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ABSTRACT 
Generation adequacy is a key ingredient to security of electricity supply (SoS). Some national plans 

envisage a future decrease in the number of coal-fired stations and an increase in renewable installed 
capacity. This forecast, along with the future reduction of nuclear capacity, will lead to a combination of 
less baseload plants and sizeable intermittent generation. Hence there is a risk that supply will be unable to 
meet demand and generation adequacy will suffer. 

We assess how the flexible management of hydro resources can alleviate this risk by adjusting 
power generation to peak demand. Indeed there is empirical evidence that they are positively correlated. We 
compute this correlation in the case of Spain (an ‘electric island’). Besides, hydro plants operate in 
combination with other non-dispatchable technologies within the system. Therefore, we also take their 
hourly seasonality into account. Next we run a Monte Carlo simulation to derive the risk profile of several 
adequacy metrics in the coming decades. Our results show that flexible hydro generation certainly mitigates 
the risk but is insufficient to bring an adecuate level of SoS when the enhanced renewable capacity goes 
hand in hand with a decreased baseload capacity. The risk further decreases after accounting for seasonal 
non-dispatchable generation, yet it still looms large. These results can be important for policy makers, 
system operators, and power companies when analizing investments in renewable energy with a long 
lifespan. 

Keywords: security of electricity supply, generation adequacy, hydro stations, uncertainty, Monte 
Carlo, lost load. 

1  INTRODUCTION 

As the overall demand for electricity is anticipated to increase in the future, security of electricity 
supply (henceforth SoS) is eliciting ever more attention from all the stakeholders involved. It seems fair to 
claim that there is hardly a widely accepted definition of SoS. Nonetheless, a common thread arises from 
the different versions, namely the ability of power supply to meet effective demand on a continuous basis. 
In a sense this is a ‘narrow’ definition since power demand and supply do not operate in a vacuum. [1] goes 
beyond it by encompassing also environmental and societal concerns. This makes sense because SoS is 
affected by a number of factors, among them technology, markets, politics, and the environment. 

The power supply in particular is a complex chain that is naturally exposed to a number of risks and 
uncertainties. As a demarcation criterion, the probabilities and/or impacts of the former can be more 
reliably computed than those of the latter. Sources of uncertainty are typically adressed by means of 
scenario analysis. Instead, regarding risks, the standard practice is to define and compute a number of risk 
metrics. This said, supply is only 50 percent of the story. [2] defines system adequacy as the existence 
within a system of sufficient generation and transmission capacity to meet the load, whether under normal 
or unusual conditions. It subsequently introduces different approaches to measure adequacy and a list of 
related metrics. 

[3] develop a stochastic model that explicitly matches power demand and supply (if possible).
From this interplay it is possible to assess generation adequacy by means of several metrics that account for 
different attributes of potential supply shortfalls. Next they demonstrate the model by example. 
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Specifically, they look at Spain (an ‘electric island’ right now and in the near future at least) beyond the year 
2020. Monte Carlo (MC) simulation allows them derive the risk profile of several key variables. Taken 
together they characterize the risk profile to SoS in great detail. 

In the end, [3] simulate the performance of the Spanish peninsular generating system under ten 
different scenarios. Regarding the installed generation capacities from 2020 through 2050, they basically 
draw on [4]. Importantly, [3] assume that coal-fired and nuclear stations are kept constant from 2017 to 
2020 but decrease significantly in 2030 and completely cease to operate from 2040 onwards; natural gas 
plants, instead, are assumed to remain constant at their 2017 level through 2050. Unlike thermal stations, 
renewable power technologies grow in all of the scenarios, be it either slower or faster depending on the 
growth of power demand (either 1.36% or 1.72%). According to their results [3], the system’s adequacy 
worsens in 2020 and does so dramatically in 2040 and 2050, when coal and nuclear stations are completely 
replaced by renewable plants. 

The earlier results in [3] consider all power technologies as feeding their potential output in the 
system irrespective of demand; this general rule applies to hydro power in particular too. Because of the 
earth’s gravitational field there is energy stored in the water that flows in rivers from upstream regions 
toward the sea. So-called diversion or run-of-river hydropower refers to extracting a portion of the energy 
contained in flowing water itself to produce electricity. Another possibility is to use the potential energy 
contained by a dam structure for the same purpose; this is frequently called impoundment hydropower; [5]. 
Importantly, this type of facilities can regulate the flow to be turbined at any precise time. Despite the 
differences between both types, [3] consider all hydropower plants (HPPs) as a whole. Thus, the results in 
[3] take monthly seasonality of hydro’s load factor into account, but there is no room for strategic 
management of hydro plants (i.e. no aim at maximizing profits by producing more electricity at demand 
peaks within the month).1 By no means this is exclusive of [3]; indeed it seems to be the usual practice. For 
example, [2] presents the findings from an empirical analysis on adequacy metrics and standards adopted in 
Europe. From the research conducted via public sources, one of the general conclusions drawn reads as 
follows: “In no case was it mentioned how the operation of hydropower plants with reservoirs is 
considered. In countries with medium or high participation of hydropower in the generation mix, this factor 
is crucial for system security. In fact, in some of these countries, a dry year may be the most stressful 
situation in relation to generation adequacy. The use of historical series of generation data would ignore 
the possibility of operating reservoirs in a conservative manner, in order to increase generation adequacy 
(or equivalently, to reduce the risk of load shedding)”. In view of this, the EC urges to consider at least the 
probabilistic characterization of a number of factors, among them: “Hydroelectric energy availability 
depends on the reservoir operation strategies established by the owners of plants”. 

Hydropower plants with reservoirs can in principle serve several purposes, for example irrigation 
needs or flooding control. HPPs can be managed as SoS devices also. They are normally designed for 
generation during peak hours.2 Further, some HPPs are equipped with reversible turbines or separate 
generating and pumping equipment (so-called pumped storage hydropower).3 They enable the system to 
pump water (using electricity) from a lower reservoir up to a higher one when power demand (and 
presumably price) is low; when demand (price) increases, the flow is reversed. This ‘load leveling’ is a 
widespread type of load management; [7]. ‘Ramping and load following’ are other types of load 
                                                                                                                      
1 Note that deciding when it will be more profitable to produce electricity is no easy task. At one level, suppliers draw on limited 
hydro energy resources available. On the other hand, future inflows are uncertain and there is a risk of spillage. According to [6], 
generators try to hedge against risk and are usually conservative. For example, they generally opt for deploying limited water 
resources when prices are moderately high, instead of waiting for a possible (uncertain) scarcity of generating resources (when the 
peak price would be very high) in the future. 
2 The flexibility of hydro reservoirs is often seen as the perfect complement to a system dominated by intermittent renewable 
sources; [7], [8]. [9] and [10] even claim that a system based on only wind, water and solar power could serve 100% of energy 
purposes by 2050 in a reliable and affordable way. However, this claim has received various critiques, e.g. that these authors are too 
optimistic about the balancing role of hydropower [11]. 
3 Pumped hydro storage is the major energy storage technology. It accounts for 96% of the world storage capacity [9]; compressed 
air, batteries, thermal and flywheel energy storage play very minor roles. [7] and [12] highlight some of its applications (along with 
some barriers to its development), such as offsetting the intermittence of renewable sources and providing ancillary services to the 
power system (e.g. voltage regulation). 
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management, in which energy storage is used to assist generation to follow the load changes. In this regard, 
[13] point out that the business case for price arbitrage has vanished partly owing to the injection of 
subsidized renewable electricity during peak demand periods. To avoid becoming uneconomic, pumped 
storage stations have to find additional sources of revenue. [14] consider the Austrian-German spot power 
market and the Austrian balancing energy market through the years 2012-2015. They find that earnings 
from the latter may exceed those from the former many times over. 

The empirical evidence shows that hydro operation does follow demand to some extent. 
Specifically, these stations generate relatively more power during peak hours and less in non-peak ones. On 
the other hand, these plants operate alongside other (non-dispatchable) technologies in a system. For 
example, wind energy blows during the night, when power demand is relatively lower; pump stations can 
avoid wasting this energy by storing it. Consequently, a detailed analysis of the contribution of hydropower 
to SoS calls for taking due consideration of non-dispatchable sources.4 This note is an extension of [3] on at 
least  three accounts. First, it aims to account for that positive correlation between maximum hourly 
demand and hydropower generation to check the potential of flexible management to reinforce SoS. 
Second, we disaggregate hydro stations between run-of-river (RoR) stations and the remainder (non-RoR) 
stations.; this way we want to account for the different degree of freedom between the two types when it 
comes to flexible management. Third, we also consider the hourly seasonality in generation from 
non-dispatchable technologies during peak hours. In addition, for these  three reasons, now the numerical 
application (via MC simulation) gets more complex than in [3]. Thus, relative to [3], this paper contributes 
in scope, method, and policy implications. To our knowledge, no other paper on applied SoS adequacy 
metrics addresses the role of hydro-based generation in mitigating power supply shortfalls or the  potential 
of seasonal non-dispatchable generation in meeting peak demands (let alone in the way we do). 

In 2017 hydro stations (including pumped storage) represented about 20% of the total capacity 
installed in the Spanish mainland system (20,331 MW out of 99,311 MW); in terms of power generation, 
they provided around 8.3% of the total. Would the flexibility of hydropower alleviate estimates of supply 
shortages in [3]? How effective is it in enhancing SoS in mainland Spain? In the same vein, does 
consideration of seasonal non-dispatchable generation contribute to quell SoS concerns? If so, to what 
extent? According to our results, the positive correlation between hourly peak demand and flexible 
hydropower’s generation significantly tempers the severity of the negative impacts of demand surges. The 
situation further improves when hourly seasonality of non-dispatchable generation is considered. 
Nonetheless, the expected energy not served (EENS) jumps above historical levels in 2030 and runs into the 
tens of thousands megawatts-hour thereafter. The issue is of interest not only to Spanish consumers and 
utilities, but also to other stakeholders involved in the construction of the European internal power market. 
Further, climate change might exacerbate the high variability that characterizes renewable energy sources 
in general and hydro power generation in particular; [15]. 

The remainder of the paper is organized as follows. Section 2 extends the model in [3] to account 
for the flexible operation of hydropower stations in mainland Spain and also the seasonal pattern of 
renewable generation. The resulting impact on the adequacy metrics is analyzed in Section 3. Section 4 
concludes. 

 
2  ACCOUNTING FOR HYDROPOWER FLEXIBILITY AND SEASONAL 
NON-DISPATCHABLE GENERATION 

 
2.1. Model extension 

[3] propose a model for evaluating generation adequacy in the long run from the viewpoint of the 
facilities installed. Even though power demand can be relatively predictable at this time scale, unexpected 
peak loads can certainly occur also in the short run; [16]. 

Given their focus on generation adequacy they naturally pay special attention to peak demand. 
Typically demand surges are short lived. Publicly available records on power demand stretch back over 

                                                                                                                      
4 We thank an anonymous reviewer for bringing this issue to our attention. 
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many years, even decades. Unfortunately, however, their sample data on peak demand are very limited. 
They resort to an indirect approach that relies on yearly data; specifically, they relate the hourly peak 
demand in a future year (ݍ෤, in MWh) to the annual demand in that year ( ෨ܳ , in MWh): 

 lnݍ෤ ൌ ߙ ൅ ߚ ൈ ln ෨ܳ ൅ ݁̃; (1) 
݁̃ stands for an independent and identically distributed random shock. By assumption, the natural logarithm 
of maximum hourly demand every year follows a Normal distribution with average α ൅ β ൈ EሾlnQሿ 
(where E denotes the mathematical expectation operator) and standard deviation equal to the standard error 
of the regression. This is a stochastic equation: though the average growth rate of q෤  depends on the average 
growth rate of Q෩, by its very nature q෤  will grow above it some times, and below it some others. 

Regarding power supply, they distinguish two groups of generation technologies. The first group 
comprises thermal technologies: coal (ܿ) , natural gas (݃), and nuclear (݊). Each station has a particular 
installed capacity (MW) and availability rate (%). Availability is represented by a binary variable (ܣ). A 
particular station ݅ of type ݆ ∈ ሼܿ, ݃, ݊ሽ is in service for a fraction Λ௝

௜  of the year (it can either actually run 

or remain idle depending on power demand); it is out of service for another fraction 1-Λ௝
௜  (because of 

failures and maintenance works): 

௝ܣ 
௜ ൌ ቊ

0, ′off ᇱstate	 with	 probability	 1 െ Λ௝
௜

1, ′onᇱ	 state	 with	 probability	 Λ௝
௜ ቋ. (2) 

The second group of generation technologies includes hydro, wind, solar (both photovoltaic and 
thermal), cogeneration, and others. The time series of power produced/consumed by these stations 
subsumes both the usual pattern of failures and their intermittent nature. Consequently, [3] adopt the load 
factor for describing these intermittent technologies and assume that these show a stochastic behavior with 
both the monthly average and the volatility changing from one month to another.5 They adopt the Weibull 
distribution to describe this variable across all of the technologies in this group.6 The probability density 
function of the load factor (ݔ) is: 

 ݂ሺݔሻ ൌ ቊ
௞

ఒ
ሺ
௫

ఒ
ሻ௞ିଵ݁ିሺ

ೣ
ഊ
ሻೖ	 	 if	 	 ݔ ൒ 0

0	 	 if	 ݔ ൏ 0
ቋ, (3) 

where ߣ ∈ ሺ0,൅∞ሻ is the scale parameter and ݇ ∈ ሺ0,൅∞ሻ is the shape parameter. The cumulative 
density function is: 

ሻݔሺܨ  ൌ ൜1 െ ݁ିሺ
ೣ
ഊ
ሻೖ	 	 if	 	 ݔ ൒ 0

0	 	 if	 ݔ ൏ 0
ൠ. (4) 

The average and the variance are given by: 

ߤ  ൌ Γߣ ቀ1 ൅
ଵ

௞
ቁ, (5) 

ଶߪ  ൌ ଶሾΓߣ ቀ1 ൅
ଶ

௞
ቁ െ ቀΓ ቀ1 ൅

ଵ

௞
ቁሻଶቃ, (6) 

where ߁ denotes the gamma function. 
This pattern for the generation technologies in the second group applies to hydropower generation. 

In this sense, Eqs. (3)-(6) may be a reasonable approach as long as [3] consider hydro generation as a single 
power source or technology. Nonetheless, unlike [3], here we are going to disaggregate hydro stations 
between RoR stations and non-RoR stations. The former are relatively more dependent on natural 
(re)charge and less amenable to strategic management. Consequently, we are going to estimate an 
independent Weibull distribution for RoR stations according to Eqs. (3)-(4). Hence we can get numerical 
estimates of the average (ߤோ) and the variance (ߪோ) following Eqs. (5)-(6); the subindex R refers to these 
particular stations. Non-RoR stations include conventional reservoirs (of seasonal, annual or pluriannual 
regulation) and pumped storage stations (of daily, weekly or seasonal cycle). In principle they are more 
amenable to strategic operation and lend themselves more easily to track demand surges. Again, we assume 
that the load factor of these stations can be characterized by a Weibull distribution, Eqs. (3)-(4), with 

                                                                                                                      
5 Multiplying the load factor times the installed capacity allows derive samples of monthly power generation later on. 
6 Note that the Weibull distribution does not admit negative values, which is just right when dealing with load factors. 
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associated average (ߤ௉) and (ߪ௉) according to Eqs. (5)-(6); we adopt the subindex P for these hydro plants. 
Unlike RoR, however, the Weibull distribution for non-RoR stations is going to be correlated with peak 
demand. 

Now the information available differs from data in [3] in three key respects: (a) we know the 
maximum hourly demand in each single day of the years 2015, 2016, and 2017, i.e. we have 365+366+365 
= 1,096 data; (b) we know hydro-based power generation during the hours of peak demand over those 
years; (c) we also have hydro-based installed capacity every day (from linear interpolation between 
monthly values); the combined information of (b) and (c) allows computing this technology’s load factor on 
a daily basis. Figure 1 displays the time path of hourly peak demand (a) along with non-RoR stations’ load 
factor in January over the sample period. It suggests that these series are positively correlated. As a matter 
of fact, the correlation coefficient is 0.256 (the last column in Table 3 below shows the coefficient in the 
other months). In June it reaches the lowest value, close to zero. The upper bound is almost 45% and applies 
in March. The main driver behind this comovement is that power utilities manage these plants in an 
opportunistic or strategic way since peak demands are usually associated with higher prices (indeed hydro 
is the ‘marginal’ technology on the wholesale power market in many instances). 

 
 
 
 
FIGURE 1: Maximum hourly demand and non-RoR stations’ load factor in January 2015-2017. 

 
 
Later on we will run a number of simulations (note that the main adequacy metrics in [3] draw on a 

probabilistic MC approach). Regarding RoR stations, to this end we will use the average (ߤோ) and the 
variance (ߪோ) estimated according to Eqs. (5)-(6). However, in the case of non-RoR stations we will need to 
generate correlated samples. We start by deriving two independent samples ݔ௉

∗  and ݔ஽
∗  of non-RoR 

stations’ load factor and hourly peak demand (note the subindex D). In a second step we normalise each 
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series by subtracting its average and dividing by its volatility. Thus we obtain two independent, normalised 
samples ݔ୔  and ݔୈ  of the load factor and peak demand, respectively. In a third step we construct 
correlated samples, ߥ஽ and ߥ௉, according to the scheme: 

஽ߥ  ൌ ;஽ݔ ௉ߥ ൌ ߩ஽ݔ ൅ ௉ඥ1ݔ െ  ଶ, (7)ߩ
where ߩ stands for the correlation coefficient between the two daily series. 
 
2.2. Parameter estimation in addressing correlation 

Our sample data include daily power generation and installed capacity for the two types of hydro 
stations. Data on these variables (b) and (c) allow computing separate, specific load factors on a daily basis. 
Next we arrange all of the daily load factors by month. Thus, there are 31+31+31=93 daily factors in 
January, 28+29+28=85 factors in February, and so on. With the daily factors in any single month we 
estimate a Weibull distribution for that particular month, i.e. we estimate the scale (ߣ) and shape (݇) 
parameters for every month. 
 
2.2.1. Run-of-river stations 

The left block in Table 1 shows the monthly estimates of the Weibull parameters for RoR stations 
along with their 95 percent confidence intervals. For the scale parameter (ߣ) the intervals are rather narrow. 
The difference between the upper and lower bounds is minimum in March (4.07%) and maximum in May 
(10.7%). Instead, the intervals are wider for the shape parameter (݇). The difference ranges between 33.1% 
(October) and 40.2% (January). 

The next step is to substitute the monthly values of ߣ and ݇ in Eqs. (5)-(6) to compute the monthly 
average and standard deviation of RoR stations’ load factor; see the right block in Table 1. Looking at ߤோ, 
the mean is highest in March; henceforth it declines consistently until October and then rises. Similarly, the 
highest volatility ߪோ is reached in April and the lowest one in September. Therefore, through the three 
sample years, the extreme values of the mean and the volatility are rather contemporaneous. The maximum 
generation takes place from February to May. In 2017 the installed capacity of RoR stations was 2,104 MW 
[17]; see Table A1 in the Appendix. 

 
Table 1. Run-of-River (RoR) load factor: Parameter estimates (daily data 2015-17). 

Month 
Scale (ߣ) Shape (݇) Average Volatility 

Value 95% int. Value 95% int. ߤோ ߪோ 
January 0.520 0.499—0.542 5.163 4.360—6.114 0.479 0.106 
February 0.668 0.651—0.684 9.178 7.766—10.846 0.633 0.083 
March 0.734 0.717—0.751 9.330 8.019—10.854 0.696 0.089 
April 0.715 0.680—0.750 4.424 3.767—5.195 0.652 0.167 
May 0.659 0.626—0.693 4.241 3.624—4.961 0.599 0.160 
June 0.531 0.507—0.555 4.825 4.153—5.606 0.486 0.115 
July 0.412 0.398—0.426 6.364 5.482—7.386 0.384 0.070 
August 0.358 0.347—0.370 6.680 5.759—7.747 0.335 0.059 
September 0.303 0.293—0.313 6.418 5.500—7.487 0.282 0.051 
October 0.270 0.258—0.281 4.962 4.301—5.723 0.248 0.057 
November 0.369 0.351—0.387 4.457 3.802—5.224 0.337 0.086 
December 0.407 0.390—0.424 5.156 4.454—5.968 0.375 0.083 

 
 

2.2.2. Non-RoR stations 
For the rest of hydro (non-RoR) stations, as stated earlier, we assume that the Weibull distribution 

describing their load factor is correlated with peak demand; see Figure 1. In 2017 the capacity installed 
amounted to 18,227 MW; see Table A1 in the Appendix. We display the Weibull parameter estimates in 
Table 2. Again, the confidence intervals are thinner for the scale parameter than for the shape parameter. 
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Hence we further compute the average and the volatility of the load factor (ߤ௉, ߪ௉) by means of Eqs. 
(5)-(6). 

 
Table 2. Rest of hydro (non-RoR) load factor: Parameter estimates (daily data 2015-17). 

Month 
Scale (ߣ) Shape (݇) Average Volatility 

Value 95% int. Value 95% int. ߤ௉ ߪ௉ 
January 0.406 0.385—0.427 4.113 3.513—4.813 0.368 0.101 
February 0.447 0.421—0.475 3.692 3.080—4.425 0.404 0.122 
March 0.470 0.448—0.492 4.584 3.903—5.383 0.430 0.107 
April 0.374 0.343—0.406 2.585 2.198—3.039 0.332 0.138 
May 0.355 0.325—0.386 2.492 2.117—2.933 0.315 0.135 
June 0.285 0.264—0.306 2.951 2.500—3.483 0.254 0.094 
July 0.251 0.230—0.272 2.535 2.153—2.982 0.223 0.094 
August 0.225 0.208—0.243 2.837 2.418—3.327 0.201 0.077 
September 0.222 0.207—0.237 3.146 2.678—3.694 0.199 0.069 
October 0.252 0.232—0.271 2.758 2.336—3.256 0.224 0.088 
November 0.262 0.239—0.288 2.343 1.981—2.770 0.233 0.105 
December 0.266 0.244—0.289 2.598 2.202—3.065 0.236 0.098 

 
 
Table 3 shows the descriptive statistics of hourly peak demand and further information about the 

correlation with power generation form non-RoR stations. 7  The latter sheds light on the statistical 
significance and accuracy of the monthly estimates. We start from the standard (Pearson) formula (thus 
assuming a linear relationship between both variables). As a safeguard against sampling error we conduct a 
test. The null hypothesis is ߩ ൌ 0. The alternative hypothesis is ߩ ് 0 (which requires a two-tail test). The 
t-test for the correlation observed is: 

ݐ  ൌ
ఘ√௡ିଶ

ඥଵିఘమ
, (8) 

where n stands for the number of observations; this t-test has n-2 degrees of freedom. As for the confidence 
interval we first turn the observed correlation into Fisher’s transform: 

ᇱݖ  ൌ
ଵ

ଶ
݈݊

ଵାఘ

ଵିఘ
. (9) 

Hence the interval for the z’ transform is computed as: 

ᇱሻݖሺܥܫ  ൌ ቂݖᇱ െ 1.96
ଵ

√௡ିଷ
; ᇱݖ ൅ 1.96

ଵ

√௡ିଷ
ቃ. (10) 

And the resulting interval for the correlation observed is calculated as: 
 

ሻߩሺܥܫ  ൌ ቎
ୣ୶୮ቆଶቀ௭ᇲି

భ.వల

√೙షయ
ቁቇିଵ

ୣ୶୮ቆଶቀ௭ᇲି
భ.వల

√೙షయ
ቁቇାଵ

;
ୣ୶୮ቆଶቀ௭ᇲା

భ.వల

√೙షయ
ቁቇିଵ

ୣ୶୮ቆଶቀ௭ᇲା
భ.వల

√೙షయ
ቁቇାଵ

቏. (11) 

 
The information above allows assess the rosbustness of our numerical estimates. 

 

Table 3. Basic statistics of hourly peak demand and correlation with non-RoR’s load factor. 

 Hourly peak demand Correlation Coefficient 
Month ߤ஽ ߪ஽ # Obs. ߩ p-value 95% conf. int. 

January 35,424 3,207 93 0.256 0.0132 0.055—0.437 
February 35,280 2,528 85 0.381 0.0003 0.183—0.550 

                                                                                                                      
7 We thank an anonymous referee for raising this point. 
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March 33,340 2,563 93 0.449 0.0000 0.270—0.598 
April 30,715 2,338 90 0.326 0.0017 0.128—0.499 
May 30,572 2,251 93 0.101 0.3364 -0.105—0.299 
June 33,048 2,953 90 -0.012 0.9115 -0.219—0.196 
July 35,290 3,158 93 0.369 0.0003 0.179—0.533 
August 33,186 2,954 93 0.215 0.0382 0.012—0.401 
September 32,236 2,766 90 0.194 0.0674 -0.014—0.386 
October 31,087 2,335 93 0.179 0.0869 -0.026—0.369 
November 33,174 2,903 90 0.152 0.1514 -0.057—0.348 
December 33,654 2,998 93 0.101 0.3370 -0.105—0.299 

 
 

We are going to simulate a Weibull distribution 50,000 times each month using the parameter 
values of ߣ and ݇ and then compute the average load factor and its volatility. Provided the latter closely 
mirror those derived from our sample data, the numerical estimates of the MC-based adequacy metrics can 
be considered reliable. Table A2 in the Appendix shows the results from both the sample data and the 
simulation runs in each month. The (negligible) differences observed can be attributed to the limited 
number of runs and the very nature of random numbers. 

Regarding the maximum hourly demand, we resort to Eq.(1). As in [3], we take random samples for 
the shock term and shift the maximum demand curve in 2017 accordingly. Specifically we use 50,000 
simulation runs (i.e. years, each comprising 365 days). We group them by month and compute the monthly 
average and volatility, ߤ஽ and ߪ஽, respectively; see the left block columns in Table 3. Peak demand surges 
typically in January (35,424 MWh) and July (35,290); these months are also the most volatile ones (3,207 
MWh and 3,158, respectively). 

The right block in Table 3 proves the importance of extending [3] along the lines drawn in this note. 
To begin with, at the yearly level (i.e. neglecting differences across months) the correlation between 
non-RoR stations’ load factor and hourly peak demand is 0.214 (statistically different from zero at the 5% 
confidence level). The analysis on a monthly basis shows that, for most of the year, there is a mild 
correlation. It ranges from about 0 to 25% in eight out of twelve months, slightly alleviating power supply 
shortages (the computation draws on all the daily values of both variables in any single month). 
Nonetheless, the flexibility advantage of hydropower gets larger in months with a high load factor (January 
to April), with the correlation coefficient rising up to 45%; this suggests that higher water levels in 
reservoirs do allow a more flexible and strategic management of those reservoirs; [18], [19]. Just half of the 
monthly estimates of ߩ  are statistically different from zero (again, at the 5% confidence level). 
Interestingly, they are significant from January to April along with July and August, precisely the months 
when the coefficient reaches its highest values. This said, we can also observe that the confidence intervals 
are wide, the upper bound being several times higher than the lower one on many occasions. This confirms 
the usefulness of accounting for the seasonal behavior of the correlation between non-RoR’s load factor and 
peak demand, and of using monthly parameters in this analysis. 

Monthly differences in correlation can be traced back to several issues.8 On the supply side, within 
non-RoR stations there are HPPs with reservoirs (installed capacity 11,900 MW) and pumped storage 
stations (6,327 MW). Spain has 20 pumped storage plants.9 They were commissioned through the 20th 
century mainly to address rainfall variability. So-called Hydrographic Confederations rule the basins; they 
are legally above hydropower operators since they set limits on the use of water. From this perspective, 
somehow there is an upper bound on power generation from non-RoR stations which is affected by both 

                                                                                                                      
8 We thank an anonymous referee once more for bringing this issue to our attention. 
9 They can be further subdivided into two types: pure or closed-loop (where water is first pumped to an upper reservoir and then 
released to generate power) and mixed or open-loop (when there are water contributions from rivers). Pure pumped storage 
accounts for 53% of the total (3,337 MW) while mixed pumped storage takes the remaining 47%. 
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actual rainfall and water needs. The so-called ‘hydropower potential’ measures the maximum amount of 
electricity that could be theoretically produced from the water contributions during a particular period of 
time after subtracting the water diverted for irrigation or other uses different from power generation. Table 
A3 and Figure A1 in the Appendix show that the highest hydropower potentials are available during the 
first three or four months of the year. They subsequently decline through summer and start rising in autumn. 

At the same time, power demand also plays a role here; it changes seasonally over time (Table A3 
and Figure A1 in the Appendix). The average peak demand in particular is highest in January and July 
(Table 3) followed by February (which lags close behind, with 35,280 MWh). In general, the first months of 
the year tend to be also the months when the correlation between peak demand and hydro’s load factor is 
relatively higher (as shown in Table 3); this also applies to July (maybe in an effort to make ends meet). 

Anyway, a cautionary note seems in order.Water reserves at the end of 2017 were at their lowest 
level on record (starting 1990); [20]. Hydro-based generation decreased almost in half with respect to 2016, 
and reached its lowest value since 2005. Hydro was the third power generation source in 2016 but dropped 
to the sixth in 2017. The drought in 2017 dragged renewable generation down from 40.3% of total in 2016 
to 33.7% in 2017. This episode attests to the high variability of renewable resources, both at yearly and 
monthly levels (for one, hydro-based generation contributed 26% of total power in May 2016 but 10.1% in 
May 2017, its lowest level on record). 

Annual variability certainly complicates drawing conclusions from just three years of observations. 
Yet a fact speaks for itself: in 2017 the average contribution of pure pumped storage to power generation 
was just 0.9%; nonetheless, it jumped to 6.7% in the day of peak demand (January 25th); [20]. This fact 
highlights its role in addressing SoS concerns. 
 
2.3. Parameter estimation in addressing seasonality 

Our initial model does not account for any hourly seasonality. Note, however, that we do not use the 
24 hourly demands in any single day, but only the maximum hourly demand in that day. We proceed as 
follows. 

We consider the twelve months of 2017, our base year. Every day in every month has a maximum 
hourly demand at a particular time. We take each month in isolation and identify the most frequent hour at 
which the maximum hourly demand takes place. Thus, in the case of January, the typical hour with 
maximum demand is 21:00; instead, in July it is 14:00. 

We have hourly power generation by all of the non-dispatchable technologies other than non-RoR 
(i.e. RoR, wind, solar, cogeneration, and others) from 2015 through 2018, i.e. four years. Now, let’s think of 
a particular renewable technology, say wind, and a particular month, say January. There are four such 
months in the sample, each running from day 1 to day 31. We thus have 4×31= 124 January days; we adopt 
the sub-index k for each one of them, with k =1, 2,…, 124. On the other hand, each day comprises 24 hours, 
denoted by sub-index i, with i =1, 2,…, 24. Therefore, we have 142 observations for hour 1 in January, 
another 142 observations for hour 2 in January, 142 observations for hour 3 in January, and so on until hour 
24 in January. 

Initially we compute the hourly average generation in each day (μk) summing up its 24 hourly 
levels and then dividing by 24. Next, we divide each of these 24 hourly levels in day k by the hourly average 
that day (μk) just calculated. This way we derive a series of seasonal factors for each hour, with each series 
comprising 124 terms. We denote each factor by φik (again, with i =1, 2,…, 24 and k =1, 2,…, 124). 
Drawing on the 124 values for hour i, the i-th seasonal factor for wind in January is just their average: 

߮௜ ൌ
ଵ

ଵଶସ
∑ ߮௜,௞
ଵଶସ
௞ୀଵ , 	݁ݎ݄݁ݓ ݅ ൌ 1,2,… ,24.    (12) 

Thus we get a series of 24 factors (φi, with i=1, 2,…24), one for each hour of the day in Januaries; they can 
be interpreted as representing hourly seasonality (in generation from wind). Some of them are higher than 1, 
and some others are lower than 1; they sum to 24: 

∑ ߮௜
ଶସ
௜ୀଵ ൌ 24.      (13) 

Henceforth, we follow this procedure: we simulate the daily average generation in any single 
January day from wind (μ). Then we use the above factors φi (based on empirical/historical evidence) to 
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account for the hourly variability in generation from wind (note that they in turn depend on the empirical 
averages μk). Specifically, since we have 24 factors φi, we compute 24 hourly generation levels from wind 
in that January day. This way we hope to address the issue raised by the Reviewer (as we interpret it: 
potential seasonalities at the hourly level). 

Needless to say, the same procedure is applied every other month, from February to December. It is 
also applied across non-dispatchable technologies. The only exception is non-RoR, whose hourly 
seasonality was already taken into account through its correlation with hourly peak demand. The aim is to 
compare the ensuing results with those when seasonality is left aside. 

Table 4 below shows the most frequent hour of maximum demand in each month. Power demand 
reaches its hourly maximum around 21:00 in seven months. The other months, instead, the maximum is 
reached around 14:00. Table 4 also displays the factor φi that applies to each non-dispatchable technology 
in that particular hour. A value above 1.0 means that the technology is operating “above daily average” at 
that precise time (e.g. wind at 21:00 in January); a value below 1.0 means the opposite (e.g. solar at 21:00 in 
January). 
 
TABLE 4. Seasonal factors of power generation from renewable technologies in peak-demand hours. 

Month Hour Wind Solar Cogen. Others RoR Non-RoR 

January 21:00 1.0340 0.0944 1.0222 1.0239 1.1139 1.8184 
February 21:00 1.0548 0.1386 1.0244 1.0268 1.0866 1.6418 
March 21:00 1.0512 0.2592 1.0171 1.0198 1.0663 1.5909 
April 22:00 1.1077 0.2443 1.0190 1.0210 1.0539 1.5965 
May 13:00 0.8423 2.2985 0.9981 1.0007 1.0342 1.2429 
June 14:00 0.7797 2.2280 0.9921 0.9951 1.0577 1.4104 
July 14:00 0.7297 2.1776 0.9933 0.9969 1.1121 1.5841 
August 14:00 0.7389 2.4004 0.9962 0.9978 1.1165 1.5479 
September 14:00 0.7468 2.6408 0.9960 0.9983 1.0737 1.2829 
October 21:00 1.0779 0.2027 1.0090 1.0117 1.1255 2.2618 
November 21:00 1.0330 0.0932 1.0089 1.0135 1.1290 1.9737 
December 21:00 1.0162 0.0758 1.0072 1.0119 1.1241 1.9565 
Note: A factor above (respectively, below) 1.0 means power generation above (resp., below.) daily average. 

 
3  FLEXIBILITY, SEASONALITY, AND ADEQUACY METRICS 

Here we assess the impacts of both factors on the adequacy metrics for mainland Spain and how 
they compare to the results in [3]. We do it sequentially: we start considering flexibility in isolation, and 
then we add seasonal non-dispatchable generation on top of it. 
 
3.1. Flexible hydropower 

First, we illustrate how the flexible management of hydro stations alleviates supply shortages in 
mainland Spain. Regarding power demand, as explained in [3], maximum hourly demand in a year is 
regressed on yearly demand as shown in Eq. (1) from 1990 through 2017. The ordinary least squares 
regression analysis yields 7.24270- =ߙ (ݐ-ratio = -10.82), 0.924459 =ߚ (ݐ-ratio = 26.45), and adjusted 
ܴ-squared of 0.976980; the standard error of the regression is 0.034453. Hence, starting from the demand 
level in 2017 and assuming both a particular growth rate (e.g. 1.36%) and number of years ahead (say, 13) 
we can derive a forecast for total demand in, say, the year 2030. Substituting the resulting level in the 
regression equation we derive the (log) average peak demand in that year. Next we can simulate the 
maximum hourly demand in each day of the year 2030 in mainland Spain. Any particular simulation run 
(out of 50,000) yields a particular peak demand in that year. We compute the difference between this 
simulated peak demand and the actual peak demand in 2017. In order to get the hourly peak demand in 2030 
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on a daily basis we shift vertically the whole demand curve in 2017 downwards/upwards by this amount. 
As for mainland power supply, Table A1 in the Appendix shows the generation mix by technology 

at year-end 2017. It is exactly the same as in [3]. The only difference is that now we separate hydro capacity 
between RoR and non-RoR technologies. Specifically, RoR capacity is assumed to remain constant through 
the time horizon considered (up to 2050) at 2,104 MW. Instead, non-RoR capacity starts from 18,227 MW 
in 2017 and grows more or less over time according to the assumed yearly growth of power demand 
(whether 1.36% or 1.73%). Regarding thermal plants, we perform 50,000 simulation runs of their available 
capacity in each month. As for non-thermal technologies, we derive 50,000 random samples of their load 
factor in each month; the two types of hydro stations are considered separately (just like any other 
technology). Then we compute the combined power generation from both thermal and non-thermal 
stations. The resulting level is multiplied by a factor of 0.9809 (the availability rate of Spanish power grid). 

As already mentioned, [4] consider two scenarios of future demand growth: 1.36% and 1.73% per 
year. [3] stick with these two demand scenarios, denoted ܦଵ and ܦଶ, respectively. Concerning supply, 
depending on the assumed growth rate of demand, they adopt different installed capacities for each 
technology in the coming decades. Thermal stations in particular show the same path in all the scenarios: 
coal-fired and nuclear stations remain constant from 2017 to 2020 but decrease significantly in 2030 and 
completely cease to operate from 2040 onwards; natural gas plants, instead, are assumed to remain constant 
at their 2017 level through 2050. Non-thermal power technologies undergo weaker or stronger growth 
according to demand growth. [3] denote these generation systems by ܵଵ  and ܵଶ , assumed to match 
demands ܦଵ and ܦଶ, respectively; see Table A1 in the Appendix. In the end, [3] simulate the performance 
of the Spanish peninsular generating system in ten different scenarios. After matching the earlier two parks 
ܵଵ and ܵଶ with demands ܦଵ and ܦଶ, they are subsequently combined with a flat future demand (ܦ). 
These four scenarios [( ଵܵ,ܦଵ), (ܵଶ,ܦଶ), (ܵଵ,ܦ), (ܵଶ,ܦ)] are then followed by another four in which the base 
demands are lowered by 5% [(ܵଵ,ܦଵ

ି), (ܵଶ,ܦଶ
ି), ( ଵܵ,ିܦ), (ܵଶ,ିܦ)]. Finally, [3] take the scenarios [(ܵଵ,ܦଵ

ି), 
(ܵଶ,ܦଶ

ି)] and compare them with two other scenarios where gas-fired generation capacity is increased since 
2030 through 2050, denoted [( ଵܵ

ା,ܦଵ
ି), (ܵଶ

ା,ܦଶ
ି)]. 

We focus on the last two spectific cases, namely [(ܵଵ
ା,ܦଵ

ି), (ܵଶ
ା,ܦଶ

ି)]. In them annual demand 
grows (on average) at 1.36% or 1.73% (denoted ܦଵ and ܦଶ, respectively) and so does hourly peak demand 
(on average), but the associated hourly peak demand levels are cut by 5% if necessary from 2030 onwards; 
we refer to them as ‘shaved’ demand (ܦଵ

ି or ܦଶ
ି). At the same time, natural gas-fired generation capacity 

grows by 3,000 MW every decade; we refer to this as‘enhanced’ supply (ܵଵ
ା or ܵଶ

ା). This corresponds to 
the lower block of Table 7 in [3]; the upper part of Table 5 here replicates it for convencience; it represents 
inflexible hydropower generation. Remember that these demand growth scenarios envisage a wide 
deployment of renewable sources of electricity in [3]. The middle block in Table 5, instead, displays the 
adequacy metrics under flexible management of hydropower. 

As expected, the positive correlation between hourly peak demand and flexible hydro’s load factor 
tempers the severity of the negative impacts of demand surges. Table 6 shows the decrease that applies to 
each probabilistic metrics in each year considered. For instance, in 2020 the percentage change in EENS 
with respect to inflexible management equals [(2/48) − 1] × 100 = − 95.8 % (under ܦଵ

ି) or [(3/85) − 1] × 100 
= − 96.5 % (under ܦଶ

ି). This is obviously a dramatic reduction in the supply shortfall. Yet the impact fades 
over time as demand keeps on growing (whether at 1.36% or 1.73% per year) despite the broad deployment 
of renewable sources; by the end of the time horizon the drop in EENS is close to 60% or 55%, respectively. 
The same dynamics applies to the other adequacy metrics, whether we look at their average values or the 95 
percentiles. Interestingly, the probability that the peak load will exceed available generation, LOLP, is 
basically unaffected in 2040 and 2050. 
 
 
Table 5. Spanish peninsular system: Simulated mismatch between ‘enhanced’ supply and ’shaved’ demand.

 2017 2020 2030 2040 2050 2020 2030 2040 2050 
AD 253,082 263,621 302,026 346,026 396,436 266,564 316,909 376,762 447,920
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MHD 42,398 44,013 47,365 53,661 60,801 44,463 49,502 58,023 68,023
AC 99,311 113,232 121,430 126,948 141,648 110,832 126,630 140,648 168,548

 Inflexible hydro generation (ܵଵ
ା,ܦଵ

ି) Inflexible hydro generation (ܵଶ
ା,ܦଶ

ି) 
23 ܵܰܧܧ 48 1,415 151,248 317,338 85 3,485 258,069 547,173
0 95ܧ 0 4,814 483,212 874,788 0 21,963 736,823 1,342,998
1.44 ܧܮܱܮ 2.54 53.01 2,945.50 4,980.68 4.27 115.01 4,219.63 6,614.56
0 95ܮ 0 420 7,500 10,920 0 840 9,600 12,780
0.55 ܲܮܱܮ 0.88 10.40 93.72 98.24 1.36 18.21 97.33 99.43
1.34 ܯܴ 1.57 1.56 1.37 1.33 1.49 1.56 1.42 1.48

 Flexible hydro generation ( ଵܵ
ା,ܦଵ

ି) Flexible hydro generation (ܵଶ
ା,ܦଶ

ି) 
23 ܵܰܧܧ 2 98 46,124 124,546 3 301 92,784 247,847
0 95ܧ 0 0 171,687 387,350 0 847 307,807 667,387
1.44 ܧܮܱܮ 0.10 4.80 1,218.85 2,617.18 0.21 13.12 2,046.40 3,993.92
0 95ܮ 0 0 3,660 6,540 0 60 5,400 8,520
0.55 ܲܮܱܮ 0.12 3.35 92.01 98.43 0.24 7.45 97.08 99.69
1.34 ܯܴ 1.57 1.56 1.37 1.33 1.49 1.56 1.42 1.48

 Flexibility & Seasonality (ܵଵ
ା,ܦଵ

ି) Flexibility & Seasonality (ܵଶ
ା,ܦଶ

ି) 
23 ܵܰܧܧ 0.15 77.96 30,987 79,401 2.77 234.32 57,855 151,234
0 95ܧ 0 0 125,788 265,549 0 354.16 212,929 446,637
1.44 ܧܮܱܮ 0.01 3.75 773.91 1,577 0.16 10.06 1,197 2,339
0 95ܮ 0 0 2,400 4,080 0 60 3,300 5,220
0.55 ܲܮܱܮ 0.01 2.74 85.25 95.54 0.19 5.90 91.75 98.34
1.34 ܯܴ 1.57 1.56 1.37 1.33 1.49 1.56 1.42 1.48

 
 

Table 6. Percentage change in adequacy metrics induced by flexible non-RoR generation. 
 Demand growth: +1.36% Demand growth: +1.73% 
 2020 2030 2040 2050 2020 2030 2040 2050 
 %54.7- %64.0- %91.4- %96.5- %60.8- %69.5- %93.1- %95.8- ܵܰܧܧ
 %50.3- %58.2- %96.1- - %55.7- %64.5- %100.0- - 95ܧ
 %39.6- %51.5- %88.6- %95.1- %47.5- %58.6- %90.9- %96.1- ܧܮܱܮ
 %33.3- %43.8- %92.9- - %40.1- %51.2- %100.0- - 95ܮ
 %0.3 %0.3- %59.1- %82.4- %0.2 %1.8- %67.8- %86.4- ܲܮܱܮ

 
In sum, the possibility of shortages still looms large in the long term and remains worrying. For 

one, EENS amounted to 23 MWh in 2017; according to our results, it falls to just 2 or 3 in 2020 but jumps to 
a few hundred in 2030 and runs into the hundreds of thousands afterward. 
To some extent, the contribution of flexible hydropower management to SoS reflects the particular 
operation of pure pumped storage (PHES) plants in Spain. Figure A2 in the Appendix displays their actual 
operation profile over the period 2014-2018. Even though their aggregate installed capacity amounts to 
3,337 MW, their usual net output is quite far from operation at full capacity. This fact may be attributed to a 
number of factors, such as profitability of hydro plants (see footnote 1), constraints due to reservoir volume 
or reservoir seasonal constraints [8]. 

 
3.2. Flexible hydropower and seasonal renewable generation 

Now we assess the impact of seasonality in combination with hydropower flexibility. For this 
purpose, we focus on the lower block in Table 5 and compare it with the central one (flexible hydropower 
generation). From a cursory look it is clear that accounting for hourly seasonality does alleviate SoS 
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concerns. Table 7 shows that, in 2020, EENS drops dramatically under slow demand growth, 
[(0.15/2)-1]×100= -92.3%, but much less under faster growth, [(2.77/3)-1]×100= -7.8% (probably, some 
values close to zero in that year have an oversized impact on the percentage changes). From then on, the 
size of the reduction grows with the passage of time (and further deployment of renewables), ranging 
between 20% and 40%, which is a significant improvement. The 95th percentile (E95) decreases too, thus 
improving the severity of the shortfalls. The average number of hours in a given year with EENS occurrence 
(LOLE) falls a bit more then EENS; the same applies to its 95th percentile (L95) with respect to E95. Unlike 
these metrics, the probability that the peak load will exceed available generation (LOLP) does not drop so 
much; worse still, the decrease gets smaller over time, leaving LOLP almost unaffected by 2050. 
 
Table 7. Percentage change in adequacy metrics induced by seasonality (except in non-RoR). 
 Demand growth: +1.36% Demand growth: +1.73% 
 2020 2030 2040 2050 2020 2030 2040 2050 
36.2- 32.8- 20.5- 92.3- ܵܰܧܧ -7.8 -22.2 -37.6 -39.0 
31.4- 26.7- ― ― 95ܧ ― -58.2 -30.8 -33.1 
39.7- 36.5- 21.8- 88.0- ܧܮܱܮ -22.9 -23.3 -41.5 -41.4 
37.6- 34.4- ― ― 95ܮ ― 0.0 -38.9 -38.7 
2.9- 7.3- 18.1- 88.3- ܲܮܱܮ -22.5 -20.9 -5.5 -1.4 

 
Figure 2 displays the probability distribution of EENS for the year 2050 under the second demand 

growth scenario (ܦଶ
ି) in the three settings: the default situation (as in [3], i.e. without taking correlation and 

seasonality into account), with correlation (i.e. flexible hydropower management), and with both 
correlation and seasonality. As we move from the first setting to the second one there is a massive 
displacement of the probability mass towards the left. As observed in Table 6, when hydro operators follow 
peak demand the EENS is cut almost by 55 % while its 95th percentile (E95) falls a bit less, about 50%. 
Thus, the positive correlation certainly softens the problem, but in no way solves it. Next, if we compare the 
initial and the final distributions, the average EENS drops by 72.36% and E95 by 66.74%. Summing up, 
despite the huge improvement brought about by flexibility and seasonality, the risks around SoS continue to 
be extremely serious, both by past national standards and international ones. 
 
FIGURE 2: Major adequacy metrics in 2050 (under high demand growth) in the three different settings. 
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4  CONCLUSIONS 
 
Security of electricity supply (SoS) is a serious concern of future power generation. In a number of 

national systems the foreseeable development of renewable technologies and the gradual demise of nuclear 
and coal-fired stations can pose an added risk to security of supply. This risk can be alleviated to some 
extent by using the hydroelectric resources available in a flexible way. As a general rule, the power 
available from hydro stations depends on the operation strategies implemented by the plants’ owners. In 
this regard, “A conservative operation will keep a minimum volume of water stored, to ensure the energy 
necessary to operate at full capacity in dry years; but economic optimization may lead to less conservative 
operation”; [2]. On the other hand, hydro plants operate in combination with other non-dispatchable 
technologies in a system. Consequently, a detailed analysis of the contribution of hydropower to SoS calls 
for taking non-dispatchable sources into account, in particular their seasonal pattern over short periods. 

Here we develop a model to assess the performance of different, prospective generation parks from 
the viewpoint of SoS. We demonstrate it by application. At this point, instead of making assumptions on 
how hydro stations with reservoirs will be (or should optimally be) operated,10 we draw on observed 
historical patterns (somehow emphasyzing, as in [3], a rather physical/technical approach). We take the 
correlation between hydro-based power generation and peak demand into account. Specifically, we 
distinguish run-of-river (RoR) stations from the remainder, non-RoR hydro stations. This way we not only 
account for the aforementioned correlation, but for the flexible management of pump stations as well. Thus, 
we can assess the potential role of each particular type of hydro technology in enhancing SoS. This point is 
particularly important when it comes to pump stations, since the need for additional storage capacity in the 
future is widely recognized (not only in Spain). On the other hand, we use hourly data whenever publicly 
available. In particular, every month we compute the hourly seasonality attached to each type of renewable 
energy; this way we get a better representation of supply from renewable sources. The observed seasonal 
pattern is applied to the hours of maximum demand. 

Our results show that flexibly managing Spanish hydro resources sizeably reduces power 
shortages. Yet, by itself it may not be enough to guarantee SoS during peak hours under specific 
configurations of the installed generation capacity. The outlook improves to some extent when the hourly 
seasonality of non-dispatchable generation is also considered. In general, during peak hours 
non-dispatchable technologies generate power above their daily averages, thus significantly contributing to 
SoS. This said, although the management of existing hydropower reservoirs could still be improved, [19], 
[23], the magnitude of our results indicates that there may be a need for (additional) demand shedding or 
supply increases coupled with higher storage capacity. 

As [7] point out, storage projects must be assessed in the context of a changing power sector. In this 
regard, most stations in Spain were built when the electricity market was tightly regulated. The current 
liberalized market may not provide strong enough incentives to attract new investments in this area. In early 
2019 the Spanish Government released the draft of the Integrated National Plan of Energy and 
Climate-PNIEC [24]. It surmises an increase in the installed capacity of pure pumped stations from its 
current level of 3,337 MW to 4,212 by 2025 and 6,837 MW by 2030. Whether the private sector will 
undertake these investments remains to be seen.11 

Besides, as of today, none of the functions legally assigned to the power system operator (Red 
Eléctrica de España) implies the hydro exploitation of these generating facilities; [25]. Further, 
Hydrographic Confederations may set more restrictive ecological flows or limits to the rate of change of the 
turbined flows, which could decrease flexibility and ability to use hydropower in the operation of the power 

                                                                                                                      
10 [7] and [21], among others, assume that utilities have perfect foresight about the day-ahead marginal electricity price when 
optimizing their hydro stations. [22] assume a random price of electricity, which entails the need to account for this (price) risk. 
11 For example, [13] warn of growing concerns regarding pumped-storage technologies as ‘peak assets’, because of both a 
diminished business case for price arbitrage (induced by the integration of subsidized renewable electricity) and the competition 
from alternative cheaper solutions (such as gas-fired power plants).  
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system, and therefore could impact its security.12 According to the PNIEC, there will be regulatory changes 
to the operation of pure pumped stations; they would be managed by the system operator (for example, as 
SoS devices). Yet, as of today this legal framework remains undeveloped. 

Regarding future research, the above analysis could be improved along several lines, both 
methodological and empirical (assuming the required data are publicly available). For example, solar 
technologies could be disaggregated into photovoltaic and thermal to account for their different 
charge/discharge cycles; in principle, doing so would improve the accuracy of our estimates. The empirical 
analysis could ideally be conducted over a longer sample period to dampen the potential impact of the dry 
year 2017 on the results. Beyond this, the combination of solar PV and wind parks with storage facilities 
can improve SoS substantially by means of technologies such as pumped hydro storage (the need to 
additionally invest in storage, on top of the generation facilities, makes these power systems relatively 
expensive in general). For example, the scenarios in [27] deploy pumped hydro (with daily-weekly storage 
durations) due to its technological maturity and potential in the Ontario landscape. In addition to pumped 
storage, [28] consider also central batteries and hydrogen storage in the future European power system. 
Additional storage capacity can be incorporated into our model to some extent as long as it can be 
interpreted like a cut in peak demand hours. 
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12 [26] consider a hybrid wind/pumped-hydro system in Madeira Island (Portugal) with multiple purposes: supply water, regularize 
the irrigation flows, and produce electricity. They optimize the hourly operation of the pumps and turbines for a period of one day. 
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Appendix 
  
Table A1 displays the total installed capacities (in MW) of power technologies in mainland Spain and the 
peninsular total annual demand (in GWh). Source: [3]. 
 

Table A.1. Peninsular Spanish power system. 

  ܵଵ (demand growth: +1.36%) ܵଶ (demand growth: +1.73%) 
 2017 2020 2030 2040 2050 2020 2030 2040 2050 

Nuclear 7,117 7,117 3,040 0 0 7,117 3,040 0 0

Coal 9,536 9,536 6,642 0 0 9,536 6,642 0 0
Natural Gas 24,948 24,948 24,948 24,948 24,948 24,948 24,948 24,948 24,948

Hydro: 20,331 20,331 21,900 24,700 25,600 20,331 23,300 25,900 28,600
RoR 2,104 2,104 2,104 2,104 2,104 2,104 2,104 2,104 2,104

Non-RoR 18,227 18,227 19,796 22,596 23,496 18,227 21,196 23,796 26,496

Wind 22,863 26,000 28,700 32,100 35,800 24,500 32,600 39,800 44,400

Solar 6,730 16,000 20,500 24,600 29,400 15,100 20,300 27,300 39,300
Cogen. 6,373 8,100 9,900 10,800 11,600 8,100 10,800 13,200 16,100

Others 1,413 1,200 2,800 3,800 5,300 1,200 2,000 3,500 6,200

Total(MW) 99,311 113,232 118,430 120,948 132,648 110,832 123,630 134,648 159,548

Demand 
(GWh) 

253,082 263,621 302,026 346,026 396,436 266,564 316,909 376,762 447,920

 
Table A2 displays the basic statistics derived from our sample data of non-RoR stations (left block) 

and those resulting from 50,000 simulation runs (on the right). They are almost identical, which renders our 
MC-based adequacy metrics relatively reliable. In other words, this table basically serves as a cross-check 
of our non-RoR paremeters in the simulations above. For pumped-storage stations we use an availability 
rate of 60.66% of their installed capacity; this is the 95th percentile of the 2015-2017 daily series. 
 
Table A2. Non-RoR: Estimated Weibull parameters and those from Monte Carlo simulation. 

 Estimated Simulated 

Month Mean ߤ௉ Volatil. ߪ௉ ߩ Mean ߤ௉ Volatil. ߪ௉ ߩ 

January 0.368 0.101 0.256 0.368 0.101 0.256 

February 0.404 0.122 0.381 0.404 0.122 0.382 

March 0.430 0.107 0.449 0.430 0.107 0.451 

April 0.332 0.138 0.326 0.332 0.138 0.326 

May 0.315 0.135 0.101 0.315 0.135 0.100 

June 0.254 0.094 -0.012 0.254 0.094 -0.013 

July 0.223 0.094 0.369 0.223 0.094 0.368 

August 0.201 0.077 0.215 0.201 0.077 0.216 

September 0.199 0.069 0.194 0.199 0.069 0.193 

October 0.224 0.088 0.179 0.224 0.088 0.180 

November 0.233 0.105 0.152 0.232 0.105 0.153 

December 0.236 0.098 0.101 0.235 0.098 0.100 
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Table A3 shows the maximum generation potential from hydro stations (in Spanish, ‘producible 
hidráulico’) and power demand as an approach to explaining the factor(s) behind the monthly changing 
correlation between the former’s load factor and the latter. 
 

Table A3. Behind the correlation between demand and hydro’s load factor. 

Month 

Hydropower potential (GWh) Power demand (GWh) 

2015 2016 2017 2015 2016 2017 

January 2,612 6,024 1,124 22,694 21,470 23,109 

February 4,204 4,889 3,802 21,013 20,848 19,912 

March 4,133 4,603 2,667 21,184 21,477 21,128 

April 2,913 6,105 1,546 18,851 19,931 18,833 

May 2,576 5,483 1,990 19,832 19,732 20,242 

June 1,535 2,112 1,074 20,377 20,247 21,709 

July 578 915 557 23,470 22,235 22,401 

August 647 367 253 20,880 21,464 21,809 

September 877 470 287 19,591 20,845 20,215 

October 1,503 729 411 19,728 19,852 20,252 

November 1,980 1,592 528 19,880 20,663 20,950 

December 1,314 1,378 1,734 20,897 21,336 22,181 

Source: Red Eléctrica de España (REE). 
 

Figure A1 displays both series from Jan 2015 to Dec 2017. Hydro potential is measured along the 
left vertical axis; demand goes along the right one. In both cases, monthly values represent percentages, i.e. 
the abosulte levels are divided by the yearly totals. For instance, demand in Jan 2015 accounted for 9.14% 
of total demand in 2015; hydro potential in the same month represented 11.31% of total potential in that 
year. A clear seasonal pattern arises, particularly in hydro potential, which is at its highest in winter and 
lowest in summer; instead, demand peaks in January and July. Overall the two (whole) series seem pretty 
much uncorrelated (the coefficient is -0.14); different seasonal patterns can explain this to some extent. 
There are wide gaps and trend mismatches in summer, but the two series comove a number of months. 
 

FIGURE A1: Hydropower potential and power demand in mainland Spain 2015-2017. 
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Figure A2 below displays the actual operation profile of pure pumped storage (PHES) plants in 
Spain. We have collected their hourly generation over the period 2014-2018, i.e. 43,824 observations. Each 
bar shows the number of hours when their net generation level falls between the bounds shown on the 
horizontal axis. Even though their aggregate installed capacity amounts to 3,337 MW, their usual net output 
is quite far from operation at full capacity. 
 
FIGURE A2: Hours with positive net generation from PHES stations, 2014-2018. Source: Own elaboration 
on REE data. 

 
 
 


