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Abstract

This work deals with clinical text mining, a field of natural language process-
ing applied to the biomedical domain. The aim of this work is to automatise
the medical coding task. Electronic health records (EHR) are documents
that contain clinical information about the health of a patient. The medical
diagnoses embodied in the EHRs are coded with respect to the International
Classification of Diseases (ICD). Indeed, the ICD is the foundation for iden-
tifying international health statistics as well as the standard for reporting
diseases and health conditions. From a machine learning perspective, the
goal of this work is to solve an extreme multi-label text classification prob-
lem; each health record is assigned multiple ICD codes from a set of over
70,000 diagnostic terms. A significant amount of resources are devoted to
medical coding, a laborious task that is currently done manually. The EHRs
are extensive narratives and medical coders review the records written by
physicians and assign the corresponding ICD codes. The texts are techni-
cal because the clinicians employ specialised medical jargon. However, the
EHRs are also rich in abbreviations, acronyms, and spelling mistakes because
clinicians document the records while engaged in actual clinical practice. To
address the automatic classification of health records, we researched and de-
veloped a set of deep learning text classification techniques. Furthermore,
clinical decisions are critical matters. Therefore, we investigated the inter-
pretability of models to generate knowledgeable, accountable, and consistent
predictions.
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Document outline

This dissertation is organised as a compendium of publications on clini-
cal multi-label text classification, the research focus of this thesis. The
manuscript complies with the “thesis by published papers” regulation (also
referred to as “thesis by compilation”) from the University of the Basque
Country (UPV/EHU) that dictates the format and the structure of the
manuscript. This document must consist of at least three articles published
in scientific journals featured in the latest list published by the Journal Ci-
tation Reports (JCR), Scopus, or the databases listed by the National As-
sessment Committee for Research Activities (CNEAI). At least one of these
publications must belong to the first or second quartile of their category.

The overall structure of the document takes the form of two chapters. In
the first part of Chapter 1, we introduce and motivate the proposed research.
Then, the main objectives and research questions (RQs) are outlined in Sec-
tion 1.1. After that, in Section 1.2, we present an overview of the works
developed within the framework of the research. Then, in Sections 1.2.1-
1.2.5, we delve into the 5 works that constitute the compilation. To end the
chapter, Section 1.3 contextualises the results by summarising the best results
and providing an overview of the progression of the developed approaches.
The purpose of Chapter 2 is to reflect on the lessons learned, conclusions,
and open research questions this thesis highlights. The full articles from the
compilation can be found in Appendix A.
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1
Introduction

Electronic health records (EHR) are the digital versions of medical records,
containing a comprehensive compilation of facts pertinent to an individual’s
health history, covering aspects of the patient’s past or present physical med-
ical conditions, mental medical conditions, illnesses, and treatments. The
records emphasise the specific events affecting the patient during the current
episode of care. In short, EHRs are digital documents used to record patient
medical data that health professionals require to provide adequate care.

The available volume of healthcare data has exploded with the adop-
tion of EHRs; its systematic collection is critical to public health (Safran
et al., 2007). The International Classification of Diseases (ICD) coding
system (World Health Organization et al., 1975) maintained by the World
Health Organization is the standard for diagnostic health information used
for EHR coding. It is used worldwide for epidemiology, health management,
and documentation purposes. Medical classification consists of transform-
ing descriptions of medical diagnoses or procedures from EHRs into codes
from medical standards. The ICD is designed as a medical classification sys-
tem. Therefore, it provides the standard reference with tens of thousands of
codes for conditions, signs, symptoms, abnormal findings, complaints, social
circumstances, or external causes of diseases and injuries.

A growing body of literature documents the value of EHRs for advanta-
geous secondary uses, such as analytics or predictive systems (Yadav et al.,
2018). Nevertheless, to enable a broad set of secondary uses at a large scale,
coded EHRs are necessary, i.e., it is required to extract structured data from
the unstructured health records (Goenaga et al., 2021). Currently, in many
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4 1 - INTRODUCTION

countries’ health systems, EHRs are interpreted by experts and manually as-
signed diagnostic codes. The focus of this work is applying natural language
processing (NLP) and machine learning (ML) methods to the clinical do-
main to automatically assign EHR codes. The manual coding of EHRs is
cumbersome. Medical coders, expert clinicians trained on coding guidelines
(Mujtaba et al., 2017), must search for critical information inside the lengthy,
unstructured narratives texts of EHRs. Next, the expert coders must choose
the codes to assign from a set of tens of thousands of labels, considering the
anatomic location, etiology, severity, and laterality of the medical condition.

The health records are hundreds or thousands of words in length and
include around a dozen ICDs that have to be chosen from a vast set of
codes. Additionally, some of these ICDS are not expressly mentioned in
the health record itself. Therefore, medical coding is challenging, time-
consuming, error-prone, and expensive. Moreover, coders must keep abreast
of changes as the ICD evolves. For example, the transition from ICD-9 to
ICD-10 had a significant impact on coders and the medical coding system
because of the differences between these versions. As a result, there is a lack
of codified EHRs in health systems, even from developed countries (Sankoh
and Byass, 2014); this system results in unnecessary expenditure and labor.

Natural language processing is gaining traction in clinical documentation
services as a means of coping with the massive amounts of data transmitted
by EHRs (Gu et al., 2020). The medical coding can be tackled as a multi-
label classification problem in which the input to classify is the EHR
and the output is a set of diagnostic codes from the ICD. The medical cod-
ing process would be remarkably enhanced with machine-learning-powered
solutions, speeding it up and easing the adaptation to new ICD versions.
ML would also diminish costs, liberate human capital, and improve coding
consistency. Ideally, the process would be fully automated, but it could also
facilitate the task as a Decision Support System, as there is evidence that
NLP can assist expert coders (Zikos and DeLellis, 2018).

Figure 1.1 shows the structure of an ICD-10 code with the three levels
of granularity applied throughout the works that compose this thesis. The
“chapter” level keeps only the first character (i.e., the ICD chapter), allowing
a maximum of 24 labels. The “block” level keeps the first three characters,
leading to a maximum of 1.910 unique combinations. At the “full-code” level,
the ICD comprises 71.704 labels. Note that the levels of granularity are just
another way to look at the hierarchy of the ICD. Following the example
from Figure 1.1, if solely the block part is kept (“M1A”) and non-essential
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Figure 1.1: ICD-10 code structure unrolled at three levels of granularity. The
diagnostic term “Lead-induced chronic gout in the left hand with tofus” is
encoded as the “M1A.1421” full-code with all the non-essential modifiers.

modifiers are removed, the specificity is reduced to “chronic gout.” Finally,
when preserving only the first character, we get the ICD chapter, which
groups diagnostic terms into similar categories according to body system or
health condition. In this case, chapter “M” is indicated, which corresponds
to “diseases of the musculoskeletal system and connective tissue.”

EHRs are kept, along with their associated ICD codes, in digitalised
healthcare systems. However, only a tiny amount of all EHRs are coded
due to the arduous work that the task demands. Additionally, the lack of
codified EHRs is relevant because ML, especially deep learning (DL) tech-
niques, requires vast supervised corpora to train models (Sun et al., 2017).
Figure 1.2 shows a sample EHR written in English, similar to those applied
in our experiments. Precisely, we have mainly used the MIMIC dataset for
English EHRs and the Osakidetza dataset for Spanish EHRs. We used inten-
sive care unit discharge summaries from the Beth Israel Deaconess Medical
Center and emergency services discharge summaries from Basque Country
Health System. Table 1.1 shows a brief quantitative description of the EHRs
from both datasets. Regarding ICD versions, we used ICD-9 codes when
working with the MIMIC and ICD-10 codes with the Osakidetza dataset.
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Chief complaint: fall, abdominal pain

History of Present Illness:

70 y/o man with h/o EtOH abuse1 , was found down intoxicated by EMS. Complained of having

flu2 for several days. One day prior to presentation, he had generalized abdominal pain3 .

No fever or chills . No prior episodes. He denied any blood, melena, dysuria .

Past Medical History:

- COPD4

- Hypertension5

- Hypercholesterolemia6

- Atrial Fibrillation7 - anticoagulated on coumadin
- s/p coronary stent placement

Medications on Admission:
Ppropranolol 20 mg PO QID
Captorpil - ?unclear if he is on this, no dosage listed
Coumadin 6mg po qday

CT abd/pelvis: fatty enlarged liver8 , normal appendix, no free air

Brief Hospital Course:

The patient was admitted to the blue surgery service for treatment of pancreatits9 .

He was kept NPO and maintained on IVF . Empiric antibiotics were initiated. A Foley

catheter and NG tube were placed. His stool tested positive for C. difficile10 and
Flagyl was prescribed.

He was subsequently transferred to the floor for further management where he con-
tinued to make good progress. He abdominal pain was minimal and generally relieve with
Tylenol. He was up and ambulating with the use of a cane. Clinical symptoms resolved.
LABORATORY:

WBC-3.5*11 RBC-5.99 HGB-12.4 HCT-39.4 MCV-99 MCH-31.2 MCHC-31.6 RDW-13.2
GLUCOSE-94 UREA N-33 CREAT-0.9 SODIUM-144POTASSIUM-3.7 CHLORIDE-105 TOTAL CO2-28

DISCHARGE SUMMARY:

- AGallstone pancreatitis9

- COPD4 , HCL6 , HTN5 , A Fib7

Discharge medications:
1. Acetaminophen 325 mg Tablet Sig: Two (2) Tablet PO Q6H as needed for pain, fever.
2. Docusate Sodium 100 mg Capsule Sig: One (1) Capsule PO BID: Hold for any loose stools.
3. Metronidazole 500 mg Tablet Sig: One (1) Tablet PO 3TID for 4 days. Disp:*12 Tablet(s)*

At the time of discharge was clinically stable and appropriate for discharge. He
will stay off coumadin for three weeks because of the surgery, but then at that time he
will restart anticoagulation. [**lastname **] will follow up in PC with Dr. [**Name**].

Gold standard ICD codes: F10.101 , J10.12 , R10.843 J44.94 I105 E78.006 I48.27

K76.08 K85.109 A04.710 D72.81911

Figure 1.2: Electronic health record sample. The pieces of text associated
with each ICD code are indicated through the superscripts.
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Following the EHR sample from Figure 1.2, we shall depict the main
challenges derived from the nature of medical texts. First, the ICD codes
are motivated by different types of mentions: i) An explicit mention of the
standard term, meaning that the piece of text from the EHR matches the
ICD standard description (i.e., “ generalized abdominal pain ”), ii) An ex-
plicit non-standard mention of the term, meaning that the piece of text
from the EHR does not fully match the ICD standard description (i.e.,
“ flu ”, “ hypertension ”), iii) An implicit mention, namely, when the diag-
nostic term is not expressly pointed out (i.e., a laboratory result such as
the “ WBC-3.5* ”, meaning that the white blood cells are below the normal
range, leading to Leukocytopenia). Additionally, codes can be motivated by
abbreviations or acronyms (i.e., “ HCL ”, “ A Fib ”), or even by mentions with
spelling mistakes (i.e., “ pancreatits ” instead of “pancreatitis”). Finally,
negations must also be considered, since, if a diagnostic term is preceded
by a negative particle, the corresponding ICD should not be coded (i.e.,
“ no fever ”, “ denied blood ”). Furthermore, some labels are related, mean-
ing that the presence or absence of a given label potentially influences any
other label (i.e., “F10.19 – Alcohol abuse” promotes the presence of “K76.0
– Fatty liver”). Lastly, note that the EHRs occasionally contain differenti-
ated sections (i.e., “Past Medical History” or “Discharge Summary”), but the
present sections and header texts may differ notably across records because
relevant sections differ between services and they are not stated equally by
all physicians. In other words, it is unstructured text.

Datasets
MIMIC Osakidetza

X
EHRs 55,172 26,969
Vocab 137,207 379,121
Words/EHR 1,399 ± 721 864 ± 415

Y Unique ICDs 6,918 5,541
Avg. Card. 11.5 5.8

Table 1.1: Quantitative description of the EHRs from the main employed
datasets, MIMIC and Osakidetza.

As shown in Figure 1.2, it is common to find spelling mistakes, ab-
breviations, or acronyms in EHRs because the reports are documented by
physicians while engaged in practical work. For that reason, in conjunction
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with the naturally complex and specialised jargon, the vocabulary (i.e., the
number of unique words) escalates considerably. On the most extensive Os-
akidetza dataset, a set of 26,969 EHRs led to a vocabulary of over 379,121
unique words. Regarding the coded ICDs, the total number of codes is usu-
ally high, depending on the dataset size. From the 72,184 ICD-10 diagnostic
terms, our largest Osakidetza label set contains 5,541 ICD-10 codes. There
are 6,918 ICD-9 codes in the MIMIC dataset. Moreover, as observed in the
sample EHR, the average number of ICD codes per document is also high—
around 6 labels on average for the Osakidetza dataset, and over 11 in MIMIC.
The vast number of labels and the natural distribution of medical conditions
(i.e., a few highly prevalent conditions and a large set of rare conditions)
produces class imbalance. For example, there are 3, 552 labels appearing in
less than 1% of the 26,969 Osakidetza EHRs, while 1, 885 labels appear only
once.

Multi-label classification problems are considered extreme when the car-
dinality of the label set is vast, such as the tens of thousands of diagnostic
terms present in the ICD. The main challenge lies in the exponential label
space that it implies. Extreme multi-label text classification (XMTC)
serves as the framework for EHR classification. Moreover, when the labels
are dependent on each other (e.g., there are inter-relationships among dis-
eases), dependency-ignoring methods fail to predict label combinations coher-
ently. However, research has shown that artificial intelligence (AI) systems in
healthcare can significantly reduce the labour burden on health workers and
even outperform human professionals at some tasks (McKinney et al., 2020).
Therefore, applying machine learning to medical tasks such as EHR classi-
fication is an opportunity to increase healthcare efficiency and help reduce
healthcare budget, which is constantly increasing in the United States as well
as European countries (Dupor and Guerrero, 2021). Specifically, EHR clas-
sification according to the ICD opens the opportunity to apply data mining
techniques to clinical data, which would advance fundamental tasks such as
pharmaco-surveillance and the collection of morbidity and mortality statis-
tics. It is also relevant for legal purposes, like billing for insurance companies
and hospitals.

Internationally, the biomedical NLP research community has garnered
significant interest. Horizon 2020 is the most significant research and inno-
vation framework initiative from the European Union, with almost 80 billion
Euros in available funding (European Commission, 2020). At the start of
2019, a total of 4,865 out of 20,877 projects were related to biomedical and
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health research, with 94 countries contributing to at least one biomedical
project (Gallo et al., 2021). In its National Strategy for Artificial Intelli-
gence whitepaper, the Spanish government stated that the healthcare system
is a strategic sector for promoting the research, development, and implemen-
tation of AI systems (Vicepresidencia Tercera, Gobierno de España, 2020).
According to the study, the strategic health sector is in the top 4 sectors that
will experience the most medium- and long-term impact from the implemen-
tation of AI systems. In this sense, the application of AI in health research
will promote strategic projects that can lead to reform in and increase the
efficiency of health care.

Biomedical research on NLP and ICD coding has piqued the interest
of several international congresses and workshops. Since 2012, the CLEF
eHealth Evaluation Lab and Workshop Series have been held annually, in-
cluding several ICD coding challenges. In 2016, large-scale classification tasks
were introduced (Névéol et al., 2016). Then, in the 2017 and 2018 editions,
previous information extraction tasks were extended and the coding of death
certificates with the ICD-10 was introduced (Névéol et al., 2017, 2018). The
2017 edition featured French and English languages, while Hungarian and
Italian were introduced in 2018 to increase the focus on languages other than
English. Non-technical summaries of animal experimentation are a kind of
clinical document also annotated with ICD-10, which was the foundation of
the 2019 CLEF eHealth Challenge (Dörendahl et al., 2019). Note that the
length of death certificates and summaries of animal experimentation are
hundreds of words shorter than discharge summaries, lessening the difficulty
compared to our task. The 2020 edition (Goeuriot et al., 2020) focused on
Spanish ICD-10 term coding for textual data collected from clinical records.
Additionally, national and international programs such as the “Plan de Tec-
nologías del Lenguage” by the Spanish Ministry of Health (Gobierno de Es-
paña, 2020) and the European Horizon 2020 (European Commission, 2020)
program are driving the creation and publication of shared clinical datasets.

This thesis has been developed within the IXA group in the framework
of the PROSA-MED (Díaz de Ilarraza Sánchez et al., 2017) and DOTT-
HEALTH (Araujo et al., 2021) coordinated research projects, which aim to
develop text-based technology to support diagnosis and disease prevention.
The projects propose the automatic analysis of electronic health records to
ascertain patterns, prevent errors, improve quality, reduce costs, and save
time for the health services.

To summarise, several challenges arise naturally, some related to the
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multi-label classification itself and others common to the clinical text mining
in general. First, the genre of the text is relevant because of its implications
in the availability of resources, vocabulary size scaling, writing style, and
type of errors. In our case, we are working with electronic health records,
which implies a scarcity of resources, a vast vocabulary, a narrative style, and
an abundance of abbreviations as well as many orthographic and typographic
errors. Furthermore, we focus mainly on EHRs written in Spanish—a lan-
guage with scarce NLP and biomedical data resources compared to English.
Moreover, the ICD classification is an instance of extreme multi-label classifi-
cation (XMT), dealing with thousands of labels and thus highly inter-related
label sets.

1.1 Objectives

This thesis aims to tackle the automatic coding of diagnostic terms present
in free narrative, unstructured medical records according to the ICD. There-
fore, we aim to conceive and develop machine learning models that aid in
the automatic multi-label classification of EHRs according to the Interna-
tional Classification of Diseases, processing a narrative EHR to determine
the appropriate diagnostic terms (i.e., categorising the record with the corre-
sponding ICD codes). The following are some aspects we must accomplish:
i) find an appropriate approximation to solve the task, a suitable family of
methods (e.g., classical methods, deep learning, etc.), an adequate classifier,
and a proper representation of the input—namely, the feature set, ii) build
methods that generalise adequately and are not built ad-hoc to specific lan-
guages (i.e., multilingual models) or types of health records, iii) assess the
influence of the input characteristics (i.e., the raw text from EHRs) and out-
put (i.e., the set of labels) on the performance of the classifier and conceive
ways to enhance the classification, adjusting the input and output, iv) ex-
plore the influence of the relationships among labels in the multi-label setting
and develop techniques for predicting a consistent set of labels. Given this
context, the main objective of this work and its corresponding sub-objectives
are as follows:

Main objective: Develop a method to automatically determine the diag-
nostic terms enclosed in an EHR according to the ICD
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• Objective 1 Develop versatile text classifiers for diagnostic term clas-
sification: There are numerous kinds of health records, all of which
have their own intrinsic characteristics that affect the output of the
classifiers. We aim to develop classifiers adaptable enough to handle
diverse health records such as discharge summaries, nursing notes, crit-
ical care unit admissions, or diagnostic impressions. Furthermore, it is
valuable to develop classification models that can work with EHRs in
various languages or from different medical specialties and hospitals
(i.e., not tied to a specific language or service).

• Objective 2 Perform extreme multi-label text classification on lengthy
documents : The total number of labels on the ICD is exceptionally
high. Even when the label set is bounded, we frequently work with high
cardinality label sets of hundreds or thousands of labels. Additionally,
our task involves classifying lengthy documents such as a complete
medical histories or intensive care unit encounters. Therefore, we focus
on increasing the capacity of the models to handle larger label sets and
develop robust models, i.e., models that, when facing alterations in the
input text, do not result in altering the predicted labels (Qayyum et al.,
2020). As for the robustness of EHR classification, we interpret to not
altering the predicted ICDs, even if the relevant information to detect
the codes is scattered in records of hundreds or thousands of words
(from 800 to 1,400 words on average).

• Objective 3 Predict explainable and coherent label sets of ICDs : Mod-
elling the label dependencies in document classification tasks is vital.
The reason is that labels are tightly coupled due to the concurrent
or mutually exclusive relationship. For example, some diseases tend to
co-occur, such as diabetes and hypertension, while it is incoherent to si-
multaneously classify an EHR with an adult- and child-specific disease.
Moreover, the ICD is arranged hierarchically, which is another matter
to consider in the label relationships. We aim to develop interpretable
classifiers that promote the prediction of related diagnostic terms while
preventing the co-appearance of incompatible medical conditions.

Our hypothesis is, therefore, that NLP and deep learning classification
techniques can mimic the process that expert human coders accomplish. To
ascertain its validity, we must solve a natural language understanding (NLU)
problem because expert coders examine, understand, and analyse the EHRs
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to determine which explicit and implicit diagnostic terms are enclosed and
assign the corresponding ICD codes. To illustrate the intricacies of solving
an NLU task, consider the following example of an EHR fragment in natural
language:

According to mother, patient had no complaints of paroxysmal noc-
turnal dyspnea, has known family DM II history, is a type II and
has diabetic retinopathy and macular edema with osteoarthritis.

Understanding the precise diagnostic terms to assign the correct set of
ICD codes to the above EHR sentence involves the following steps:

• The detection of the correct ICDs: i) “E11.3219”, which involves cap-
turing every detail, such as the category of disease (type II diabetes),
the anatomic site (diabetic retinopathy), the complication (macular
edema), and the laterality (unspecified eye, by omission), ii) “M19.90”
due to the mention of “osteoarthritis”

• Detecting the negation of “paroxysmal nocturnal dyspnea”, and, there-
fore, not coding the record with the “R06.00” code

• Getting the relevant family history of the mention of “DM II” and com-
prehending that the record should not be coded with the corresponding
“E11.9” code because it is related to a relative and not the patient.

As the example exhibits, understanding narrative, free text language to
determine the correct set of ICDs conveyed in the EHR like an expert coder
would is not a straightforward task.

1.2 Publications

We have published a total of 8 publications: 5 articles in 4 distinct JCR
Q1 journals, 1 article in a JCR Q2 journal, and 2 international conference
publications. These works are enumerated below together with the impact
factor (IF) of the associated journals. Additionally, we was honoured with
the CLEF eHealth 2020 international conference first prize.
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1. Expert Systems with Applications (2019)
Blanco A, Casillas A, Pérez A, Díaz de Ilarraza A. Multi-label clinical
document classification: Impact of label-density. In Expert Systems
with Applications. 2019 Dec 30; 138:112835.
JCR: Q1 – IF: 5.452 – IF5: 5.448.

2. Computer Methods and Programs in Biomedicine (2020)
Blanco, A., Perez-de-Viñaspre, O., Pérez, A., & Casillas, A. Boosting
ICD multi-label classification of health records with contextual embed-
dings and label-granularity. In Computer methods and programs in
biomedicine. 2020; 188, 105264.
JCR: Q1 – IF: 5.428 – IF5: 5.034.

3. IEEE Journal of Biomedical and Health Informatics (2020)
Blanco, A., Pérez, A., Casillas, A., & Cobos, D. (2020). Extract-
ing Cause of Death From Verbal Autopsy With Deep Learning In-
terpretable Methods. In IEEE Journal of Biomedical and Health In-
formatics. 2020; 25(4), 1315-1325.
JCR: Q1 – IF: 5.772 – IF5: 6.018.

4. IEEE Access (2020)
Blanco, A., Pérez, A., & Casillas, A. Extreme Multi-Label ICD Clas-
sification: Sensitivity to Hospital Service and Time. In IEEE Access.
2020; 8, 183534-183545.
JCR: Q2 – IF: 3.367 – IF5: 3.671.

5. CLEF eHealth (2020)
Blanco, A., Pérez, A., & Casillas, A. (2020). IXA-AAA at CLEF
eHealth 2020 CodiEsp. Automatic Classification of Medical Records
with Multi-label Classifiers and Similarity Match Coders. In CLEF
Working Notes.
GII-GRIN-SCIE: A- – SJR: Q – IF: 0.18
This contribution was awarded the first position in the CodiEsp-D task.
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6. IEEE Journal of Biomedical and Health Informatics (2021)
Blanco, A., Pérez, A., & Casillas, A. Exploiting ICD Hierarchy for
Classification of EHRs in Spanish through multi-task Transformers. In
IEEE Journal of Biomedical and Health Informatics. 2021. 1374-1383.
JCR: Q1 – IF: 5.772 – IF5: 6.018

7. Recent Advances in Natural Language Processing (2021)
Blanco, A., Remmer, S., Pérez, A., Dalianis, H., & Casillas, A. On
the Contribution of Per-ICD Attention Mechanisms to Classify Health
Records in Languages with Fewer Resources than English. In Proceed-
ings of the International Conference on Recent Advances in Natural
Language Processing (RANLP 2021); (165–172).
GII-GRIN-SCIE: B – IF: 0.18
International collaboration with Stockholm University.

8. International Journal of Medical Informatics (2022)
Trigueros, O., Blanco, A., Lebeña, N., Casillas, A., & Pérez, A.
Explainable ICD multi-label classification of EHRs in Spanish with con-
volutional attention. In International Journal of Medical Informatics,
157, 104615.
JCR: Q1 – IF: 4.046 – IF5: 4.768

In the following sections (1.2.1-1.2.5), we present a brief description of
the five works that constitute the compilation for this thesis. The full publi-
cations can be found in Appendices A.1-A.5. Each work addresses research
questions that arose to tackle the objectives listed in Section 1.1 related to
each objective as summarised in Figure 1.4. Altogether, the main research
question this thesis seeks to address is as follows.

Main research question: How can we automatically assign the diagnostic
terms enclosed in an EHR according to the ICD?
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Objective 1: Develop versatile text classifiers for diagnostic term clas-
sification.

• RQ1 – Which classification methods can handle clinical document
classification with lengthy EHRs?

• RQ3 – Which is the most appropriate embeddings technique for
clinical document classification?

• RQ5 – Are the models versatile enough to be extensible to other
medical specialities?

Objective 2: Perform extreme multi-label text classification on lengthy
documents.

• RQ4 – How do the input text and output labels characteristics
affect the classifiers?

• RQ6 – Is the transformer architecture robust for clinical document
classification?

Objective 3: Predict explainable and coherent label sets of ICDs.

• RQ2 – Can the consistency of the set of predicted labels be in-
creased?

• RQ7 – Can the hierarchical characteristics of the ICD improve the
predictive ability of a model?

• RQ8 – Can per-label attention aid with the prediction of coherent
label sets?

Figure 1.4: This is a list of our research questions, grouped by objective and
numbered according to their order of appearance in the publications.

Next (in Sections 1.2.1-1.2.5), we elaborate on each research question by
introducing the articles included in the compendium. To present the research
questions tackled in each work in an orderly manner, Figure 1.5 shows the
article(s) in which each question is addressed. Figure 1.5 also depicts how
each publication is related to each objective and research question.
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   IEEE Access (A.3)   ESwA (A.1)

RQ1

   CMPB (A.2)    IEEE JBHI (A.4)    RANLP (A.5)

RQ2 RQ3 RQ4 RQ5 RQ6 RQ7 RQ8

Figure 1.5: Overview of publications related to each research question and
objective. The appendix where each article is available is listed in parenthesis.

1.2.1 Expert Systems with Applications (2019)

Reference

Blanco A, Casillas A, Pérez A, Díaz de Ilarraza A. Multi-label clinical doc-
ument classification: Impact of label-density. In Expert Systems with Appli-
cations. 2019 Dec 30; 138:112835.
The full article is available in appendix A.1.

Abstract

This work aims to automatically designate the diagnoses enclosed in an elec-
tronic health record under the International Classification of Diseases. In
natural language processing terms, a multi-label text classification task is
associating each clinical record with a set of labels (i.e., ICD codes). We
began our research with the artificial neural network methods, as neural ap-
proaches were the NLP trend, exhibiting superior performance to traditional
methods (Li et al., 2018; Huang et al., 2019). Then, we stumbled upon an
XMC problem and studied the impact of the label set size on its perfor-
mance. We focused on the vast number of labels that characterise the ICD
coding and proposed approximations to obtain reduced label sets based on
the absolute and relative prevalence of labels across the EHRs along with
consistency techniques for promoting the prediction of coherent label sets.
We suggested transforming the label set into an approachable set by keeping
labels that appear at least in 1% to 5% of EHRs.

Novelty

Studies in the field of clinical record multi-label classification had previously
focused only on the binary relevance approach (Tsoumakas et al., 2009; Read
et al., 2011): applying a binary classifier to determine the presence or absence
of each ICD independently of the rest. Nonetheless, since medical conditions
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are often correlated, independent classifiers were incapable of modelling re-
lationships and could not ensure the consistency of the predicted label set.
In this work, we intended to determine the extent to which binary classi-
fiers limit model performance and whether the use of intrinsically multi-label
classifiers increases consistency.

At the same time, far too little attention was paid to label sets with low-
frequency codes (low-density label sets) in the antecedents (Gangavarapu
et al., 2020). The scarceness of the labels made the prediction task even
more troublesome. Although Gangavarapu et al. were working on one-shot
or zero-shot approaches, research on systems that handle frequent and infre-
quent labels simultaneously was limited. Therefore, we explored the ability
of different classifiers to deal with high- and low-density label sets.

Approach

To tackle the task, we investigated three neural network architectures and two
strategies—binary relevance and multi-label output. We evaluated shallow
and deep feed-forward network architectures as well as a recurrent model
based on the bidirectional gated recurrent unit (GRU) architecture (Cho
et al., 2014; Chung et al., 2014). We focused on models capable of capturing
and modelling label dependencies on the output layer in addition to proposing
label set consistency techniques. This work addressed the following research
questions: i) RQ1: Which classification methods can handle clinical docu-
ment classification with lengthy EHRs? ii) RQ2: Can the consistency of the
set of predicted labels be increased?

Findings

RQ1 Prior studies had demonstrated that neural networks methods out-
perform traditional approaches. Consequently, dense features are a
better choice than the sparse ones (Wang et al., 2016; Yeh et al., 2017;
Baumel et al., 2017). Therefore, we started our research with neural
methods, exploring a variety of model architectures including i) shallow
with a non-linear binary logistic regressor (BLR), ii) deep with a deep
neural network (DNN), and iii) recurrent neural networks (RNN) with
a bidirectional recurrent neural network with GRU units (BiGRU).
In this work, we found that the recurrent models overcome the non-
recurrent ones, especially the bidirectional recurrent neural network.
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Additionally, we found that the appropriate features for neural meth-
ods are the dense features. We obtained F1-scores for the DNN and
the BiGRU of 72.3 and 79.7 for the MIMIC and 58.8 and 72.5 for
the Osakidetza dataset, respectively. Thus, we confirmed that word
embeddings with recurrent models (BiGRU) are a more appropriate
option for EHR classification in Spanish than document embeddings
with non-recurrent classifiers (BLR, DNN).

RQ2 The non-linear binary logistic regressor baseline implemented for this
work could not capture and model the relationships among labels. On
the contrary, the deep and recurrent neural networks are intrinsically
multi-label classifiers, modelling the relationship among labels on the
output layer. The improvement of the DNN and RNN with respect
to the baseline showed that the relationships among labels are moder-
ately captured. Additionally, we developed techniques for diminishing
the prediction of incompatible label sets and promoting the prediction
of related labels. These label-consistency rectification methods slightly
improved the results on the Osakidetza corpus while imposing no ex-
tra cost during the training stage and negligible post-processing cost.
Specifically, we kept a class weighting procedure to consider skewed
class distributions and a threshold selection criterion to prevent the
bias towards frequent classes for future works.

Concluding Remarks

The recurrent neural networks exhibited superior performance. However, the
characterisation of the clinical documents had room for improvement. The
most promising research idea was exploring and determining which word
embeddings worked best with the recurrent networks on Spanish EHRs. An-
other critical point was understanding how the different input and output
characteristics affect the performance of the classifiers. Despite the promis-
ing results, we believe that further research should deepen on the label set
consistency rectification approaches because they could leverage the accu-
racy attained by the inference algorithms. Further improving relationship
capture and modelling remains an open question. We suggested strategies
such as statistically driven approaches (e.g., correlation analysis) (Zhang and
Schneider, 2011) or the incorporation of the hierarchical structure of the ICD.
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1.2.2 Computer Methods and Programs in Biomedicine
(2020)

Reference

Blanco, A., Perez-de-Viñaspre, O., Pérez, A., & Casillas, A. Boosting ICD
multi-label classification of health records with contextual embeddings and
label-granularity. In Computer methods and programs in biomedicine. 2020;
188, 105264.
The full article is available in appendix A.2.

Abstract

In this work, we continue tackling the automatic classification of EHRs ac-
cording to the ICD. We applied a larger dataset than the used in our previous
work (Blanco et al., 2019), which was also obtained from the Basque Country
Health System. We focused on transforming the input and output, exploring
different input texts and label sets. We continue our research from the recur-
rent neural network methods, which were established as the state-of-the-art
in NLP (Tang et al., 2015; Zhou et al., 2016) while also exhibiting superior
performance in our past work (Blanco et al., 2019).

Novelty

Although electronic health records are unstructured text reports, they are
usually made up of distinguishable segments which can be extracted using
patterns or regular expressions in some datasets. However, extracting the
different parts from the EHRs is not a trivial task (Goenaga et al., 2021).
Another way to address the task is as multi-class classification, finding enti-
ties and mapping those entities to ICD codes. For example, Suominen et al.
(2018) only addressed the mapping task. It is a more accessible approxima-
tion because the aim is only to classify the standard terms, and input is less
than 10 words long on average versus the hundreds of words of the complete
EHRs. One concern that was not yet clear was the impact of the part of the
clinical record on the performance of the classifiers (Berndorfer and Henriks-
son, 2017; Gangavarapu et al., 2020). We investigated the utility of using
a particular section versus the full health record for ICD classification. We
started by focusing on the “diagnostic impression” section, where most ICDs
are localised. However, while it is true that much information is held within
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that section of the EHR, we found that there is also valuable information in
other sections.

In addition, no research was found surveying the influence of label granu-
larity for ICD classification. Apart from the label set cardinality, the degree
of specificity of the output labels can impact the performance because the
discrimination difficulty varies. We attempted to derive several sets of labels
from the fully specified ICD coded labels at different levels of granularity and
assess their impact on the prediction ability of the classifier in relation to the
number of labels.

Approach

We investigated four RNN architectures with variations on the embedding
layer while applying a non-recurrent model as the baseline to address this
work. Current models could capture and model the label dependencies to
some extent with the sigmoid output layer. Thus, we kept most of the ar-
chitecture of the previous models and the best-performing consistency tech-
niques from our previous work (i.e., the class weighting and threshold se-
lection criterion) (Blanco et al., 2019). Then, we concentrated on the text
representation layer and tested three variants, including standard, meta, and
contextual embeddings. The experiments explored a broad set of label sets
while varying cardinality and granularity. This work addressed the follow-
ing research questions: i) RQ3: Which is the most appropriate embeddings
technique for clinical document classification? ii) RQ4: How do the input
text and output labels characteristics affect the classifiers?

Findings

RQ3 We found substantial differences among the different embeddings
approximations, but contextual word embeddings were the most solid
choice in terms of F1-Score, concretely, the ELMo (Embeddings from
Language Model) embeddings. The F1-score achieved with the reg-
ular word embeddings was 49.8, while the performance increased to
54.3 with the ELMo embeddings. Nonetheless, it is worth mention-
ing that the meta-embeddings showed strengthened performance (53.9
F1-score points) compared to the regular word embeddings applied for
the construction of the meta-embeddings. Note that the results are
not directly comparable to those from our previous work because the
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corpus and label sets differ. We delve deeper into this matter in the
discussion in Section 1.3.

RQ4 The label set cardinality heavily impacts the ability of classifiers
to perform multi-label classification on ICD codes. We tested to what
extent each neural architecture degrades its performance as the label
set density decreases and the size increases. We found that it is possible
to increase the performance of the classifiers by working with a higher
granularity without reducing the number of labels. The finding was
depicted in an experiment with two identical runs except for the label
set: one with fully-specified labels (i.e., the lowest level of granularity)
and the other adding more labels but with higher granularity (i.e., block
labels). We achieved the best performance with the higher granularity
label set despite having more labels. This result could be explained
because a lower granularity implies a higher degree of label specificity.
Therefore, the discrimination between labels is a more complex task.

Contrary to our expectations, this study found that employing full
documents leads to better results than focusing only on the “diagnostic
impression” section. The results were 54.3 F1-score points when feeding
only the diagnostic section and 63.2 when supplying the whole docu-
ment to the classifier. This could be because, throughout the EHR,
there are also explicit and implicit mentions of medical conditions re-
lated to ICD labels. Additionally, recurrent models are specialised in
processing long sequences of texts.

Concluding Remarks

Our main findings were that the optimal option was to apply ELMo con-
textual embeddings while feeding the whole document to the classifier. A
better understanding of which classification approach was the most appro-
priate must still be considered because the field was constantly evolving, and
there were other approaches to contextual embeddings that were interesting.
In example, approaches based on the transformer architecture, like BERT
(Devlin et al., 2018). Furthermore, a study on how the prediction could be
explained to practitioners was also needed. Other opened research questions
include detecting different sections (i.e., patient history, prescriptions), feed-
ing these sections separately to the model, or even leveraging structured text
reports.
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1.2.3 IEEE Access (2020)

Reference

Blanco, A., Pérez, A., & Casillas, A. Extreme Multi-Label ICD Classification:
Sensitivity to Hospital Service and Time. In IEEE Access. 2020; 8, 183534-
183545.
The full article is available in appendix A.3.

Abstract

In our previous works (Blanco et al., 2019, 2020d), we processed the EHRs
with RNNs and different embedding approximations (e.g., standard-, meta-,
and contextual embeddings). Here, we tested models from past work on their
versatility and ability to generalise in two areas: across time (i.e., as time
moves forward), and across various hospital services or medical specialities.
The experiments were designed to test if the models are robust enough or if
their performance degrades when predicting future data or EHRs from differ-
ent specialties than those used to train the model. Regarding the methods,
we took the best classifier from our previous work (Blanco et al., 2020d)—the
BiGRU model with ELMo embeddings—and evaluated its behaviour when
facing changes in the training and testing data. To investigate and analyse
the adaptability of the models, we examine their resilience over data from two
years and six hospital services from two different hospitals. Additionally, we
considered the categorisation performance while estimating ICD codes with
varying degrees of granularity.

Novelty

Some antecedents reduced the label set size based on the frequency of the
labels to disregard those ICDs with low support (Névéol et al., 2018; Gan-
gavarapu et al., 2020). While it is a practical approach to get more reasonable
label sets, evaluating the models with the complete set of labels is also in-
teresting. In this work, we tested both approaches. First, we performed
experiments with the unrestricted label set, predicting all the labels (6,918
labels on the MIMIC and 2,554 on the Osakidetza dataset) available in the
data. Further, we conducted experiments with two reduced label sets, re-
stricting the label set by keeping only the ICD labels that appeared in at
least ∼1% and ∼5% of the documents, respectively.
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Another concern is that models are not usually tested across time. A
thorough search of the relevant literature yielded no data on how the models
would behave after a given time has elapsed since deploying them to a pro-
duction environment (i.e., a hospital). Therefore, we evaluated the resilience
of the system over time. The change in data across time could be critical, as
hospital personnel’s EHR writing or coding styles may evolve as time passes.
Then, could the system keep performance constantly, need to be retrained
at given time intervals, or require continuous training? The purpose is to
determine to what extent a predictive model drawn from historical data can
forecast EHRs in future years.

We designed an experiment with non-overlapping data from two consec-
utive years to test the hypothesis. We tested the model trained with data
from the first year to forecast EHRs from the subsequent year. After that,
we compared the results with the performance obtained when training the
model with all the available data. In other words, we studied the penalty in
performance suffered from not keeping the models updated. We intended to
determine the most effective strategy for continuous training (i.e., quantify
the loss when retraining the models in given time frames versus a continuous
training approach).

Similarly, little research had been done regarding the adaptation of the
models to different hospitals and medical specialties (Pérez et al., 2018).
Hence, we also evaluated the system across medical services from two differ-
ent hospitals. One of our concerns was the scarcity of data. We wondered
if a general system trained on EHRs from discharge summaries from mul-
tiple hospital services (e.g., cardiology, nephrology, psychiatry, and others)
can combine and accurately capture syntax and semantic nuances from each
speciality. The other possibility was that accurately encoding EHRs from
a single service would inevitably require the system to be trained on EHRs
solely from that service, as EHRs from other services may convey an unman-
ageable quantity of irrelevant vocabulary, resulting in a distorted outcome.

Approach

To this end, we apply our multi-label classification model based on a bidirec-
tional recurrent neural network with GRU units, utilising the ELMo embed-
dings, according to our findings from previous works (Blanco et al., 2020d).
We drew the following main research question: i) RQ5: Are the models
versatile enough to be extensible to other medical specialities?
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Findings

RQ5 The general trend is to train generalist models, namely, models
trained on EHRs from various hospital services (Blanco et al., 2020d).
However, the medical speciality has an important impact on model
performance. Our results indicated that models trained by speciality
performed better than generalist models when trained on specialty label
sets. In four out of the six specialties, the results improved in terms
of F-Score when the models were trained on EHRs from a specific
medical specialty. The mean improvement obtained with the models
trained by speciality was about 14 points. There were some notable
increases, such as the 30 points improvement (from 21.28 to 52.38) in
the digestive speciality. On the two medical specialities that performed
better with the generalist model, the gain was only around 3 and 6
points. Admittedly, training speciality models implies an additional
expense; it is necessary to train several models for each medical service
and to be limited to more restricted speciality-related label sets.

Concluding Remarks

Interestingly, the relationship between the increase in the label set size and
the reduction in performance is not exponential, as could be expected due to
the exponential growth of the label relationships. Indeed, the results indicate
a smaller performance drop than expected. Nonetheless, although the models
are strong enough to accurately categorise specific EHRs from future years
when trained purely on data from previous years, there is a performance
penalty. Adding more years (i.e., more EHRs) to the training set improves
performance.

As NLP technology advances, new architectures arise. Therefore, its per-
formance in clinical text mining and multi-label classification must be tested.
Specifically, language model (LM) classifiers are promising. Additionally, if
the novel architecture delivers sound results on the task, new research ques-
tions will arise. In summary, instances of transformers and other language
model classifiers must be developed to solve the ICD classification task. If
the new architecture is successful, we feel that a vital issue for clinical multi-
label classification would be the leverage of unsupervised, in-domain, and
more similar data to further pre-train the LMs before applying them to the
downstream task such as the multi-label classification of health records.
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1.2.4 IEEE Journal of Biomedical and Health Informat-
ics (2021)

Reference

Blanco, A., Pérez, A., & Casillas, A. Exploiting ICD Hierarchy for Classifica-
tion of EHRs in Spanish through multi-task Transformers. In IEEE Journal
of Biomedical and Health Informatics. 2021. 1374-1383.
The full article is available in appendix A.4.

Abstract

The transformer architecture is state-of-the-art in NLP, bringing improved
contextual awareness and mitigating catastrophic forgetting from RNNs. In
this work, we test the transformer architecture for multi-label classification,
developing a multi-label classifier on top of a BERT model, adapted to han-
dle the ICD as the label set. Since we employ EHRs written in Spanish, the
primary problem is the scarcity of resources compared to English, which we
attempt to lessen through the language modelling and sub-word encoding
features of the transformers. Furthermore, we are concerned about consis-
tency in labelling. Thus, we conceive a technique to tackle the relationship
among labels on the classification head on top of the language model of the
BERT model to gain consistency in co-morbidity prediction.

Novelty

Past work had explored the impact of pre-training and fine-tuning LMs using
in-domain vast publicly available datasets Gu et al. (2020); Zhang et al.
(2020). However, much less was known about the effect of the further fine-
tuning with smaller but closely related datasets. We proposed a strategy that
benefited from the most similar possible unsupervised EHRs to the EHRs to
be classified (i.e., unsupervised EHRs that come from the same hospital). In
the field of automatic clinical coding, it is common to have just a tiny share of
the available EHRs manually coded. The rest of the dataset samples, which
are not coded, are discarded. We propose to use the usually disregarded
unsupervised (i.e., not coded) EHRs for further pre-training of the LM.

Another concern is modelling the relationship among labels with hier-
archical classification models. Admittedly, there is extensive research on
hierarchical models, but most ignore the possibility of leveraging the ICD
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hierarchy (Rios and Kavuluru, 2018). On the other hand, previous research
had established that multi-task architectures improve the capacities of lan-
guage models in diverse NLP tasks (Yang and Shang, 2019). Nevertheless,
most studies had focused on tackling related but different tasks such as sev-
eral classification tasks (i.e., part-of-speech and named entity recognition),
or even combined image and text classification—in summary, tasks with a di-
rect dependency/structural relationship. The limitation of these approaches
for clinical tasks is that they require more than one label set related to each
health record to leverage the multi-task learning paradigm. However, obtain-
ing thousands of labelled records is a time-intensive and expensive task. To
bring both questions together, we proposed to exploit the hierarchical nature
of the ICD to extract the required label sets to allow multi-task learning as
well as benefit from the shared information from the different hierarchical
levels.

Approach

We implemented a hierarchical head for multi-label classification, benefiting
from the ICD hierarchy through multi-task classification. Regarding the
LMs, we explored two BERT models (generalist versus in-domain pre-trained
models) with BERT Multilingual and BioBERT (Lee et al., 2020). This
work addressed the following research questions: i) RQ6: Is the transformer
architecture robust for clinical document classification? ii) RQ7: Can the
hierarchical characteristics of the ICD improve the predictive ability of a
model?

Findings

RQ6 In this work, we switched from the BiGRU model from (Blanco
et al., 2020d) to a new classifier based on transformers. As expected,
even with the most simplistic form of a multi-label classifier built on
top of a BERT multilingual model, it outperformed the RNN. The F1-
score obtained with the RNN on (Blanco et al., 2020d) was 39.9, while
the BERT model achieved 46.4 on the most similar label set.Given the
results, we focused on further improving and adapting the transformer-
based models to the ICD classification tasks; however, the architecture
imposed some significant limitations. First, most transformer models
have a tight limitation on the maximum number of tokens that they
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can handle per sample. For example, regular BERT models have a
limitation of 512 tokens—far less than the average number of words
of the EHRs from our datasets (around 800 for Osakidetza and 1,400
for MIMIC). Furthermore, extra work was required to get meaningful
per-word attention that was comparable to attention outputs of the
RNN models.

RQ7 We delved into the capture and modelling of the relationships among
labels, hypothesising that the hierarchy of the ICD could be applied to
improve the consistency of the predicted labels. We knew that trans-
former models benefited from the multi-task setting, so our proposal
combined the two aspects. We implemented a hierarchical head for
multi-label, multi-task classification, allowing us to tackle three clas-
sification tasks simultaneously. The multi-task learning paradigm dis-
tributes pertinent information across related tasks to enhance each in-
dividual task. In this work, we applied a three-level hierarchy based on
the granularity of the labels. We found that the multi-task improved
the performance; the best non-hierarchical approach got an F1-score of
46.4, while the hierarchical approach with the same settings achieved
50.8. We improved the ICD classification performance by 9% with-
out requiring newly supervised (i.e., annotated) data, capitalising on
the synergies between the various sets of labels derived from the ICD
hierarchy.

Concluding Remarks

An exciting way to continue this study was to investigate additional models
based on the transformer architecture apart from BERT. Each model has its
own unique features; finding the one that better fits the task is not trivial and
could lead to improved results. The attention mechanism on multi-label clas-
sification models is crucial. It serves both to improve the results and enable
interpretability capabilities. Therefore, extending, improving, or develop-
ing alternative attention mechanisms to the self-attention mechanism from
BERT is another area requiring further research. Finally, the multilingual
language models, following the idea of BERT Multilingual, could be of inter-
est to the languages with less biomedical NLP resources than English—they
could benefit from the available biomedical data from several languages.
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1.2.5 Recent Advances in Natural Language Processing
(2021)

Reference

Blanco, A., Remmer, S., Pérez, A., Dalianis, H., & Casillas, A. On the Con-
tribution of Per-ICD Attention Mechanisms to Classify Health Records in
Languages with Fewer Resources than English. In Proceedings of the In-
ternational Conference on Recent Advances in Natural Language Processing
(RANLP 2021); (165–172).
GII-GRIN-SCIE: B – SJR: Q – IF: 0.18
International collaboration with Stockholm University.
The full article is available in appendix A.1.

Abstract

From our previous work (Blanco et al., 2021a), we learned that transformer
models were appropriate for ICD multi-label classification. In this work, we
researched new architectural modifications (i.e., a new per-label attention
mechanism) while tackling a new challenge: developing a single model to
code EHRs in English and two additional languages with fewer biomedical
resources, Spanish and Swedish. Another challenge was to achieve a compa-
rable label set to promote comparability, which was challenging because the
data came from three different hospitals in three countries (Spain, Sweden
and the United States of America). The main goal was to develop a model
that was not language-bound to solve the classification task on the three lan-
guages with the same model. We developed a solution with a shared language
model for the EHR representation and a classification head explicitly trained
for each language for the multi-label classification. The head was the only
module trained from scratch for each language. Furthermore, we aimed to
extend the attention mechanism, building an additional attention module.
Hence, we implemented a language-agnostic model with a novel attention
module, extending the standard self-attention mechanism with per-label at-
tention. This module also served as an interpretability system; one benefit
of our per-label attention was that a specific attention weight was computed
for each word-label pair.
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Novelty

In this work, we focused on a single medical speciality, Diseases from the
Gastrointestinal System. We obtained a comparable label set with 157 ICD
codes in the three applied datasets (Spanish, Swedish, and English). Note
that it is easier to differentiate conceptually distinct illnesses (e.g., gastroin-
testinal versus cardio-pulmonary ailments) than to discriminate between two
medical conditions within the medical speciality. Therefore, focusing on the
classification of similar diagnostic terms further motivated the development
and application of the per-label attention mechanism.

It is typical to have models tied to a given language, which could be used
for developing specialised models for languages with a considerable amount
of resources, such as English. Nevertheless, it may not be the best option
for low-resource languages (such as Swedish) since data availability may be
insufficient for training the models only with the primary language (Pires
et al., 2019). Hence, it is beneficial to leverage multilingualism. To that end,
we proposed a classifier with a shared language model among the three con-
sidered languages. In other words, we benefited from the synergistic impact
of a multilingual approach in which the three combined languages (including
English) gain from a more comprehensive volume of data.

A growing body of literature recognises the usefulness of attention mech-
anisms to improve classification performance (Mullenbach et al., 2018; Ji
et al., 2021) not only for transformers, but also for recurrent neural networks
and other architectures. To that end, our attention mechanism built on the
multi-label classification head enabled the model to assign a weight to each
word separately for each label.

Approach

To take these ideas into practice, we continued working with the BERT Mul-
tilingual model to build our multi-label classifier. However, the model in-
corporated the attention mechanism for computing specific attention weight
for each input token and label pair. This work addressed the following re-
search questions: i) RQ8: Can per-label attention aid with the prediction of
coherent label sets?
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Findings

RQ8 In multi-label classification, a given word can be relevant for indi-
cating the presence or absence of a specific label while being irrelevant
for others. Thus, per-label attention (i.e., computing how relevant is
the presence or absence of a given word for each label separately) is
required.

Experiments demonstrated that the model with per-label attention was
superior to the standard BERT model for ICD categorisation, produc-
ing similar results for the three different languages. When the confusion
matrices were analysed, we deduced the source of improvement for the
per-ICD model; although the true negatives remained close to those of
the other model (since with a large label set, the majority of classes
are negative), the number of true positives increased by about 100%.
Similarly, the false negatives were reduced by around 20%. We ob-
served this pattern in every language. Moreover, the per-ICD model
also exceeds the standard BERT model in interpretability since it can
export the attention weights for its visualisation. We concluded that
per-label attention improves the capacity for discriminating between
semantically related labels.

Concluding Remarks

A weakness was that an EHR could be longer than the maximum sequence
length of BERT models. Although we already demonstrated that the whole
document contains valuable information (Blanco et al., 2020d), a reasonable
question was whether to feed the entire EHR or to feed only the most in-
formative parts. Further research may also involve applying BERT models
that have been trained for particular languages, such as the BETO model for
Spanish (Cañete et al., 2020) or the KB-BERT model for Swedish (Malmsten
et al., 2020). Also, further research could include the ability to learn contin-
uously by taking advantage of human expert knowledge through a human-in-
the-loop feedback system incorporated into a visualization tool. Nonetheless,
per-label attention helps in modelling the relationships between ICDs. If the
same term is associated with two distinct ICDs, it suggests that both are
related. Hence, the BERT model with per-label achieves the best results, in-
creasing the F-Score by 34.9, 34.5, and 5.93 points for the Spanish, Swedish
and English datasets, respectively, compared to the standard BERT model.
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1.3 Discussion

This final section contextualises the results and discusses the best scores
obtained and the progression of the developed classifiers for the automatic
coding of ICDs. Comparing studies within the field of multi-label clinical
classification is notably difficult due to the diversity and confidentiality of
most datasets as well as the absence of standard datasets and benchmarks
(Gu et al., 2020). Moreover, even in works which apply reference datasets
such as the MIMIC-III, authors mine the datasets differently. As a result,
there are large variations in the input text and output label sets and, there-
fore, in the results (Sammani et al., 2021).

In our work, the variation of experimental setups throughout the publi-
cations causes the results to be heterogeneous and, thus, challenging to com-
pare. The reasons are multiple, but mainly, the expansion of the datasets by
acquiring new data and the transformations of the datasets required while
exploring new techniques. Note that developing more capable approaches
enabled us to progressively increase the difficulty of the task (i.e., by ex-
panding the label set size or by addressing more specific codes). The best
result among our works (A.1-A.5) is obtained by the multi-label classifier with
BERT Multilingual as the language model and per-label attention from A.5.
The results are 41.1, 40.65, and 38.36 in terms of weighted F-Score for Span-
ish, English, and Swedish, respectively. These results are hardly comparable
with previous works since the applied corpus, label sets, label granularity,
and number of labels differ due to experimental setup constraints.

Accordingly, to offer a more straightforward overview of the evolution of
the developed approaches, we took the largest Osakidetza dataset, described
in Table 1.1, and extracted six different subsets varying the label set size and
granularity of labels. Then, we applied the best model from each work to
each subset to properly compare the performance. Specifically, we conducted
the experiments on the three levels of granularity depicted in Figure 1.1 (full-
code, block and chapter). For each granularity level, we tested two label set
sizes: i) The non-reduced label set (i.e., maintaining all the original labels)
referred to as Osa-0r, and ii) a reduced label set, preserving solely the labels
that appear in at least 1% of the EHRs, referred to as Osa-1r. The results
obtained with the best model developed for each work (A.1-A.5) are shown
in Figure 1.6. The size of the label set for each experiment is denoted by N
in the legend of each figure.
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Figure 1.6: Experimental results of the best models from the publications,
namely: A.1) BiGRU with standard embeddings, A.2) BiGRU with ELMo
contextual embeddings, A.4) BERT Multilingual with hierarchical multi-task
architecture, and A.5) BERT Multilingual with per-label attention mecha-
nism. Experiments were conducted on the Osakidetza dataset at different
granularity levels (full-code, block, chapter) and varying label set sizes (N
indicates the number of labels). The model from A.3 is excluded because
there were no architectural changes compared to the model from A.2.

Figure 1.6 shows the aggregated results from the five runs for each ex-
periment in weighted F-Score, with the median being the estimate of central
tendency with confidence intervals (95% CI). The obtained results reveal
the upward trend of the classification performance attributable to the ad-
vancement of the architectures (i.e., from RNNs to transformers) and the in-
corporation of more specialised adaptations (i.e., the hierarchical multi-task
architecture or the per-label attention mechanism). Regarding the results
from the A.4 and A.5 models, the performance of the model from A.5 is just
marginally better for non-reduced labels (Osa-0r) than those obtained with
the A.4 model. The reason is that the model from A.5 does not incorpo-
rate the hierarchical multi-task architecture from the A.4 model. Thus, it is
reasonable to expect that there is room for improvement by combining both
strategies.

The results show the outcome of adapting the different deep learning
architectures to the ICD coding task. We confirmed the strengths and weak-
nesses of each approach and implemented specific techniques to deal with
the nuances of medical coding. Each approach has its unique features that
translate to individual qualitative characteristics. To illustrate this point,
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consider the following examples from EHRs.

• Discriminate meaning based on context: The BiGRU with ELMo
contextual embeddings (A.2) had an increased capacity in the repre-
sentation of words owing to the contextual embeddings.

For example, this model could differentiate the meanings that the word,
“cold”, can have in the medical jargon depending on its context. “Com-
mon cold” is a disease, “cold temperature” indicates a symptom, and
“COLD” is the acronym of Chronic Obstructive Lung Disease.

• Multilingual ability: The BERT Multilingual model based on the
transformer architecture (A.4 and A.5) achieved stronger results. The
main reason for this is that its text representation capacity is supe-
rior, partly due to the sub-word encoding required for the multilingual
ability.

For example, many medical terms have shared roots (i.e., “insulin”,
“insulinoma”) and even similar word formations in several languages
(i.e., “insulin” in English and “insulina” in Spanish). This fact allows
the transfer of learning from multiple languages.

• Hierarchical multi-task architecture: The BERTMultilingual model
with a multi-task hierarchical architecture (A.4) benefits from less de-
tailed predictions of higher granularity codes to predict more specific
codes.

For example, the model that accurately predicts that a given EHR
addresses metabolic diseases (“E” label, at the chapter granularity level)
more easily predicts more specific codes within the hierarchy such as
the fully-specified code “E11.9 – Type 2 diabetes mellitus.”

• Attention mechanisms: The BERT Multilingual model with the
per-label attention (A.5) could compute the significance of each word
for each ICD code. This mechanism internally models the relationship
between labels, improving its precision and offering improved result
interpretability.

For example, a particular word may be relevant for two different ICDs
(i.e., the word “alcohol” is relevant for labels “F10.19 – Alcohol abuse”
and “K76.0 – Fatty liver”). This information suggests that both labels
are related; the model can benefit from that knowledge.
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In conclusion, we have developed an end-to-end prototype to classify
EHRs with multiple models and approaches. The software prototype in-
cludes the transformation and pre-processing of source data, numerous deep
learning classification approaches, post-processing, evaluation of results, and
visualisation of predictions. The text processing procedures do not heav-
ily depend on word-form alterations such as removing characters, tokenisa-
tion, or lemmatisation. Most text pre-processing is limited to transforming
the input sources to a standard input structure. This pre-processing ap-
proach yields more versatile models that are not tied to specific prerequisites
(i.e., particular languages or medical specialities). Avoiding heavy text pre-
processing techniques prevents ad-hoc solutions that limit the adaptability
of the models and their deployment to real-world scenarios. Altogether, each
approach improved the previous one. Addressing every research question, we
focused on particular challenges and found ways to cope with them, yielding
subsequent improvements in terms of predictive ability.



2
Conclusions

This concluding chapter reflects on the lessons learned, conclusions reached,
and unexplored areas for further research. First, we provide a summary
of the research in Section 2.1, aggregating all our findings and conclusions
throughout the publications as well as providing a list of the contributions.
Finally, in Section 2.2, we delve into the most promising future work and the
lines of research that remain open.

2.1 Concluding remarks
This thesis was undertaken to explore the automatic multi-label classification
of EHRs according to the International Classification of Diseases. The task
was to solve a multi-label text classification problem: a supervised learning
task founded on categorising text documents with a set of non-mutually ex-
clusive labels. The main research question was: how can we automatically
assign the diagnostic terms enclosed in an EHR according to the ICD?

Since medical coding is a particular text classification task in which an
understanding the natural language involved is crucial, we raised the follow-
ing hypothesis: NLP and deep learning classification techniques can mimic
the process that expert human coders accomplish. To determine if this was
true, we established the main objective of the thesis: develop a method to
automatically determine the diagnostic terms enclosed in an EHR according
to the ICD. Three sub-objectives were derived from it. The assessment of the
expected outcomes and a summary of our conclusions from the publications
follows.
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• Objective 1 Develop versatile text classifiers for diagnostic term clas-
sification: We decided to begin our research journey directly with deep
learning models. We started from simple models, but continuously de-
veloped, adapted, and conceived new techniques to keep innovating on
the state-of-the-art NLP models. We confirmed that, as with general
domain classifiers, recurrent neural networks and transformer models
are the most appropriate choices for clinical text multi-label classifica-
tion. We concluded that, while it seems that transformer models are
superior to RNNs, the latter still have advantages worth considering
for this task such as the capacity to handle longer sequences.

We found that the diversity of health records and their intrinsic char-
acteristics are among the most significant challenges in medical coding.
We deal with an extensive vocabulary, specialised medical jargon, as
well as an abundance of abbreviations, acronyms, and spelling mistakes.
Moreover, models must adapt to EHRs in various languages or from
different medical specialities and hospitals. However, deep learning
techniques are still the most suitable option due to their multilingual
capabilities and capacity to work with sub-word information.

Regarding text representation, we confirmed that contextual word em-
beddings conveyed with language models based on either RNNs or
transformers are the best options for clinical text classification.

To accomplish the objective, we developed models that could handle
either fragments of EHRs or the whole documents as input (Blanco
et al., 2020d). The models were adaptable to datasets from several
hospitals and medical specialities (Blanco et al., 2020a) in addition to
different languages (Blanco et al., 2021b).

• Objective 2 Perform extreme multi-label text classification on lengthy
documents : The length of the input text significantly impacts the be-
haviour and performance of the models. A fundamental finding was
that, with models that process the text as sequences (i.e., RNNs), the
best option was to feed the full health record instead of fragments such
as the diagnostic section. This was true because there is meaningful in-
formation throughout the entire document (Blanco et al., 2020d). This
conclusion is valuable for the previously mentioned aim of limiting the
text pre-processing to avoid ad-hoc solutions. It is desirable to feed
the whole document as raw text and avoid any pre-processing, such as
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extracting sections or text fragments from the EHRs. The methods for
extracting sections are usually tied to a given language. Additionally,
most hospitals have their own formats for their medical records; there
is a lack of predetermined structure of the health records.

The differing granularity levels of the ICD unlock exciting possibilities
to tackle with the classification models. We showed that hierarchical
and multi-task classifiers could improve performance on extreme label
sets benefiting from several granularity levels from the ICD hierarchy
(Blanco et al., 2021a). This is also supported by the results of Sec-
tion 1.3. Nevertheless, labelling EHRs with coarse-grained labels might
have utility apart from improving the fully-specified code predictions.
For example, labelling with the ICD chapter granularity level might be
efficient for clinical documentation.

• Objective 3 Predict explainable and coherent label sets of ICDs : The
relationship among labels is relevant in any multi-label text classifica-
tion task. However, it becomes crucial when the label sets are highly
and complexly correlated, as in the case of relationships among medical
conditions (Yao et al., 2017; Lee et al., 2018; Cheng et al., 2020). For
that reason, we opted for models that intrinsically modelled the multi-
label task, taking into account the label inter-relationships. However,
applying the common fully connected deep learning layers was insuf-
ficient to capture the relations among thousands of labels. We have
explored other techniques that work jointly with the intrinsically multi-
label layers and found compelling possibilities.

According to our experiments, attention mechanisms seem to be power-
ful methods for handling the relationship among labels and improving
the classification results. This is especially true for per-label attention
mechanisms operating with high cardinality label sets (Blanco et al.,
2021b). This claim is also corroborated by the results presented in
Section 1.3. Moreover, exploiting the hierarchical nature of the ICD
through the multi-task setting with the different hierarchical levels is
a strong choice (Blanco et al., 2021a). Apart from the performance
boost achieved without the need for additional supervised data, the
model may be trained on several tasks concurrently with little addi-
tional computational work.
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The findings presented in this dissertation contribute to a better under-
standing of the ability of current machine learning techniques to conduct
medical classification in a similar way to expert human coders. Overall, the
thesis concludes that the models based on the transformer architecture—
benefiting from the ICD hierarchy through a multi-task architecture and
equipped with per-label attention—are the most appropriate choices. An-
swering the main research question and achieving the objectives throughout
the thesis yielded several contributions apart from the publications. These
contributions comprise the software modules developed to tackle the multi-
label classification task, library extensions, and compatibility with tools for
model interpretability.

The complete software packages developed for each work were released
with the publication of the articles: i) The data analysis, preprocessing,
and evaluation modules, along with the classification models are available in
(Blanco et al., 2019). ii) The preprocessing, training and inference utilities for
running the BiGRU with ELMo contextual embeddings models are available
in (Blanco et al., 2020d). iii) The single- and multi-task models that extend
the Hugging Face Transformers library (Wolf et al., 2020) with NeAt-Vision
(Baziotis, 2018) integration for visualising the per-label attention is available
in (Blanco et al., 2021b).

2.2 Future work

Clinical multi-label text classification is a field that has experienced a break-
through in recent years—partly due to the significant development of NLP
thanks to deep learning. However, progress has been slowed compared to
other sectors because DL methods require large amounts of data; medical
data is sensitive and complex to obtain. In our view, the most promising
areas of research for the near future are summarised here.

• Named entity recognition—Applying medical named entity recogni-
tion techniques as a pre-processing step: The extracted medical entities
could be used as features for the classification models. The detection
of the medical entities could help the model recognise relevant informa-
tion such as disorders and their characteristics like laterality, severity,
or body-part or negation cues (Santiso et al., 2020).
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• Increase data availability—Text augmentation techniques with un-
supervised electronic health records: We discovered that obtaining
unannotated data to improve the language model is critical for lan-
guages with scarce biomedical NLP resources. However, there is a
bottleneck for obtaining EHRs in languages other than English (Névéol
et al., 2018; Dalianis, 2018). Unsupervised automated translation (Artetxe
et al., 2017) of EHRs from languages with more resources (i.e., En-
glish) into other languages could result in the production of hundreds
of thousands of EHRs. Similarly, abstractive summarisers (Savelieva
et al., 2020) may be used to construct alternate versions of current
EHRs, thereby multiplying the number of available health records for
training the models.

• Improve the ability to handle lengthy documents—Long-range
transformers: We propose using long range transformers to analyse
lengthy documents. Thanks to modifications in the self-attention mech-
anism, transformer models, such as the Longformer (Beltagy et al.,
2019) or BigBird (Zaheer et al., 2020), increased the maximum se-
quence length above the 512 tokens of the BERT model up to 4096
tokens (Tay et al., 2021). This characteristic is convenient for working
with EHRs containing thousands of words.





List of Abbreviations

AI Artificial Intelligence.

BERT Bidirectional Encoder Representations from Transformers.

BiGRU Bidirectional Recurrent Neural Network with GRU units.

BLR Binary Logistic Regressor.

CNEAI National Assessment Committee for Research Activities.

DL Deep Learning.

DNN Deep Neural Network.

EHR Electronic Health Record.

ELMo Embeddings from Language Model.

GRU Gated Recurrent Units.

ICD International Classification of Diseases.

IF Impact Factor.

JCR Journal Citation Report.

41



42 LIST OF ABBREVIATIONS

LM Language Model.

ML Machine Learning.

NLP Natural Language Processing.

NLU Natural Language Understanding.

RNN Recurrent Neural Network.

RQ Research Question.

XMT Extreme Multi-label Classification.

XMTC Extreme Multi-label Text Classification.
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to each work.
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a b s t r a c t 

Objective: The goal of this work is the classification of Electronic Health Records using Natural Language 

Techniques. Electronic Health Records (EHRs) convey valuable clinical information, as diagnoses and pa- 

tient conditions. We explore several Deep Learning classification models for assigning multiple ICD codes 

to clinical documents. Within the framework of data mining, the aim of multi-label classification is to 

associate each instance with a set of labels. 

Methods: The multi-label classification is typically carried out based on multiple independent classifiers, 

in the so-called binary relevance learning approach. Nevertheless, diseases tend to be co-related, indepen- 

dent classifiers are unable to model relationships and do not guarantee the consistency of the predicted 

label-set. To tackle this, we investigate three Neural Network architectures. We study models that are 

capable of capturing and modeling label dependencies on the output layer. Moreover, learning from data 

with low label-density is an inherent challenge in multi-label classification. Thorough experiments were 

conducted to assess each architecture under different scenarios, varying the language, amount of data 

and label-density. 

Results: The results showed that the Bi-GRU model outperform the DNN and both overcome the baseline 

(BLR). We observed better results with MIMIC than with Osakidetza corpus. Experimental results showed 

that as the label-density decreases the prediction task becomes harder. It seems that label-density is very 

much related to the learning ability of the neural networks and another important factor that affects the 

inference is the amount of training data. 

Conclusions: The contributions of this work are: (a) a comparison among three classification approaches 

based on Neural Networks on data sets in English and Spanish to cope with the multi-label classification 

problem and (b) the study of the impact of label-density in prediction capabilities in the multi-label 

context. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the last few years, data is taking a leading role due to the 

massive generation of documents and information in electronic 

form. Processing automatically electronic documents offer a rea- 

sonable way to help humans in the assimilation of the data. Nat- 

ural Language Processing (NLP) techniques for Machine Translation 

( Pathak, Pakray, & Bentham, 2018 ) or classification ( Dwivedi, 2016; 

Salles, GonÃ§alves, Rodrigues, & Rocha, 2018 ), for example, trained 

with large amounts of data to address the problem. This paper 
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faces the challenge of classifying a particular type of documents, 

Electronic Health Records (EHRs), that is, patient records created 

on a large scale in the daily routine of the hospitals. Clinical text 

mining, a sub-field of NLP, is applied to discern knowledge from 

clinical texts ( Dwivedi, 2016; Narducci, Lops, & Semeraro, 2017 ). 

Notably, we deal with the classification of EHRs according to the 

International Classification of Diseases (ICD). 

The ICD ( Organization, 2004 ) offers a standard way to encode 

diseases and other health problems. The currently applied version 

of the ICD, the 10th version (ICD-10), is arranged, hierarchically, 

in chapters that distinguish disease types and injuries. The ICD 

codes consist of a sequence of alpha-numeric characters leading 

to nearly 70,0 0 0 unique ICD codes. So far the ICD is translated 

into 43 languages and is used to exchange information worldwide. 

https://doi.org/10.1016/j.eswa.2019.112835 

0957-4174/© 2019 Elsevier Ltd. All rights reserved. 
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Typically, EHRs are classified with the ICDs and, as a result, com- 

prising a set of classes that characterize, comprehensively, the dis- 

eases found. While there is no doubt that ICD codes convey rele- 

vant and valuable information, encoding EHRs is a time-consuming 

task that is carried out by expert clinicians trained on ICD encod- 

ing ( Dalianis, 2018 ). Our work aims to explore clinical text mining 

alternatives to support experts assigning ICD codes to each EHR. 

From the text mining point of view, this task consists of classi- 

fying a text (the EHR) with a subset of classes from the set C com- 

prising the standard ICD label-set. Formally, the task is expressed 

through (1) with X being the representation of the EHR and C the 

set of available classes (i.e., the set of codes within the ICD) and 

B = { 0 , 1 } binary information. 

h : X → B 

|C| (1) 

x → h (x ) = (b 1 , b 2 , . . . , b |C| ) 

Let us explore the input ( x ) and the output ( h (x ) = y ) of this task. 

Regarding the input, classical text mining approaches laid on man- 

ual hand-crafted symbolic features to represent documents, such 

as words, part of speech tags, n-grams etc. Nevertheless, these rep- 

resentations tend to suffer from the sparseness of data, out of vo- 

cabulary words and generalization issues ( Goldberg, 2017 ). With 

the development of deep neural networks for NLP ( Levy & Gold- 

berg, 2014; Mikolov, Chen, Corrado, & Dean, 2013 ), the trend is 

to represent documents as dense vectors ( X = R 

d ). Regarding the 

output of a multi-label classifier, it is a sub-set of arbitrary size 

of the label-set and can be represented as h ( ·) in (1) . Note that 

B |C| serves to represent arrays of dimension |C| , with the content 

b i ∈ {0, 1} interpreted as the membership of the EHR x to the i th 

ICD-code. That is, b i = 1 if and only if the document x has assigned 

the class c i . This way, multi-label classification distinguishes rel- 

evant ICD-codes to an input document from irrelevant ones (e.g. 

b i = 0 would mean that c i ∈ C is not related to the input document 

x ). As a result, h ( x ) defines a bi-partition of C for a given document 

x . The main difference between mono-label and multi-label clas- 

sification rests on the fact that mono-label classification implies 

that the classes are mutually exclusive. Accordingly, the size of the 

label-set is pre-defined to |C| = 1 . By contrast, for multi-label clas- 

sification, a challenge rests on the fact that the size of the label-set 

related to a given document is variable and unknown in advance. 

There are widespread applications on text mining aiming at a sin- 

gle label prediction ( Kalchbrenner, Grefenstette, & Blunsom, 2014; 

Kim, 2014; Le & Mikolov, 2014 ); nevertheless, the EHR classifica- 

tion tackled in this work is beyond that scope. 

Often, a multi-label classification task is decomposed as mul- 

tiple binary classification tasks in the so-called binary relevance 

approach ( Read, Pfahringer, Holmes, & Frank, 2011; Tsoumakas, 

Katakis, & Vlahavas, 2009 ). For each document, |C| binary classi- 

fiers are run independently. We can interpret the output by the k th 

classifier ( b k ) as the response to the binary question: “is the k th 

ICD code c k relevant to the input EHR?” (with 1 ≤ k ≤ |C| ). After 

this process, the EHR is labeled with the set of classes on which bi- 

nary classifiers guessed ‘yes’. In brief, a binary relevance approach 

assumes that all labels are statistically independent, hence, disre- 

gards label consistency. However, EHRs convey latent constraints, 

typically different diseases affect different age-ranks (e.g., the sub- 

set of relevant diseases to neonatal and pediatric or adult segment 

is not the same), occupations, social contexts and so on. Label-set 

consistency seems an aspect to bear in mind when dealing with 

EHR classification. 

Multi-label classification of EHRs with respect to the ICD con- 

veys inherent challenges: 

• Supervised classification approaches require a significant sam- 

ple of pre-classified instances (i.e., EHRs) to learn to predict 

each class (within the ICD). Nevertheless, one of the core is- 

sues of clinical text mining is the lack of corpora available. Be- 

sides, not all the diseases have the same prevalence on the 

population, and hence, there might be classes that are under- 

represented leading to data imbalance, a well-known problem 

( Chawla, Japkowicz, & Kotcz, 2004 ) to which inference algo- 

rithms are sensitive. 
• The input is raw text from lengthy documents expressed in 

free natural language with around a thousand words on av- 

erage. We should conveniently represent the input EHRs as 

meaningful dense vectors, x . In this task, we are dealing with 

plain unstructured, de-identified and disaggregated text ( Cohen 

& Demner-Fushman, 2014; Dalianis, 2018; Williams, Kontopan- 

telis, Buchan, & Peek, 2017 ). We do not count on other valuable 

cues (e.g., age or gender fields) to reinforce the representation. 

In brief, the goal of this work is to build a robust multi-label 

EHR classification system adapted to low-density contexts that 

arise in ICD encoding tasks. To this end, we propose an archi- 

tecture, based on deep neural networks, an alternative to binary- 

relevance approach. 

Our primary goal is to focus on Spanish, a widely used language 

for which clinical text mining counts on minimal resources. De- 

spite, we assess the methodology on a noted dataset in English, 

namely, MIMIC ( Johnson et al., 2016; Perotte et al., 2014 ) in con- 

junction with a set of EHRs from the Basque Health System, Os- 

akidetza. 

2. Background 

Our aim focuses on classifying full patient documents EHRs (of 

hundreds of words) with multiple ICD codes (nearly ten). There 

are related works that focus on a simplified goal, that is, clas- 

sifying a diagnostic term (of approximately four words) into an 

ICD code ( Dermouche et al., 2016; Farkas & Szarvas, 2008; Névéol 

et al., 2017; 2016 ). While one could figure out the task as a 

straightforward lookup of the diagnostic term in the ICD dictio- 

nary, this was proven ineffective due to the big lexical gap between 

standard terminology and the terminology employed by doctors 

in EHRs ( Pérez, Atutxa, Casillas, Gojenola, & Sellart, 2018a ). Both 

Cohen and Demner-Fushman (2014) and Dalianis (2018) corrobo- 

rated lexical complexity underlying EHRs, significant amounts of 

non-standard abbreviations, common terminology and typos are 

frequent. Diagnostic term encoding received the attention of CLEF 

2016 ( Dermouche et al., 2016 ) and 2017 ( Névéol et al., 2017 ) 

challenges. A step ahead is made in CLEF 2018 eHealth chal- 

lenge ( Névéol et al., 2018 ), in which several diagnostic terms (not 

a single one), are given as input, yet, far from full EHR clas- 

sification. It is important to note the enormous difference be- 

tween diagnostic term classification and document classification 

even though both are classified according to the ICD. For example, 

Dermouche et al. (2016) dealt with strings of 3.6 words on average 

and tried to provide an ICD code out of just |C| = 60 classes. In our 

work, instead, the documents have, hundreds of words, besides, we 

are dealing with a range of different classes, nearly |C| = 1 , 0 0 0 . 

We have mentioned the task of one-to-one diagnostic-term 

encoding, but we need to make a step ahead and delve into 

the methodology to cope with the multi-label encoding of en- 

tire documents. One-to-many or multi-label classification tasks 

have their nuances regardless of the application (e.g., image or 

text classification). Reported challenges comprise insufficient and 

low-density training data ( Berndorfer & Henriksson, 2017; Nigam, 

2016; Wei et al., 2014; Yao et al., 2017 ). An open research ques- 

tion in this field is the modeling of class dependencies to pre- 

dict consistent sets of labels. In this line, Lee, Fang, Yeh, and 

Wang (2017) paid attention to inter-dependencies between label- 

sets that had been seen within the training instances and those 
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that had not. Zhang and Zhou (2006) proposed a multi-label neu- 

ral network algorithm derived from the popular Backpropagation 

algorithm, redefining the error function to cope with multi-label 

learning. Wang et al. (2016) combined RNNs with CNNs with the 

aim of exploiting latent label dependencies in image classifica- 

tion. The paradigm infers a joint image-label embedding in an at- 

tempt to characterize the semantic label dependency as well as 

the image-label relevance. Baumel, Nassour-Kassis, Cohen, Elhadad, 

and Elhadad (2018) present a hierarchical RNN based approach 

to tag documents by identifying the relevant sentences for each 

label. The hierarchical approach requires an extra preprocessing 

step, the segmentation of the input texts since the Recurrent Net- 

work is not applied over the entire documents. Yeh, Wu, Ko, and 

Wang (2017) proposed Canonical Correlated AutoEncoder in order 

to relate features and label domain. They integrated the DNN archi- 

tectures of canonical correlation analysis and auto-encoder. From 

the aforementioned works, we observed that the multi-label clas- 

sification of complete documents requires robust document charac- 

terizations to convey all the relevant information that would lead 

to consistent multi-label generation. 

For text multi-label classification within the clinical domain, 

there are few available corpora to make comparisons. A reference 

corpus in English is MIMIC III ( Johnson et al., 2016; Perotte et al., 

2014 ). Still, our primary interest rests on making progress in pro- 

cessing EHRs in Spanish. To that end, we compiled the so-called 

Osakidetza corpus, a set of 1610 hospital admissions. Previous au- 

thors mined MIMIC in different ways. Li et al. (2017) restricted the 

dataset to a subset of 13,152 clinical notes comprising the top 10 

most frequent ICD codes. Berndorfer and Henriksson (2017) made 

use of a simplified version of the MIMIC, discarding the labels with 

a frequency below 50 times leading to a set of 59,531 records with 

1301 distinct codes. ( Nigam, 2016 ) focused on two controlled sub- 

sets of MIMIC data restricted to, respectively, 10 and 100 ICD codes 

comprising 31,865 and 44,591 patient records in turn. Logistic Re- 

gression was used as the baseline, and they proposed RNN with 

GRUs ( Cho et al., 2014 ). They concluded that, while with the set 

of 10 labels the RNN with GRUs outperformed the others, with the 

set of 100 labels the neural network with GRUs performed worse 

than the feed-forward network and the standard RNN model. Alto- 

gether, we found that MIMIC corpus was often simplified in several 

ways to make machine learning feasible. The main limitation rests 

on the reproducibility when it comes to obtaining those sets. 

From the related works we learned that in an attempt to convey 

substantial information from the records, RNN seemed appropriate, 

but not in all cases, thus, simpler feed-forward networks should 

not be discarded in the methodology. We observed two gaps in 

the antecedents: First, the use of binary relevance approaches to 

tackle ICD multi-label classification disregards the consistency of 

the label-set. Second, it is common practice to focus just on a sub- 

set of highly prevalent labels; thus, low-density cases are not con- 

sidered. In this work, we delve into both of them. 

3. Methods 

3.1. Data 

Our primary aim is to tackle the multi-label classification of 

EHRs in Spanish with respect to ICD-10. To that end, a set of EHRs 

from the Basque public hospital system, Osakidetza, was used. In 

an attempt to compare our methods to a closely related task of ref- 

erence, we also employed MIMIC. The main characteristics of these 

corpora are described in Table 1 . 

Let us describe, first, the data-sets from the output multi-label 

perspective. The cardinality of a set S = { (x j , Y j ) } N j=1 
⊆ X × P(C) , 

with P(C) denoting the power-set of C, is the average number of 

relevant labels ( |Y j | ) associated with the instances ( x j ). Formally, 

Table 1 

Data analysis for each data-set S = { (x j , Y j ) } N j=1 
⊆ X × P(C) , focusing 

on both the input and output domains. 

MIMIC Osakidetza 

S Number of samples (N) 55,172 1610 

x j Language English Spanish 

Total words 73.8 × 10 6 1.4 × 10 6 

Distinct words (vocabulary) 225,058 24,116 

Words/Doc (Mean ± St.Dev) 1337 ± 695 866 ± 343 

Y j ICD version ICD-9 ICD-10 

Number of labels (L) 6918 974 

Cardinality 11.64 6.95 

Density 0.002 0.007 

this is given in (2) , with b i ( j ) representing the i th membership bit 

of the instance x j as in expression (1) . b i ( j ) is equal to 1 if the docu- 

ment x j has associated the i th ICD-code and assuming that L is the 

size of the available set of labels (i.e. |C| = L ). The cardinality does 

not take into account the relative number of labels with respect to 

the entire label-set, by contrast, the density does, as expressed in 

(3) . The behavior of the multi-label learning algorithms is sensitive 

to the density ( Tsoumakas et al., 2009 ). 

Cardinality (S) = 

1 

N 

N ∑ 

j=1 

L ∑ 

i =1 

b i ( j) (2) 

Densit y (S) = 

1 

L 
Cardinalit y (S) (3) 

Next, we shall describe the data-sets from the input perspec- 

tive. Given that for both Osakidetza and MIMIC the information is 

extracted from raw documents, the size and variability of the docu- 

ments is a crucial issue. The documents were unstructured, mean- 

ing that the doctors did not have fields (such as “Antecedents” or 

“Analytics”) to arrange their discourse. Simple data cleaning proce- 

dures were applied, that is, tokenization, lower-casing, and removal 

of non-alphanumeric characters. As discussed in Section 2 , compar- 

isons with MIMIC are not straightforward since different authors 

provide results on self-created sub-sets that often are hardly re- 

producible due to misleading descriptions. For the sake of repro- 

ducibility, with this manuscript, we made available the scripts used 

to compile MIMIC corpus as well as the rest of the software imple- 

mented in this work 1 

3.2. Classifiers 

From the related works, we found interest in exploring three 

approaches, all neural-based, in increasing complexity order: a Bi- 

nary Logistic Regresion (BLR); a Deep Neural Network (DNN) and 

a Bidirectional Gated Recurrent Unit (Bi-GRU). The BLR is an inher- 

ently linear classifier that introduces a non-linearity in the form 

of the Softmax function to compute the loss function. Then, both 

the DNN and the Bi-GRU include the non-linearities to model the 

latent representation of the input, being the Bi-GRU, the most com- 

plex model. These three approaches are summarized in Fig. 1 and 

explained, respectively, in Sections 3.2.1 –3.2.3 . 

3.2.1. Binary logistic regression 

Binary Logistic Regression (BLR) is a parametric classifier that 

takes a vector of features x describing the input instance and pro- 

vides, as an output, the prediction through y = f (X ) = W · X + b. 

In this case, and from now onwards, the membership referred to 

1 The software implemented in this work is accessible through: http://ixa2.si.ehu. 

eus/multilabel- consistency- download . With the username multilabel and pass- 

word consistency . All parties using this are requested to cite this article. 
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Fig. 1. Architectures used to deal with multi-label classification. 
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in expression (1) is not directly a bipartition but a real number in- 

terpreted as a likelihood with respect to a given class. A threshold 

function enables to convert the outputs into binary membership to 

be interpreted as a relevant or irrelevant label. Within the frame- 

work of BLR, f ( ·) is a linear function parametrized through W and 

b . Training the classifier consists of fitting the function f ( ·) to the 

training data adjusting W and b to approach f ( ·) together with the 

threshold to the real label membership. 

Multi-label classification tasks have been often tackled employ- 

ing an architecture that entails BLR guessers in parallel ( Joachims, 

1998; Read et al., 2011; Tsoumakas et al., 2009; Tsoumakas & Vla- 

havas, 2007 ). With this approach, a binary classifier is trained for 

each label. Each classifier is specialized in setting the membership 

of a particular class (focusing just on one b i ). A limitation of this 

approach is that a pre-fixed threshold is selected for all classes, 

typically, θ0 = 0 . 5 1 ≤ i ≤ |C| . 
Given that this simple approach is the core of neural networks 

that can cope with non-linear functions, we found this approach a 

natural baseline for the following approaches. For further details, 

the reader could turn to Zhang, Li, Liu, and Geng (2018) . 

Regarding practical aspects, we implemented the BLR employ- 

ing Tensorflow ( Abadi et al., 2015 ). The network consists of the 

input layer, a hidden layer, and the output layer, as depicted in 

Fig. 1 (a). Note that for all input EHRs ( x j ) a fixed dimensional em- 

bedding is used in the feature layer. The output of the classifier in 

charge of i th ICD code is binary ( b i ∈ {0, 1}). 

3.2.2. Deep neural network 

BLR poses several limitations. On the one hand, the indepen- 

dence assumption (label-sets are generated disregarding consis- 

tency). On the other hand, BLR rests on the linearity assumption. 

Both of them can be addressed by Deep Neural Networks (DNNs) 

( Goodfellow, Bengio, Courville, and Bengio, 2016 , Chapter 6). Thus, 

this second approach emerges, naturally, as a relaxation of con- 

straints from the baseline. 

We implemented a DNN with 3 fully connected hidden-layers 

as a result the input of the i − th hidden layer is the output of the 

precedent one X (i −1) again, carrying out a linear transformation, 

X (i ) = W 

(i ) X (i −1) with X 

(0) denoting the input X . The architecture 

is depicted in Fig. 1 b. 

The difference between this DNN and the baseline rests on the 

output vector. The output of this network comprises as many out- 

puts as distinct classes |C| = L . Y = [ y c 1 , y c 2 , . . . , y c L ] . Nevertheless, 

a soft-max layer is applied to enable interpreting the result in 

terms of probabilities. Again, y c i represents the probability of asso- 

ciating the input document ( X ) to the ICD code c i . As with the BLR, 

the class c i is assigned to a given document provided the weight 

exceeds a threshold ( y c i > θ0 ⇔ b i = 1 ). 

3.2.3. Bidirectional gated recurrent unit 

The main drawback of the aforementioned DNN lies in the way 

in which the documents are characterized. Both BLR and DNN 

consider a document as a vector computed from the continuous 

bag-of-words (CBOW) representation ( Mikolov et al., 2013 ) of the 

words that compose the document, disregarding, thus, the sequen- 

tial structure inherent to the documents. Alternatively, Recurrent 

Neural Networks offer a characterization of documents that com- 

prise the computation of sequential information and, thus, a docu- 

ment is no longer a function of isolated words, instead, ordered se- 

quences of words are involved ( Miftakhutdinov & Tutubalina, 2017; 

Nam, Kim, Mencía, Gurevych, & Frnkranz, 2014; Nigam, 2016 ). To 

cope with text sequentiality we opted for implementing a Bidirec- 

tional Gated Recurrent Unit (Bi-GRU) ( Cho et al., 2014; Chung, Gul- 

cehre, Cho, & Bengio, 2014 ). 

Like long short-term memory RNNs, GRUs are based on gating 

mechanisms; nevertheless GRU’s memorization mechanism is not 

decoupled ( Chung et al., 2014; Jozefowicz, Zaremba, & Sutskever, 

2015 ) by contrast to other approaches such as LSTM networks 

( Hochreiter & Schmidhuber, 1997 ). The previous state is accessed 

through one gate ( r ) which is responsible for computing estimated 

updates to it ( h ). The updated state ( s t ) is computed as an interpo- 

lation from previous state ( s t−1 ) and the proposed estimated up- 

dates ( h ) with z being the interpolation parameter controlled by a 

second gate. The GRU unit is defined as in (4) where z is the up- 

date gate, r is the reset gate, h is the hidden state and s t is the 

output of the unit at time t. W and U are the parameters and the 

operation � defines the Hadamard product or element-wise mul- 

tiplication. 

z = σ (x t U 

z + s t−1 W 

z ) (4) 

r = σ (x t U 

r + s t−1 W 

r ) 

h = tanh (x t U 

r + (s t−1 � r) W 

h ) 

s t = (1 − z) � h + z � s t−1 

Our implementation, depicted in Fig. 1 c, comprises the follow- 

ing layers: the feature layer gets the input document as a se- 

quence of words. The embedding layer converts the tokens into 

dense representations. The bidirectional GRU layer is responsible 

for focusing on essential features interpolating previous states and 

the proposed estimated updates. Sequential memorization mecha- 

nisms are not separated. The information flows in two directions 

(from the beginning to the end of the sentence and back to front). 

In the pooling layer two techniques were applied, average pool- 

ing and max pooling. The resulting two vectors are concatenated 

to serve as the input of the output layer. The output layer consists 

of a fully connected layer with a Sigmoid activation function. This 

layer served to determine class membership. 

4. Experimental results 

In this section the following research questions are addressed: 

• Which of the aforementioned methods performs best for multi- 

label classification? 
• How do these approaches behave on different collections of 

EHRs (with different languages and sizes)? 
• How do these approaches degrade as the density of labels de- 

creases? 

4.1. Results 

The results are shown in two steps: first, we assessed the im- 

pact of individual classifiers ( Section 4.1.1 ) and next, we assessed 

the impact of varying label density on the performance of our best 

system ( Section 4.1.2 ). 

4.1.1. Set-up stage 

To begin with, we explored the performance of the three classi- 

fiers proposed in Section 3.2 . To this end, we tuned the models on 

a reduced data-set with just the sub-set of labels that appeared in 

above 15% of the documents motivated by Berndorfer and Henriks- 

son (2017) . For the MIMIC corpus, this selection led to a subset of 

just 6 classes present in 38,320 documents. For the sake of com- 

parisons with the MIMIC corpus, for the Osakidetza corpus, we re- 

stricted the number of classes to the most frequent 6 classes, lead- 

ing to a subset of 1,186 documents. The reduced sub-sets have a 

label-density of 0.341 and 0.311 for MIMIC and Osakidetza respec- 

tively. Each data-set was randomly divided into two disjoint sub- 

sets covering 70% and 30% respectively for training the models and 

testing them. 

With this reduced set, the first aim was to select the most suit- 

able representation for the documents, that is, the x j feature vec- 

tor for the j th EHR. While the core features of this work are raw 
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Table 2 

Mean weighted average performance with standard deviation across runs in 5-fold cross val- 

idation of each classifier (BLR, DNN, Bi-GRU) for the reduced data-sets. The characters deter- 

mine the corpus, “M” stands for MIMIC and “O” stands for Osakidetza. 

Precision Recall F-Score 

MIMIC Osa MIMIC Osa MIMIC Osa 

BLR 66.1 ± 0.2 37.0 ± 1.1 49.3 ± 0.3 18.6 ± 0.4 55.5 ± 0.2 18.7 ± 0.5 

DNN 67.5 ± 0.3 45.8 ± 0.3 78.3 ± 0.6 87.7 ± 0.7 72.3 ± 0.1 58.8 ± 0.2 

Bi-GRU 77.2 ± 0.3 66.2 ± 0.7 82.6 ± 0.5 80.7 ± 0.9 79.7 ± 0.3 72.5 ± 0.2 

word-forms, the word-forms were embedded into dense vectors. 

To this end we employed FastText ( Bojanowski, Grave, Joulin, & 

Mikolov, 2017 ) with cbow trained from in-domain corpus gener- 

ating vectors of dimension 300. The training set vocabulary size 

is 18,258 and 146,831 tokens for Osakidetza and MIMIC corpus, 

respectively, while the vocabulary size for the test set is 12,342 

and 94,907 tokens. The vocabulary sets are disjoint, which leads to 

Out-of-vocabulary (OOV) tokens, specifically, there are 3071 (24,8% 

of test vocabulary) and 39,363 (41,4% of test vocabulary) OOV to- 

kens in the test set, for each corpus. At prediction time, when an 

OOV token is encountered, it is mapped to an OOV distinctive to- 

ken ( < OOV > ). 

The assessment of the three approaches was carried out us- 

ing traditional bipartition metrics: precision, recall, f-score. Given 

that we are dealing with multi-label classification, overall per- 

formance is assessed by averaging the metrics across labels. To 

that end, there are several averaging strategies: micro-, macro-, 

and weighted-average ( Nam et al., 2014; Tsoumakas et al., 2009; 

Van Asch, 2013 ). Micro-averaging computes the metrics globally, 

while macro- calculates the metrics for each label, returning their 

unweighted mean. While macro-average is insensitive to class 

skew, micro-average is blind to the classes as it averages the re- 

sults of the metrics across classes. Weighted average measures the 

metrics for each label and finds the average weighted by class pri- 

ors. This way, weighted-average accounts for label imbalance while 

keeping track of individual classes. 

The AUC is also an interesting metric to bear in mind since the 

classes in these data are highly skewed and AUC is insensitive to 

class imbalance ( Fawcett, 2006 ). 

Next, with this setup and following a repeated 5-fold cross- 

validation evaluation schema, we assessed the performance of the 

different classifiers for both MIMIC and Osakidetza corpora. The re- 

sults attained are shown in Table 2 . 

From this set of experiments, we learned that both DNN and Bi- 

GRU approaches outperformed the predictive ability of the baseline 

(BLR) while Bi-GRU beat the DNN, this all with a with a p -value 

around 10 −10 . 

When it comes to assessing a model, there is an issue that is of- 

ten take aside the computational cost involved in the training and 

prediction process. Table 3 shows the number of parameters, i.e 

connections between layers plus biases in every layer, of the DNN 

and Bi-GRU. As shown in Table 3 , the number parameters is an or- 

der of magnitude higher in Bi-GRU; moreover, the involved time 

is three orders of magnitude higher. That is, we feel that there is 

a trade-off between performance and computation cost. Although 

Table 3 

Computational training cost in terms of trainable parameters, 

training time per epoch and prediction time per step in the 5-fold 

cross validation assessment. 

Trainable Training Prediction 

parameters time time 

DNN 301,000 4,5 s/epoch 30 μs/instance 

Bi-Gru 4,414,980 2,915 s/epoch 24,000 μs/instance 

the DNN performed notably below the Bi-GRU, it may be a com- 

pelling approach for tasks with hardware or time constraints. 

4.1.2. Impact of label density on multi-label classification 

So far we just made use of the reduced sets in an attempt to 

assess the characterization for the input documents (document- 

embedding extraction and dimension) together with the choice of 

classifier (BLR, DNN, Bi-GRU). We concluded that while regarding 

prediction capacity of Bi-GRU outperforms DNN, it is also true that 

its computational cost is remarkably higher. 

An important point, and the focus of our work, is how the 

aforementioned techniques deteriorate as the number of classes 

grows using the entire dataset (presented in Table 1 ) rather than 

the reduced one. Needless to say, as we move from the reduced 

sets towards real sets the complexity of the multi-label classifica- 

tion increases. The issue is not only that the available set of classes 

( |C| ) increases but also that the size of the label-sets tends to in- 

crease (and so does the number of different label-sets) and, what is 

even more critical, the label-density decreases. Besides, the classes 

are selected regarding decreasing frequency as in Berndorfer and 

Henriksson (2017) . This selection implies that each time we add 

a new class (ICD-code) into the study to augment the reduced 

set, the new class has associated fewer instances (EHRs) to learn 

from the classification pattern. Moreover, this behavior is not linear 

since we are in a multi-label classification task. All in all, the intu- 

ition is that worse prediction ability shall be achieved as the label- 

density decreases, and so reflects the experimental results attained. 

First, in Fig. 2 a, we showed the relation between the number of 

classes and label-density. Next, in Fig. 2 b and c, we showed the 

degradation of the performance with both DNN and Bi-GRU, with 

Osakidetza and MIMIC corpus, respectively. Note that the density is 

decreasing along the x -axis for the sake of interpretability. Indeed, 

decreasing density is tightly related to the increase in the number 

of classes. 

Fig. 2 provided the degradation of f-score varying the label- 

density. We tested a broad range of L values to gain insights into 

the impact of label-density. Fig. 2 a shows, explicitly, the density 

decrease rate, with respect to the increase in the number of la- 

bels. Note that the relation is similar, ensuring, thus, that the dis- 

tributions of the labels from both Osakidetza and MIMIC corpus 

are comparable. The results are shown in Table 4 for two label- 

densities, corresponding to the size of label-sets L = 10 and L = 

100 . These two values of L (with a difference of an order of mag- 

nitude) enable the reader compare our results with related works. 

For example Li et al. (2017) selected a label-set = 10; the systems 

participating in the 2007 Computational Medicine Challenge dealt 

with 45 classes Pestian et al. (2007) , or Pérez, Pérez, Casillas, and 

Gojenola (2018b) addressed with 124 labels. We discuss the results 

in the following section. 

4.2. Discussion 

Our work focuses on the multi-label classification of EHRs with 

respect to ICD. To verify our achievements we experimented with 
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Fig. 2. Comparison of the impact of label-set density with MIMIC and Osakidetza corpus for DNN ( •) and BiGru ( �) models. 

both MIMIC and Osakidetza corpora (in English and Spanish re- 

spectively). Data analysis showed that label-density of the MIMIC 

corpus was three times smaller than in Osakidetza. However, there 

are 30 times as many EHRs in MIMIC as in Osakidetza. Experimen- 

tal results ( Fig. 2 ) showed the trend of the performance decay as 

Table 4 

Detailed performance of the best model (Bi-GRU) focusing 

on two different sizes of label-sets ( L = 10 and L = 100) 

for two corpora (Osakidetza and MIMIC). 

Osakidetza MIMIC 

L L 

Metric Average 10 100 10 100 

Precision m 55.8 22.3 77.6 56.7 

M 53.9 17.8 76.4 51.6 

w 57.5 29.7 77.6 58.6 

Recall m 68.4 44.9 77.7 62.8 

M 64.2 28.9 76.4 55.3 

w 68.4 44.9 77.7 62.8 

F-score m 61.5 29.7 77.7 59.6 

M 58.0 20.3 76.4 53.0 

w 61.9 34.1 77.6 60.4 

AUC m 75.9 67.9 84.8 79.7 

M 73.4 59.7 84.0 75.9 

the label-density decreases and we observed that the DNN system 

attained better results with MIMIC than with Osakidetza. It seems 

that label-density is very much related to the learning ability of 

the neural networks and another important factor that affects the 

inference is the amount of training data. 

Concerning the prediction ability, we found that both DNN and 

Bi-GRU outperformed, notably, the baseline (BLR). Note that the 

baseline implemented a binary classifier for each class and, hence, 

the predicted label-set does not take into account latent relations 

between labels. From Fig. 2 we learned that Bi-GRU outperformed 

DNN. With this, for a given multi-label set we can figure out the 

number of instances and label-set density required to achieve par- 

ticular performance. DNN resulted versatile for both corpora and, 

overall, achieved good performance. 

The approaches found in the antecedents with MIMIC corpus 

applied different preprocessing steps on the label-set in an attempt 

to make the task feasible. As MIMIC comes in the form of a rela- 

tional database, the procedures to extract the input texts have a 

strong influence and are rarely specified. Besides, the dataset does 

not yet have predefined training, validation and testing sets, so au- 

thors provide results on arbitrary subsets. These procedures are not 

bright enough and hardly enable conducting fair reproducible re- 

sults and comparisons. 
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Again, while the comparisons might result arguably, we would 

like to provide a review for the sake of completing this study. 

Li et al. (2017) restricted the problem to a mono-label (while 

we are dealing with multi-label) and multi-class classification 

(with L = 10), since they aimed to predict the primary discharge 

diagnosis. Their approach with CNN achieved 96.11 accuracy and 

80.48 weighted F-Score. The difference between mono- and multi- 

label learning complexity and attained results are worth mention- 

ing. 

Berndorfer and Henriksson (2017) employed SVM classifiers to 

tackle a multi-label problem with L above 1,0 0 0, in a binarized 

fashion with a one-versus-all model per diagnosis code. They com- 

bined models trained using both symbolic and dense representa- 

tions (BoW and word2vec) and achieved 36.95 F-score. Ensemble 

techniques were used as a means of tackling label-set consistency. 

Nigam (2016) explored multi-label problem with L = 10 using 

different approaches based on neural networks and concluded that 

RNNs with GRUs outperformed the rest attaining 42.03 F-score. In 

our case, Bi-GRU turned the best approach regarding prediction 

ability, 77.6 F-score for the case of L = 10 . 

As a secondary contribution of this article, we made available 

the software used in our work in order to enable reproducible re- 

search. Moreover, the classifiers and evaluation modules are also 

released together with this manuscript. 2 

5. Concluding remarks and future work 

This work copes with the multi-label classification of EHRs in 

English and Spanish with respect to ICD-10. The aim is to as- 

sist expert coders in the manual coding process. In this work, we 

explored natural language processing techniques based on neural 

network strategies. From the machine learning perspective, this is 

a difficult task for several reasons. On the one hand, the ICD counts 

on thousands of classes; hence, we have to face multi-label classifi- 

cation with a big set of classes ( |C| is high). Besides, the number of 

ICD-codes assigned to each EHR tends to be above 6, but the range 

of the length of label-sets is diverse (from 1 up to 37). Moreover, 

the label-set predicted should be consistent, while typical multi- 

label classification approaches do not bear this issue. 

In this work we explored three classification approaches (BLR, 

DNN, and Bi-GRU) with two corpora, MIMIC dealing with ICD-9 in 

English and Osakidetza with ICD-10 in Spanish. From this study, we 

learned that given that multi-label tasks count on scarce instances 

per class to learn patterns from, data-consistency is an important 

question to address. Overall, both DNN and Bi-GRU outperformed 

BLR approach in both corpora. The key issue is that both DNN and 

Bi-GRU, by contrast to BLR, infer the label-sets jointly and so, ad- 

dress, label consistency. Moreover, Bi-GRU outperformed notably 

DNN this might be due to the fact that by contrast to DNN, Bi-GRU 

is able to cope with contextual information in the input. As a sec- 

ondary contribution, we released the set of programs implemented 

for this work in an attempt to make further studies on multi-label 

classification comparable to this one. 

For human experts, encoding these lengthy documents entails 

careful reading EHRs to identify diagnostic terms, procedures, etc. 

within the full document. These terms are often written in a non- 

standard language and mapping them into standard terms within 

the ICD so as to get the corresponding codes is what expert clin- 

icians do in their encoding task. From machine-learning perspec- 

tive, Bi-GRU mimics, somehow, this process as it focuses on rele- 

vant phrases that explain the code-generation process. 

2 The software implemented in this work is accessible through: http://ixa2.si.ehu. 

eus/multilabel- consistency- download . With the username multilabel and pass- 

word consistency . All parties using this are requested to cite this article. 

The amount of corpora is a significant limitation to gain perfor- 

mance in this task. It seems that inference ability is highly limited 

by the label-density and number of instances available associated 

to each label. Nevertheless, our impression is that further research 

should deepen in label-set consistency rectification approaches as 

they could leverage the accuracy attained by the inference algo- 

rithms. Possibly, the incorporation of the hierarchical structure of 

the ICD (or alternative ontologies as SNOMED-CT) could help in 

this line. 
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a b s t r a c t 

Background and objective: This work deals with clinical text mining, a field of Natural Language Process- 

ing applied to biomedical informatics. The aim is to classify Electronic Health Records with respect to 

the International Classification of Diseases, which is the foundation for the identification of international 

health statistics, and the standard for reporting diseases and health conditions. Within the framework of 

data mining, the goal is the multi-label classification, as each health record has assigned multiple Inter- 

national Classification of Diseases codes. We investigate five Deep Learning architectures with a dataset 

obtained from the Basque Country Health System, and six different perspectives derived from shifts in 

the input and the output. 

Methods: We evaluate a Feed Forward Neural Network as the baseline and several Recurrent models based 

on the Bidirectional GRU architecture, putting our research focus on the text representation layer and 

testing three variants, from standard word embeddings to meta word embeddings techniques and con- 

textual embeddings. 

Results: The results showed that the recurrent models overcome the non-recurrent model. The meta word 

embeddings techniques are capable of beating the standard word embeddings, but the contextual embed- 

dings exhibit as the most robust for the downstream task overall. Additionally, the label-granularity alone 

has an impact on the classification performance. 

Conclusions: The contributions of this work are a) a comparison among five classification approaches 

based on Deep Learning on a Spanish dataset to cope with the multi-label health text classification prob- 

lem; b) the study of the impact of document length and label-set size and granularity in the multi-label 

context; and c) the study of measures to mitigate multi-label text classification problems related to label- 

set size and sparseness. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

Methodical documentation of healthcare data is fundamen- 

tal for public health. The International Classification of Dis- 

eases (ICD) is the standard diagnoses coding system for Electronic 

Health Records (EHR) classification. ICD serves, worldwide, for 

epidemiology, health management and documentation purposes. 

Over time, several versions have been developed, being the ICD- 

10th the current version. Regarding the hospital network associ- 

ated with the Spanish “Ministerio de Sanidad, Servicios Sociales 

e Igualdad”, from January the 1st 2016, the clinical modification 

of the ICD-10th is the reference version, adopting the Spanish 

∗ Corresponding author. 

E-mail address: ablanco061@ikasle.ehu.eus (A. Blanco). 

translated CIE-10-ES variant as the coding standard. The ICD-10 is 

designed as an alphanumeric code and it is arranged hierarchically 

[1] . Each code is built by a set from 3 to 7 alphanumeric characters 

as shown in Fig. 1 . 

In this paper we tackle the task of automatically coding the di- 

agnostic terms present in a free-text medical record according to 

the ICD coding system. The task is framed within the Natural Lan- 

guage Processing (NLP) field. The purpose is to determine which 

classes are present in the input text. Our approach rests on ma- 

chine learning, specifically on supervised multi-label classification. 

Classification based solely on text is an open challenge in arti- 

ficial intelligence [2–4] . We aim to solve a text classification prob- 

lem on medical free-text, EHRs that present medical jargon and 

clinical-specific language. Furthermore, EHRs often contain abbre- 

viations (frequently non-standard), and misspellings are also com- 

mon. The length of the texts plays an important role, here we face 

https://doi.org/10.1016/j.cmpb.2019.105264 

0169-2607/© 2019 Elsevier B.V. All rights reserved. 
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Fig. 1. ICD-10 code structure. 

a broad spectrum, ranging from a few words to several tens of 

lines. EHRs seldom express clinical diagnoses as in the standard 

ICD.att 

An EHR could entail many diagnostics henceforth, multiple ICD 

labels should be assigned. This task, Multi-label Classification , can 

be seen as a multi-class classification (not binary) task in which 

the classes are not mutually exclusive. Multi-label classification 

tends to be, by far, more challenging than mere multi-class clas- 

sification. Its complexity lies in the exponential growth of label 

combinations. Note, as well, that the number of labels associated 

to each EHR is variable. 

Multi-label classification can be tackled with the so-called bi- 

nary relevance approach. This simplistic approach consists of using 

as many binary classifiers as ICD codes to determine if each ICD 

code is present or absent from the EHR. The drawback of this ap- 

proach rests on the fact that the model is not able to capture label- 

dependencies. While some diagnostics are prone to co-appear oth- 

ers are incompatible. Learning label-dependencies is crucial to this 

task. To this end, we explore approaches based on Deep Learning 

[5–7] . 

The contribution of this work is to explore the impact of dataset 

characteristics, such as the characterization of the input text fo- 

cused on (either full document or a part of it), on the predictive 

ability of the multi-label neural models and also to assess the per- 

formance with respect to label-set cardinality and granularity. We 

deal with real EHRs from Osakidetza (the Basque Public Health 

System) written in Spanish. 1 

2. Related work 

Text classification of EHRs is a demanding task, hence most 

works have focused on short English texts, though on this work we 

deal with novel challenges including long EHRs written in Spanish 

with thousands of words. 

Multi-label classification is a challenging task, especially when 

the number of labels is high [8–10] . The binary relevance approach 

transforms the multi-label problem in multiple binary classifica- 

tion problems [11] , but disregard the dependencies among labels. 

Several works have addressed the EHRs classification according to 

the ICD [12–15] . Yet, little attention was paid to dense features 

and to the approaches that could take advantage of them. Further- 

more, much uncertainty still exists about the inter-dependency of 

labels, that could enhance the prediction performance avoiding in- 

congruities such as, for example, assigning an adult-specific dis- 

ease simultaneously with a childhood condition. On this work, we 

tackle the model and capture of label dependencies through Deep 

Learning models, leveraging the dense output layer with Sigmoid 

activation function. 

The text classification field has leapt forward, from linear 

and probabilistic models over hand-crafted engineered features 

[16,17] to non-linear Neural Network models and end-to-end learnt 

1 The dataset contains sensitive, confidential data, and therefore can not be re- 

leased. 

inherent high-level text representations. It is shown good perfor- 

mance with NN [18] , as Convolutional Neural Networks [19] , Re- 

current Neural Networks [20] and Bidirectional Long Short-Term 

Memory [21] . 

Methods of meta-embeddings aim to conduct a complemen- 

tary combination of information from an ensemble of distinct word 

embeddings to yield an embedding set with enhanced quality and 

characteristics of the semantics captured. Yin and Schütze [22] pre- 

sented, among others, the “concatenation” method, wherein the 

meta-embedding is the concatenation of several embeddings. 

Coates and Bollegala [23] assured that direct averaging of embed- 

ding can provide an approximation of the efficiency of concatena- 

tion without increasing the dimension of the embeddings. 

Context representations are vital to NLP tasks such as text clas- 

sification. To alleviate this weakness present in generic word em- 

beddings the contextual embeddings emerged. Melamud et al. 

[24] presented an unsupervised model for learning context em- 

bedding of wide contexts of sentences using bidirectional LSTMs. 

These embeddings are dependent on the entire corpus from which 

they were inferred and carry reinforced contextual meaning. The 

ELMo [25] and BERT [26] have become state-of-the-art in contex- 

tual word representations. Much uncertainty still exists about the 

advantages of applying meta and contextual embeddings over the 

standard options for clinical text classification tasks, and we have 

found that the contextual embeddings may give an extra edge on 

the ICD classification. 

In the automatic ICD coding, there are also works that point 

towards the Neural Network trend but seems to fall short on 

the field. These models manage to handle large amounts of text 

through a dense representation of words. Nigam [27] took advan- 

tage of Recurrent Neural Networks to perform multi-label classi- 

fication. Both works were carried out with discharge summaries 

from the MIMIC-III [28] corpus. Recently, this task has gained 

more attention through the CLEF eHealth evaluation labs. Suomi- 

nen et al. [29] presented an overview of the sixth annual edition. 

The goal of one of the tasks is to automatically assign ICD-10 codes 

to few words length texts from free-text descriptions of causes of 

death as reported by physicians [30,31] . The task is similar to what 

we have presented on this work with the Diagnostic input perspec- 

tive, and the finding is that the performance of the classifiers could 

be improved employing the full documents. 

Spanish NLP is under strong growth, among others, driven by 

the Plan de Tecnologías del Lenguage. 2 EHRs in Spanish are cur- 

rently being collected [32,33] , as well as complimentary corpora 

including abstracts [34] . These data sets enable to develop several 

tasks e.g., Negation Extraction [35] , Extraction of Adverse Drug Re- 

actions [36] , Text Classification [30,31,37] , and Negation Cue Detec- 

tion [38] . 

3. Methods 

We explored four unique RNN model instances plus the base- 

line model, a Feed Forward Neural Network with Neural-Net Lan- 

guage Model (NNLM) as the text representation layer. The core 

architecture is a Bidirectional Recurrent Neural Network with GRU 

units and pooling techniques [39] (explained in Section 3.1 ). The 

cornerstone of the model is the word embedding layer, as it is re- 

sponsible for the expressiveness of the input. Thus, we explored 

three variants: standard embeddings, meta-embeddings and con- 

textual embeddings (explained in depth in Section 3.2 ). Together 

2 https://www.plantl.gob.es/tecnologias-lenguaje/actividades/infraestructuras/ 

Paginas/infraestructuras-linguisticas.aspx . 
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Fig. 2. Architecture: Bidirectional RNN with GRU units and pooling model. 

with this work, in an attempt to promote reproducibility, we re- 

leased the software package that we implemented. 3 

3.1. Bidirectional recurrent neural network with GRU units and 

pooling 

We applied a Bidirectional layer with GRU units, which lever- 

ages sequences of text in forward and reverse order with sepa- 

rate hidden states, and whose mathematical formulation for the 

forward and backward hidden state and its combination is shown 

in (1) . 

−→ 

h 

(t) = σ ( 
−→ 

W x (t) + 

−→ 

V 

−→ 

h 

(t−1) + 

−→ 

b ) ← −
h 

(t) = σ ( 
← −
W x (t) + 

← −
V 

← −
h 

(t−1) + 

← −
b ) 

h 

(t) = [ 
−→ 

h 

(t) , 
← −
h 

(t) ] 

(1) 

The parameters are the weight matrices [ 
−→ 

W , 
← −
W ] and [ 

→ 

V , 
← 

V ] , and 

the bias terms [ 
−→ 

b , 
← −
b ] . The hidden-states are computed through 

the non-linear activation ( σ ) applied to the weighted sum be- 

tween previous hidden-states [ 
−→ 

h (t−1) , 
← −
h (t−1) ] and current input 

3 The software is available at http://ixa2.si.ehu.es/prosamed/cmpICD _ soft and can 

be downloaded with user CMPB and password IXAcmpb . Provided that the soft- 

ware is used anyhow, this article should be cited. 

( x ( t ) ) with their corresponding matrices. Then, both hidden states 

are combined with concatenation to provide the resulting hidden 

state ( h t ). 

The output of the Bidirectional RNN layer could be fed to the 

dense layer. However, this can be computationally challenging, due 

to the high number of parameters. Learning a classifier with too 

many parameters can be unwieldy, and can also be prone to over- 

fitting. A popular technique to deal with the high dimensionality 

of the Bidirectional RNN layer output is Pooling [40] . We applied 

average and max-pooling, known as 1-dimensional global pooling. 

The pooled features are concatenated and fed into a final fully- 

connected layer. This layer is responsible for computing the prob- 

ability estimation of the labels i.e. ICD codes. Fig. 2 shows the full 

architecture of the Bidirectional Recurrent Neural Network with 

GRU units and pooling techniques, i.e. BiGru. The figure shows a 

forward pass for an example text. The output of the Sigmoid func- 

tion is the probability estimation of each label. The depth of every 

layer indicates the batch size. The Recurrent layer is unrolled, so 

s i ∀ i ∈ s brings the embedded representation of the input token 

{ s 1 = emb( “patient”) , s 2 = emb( “had”) , s 3 = emb( “achalasia”) } . 
The BiGru model can handle all the labels at once, instead of 

following a binary relevance approach, training independent clas- 

sifiers for each label. The final dense layer is able to capture and 

model the label dependencies, producing a non-mutually exclusive 
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probability estimation for each label with the Sigmoid activation 

function [41] . 

3.2. Comprehensive input characterization: embedding layer 

variations 

A comprehensive input characterization is crucial for attain- 

ing competitive performance. In the training stage, the embedding 

layer holds more than 90% of the model’s complexity in terms of 

parameter count. What is more, the predictive capacity rests on the 

ability of the model to extract knowledge from the source provided 

in the input stage. Thus, we paid special attention to this layer. The 

embedding layer from the Fig. 2 shows just a vanilla embedding 

layer that we enhanced later. Indeed, in this work we explored 

three variations of the embedding layer: i) Standard embeddings. 

ii) Meta embeddings ( Sections 3.2.1 and 3.2.2 ). iii) Contextual em- 

beddings ( Section 3.2.3 ) 

Moreover, according to Yin et al. [42] and Coates and Bollegala 

[23] , different pre-trained word embeddings have substantial dif- 

ferences in quality and characteristics of the word representations. 

The consequence is some word embeddings performing better on 

some tasks than in others. Bearing all this in mind, in addition to a 

standard pre-trained embedding, we tried meta-embeddings , which 

are ensemble approaches (embedding concatenation and blending) 

with the hope to get an embedding set with the improved overall 

quality. 

We turned to embeddings derived from fastText [43] as the 

standard embeddings setup. As for meta-embeddings setup, we 

employed fastText, Word2Vec [44] and GloVe [45] . Every embed- 

ding set is trained on the same corpus, the Spanish Billion Word 

Corpus [46] . 

3.2.1. Embedding concatenation 

The meta-embedding is computed as the concatenation of word 

embeddings, based on the work by Yin and Schütze [22] . Before 

the concatenation, each embedding set must be L2-normalized [6] , 

so that all the values are in the range [ −1 , 1] and, therefore, every 

set contributes equally. 

The dimensionality of the resulting meta-embeddings is ˆ d s k = 

d s 1 + . . . + d s i + d s n with d s i being the dimension of the i th set con- 

catenated. It is important to note that the model’s complexity in- 

creases with each added embedding set, as it increases the dimen- 

sion of the features of the embedding layer. 

3.2.2. Embedding blending 

The meta-embedding variant is computed as the average of the 

embeddings involved, based on the work by Coates and Bollegala 

[23] . Note that even having embedding sets with matching number 

of dimensions ( d s i = d s j ∀ i, j), each dimension among embeddings 

is not related. In any case, averaging can provide an approxima- 

tion of the performance of concatenation without the expense of 

increasing the dimension [23] . 

3.2.3. Contextual embeddings 

Recently, approaches that improve the semantic word represen- 

tation by leveraging the context to encode syntactical meaning and 

handle polysemy are pushing the state-of-the-art. Regular word 

embedding techniques use all the occurrences of a word to extract 

a joint representation. However, depending on the context, words 

could have different meanings. Recent models exploit this reason- 

ing and propose contextual word embeddings. There is no longer 

a lookup table between words and dense representations. Instead, 

the word embedding is computed on the fly, taking advantage of 

the context. 

Embeddings from Language Models (ELMo) [25] representa- 

tions are obtained from a bidirectional Language Model (biLM) that 

Table 1 

Statistical characterization of the Osakidetza dataset and every perspective. The 

input can comprise either a small part of the document denoted as “Diagnostic”

or the entire “Document” (full EHR). The output (ICD code) can be explored at 

different granularity levels: Chapter, Block, Full-code. 

Corpus EHRs 

S Samples 10,707 

Input Diagnostic Document 

X Vocabulary 

size 

12,811 60,197 

Words per 

doc 

37.9 

± 73.8 

770.5 ± 351.2 

Output Chapter Block Full 

Y Distinct 

labels 

24 991 3572 

Avg. 

Cardinality 

3.7 5.4 5.5 

has recently produced state-of-the-art results in several NLP tasks 

like Coreference Resolution [47] or Natural Language Inference and 

Sentiment Analysis [25] . The embedding for a given word varies 

from one sentence or document to another with its context. As 

it cannot be pre-computed, the embedding computation is done 

computing a forward propagation of the model for each token of 

each input sequence [48] . 

4. Experimental framework 

4.1. Data 

The datasets used in our experiments consist of EHRs written in 

Spanish from the Basque public health system (Osakidetza). Specif- 

ically, emergency services discharge summaries from hospitals. The 

EHRs are not structured and were not written using templates with 

sections. Table 1 introduces the details of the dataset used. There 

are 10,707 EHRs. As revealed by the table, we considered several 

perspectives of the dataset by varying two factors, the input and 

the output explained in what follows. 

According to the input , the shift consists of the retained pro- 

portion of text from the full EHR. Our aim is to determine whether 

the neural models were able to extract the information from entire 

documents or, could be benefited from small pieces of text convey- 

ing meaningful information. As a result, we explored, on the one 

hand, the full EHR (referred to as “Document”) and on the other 

hand a short part of the document (referred to as “Diagnostic”) as 

shown in Fig. 3 . Note that the mean text length of the Diagnostic 

perspective is ≈ 38 words, while for the Document perspective, it 

Fig. 3. Health record from the Osakidetza datasets. The ICD codes are listed right 

to the ‘‘ICD:’’ keyword. Every character after the ‘‘Informe:’’ keyword is 

part of the text of the report. 
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Table 2 

Evaluation results for the { Corpus: Big, Out: Full-code} varying the input (full document or diagnostic section). 

Inp Model Characterization Precision Recall F-Score 

Document NNLM Document embeddings 50.968 30.976 31.513 

BiGru Standard fastText emb. 51.485 55.825 53.307 

Meta embeddings Avg 64.824 57.416 59.533 

Conc 65.345 54.428 58.576 

Contextual ELMo emb. 67.283 60.490 63.165 

Diagnostic NNLM Document embeddings 54.971 34.974 39.257 

BiGru Standard fastText emb. 51.257 49.785 49.838 

Meta embeddings Avg 58.482 50.860 53.864 

Conc 58.752 50.688 53.992 

Contextual ELMo emb. 56.648 52.472 54.301 

rises to ≈ 770, but in both cases, the standard deviation is high, 

as shown in Table 1 . 

Regarding the output , the shift is in the granularity of the la- 

bels, with a three-level alternative taken into account, as follows: 

The “Full-code” level preserves the original code (e.g., “M1A.1421 ”: 

Chronic gout, lead induced in hand left with tofus ), the “Block” level 

keeps the first three characters (e.g., “M1A ”: Chronic gout ), and the 

“Chapter” level keeps only the first character (e.g., “M ”: Diseases of 

the muskuloskeletal system and connective tissue ). 

Fig. 4 shows the resulting label distributions for each output 

alternative of the Osakidetza datasets. The diseases are not uni- 

formly distributed, as there are frequent and rare conditions. In- 

deed, the class imbalance is one of the challenges of ICD classi- 

fication, as machine learning models struggle to handle classifi- 

cation tasks with classes that present large disparities in preva- 

lence. To cope with the high imbalance and high scarcity of 

some labels Dermouche et al. [49] set a threshold of minimum 

occurrences per label i.e. keeping only those labels that appear 

in more than 15 records. Following similar reasoning, and to 

keep consistency across perspectives, we set a relative thresh- 

old, based on the percentage of appearances. Specifically, we keep 

only those labels that appear in at least 5% of EHRs. The rela- 

tive threshold enables to keep every perspective label-set coher- 

ent concerning the label distribution and minimum class support, 

while leaving enough samples with each label to evaluate on the 

test set. 

4.2. Results 

The experimental set is designed to provide a full range of in- 

sights about the application of neural networks to an EHR-ICD 

based multi-label Spanish text classification task. To that end, we 

have explored the performance of the 5 models over 6 dataset per- 

spectives. 

4.2.1. Assessing the models and the impact of the input text 

To evaluate the impact of document length, we make use of the 

Diagnostic and Document perspectives. Here, the intuition is that 

extracting the most relevant part of the documents may improve 

the results by focusing the attention and preventing long-range se- 

quence problems [50,51] , but also may harm, due to loss of infor- 

mation, like the mention of symptoms or drugs, on the discarded 

text. 

Table 2 assess the models with either diagnostic or full docu- 

ment as input and full-code labels as output. 

Comparing the models and representation , we can derive the 

best performing approach. The baseline is outperformed by every 

model by a noteworthy amount, besides, the BiGru ELMo outper- 

formed the others in terms of F-score. The BiGru with standard 

embeddings obtained average results, and the meta-embeddings 

surpassed the model using just standard one-sided embeddings 

derived from fastText. 

Comparing the amount of information conveyed by the in- 

put text and relevant to the models to make their predictions, 

the results are of much interest. All the recurrent models are 

favoured when providing the full document as input (just the base- 

line is superior for the diagnostic input). Indeed, the mean dif- 

ference in terms of F-score in favour of the document input is 

around 5 points. These results could lead to an extensive dis- 

cussion. We now bestow an argument: the recurrent models can 

take advantage of longer sequences with more information and 

larger vocabulary successfully. Notwithstanding, if the model is 

not suitable for sequential data (like the baseline model, NNLM, 

which is not recurrent), those long sequences and large vocabu- 

lary weaken the performance, allowing an improvement by keep- 

ing shorter text fragments. With these results in mind, we rec- 

ommend text summarization or similar techniques for extract- 

ing the most relevant fragments of texts as a mitigation mea- 

sure in case of non-recurrent models for document classification 

tasks. The results attained by the best models for each document 

length (i.e. Diagnostic and Document perspectives) are marked 

in bold. 

4.2.2. Assessing the impact of label-set size and granularity 

Regarding the influence of label-set size and granularity, the in- 

tuition is that as the label-set size decreases the performance in- 

creases, as the inherent difficulty of the problem diminishes. Be- 

sides, it is interesting to explore if the granularity, the degree of 

label detail, by itself, has an impact on performance. 

It is important to remember that due to the relative threshold 

for label-set reduction, the block label-set of the big dataset has 

more labels than the full-code label-set, as shown in Fig. 4 . Hence, 

this scenario allows us to check the impact of label-granularity 

alone. 

Due to the high number of entries that a table would require 

( n = 30 ), and for the sake of clarity, we have chosen to show the 

outcome of this experiment by a line plot. Fig. 5 shows the F-score 

(y-axis) for the full-code, block and chapter labels (x-axis) achieved 

by each of the five models explored for both input perspectives, 

and we can observe similar behaviours. 

Focusing on the document input, we can observe that the be- 

haviour for every model is also similar, improving results as the 

granularity decreases. One key finding is that the granularity has 

an impact alone. With less granularity, the performance increases, 

even with more number of labels. This finding is depicted by the 

situation between the full labels ( n = 16 ) and the block labels 

( n = 19 ), where with the block labels the performance improves 

despite having 3 more labels. This suggests that is possible to get 

models performing better with the same number of labels by just 

decreasing the label granularity. 
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Fig. 4. Label distributions obtained after the reduction of the label-set size with 

a relative threshold of 5% carried for each output perspective of the Osakidetza 

datasets. 

4.2.3. Discussion 

With this work we gained the following insights : Despite is 

a difficult task, Deep Learning recurrent models exhibit strong 

predictive capabilities and can be enhanced by more robust 

text representation techniques such as the meta or contextual 

embeddings. 

We argue that our experimental results throw one key find- 

ing : the granularity of the labels alone has an impact on per- 

formance. The significance lies in the possibility of performance 

Fig. 5. Line plots for performance comparison among the full-code, block and chap- 

ter labels for both perspectives: diagnostic (top), document (bottom). 

improvement by reducing the granularity without reducing the 

label-set size. 

BiGru powered by ELMo is the dominant model in practi- 

cally every situation from both the input and output perspectives 

(shown in Table 2 and Fig. 5 ). Accordingly, a per-class evaluation 

on the best-performing dataset perspective is shown in Fig. 6 . 

Draw attention to the fact that the worse performing label 

T (“Injury, poisoning and certain other consequences of external 

causes ”) gets 41.7% F-score, while the best-performing label C 
(“Neoplasms ”) reaches an outstanding 91%. Half of the labels are 

above 70% and the ≈ 30% of labels are above 80%. 

To assess the stability of the models and the statistical signifi- 

cance of the results, we performed five runs repeating the exper- 

imental set with random seeds and found that Stdev. among runs 

remained under 0.5 for precision and recall and 0.25 for F-score for 

every model and setup, which means that the given experimental 

results are both reproducible and representative. 
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Fig. 6. Per-class evaluation of BiGru ELMo based on F-score and class frequency for the { Inp: Document, Out: Chapter} subtask. 

5. Conclusions 

We presented a set of Deep Learning methods to tackle the NLP 

challenge of multi-label text classification with medical free-text: 

EHRs written in Spanish with datasets from the Basque Country 

Health System and classified according to the ICD. Each EHR is as- 

signed multiple ICD codes, leading to multi-label classification of 

text. 

In this work we turned to deep neural models and we found 

that contextual information conveyed by the BiGru ELMo achieved 

competitive results. BiGru, by contrast to main approaches seen in 

the literature, has a mechanism to cope with label co-apparitions 

and regard diseases as related. 

We wondered if the neural models were able to extract the in- 

formation from entire EHRs of nearly a thousand words or could 

be boosted by selecting a small though representative section (di- 

agnoses). Experimental results showed that it is worthy providing 

the model with the full document as it might convey meaningful 

information. Particularly, BiGru powered with contextual embed- 

dings form ELMo(BiGru+ELMo) outperformed the rest of the mod- 

els explored. In fact, BiGru+ELMooutperformed every model in all 

the setups. The difficulty of correctly predicting a label is not the 

same across labels. A per-class evaluation revealed the competi- 

tive performance of this approach on minority classes. That is, Bi- 

Gru+ELMo resulted robust regarding the class imbalance and, obvi- 

ously, leveraged frequent ICDs. 

Finally, we explored the performance attained varying the out- 

put label granularity (fully-specified code, block, chapter) and 

label-set cardinality (from 14 to 19). This is of interest to decide 

whether to create a fully automatic ICD classification engine or, de- 

pending on the performance required, make the decision to let the 

model just predict a higher order in the hierarchy. 

There are several open directions for future work. First, our 

models leverage ELMo based contextual embeddings, but there are 

other novel approaches to contextual embeddings based on Lan- 

guage Models, like BERT [26] . Second, the core architecture of this 

work is the Recurrent Neural Network, but there are other in- 

triguing architectures like Convolutional Neural Networks, espe- 

cially Capsule Network [52] or the architecture behind BERT, the 

new RNN alternative promising approach called Transformer [53] . 

Third, the methods to address the relation among labels, such as 

statistical driven approaches (e.g., correlation analysis [54] ) and 

strategies leveraging the hierarchically structured ICD and related 

ontologies (e.g., Hierarchical Multi-label Classification [55] and 

SNOMED-CT [56] ). 
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ABSTRACT This work deals with clinical text mining for automatic classification of Electronic Health
Records (EHRs) with respect to the International Classification of Diseases (ICD). ICD is the international
standard for the identification of diseases and health conditions in EHRs and the foundation for reporting
health statistics. Machine learning-based techniques have proven robust to infer classification models from
EHRs. Since each EHR tends to involve multiple diseases, multi-label classification is required. The concern
in this work is the versatility of the models inferred and their ability to generalise in two ways: as time goes
ahead and across hospital services or health specialties. Indeed, in this work, we show the capabilities of
a Bidirectional Recurrent Neural Network (RNN) with GRU units and ELMo embeddings on two corpora
(a corpus comprising a set of EHRs within the Basque Health System, namely Osakidetza, and the well-
knownMIMIC-III corpus). To delve into and assess the versatility of the models, we focus on their resilience
across hospital admissions taken over two different years and also across six distinct hospital services.
In addition, we paid attention to the classification performance to estimate ICD codes of different granularity
(e.g. with or without essential modifiers). Our best results are 39.55% and 47.28%F-Score for the Osakidetza
and MIMIC-III datasets respectively, with the original main label-sets. Regarding the models evaluated per
specialty, the most remarkable results are 57.00% and 72.74% F-Score, in the Cardiology and Nephrology
medical services respectively.

INDEX TERMS Extreme multi-label classification, electronic health records, international classification of
diseases, classification across-time, classification across hospital-services.

I. INTRODUCTION
Natural Language Processing (NLP) is gaining relevance
within the clinical documentation services to copewith exten-
sive information conveyed by Electronic Health Records
(EHRs). Healthcare data is getting increasingly larger and
complex to process [1], but evidence shows its usefulness in
such different sectors as Adverse Drug Reaction extraction
[2], [3] and identification of complex symptoms, assessed in
several cohorts of patients in hemodialysis [4], as well as rel-
evant symptoms in patients with schizophrenia [5], and breast
cancer [6], and the creation of phenotypes to characterise
patients [7], [8].

Facilitating access to information is crucial for accu-
rate clinical documentation. International Classification of

The associate editor coordinating the review of this manuscript and
approving it for publication was Nilanjan Dey.

Diseases (ICD) [9] is a standard used to classify diagnosis and
procedures within EHRs. These codes are used to quantify
vital statistics, for surveillance, to seek cohorts of patients
with similar diagnoses in downstream studies and also as a
standardised information exchange method between hospi-
tals. The thorough and accurate coding of EHRs affects crit-
ical clinical information extraction and also other industries
such as insurance billing [10]–[12].

Nowadays EHRs are manually encoded by healthcare
professionals specially trained to cope with complex ICD
nuances. Note that ICD-10 is arranged in 24 chapters or
branches of medicine and comprises nearly 70 thousand
codes for diseases (ICD-10-CM) and as many for procedures
(ICD-10-PCS). The ICD versions evolve rapidly e.g. from
the 9th version to the 10th the number of codes increased
five-fold and, what is more, the code structure changed from
a maximum of 5 characters to 7; the alpha-numeric coding
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structure was also modified. The chapter is encoded in this
structure and would reflect a coarse-grained classification of
the EHR into branches referred to as ICD chapter. Besides,
in this coding we typically find a sub-set of characters (often
3 of them) that are referred to as the main ICD class, and
the remaining characters comprise what is referred to as
non-essential modifiers (e.g. laterality and severity). Alto-
gether these are referred to as ‘fully-specified ICD class’.
Additionally, manual coding is time-consuming. As an exam-
ple, let us focus on a well-known collection of EHRs, i.e.
MIMIC-III [13], a set of nearly 55, 000 EHRs made available
by the MIT Lab for Computational Physiology from the Beth
Israel Deaconess Medical Centre. Each EHR has, on average,
1, 947 words that are carefully read by professionals to anno-
tate the EHR with all the ICDs found. On average, each of
these EHRs was assigned 11.5 different ICDs (also referred
to as label cardinality) and, altogether, the set shows 6, 527
different ICDs (also known as the size of the label-set). Given
that manually encoding is time-consuming and requires spe-
cialised professionals, several health systems took the deci-
sion to restrict coding to just the main cause of admission,
leading to a relevant loss of valuable information. It is well-
known that EHRs show much variety in terms of (often
non-standard) linguistic forms, semantics and syntax, and a
linguistic style prone to the economy of language [14], [15].

There is evidence that NLP can aid human coders in a
decision support system with the human in the loop [16].
The task of automatically assigning multiple codes to a given
document is referred to as multi-label classification. Auto-
matic multi-label classification of EHRs is, however, far from
the scope of current machine learning approaches given that
high accuracy is a must. There are numerous challenges
inherent in this task, not only from the inference perspective
but also due to the assessment of the quality of the predicted
label-set. The size of the output label-set (e.g. 6, 527 in
MIMIC-III) is extremely high for the input evidence
(e.g. 55, 000 EHRs in MIMIC-III). While automatic infer-
ence can find patterns, pattern repetition in selecting an
unknown number (11.6 labels on average in MIMIC-III, with
9.0 as the median value and a standard deviation of 6.3)
of ICD codes from a set of 6, 527 lead to 51,980 unique
label-sets. Note that there are few pieces of evidence for the
output on top of the variability in the input. This highly-
variable classification task with thousands of possible labels
is referred to as extreme multi-label classification (XMC)
[17]. Quantitative assessment of multi-label models is still
one of the stumbling blocks in the inference since model
optimisation (fine-tuning) rests on evaluation approaches and
this is not a trivial issue. (We shall discuss issues that might
emerge in the assessment in Section III-B).

In this work, we assess a multi-label classification
approach in the task of EHR multi-class classification in
documents written in Spanish. The set of EHRs is comparable
in many aspects to those in MIMIC-III (as we will present
in Section IV-A). Often, [18], [19] related work bound the
size of the label-set in such a way that the data-set ensures

a minimum number of documents per label (in an attempt
to ensure minimum repetition per pattern). In this work we
assessed the system exhaustively.

First, to assess the resiliency of the learning approach
proposed, i.e. Bidirectional Recurrent Neural Network [20]
with GRU units [21] and ELMo embeddings [22] (BiGru
ELMo), the label-set was not restricted and all the labels
available in the data (i.e. 2, 554 labels) were considered and
next, the system was assessed with the top 110 and top 16.
Second, we assessed the robustness of the system across time.
Needless to say, as time goes by, personnel in a hospital might
have changed their EHR writing or encoding style: in these
circumstances, the system should be adapted. The question
also arises here of how often should we re-train the model and
also whether previous EHRs are either beneficial or harmful
for current EHR coding. The motivation is to assess whether
a predictive model inferred with data from a given year can
help to predict EHRs from future years. Also, we want to
evaluate if non-overlapping data from two consecutive years
help to predict EHRs from the later year of the two. In other
words, we wish to assess/evaluate if training with data from
successive years can generate synergies or, whether the best
option is to re-train the system frequently to keep it updated.
Third, we did not only assess the system across time but also
across use-cases in different hospital services. One of our
concerns had to do with data scarcity. We wondered if a gen-
eral system trained with EHRs from discharge reports from
several hospital services (e.g. cardiology, psychiatry etc.)
is able to cooperate and make the system capture accurate
syntax and semantic nuances, or if, by contrast, accurately
encoding EHRs from a given service was bound to train the
system with EHRs from that service, while EHRs from other
services could lead to lexical explosion and maybe distort the
outcome. Through these experiments we tried to shed light
on the following three research questions: 1) the ability of
BiGru ELMo to cope with infrequent and frequent labels,
2) the robustness of the model across time and, 3) across
hospital services. Briefly, the novelty of the work resides in
the aforementioned research questions. To this end, we apply
a state-of-the-art multi-label classificationmodel to a Spanish
EHR dataset that can be segmented by year and medical
service. The segmentation of data allows checking the robust-
ness of the models against lexical variation due to variations
among medical specialties and across-time. We also assessed
the model in both coarse-grained (the ability of the model to
situate the EHRwithin a chapter of the ICD) and fine-grained
code assessment (referring to the granularity mentioned on
page 183534). The finer the granularity, the bigger the size of
the label-set.

II. RELATED WORK
Since 2000 CLEF has organised different laboratories in the
field of multilingual access evaluation, in particular since
2016 in the automatic assign of ICD codes. In 2016 [23] the
task consisted of extracting causes of death from French nar-
ratives as coded in the International Classification of Diseases

VOLUME 8, 2020 183535

72 A - APPENDIX



A. Blanco et al.: Extreme Multi-Label ICD Classification: Sensitivity to Hospital Service and Time

ICD-10. In 2017 [24] the task goal was to automatically
assign ICD-10 codes to English and French death certificates.
In 2018 [18] the task focused on French, Hungarian and
Italian texts. In 2019 [25] the task explored the automatic
assignment of ICD-10 codes to non-technical summaries of
animal experimentation in German. The tasks carried out
from 2016 - 2018 are focused on the codification of lines
(diagnosis) instead of on the codification of whole EHRs.
On average, each diagnosis has between 2.06 to 12.38 tokens
and between 1.20 to 1.37 codes.

Approaches based on regular expressions or transducers
either manually created [26], [27] or automatically inferred
from data [28] were used in previous works when it comes
to mapping Diagnostic Terms (DT) expressed in natural lan-
guage into standard DTswithin the ICD and, hence, assigning
the corresponding ICD. The difference between translating
non-standard expressions to a standard form and assigning
ICDs to a given full EHR is substantial. The entire EHR in
our task has on average ∼1,000 words per document, while
the input non-standard DT tends to have around 5 words.
In the EHR, the language is likewise, non-standard, although,
the DTs are not explicitly informed. Moreover, implicit evi-
dence, such as analytics and current treatment, might yield
an ICD. Besides, while the correspondence between the non-
standard DT and the ICD codes is 1 to 1, in the EHRs, 1 short
phrase could trigger n ICD codes being the correspondences
m to n.

The so-called binary relevance approach [29] is a simple
approach to tackle multi-label classification that comprises
as many binary classifiers as classes involved. Each classifier
would determine the absence or presence of one class. The
drawback of this simplistic approach is that the classes are
assumed to be independent, hence, dependencies among ICD
codes would be disregarded. Nevertheless, some diagnostics
are incompatible (and should not be predicted together),
while others tend to co-occur. Accordingly, we opted for a
model that considers the label-dependencies.

Rios and Kavuluru [30] explored the use of Convolutional
Neural Networks (CNNs) for automatic ICD coding. They
stated that when many codes occur infrequently, the Deep
Learning (DL) models’ performance is inhibited. They pro-
posed a neural transfer learning strategy, supplementing EHR
data with PubMed indexed biomedical research abstracts.
For the source task, they trained a CNN to predict 1.6M
Medical Subject Headings (MeSH) using PubMed indexed
biomedical abstracts, whereas, for the target task, they trained
a CNN on 71,463 EHRs to predict ICD diagnosis codes.
Our approach is also based on the idea of transfer learn-
ing, as the ELMo embeddings are derived from a bidirec-
tional LSTM trained with a coupled language model (LM)
objective on a large text corpus, including, but not restricted
to biomedical texts (i.e. pharmaceutical or medical articles
fromWikipedia). They got, respectively, a micro- and macro-
F-Score of 56.8 and 28.6, considering 1, 231 truncated
ICD-9 labels with 5, 303 average words per instance from
71, 463 instances.

Gangavarapu et al. [19] employed the MIMIC data-set.
It is usual to exploit the discharge summaries (i.e. the clinical
report prepared by the physician after a hospital stay), but
in this case, they leverage the nursing notes. One draw-
back is that the nursing notes present excessive redundant
information, due to the anomalous and evolutive data of the
patient. This issue was addressed with a fuzzy similarity-
based data cleansing approach; The authors applied vector
space and topic modelling to extract the rich patient-specific
information available in unstructured clinical data. This can
be crucial in countries where structured EHR adoption is not
widespread [31], [32]. The authors worked with 223, 556
nursing notes of 357.8 words on average, predicting 19
ICD-9 code group labels, and achieved a maximum F1-score
(weighted-) of 69.81 across all the tested models.

Most ICD codes appear only in a few samples, that is,
the ICD distribution presents a long-tail, which is, precisely,
a feature of extreme multi-label classification. Babbar and
Schölkopf [33] posed the tail-label detection task in XMC
as a robust learning problem, taking into account the worst-
case perturbation scenarios. This viewpoint is motivated by
a key observation: from the training set to test set, there
is a significant change in the distribution of the features of
instances belonging to the tail-labels. This is a typical case
when classifying EHRs with ICD codes, especially, across
time or clinical services [34] since physicians from different
medical specialties refer to the same medical concepts in
diverse forms. The converse also happens: the same string is
employed to refer to different concepts (this happens often
with abbreviations) across clinical services.

In an attempt to tackle the scalability issue of state-of-
the-art Deep Learning-based methods to extremely large
label-sets [35], a hierarchical structure based on Probability
Label Trees generated with balanced k-means recursively,
and multi-label attention was proposed by You et al. [36].
Similarly, Gargiulo et al. [37] presented a methodology
named Hierarchical Label-Set Expansion (HLSE), used to
regularise the data labels, based on the hierarchical structure
of the MeSH label-set. Data scarceness and large lexical
variability and vocabularies are major concerns in the ICD
multi-label classification tasks. Deng et al. [38] presented a
processing pipeline built uponCNNs and an autoencoderwith
logistic regression. They applied the combination of embed-
dings from different sources and proved the positive influence
of semantic enrichment to counter the aforementioned strains.
The contextual ELMo embeddings can overcome these lim-
itations of the standard embeddings [39]. Cheng et al. [40]
recognised that some complex semantic problems in the real
world require the association of more objects with related
labels but also that as data complexity increases, the class
imbalance issues become increasingly prominent. A well-
known strategy to deal with imbalance between classes is to
use label correlations, but their work proposed an alternative
approach. They first introduced the classification margin and
expanded the original label-space among labels, taking into
account the label-density. The BiGru model can handle all
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the labels at once thanks to the final dense layer with the
Sigmoid activation function, and thus, is able to capture and
model the label dependencies. Chalkidis et al. [41] com-
pared various neural methods on the EURLEX57K data-
set (with 4,271 labels) and concluded that the best results
rely on the Recurrent Neural Network with GRU units, but
also that it is the most computationally expensive method.
Chang et al. [42] leveraged the pre-trained language represen-
tation model BERT, extending it to the XMC problem to deal
with the difficulty of capturing dependencies or correlations
among labels and the tractability to scale to the extreme label
setting because of the Softmax bottleneck scaling linearly
with the output space. Their so-called X-BERT utilises both
the label and input text to build label representations. This
induces semantic label clusters to better model label depen-
dencies, which can also be applied to the ICD classification
task, as all the labels have an associated text, the standard-
term description.

Themotivation and novelty of this work resides in explor-
ing the behaviour of the classifiers under novel circumstances
through the characteristics of our task. It conveys a multi-
label text classification problem with great lexical variability,
especially in the set of EHRs in Spanish, as the dataset can
be segmented by year and medical service. To that end, and
following the insights of the related works, we developed a
model based on Recurrent Neural Networks with Bidirec-
tional Recurrent layers and GRU units leveraging the ELMo
contextual embeddings. These models were proven robust
and capable of learning from scarce samples, as is the case
of ICD coding. The gaps found in previous works, and which
we do cover in this article, are related to the capability of
such state-of-the-art models to keep a strong performance fac-
ing lexical variation inherent to the biomedical domain, but
extended to variations over time (i.e. attempting to make pre-
dictions across years) and different sub-domains (i.e. across
various clinical services). This way, we assess the sensitivity
of these models to different factors (time and health services)
and, thus, pay attention to their usability.

III. METHODS
A. MULTI-LABEL CLASSIFICATION APPROACH
Having explored previous works, for our task we opted for
a Recurrent Neural Network with a Bidirectional layer with
GRU units (referred to as BiGru from now onward). The
architecture of the model is shown in Figure 1, and formally,
is explained in (1), with the bidirectional layer processing
the sequences of text in both directions, forward and reverse.

Accordingly, it generates forward (
−→
h(t)) and backward (

←−
h(t))

hidden states, which are later combined into h(t). Here t is the
time-step and T the total number of time-steps (1 ≤ t ≤ T ).
The parameters to be determined in the inference stage given
the EHRs are, on the one hand, the weight matrices,W and V ,
and, on the other hand, the bias term b. A non-linear activation
function, the Sigmoid (σ ), is chosen to compute the current
hidden-states taking, as input, the weighted sum of previous

FIGURE 1. Architecture of the BiGru ELMo model: a Bidirectional
Recurrent Layer with GRU units powered by ELMo embeddings with
Pooling and a final multi-label dense layer.

hidden-states (h(t−1)) and current input (x(t)) with the weights
given by W and V . Finally, both hidden states are combined
as a mere concatenation of each matrix.

−→

h(t) = σ (
−→
W x(t) +

−→
V
−→
h (t−1)

+
−→
b )

←−

h(t) = σ (
←−
W x(t) +

←−
V
←−
h (t−1)

+
←−
b )

h(t) = [
−→
h (t)
‖
←−
h (t)] (1)

The output of the bidirectional layer, h(t), is fed to several
Pooling [43] layers. To be precise, in our work, an average
and a max-pooling layer were used, as in (2).

hmax = max
1≤t≤T

h(t) and havg =

∑T
t=1 h

(t)∥∥h(t)∥∥ (2)

The output of both pooling layers (hmax and havg) is again
concatenated into h = [hmax‖havg] ∈ R2T and passed into
a final dense layer, which is responsible of computing the
probability estimation of the labels i.e. ICD codes.

The strength of RNN with GRU unit and ELMo is clear
in this extreme multi-label scenario as described in what fol-
lows. This BiGru model can cope with the multi-label prob-
lem since the final dense layer is able to capture and model
the label dependencies in contrast with the binary-relevance
approach. In fact, by virtue of the Sigmoid activation func-
tion, it produces a probability estimation for each label that
is not mutually exclusive [17]. Thus, this BiGru model is
suitable to cope with the multi-label classification of EHRs
through ICDs and address dependencies between diagnoses.
Moreover, bearing in mind that EHRs are long documents,
with even thousands of words per document, the ability to
capture long-term dependencies in the text, as an RNN with
GRU does, becomes imperative. Furthermore, in an attempt
to cope with lexical variability in the input EHRs, we turned
to ELMo embeddings. In general, the word embedding is a
technique to transform a word, and therefore a document,
into a dense vector and, by extension, into a matrix. The
text from a clinical record is fed into an embedding layer,
and the output is a matrix representing the document, with
one row-vector per word. Each word is referred to as time-
step in the formulation of the model. ELMo embeddings [22]
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capture contextual information and, according to the authors,
these word representations model i) complex characteristics
of word use (i.e. syntax and semantics) and ii) how these
uses vary across linguistic contexts (i.e. to model polysemy).
As a result, in our task, ELMo embeddings can help towards
i) the detection of some essential nuances of medical records
such as the negation of symptoms and, ii) robustness to
variations of the author (i.e. each physician expresses in a
particular way) and sub-domain (i.e. a reference to the same
medical concepts across several clinical services). We also
need embeddings, as they can cope with different linguistic
contexts, to deal with the various clinical services, time-
frames, and their lexical subtleties. These are the principal
reasons why we opted for BiGru ELMo as an appropriate
choice to deal with high lexical variability within EHRs and
multi-label classification with respect to the ICD.

B. MULTI-LABEL ASSESSMENT CRITERIA
We have resorted to well-known metrics such as Preci-
sion, Recall and F-Score, but to adapt them correctly to
the multi-label scenario it is necessary to compute aver-
ages since these metrics are well suited to mono-label tasks.
There are several common averages, i.e. micro-, macro- and
weighted-average-, each of them penalising certain aspects
more severely than other [44], [45]. For example, a macro-
average will compute the metric independently for each class
(i.e. a confusion matrix for each ICD) and then compute
each metric and take the average of the metric (hence it will
treat all classes equally). By contrast, a micro-average will
aggregate the contributions of all classes in a single confusion
matrix and then compute the average (hence, the performance
over more populated classes dominate). Thus, in a situation
with imbalanced classes is easier to get higher metric values
with the micro-average provided that the dominant class is
accurately predicted (with the micro-avg result being almost
insensitive to the hits or fails over less populated classes).
The weighted-average is a balanced solution which takes
into account the support (i.e. frequency) of each label to
weight their contribution to the final metric value. For that
reason, in this work, we give the weighted-average version
of the Precision, Recall and F-Score metrics. Nevertheless,
all these approximations and variations come with benefits
and disadvantages: there is not a general optimum approach,
and the best-suited evaluation will depend on the task and
objectives of the work. Note, however, that averages are taken
per code and not, strictly, per document. A challenge in ML
classification is to on decide the number of codes to assign to
each document, as this is variable (on average, EHRs within
MIMIC receive 11.6 codes but the deviation is 6.3, quite
high).

IV. EXPERIMENTAL FRAMEWORK
A. CORPORA
Here we describe the corpora and provide two perspectives:
the input (text from EHRs) and the output (ICDs). The data

TABLE 1. Quantitative description of the input (EHRs).

we had available for this work comprised two separate but
analogous data-sets with EHRs, written in Spanish, from the
Basque public health system (Osakidetza). Specifically, both
sets, denoted as Osa1 and Osa2, comprise discharge sum-
maries from hospitals. Table 1 provides quantitative details of
each data-set and the union of both sets (denoted as Osa1+2)
leading to a total of 27, 040 unique EHRs.

Regarding the input (EHRs), both Osa1 and Osa2 data-
sets are significantly smaller than MIMIC; indeed, there are
nearly twice as many samples in MIMIC as in Osa1+2.
However, the size of the vocabulary (the number of unique
words) of Osa1+2 (379, 477) is approximately three times
larger than the vocabulary of MIMIC (137, 207). This means
that the lexical variability is notably higher in the Spanish
set, even though there are more documents and, besides,
the length of the documents is much higher in MIMIC.
To enable the drawing of conclusions from the following
experiments, we must acknowledge the distributions of the
features of the different sets from the experimental setup.
To that end, as the classifiers are only fed with the text
from the clinical records, we explore the vocabulary and Out-
of-Vocabulary (OOV) words. The number of unique words
in Osa1 is 89,840, the number of unique words in Osa2 is
94,764, and the number of OOV words in Osa2 with respect
to Osa1 is 42,249, which is the 44.6% of the vocabulary.
The vocabulary we are dealing with is large, but what is
more, we can observe that the amount of disjoint vocabulary
between sets is also quite high, leading to the demand for
robust classifiers.

Regarding the output, i.e. the label-sets, the aim is to
predict the set of ICDs in their fully-specified form. However,
failing non-essential modifiersmight be considered not as bad
as failing the chapter of the ICD. Accordingly, we assessed
the performance taking into account three different granular-
ities of the ICD codes, from fine- to coarse-grained:
• ‘‘Full-code’’ level preserves the original code e.g.
‘‘I13.10’’ (this stands for Hypertensive heart and
chronic kidney disease without heart failure, with stage
1 through stage 4 chronic kidney disease, or unspecified
chronic kidney disease);

• ‘‘Main’’ level drops non-essential modifiers, keeping
just the first three characters e.g. ‘‘I13’’ (Hypertensive
heart and chronic kidney disease )

• ‘‘Chapter’’ level keeps only the first character, that is,
the chapter of the ICD e.g. ‘‘I’’ (Diseases of the circu-
latory system).

Trying to predict rare codes is really challenging for
inferred systems and often previous works pruned the
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TABLE 2. Size of label-set (|C|) taking different granularity of labels for
each corpus. Three levels of granularity were assessed: ‘‘Full’’ stands for
‘‘fully specified ICD code’’, ‘‘Main’’ for the essential modifiers, ‘‘Chapter’’
for the ICD chapter. ‘‘Fullfi%’’ is the subset of Full in which the ICD codes
were seen in at least fi% documents (∼1% and ∼5% of the documents
respectively).

label-set according to a minimum frequency threshold
[46], [47]. In an attempt to make comparisons with respect to
previous works, we created a sub-set of instances restricted
by frequency. |Ctrainr | denotes the size of the label-set
restricted to most prevalent ICDs following repetition bound-
aries shown in previous works. Note that, |Ctrainr | = |Ctrain|
means that no restriction was applied. We experimented with
a subset from the full label-set in which the occurrences of the
codes were above a threshold f . In our case, we considered
two thresholds leading to two label-sets, denoted as Full1%
and Full5%, which incorporated a code whenever it appeared
in at least ∼1% and ∼5% of the documents respectively.
Quantitative details of the label-set in our data-sets are given
in Table 2. The table reveals substantial sparsity: just 110 out
of 2, 554 ICDs appear at least in 1% of the EHRs (i.e. dis-
eases diagnosed around a hundred times in a set of around
10, 000 EHRs). Note that for all the experiments carried out,
the train and test partitions are obtained with the iterative
stratification algorithm, with a 70/30 split.

B. PERFORMANCE BY LABEL GRANULARITY
Table 3 shows the experimental results of the model on each
corpus (Osa1, Osa2, Osa1+2, and MIMIC). Regarding the
label-set reduction, the assessment was made on each of the
aforementioned label sub-sets (Full, Full1%, and Full5% pre-
sented in Table 2). Additionally, Table 3 shows the assessment
of the computer-aided coding system to various levels of
granularity.

Note that increasing the size of the label-set from
110 to 2, 500 (an increment of 1 to 22), as we could expect,
was detrimental to the F-Score (from 37.87 to 20.43). Never-
theless, the decrease was not as dramatic as 22 to 1 and the
same applies to the results of just 16 prevalent labels. This
insight suggests that the model is able to learn from rare cases
in EHRs (as one-shot learning strategy aims to) and is able to
make predictions of ICDs with little prevalence.

Experiments carried out with the entire label-set (with
above 2, 550 different ICDs) show reasonable performance
in terms of averaged scores. Although it is difficult to make
a fair comparison because no standardised set of experi-
ments has been popularised on any ICD code-based multi-
label classification data set, there are some reference works
with which we can validate the performance of our models.

TABLE 3. Performance of the system over different ICD
code-lengths or granularity (F: Full, M: Main, C: Chap) for all specialties
together. P denotes Precision, R Recall and F the F-Score.

Dermouche et al. [48] obtained 75.0 micro F-Score and
35.0 macro F-Score with a Support Vector Machine (SVM)
model, and 74.0 micro F-Score and 38.0 macro F-Score with
a Latent Dirichlet Allocation (LDA) model, but taking into
account just 252 codes from theMIMIC dataset, and comput-
ing the F-Score retrieving the correct class among the 10most
probable classes returned by the model. Duarte et al. [47]
achieved 27.04 macro F-Score with their best model based
on Hierarchical GRUs considering the Full codes, 40.50 con-
sidering main codes and 62.91 considering chapter codes.
The number of labels was 1,418, 611 and 19 respectively.
In brief, taking as the baseline the aforementioned state of
the art approaches, our approach is ahead in several aspects.
In light of the results attained with MIMIC-III, the model
was proven competitive with respect to previous works
in a fully automatic classification scenario entailing fully-
specified ICD codes. Having validated the results on a well-
known corpus, we have extended the study to the corpus from
Osakidetza (a set of EHRs in Spanish).

Our system was assessed with two non-overlapping
sets of EHRs from two different years from Osakidetza,
named Osa1 and Osa2. As shown in Tables 1 and 2, both
Osa1 and Osa2 have a similar number of input EHR texts
(about 13, 500 documents). The size of the label-set is the
same (2, 550 in round figures), as is the label cardinality
(on average, 5.8 labels per document). However, the F-Score
differs 2 absolute points in the most extreme case with all the
labels (from 20.43 to 18.56). Nevertheless, as expected due to
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TABLE 4. Behaviour of current model on unseen current and future EHRs, for all the specialties together, and with granularity Full. P denotes Precision, R
Recall and F the F-score.

TABLE 5. Osa1+2 generalist model trained on the Full1% label-set but re-evaluated per specialty and also applying the ‘specialty labels’ label-set
modification.

the higher number of available samples, the best performance
is attained with the union of both data-sets, even though the
union conveys ∼500 labels more on the test set. With the
union, the results from Osa1 are improved by another two
points, leading to an F-Score of 22.48 on the full label-set.

Bearing a computer-aided ICD classification system in
mind, we assessed the model in three scenarios with increas-
ing details in the predicted label, ranging from the ability of
the model to predict the fully-specified ICD code (denoted
as F (Full) in Table 3), the main class without non-essential
modifiers (denoted asM (Main) in Table 3) or the ICD chapter
(denoted as C (Chap) in Table 3). Given an EHR, the model
is shown to be effective in the assignment of the chapters of
the ICD, restricting the use to just those chapters, which can
be useful, as discussed in Section V. As the label gets more
andmore specific, the task gets more complex. Restricting the
granularity of the model impacts upon the size of the label-
set: while there are thousands of fully-specified ICDs, there
are just 24 chapters and 870 main labels. Note that with the
Osa1+2 data-set, the F-Score with the Full granularity and
the label-set reduced from 2,554 to 110 labels is 39.89, almost
the same as the 39.55 F-Score obtained with the non-reduced
870 Main labels.

C. SENSITIVITY OF THE MODEL TO LEXICAL
VARIANTS ACROSS TIME
Would a system learn consistently from EHRs issued in one
year how to classify EHRs in the future? Howmuch does data
addition boost the performance of the system? These exper-
iments would suggest that the lexical features within EHRs
(possibly clinical personal, clinical specialisations, etc.)

changed over time. Also, note that the number of samples
can influence the results, especially when the concatenation
of both data-sets are used for the training of the model.

Table 4 shows the ability of each model to classify current
and forthcoming EHRs. To this end, the model was trained
with current and past EHRs and assessed with either cur-
rent events or events from subsequent years unclassified at
that moment. The aim is to test the sensitivity to different
time-frames. As we could expect, training the models with
EHRs issued in the same year as those in the evaluation
is beneficial, and even more so, if the training set is com-
pleted with EHRs even from previous years. As we can see
in the rows with Test = Osa2 when the training data is
from both years, the F-Score raises from 18.56 to 22.48,
increasing the performance by ∼4 points, and it is ∼2 times
higher than when training only with EHRs from a previous
year (11.61 to 22.48).

D. SENSITIVITY OF THE MODEL TO LEXICAL
VARIANTS BY HOSPITAL SERVICE
The full data-set comprises discharge reports issued by dif-
ferent hospital services: e.g. Cardiology, Digestive, Neurol-
ogy, etc. While decreasing the amount of EHRs tends to
be detrimental to the effectiveness of the inference process,
restricting the service may also reduce the lexical variability
in the input and, eventually, might benefit the predictive
ability. In other words, we aim to respond to the following
question: how sensitive are the generalist model and the Spe-
cialty Models are to relevant codes belonging to the specialty
in which the patient was admitted?. These results are shown
in Tables 5 and 6.
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TABLE 6. Specialty Models trained on subsets of EHRs from the Osa1+2 data-set by specialty, with the same Full1% label-set and also applying the
‘specialty labels’ label-set modifications as in Table 5 to enable comparison.

To deal with this question, we begin with Table 5, where we
present the performance of a generalist model (from Table 3,
trained with EHRs from all the medical services) evalu-
ated over the different subsets of EHRs by medical service.
On the other hand, we also trained a model specifically for
each service (namely, Specialty Models) limiting the training
data to the EHRs issued in that service. The results are shown
in Table 6.

Individual models were created, one per clinical service.
Eachmodel was trained receiving only discharge reports from
a single service. While this reduces the documents accessed
by each model, if the language boundaries are subject to
lexical nuances particular to individual services, the models
might show good performance, particularly in predicting ICD
codes from the service with which they were trained. Note,
however, that even though the EHRs were restricted to a
single service, they convey both codes from the specialty
(associated with the cause of admission in that service) as
well as other codes regarding the general status of the patient
and other findings (e.g. ex-smoker and type-2 diabetes).

For that reason, we consider two alternative evaluations
based on different label-set modifications (as shown in
the ‘‘Cmodif ’’ column of the Tables 5 and 6). These are
i) All: Keep all the labels that appear across the EHRs from
the subset of the given specialty. ii) Spec: Consists in taking
into account only the ‘‘specialty labels’’, that is, keep the
labels of the given specialty. For example, for Cardiology,
you will keep only those labels that appear in Chapter IX -
Diseases of the circulatory system of the ICD, due to it being
the most-related chapter to Cardiology.

To help the reader interpret the results, note that while the
records within Pneumology service convey 2, 057 different
ICDs (see |Ctrain| column from Table 5), the sub-set of ICDs
within the ICD chapters related to Pneumology are 126, and
those among the 110 most frequent codes are only 17 (see
|Ctest | column with the ‘Spec’ |Cmodif | from Table 5).

First of all, in most clinical services, when evaluating
with the ‘‘specialty labels’’, performance improves. In some
specialties, such as Nephrology, the increase is considerable
(26.3 F-Score points). One reason is that the difference in

the number of labels between both label-set modifications
is notorious in every medical service (i.e. from 107 to 17 in
Pneumology, or from 105 to 23 in Cardiology. . . ). Despite
this fact, in some specialties, better performance is achieved
with all the labels than only with the specialty labels, such
as in the Digestive case (i.e. 32.39 F-Score with all the
108 labels, and 23.02 with only the 6 digestive-related
labels). However, the most remarkable aspect is that, regard-
ing all the labels, (the ‘All’ rows on the Cmodif column from
Tables 5 and 6) for all medical services, the generalist model
achieves a better performance in comparison with the Spe-
cialtyModels. Nonetheless, what behaviour takes place when
considering only the ‘specialty labels’?

It can be observed (in Tables 5 and 6) that when the aim is
to classify the EHRs of a given specialty according to the ICD
codes of that specialty, it is worth training the Specialty Mod-
els. In four of the six specialties, the results improve in terms
of F-Score. Besides, note that for the medical services which
perform better with the generalist model (Pneumology and
Nephrology) the gain is only around 3 and 6 points respec-
tively. However, the mean improvement obtained with the
Specialty Models for the other specialties is about 14 points,
presenting some notable increases, such as the ∼30 points
improvement (from 21.28 to 52.38) in the Digestive specialty.
Figure 2 combines the experiments with the generalist model
evaluated per specialty and each of the Specialty Models
(i.e. the results from Tables 5 and 6). The picture shows
that assessing all the labels, the generalist model is more
suitable, without modification, while when considering only
the ‘‘specialty labels’’, the Specialty Models line (in light
blue), is, in most medical services, superior to the generalist
model.

V. DISCUSSION
The experimental setup consists of a popular clinical multi-
label dataset, namely, MIMIC-III, used to validate our
approximation and compare with previous works, along with
some in-house datasets (Osa1 and Osa2), that presents the
advantage that has the data segmented by year and medical
specialty.
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FIGURE 2. F-Scores of models trained with the Osa1+2 data-set on the Full1% label-set, but re-evaluated per specialty (i.e. generalist model, dark
blue) and trained on subsets of EHRs (i.e. Specialty Models, light blue).

Compared to the related works, the input EHR is not
restricted to a diagnostic phrase of few words as in [49] or a
short note as in [48]. Our EHRs comprise full notes with
864±415 words on average it is close to a full clinical history
ofMIMIC-III, entailing several notes for a given patient, with
1, 399±721words per history on average. Due to the complex
ICD system in conjunction with long medical texts, nowa-
days, numerous healthcare professionals specially trained are
devoted to manual EHR coding. Emerging techniques in NLP
are bridging the gap between manual and automatic ICD
coding through clinical decision support systems.

In an attempt to assess the usability of the models in prac-
tice, we should bear in mind whether the errors produced by
the system are minor, due to confusion between non-essential
modifiers (i.e. the last characters from the Full codes) yet
correctly guessing the main class, or major, failing even the
chapter of the ICD. While confusion between non-essential
modifiers is counted as a failure, in practice, the system can
help the human-coder position in the right branch of the ICD;
by contrast, confusion between chapters would require an
extra effort on the part of the human expert. In this scenario,
the model would guide the expert to a Chapter (branch) of the
ICD in which to select the Full code.

The assessment was carried out enabling the model dis-
pense with the non-essential modifiers (and focusing on the
main ICD and the chapter). Results showed that the potential
of the model increased substantially from the fully- auto-
mated scenario to that of the computer-aided classification.
A computer-aided ICD classification system can help the
human expert to access the chapters of the ICD involved in
each record very accurately (with a Precision of 80.88 and a
coverage-recall of 67.46) as shown in Table 3. If we turn to a
finer-grained classification in a situation in which the system
would act automatically and would code the fully-specified
label, the system would attain Precision of 27.64 and the
Recall decays to 20.52. Depending on the Recall required,

the system would demand a more active role from the human,
while a significant percentage of the labels would have been
correctly assigned. Although we have explored several levels
of granularity, namely, Chapter, Main and Full granularity,
we have focused on the complete ICD, as it is of great
importance for applications such as insurance billing or other
clinical information extraction tasks.

Often, previous works discarded learning ICDs that had
little prevalence in the set or which only focused on a set
of nearly a hundred labels [34], [48], [50]. In our case,
we assessed them all, but as we could expect, prevalent ICDs
are predicted more accurately than the average prediction
quality. Table 3 disclosed that increasing training instances
significantly benefitted the predictive ability of the model.
The restriction to 110 and 16 most prevalent labels was
selected in an attempt to make fair comparisons with previous
works. Nevertheless, increasing the number of labels and
decreasing the performance does not show a linear relation-
ship, but rather the performance drop is less than expected.
This implies that the model can learn from infrequent occur-
rences and can predict uncommon ICDs.

An analysis of the results shows that a generalist model
trained overall services achieves, on average, an F-Score of
22.48 for the full set of 2,554 labels (see Table 3). Regarding
the experiments to assess the robustness across-time, adding
more years (i.e. more EHRs) to the training set benefits per-
formance, as expected. Nevertheless, it is interesting to note
that although the models are robust enough to correctly clas-
sify some EHRs from future years trained solely on data from
past years, there is a negative effect on performance. There-
fore, our recommendation is, whenever possible, to continue
retraining the models with the new data as it becomes avail-
able since the improvement is not negligible.

In what concerns the experiments with the different medi-
cal services, one conclusion is that when evaluating the labels
without modification by service (that is, all the labels that
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appear in the EHRs), the best results are obtained with the
generalist model, meaning that the lexical reduction did not
overcome the label-set variability. Nevertheless, the most
significant insight gained is derived from Table 6, which
shows that it is when the Specialty Models are trained on
the specialty label-sets that they do better than the generalist
model. It is true that this comes with the extra cost of training
several models, one for each medical service, and is limited to
more restricted specialty-related label-sets. However, we feel
that for certain applications, such as intra-specialty pharma-
covigilance services in hospitals, these costs could be offset
by the associated advantages.

Regarding the evaluation, we believe that there are aspects
that do not get reflected in the most widely used metrics
(such as Precision, Recall, F-Score, MAP, MRR. . . ). Specif-
ically, the number of codes associated with a document is
relevant: therefore, if the prediction yields either a much
lower, similar or much higher number of codes than the actual
number of codes, this should be penalised/acknowledged
accordingly. We feel that further multifaceted metrics should
be developed to gain a deeper insight into extrememulti-label
classification.

There is room for improvement by exploring other neural
approaches e.g. models based on the Transformer architecture
(BERT, BioBert, . . . ). Nevertheless, transformers pose chal-
lenges in the training process [51] due to the high computa-
tional burden and data needed. To remedy this, and inspired
by the fine-tuning strategy, we feel that an initial generalist
model could be trained; this could be further fine-tuned with
new data from subsequent years or new medical services.

VI. CONCLUSION
This work deals with an extreme multi-label classification
task on clinical texts. The aim is to assign, to each EHR,
the corresponding diagnoses as in the ICD. Each EHR tends
to convey 5.8 ± 3.4 ICDs (out of about 2, 500 distinct diag-
noses in our study).

Having demonstrated the ability of the approach to be
both a fully-automatic and computer-aided multi-label clas-
sification, we assessed the resilience of the model to natural
variations in order to address omission in previous works. The
concern is about the behaviour of a model trained with some
EHRs when it comes to classifying EHRs later on (e.g. texts
possibly written by different experts). We put our focus on
variations in two aspects: across-time and through hospital
services.

Regarding the resilience of the system to time-related vari-
ations, the results showed that the datasets from different
(non-overlapping and consecutive) years are similar in diffi-
culty, as the results with Osa1 and Osa2 are reasonably com-
parable, with 20.43 and 18.56 F-Score, respectively. Also,
adding more samples is always useful, as this gives best
results, as previously seen when the train set is the union
Osa1+2 (i.e. 22.48 F-Score when training and testing with
Osa1+2). A key insight is that although the datasets are
similarly difficult when trying to predict future EHRs with

data from previous years, the performance decline signifi-
cantly (i.e. from 20.43 when training and testing with Osa to
11.61 when training with Osa1 but testing with Osa2 future
samples).

With respect to the ability of the system to classify EHRs
acrossmedical specialties, our experiments showed that when
the predictions are made over non-modified label-sets by spe-
cialty, the best option is the generalist model, which benefits
from the greater number of EHRs in the training set. However,
the approach which achieves the most favourable results on
specialty labels is to train Specialty Models with the specialty
label sub-sets. Although this carries an extra cost, it can be
useful for the development of tools for application in specific
medical services in hospitals.

We feel that there is still a gap in the literature that could
be exploited for future work: namely, knowledge-driven
reinforcement learning exploiting the hierarchical structure
of the ICD to gain accuracy in different granularity levels.
Previous works tried to incorporate the hierarchy [52], [53].
Clinical entity recognition could help to recognise relevant
information such as disorders or findings, laterality, sever-
ity or body-part. This information is, somehow, included in
the hierarchical representation of the ICD and could drive
the code generation. Within our framework, the hierarchical
boundaries could be modelled as embedded graphs. This
approach, however, is outside of the scope of this work.
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Exploiting ICD Hierarchy for Classification
of EHRs in Spanish Through

Multi-Task Transformers
Alberto Blanco , Alicia Pérez , and Arantza Casillas

Abstract—Electronic Health Records (EHRs) convey
valuable information. Experts in clinical documentation
read the report, understand the prior work, procedures,
tests carried out, and encode the EHRs according to
the International Classification of Diseases (ICD). Assign-
ing these codes to the EHRs helps to share information,
and extract statistics. In this paper, we explore computer-
aided multi-label classification approaches. While Natu-
ral Language Understanding has evolved for clinical text
mining, there is still a gap for languages other than English.
Language-modeling aware Transformers has demonstrated
state of the art approaches through exploiting contextual
dependencies. Here we focus on EHRs written in Spanish,
and try to benefit from the Language Model itself, with
unannotated corpus with less data but in-house, in-domain
and closely-related EHRs to that of the downstream task.
The International Classification of Diseases coding scheme
is hierarchical, but its synergies among hierarchical lev-
els are rarely exploited. In this work, we implement and
release a hierarchical head for multi-label classification,
which benefits from the hierarchy of the ICD via multi-task
classification.

Index Terms—Hierarchical, transformers, multi-task,
EHR, multi-label, under-resourced languages.

I. INTRODUCTION

THIS work deals with the coding of Electronic Health
Records (EHRs) according to the International Classifi-

cation of Diseases (ICD). This task requires, on the one hand, a
well-suited Language Model (LM) to cope with the contextual
nuances of the language and, on the other hand, an extreme multi-
label classifier to assign each EHR a subset of ICD codes from
the thousands of diseases available in the system. In this task, we
focus on the classification of EHRs in Spanish. In recent years,
there has been an international interest in this area, and since
2012 the CLEF eHealth Evaluation Lab and Workshop Series
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have been organized every year, with many ICD coding tasks,
focusing mainly in English. Regarding the minority languages,
there have been editions focused on French, Hungarian and
Italian [1], [2]. Concerning Spanish, only the 2020 edition [3],
task 1 [4] focused on clinical text term coding from clinical case
records and the CIE-10-ES, the Spanish version of the ICD-10.

The Transformer architecture [5] was conceived to tackle the
sequence transduction problem, i.e., any task that transforms an
input sequence, the text from the EHR, to an output sequence, an
array. The LM component is in charge of transforming the textual
input tokens into numeric vectors, which is the optimal form
to compute the probabilities of each ICD in the classification
module. Transformers follow an encoder-decoder pattern, in
which each encoder component is built of a self-attention and a
feed-forward neural network module. The decoder structure is
similar, but with an added attention module. An encoder-decoder
pair is known as Transformer. The objective of self-attention
mechanism is to relate different positions of a single input
sequence, and have proven to extend the ability of RNNs to
model dependences to long-distance patterns.

Pretraining LMs on large amounts of general domain unla-
beled text [6], [7] have had a big impact on the performance
in a variety of Natural Language Processing (NLP) tasks. In
recent years LMs as ELMo [8] and, more recently, BERT [9]
have demonstrated the highest competence in Natural Language
Understanding (NLU).

Apart from the LM component itself, the model also portrays
a neural-network-based module for the classification. The LM
takes care of the extraction of the contextual features that are
later passed onto the classification module. For that reason, the
quality of the embeddings representations generated by the LM
are vital. Nevertheless, these models, assembled as Deep Neural
Networks still depend on significant quantities of annotated
data [10] for tasks as text classification [11], [12]. The pre-
training of LMs in general and, more specifically, BERT models,
from both general and in-domain data are used to improve
further downstream tasks; which is is an open NLU question.
[13] investigated how the pre-trained BERT can be adapted for
biomedical corpora, and introduced BioBERT (Bidirectional
Encoder Representations from Transformers for Biomedical
Text Mining), a domain-specific LM pre-trained on large-scale
biomedical corpora. When it comes to specialized domains
like biomedicine, incorporating in-domain text enhances the
performance of the system as the generalist LM is adapted to

2168-2194 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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the domain [13]–[16]. In our work, we take the BioBERT model
and the generalist BERT Multilingual model as base models. We
opted for BERT as it outperformed other models in the related
BLUE benchmark [15].

The transfer learning strategies such as the pre-training of
LMs are of particular importance to minority languages and on
fields with high lexical variability. The case of EHR classifi-
cation in Spanish suffers from both, as it is not a broad studied
language in NLP, and there are insufficient clinical notes publicly
available [3].

The ICD code system arranges, hierarchically, thousands of
codes from general (or coarse-grained) information, to fully-
specified codes incorporating non-essential modifiers. The main
task of this work is the classification of EHRs according to
the ICD codes that are present on a given medical record.
Discriminating between thousands of codes is challenging for
automated systems. Particularly, the consistency between pre-
dictions remains as an open research question in the field.
Indeed, the most extended binary relevance approach has been
criticized, precisely, for disregarding relationships among la-
bels [17]. However, the multi-label classification head applied
in this work handles the relationships among labels within the
same hierarchy level, as it computes all the probabilities with the
Sigmoid layer. Moreover, we exploit the hierarchy to improve
the ICD coding systems and, specifically, to further improve the
consistency between predictions, benefiting from relationships
between a label and its descendants at different levels of the
hierarchy.

To that end, the hierarchy is exploited through a multi-task
BERT-based transfer learning approach. Hence, instead of ap-
plying a single-task (regular) classification architecture, we pro-
pose a multi-task classification module. The difference is that the
model handles several classification tasks simultaneously, i.e.,
the model has three independent classification heads trained to-
gether but with shared parameters that allow synergies between
the tasks. The three classifications sub-tasks must be related,
share computed sub-features and be reasonably dependent [18],
[19]. The insights that the model learns from each sub-task are
distinct and experimental results show that mixing them into the
same model lead to improved overall results.

Each sub-task requires a unique label-set related to each EHR
to leverage the multi-task learning paradigm, but obtaining thou-
sands of EHRs labelled is a painstaking and expensive task. We
propose to exploit the hierarchical nature of the ICD to extract
the required label-sets to allow multi-task learning. Precisely,
from each full ICD label, we extract two more labels by cutting
the label based on some hierarchy levels of the ICD (i.e., from the
full “I25.110” ICD code, we would also extract the “I25” label
and the “I” label). We refer to these three levels as Full, Main,
and Chapter label levels, as presented in Figure 1 in Section III.

That way, we promote cooperation between different levels
from a given branch of the ICD and competence between dif-
ferent branches. For example, if the system predicts a diagnosis
from Chapter IX of the ICD code (Diseases of the Circulatory
System), a more specific diagnosis code related to circulatory
diseases could be predicted. However, if the model predicts
that there are no diagnosis related with the Chapter IX, a more

Fig. 1. Example of hierarchy in the structure of ICD codes, taking the
I25.110 code and its predecessors in the ICD hierarchy as example.

specific code related with Diseases of the Circulatory System
should not be predicted. The multi-task learning paradigm shares
relevant information across related tasks to the benefit of each
of the single tasks involved [20], [21]. Multi-task learning is
particularly convenient when the annotated available data is
scarce [22], as is the usual case in the biomedical field and even
more so in languages other than English [23], [24]. Following
these ideas, we propose a multi-label multi-task text classifier
with a pre-trained BERT-based core with an enhanced LM with
biomedical text data, for the ICD classification of EHRs.

Moreover, this applies to every multi-label set which could be
interpreted as a hierarchy. In a hierarchical label-set, each label
can be unfolded in several labels of different granularity, i.e., the
level of detail of the label, or in other words, the depth of the tree
that describes the given hierarchical label-set. The motivation
of this work is twofold: 1) Leverage the vast amounts of unanno-
tated (i.e., unsupervised, with no coded labels) biomedical data
to adapt the LM. 2) Exploit the hierarchical nature of the ICD
to improve label confidence. In short, we hypothesize that even
without further annotated data, that could help to improve the
classification module, the system can be benefited from small
though specific unannotated corpora to improve the underlying
LM to the benefit of the classification module. Second, from
the hierarchical structure of the ICD insights can be gained to
improve the confidence of the extreme multi-label classification
system without virtually incurring in more computational costs.

II. RELATED WORK

Automatizing EHR codification would be desirable, never-
theless, it remains a challenging task. The prior work faced
the task in original, though hardly comparable or reproducible
ways: with alternative assessment metrics, the number of EHRs
and size of the label set and with English as the dominating
language. Regarding ICD multi-label classification, [25], ex-
plored a combination of example-based methods to capture
codes with varying prevalence and employed representations
based on semantic and lexical features. This work involved 7,078
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ICDs and only 5,803 training EHRs [25] while [26] involved
5,324 ICDs and 26,373 training EHRs. Our dataset is closer to
the latter but it is in Spanish like the former.

Extreme multi-label classification problem was tackled by
virtue of millions of in-house EHRs coded with ICD-10 [27].
This approach applied a BERT model trained from scratch on
EHR notes and adapted the BERT architecture with a multi-label
attention system.

The vital issue in our work is to exploit the hierarchical
nature of the ICD in order to enhance the learning procedure
and the LM inferred from the EHRs. The hierarchical structure
of ICD has also been studied in the previous work either with
classical methods as Hierarchical Support Vector Machines [28]
or Graph Neural Networks [29] for ICD coding. However, we
aim to exploit the hierarchy with the current state-of-the-art
Deep Learning models, i.e., via the Transformers architecture.
[26] addresses the EHR multi-label classification according to
the ICD-10 code considering 23,000 6-digit codes and about
1,900 corresponding 3-digit codes ( respectively, similar to our
Full and Main labels). To take advantages of the hierarchy
of the ICD, they proposed a two-stage framework which first
predicts the Main category codes, and then searches the specific
or Full category. A drawback is that their subcategory models
do not consider all the category codes, only subsets instead,
this makes the model unaware of relationships among labels.
On the other hand, hierarchy was also exploited by stacking
new sets of classifiers at each level [30]. While this approach
is intelligent, requires low cardinality label-sets, such as the 9
labels reported by the authors, but it becomes intractable when
the number of labels is high, as it is our, especially with memory
and computationally intensive models as the Transformers [31].
Multi-tasking offered us an alternative to address this issue.

The Structured Output Learning methods are an alternative
way of tackling multi-label learning in a non-flat fashion, as
they rely on an output graph connecting multiple labels to
model the correlation between labels [32]. In that sense, it
follows a similar idea as our hierarchical multi-task setting –
Hierarchical classification is a specific approach of Structured
Output Prediction. Similarly, we apply a multi-task classification
model that predicts three hierarchy levels in parallel, with the
predictions of lower levels influencing the higher levels of the
hierarchy. However, there are significant methodological dif-
ferences; for example, the Structured Support Vector Machines
(SSVM) perform the learning by using discriminant function
over input-output pairs [33]. That way, SSVMs can predict
complex objects like trees, sequences or sets, but our multi-task
method relies on flat multi-label heads trained concurrently,
whose predictions are later combined, following the hierarchy.
Moreover, our architecture allows having both shared parame-
ters (in the LM part of the architecture) and specific parameters
for each sub-task (in the classification heads).

The effect of pre-training and fine-tuning LMs with in-domain
data was studied in the form of both domain adaptation, and task
adaptation by the prior work [27], [34], [35]. So far, however,
there has been little discussion about enhancing the LM with
small though specific unannotated corpora. To that end we bet
on a three-step strategy where the novel step consists of further

fine-tuning the LM with unannotated data but with the source
of this data being the same as in the training of the downstream
task. Furthermore, to overcome the computational problems that
can arise with the approaches from [26], [30], but while also
benefiting from the hierarchical structure of the ICD code, we
proposed the multi-task strategy. First, the computation of the
probabilities for each label-set are obtained in parallel. Second,
the relationships from all the labels are preserved. That is, the
Chapter predictions influence the Main predictions, and the
Main predictions influence the Full predictions, but at each
label-set, all the labels are considered. With this, the new sets of
labels required from the multi-task are extracted respecting the
hierarchical levels.

The comparison with previous works is challenging due to
the disparity and privacy of most datasets and the lack of
standard datasets and benchmarks [34]. It is relevant to consider
aspects as the language or the type of electronic health record,
but even when applying the same dataset, there are substantial
variations due to preprocessing that lead to changes in the labels’
minimum-frequency or the assessment metric utilised. Some
works classify based on the ICD-9 [26], while others apply the
updated ICD-10 version, as in [4], [25], [27] and on this work,
and some works apply modifications of the ICD, such as the
ICD-O (Oncology variation) as [30]. This work employs EHRs
in Spanish, as [4], [25], but others like [15], [26], [27], [30]
work with English EHRs. Regarding the cardinality, there are
substantial differences, from the 9 labels of [30] to the 7,078
of [25]; our largest dataset has 3,656 ICD codes. Also, among
the works that use Transformers and pre-train the models, there
are differences in the strategies. [27] pre-train only with EHRs,
while [15] apply EHRs plus biomedical articles, and we apply a
general domain pre-training in addition to EHRs from a similar
dataset to the ones used for our classification task. The previous
works that also introduced the hierarchy in their architectures
got 91.16 [26] and 91.8 [30] in terms of F1-Score micro.

III. MATERIALS

An ICD-10 label is made of 3 to 7 alpha-numeric characters,
and it is arranged hierarchically in branches. Starting from the
lowest level of granularity, we find what is called Chapter (i.e.,
Chapter IX, referred to with the character “I,” following the
example from Figure 1). The Chapter is encoded in this structure
as the first character and reflects a coarse-grained classification
of the EHR that roughly translates into medical specialities [36].
Besides, we can take the first three characters (i.e., I25), con-
sidered the Main ICD class, (from now on just Main in short).
The remaining characters comprise of what is referred to as
non-essential modifiers (e.g. laterality and severity, i.e., the last
“110” from I25.110), which are referred to as the “fully-specified
ICD class,” we will refer to it as Full.

The materials used can be classified as the unannotated dataset
applied to fine tune the LM and the annotated dataset to train the
multi-label classifier.

The unannotated dataset is a collection of clinical docu-
ments extracted from the same source (a hospital) as the super-
vised dataset. Therefore, both datasets are comprised of EHRs in

Authorized licensed use limited to: Universidad Pais Vasco. Downloaded on April 13,2022 at 15:30:05 UTC from IEEE Xplore.  Restrictions apply. 

JBHI (2021) 85



BLANCO et al.: EXPLOITING ICD HIERARCHY FOR CLASSIFICATION OF EHRS IN SPANISH THROUGH MULTI-TASK TRANSFORMERS 1377

TABLE I
QUANTITATIVE DESCRIPTION OF THE ANNOTATED DATASET, CONSIDERING
THREE HIERARCHICAL LEVELS (H-LEVELS) FROM THE ICD (FULL, MAIN,
CHAPTER). TWO PERSPECTIVES OF THE DATASET WERE CONSIDERED

REMOVING THE THE ICDS BELOW A MINIMUM FREQUENCY THRESHOLD,
SET AS 1% IN OSA-1R AND 0% (NO REDUCTION) IN OSA-0R

Spanish and are very similar in terms of vocabulary and syntax.
This unannotated dataset comprises 194,162 records, leading to
a vocabulary (number of distinct words) of 1,057,787 words.
Note that comparing with prior work our unannotated dataset
is small, as for example the BioBERT pre-train corpus counted
with 18B words while our unannotated dataset has only∼100 M
words.

Table I shows a summary of the supervised dataset, in terms
of samples (S), input (X ), and output (Y). To generate a more
extensive experimental setup and to maintain concordance with
previous works, we have applied a label-set reduction based
on the minimum number of appearances of labels across the
documents, following the criteria from related works [37], [38].
The 1% reduction means that we have only preserved those
labels that appear at least in 1% of the clinical documents.

Regarding the number of instances, the larger dataset parti-
tion amounts to 26,969 documents, with no label-set reduction,
which decreases to 22,609 when the 1% reduction is applied.
These 26,969 documents lead to a vocabulary (number of
unique words) of 379,121 words, which decreases along with
the number of documents. Something to take into account is
that although the unannotated dataset has a huge vocabulary
of 1,057,787 words, and the supervised dataset just a 35.8%
of that number, the amount of Out-of-vocabulary words is still
considerably large: 195,536 words, which supposes a 51.6% of
the entire vocabulary. Concerning the labels, there are total of
3,656 labels when considering the Full labels with no reduction,
1,003 Main labels, and 24 Chapter labels. The average cardi-
nality (i.e., mean number of labels per document) is around 5
when no reduction is applied; dropping to 3 when considering
only the 1% most frequent labels. We hypothesize that by taking
advantage of the hierarchical structure of the ICD via the label
granularity, we could mitigate the problems related to scarcity

and imbalance in the labels, and to this end, we approached it
with the multi-tasking paradigm. The datasets applied in related
works, apart from the MIMIC and PubMed, are not publicly
available as they comprise private and sensible data. The train
and test partition was carried out following a random iterative
stratification strategy, respectively, with proportions 70%, 30%.

IV. METHODS

The Bidirectional Encoder Representations from Transform-
ers, i.e. BERT [9], is suitable for this work mainly because of the
following two abilities: i) it was designed to infer LMs as bidirec-
tional representations from unannotated text, hence, it conveys
information from both left and right context, and ii) the resulting
pre-trained LM can be adapted (also known as fine-tuned) for
multi-label classification just using one additional output layer
(also known as “head”). These two modules (pre-trained LM
and fine-tuned head model) are shown in Figure 2(a). Most of
the parameters inferred from the corpus lie in the LM module.
For example, the ICD multi-label classification head developed
for this work accounts for less than the 1% of the total model
parameters (even using the smallest version of BERT, which
counts with 110 M of parameters). For this work, we turned to
the BERTBASE model.

In the oncoming sections, we delve into each of the two
contributions proposed to enhance multi-label classification of
EHRs in Spanish.

A. Few Though Specific Data to Enhance LM

The LM module can be trained on its own (just pre-training
the LM) and also in conjunction with the Head, when fine-tuning
on the downstream task. The training of the LM simply requires
great amounts of unannotated corpora, while the multi-label
classification head can only be trained with annotated samples.
Some related works employed BERT and focused on the LM’s
enrichment by feeding it with millions of documents, although
not precisely from the same biomedical domain (e.g. abstracts
from scientific articles instead of EHRs). In languages other than
English, as it is our case, seldom can we find alternative sources
of massive data [23]. If finding sources of unannotated data is not
easy in these contexts, annotated data is essentially an illusion.
Hence, while prior work explored the aid of big unannotated and
annotated data to enhance, respectively, the LM and the Head,
this is not a feasible approach in languages with fewer resources
available. Our hypothesis is that even limited, though specific,
unannotated data can help to further enrich the LM and to get
an improved representation of the input that could significantly
benefit the downstream task i.e. the multi-label classification.

B. Hierarchical Approach to Enhance
Classification Module

As expert coders read the EHR they receive more and more
precise information about the fully specified diagnostic term
(following the example in Figure 1): a few lines from the EHR
would help to restrict the diagnoses to a Chapter (e.g. “disease
of the circulatory system”) while further reading of details and
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Fig. 2. Multi-label text classification models: (a) the non-hierarchical approach was implemented as a single task architecture; (b) the hierarchical
approach was implemented as a multi-task architecture exploiting ICD Chapter and Main class outcomes to get the fully-specified code to gain
insights from different levels of granularity in parallel.

tests would yield the information to obtain the fully-specified
diagnostic term (e.g. I25.110). Inspired by human experts we
wondered if a system would also easily map data into the high
levels (coarse-grained ICD labels) of the ICD hierarchy. If the
model would be able to make good multi-label predictions at
high-levels, then, predictions at lower levels could be driven by
constraints inherited from higher-levels. The motivation behind
the use of the hierarchical approach is to exploit the relationships
at the ICD level in order to attain improved label confidence
at fully-specified ICD level. The idea is to render the label
confidence from coarse-grained to fine-grained levels in the
hierarchy assuming that the model gets better predictive ability
on coarse grained ICD codes.

Several works [39], [40] approach the multi-task learning
paradigm to improve results leveraging the information shared
among related tasks. The drawback of the approach is the fact
that each singular task involved requires supervised data, which
usually is difficult and expensive to obtain. For example, [39]
proposed bidirectional LMs based on the multi-task learning
method for text classification to prevent the shared and private
spaces (in our work, the LM and multi-label head components
correspondingly) of each task from merging information from
each other. They added language modelling as an auxiliary task

to the private part, to improve the extraction of task-specific
features while promoting the shared part to learn common
features. We aim to transfer this knowledge from the general
NLP area to the biomedical NLP with each task being special-
ized in language relevant to different levels of the hierarchy.
Moreover, our method does not require additional supervised
data for each task, due to the fact that the label-sets are, simply,
simpler representations from upper levels of the ICD hierarchy.
Likewise, there are plenty of works [40], [41] which leverage the
multi-task learning for exploiting synergies among tasks, model
relationships between labels and improve the results, but to best
of our knowledge, at the expense of more supervised data, which
is an important limiting factor that we want to overcome in this
work.

Our contribution to boost the ICD’s hierarchical nature is
approached by means of a multi-task classification as shown
in Figure 2(b). This required us to implement the hierarchical
head and, to this end, we rely on the Huggingface Transformers
library [42] and have developed a multi-label sequence classifi-
cation head for BERT; which is also compatible with Roberta [6],
XLNet [43], XLM and DistilBERT [44]. The implementation of
the hierarchical multi-label classification head is released with
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this article (see Section V-C) together with the non-hierarchical
approach in an attempt to promote reproducible research.

Our head for multi-label classification consists of a linear
layer taking the final hidden state (h) followed by a dropout layer
and a Sigmoid activation function, as in (1). The yi component
accounts for the estimated probability of the ICD class Ci to be
present in the given input (EHR tokens), withW andb being the
parameters of the linear layer (i.e. the downstream task-specific
layer).

y = σ(Wh+ b) (1)

The fine-tuning of the model is done jointly with the LM part
with an appropriate loss function for the task. In this case, Binary
Cross-Entropy (BCE) loss, described as (2), was employed, with
x being the output of the Linear and Sigmoid layers, and y the
vector representing the presence or absence of ICD codes for
the EHR given.

BCE(x,y) = −W [y log(x) + (1− y) log(1− x)] (2)

To bring together the BERT model, the multi-label classifi-
cation and the multi-task learning, we have also developed a
variation of the single-task head, which allows the joint learning
of multiple set of labels. The multi-task head is a composition
of the single-task head, one for each set of labels. Fig. 2 shows
a representation of the model architectures, non-hierarchical
(Figure 2(a)) and hierarchical (Figure 2(b)). The benefit of this
hierarchical multi-task architecture is that on the shared parts
(the LM component) of the model is where the modelling of the
label-set relationships occurs, but still treats the nuances of each
label-set individually in the specific-task layers (the multi-label
head). Note that, additionally, there is a label relationship mod-
elling in cascade, as the predictions for the Chapter set of labels
influence the predictions for the Main set of labels, which for
their part influences the predictions for the Full labels.

For each Chapter labelChi guessed as present in a given EHR,
the system restricts the predictions to the descendants of Chi in
the ICD hierarchy. I.e., the model should not predict “Chronic
ischemic heart disease” (i.e. ICD Main class I25) unless at the
Chapter level the prediction was “Diseases of the Circulatory
System” (i.e. ICD Chapter I). This correction is implemented
with a mask implementing a logical AND operation between the
bit stating presence or absence of the j-th Main code candidate,
y(Mj), and the presence-bit of its ascendant Chapter codey(Ci),
with ascendant(Mj) = Ci. The mask operation shown in (3) is
a simple means of leveraging label-confidence consistent with
the insights gained from each level in the multi-task approach.

y(Mj)← y(Mj) ∧ y(ascendant(Mj)) (3)

y(Mj)← y(Mj) · y(ascendant(Mj)) (4)

Moreover, as an alternative to (3), we have tried a fuzzy mask-
ing strategy, taking the estimated probability at each level for
weighting the estimated likelihood of descendants as in (4). I.e.,
instead of utilising the predictions after applying the threshold
(i.e., marking the label as present or non-present), we use the raw
probabilities. That is, the task devote to estimate the confidence
of each Chapter code (y(Ci)), would re-adjust the confidence

estimated by the task devoted to model Main code (each y(Mj))
of its descendants (i.e. with Ci = ascendant(Mj)). The same
applies to the relations between the Main and Full labels.

Regarding the LM pre-training strategies, for this work, we
obtained a general domain pre-trained BERTBASE Multilin-
gual model (specifically the Wikipedia, as the model have been
trained with 104 languages, including Spanish and English,
with the largest Wikipedia dumps,1 which we refer to it as
Multi-Wiki)), and a continuous pre-trained BERTBASE model
(BioBERT). From there, we further enriched both models with
in-house, in-domain and closely-related clinical text, the unan-
notated dataset of EHRs in Spanish introduced in Section III. The
enriching of the model is done through the standard pre-training
procedure, i.e., we continue pre-training the model from the
last checkpoint but using our own data. We hypothesise that no
matter which pre-trained model is applied for the downstream
task (i.e., a generalist pre-trained model, or a continuous pre-
trained one), if there is a considerable amount of unannotated text
available, it can be used to further enrich any already pre-trained
BERT model. For example, if there is a dataset with a few
thousands of supervised records from a hospital, it is probably
hard to get more instances. However, it is generally easier to
get hundreds of thousands of unlabelled samples with no more
significant supervision effort and use it to improve the supervised
task results.

V. EXPERIMENTAL RESULTS

A. Results Attained Enhancing the LM

The first set of experimental results, shown in, Table II,
focuses on the non-hierarchical single-task paradigm and
delves into the hypothesis stated in Section IV-A. While LM
is usually trained with Big Data, our first aim was to assess
the influence of enhancing LMs with few though specific data.
Thus, “LM-enriched” in Table II is set to “Yes” whenever
the LM model was further pre-trained with our small set of
unannotated data. The table reveals the influence of the LM
pre-training on two the different BERT models. On one hand, an
instance of BERTBASE Multilingual [9] with no more specific
pre-training (Multi-Wiki) and, on the other hand, an instance
of BioBERT, which is a model grounded on BERTBASE but
further pre-trained on biomedical corpus (BioBERT [13]). Then,
we further pre-trained (i.e., enriched the LM) both models on
our in-house unannotated dataset (similarly to which the authors
of BioBERT did, with fewer data but more related to our down-
stream task). Table II also reveals the performance (in terms of
precision (P), recall (R) and F1-Score (F), weighted averaged)
of each non-hierarchical approach (shown in Figure 2(a)) at
each level of the hierarchy (Chapter, Main, Full). Note that,
in this non-hierarchical approach an independent model was
trained for each hierarchical level. The experiment was carried
out twice, respectively for Osa-0r and Osa-1r corpora shown
in Tables III a and III b. With this, the aim is to show the
performance of the system on extreme multi-label classification

1[Online]. Available: https://github.com/google-research/bert/blob/master/
multilingual.md#list-of-languages
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TABLE II
RESULTS, IN TERMS OF PRECISION (P), RECALL (R) AND F1-SCORE (F),

SHOW THE INFLUENCE OF ENRICHING THE LM WITH FEW IN-HOUSE
THOUGH CLOSELY-RELATED UNANNOTATED DATA IN THE

NON-HIERARCHICAL APPROACH. THE RESULTS SHOW THE PERFORMANCE
OVER THE THREE HIERARCHICAL LEVELS (FULL, MAIN AND CHAPTER)

(with Osa-0r) one-shot learning and also on a easier task with
a smaller label-set ensuring a slightly higher repetition ratio for
each label (each ICD appearing at least in the 1% of the EHRs
at Osa-1r).

The main issue of this first set of experiments is to prove
the value of enhancing the pre-trained LM with small though
closely-related datasets (as stated in Section IV-A) and, in those
terms, we can identify the first finding. We can observe that
the LMs that were further enriched with our in-house and
closely-related unannotated dataset consistently outperformed
those with no further pre-training. This is the case for both
the general-purpose BERTBASE Multi [9] and the biomedical
model BioBERT [13].

Logically, we can see how the results systematically improve
for all the models according to the label-set size, from the
Osa-0r version with Full labels (3,656 labels) to the Chapter
with 1% reduction (16 labels). In the former case, the best
results were attained by the BioBERT further pre-trained with
the unannotated Osa dataset, but with 16.95 F-Score points,
while for the latter, an F-Score of 74.6 was obtained by the
BERTBASE Multi, also further pre-trained with the Osa data.

Regarding the differences between BERTBASE Multi and
BioBERT, it seems that the general-purpose model is superior
when it comes to reduced label-sets; while the biomedical
model brings better results when considering the full label-sets,
although the differences are marginal.

TABLE III
RESULTS ATTAINED EXPLOITING HIERARCHICAL NATURE APPROACHED AS A
MULTI-TASK EXPERIMENT, WHICH TEST THE BEST PERFORMING MODELS

ON THE MULTI-TASK SETTING. BOTH MODELS ARE THE LM-ENRICHED, AND
THE FUZZY MASKING IS APPLIED. THE TWO LABEL-SET REDUCTIONS ARE
APPLIED, NO REDUCTION AT ALL AND KEEPING ONLY THE LABELS THAT

APPEAR IN AT LEAST 1% OF THE DOCUMENTS

B. Results Boosting the Hierarchy of the ICD

It is important to note that as the highest level of the hierarchy
labels (Chapter) brings better results (as there are less and less
specific labels), we hypothesise that the prediction of these labels
in a multi-task setting can aid with the prediction of the labels
from lower levels of the hierarchy, i.e., Main and, ideally, Full
labels. This intuition lead us to propose the hierarchical approach
(developed in Section IV-B). Moreover, before presenting the
results attained with the hierarchical approach, note that in the
non-hierarchical approach each level of the hierarchy involved
the training of a specific system (i.e. three systems one for each
of the Full, Main, Chap). By contrast, the hierarchical approach,
being implemented as a multi-task model, is able to provide the
estimated probabilities for each of the three h-levels and, even
more, to combine these probabilities to enhance the Main and
Full levels, by means of the fuzzy masking shown in (4). In
brief, given that the head of the system is marginally complex
in comparison to the LM, the computational complexity of the
hierarchical and non-hierarchical approaches are of the same
order of magnitude. More specifically, as the multi-label classi-
fication head accounts for less than 1% of the total parameters,
when considering the multi-task setting, i.e., applying three anal-
ogous heads, the computational impact is marginal. The training
procedure with the hierarchical model takes solely 2% more time
(and memory) compared to the non-hierarchical model. Having
proven that enhancing the LM brings further advantages, we
explored the performance of the multi-task approach (depicted
in Figure 2(b)) in Table III. For readability, we skipped results
attained without enhancing the LM (i.e. LM-enriched = No)
since it does nothing but corroborate aforementioned finding.
Nevertheless, since there was not a clear BERT base winner
from the previous experiment (in Table II), we kept showing
the two BERT base models (BERTBASE Multi and BioBERT),
and fine-tuned them for the downstream task of replacing the
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Fig. 3. F-score (y axis) attained by both the non-hierarchical model approached as single-task and the hierarchical model implemented as
multi-task (x axis) summarising 5 runs of the experiments described in Tables II and III for Multi-Wiki with LM-enriched model.

single-task head with the multi-task one. Unlike in the previous
set of experiments, here the dominance of the Multi-Wiki is
clear, as it surpasses the BioBERT model in every setup and
metric.

The key issue addressed in Section IV-B was to assess the aid
of the hierarchical approach (see the results in Table III). Is it
possible to boost the results leveraging the hierarchical fashion
of the ICD by approaching the classification through a multi-task
setting that has no additional supervision efforts? Figure 3
summarizes, graphically, the variations, in terms of F-score,
between the non-hierarchical approach (shown in Table II) and
the hierarchical one (shown in Table III). The F-scores from the
hierarchical approach overcomes the non-hierarchical one in all
levels of the hierarchy (Full, Main, Chap) and in both corpora
(Osa-0r and Osa-1r). This fact means that we can improve
the results for each granularity when no reduction or the 1%
reduction is applied for every granularity, solely by transforming
the single-task setting into a multi-task one leveraging the ICD
hierarchically.

C. Towards Reproducible Research: Software Release

In an attempt to promote reproducible research, through
this article we make available the software implemented, both
single-task and multi-task models for multi-label classification
developed for BERT.

The multi-label sequence classification head released with this
paper is also compatible with Roberta [6], XLNet [43], XLM and
DistilBERT [44]. The code is released and can be downloaded
as follows:
• http://ixa2.si.ehu.eus/prosamed/MultitaskTransformers_

soft
• with user: MultitaskTransformers
• and password: IXAMultitaskTransformers
Note that, whenever the the software is used in any way, this

article should be cited in return.

VI. CONCLUSION

In this work, we have tackled the EHR multi-label classi-
fication problem according to the ICD in Spanish. Regarding
the core methods, we applied state of the art Transformers
(BERT Base Multilingual and BioBERT) to handle the high
lexical variability, a distinctive characteristic of the biomedical
field [45]. It is important to note that Big Data are not available
in Spanish, hence, it is important to make the most of the
training stage of the BERT base approaches both in the LM pre-
training and in the fine-tuning of the multi-label classification
module.

The aim of this work is twofold: on the one hand, to investigate
if limited though in-house and in-domain data could help to
further enrich LMs in such a way that the improvement in the
underlying representation is noticed in our downstream task, i.e.
the extreme multi-label classification. On the other hand, to find
a method to exploit the hierarchical characteristics of the ICD
that could help modelling the relationships between labels in
this context with few annotated data. To this end, we conceived
a strategy that, using the different granularities that can be
extracted from an ICD label thanks to its hierarchy, enabled
our multi-label models to become also multi-task learners i.e.,
the multi-label multi-task Transformer.

To test our hypotheses we designed two sets of experiments.
From the first set, we assessed the impact of enhancing the LM.
We learned that the performance of the BERT base models
can be improved by further pre-training them with in-house
unannotated data. This fact means that having access to limited,
though, similar corpora can aid with the multi-label classifica-
tion downstream task. The second set of experiments, based on
multi-tasking, revealed leveraging the hierarchical fashion of the
ICD approaching the ICD coding as a multi-task classification
problem. We managed to boost ICD classification without the
need of additional annotated data, benefiting from the created
synergies between the different sets of labels. This finding is
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especially relevant for downstream tasks with few resources, as
it is the case of Spanish.

We would like to highlight that our multi-label multi-task
Transformers, were built on top of the Huggingface Transform-
ers library. To that end, we have developed a general multi-label
multi-task head, ready to work with an arbitrary number of
tasks. Moreover, there are no special requirements regarding
the input (EHRs) to be suitable to run with this software. Any
plain-text EHR written in any language can be used with no
further modifications. Regarding the label-set, any EHR with the
same version of the ICD is suitable. We are glad to announce that,
with this article, we made available the proposed implementation
of the hierarchical approach (details are given in Section V-C).

In this work we applied both BERT and BioBERT settings
as they are well-known, well-maintained and widespread and,
furthermore, extended general and biomedical model. Besides,
BERT-based models count on small versions that are compu-
tationally affordable. In any case, our contribution, given that
our software is built on top of the Huggingface Transformers
library, could be adapted to any other transformation method
(with Transformer-based architecture) seamlessly. That said, we
do not rule out achieving better results with other transformation
methods. Moreover, there is ample room for further progress in
the extreme multi-label classification of EHRs according to the
ICD. In one hand, the way towards incorporating more and more
ICD labels could be further increased by incorporating zero-shot
strategies [46] opening a way to the prediction of ICD codes only
present on the test set. On the other hand, we found that getting
unannotated data to enrich the language model is especially
important for minority languages, nevertheless, finding further
clinical EHRs or related corpora in languages other than English
is the bottleneck [23], [24]. To bridge this gap, a promising
strategy could be the unsupervised automatic translation [47] of
majority into minority languages that could provide hundreds
of thousands of EHRs, but at the expense of lower text quality.
Along the same lines, abstractive summarizers [48] can be
applied to generate alternative versions of the existing EHRs,
doubling the number of available texts.
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Abstract

We introduce a multi-label text classifier with
per-label attention for the classification of
Electronic Health Records according to the
International Classification of Diseases. We
apply the model on two Electronic Health
Records datasets with Discharge Summaries in
two languages with fewer resources than En-
glish, Spanish and Swedish. Our model lever-
ages the BERT Multilingual model (specifi-
cally the Wikipedia, as the model have been
trained with 104 languages, including Span-
ish and Swedish, with the largest Wikipedia
dumps1) to share the language modelling ca-
pabilities across the languages. With the per-
label attention, the model can compute the rel-
evance of each word from the EHR towards the
prediction of each label. For the experimental
framework, we apply 157 labels from Chap-
ter XI – Diseases of the Digestive System of
the ICD, which makes the attention especially
important as the model has to discriminate be-
tween similar diseases.

1 Introduction

Electronic Health Records (EHRs) are classified
by clinical experts for documentation, reporting
global health vital statistics, insurance billing, etc.
International Classification of Diseases (ICD) is
used world-wide to define diagnostic terms and
procedures and serves to encode EHRs. There
are thousands of terms encoded within the ICD
WHO (2016). For medical experts, reading EHRs,
lengthy and technical documents, finding explicit
and implicit mentions of diagnoses and procedures
for then assigning standard ICD codes is cumber-
some and requires specific training. In fact, it is
well-known that manual encoding is not error-free,
as an example, Jacobsson and Serdén (2013), es-
timated that 20% of them were either incorrect or

1https://github.com/google-
research/bert/blob/master/multilingual.md#list-of-languages

were missing. In this context, natural language
understanding brings opportunities to bridge the
needs of the society in terms of computer aided
coding approaches.

In 2006, it was argued that Natural Language
Processing (NLP) tools could quickly help iden-
tify codes in discharge summaries Kukafka et al.
(2006). Today NLP tools for classifying clinical
documents written in English are widespread. Even
more, languages with scarce resources for biomed-
ical NLP like Spanish, Italian, Swedish, etc., are
in the limelight in the last years to develop codi-
fication systems as has been done for English. In
the context of working towards the codification
of documents, in languages with a small number
of resources for NLP, different tasks have been
addressed. In 2018 CLEF Névéol et al. (2018b)
worked with Italian, French and Hungarian for the
automatic codification of death certificates. Each
death certificate consisted of a few words (on aver-
age 20 words) with at least one main diagnosis. In
2020 the CodiEsp task at CLEF Miranda-Escalada
et al. (2020) consisted on the automatic assignment
of ICD-10 codes to Spanish Clinical Records with
350 tokens on average. For Swedish Henriksson
et al. (2011) the authors mentioned that the corpus
was compiled with documents that on average had
a length of 96 words.

Admittedly, multi-label classification is chal-
lenging, particularly with extensive label-sets (as
it is the case of the ICD) and domain-specific cor-
pora, and even more when it comes to dealing with
clinical information extraction on languages other
than English Névéol et al. (2018a). Spanish and
Swedish researchers are striving to bridge this gap,
indeed, as the first and relevant step, they gathered
corpora conveying patient records Oronoz et al.
(2015); Dalianis (2018). Previous works showed
that the multi-label classification problem of EHRs
coded with ICD-10 can be tackled with an adapted
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BERT architecture Amin et al. (2019); Zhang et al.
(2020).

Moreover, we focused just on a sub-set of the
ICD, i.e. the Diseases of the Digestive System (the
ICD codes starting with the letter K). Focusing on
semantically related diseases poses an added chal-
lenge, since the Natural Language Understanding
(NLU) in charge of encoding the input EHR must
be able to cope with the nuances inherent to the
distinction of similar diseases. Unarguably, it is
easier to distinguish two diseases each belonging
to a different body-part than two diseases within
the same body-part (as it is this case distinguish-
ing diseases all within the digestive system). In
summary, distinguishing semantically different dis-
eases (e.g. gastrointestinal vs cardio-pulmonary)
would be easier than distinguishing two diseases
within the same speciality. To that end, the LM
and the attention mechanisms play the most criti-
cal role, so we opted for the transformers models.
BERT-based approaches have been tested in this
context, with attention mechanisms as a strength
towards finding relationships between input text
with output ICD codes. The attention is a mecha-
nism whose effectiveness has also been shown with
other architectures such as RNNs with LSTM units
Hochreiter and Schmidhuber (1997) or Convolu-
tional Neural Networks Du et al. (2017).

Nevertheless, in this context we are dealing with
scarce resources and relatively similar codes. In
this line, the main scientific contribution of this
paper rests on the implementation of a head adapted
for BERT with multiple label attention mechanisms
(instead of a generic one) in order to delve deeper
into the nuances of the understanding module. In
this work, we have implemented a per-label at-
tention mechanism, and given that regular BERT
models also have the self-attention mechanism, it
allowed us to compare the effect of different atten-
tion mechanisms. The per-label attention mecha-
nism allows the model to give a different relevance
to each word and ICD code pair, contrary to the reg-
ular attention mechanism. The experimental results
support the approach’s acceptable performance, so
we decided to release the head for the scientific
community.

2 Corpora

We have applied two datasets of languages with
scarce resources for this work, i.e., languages with
fewer resources than English, specifically, Spanish

and Swedish. Both datasets are Electronic Health
Records containing Discharge Summaries from pa-
tients. The Spanish EHRs are from the Emergency
Services of the Basque Health Public System, con-
veying records, and therefore labels, from all the
medical specialities Oronoz et al. (2015). How-
ever, the Swedish EHRs are only from the gastro-
surgery medical specialisation and comes from
the research infrastructure Health Bank - Swedish
Health Record Research Bank2, at Stockholm Uni-
versity. Therefore, to have equal label sets, we
have selected the ICD codes shared between both
datasets to carry out the experiments, obtaining 157
codes, all from the Chapter XI of the ICD-10, i.e.,
Diseases of the Digestive System. By selecting
the codes of some specialities the number of avail-
able EHRs is reduced but the label sets are easier
to handle. Training specific models on EHRs of
specialities improves the performance against train-
ing general models Blanco et al. (2020). For the
Swedish ICD-10 corpus data set the Swedish KB-
BERT model Malmsten et al. (2020) has been ap-
plied with good results, see (Remmer et al., 2021).

Here we present a quantitative description and
comparison between both datasets. Regarding the
input, the Swedish dataset is more than twice larger
in number of EHRs, with 8,909 records in contrast
to the 3,891 available Spanish EHRs. Nevertheless,
the vocabulary (i.e., number of unique words) is
around three times bigger for the Spanish dataset.
One explanation is that the Spanish EHRs come
from several specialities, and therefore there is a
higher lexical variability due to the specific terms
of each medical specialisation. Also, the Spanish
EHR contains lab tests, which could increase the
number of unique words significantly.

Regarding the output, both datasets are equiva-
lent, with the same set of 157 gastrointestinal ICD-
10 codes. Although this is just a subset of the labels,
there are still infrequent codes. For example, only
45 codes from the 157 appear in at least 1% of the
EHRs. This fact makes the task even more chal-
lenging, as, for around 28% of the labels, there are
only a few samples from where the model can learn.
Even though the number of labels is the same, the
distinct label sets (i.e., label combinations that are
unique) are larger in the Swedish dataset than in
the Spanish (1,288 and 558, respectively) due to
the higher number of records. The ratio between
the distinct label sets and the number of records

2http://dsv.su.se/healthbank
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is similar, 6.97 for Spanish and 6.91 for Swedish,
meaning that about the same number of EHRs lead
to the same number of unique label sets.

The most significant differences come when eval-
uating the length of the EHRs, as the Spanish EHRs
are significantly longer. While the Spanish records
convey 984 words on average, the Swedish only
have 74 words. The standard deviation is also
more prominent in proportion, with 491 for the
Spanish and 77 for the Swedish (note that the stan-
dard deviation is higher than the mean). Although
the records from both datasets are Discharge Sum-
maries, it seems that not all the Swedish records
are complete summaries, but instead a summary
or even one-sentence synopsis of the patient’s out-
come.

3 Methodological Approach

Focusing the attention on the methodology, in
Amin et al. (2019) the authors demonstrate the
effectiveness of transfer learning with pre-trained
language representation model BERT without at-
tention for the multi-label classification of German
non-technical summaries (NTSs) of animal exper-
iments. In e-Health 2020 the authors of López-
Garcıa et al. (2020) tackled the task as a multi-label
classification problem using BERT model Devlin
et al. (2019) for the automatic clinical coding of
medical cases in Spanish. NLU results crucial to
this task and Transformers-based Language Mod-
els (LM) are, doubtlessly, the key strength of most
recent approaches such as multi-label biomedical
text classification Gu et al. (2020). All this and
the inherent challenges related to our work (e.g.
the ability to distinguish concepts leveraging se-
mantically related diseases) motivated us towards
BERT-based approaches. Another fact in favour
to this choice rests on the ability to the transfer
learning between the two languages and, if possi-
ble, get benefits from one Language Model to the
other. That is, the resources from one language can
boost the LM of the other one, while the system
remains decoupled from the data.

In order to tackle the multi-label text classifica-
tion task, we applied a model with a Transformer-
based architecture. The problem to solve is the
mapping between the input of the EHRs (the raw
text, X) and a subset of ICDs from the entire la-
bel set, C, where |C| is the number of codes. The
Deep Learning model is trained for the downstream
task with pairs of input and output (i.e., EHR texts

and ICD codes). The Transformer-based neural
network model is trained with instances compris-
ing pairs of input (EHR text) and output (ICD
codes). The j-th instance is described formally
as (Xj , c

j) ⊆ Σ∗ × {0, 1}|C|. The input-output
pair is as follows: Xj is the string of any length
(comprised by tokens from the vocabulary Σ), i.e.
the EHR. cj is a presence-bits array. cji encodes
the absence or presence of each code Ci ∈ C linked
to the instance Xj , i.e. the ICDs assigned to the
EHR.

From the input text, Xj , fed to the Language
Model part of the model, a hidden document repre-
sentation is obtained. The importance of this rests
in that our multi-label classifier is built on top of
a BERT model (see Section 3.1). The LM is the
core of the Transformer-based NLP models. The
principal contribution of this work is the use of the
hidden representation to compute attention weights
that are label-specific for each input token. Af-
ter computing the attention, the final output (label
predictions) is computed with a fully connected
layer that is fed with another document representa-
tion got from the label-specific attention layers. To
support the reproducible research, we release the
code of the per-label attention mechanism with this
article.

3.1 Baseline: BERT to Boost LM

The Language Models based on Transformers,
specifically BERT models Devlin et al. (2019),
have been acknowledged due to their ability to
generate contextual representations. In this work,
we have to differentiate between very similar diag-
noses (all from the gastrointestinal service), which
motivated the chosen BERT model as the LM part
of our multi-label text classification system to gen-
erate the representation of the EHRs. A BERT
model is also suitable because of its built-in self-
attention function, which can connect different
locations of a single input sequence to one an-
other. We also turned to BERT because it has been
shown to expand Recurrent Neural Networks’ abil-
ity to model dependencies to long-distance patterns
Hochreiter and Schmidhuber (1997).

In an attempt to encompass Spanish and
Swedish, EHRs were represented with shared LMs.
The transfer learning approach of sharing the LM
poses two advantages. On the one hand, it allevi-
ates the training process for each language since
just the task-dependent module (i.e. ICD multi-
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label classification) has to be trained. On the
other hand, this bypasses the lack of in-domain
data for languages other than English. Indeed, the
multi-lingual LM, with English, leverages other
languages such as Spanish and Swedish in a syn-
ergistic effect since cross-language regularities are
captured Pires et al. (2019).

The LM part is the core of the BERT models,
but coupling different heads on top of the LM is
what concedes the ability to tackle numerous down-
stream tasks, as multi-label classification. Since
there are many parameters to describe both the
LM and the head for the downstream task, training
a BERT model is challenging. The LM module
contains the broad majority of the parameters that
must be inferred during the training stage. The
ICD multi-label classification head built for this
study, for example, accounts for less than 1% of
the total model parameters (even though using the
smallest variant of BERT, which has 110M of pa-
rameters). With this in mind, we opted to train the
multi-label heads from scratch while fine-tuning
the LMs instead of training the LMs from scratch.

Because of memory and computational limita-
tions, we used the BERTBASE as the baseline
BERT model (our GPUs are limited to 8GB of
DRAM memory). The BERTBASE model com-
prises 12 Transformers blocks, 12 self-attention
heads, and an internal embedding layer size (d) of
768, totaling 110M parameters. The pre-trained
BERTBASE Multilingual model was used. The
downstream tasks’ attention and output layers are
connected to the output of LM, the hidden docu-
ment representation, (H), of the EHR.

3.2 Contribution: Per-ICD Attention Head

Having opted for the multilingual BERT to cope
with the LM, next we proposed to improve the
task-dependant head. The aim was to leverage
ICD-dependant attention mechanisms in an attempt
to enhance the model with added NLU capability
when it comes to distinguishing ICDs within the
same hospital-service (Digestive in our case).

Our multi-label classification head incorporates
a per-label (per-ICD) attention mechanism. The
model can classify the EHRs with respect to the
ICD labels that are present through the text while
also calculating the importance that each input to-
ken (word) has in relation to each of the ICDs.

Here, N is the number of tokens of the EHR
(length) and d is the BERT hidden layer dimen-

sion (i.e., the representation of documents, being
d = 768 for BERTBASE models). Then, rather
than perform the pool operation (across the docu-
ment length, N ), as in the original BERT Devlin
et al. (2019) for classification, our head uses a per-
ICD attention mechanism. The per-ICD attention
mechanism allows the classifier to discover the
correct relationships between the input tokens and
each label.

For each ICD label, Ci, the attention vector
αCi ∈ R|C|×N is computed from the learnable
vector parameter uCi ∈ Rd, following (1), where
C is the full set of ICD labels.

αCi = Softmax(HTuCi) (1)

The attention scores must be computed as a prob-
ability distribution, representing the importance
between each token and ICD label pair, and to
that end, the model leverages the Softmax func-
tion. The matrix multiplication between α and H
is calculated to get an ICD representation for each
class from the attention weights. In the end, the
maximum through the labels’ dimension is taken,
obtaining the document representation on the fi-
nal layer (v ∈ Rd), which combines the per-ICD
attention representation.

The final layer of the head for multi-label clas-
sification is a regular one that allows getting the
probabilities for each ICD label. It is a linear layer
that takes the document representation (v) as in-
put, which takes into account the attention weights
for each input token and label pair. After that, a
Sigmoid function is applied to get the actual proba-
bilities of each ICD, as in (2).

ŷi = σ(Wivi + bi) (2)

The probability of each ICD class (Ci ∈ C) be-
ing on the given input text is ŷi. The parameters of
the final layer are the weights matrix (W) and bias
(b). Regarding the training of the model, it is car-
ried out by minimising the loss function, precisely,
the Binary Cross-Entropy (BCE) loss, as in (3). On
this equation, the ŷ is the output of the previous
final layer, and y is the vector that encloses the ICD
codes present on the EHR (i.e., the appearance or
lack of ICD codes). Figure 1 shows an architectural
outline of the system.

BCE(ŷ,y) = −W [y log(ŷ)+(1−y) log(1−ŷ)]
(3)
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Figure 1: Architectural outline of the developed per-
ICD BERT model

4 Experimental Framework

We propose the following experimental setup to
evaluate our BERT model’s performance with per-
ICD attention compared to the benchmark (stan-
dard BERT model) on the multi-label ICD classi-
fication downstream task. The experimental setup
comprises the two minority languages (in terms
of in-domain clinical data available), Spanish and
Swedish, and a gastrointestinal label set of 157 la-
bels. Each experiment is carried out twice, with the
same experimental and training parameters, one
with the regular multi-label classification head (as
the baseline) and the other with our head with per-
ICD attention. We show the results from the exper-
imental results in Table 1 and Figures 2 and 3, for
Spanish and Swedish, respectively.

The model with our per-ICD attention head ob-
tains better results in both languages. It is important
to note that the results improve considerably even
in this context with a considerably large label set
(157 labels). This finding is consistent with the fol-
lowing hypothesis: many terms can be important
when dealing with a wide number of ICD codes at
once and long EHRs, but probably only a few of
them are relevant for each ICD code individually.

Multi-label ICD classification is often assessed
by means of the Area Under the ROC Curve (AUC)
micro averaging the metric for all the ICDs in-
volved (denoted as AUCm in Table 1). For Span-
ish, the per-ICD model surpasses the base BERT
model by 9.16 points, also improves slightly for the
Swedish, with an improvement of around 1 point.
In Figures 2 and 3 we show the confusion matri-
ces for each experiment. Each confusion matrix
is the average of the matrices of each ICD class,
and we have computed two versions, i.e. one with
arithmetic averaging (aka samples average) and
the other with weighted averaging. In both, the
darker the colour, the higher the metric, always in
the range [0− 100]. The weighted averaged matri-
ces are computed considering the support (relative
frequency) of each ICD class. Note that the TPR

(True Positive Rate) and FNR (False Negative Rate)
shown in Table 1 are also the arithmetic average
of each corresponding model, but the CM show
also the FPR (False Positive Rate) and TNR (True
Negative Rate), while the weighted average of each
metric. Regarding the per-class performance, there
is a positive association with the support; the more
frequent the label, the better are the results.

If we analyse the matrices, it can be observed
that the source of improvement of the per-ICD
model can be broken down; while the True Nega-
tives stay close (as with a large label set, the ma-
jority of classes are negative), the True Positives
improves considerably, with an increment of al-
most 100%. In the same way, the False Negatives
decrease by around 20%. Although the Swedish
results are in general weaker, this behaviour is ap-
preciated similarly for both languages. Therefore,
given the results, it seems that our per-ICD atten-
tion head is able to improve the Precision of the
regular BERT models for ICD multi-label classi-
fication with large label sets. Nevertheless, the
per-ICD model outperforms regular BERT in terms
of performance, but also in interpretability capa-
bilities, as it has the ability to export the attention
weights, allowing its visualisation.

L Model AUCm TPR FNR

SP

baseline 58.16 17.70 99.21
per-ICD 67.32 34.92 99.38

SW

baseline 54.92 15.49 92.24
per-ICD 55.96 27.91 82.45

Table 1: Comparison of results on the Spanish (SP) and
Swedish (SW) datasets (“L” stands for “Language”) ob-
tained with the baseline BERT and BERT enhanced
with per-ICD attention head. TPR is the True Positive
Rate and FNR the False Negative Rate.

5 Discussion

Within the clinical text mining field, the main weak-
ness tends to be the availability of corpora due to
the natural patient’s confidentiality policy Cohen
and Demner-Fushman (2014). As a result, for the
research to make progress, the so important com-
parability might get compromised. By contrast,
through this work the authors are glad to make
available their own implementation of the per-ICD
attention approach3 as a secondary contribution of

3To get the source code of the implementation, simply
e-mail the first author.
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Figure 3: Average heatmaps of Swedish models

this paper.
Another aspect related with the corpus is the

complexity and length of the input EHR. The av-
erage length of the input of the works mentioned
Névéol et al. (2018b); Cappellato et al. (2019) are
variable from a few words in the case of Italian,
Hungarian and French to 350 words for the docu-
ments written in Spanish Miranda-Escalada et al.
(2020). By contrast, in our paper we deal with doc-
uments in Spanish and Swedish with an average
length of 800 (exceeding the aforementioned ones)
and 70 respectively.

According to these results, the per-label atten-
tion mechanism improves Precision. While more
performance is still necessary for a fully automated
system, the results suggest that it is suitable for
multi-label classification of EHRs according to the
ICD standard, specifically applying it as a clinical
DSS, as the per-ICD attention can aid the expert in
the EHR codification process.

6 Conclusions

We have dealt with the codification of EHRs of the
gastrointestinal service for Swedish and Spanish
hospitals. We have developed a BERT model for
multi-label classification incorporating a per-label
attention mechanism.

The results obtained have revealed that the pro-
posed model outperforms the regular BERT. We
have proved this fact for two languages with minor-

ity resources in clinical NLP, showing that solutions
of language independent nature work. Moreover
our proposal generates an interpretable output that
helps to know the relevance of the tokens with re-
spect to each ICD assigned to the EHR. To sum up,
the per-label attention mechanism differentiates se-
mantically ICDs that are related and aids to explain
the core of each label. Future work may include
testing BERT models trained for the specific lan-
guages, as the BETO model Cañete et al. (2020)
for Spanish.
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Jordi Armengol-Estapé, and Martin Krallinger. 2020.
Overview of automatic clinical coding: annotations,
guidelines, and solutions for non-english clinical
cases at codiesp track of CLEF eHealth 2020. In
Working Notes of Conference and Labs of the Evalu-
ation (CLEF) Forum. CEUR Workshop Proceedings.
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