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Abstract: Organ-on-chip (OoC) technology is one of the most promising in vitro tools to replace the
traditional animal experiment-based paradigms of risk assessment. However, the use of OoC in drug
discovery and toxicity studies remain still limited by the low capacity for high-throughput production
and the incompatibility with standard laboratory equipment. Moreover, polydimethylsiloxanes, the
material of choice for OoC, has several drawbacks, particularly the high absorption of drugs and
chemicals. In this work, we report the development of a microfluidic device, using a process adapted
for mass production, to culture liver cell line in dynamic conditions. The device, made of cyclic
olefin copolymers, was manufactured by injection moulding and integrates Luer lock connectors
compatible with standard medical and laboratory instruments. Then, the COC device was used for
culturing HepG2/C3a cells. The functionality and behaviour of cultures were assessed by albumin
secretion, cell proliferation, viability and actin cytoskeleton development. The cells in COC device
proliferated well and remained functional for 9 days of culture. Furthermore, HepG2/C3a cells in
the COC biochips showed similar behaviour to cells in PDMS biochips. The present study provides
a proof-of-concept for the use of COC biochip in liver cells culture and illustrate their potential to
develop OoC.

Keywords: cyclic olefin copolymer; injection moulding; Organ-on-Chip; liver; cell growth

1. Introduction

The liver performs a great number of tasks to support other organs and impacts all
physiological system. It is involved in several essential functions including detoxification,
protein synthesis and metabolism, glycogen storage, bile secretion, as well as the removal
of pathogens and exogenous antigens form the systemic circulation [1,2]. As the major site
of xenobiotic metabolism, the liver is exposed to a wide range of exogenous substances
and is often the subject of chemical-induced toxicity [2]. Therefore, the investigation of
drugs/chemicals hepatotoxicity is critical to their successful use.

Most of the standard toxicological approaches for evaluating chemical toxicity involve
complex in vivo animal studies, which are both time consuming and costly. Moreover,
the data provided by animal models cannot always be extrapolated to human metabolic
situation due to the complexity of the metabolism reactions in the human body [3–5]. Due
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to the concern of animal welfare and cost of the experiments, in vitro culture systems
become highly interesting for toxicity studies. However, the conventional in vitro methods
are mainly based on static 2D cultures in Petri dishes, which are poorly representative of
human in vivo physiology, metabolism and toxicity [6].

Among the new technologies, Organ-on-a-Chip (OoC) devices based in microflu-
idics are extremely attractive for in vitro pharmaceutical and toxicological studies. The
progress made in microtechnology allows to improve in vitro cultures and construct rele-
vant in vitro models with complex geometries [7–12]. The dynamic OoC cultures allows
to reproduce several characteristics of in vivo environment such as physiological shear
stress, three-dimensional organization, dynamic flow, zonation and homogenous transport
of molecules such as hormones, drugs and metabolic waste [13]. Thus, several advanced
works for bioartifical in vitro Liver-on-a-Chip (LoC) devices has been published in the last
years [14–19].

One of the main functions of a LoC devices is to control the growth and the cell
behaviour in the microenvironment, so the selected material for the manufacturing on the
device is crucial for the correct development of the analysis [20]. Polymer based microflu-
idic devices are of great interest due to their light weight, low cost, optical transparency
and chemical resistance [21,22]. Due to its properties and the facility of prototyping manu-
facturing, polydimethylsiloxane (PDMS) is the most used material for microfluidic devices
due to its biocompatibility and ease of transformation [23–25]. However, different stud-
ies showed several disadvantages associated with the use of the PDMS in microfluidic
devices as water absorption, non-specific adsorption of molecules and porosity among
others [26,27]. To date, thermoplastic polymers, such as Polycarbonate (PC), Polymethyl-
methacrylate (PMMA), Polyestyrene (PS) and Cyclic Olefin Polymer (COP), in particular
Cyclic Olefin Copolymers (COC), have emerged as the most promising materials for the
mass manufacturing of low-cost microfluidic devices [28,29].

COCs are engineering thermoplastics produced by copolymerization of cyclic monomers
like norbornene with ethylene. It has a fully carbon-based main chain and no double bonds
as shown in Figure S1 (Supplementary File). COCs show a unique combination of properties
such as glass-like optical transparency, low water absorption, excellent water-vapour barrier
properties, low dielectric loss, high heat resistance, biocompatibility and low-cost. In terms
of chemical properties, COCs show resistance to inorganic acids and bases as well as
polar organic solvents [30,31]. Furthermore, scaling up the production of organ-on-a-chip
devices is one important issues to overcome as most devices analysed in literature is based
on laboratory based materials, such as PDMS, and fabrication methods [32,33]. Injection
moulding of thermoplastics, such as COC, is reported to be cheap, fast and promising
approach for a massive fabrication of Organ-on-chip devices [34–36].

In this work, the manufacturing of a COC biochip was performed after adapting it
for mass production by injection moulding. The biochip is based on previous design, that
showed good performances as LoC manufactured with PDMS and Perfluoropolyethers,
being both of them biocompatible [37–42]. The validation of the COC biochip for a Liver-
on-a-chip bioreactor was performed. The growth, viability, behaviour and metabolism
of HepG2/C3A cells, which are commonly used as liver cell model, were studied and
compared with results obtained using PDMS biochips.

2. Materials and Methods
2.1. Materials

The selected materials have been polydimethylsiloxane (PDMS) and Cyclic Olefin
Copolymer (COC). The used PDMS was Sylgard 184 kit (PDMS polymer + curing agent;
10:1 mixing ratio) purchased from Dow Corning (Midland, TX, USA). COC polymer was
purchased from TOPAS Advanced Polymers (Raunheim, Germany).
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2.2. Design and Manufacturing of the Bioreactor

The biochip consists of 2 parts: the microstructured bottom layer contains cell culture
chambers and microchannels (high of 100 µm), and the top layer, with a reservoir 100 µm
in depth, includes an inlet and outlet for culture medium perfusion. The aim of the design
is to allow a uniform flow within the microstructures. The microstructure design and
fabrication of the bioreactor has been reported in previous works (Figure 1A) [37–40]. The
PDMS layers was manufactured by replica moulding process using SU-8 (epoxy-based
negative photoresist) mould fabricated by photolithography process. Then, the two layers
were sealed together after surfaces activation with reactive air plasma (1 min; Harrick
Scientific, Pleasantville, NY, USA).
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Being the aim of this work to validate COC for the mass manufacturing of LoC devices,
the design of the microstructures and microchambers has been updated to adapted to mass
manufacturing processes. Rounded etches, typically obtained after a machining process of
injection moulding tools, have been introduced in the biochips. The modified geometries
of the bottom layer for COC devices are shown in Figure 1B. In the case of the biochip top
layer, the adaptation for scaling purpose has been performed adding Luer lock connectors,
one of the gold standards for medical and laboratory instruments, such as needles, syringes,
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and cannulas due to its easy handling and compatibility [43,44]. The design of the cover
containing Luer lock connectors based on ISO 80369-7 [45] are shown in Figure 1B.

The injection moulding process has been carried out in Arburg 270 injection machine.
The injection mould was designed using the software CREO Parametrics (6.0.5.1) and the
machining and manufacturing of the inserts and mould was carried out in Ruimoldes 2012
S.L. The clamping force of the machine is 25 T, screw of 20 mm diameter and 80 cm3 of
maximum injection volume. The selected injection parameters were; a melt temperature of
270 ◦C, mould temperature of 30 ◦C and injection speed of 13 mm/s. The bonding of the
biochip was performed using a doble-sided pressure sensitive adhesive.

2.3. Scanning Electron Microscopy

The PDMS and COC microstructured layers were characterized by scanning electron
microscopy (SEM) using a Quanta 250 FEG microscope (Thermofischer, Eindhoven, The
Netherland). The samples were recovered by a thin palladium layer prior to analysis and
the images were acquired with a 20 kV accelerating voltage using the hivac mode.

2.4. Flow and Pressure Measurements

Flow and pressure measurements have been performed to analyse the hydraulic
resistance of the biochips. The fluidic circuit for the analysis consists of a pressure controller
(MFCS-EX, Fluigent) that was connected the biochip and to a flow sensor (Flow Unit type
M, Fluigent). PEEK tubes connected all the circuit to allow the culture medium to flow
into the biochip. A feedback loop adjusted the pressure applied in the reservoir to ensure
the maintenance of the desired flow rate. The schematic representation of the microfluidic
circuit is shown in Figure S2 (Supplementary File).

The pressure differential is generated by pressurizing the inlet and the outlet, and the
resultant flow rate is measured for each biochip. The hydraulic resistance of the circuit is
calculated following the Equation (1):

RH =
∆P
Q

(1)

where ∆P is the pressure differential between inlet and outlet and Q is the flow rate. The
hydraulic resistance of PEEK tubing within the circuit is determined by Equation (2):

rh =
8·µ·l
π·R4 (2)

where µ is the viscosity of the fluid, l is the length of the tube, and R is the internal radio of
tube. The hydraulic resistance of the biochips is calculated by subtracting the hydraulic
resistance of PEEK tubes to the hydraulic resistance of the whole circuit.

2.5. Cells

HepG2/C3a hepatocarcinoma cells were provided by the American Type Culture
Collection (ATCC, CRL-10741). The used culture media contains Minimal Essential Medium
(MEM, Gibco, Waltham, MA, USA), 2 mM L-Glutamine (Gibco), 0.1 mM non-essential
amino acids (Gibco), 1 mM sodium pyruvate (Gibco), 10% (v/v) fetal bovine serum (Gibco)
and penicillin-streptomycin (100 units/mL–100 µg/mL, Pan Biotech, Aidenbach, Germany).
The batch cultures were performed in T75 flasks (Falcon, Merk Eurolab, Strasbourg, France)
using 15 mL of culture medium and the cells were maintained at 37 ◦C in a humidified
atmosphere supplied with 5% of CO2. The cells were passaged weekly at a confluence of
80–90% and the culture medium was renewed every two days.

2.6. Dynamic Culture in Biochip

Two dynamic culture experiments of different durations have been performed, both
including two phases: the adhesion phase (24 h) and the perfusion phase (3 and 8 days).
Figure 2A shows the timing and steps of both short and long-time experiments. The experi-
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mental setup used for dynamic cells culture was composed of a perfusion loop, including
the culture medium tank (bubble trap), the peristaltic pump and one biochip. They were
interconnected using 0.65 mm interior diameter silicone/Teflon tubing (Figure 2B). Before
each experiment, the tubing and bubble trap were sterilized by autoclaving, while the
biochips (PDMS and COC) were sterilized using ethanol (70%).
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including the adhesion and perfusion phases, (B,C) schematic representation ad image of dynamic
flow setup respectively.

To enhance the cell adhesion, before the seeding of the cells, the bioreactors were
coated with rat tail type 1 collagen (Corning, NY, USA; 300 µg/mL in buffer saline solution:
PBS Gibco) and incubated at 37 ◦C in an atmosphere supplied with 5% CO2. After 1 h, the
cleaning of the collagen was performed with culture medium and 0.2 ± 0.03 × 105 cells
were inoculated inside of each biochip. The cells were incubated in static conditions for
adhesion during 24 h in a 5% CO2 incubator at 37 ◦C. To keep the culture medium inside
the culture chamber, the biochip inlet ports were closed using two syringes (containing
500 µL of culture medium).

After 24 h of adhesion, 3 biochips were chosen for initial cell counting (adherent cell)
and the rest were prepared for the perfusion phase. The biochips were then connected to the
perfusion loop, and 2 mL of culture medium were added in each bubble trap (Figure 2A,B).
The entire setup was incubated at 37 ◦C in a 5% CO2 supplied incubator and the peristaltic
pump was started at flow rate of 25 µL/min. The medium was collected (for subsequent
analysis) and renewed every day.

2.7. Cell Counting and Viability

Cell counting was made by detachment with trypsin-EDTA (0.25%, Gibco) and count-
ing using a graduated Malassez cells. The proliferation rate was calculated by dividing the
cell number counted at the end by the number of seeded cells. Trypan blue staining was
used for viability analysis.
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Each analysis was repeated three times in triplicate for each material and three biochips
were counted for each experiment (3 experiments × 3 biochips = 9 replicates). Data is
plotted as mean ± SD.

2.8. Albumin Measurements

The albumin produced by cells and released in culture medium measurements were
measured using ELISA sandwich test in a 96-well plate. The assays were performed using
a human albumin ELISA Quantitation Set (E80-129, Bethyl Laboratories, Montgomery, TX,
USA), following the manufacturer instructions. The plate was read with an absorbance
wavelength of 490 nm, using a Spectafluor Plus microplate reader (TECAN, Männedorf,
Switzerland). The analyses were performed with culture medium collected from three
biochips and repeated three time in replicate, leading to n = 9 (3 experiments × 3 biochips
= 9 replicates). Data is plotted as mean ± SD.

2.9. Immunostaining and Confocal Microscopy

After adhesion and perfusion phases (end of the experiment), the biochips were
washed with PBS (Gibco), fixed in paraformaldehyde 4% (PFA, MP biomedicals, Illkirch-
Graffenstaden, France) for 30 min at room temperature and washed and stored in PBS until
staining. Cell nuclei were stained with DAPI at 10 µg/mL (4′,6-diamidino-2-phenylindole,
D1306, Invitrogen) and phalloidin (Alexa Fluo 488 Phalloidin, Thermo Fisher (Waltham,
MA, USA)) staining was used for F-actin visualization. The samples were incubated, in
dark and at room temperature, with phalloidin for 3 h and DAPI for 30 min. At the end of
the incubation, the samples were washed with PBS.

The observations of the stained samples were made with a laser scanning confocal
microscope (SM 710, Zeiss (Oberkochen, Alemania)) at 647 and 488 nm, respectively.

3. Results
3.1. Biochips Characterization

The pictures of COC (injection moulding) and PDMS (replica moulding) biochips
are presented in Figure 3A. The injection moulding of COC allows to produce very thin
biochip with good optical transparency. The design of the biochip facilitates the connection
with standard Luer lock connectors (typically used for medical devices), and thus, the
world-to-chip interconnection for cell inoculation and dynamic cell culture. In the case
of PDMS biochips, the used Luer lock connectors are commercial and are added to the
biochips after the manufacturing of the complete biochips whereas in the case of COC
biochips, and due to the adaptation of the design to mass manufacturing purposes, Luer
lock connectors are part of the injection moulded cover as can be observed in Figure 3A.
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Figure 3B shows the phase contrast microscopy observations of the bottom layer of
the biochips manufactured with PDMS and COC materials. The flexibility of the PDMS
makes the demoulding easier for PDMS than for COC. Nevertheless, the replicas obtained
in COC are precise and maintain structures dimensions. The microstructured bottom layers
(PDMS and COC) were also analysed using SEM. The images are presented in Figure 3C.
They show an accurate replication of the microstructures in both materials, good accuracy
in the dimensions, excellent surface qualities and no deformations in the microstructures.
This confirms an optimum moulding condition regardless the material (COC or PDMS)
and technology used (injection moulding or replica moulding).

3.2. Flow and Pressure Measurements

To evaluate the biochips sealing and the flow circulation inside the bioreactors, we
performed a dynamic test in which several flow rates and pressure were tested (experi-
mental detail in Section 2.4). Regarding the maximum outlet pressure that the biochips
can withstand, COC biochips started leaking at 400 mbar whereas PDMS biochips can
withstand 500 mbar outlet pressures. Nevertheless, for COC biochip, no leakage was
observed in continuous perfusion at a pressure of 300 mbar.

Using the equations 1 and 2 (see Section 2.4), we calculated the hydraulic resistance of
COC and PDMS biochips. The results obtained during the flow and pressure measurements
are presented in Figure 4. No significant difference was observed between the two types
of biochips. The hydraulic resistances were approximately of 2.2·1012 ± 0.35·1012 and
2.75·1012 ± 1.3·1012 Pa·s·m−3 for COC and PDMS biochips, respectively. The hydraulic
resistance values of COC biochips show less standard variation than PDMS biochipswhich
can be due to the manual manufacturing steps typically used for PDMS biochip fabrication.
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3.3. HepG2/C3a Cell Adhesion on COC and PDMS Biochips

Cells adhesion on the bottom microstructured layer of biochip is crucial before starting
the dynamic perfusion. For this, a first serie of experiments was performed in order to
investigate the behaviour of HepG2/C3a cells in contact with COC substrate. The COC and
PDMS (control) biochips were preliminarily coated with collagen. The cells morphology
after seeding are presented in Figure 5A. In both COC and PDMS biochips, the cells
present rounded shape and were in suspension in the culture chamber. Furthemore, the
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HepG2/C3a cells were homogeneously dispersed throughout the microchambers and
microchannels of the bioreactors.
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After 24 h of adhesion phase in static conditions, the culture medium was changed to
remove non-adherent cells and the biochips were observed using phase contrast microscopy.
Figure 5A presents the cell morphology inside the biochips. The adhesion of HepG2/C3a
to the bottom surfaces of the microfluidic bioreactors was successful for both materials
used (COC and PDMS). We did not detect any significant difference between COC and
PDMS. The cells exhibited an elongated shape and homogeneously occupy the surface of
the culture chambers. The cell counting performed post-adhesion (after cell detachment
with trypsin) revealed 0.185 ± 0.02 × 105 and 0.15 ± 0.007 × 105 attached cells in COC and
PDMS biochips, respectively. In comparison with the initial seeded cells, the percentage
of adhered cells was of 90 ± 5% for COC biochip and 75 ± 8% for PDMS biochip. Finally,
the cytoskeleton organization was investigated by actin staining. As shown in Figure 5B
and Figure S3 (Supplementary File), the actin cytoskeleton of the cells can be seen clearly
(intense green fluorescence signal) in the whole culture chamber. The actin filaments appear
to be concentrated beneath the cell membrane (around nuclei).

3.4. Short Time Dynamic Culture of HepG2/C3a in Biochips

After adhesion validation and to evaluate the potential of COC biochips for dynamic
cell culture, we performed a series of dynamic cultures for short time. These cultures were
performed for 4 days: 24 h of adhesion and 72 h of dynamic perfusion. For comparison, the
experiments were realized with COC and PDMS biochips

The morphology of HepG2/C3a cells after adhesion phase and at the end of the
experiment (24 h of adhesion + 72 h of dynamic culture) is presented in Figure 6A. As
observed in the previous Section 3.3, the cells have successfully adhered to the biochips.
The cell proliferation was evident between the first 24 h of culture (after adhesion) and the
end of the experiment (72 h of perfusion). The cells have proliferated over confluence and
started to form a second layer. As cell density was high, it is difficult to distinguish the
cellular phenotype. We were not able to observe a difference between the morphologies of
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cells cultured in COC biochips and cells cultured in PDMS biochips. The cell detachment
at the end of the experiments allowed cells counting and viability assessment (trypan blue
staining). The proliferation ratio was of 2.3 ± 0.6 and 2 ± 0.3 for COC and PDMS biochips,
respectively (Figure 7A). Moreover, the viability tests performed by trypan blue after 96 h
of culture (24 h static culture and 72 h of perfusion) revealed good viability in both cultures’
conditions (viability above 90%). The phalloidin staining confirmed the development of
actin cytoskeleton in COC and PDMS culture (no specific difference was detected between
the two materials, Figure 7B and Figure S3, Supplementary File).
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To evaluate the functionality of HepG2/C3a cells cultured in COC biochips, albumin
production was monitored throughout the 72 h of perfusion and compared with the results
obtained in PDMS biochips. The results are shown in Figure 7B. the albumin production
of cells cultured in COC bioreactors was of 135 ± 27, 123 ± 32 and 87 ± 25 ng/h/106

cells after 24, 48 and 72 h of perfusion, respectively. The quantity of albumin produced
by HepG2/C3a cells in PDMS biochips was similar: 149 ± 41 (24 h), 113 ± 39 (48 h) and
90 ± 5 (72 h) ng/h/106 cells.

3.5. HepG2/C3a Cells Behaviour in Long Time Experiment

The HepG2/C3a cultures in COC biochips were also performed for long time and
compared to cultures in PDMS biochips. The duration of the cultures was of 9 days, includ-
ing 24 h of adhesion and 8 days of dynamics perfusion at 25 µL/min. The morphology
of the cells at the end of the experiments are presented in Figure 8A. In both COC and
PDMS biochips, the cells proliferated in multilayer leading to the formation of a dense 3D
tissue-like structure. Consequently, the cell shapes are difficult to observe. This result was
confirmed by actin cytoskeleton staining that showed a dense green staining in the whole
culture chambers (Figure 8B and Figure S3, Supplementary File). The z-stack analysis
(performed by the confocal microscope) of actin localization confirmed the cell organization
in several layers.
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loidin (F-actin, green); scale bar 100 µm, (C) Albumin production throughout the 8 days of perfusion.

The albumin production by HepG2/C3a cells cultured in dynamic COC biochips was
quantified over the 9 days of culture and compared to albumin secreted in PDMS biochips.
The measured albumin was similar for both biochips. The production gradually increased
throughout the 9 days of the experiment (1 day of adhesion + 8 days of perfusion). The
productions after 24 h of perfusion were of 29 ± 9 and 27.79 ng/h for COC and PDMS
biochips, respectively. At day 8, the albumin productions reached 187 ± 15 ng/h for COC
and 140 ± 3 ng/h for PDMS.

4. Discussion

In the last decades, multiple approaches based on tissue engineering and microtechnol-
ogy have been used to develop relevant in vitro models for animal experiments replacement.
Thanks to the progress in microfabrication, microfluidic and bioprinting, OoC technology
has emerged as a promising tool to recapitulate in vitro the physiological in vivo environ-
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ment of the cells or tissues [2,20]. Since the beginnings of microfluidics, PDMS has been the
most commonly used material for microfluidics and OoC devices and is still today a widely
used material in literature [46–48]. The choice of PDMS was motived by its several advan-
tages such as biocompatibility, low cost, optical transparency and gas permeability [49].
However, PDMS is not suitable for drug screening and toxicity studies due to its strong
absorption of molecules [27,50]. Furthermore, PDMS casting is a time-consuming process
difficult to scale up the production.

Thus, devices made of non-absorbent material are required to improve the use of
OoC platforms for chemicals testing. Among other materials, COC has properties suitable
for use in drug discovery. In addition to its transparency and biocompatibility, COC
exhibits no/low absorption of chemicals and is approved by Food and Drug Administration
(FDA) [51,52]. Despite these interesting properties, the COC devices are not widely used in
cell culture [53–55]. The current work aims to develop standardized COC bioreactor using
process adapted to mass production and to validate its use for cell culture.

The COC bioreactors were manufactured by injection moulding using design previ-
ously used for PDMS biochips fabrication and studied with several cells [18,37,38,56]. As
COC is more rigid than PDMS, the design of the biochip bottom layer (microstructured
layer) was adapted to injection moulding (to obtain better replication and easy demould-
ing). The corners of microchambers and microchannels were rounded. The COC biochips
obtained using the modified design showed good accuracy of microfluidic structures and
demonstrated that microfluidic small and complex structures can be replicated by injection
moulding. The surface of the moulded COC was also homogenous, without any irregu-
larities or artifacts of incomplete replication. These results agree with previous studies in
literature reporting easy and good replication of microstructure in COC using injection
moulding or hot embossing [55,57,58]. In the redesigning, a standard Luer connectors
were added, and the external dimensions were updated to allow mass manufacturing
processes. Including the connectors in the bioreactor has facilitate the job of plug/unplug
microfluidic tubing for dynamic cultures. Furthermore, the integration of Luer connectors
makes the bioreactor compatible with standard connecters used in medical and laboratory
instruments and addresses one of the major challenges of the OoC technology, namely the
equipment standardization [8,59].

The characterization of fluid circulation inside the COC and PDMS biochips showed
similar hydraulic resistance values. This indicates that the new design and the use of COC
(in replacement of PDMS) don’t affect the flow parameters. Indeed, the changes in the
design are minor and only concern the corners of the microchambers and microchannels.
Likewise, COC material exhibits a wettability close to PDMS, with a contact angle between
85 and 90◦ [60] (PDMS contact angle is around 100◦ [61]). The sealed COC biochips were
able to withstand a pressure of 300 mbar without any leakage. This pressure is higher than
the pressure inside the biochip during cell culture at 25 µL/min (10–20 mbar).

The feasibility of cell culture in the COC biochips was investigated using HepG2/C3a
cells. The choice of cell sources is critical for the success of in vitro liver models. Primary
human hepatocytes (PHHs) are considered the gold standard to build in vitro liver models
for studies of drug toxicity and metabolism [49]. However, PHHs present several disad-
vantages including high variability, rapid de-differentiation and high cost [62]. The use
of HepG2/C3A cells line offer a good compromise for the development of the model and
its comparison with literature data. Indeed, the HepG2/C3A cells, which express several
hepatic markers, are stable, reproducible and low-cost cells source [19]. As COC is a hy-
drophobic material, it is not favourable to the adhesion of cells, which preferentially adhere
to hydrophilic surfaces (contact angle between 50 and 80◦) [61]. In this work, collagen type
1 was used to coat both COC and PDMS biochips. Collagen type 1, the most common
type of protein, was previously reported for COC and PDMS coating [40,49,53]. In both
substrates, 24 h after seeding, cells showed elongated shape and they were homogeneously
distributed on culture chambers, being the percentage of adherent cells 90 ± 5% for COC
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and 75 ± 8% for PDMS. Moreover, the cell morphology and behaviour were similar to
those reported in previous works regarding HepG2/C3A cells [38,40].

The Dynamic cultures were performed in two series varying the dynamic perfusion
experiment time. In the short time experiment, the dynamic perfusion was applied for
72 h. Proliferation of cells was evident as a second layer of cells was started to form,
making difficult to distinguish the cell phenotype. The proliferation ratio and cell viability
were similar in COC and PDMS biochip, and close to value reported in previous works
with PDMS biochips [38,40]. Regarding albumin throughout the 72 h of experiment, both
biochips cultures maintained similar and relatively stable albumin levels, which were also
in the range of levels reported in previous studies [40,63]. The maintain of liver in vitro
model for long time of culture is essential in drugs discovery. This allows to test chronic
exposures to drugs and elucidate the effect of molecules and metabolites accumulation.
The HepG2/C3A cells cultured in COC biochips were successfully maintained for 9 days
(24 h of static adhesion and 8 days of perfusion). They proliferated generating a multilayer
3D tissue-like structure and the albumin secretion was gradually increased throughout the
8 days of perfusion (proportionally to cell proliferation). The similar behaviour to PDMS
cultures highlighted the potential of COC biochips for long term cultures.

Several studies have been published in recent years for Liver-on-a-chip applications
underlining the great potential showed to replace animal experiments for drug testing and
liver disease modelling although there are still some existing challenges to address [64–66].
The design of the biochip described demonstrated their potential for the cultures of different
hepatic cells including HepG2/C3A, primary rat and human hepatocytes and induced
pluripotent stem cells (hiPSCs) in PDMS material [18,38,56,67]. Being the results obtained
with COC biochips similar of them obtained with PDMS, COC biochips could be considered
as a promising alternative for non-absorbent liver-on-a-chip models. Culture of primary
hepatocytes, hiPSCs and non-parenchymal liver cells, as well as drugs testing needs to
be performed to confirm the potential of the COC device. The major drawback of COC
biochips is the impermeability to oxygen that can affect cells, especially in long cultures. It
has been demonstrated in this work that 8 days long dynamic cultures can be performed
with COC biochips. Normoxic levels for liver tissue are reported to be between 10 and
13 %, which can be maintained with oxygen perfusion methods, the addition of oxygen
generating chemicals to the perfused fluid or even using hybrid microfluidic devices
(combining oxygen-permeable and -impermeable materials) in case longer experiments
required higher oxygen consumption [68,69].

5. Conclusions

In this study, we described the development of a cyclic olefin copolymer microfluidic
device using injection moulding processing. The chosen material and process offer an
interesting combination of advantages for OoC application, including biocompatibility,
transparency, low absorption of chemicals, low cost and adaptability to mass manufac-
turing. The injection moulding process allowed the integration of Luer lock connectors
in the biochip top layer, facilitating the biochip connection to standard equipment. The
cultures of liver HepG2/C3a cells were performed for short and long time to evaluate
the dynamic cell culture in the developed COC biochip. The cell proliferation, viability
and albumin synthesis showed that the HepG2/C3a cells cultured in the COC biochip
remained functional and metabolically active throughout the time of culture (4 and 9 days).
The COC cultures exhibited also similar behaviour to cultures in PDMS biochips. This
feasibility study showed the potential of COC devices for application as OoC models. We
believe that this device is a promising tool and can be applied with other cell types for drug
discovery and toxicity studies. The COC properties can overcome the drawbacks of PDMS
by limiting chemicals absorption and paving the path for mass production of robust and
standardized devices.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14214478/s1, Figure S1: Chemical structure of Cyclic Olefin
Copolymers; Figure S2: Schematics of the setup used for flow and pressure measurements; Figure S3:
Phalloidin and DAPI staining’s of HepG2/C3a cells at different steps of experimen: DAPI (nuclei,
blue) and phalloidin (F-actin, green); scale bar 200 µm.
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