F-score Z-statistic p-value Sig
Raw PPIN 0.5487±0.0049 0.3169 ± 0.0102 0.4018±0.0095 -

DCNN 0.2916±0.0323 0.6190±0.0214 0.4023± 0.0320 baseline (F-score)
MIPS DCNN+SL 0.4864±0.0131 0.4090±0.0305 0.4444±0.0371 3.5884 0.0024 ***

DCNN+GO 0.4169±0.0426 0.5325±0.0310 0.4993±0.0519 4.8689 0.000326 ***
DCNN+GO+SL 0.7333±0.0656 0.5432±0.0428 0.6041± 0.0973 6.5293 0.000033 ***

Raw PPIN 0.5714±0.0071 0.3945±0.0065 0.4667±0.0077 -
DCNN 0.3608 ±0.0417 0.5000±0.0651 0.4580±0.0324 baseline (F-score)

CYC2008 DCNN+SL 0.4706±0.0276 0.5254±0.0043 0.4974±0.0419 2.9735 0.0069 ***
DCNN+GO 0.6014± 0.0451 0.4243±0.0518 0.5667±0.0729 4.7152 0.00041 ***

DCNN+GO+SL 0.8125±0.0712 0.5909±0.0530 0.6842±0.0900 7.9478 0.000006 ***

only on GO, while DCNN+SL based only on SL. DCNN denotes the results without

transfer learning, and Raw PPIN denotes the results of the raw PPI network. We show

the results by averaging over 10 resampled estimates of cross-validation. As shown in

Table 4.4, the results are given by mean and standard deviation. In addition to the three

evaluation metrics, the p-value, a statistical hypothesis test (Hypothesis test in Table 4.4)

is also shown to prove the statistical significance of the new models.

From Table 4.4, we find that the performance of clustering is affected when PPI de-

tectors are not accurate enough (for CYC2008, the results of the raw PPI network are

even better than the results of baseline). With increasing the accuracy of the PPI pre-

diction, clustering performances from the corresponding reconstructed PPI network is

increasing. And the proposed method shows the best result.

4.7 Summary

This chapter proposes a deep learning based PPI predictor to construct a PPI network

from which protein complexes are detected using spectral clustering. The deep PPI de-

tector consists of a transfer learning based CNN feature extractor and a semi-supervised

SVM classifier. The CNN feature extractor is pretrained by hierarchical GO annotations

and subcellular localization predictors and fine-tuned by a binary PPI classifier. The

proposed method transfers a deep CNN feature extractor to the PPI predictor, which
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helps the accuracy of the PPI prediction because the GO and SL annotations contribute

to the interactions of proteins. The spectral clustering finally clusters the protein com-

plexes. Experimental results on two benchmark datasets show that the proposed method

outperforms the state-of-the-art methods.



Chapter 5

Conclusions

5.1 Summaries

In this dissertation, we have proposed deep transfer learning methods for predicting pro-

tein GO annotation, protein subcellular localization, and protein-protein interaction. By

sharing a deep CNN feature extractor with as many related prediction tasks as possible,

we have constructed powerful deep neural network models for prediction of protein GO

annotation, localization and interaction based on a deep transfer learning from different

tasks and different species.

• GO annotation is first formulated as a very complicated hierarchical multilabel

classification tasks consisting of a set of related local classifiers. A deep CNN

model with multiple heads and multiple ends (MHME) is proposed to implement

the whole set of hierarchically organized local classifiers. In this way, by sharing

a deep CNN with multiple local classifiers, we can extract common feature and

construct more powerful local classifiers for each level with limited training sam-

ples and realize a deep transfer learning from different species to achieve better

classification performance.

• A deep protein subcellular localization predictor is constructed, consisting of a

linear classifier and a deep CNN feature extractor. By using a deep MHME CNN

77
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model, the deep CNN feature extractor is first shared and pretrained in a deep GO

annotation prediction task based on a large dataset from type species, and then is

transferred to the subcellular localization prediction task with fine-tuning using

protein localization samples. In this way, we realize a deep protein subcellular

localization prediction enhanced with a transfer learning of GO annotation, from

different species and different tasks.

• A novel deep transfer learning based PPI detector is developed to reconstruct a

PPI network for protein complex detection. Considering the facts that the similar-

ities of GO annotations contribute to protein interactions, and the differences of

subcellular localizations contribute to negative interactions, a deep MHME CNN

model is used to pretrain a deep CNN feature extractor in a class of deep GO

annotation and subcellular localization prediction tasks using datasets from the

type species, then transfer it to the PPI prediction task for fine-tuning, so as to

have a deep PPI detector enhanced with a transfer learning of GO annotation and

subcellular localization prediction, from different species and different tasks.

Experimental results on benchmark datasets show that the proposed methods outper-

form the state-of-the-art methods and confirm the effectiveness of the proposed meth-

ods.

5.2 Future Research Topics

It still has a huge amount of works to continue of deep modeling for protein bioinfor-

matic analysis:

• For Protein bioinformatics This research treats the protein sequence as a heat

map and extracts feature by the deep CNN model. However, other deep learn-

ing models could improve the feature extraction work for protein sequence or

the other sequence data. Except for these three issues, many other function pre-

diction problems are looking forward to solving by developing new algorithms.
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Furthermore, we will investigate other deep learning applications of bioinformat-

ics prediction with the sequence-based and annotation-based features.

• For Bioinformatics The way we treat the protein sequence could also investigate

the other sequence data in bioinformatics. And the transfer learning of features

between species is also the problem of the other bioinformatics, as the various

researches in genomics. We are going to apply this model to this kind of research.
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