
Received July 7, 2021, accepted July 23, 2021, date of publication July 28, 2021, date of current version August 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3100706

Towards Autonomous Defense of SDN Networks
Using MuZero Based Intelligent Agents
JON GABIRONDO-LÓPEZ 1,2, JON EGAÑA 1, JOSE MIGUEL-ALONSO 3, (Member, IEEE),
AND RAUL ORDUNA URRUTIA1
1Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastián, Spain
2Faculty of Informatics, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastián, Spain
3Department of Computer Architecture and Technology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastián, Spain

Corresponding author: Jon Gabirondo-López (jon.gabirondol@ehu.eus)

This work was supported in part by the Spanish Centre for the Development of Industrial Technology (CDTI) through the Project
ÉGIDA—RED DE EXCELENCIA EN TECNOLOGIAS DE SEGURIDAD Y PRIVACIDAD under Grant CER20191012, in part by the
Spanish Ministry of Science and Innovation under Grant PID2019-104966GB-I00, in part by the Basque Business Development Agency
(SPRI)-Basque Country Government ELKARTEK Program through the projects TRUSTIND under Grant KK-2020/00054 and 3KIA
under Grant KK-2020/00049, and in part by the Basque Country Program of Grants for Research Groups under Grant IT-1244-19.

ABSTRACT The Software Defined Networking (SDN) paradigm enables the development of systems that
centrally monitor and manage network traffic, providing support for the deployment of machine learning-
based systems that automatically detect and mitigate network intrusions. This paper presents an intelligent
system capable of deciding which countermeasures to take in order to mitigate an intrusion in a software
defined network. The interaction between the intruder and the defender is posed as a Markov game and
MuZero algorithm is used to train the model through self-play. Once trained, the model is integrated with
an SDN controller, so that it is able to apply the countermeasures of the game in a real network. To measure
the performance of the model, attackers and defenders with different training steps have been confronted
and the scores obtained by each of them, the duration of the games and the ratio of games won have been
collected. The results show that the defender is capable of deciding which measures minimize the impact of
the intrusion, isolating the attacker and preventing it from compromising key machines in the network.

INDEX TERMS Automated response, cybersecurity, intelligent agents, Markov games, MuZero, network
security, OpenFlow, software defined networking.

I. INTRODUCTION
The number of Internet users has grown considerably in
recent years and more and more services—from e-commerce
to banking—are provided over the Internet. Consequently,
not only the number, but also the severity of cyberattacks
on organizations and businesses has been increasing, causing
millions of dollars in losses [1].

Enterprise security systems have traditionally been
designed and implemented manually by expert personnel
and the response to attacks or intrusions has also been
carried out by those technicians. The new network infras-
tructure paradigm introduced by Software Defined Network-
ing (SDN) has enabled the development of automatic attack
detection and mitigation systems based on machine learn-
ing techniques [2]–[6]. Compared to conventional detection

The associate editor coordinating the review of this manuscript and

approving it for publication was Nabil Benamar .

systems or human-driven response strategies, these systems
can detect attacks faster and more accurately, and even imple-
ment countermeasures autonomously and automatically, min-
imizing the reaction and response time to an attack and thus
reducing the damage caused in the network.

Additionally, the development of reinforcement learn-
ing algorithms capable of outperforming human marks in
board games—such as chess or Go—has fostered the idea
of approaching network intrusion as if it were a Markov
game, using these algorithms to train intelligent agents that
can autonomously find security strategies to mitigate intru-
sions [7].

This paper presents an intelligent system which can mini-
mize the impact caused by an intrusion in an SDN network by
autonomously choosing and executing adequate countermea-
sures. The problem is posed as a partially observed Markov
game in which the attacker (the intruder) tries to compromise
a critical machine and the defender (an automatic security

107184
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-3510-4606
https://orcid.org/0000-0002-1649-7715
https://orcid.org/0000-0003-4616-322X
https://orcid.org/0000-0002-1804-6977

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Network

agent that manages the infrastructure) tries to reduce the
impact of the attack. The game has been designed taking
into account that it must be able to represent the state of the
nodes of a real network and that the actions of the defender
in the game must be implementable by an SDN controller.
The model has been trained using the MuZero model-based
reinforcement learning algorithm [8].

The major contributions of this paper are:

• The design of aMarkov game suitable to represent attack
attempts to a computer network in which nodes have
vulnerabilities.

• The implementation of the necessary countermeasures
by means of an SDN controller and OpenFlow-enabled
switches.

• The implementation of a virtual environment in which
the countermeasures chosen by the defender are carried
out autonomously in an emulated SDN network.

The rest of this paper is organized as follows: Section II
introduces the context of SDN and reinforcement learning
and presents the state of the art in both fields. Section III
presents the proposal made in this work, explaining how
the game works and its integration with an SDN network.
Section IV shows the information regarding the training of the
model and the results obtained. Finally, Section V evaluates
these results and highlights some possible lines of future
work.

II. BACKGROUND AND STATE OF THE ART
A. BACKGROUND
1) SOFTWARE DEFINED NETWORKING
In recent years, the applications and services offered on the
Internet have become increasingly complex and demanding.
This has highlighted the need for a paradigm shift in the
world of network infrastructures, as conventional networks
lack the dynamism and adaptability required by the new
platforms [9].

Conventional networks are composed of elements (such
as routers and switches) usually treated as black boxes that
rely on limited or manufacturer-specific control interfaces.
These devices are typically configured individually, and traf-
fic management decisions are made directly at the device
level, intermingling the control plane responsible for making
such decisions with the data plane composed of the net-
work elements [10], [11]. The lack of independence between
these two planes makes it extremely difficult to dynamically
adapt the network to the needs of the applications deployed,
or to cope with certain type of events. This problem is one
of the main causes of the ‘‘ossification of the Internet’’:
the development of new protocols and infrastructures has
been severely hampered by the very architecture of network
elements [10], [12].

Software defined networking proposes systems in which
the control plane and the data plane are completely decou-
pled, allowing centralized configuration of the infrastruc-
tures, as shown in Fig. 1. Although there are different

FIGURE 1. Structural differences between (a) a conventional network and
(b) a SDN.

SDN architectures, this paper only considers those based on
the OpenFlow protocol [12] in the communication between
the control plane and the data plane, as it is a widely
used protocol endorsed by the Open Networking Founda-
tion (ONF)—the non-profit organization dedicated to the
development and standardization of SDN networks [11].
The elements that constitute the network (known as Open-
Flow switches) are only responsible for forwarding traffic,
whereas decisions are made by the network controller. The
controller installs flow tables in the switches using the Open-
Flow protocol. The tables consist of flows that determine
how packets that meet certain criteria are processed and
forwarded.

A flow is composed of different elements: theMatch fields
are the conditions that the incoming packet has to meet (such
as the source IP address or the incoming port, for example)
to execute the instructions defined in the Instructions field.
These instructions may include blocking all traffic coming
from some port, forwarding the matching traffic through
a specific output port or forwarding some packets to the
controller, for example. When an incoming packet matches
with more than one flow, the one with the highest value in
the Priority field is executed. The Counters field collects the
number of packets processed by that flow, the Timeout field
defines how much time must pass without inputs for a flow
to be dropped and the Cookie field is just an identifier set by
the controller [13]. When a packet that does not match any
flow is received, the instructions defined in the special table-
miss flow are executed, which may include actions such as
dropping the packet or sending it to the controller for further
analysis.

VOLUME 9, 2021 107185

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Networks

FIGURE 2. Diagram of the components of a SDN and the interfaces
between them.

Fig. 2 shows the structure of this type of SDN networks,
which consists of three main groups of components (planes)
and two interfaces that allow communication between them.
There are more complex structures that include several con-
trollers and more interfaces, but in this paper, for the sake of
simplicity, we only consider the case of a single controller.
The controller uses the Southbound Interface (SBI) to com-
municate with the network devices. In this way, the con-
troller manages all packet processing by installing flows
in the switches. The controller can also collect informa-
tion and statistics about the data plane. The SBI is vendor-
independent and the most widely used is the aforementioned
OpenFlow [14].

The controller also communicates with the application
plane through a Northbound Interface (NBI). The application
plane consists of several SDN applications that implement
traffic control and management strategies, such as load bal-
ancing, packet filtering (firewalling), traffic monitoring, etc.
Therefore, the NBI allows applications to process the data
plane information received by the controller, perform actions
at a high level and have the controller execute them on
the infrastructure. There are no standardized NBIs, they are
controller-specific. However, they are typically built using
REST APIs [15].

An important property of a SDN is its ability to react to dif-
ferent events. The controller can perform an initial, proactive
configuration of the network. However, this configuration
can be dynamically modified (by adding or removing flows),
adapting it to the traffic observed in the network, whether
harmless or dangerous. SDN networks have therefore been
used on many occasions to design systems capable of
detecting and responding dynamically to cyberattacks [6],
[16], [17].

2) REINFORCEMENT LEARNING AND MARKOV GAMES
Reinforcement Learning (RL) is an area of machine learning
that studies how an agent learns to make decisions by follow-
ing a trial-and-error strategy [18], [19]. The main elements of
the RLmodels are shown in Fig. 3. The agent is the subject of
the training and the onewho has to learn to perform decisions.
The environment represents the world with which the agent
interacts [20]. In each interaction t , the agent receives an
observation ot ∈ O of the state of the environment st ∈ S ,

FIGURE 3. Summary of the main elements of reinforcement learning
problems and the interactions among them.

where O is the set of observations of the ensemble of
possible states S. Based on the observation it decides which
action at ∈ A(st) to take, where A(st) is the set of possible
actions in state st . Then, the environment changes in response
to the agent’s action or independently. Once the action is exe-
cuted, the agent receives a reward rt+1 and a new observation
of the environment, which allows it to evaluate the effect
of the action just performed, as well as to perform a new
step.

It is worth noting the difference between the state and
an observation of the environment. The state represents all
the information of the environment and thus defines it com-
pletely. An observation, however, is a view that usually con-
tains only a part of the information about the state. In the
particular case where the observation includes all the infor-
mation about the state, the environment is fully observed;
otherwise, the environment is partially observed. In many
cases, the term ‘‘state’’ is used to actually refer to ‘‘observa-
tion’’, and the symbol st is used instead of ot . In this paper we
have chosen to use an explicit expression of the observation,
for two main reasons: the first is that a main characteristic
of the model we have implemented is that it is based on a
partially observed environment; the second is that the authors
of the algorithm used to train the model use this notation in
their article [8]. A main piece of a RL model is the policy,
i.e., the strategy that determines what action the agent should
take given an observation. This function is updated as the
model is trained. In general, the policy is the probability that
the agent will take an action at based on the observation ot .
The policy π usually depends on a set of parameters θ , so its
complete representation would be πθ (at | ot).

A succession of states visited and actions taken, τ =
(s0, a0, s1, a1, . . .), is often referred to as an episode. The
agent’s main goal is to maximize the sum of all rewards
obtained in an episode. This sum of rewards is known as
return. A strategy called discounted return is often used,
which makes rewards earned several steps back worth less
than rewards earned closer in time. This return is defined as

R(τ) = rt+1 + γ rt+2 + γ 2rt+3 + . . . =
∞∑
k=0

γ krt+k+1 (1)

where γ is a parameter, 0 ≤ γ ≤ 1, known as discount rate.
Beyond the intuition established so far, those processes

studied in RL are Markov Decision Processes (MDP) which

107186 VOLUME 9, 2021

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Network

are defined by a six-component tuple as shown in (2) [21].

M = 〈S,A,Pss′ ,Ra
ss′ , γ, ρ0〉 (2)

being

Pa
ss′ = Pr

[
st+1 = s′ | st = s, at = a

]
(3)

Ra
ss′ = E

[
rt+1 | at = a, st = s, st+1 = s′

]
(4)

where Pa
ss′ is the probability of reaching state s′ by applying

an action a in state s, and Ra
ss′ is the expected reward after

that transition. The term ρ0 : S 7→ [0, 1] is the distribution
of the initial state [7].

TheMDPs are so named because the transition from state st
to state st+1 satisfies theMarkov property (5): it only depends
on the mentioned states and not on the rest of the previous
states [20].

Pr [st+1 | st] = Pr [st+1 | s1, . . . , st] (5)

As mentioned in the introduction, the model we describe
in this paper is a Markov game based on a Partially Observed
Markov Decision Process (POMDP), in which the agent
makes decisions based on its (partial) observation of the sys-
tem and not directly on the state. At a step t , the observation
ot ∈ O is related to the state st ∈ S by the function Z , so a
POMDP is defined as follows:

MP = 〈S,A,Pss′ ,Ra
ss′ , γ, ρ0,O,Z〉 (6)

where O is the set of observations of the system and Z =
Pr [o | s] is the probability of observing o in state s.
Bringing the two fields together, the problem posed in RL

can be understood as the search for the optimal policy π∗ that
maximizes the expected value E of the sum of rewards of an
MDP for a maximum of T steps:

π∗ = arg max
π

E

[
T∑
t=0

γ trt+1

]
(7)

In RL algorithms, value functions are defined, which cal-
culate the expected return of actions taken from an initial state
and following a certain policy. Formally, in the case ofMDPs,
the function Vπ (s) called state-value function for policy π is
defined as

Vπ (s) = Eπ [R | st = s]

= Eπ

[
∞∑
k=0

γ krt+k+1 | st = s

]
(8)

and represents the expected return when the agent follows a
policy π starting from a state s.

Analogously, the value of taking an action a in a state s,
the action-value function for policy π , is also defined as

Qπ (s, a) = Eπ [R | st = s, at = a]

= Eπ

[
∞∑
k=0

γ krt+k+1 | st = s, at = a

]
(9)

which represents the expected return obtained by following a
policy π after performing action a in state s.

The Bellman equations set out in (10) and (11) show
that the value of a state or state-action pair is the expected
return obtained by following the optimal policy π∗ defined
in (7) [22].

V ∗(s) = max
a

E
[
rt+1 + γV ∗(st+1)|st = s, at = a

]
(10)

Q∗(s, a) = E
[
rt+1 + γ max

a′
Q∗(st+1, a′)|st = s, at = a

]
(11)

Recall that the ultimate goal of a RL algorithm is to find
the optimal policy π∗. For finite MDPs, (10) has a unique
solution, so once V ∗ has been calculated it is relatively simple
to obtain the optimal policy, since if this function is used to
evaluate the short-term actions (evaluating the state s arrived
at after performing a) the policy followed when taking the
best option at each step is the optimal long-term policy [20].

Similarly, using Q∗, the agent no longer has to search for
the new state s that maximizes V (s), but only has to search for
the action a that results in a higherQ(a). This allows the agent
to make decisions without having to know all the consecutive
states, that is, without having to know the dynamics of the
environment with which it interacts.
Estimating these value functions is a fundamental part

of model-free algorithms, which seek to find the optimal
policy without having a model of the environment, as the
Q-learning [23] algorithm does, for example. On the other
hand, model-based algorithms also use such functions to
construct models that have the same value functions as the
original environment and are therefore equivalent. The algo-
rithm MuZero [8] is one of the most recent examples of
model-based algorithms.

Finally, it only remains to mention that decision pro-
cesses involving multiple agents are studied within game
theory [24], [25]. These agents interact with the environment
simultaneously or in turn and each one obtains a correspond-
ing payoff, thus refining their policies. When designing a
game, the following factors must be determined, which also
serve to classify them [26]:

• Zero-sum: Whether the sum of all players’ rewards is
0 or not. In two-player games, rewards sum to 0 if both
players are strictly competing against each other.

• Information: Whether the game state is fully or par-
tially observable by the players.

• Determinism: Whether the outcome of the game
depends to some extent on luck.

• Sequential: Whether the agents interact sequentially or
simultaneously.

• Discrete:Whether actions are implemented in real time
or not.

Specifically, Markov games are the theoretical context of
multi-agent RL algorithms [27]. A Markov game MG with
N agents is defined by a tuple similar to the one given in (5):

MG = 〈S,A1, . . . ,AN , T ,R1, . . . ,RN , γ, ρ0〉. (12)

VOLUME 9, 2021 107187

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Networks

Compared to an MDP, the Markov game defined by (12)
presents a list of sets of possible actions to be performed by
the N agents in which to an agent i ∈ [1,N] corresponds its
set Ai instead of the unique set A. The transition function
T operates on all possible combinations between the set of
states and the combined action space of all agents: T : S ×
A1×A2 . . .×AN 7→ S. Similarly, the functionsRi define the
rewards obtained by the agents:Ri : S×Ai 7→ R. In the case
of a game based on a partially observed process, the definition
(12) also includes the lists of sets of observationsO1, . . . ,ON
and of observation functions Z1, . . . ,ZN [7].

B. STATE OF THE ART
1) INTRUSION DETECTION AND PREVENTION SYSTEMS
Intrusion detection systems (IDS) attempt to identify mali-
cious activity occurring on a network (network IDS) or on
a computer (host IDS) by capturing and analyzing different
sources of information. A network IDS captures and analyses
the packets traversing the network (both protocol headers
and content), as well as aggregate measurements on traffic:
sessions, IP addresses involved, traffic volumes, etc. They are
usually guided by a set of rules against which the captured
data is compared. If there is a match, an alert is issued:
the IDS has detected suspicious activity. Intrusion detection
and prevention systems (IDPS) go one step further: they
are not only capable of detecting an intrusion attempt, but
also of reacting to reduce or completely prevent the mali-
cious effects by executing some countermeasures. To this
end, an IDPS is able to perform network modifications, for
example by automatically adding a rule in the corporate
firewall [28].

SDNs are particularly suitable for IDPS deployment. They
can be deployed as control applications, capable of collecting
information from the network with the help of the controller.
The detection subsystem will then search the collected data
for signs of intrusion. If dangerous activities are detected,
the IDPS intelligence will choose the best course of action,
consisting of a series of countermeasures that affect the flow
tables of the network devices. The necessary changes will be
implemented through requests to the controller.

The work presented here is intended to be only one piece
of a complete IDPS. We assume that there is a working IDS
that tells our intelligent agent what type of attack has been
detected. Our agent will choose the best countermeasures and
ask the controller to apply them. This is the part we focus
on. The design and implementation of a good network IDS
goes beyond the scope of our work. The interested reader
can find relevant and up-to-date information on network IDS
in [29]–[32].

2) AUTONOMOUS INTRUSION MITIGATION SYSTEMS IN
SDNs
As stated before, the abstraction, flexibility and programma-
bility of infrastructures based on the SDN paradigm have
enabled the development of attack detection and automatic

countermeasure deployment systems [5], [33]. Focusing on
the defense activities, several intelligent systems capable
of deciding which countermeasures to take have been pro-
posed. One of the most complete systems is NICE (Net-
work Intrusion detection and Countermeasure sElection in
virtual network systems) [6], which integrates the detection of
infected virtual machines in cloud computing environments
with the automatic deployment of optimal countermeasures,
which include patching the software of an attacked machine
or quarantining a suspicious node. The entire infrastructure
proposed in NICE is based on SDN elements using the
OpenFlow protocol. Each machine in the network has a
vulnerability registered in the Common Vulnerabilities and
Exposures (CVE) list [34], and the attack is represented by
an attack graph where each node represents the previous
state or consequence of the exploit on one of the machines.
The selection of the response to an attack is made taking
into account the intrusiveness and cost of the countermea-
sure, so as to minimize the impact of the response itself.
The SnortFlow [17] system follows the guidelines set by
NICE, but all proposed countermeasures are based solely on
actions taken on the network itself (such as redirecting traffic
or blocking a port) and are implemented via an OpenFlow
controller.

Apart from proposals focusing on a practical aspect of
countermeasure implementation, works such as [7] propose
to use multi-agent Markov games to search for defense strate-
gies against cyberattacks. Specifically, the game is set up
as a partially observed game and the authors study different
scenarios in which the abilities of the attacker and defender
vary. In their game, the attacker must move through a graph to
reach a target machine, simulating a problem similar to those
posed in the Cyber Ranges [35]. In that work, the model-free
algorithms PPO [36] and REINFORCE [37] are used to train
the agent.

3) REINFORCEMENT LEARNING ALGORITHMS AND THE
MuZero ALGORITHM
A classic way of evaluating reinforcement learning algo-
rithms is to pit them against games such as chess or Go
in an attempt to beat human scores and obtain superhuman
results. One of the first milestones in this field, apart from
specialized computers for winning at chess or shogi [38],
was the AlphaGo algorithm developed by the company Deep-
Mind, which managed to beat a professional Go player for
the first time [39]. A modification of that algorithm called
AlphaGo Zero [40] achieved superhuman results playing
Go and led to its successor AlphaZero, which managed to
beat world champions in chess, shogi and Go with only
24 hours of training in each case [41]. AlphaZero was
trained using 5000 first-generation TPUs to generate self-
play games and 64 second-generation TPUs to train the neural
networks.

Model-based algorithms have repeatedly outperformed
humans in classic games such as checkers, chess, Go or
poker, as they are able to develop a long-term strategy.

107188 VOLUME 9, 2021

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Network

FIGURE 4. Diagram of the proposal made in this work, in which the
trained model, the network controller and the simulation environment
are completely independent.

However, those algorithms have tended to perform poorly
when confronted with complex environments like the Atari
2600 computer games. Model-free algorithms obtain better
results in these environments [42]–[44], but perform much
worse than model-based algorithms in games such as those
mentioned above, which require precise and sophisticated
lookahead [8].

The MuZero algorithm introduced by DeepMind in 2020
(a model-based algorithm) completely changed the state of
the art. It obtains performances comparable to those of
model-free algorithms in visually complex environments,
while maintaining superhuman results in precision planning
tasks such as classic board games, as previous model-based
algorithms [8].

III. PROPOSED ARCHITECTURE
In this work we propose to use the MuZero algorithm to
train a model that is able to decide which countermeasures
to implement when an attacker intrudes an SDN network,
with the intention of mitigating the attack and minimiz-
ing the number of compromised machines. The interaction
between the intruder and the defender has been modeled
as a stochastic, partially observed, zero-sum Markov game,
in which both agents perform actions sequentially. Fur-
thermore, the model has been integrated into a realistic
SDN network emulation environment based on Mininet [45].
The (virtual) switches deployed within the Mininet environ-
ment support the OpenFlow specification and accept control
from an external controller—we have used the Ryu con-
troller [46]. Fig. 4 summarizes the three blocks developed for
this work.

Below we present the programs and libraries used for the
implementation of our proposal, the decisions related to the
game design and the virtual network environment imple-
mented. The hardware used to train and test the model is
described in Section IV-C.

A. DESIGN OF THE GAME
This section explains the different elements designed to
obtain a partially observed Markov game representing the
interaction between the attacker and the defender.

1) AGENTS AND THE ENVIRONMENT
The game is set up as a match between two players,
the attacker and the defender, in which the attacker tries to
compromise key targets in a network and the defender tries
to mitigate the intrusion.

Although the MuZero algorithm was designed to deal with
board games or video games, in this case the environment to

be simulated is a network of interconnected computers, so we
have chosen to use a graph to represent it. For practical pur-
poses, MuZero can be used to train agents in any environment
represented by a vector or a matrix. The translation from the
network graph to a matrix suitable for MuZero is explained
in Section III-A2.

In this game, the attacked network is composed of N
vulnerable nodes, of which m are part of a honeynet. A hon-
eynet is an isolated part of the network where machines
(called honeypots) are used as traps for attackers [47]. These
machines do not provide actual services, but are vulnerable
to attacks, causing attackers to waste time and resources
exploring while allowing defenders to obtain intruder-related
information [48]. This structure is similar to the one proposed
by the Science DMZ [49].

Inspired by the NICE project, each node in the net-
work (also known as host) is assigned a Base Score (BS),
an Exploitability, an Impact, and a Scope. The National Vul-
nerability Database (NVD) [50] uses those factors to quan-
titatively assess a vulnerability, which represents a weak-
ness in software and hardware components of a system
that, when exploited, negatively affects its confidentiality,
integrity, or availability. In a real setup where the IDS would
detect the intrusion, those factors would be computed using
the equations defined by the version 3.1 of the Common
Vulnerability Scoring System (CVSS) [51]. According to that
standard, the value of the BS depends on the Impact sub-
score (ISS), Exploitability, and Impact. The impact sub-score
is defined as

ISS = 1− [(1− C)× (1− I)× (1− A)] (13)

where C is the Confidentiality Impact, I the Integrity Impact
and A the Availability Impact. Those metrics measure the
impact to the confidentiality, integrity and availability of
the information resources caused by the exploitation of the
vulnerability of a software component.

The Exploitability of a host depends on the Attack Vector
(AV), the Attack Complexity (AC), Privileges Required (PR)
and User Interaction (UI) according to (14). Those metrics
represent the properties of the vulnerability that lead to a suc-
cessful attack. The Attack Vector increases with the physical
and logical distance between the attacker and a successfully
compromised component. The Attack Complexity represents
the conditions that are beyond the attacker’s control and
that are necessary to exploit the component. The Privileges
Required metric describes the privileges that the attacker
must have before exploiting the vulnerable component and
the User Interaction represents if the activity of another user
other than the attacker is required to successfully compromise
the vulnerability.

Exploitability = 8.22× AV × AC × PR× UI . (14)

The Impact of the vulnerability depends on its Scope (S).
This factor determines whether the affected host is the
one with the vulnerability (Unchanged) or a different one

VOLUME 9, 2021 107189

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Networks

(Changed). In the case where the Scope is Changed,
the Impact is computed as

Impact = 6.42× ISS (15)

whereas if it is Unchanged,

Impact=7.52×(ISS−0.029)−3.25×(ISS−0.02)15. (16)

Finally, BS is calculated differently depending on the
Impact and Scope. If Impact = 0, BS = 0. If Impact > 0,
BS is computed as

roundup
(
min

[
1.08×(Impact+Exploitability), 10

])
(17)

if Scope is Changed, and as

roundup
(
min

[
(Impact+ Exploitability), 10

])
(18)

if Scope is Unchanged. The roundup function returns the
smallest number, specified to one decimal place, that is equal
to or greater than its input.

In terms of the game, the Scope of a vulnerability deter-
mines what actions the attacker can take if he succeeds
in exploiting it: if the Scope is Unchanged, the attacker
could only read files from the target machine, whereas
if the Scope is Changed, the attacker could scan and
exploit the machines to which the compromised host is con-
nected. The design decisions related with the Base Score,
the Exploitability and the Impact will be discussed in
Section III-A3.
The initial network therefore consists of N − m hosts

connected to each other forming a fully connected logi-
cal network and m hosts isolated from the main network
but connected to each other (see Table 1 and Fig. 6 in
Section IV-B). Each node is assigned a vulnerability and it
can be in different states—normal (state 0), scanned (state
1) and attacked (state 2)—allowing only the transitions 0→
1 → 2. Machines cannot revert to a previous state, so that
it is guaranteed that there is a reduced number of possible
actions. At the start of the game one of the hosts on the
main network is set to flag (state -1) and the attacker’s main
objective will be to reach that host; another host with Scope
‘‘Changed’’ is set to state 2, allowing the attack to start from
there.

In order to illustrate the explanations that follow, in the
rest of this paper we will represent the state of the network
using graphs, since they are also used to show the state of
the game. Formally, a graph G = (V ,E) is an ordered pair
where V is a set of nodes or vertices and E is a set of edges
such that E ⊆ {{x, y} | x, y ∈ V ∧ x 6= y}. In our
representation of the system, the nodes in the graph represent
the hosts, and the edges show that traffic between two hosts is
not blocked (i.e. there is connectivity between them). As hosts
can be in different states, a color coding has been chosen
to represent them in the figures (see Fig. 5). In this coding,
those machines in its initial state are represented by white
background nodes, the explored ones by yellow nodes and
the attacked ones by the purple nodes. A node with a dashed-
dotted border represents the flag. The label placed inside each

FIGURE 5. Encoding used to represent the states in which the nodes can
be.

TABLE 1. Example of a game environment. The red colored row
represents the attacked node and the green colored one is the flag.

FIGURE 6. Graphical representation of the environment described by
Table 1.

node is just an identifier, and has no relevance from the point
of view of the game.

As an example, Table 1 defines a possible environment
consisting of N = 12 nodes (with m = 4 nodes form-
ing a honeynet), and Fig. 6 shows the graph representation
of the network. It should be noted that these are reacha-
bility graphs that do not represent the physical topology
of the network (consisting of switches, hosts and Ethernet
links), since an edge between two nodes does not represent
a physical link, but means that they can exchange pack-
ets. Note also that switches are not represented in these
graphs.

2) THE OBSERVATIONS
The evolution of the intrusion and its mitigation is modeled
as a partially observed decision process, since neither the
attacker nor the defender has full information of the state
of the network. To represent this fact we have used three
different graphs: the actual or general graph GG = (VG,EG)
with the complete state of the network, the attacker’s graph
GA = (VA,EA) with the partial view that the attacker has,
and the defender’s graph GD = (VD,ED) that is also a partial
view.

107190 VOLUME 9, 2021

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Network

FIGURE 7. Calculation of the matrix M representing the observed state of
the graph G.

Remember that we need a matrix representation of a game
board, so we need to translate the above graphs into equiva-
lent matrices. Although the adjacency matrix representation
of a graph makes it possible to reflect the existing (logical)
connections in the network, it is not sufficient to describe it
in its entirety, since it does not include the different states
in which nodes can be. Taking advantage of the fact that the
main diagonal of the adjacency matrix is null, if we represent
the state (real or observed) of all nodes according to the
coding described in Fig. 5 as a diagonal matrix, a complete
board can be represented by adding the two matrices. There-
fore, the graphs GG, GA and GD are fully represented by the
matrices MG, MA and MD, respectively. Fig. 7 summarizes
the derivation of a board matrix for a simple graph with three
nodes.

The three network graphs representing the state of the game
are different from each other; an action taken by a player
(explained in Section III-A3) only has an effect on the general
graph and on the graph of that player. Consequently, each
player only has a partial observation of the game. Fig. 8 shows
three graphs/matrices computed for the same state. The actual
state can be described as follows: starting from the initial
situation determined by Table 1, the attacker has attacked
machine 4 and has explored machine 2. In reality, machine
1 is isolated from the rest (as seen in the graphs GG and GD)
but the attacker has not yet noticed the change in connectivity
between the nodes of the network. Similarly, the defender
has detected that machine 1 has been attacked (and we can
assume that it has taken some of the actions explained in
Section III-A3) but does not notice that node 2 is in state 1 and
node 4 is in state 2.

3) THE ACTIONS
The following conditions have been considered in order to
design the actions that each player can execute:

• Only defensive actions that can be implemented using
an SDN controller are considered, leaving out of the
study options such as software upgrades or changes to
the underlying physical topology—such as adding or
removing a switch or changing the switch/port to which
a host is connected.

• Defensive actions can only be applied against machines
that have already been attacked, but network monitoring
is allowed.

• Offensive actions can be only carried out against the
hosts: both switches and the controller are invulnerable.

FIGURE 8. Example of the general state of a game and the observations
seen by the defender and the attacker.

• The MuZero algorithm requires the board size to remain
constant throughout the game, so the number of nodes
cannot vary: new machines cannot be deployed or
removed completely.

It should be noted that an agent’s decision making is
based on its observation of the game, not on the actual state.
Therefore, legal actions that an agent can take theoretically
may not be feasible in practice or may not have the expected
effect due to differences between the agent’s observation and
the actual state. Moreover, as mentioned above, this is a
stochastic game, so there are actions that have a probabilistic
factor. For example, whether or not the attacker succeeds in
exploiting a vulnerability in a machine depends directly on
the characteristics of that vulnerability, so the agent will not
always get the same result.

Actions available to the defender are:

• Check status
The defender verifies whether the state of a node cor-
responds to that of its observation. If a node has been
attacked, the probability of detecting it is proportional
to the Base Score of the vulnerability of the attacked
machine.

Pr [oD(ni) = 2 | s(ni) = 2, a = check] = BS/(10N)

(19)

VOLUME 9, 2021 107191

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Networks

FIGURE 9. Main network and honeynet status before redirecting all
traffic from node1 to honeynet nodes (up) and after (bottom).

where oD(ni) and s(ni) are the defender’s observation
and the real state of the affected machine ni and N is
the total number of nodes in the network.

• Isolate node
Deterministic action that completely isolates an
exploited machine.

• Send node to honeynet
Deterministic action that blocks all traffic between the
affected machine and the main network and allows
the node to communicate with the rest of the nodes in
the honeynet (see Fig. 9). In our game, the goal of this
action is to make the defender gain time to check the
state of the rest of the network while the attacker scans
and attacks the honeypots.

• Move the flag
This action simulates the migration of critical services
from one machine to another. The defender can try to
perform this action if the objective host is not compro-
mised according to its observation. Even though it is a
deterministic action, if the machine has been attacked
(the actual state of the node is 2 instead of the observed
state 0), the action cannot be performed, but the defender
can detect that the machine has been attacked with a
probability equal to that used in the action Check status
(19). Migration of services to multiple machines (flag
splitting) is not considered.

Each countermeasure has been assigned a value that rep-
resents the total cost of carrying out that action. The coun-
termeasures proposed in NICE [6] and those proposed in this
paper are equivalent, so each action has been assigned the cost
and intrusiveness of its equivalent measure. The action Check
status has no equivalent in NICE, as it is not a countermeasure
but a monitoring task, so it has been assigned a low cost
and zero intrusiveness. The total cost of each measure, which
takes into account the effect it has on the network and the

TABLE 2. Costs and intrusiveness of proposed countermeasures.

resources needed to implement it, is obtained by adding its
cost and intrusiveness, see Table 2. These costs have been
defined in order to make the defender mitigate attacks by
following an optimal strategy, thus minimizing the resources
used.

For the attacker, the following actions are available:
• Explore the topology
The attacker agent obtains the list ofmachines connected
to those already attacked with Scope ‘‘Changed’’, thus
updating its observation.

• Scan for vulnerabilities
This action scans the vulnerability of a machine from
another machine with Scope ‘‘Changed’’. If the action
is viable, the probability of detecting a vulnerabil-
ity is its Exploitability/10, which is in the range
of 0 to 1. Once scanned, node status changes from
0 to 1.

• Attack vulnerability
Attacker attempts to exploit one of the vulnerable
machines from another with Scope ‘‘Changed’’. The
probability of compromising an explored machine is,
again, proportional to the Exploitability of the vulner-
ability of that host: Exploitability/10. Once attacked,
node status changes from 1 to 2.

Having presented all the actions, it is pertinent to return
to the following idea: an attacker may decide to perform an
action, but that does not mean that he succeeds in performing
it. The pseudo-code presented in Algorithm 1 shows how an
attacker action is executed. When carrying out an exploration
or an attack, the intruder takes the set of neighboring nodes
of the target machine nO ∈ VA from the graph GA. From
that set it randomly chooses one of the nodes nA ∈ VA with
Scope ‘‘Changed’’ and tries to perform the action. If the edge
between nO and nA does not exist in GG, the attacker cannot
use that connection to attack, so it removes the edge from its
graph and selects another node. If the edge exists, a random
number between 0 and 1 is generated and the Exploitability of
the objective machine is divided by 10 to scale it to that range.
Thus, the action succeeds if the random number is smaller
than the scaled Exploitability, leading to a success probability
of Exploitability/10.

4) THE OBJECTIVES
The attacker’s main objective is to attack the flag machine
and the defender’s main objective is to prevent this from
happening. To do this, both players take actions sequentially
until the attacker reaches the flag (the attacker wins) or cannot
take any more actions (the defender wins).

107192 VOLUME 9, 2021

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Network

Algorithm 1 Progress of an Attack
action, objective_node← select_action(observation)
neighbors← get_neighbors(objective_node, GA)
action_possible← false
for neighbor ∈ neighbors do
if edge(objective_node, neighbor) ∈ EG then

action_possible← true
break

else
remove_edge(objective_node, neighbor, GA)

end if
end for
if action_possible == true then
exploitability← get_exploitability(objective_node)
random_number← get_random_number(0, 1)
if exploitability/10 ≥ random_number then

apply_action(action, objective_node)
end if

end if

5) THE REWARDS
The implementation ofMuZero used poses two-player games
as zero-sum games, automatically changing the sign of the
opponent’s payoff. Therefore, each player, in addition to
receiving the reward it is entitled to, is also penalized with
the payoff obtained by the opponent. The aim of each agent
is to maximize its own reward while minimizing its oppo-
nent’s, so secondary objectives beyond winning the game are
specified by the design of the rewards.

In this work we have chosen to reward only the winner of
the game at the end of it, giving a null reward to the rest of the
actions. It must be taken into account that the game also ends
after a certain number of moves, thus avoiding infinite games.
Games that end by this criterion are considered a draw and
neither player receives a reward. In order to train a defender
capable of minimizing the effort required to mitigate the
intrusion, the rewards shown in (20) have been implemented.

rt =

TI , winner=attacker
max(0,MM −TI−TC), winner=defender
0, otherwise

(20)

where TI is the total impact caused by the attacker,
MM is the maximum number of moves allowed before the
end of the game and TC is the total cost of the implemented
countermeasures.

The total impact is the sum of the impact of the exploited
vulnerabilities multiplied by 10, thus making it of the same
order of magnitude as the total cost of the countermeasures
and, consequently, of the reward obtained by the defender.
The total cost is computed by adding up the costs of all
the countermeasures implemented by the defender, using
the values listed in Table 2. This reward system not only
recompense the agent for trying to finish the game, but also
positively evaluates the attacker for compromising as many

FIGURE 10. Diagram of the deployment and development of the game.

nodes as possible, thus encouraging it to explore as much of
the network as possible.

B. DEVELOPMENT OF THE GAME
Fig. 10 shows the deployment and development of the game.
This sequence of actions is repeated every timeMuZero starts
a game. In this figure it can be seen how the network imple-
mented in Mininet is used to mirror on it the countermeasures
applied by the defender. When training the model, the game
is played entirely on the boards, but, optionally, MuZero can
interact directly with the SDN controller.

Keep in mind that the physical infrastructure doesn’t
change, but the connectivity does, and we take care to main-
tain the flows installed on the routers so that the connectivity
matches the actual game board. We do checks to make sure
the network and the game are in sync.

IV. EXPERIMENTAL DESIGN
This section presents the experiments performed and the
results obtained for a relatively simple case study. In gen-
eral terms, the experiments are based on defining a game

VOLUME 9, 2021 107193

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Networks

environment, training the model using MuZero and playing
games between models with different number of training
steps. The number of moves required by each player to win
the game—the episode length—, the points obtained as a
reward by the winner and the percentage of games won by
each player have been chosen as the metrics to measure the
performance of the players.

A. SOFTWARE COMPONENTS
• Mininet [45]: used to define within a single guest
machine virtual networks consisting of Ethernet links,
OpenFlow switches and Linux hosts connected to the
switches. The network topology, as well as switch, link
and host parameters can be specified via command line
or Python [52] scripting.

• Ryu [46]: OpenFlow controller. Ryu is an environ-
ment for programmingOpenFlow-based SDN networks.
It can be seamlessly integrated with virtual topologies
defined with Mininet, although its main function is to
control physical OpenFlow switches. The controller is
programmed in Python (the language in which Ryu itself
is written), and Ryu provides facilities to implement
REST API-based northbound interfaces [15].

• MuZero General [53]: an implementation of MuZero
based on the pseudo-code provided in the original [8]
article and written in Python. This implementation pro-
vides a suitable environment for training custom games
written in Python and evaluating the performance of the
obtained model.

Consequently, this work has been developed entirely in
Python [52].

B. UNDERLYING PHYSICAL INFRASTRUCTURE
Unlike [7], the second objective of our work is to implement
a system that can actually perform countermeasures in an
SDN network. As mentioned above, we use SDN networks
emulated in Mininet and the Ryu controller. A game board is
defined over the real network, and the actions taken by the
defender correspond to countermeasures implemented (using
Ryu) as reconfigurations of the network switches. This setup
has two main objectives:

• Bridging the gap between the purely theoretical game
and its application in real SDN networks.

• Be the basis for more complex implementations
obtained as a result of replacing or extending the func-
tionalities of any of the blocks—the game, the controller
or the simulation environment—independently.

The configurations of the network topology and the Eth-
ernet links between the hosts and switches are defined,
together with the initial game state, in two JSON files:
topology.json and graph.json. The first one deter-
mines the OpenFlow switches used, the number of hosts
deployed and to which switch each of them is connected.
The second file determines the characteristics of each host:
the IP andMAC addresses, the hosts it can communicate with

and the vulnerability it presents; it also specifies which nodes
are initially attacked and which of them is the flag.

The basic operation of our networks is based on the behav-
ior of traditional Ethernet switches, as defined in the Ryu
documentation [54]: when a packet arrives at a switch and
does not match any of flows of that switch, a copy of the
packet is send to the controller. The controller then orders to
(1) perform a ‘‘flood’’: a copy of the packet is sent through
all ports except the one it was received on, and (2) install new
flows on the switches in order to make forwarding straight-
forward in the future, without contacting the controller again.
The result of this way of working is that the network allows
all-to-all connectivity between hosts. At first it is not very
efficient because the controller has to intervene to command
the flooding, but the switches are gradually configured so that
subsequent forwarding is done directly.

Once the network is built, additional flows are installed
so that reachability is as determined by the configuration
file. In parallel, the graphs corresponding to the game boards
are created. It is worth mentioning that different network
topologies can give rise to the same game graph, as these
graphs do not depend on the network topology, but on the
reachability.

Whereas the countermeasures have been implemented by
Ryu, the attacks posed in the game should be understood as
abstractions of the actions that an expert attacker would take
and therefore are notmirrored in the network. The controller’s
execution of the actions chosen by the defender is shown
below:

• Isolate node
Flows are installed in the switches that block all packets
coming from or going to the IP address of the isolated
machine.

• Send node to honeynet
A switch in a honeynet is randomly selected and the con-
troller removes all flows that blocked traffic between the
nodes in that honeynet and the target machine. In addi-
tion, flows are installed on the main network switches
that block traffic to and from that machine.

• Check status
Currently, this action has not been implemented in the
controller. In the future, an agent could be added to
study the state of the nodes in the network and detect
intruders with a tool such a Security Information and
Event Management system (SIEM) [55].

• Move the flag
This action is not implemented by the controller, because
it is not capable of changing the IP and MAC addresses
of a host—that is how the flag could be moved without
actually migrating the service from one computer to
another. In future work, the controller will be used to
redirect the traffic to the new host once the addresses
have been changed.

In a real configuration with a complex SDN and several
control applications operating on it, a mechanism should

107194 VOLUME 9, 2021

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Network

FIGURE 11. Diagrams of the network topology of the case study (top) and
its logical configuration (bottom).

be put in place to avoid logical errors such as loops, black
holes, rule overlapping, etc., like the one proposed in [56].
For simplicity we have not included it in our proof of
concept.

C. HARDWARE USED
All experiments have been executed on a virtual machinewith
20 vCPUs @2.2 GHz, 40 GB RAM and 2 NVIDIA Tesla
M10 GPUs. The physical CPUs installed in the host server
are two Intel Xeon Silver 4114. The hyperparameters related
to MuZero can be found in Appendix A.

D. THE NETWORK AND THE GAME BOARD
We performed the experiments on a network with N = 12
hosts. Eight of them form the main network and are dis-
tributed over two switches, while the other four are part
of a honeynet. The upper part of the Fig. 11 shows the
actual network topology: solid lines represent Ethernet links
and dashed lines are control connections between the con-
troller and the switches, used to interchange OpenFlow mes-
sages. The lower part of the same figure represents the
reachability network: with which other nodes each node
can exchange traffic. The purple node is the first node
attacked, and the node with dashed-dotted border is the flag.
Table 3 shows the characteristics of the vulnerabilities of each
machine.

As for the countermeasures that can be taken in this partic-
ular environment, it is important to know that:

• The flag can be migrated to any node in normal state
in the core network, but not to a machine in the
honeynet.

• Through the use of appropriate flows, any node can be
logically moved from the main network to the honeynet.

• Any node in the network can be isolated.

TABLE 3. Vulnerabilities and connections of the studied case. The red row
represents the attacked node and the green one corresponds to the flag.

E. RESULTS
We have carried out five train-and-play sets of experiments,
each one with a different random seed. In each set, the mod-
els obtained after 103, 104, and 105 training steps have
been saved. MuZero trains both agents at the same time by
self-play, so three attackers and three defenders of differ-
ent levels have been obtained for each of the seeds. Then,
100 games have been played for each of the nine combi-
nation between defenders and attackers of different levels.
Therefore, 900 games were played for each training seed,
4500 in total. Using the available resources, training each
of the models for 105 training steps required more than
7 hours.

Table 4 shows the means and medians of the rewards
earned by the agents and the lengths of the episodes won
by each agent, for each batch of 100 games. The winning
percentage (WP) of both players is also displayed. Each batch
has been started with the same seed.

Prior to analyze the development of the agents, it is
noteworthy that it seems to be a bias in the design of the
game towards the defender, since in those games where
the 103 training steps attacker faces a defender with that
same amount of training steps, the defender usually wins.
That imbalance starts to disappear as the agents are trained:
after 104 training steps, the difference between the winning
ratios of the players tends to decrease. Finally, attacker wins
most of the games played between the agents trained with
105 steps.

Regarding the attacker, by comparing the results of the
games played between the defender trained with 103 steps
and the different attackers (first, fourth and seventh rows of
the results of each seed) we can conclude that, in general,
the points obtained by the attacker increase and the episode
length decreases as the attacker gets additional training steps.
In other words, the attacker is not only able to compromise as
many hosts as possible, but it also attacks the flag following
a more precise strategy. Seed A shows a small increase in
the number of games won by the defender when comparing
the performance of an attacker trained with 104 − 105 steps
against the least trained defender, but more tests should be
performed in order to ensure that the difference is statistically
significant.

VOLUME 9, 2021 107195

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Networks

TABLE 4. Results of 4500 games between different attackers (A) and defenders (D) obtained from five independent trainings.

107196 VOLUME 9, 2021

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Network

Similar results are observed when we compare the perfor-
mance of different attackers intruding a network defended
by an agent trained with 104 steps: longer trainings usually
lead to bigger rewards for the attacker and shorter episodes.
In some cases, the attacker with 104 training steps seems
to perform better than the one with more steps. As for the
attacker’s goals, there is a trade-off between reaching the
flag as soon as possible (lower reward but fewer moves)
and compromising as many computers as possible (higher
reward but more moves and a high possibility of not winning
the game thus obtaining a negative reward). That said, these
differences could be the consequence of the attacker prefer-
ring to obtain a lower reward in order to ensure winning the
game.

The improvement of the attacker with additional train-
ing steps can also be observed by comparing the results it
obtained against the defender trained with 105 steps: while
the less trained intruder is completely unable to reach the flag,
themore trained one (with 105 training steps) winsmost of the
games in a few moves. The same could be said for improving
the efficiency of the ‘‘intelligent’’ defender, which is the main
objective of this work. It can be clearly seen that, when facing
an attacker of a certain level against different defenders, those
defenders with longer training achieve better performance
figures: better scores, shorter games and a higher percentage
of games won in all analyzed cases.

Finally, we would like to highlight that, although the quan-
titative results shown in Table 4 depend on the seed, the evolu-
tion shown by the agents is similar in all cases and the results
of the final games—played between agents trained with
105 steps—are remarkably consistent.

V. CONCLUSION AND FUTURE WORK
In this paper we have presented an implementation of an
intelligent system trained by MuZero that is able to mit-
igate intrusions in SDN networks in an autonomous way.
The interaction between the attacker and the defender has
been posed as a partially observed Markov game and the
countermeasures have been implemented in an OpenFlow-
based SDN using the Ryu controller.

The results presented in Section IV indicate that a defender
sufficiently trained may be successful at choosing an appro-
priate intrusion mitigation strategy. Similarly, a well trained
attacker my be successful evading the countermeasures of the
defender. The case study presented here is based on a rela-
tively small network, but it can be easily adapted to work with
different network topologies. We consider that the obtained
results are highly satisfactory, taking into account that we
have posed this problem as a stochastic game and neither
the MuZero algorithm itself nor the used implementation
have been designed to train agents in this kind of games.
We believe that better results could be obtained with a mod-
ified version of MuZero designed to play non-deterministic
games, which we leave as a possible line of future research.

A defender trained using this game could be integrated
with intrusion detection and host state monitoring systems.

TABLE 5. Hyperparameters selection used in all trainings.

Thus, once an attack is detected, the trained model could be
used to autonomously apply the countermeasures required to
mitigate the intrusion. A possible application of this imple-
mentation is the response to zero-day attacks.

Moreover, the work presented in this article can easily be
applied to other network configurations. For instance, if the
network presents a sub network which has a high probability
of being attacked—maybe because it is accessible for external
users—, the option of migrating the flag to one of those
servers should be removed. In conclusion, the game is able
to represent several scenarios with minor modifications.

Nevertheless, larger and more complex networks, or an
increase in the number of available actions, would generate
game environments that agents would find difficult to deal
with unless models are trained over a much larger number
of steps. These complex environments would require exten-
sive tuning of MuZero and an increase in the computational
resources required. A scalability study should be performed
in a high-performance computing (HCP) platform.

APPENDIX A
HYPERPARAMETERS
See Table 5.

REFERENCES
[1] S. Morgan, ‘‘2021 report: Cyberwarfare in the C-suite,’’ Cybersecur.

Ventures, Long Island, NY, USA, 2021. [Online]. Available:
https://cybersecurityventures.com/wp-content/uploads/2021/01/
Cyberwarfare-2021-Report.pdf

[2] S. Mahdavifar and A. A. Ghorbani, ‘‘Application of deep learning to cyber-
security: A survey,’’ Neurocomputing, vol. 347, pp. 149–176, Jun. 2019.

[3] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, ‘‘Survey on
SDN based network intrusion detection system using machine learning
approaches,’’ Peer Peer Netw. Appl., vol. 12, no. 2, pp. 493–501, Jan. 2019.

VOLUME 9, 2021 107197

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Networks

[4] M. Sainz, I. Garitano, M. Iturbe, and M. Zurutuza, ‘‘Deep packet inspec-
tion for intelligent intrusion detection in software-defined industrial net-
works: A proof of concept,’’ Logic J. IGPL, vol. 28, no. 4, pp. 461–472,
Dec. 2020.

[5] A. S. Da Silva, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-Filho,
‘‘ATLANTIC: A framework for anomaly traffic detection, classification,
and mitigation in SDN,’’ in Proc. IEEE/IFIP Netw. Oper. Manage. Symp.
(NOMS), Apr. 2016, pp. 27–35.

[6] C. J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, ‘‘NICE: Net-
work intrusion detection and countermeasure selection in virtual net-
work systems,’’ IEEE Trans. Dependable Secure Comput., vol. 10, no. 4,
pp. 198–211, Jul. 2013.

[7] K. Hammar and R. Stadler, ‘‘Finding effective security strategies through
reinforcement learning and self-play,’’ in Proc. 16th Int. Conf. Netw. Ser-
vice Manage. (CNSM), Nov. 2020, pp. 1–9.

[8] J. Schrittwieser, I Antonoglou, T Hubert, K Simonyan, L Sifre, S Schmitt,
A Guez, E Lockhart, D Hassabis, T Graepel, and T. Lillicrap, ‘‘Mastering
Atari, Go, chess and shogi by planning with a learned model,’’ Nature,
vol. 588, no. 7839, pp. 604–609, 2020.

[9] Q. Duan and M. Toy, Software-Defined Networking. Norwood, MA, USA:
Artech House, 2016.

[10] B. A. A. Nunes,M.Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
‘‘A survey of software-defined networking: Past, present, and future of
programmable networks,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 3,
pp. 1617–1634, 3rd Quart., 2014.

[11] C. Trois, M. D. Del Fabro, L. C. E. de Bona, and M. Martinello, ‘‘A survey
on SDN programming languages: Toward a taxonomy,’’ IEEE Commun.
Surveys Tuts., vol. 18, no. 4, pp. 2687–2712, 4th Quart., 2016.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Apr. 2008.

[13] OpenFlow Switch Specification, Open Netw. Found., Menlo Park, CA,
USA, Oct. 2013.

[14] S. Ahmad and A. H. Mir, ‘‘Scalability, consistency, reliability and security
in SDN controllers: A survey of diverse SDN controllers,’’ J. Netw. Syst.
Manage., vol. 29, no. 1, pp. 1–59, Jan. 2021.

[15] L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani,
‘‘SDN controllers: Benchmarking & performance evaluation,’’ 2019,
arXiv:1902.04491. [Online]. Available: https://arxiv.org/abs/1902.04491

[16] N. Z. Bawany, J. A. Shamsi, and K. Salah, ‘‘DDoS attack detection and
mitigation using SDN: Methods, practices, and solutions,’’ Arabian J. Sci.
Eng., vol. 42, no. 2, pp. 425–441, 2017.

[17] T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar, ‘‘SnortFlow:
A OpenFlow-based intrusion prevention system in cloud environment,’’ in
Proc. 2nd GENI Res. Educ. Exp. Workshop, Mar. 2013, pp. 89–92.

[18] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘‘Reinforcement
learning: A survey,’’ J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285,
Jan. 1996.

[19] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
‘‘Deep reinforcement learning: A brief survey,’’ IEEE Signal Process.
Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[21] R. Bellman, ‘‘A Markovian decision process,’’ Indiana Univ. Math. J.,
vol. 6, no. 4, pp. 679–684, Apr. 1957.

[22] R. Bellman, ‘‘Dynamic programming,’’ Science, vol. 153, nos. 37–31,
pp. 34–37, 1966.

[23] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[24] M. Bowling and M. Veloso, ‘‘An analysis of stochastic game the-
ory for multiagent reinforcement learning,’’ School Comput. Sci.,
Carnegie-MellonUniv., Pittsburgh, PA, USATech. Rep. CMU-CS-00-165,
2000.

[25] A. Nowé, P. Vrancx, andY.-M.D. Hauwere,Game Theory andMulti-Agent
Reinforcement Learning. Berlin, Germany: Springer, 2012.

[26] C. B. Browne E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
‘‘A survey of Monte Carlo tree search methods,’’ IEEE Trans. Comput.
Intell. AI Games, vol. 4, no. 1, pp. 1–43, Mar. 2012.

[27] M. L. Littman, ‘‘Markov games as a framework for multi-agent rein-
forcement learning,’’ in Machine Learning Proceedings. Amsterdam,
The Netherlands: Elsevier, 1994, pp. 157–163.

[28] B. Molina-Coronado, U. Mori, A. Mendiburu, and J. Miguel-Alonso,
‘‘Survey of network intrusion detection methods from the perspective of
the knowledge discovery in databases process,’’ IEEE Trans. Netw. Service
Manage., vol. 17, no. 4, pp. 2451–2479, Dec. 2020.

[29] P. Hadem, D. K. Saikia, and S.Moulik, ‘‘An SDN-based intrusion detection
system using SVM with selective logging for IP traceback,’’ Comput.
Netw., vol. 191, May 2021, Art. no. 108015.

[30] A. Yazdinejadna, R. M. Parizi, A. Dehghantanha, and M. S. Khan,
‘‘A kangaroo-based intrusion detection system on software-defined net-
works,’’ Comput. Netw., vol. 184, Jan. 2021, Art. no. 107688.

[31] A. D. R. L. Ribeiro, R. Y. C. Santos, and A. C. A. Nascimento, ‘‘Anomaly
detection technique for intrusion detection in SDN environment using
continuous data stream machine learning algorithms,’’ in Proc. IEEE Int.
Syst. Conf. (SysCon), Apr. 2021, pp. 1–7.

[32] M. Ajdani and H. Ghaffary, ‘‘Design network intrusion detection system
using support vector machine,’’ Int. J. Commun. Syst., vol. 34, no. 3,
Feb. 2021, Art. no. e4689.

[33] O. Rahman, M. A. G. Quraishi, and C.-H. Lung, ‘‘DDoS attacks detection
and mitigation in SDN using machine learning,’’ in Proc. IEEE World
Congr. Services (SERVICES), vol. 2642, Jul. 2019, pp. 184–189.

[34] CVE—Common Vulnerabilities and Exposures, Mitre Corp., McLean, VA,
USA, Dec. 2020.

[35] E. Ukwandu, M. A. B. Farah, H. Hindy, D. Brosset, D. Kavallieros,
R. Atkinson, C. Tachtatzis, M. Bures, I. Andonovic, and X. Bellekens,
‘‘A review of cyber-ranges and test-beds: Current and future trends,’’
Sensors, vol. 20, no. 24, p. 7148, Dec. 2020.

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

[37] R. J. Williams, Reinforcement-Learning Connectionist Systems. Toronto,
ON, Canada: College of Computer Science, Northeastern Univ., 1987.

[38] M. Campbell, A. J. Hoane, Jr., and F.-H. Hsu, ‘‘Deep blue,’’ Artif. Intell.,
vol. 134, nos. 1–2, pp. 57–83, Jan. 2002.

[39] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, and S. Dieleman, ‘‘Mastering the game of Go with deep neural
networks and tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[40] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, and A. Bolton, ‘‘Mastering the
game of Go without human knowledge,’’ Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[41] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, P. T. Lillicrap, K. Simonyan,
and D. Hassabis, ‘‘Mastering chess and shogi by self-play with a general
reinforcement learning algorithm,’’ CoRR, vol. abs/1712.01815, pp. 1–19,
Dec. 2017.

[42] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning, and S. Legg, ‘‘IMPALA: Scal-
able distributed deep-RL with importance weighted actor-learner architec-
tures,’’ in Proc. Int. Conf. Mach. Learn., 2018, pp. 1407–1416.

[43] S. Kapturowski, G. Ostrovski, J. Quan, R.Munos, andW. Dabney, ‘‘Recur-
rent experience replay in distributed reinforcement learning,’’ in Proc. Int.
Conf. Learn. Represent., 2018, pp. 1–19.

[44] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. van Hasselt, and D. Silver, ‘‘Distributed prioritized experience
replay,’’ 2018, arXiv:1803.00933. [Online]. Available: http://arxiv.
org/abs/1803.00933

[45] B. Lantz, B. Heller, and N. McKeown, ‘‘A network in a laptop: Rapid
prototyping for software-defined networks,’’ in Proc. 9th ACM SIGCOMM
Workshop Hot Topics Netw. (Hotnets), 2010, pp. 1–6.

[46] K. Morita, I. Yamahata, and V. Linux, ‘‘Ryu: Network operating system,’’
in Proc. OpenStack Design Summit Conf., 2012, pp. 1–7.

[47] J. Ren, C. Zhang, and Q. Hao, ‘‘A theoretical method to evaluate honeynet
potency,’’ Future Gener. Comput. Syst., vol. 116, pp. 76–85, Mar. 2021.

[48] L. Spitzner, ‘‘The honeynet project: Trapping the hackers,’’ IEEE Security
Privacy, vol. 1, no. 2, pp. 15–23, Mar. 2003.

[49] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, ‘‘The science
DMZ: A network design pattern for data-intensive science,’’ Sci. Program.,
vol. 22, no. 2, pp. 173–185, 2014.

[50] H. Booth, D. Rike, and G. Witte, ‘‘The national vulnerability database
(NVD): Overview,’’ ITL Bull., Nat. Inst. Standards Technol., Gaithersburg,
MD, USA, 2013.

107198 VOLUME 9, 2021

J. Gabirondo-lópez et al.: Towards Autonomous Defense of SDN Network

[51] Common Vulnerability Scoring System Version 3.1: Specification Docu-
ment, Forum of Incident Response and Security Teams, Cary, NC, USA,
Jun. 2019.

[52] G. Van Rossum and F. L. Drake,Python 3 ReferenceManual. Scotts Valley,
CA, USA: CreateSpace, 2009.

[53] A. H. W. Duvaud. (2019). MuZero General: Open Reimplementation of
MuZero. [Online]. Available: https://github.com/werner-duvaud/muzero-
general

[54] RYU Project Team. (Feb. 2014). RYU SDN Framework. [Online]. Avail-
able: https://book.ryu-sdn.org/en/Ryubook.pdf

[55] S. Bhatt, P. K.Manadhata, and L. Zomlot, ‘‘The operational role of security
information and event management systems,’’ IEEE Security Privacy,
vol. 12, no. 5, pp. 35–41, Sep. 2014.

[56] A. B. Asif, M. Imran, N. Shah, M. Afzal, and H. Khurshid, ‘‘ROCA:
Auto-resolving overlapping and conflicts in access control list policies
for software defined networking,’’ Int. J. Commun. Syst., vol. 34, no. 9,
p. e4815, Jun. 2021.

[57] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
presented at the 3rd Int. Conf. Learn. Represent., San Diego, CA, USA,
2015.

JON GABIRONDO-LÓPEZ received the degree
in physics, the degree in electronical engineer-
ing, and the degree (advanced) in computational
engineering and intelligent systems from the
University of the Basque Country (UPV/EHU),
in 2020 and 2021, respectively.

During the 2018–2019 academic year, he
obtained an IKASIKER Fellowship to work at the
Physics Department, UPV/EHU, where he carried
out a research project aimed at the computational

study of optical properties in metals. During the 2020–2021 academic year,
he was a Researcher on reinforcement learning and cybersecurity with
the Department of Digital Security, Vicomtech. He is currently part of
the Physics Department, UPV/EHU. He develops web applications for the
Bilbao Crystallographic Server.

JON EGAÑA received the Telecommunication
Engineering degree and the advanced degree in
telecommunication engineering from UPV/EHU,
in 2014 and 2016, respectively.

He is currently with the Department of
Digital Security, Vicomtech, where he works as
a Researcher in the field of data analytics for
cybersecurity. He is an Active Member of the
5GPPP Security Work Group.

JOSE MIGUEL-ALONSO (Member, IEEE) grad-
uated in computer science from the University of
the Basque Country (UPV/EHU), Spain, in 1989,
and received the Ph.D. degree from UPV/EHU,
in 1996.

He is currently a Full Professor with the Depart-
ment of Computer Architecture and Technology,
UPV/EHU. He is a member of the Intelligent Sys-
tems Group, UPV/EHU. He carries out research
related to networks and parallel-distributed sys-

tems, in areas such as cybersecurity, performance modeling (with focus
on the interconnection network), resource management in supercomputers,
cloud infrastructures and high-performance scientific, and technical appli-
cations. He has published 2 books, 33 journal articles, and 30 papers in
international conferences. He is amember of the IEEEComputer Society and
the HiPEAC Network of Excellence on High Performance and Embedded
Architecture and Compilation.

RAUL ORDUNA URRUTIA received the degree
in computer engineering from the University of
the Basque Country (UPV/EHU), in 1999, and
the Ph.D. degree from the Public University of
Navarre (UPNA), in 2010.

From 2001 to 2018, he has worked in
private companies as S21se, Panda Security,
or Tracasa in cybersecurity and innovation posi-
tions. He is currently the Digital Security Director
at Vicomtech. He has taken part or led projects

related with ethical hacking, forensic analysis, malware analysis, access
control, and cryptography. The current research lines are focused on anomaly
detection in information systems and communication networks, automatic
responses, identity management using biometrics and federated systems, and
secure traceability systems.

VOLUME 9, 2021 107199

