
Degree in Computer Engineering
Computation

Final Degree Project

Solution for the management of several Clinical
Practice Guidelines in a domain-independent

decision support system

Author

Ainhoa Lizaso Eguileta

2021

Degree in Computer Engineering
Computation

Final Degree Project

Solution for the management of several Clinical
Practice Guidelines in a domain-independent

decision support system

Author

Ainhoa Lizaso Eguileta

Instructors
Naiara Muro Amuchastegui

Jordi Torres Piñol
Itziar Irigoyen Garbizu

Ana Jesus Arruarte Lasa

Abstract

Malnutrition is a very frequent and serious problem in humans, even more in the elderly.
Advanced age brings with it a series of physiological (e.g., swallowing or chewing pro-
blems) and psychological changes that can be considered risk factors for malnutrition. It
is triggered by loss, dependency, loneliness, and chronic illness, and potentially impacts
on higher morbidity, mortality and the worsen of the quality of life. Without intervention,
it presents as a downward trajectory leading to poor health and decreased quality of life.
That is why it is essential to assess whether a risk situation exists and to evaluate to what
extent it can be evitable.

Therefore, the main objective of this work is to provide nutritional recommendations th-
rough a decision support system considering not only the different nutritional needs, also
the whole environment of an elderly patient, such as socio-demographic and economic
factors (sex, marital status, education...), psychosocial factors (social relationships, fa-
mily, physical exercise...), and morbidity factors (diseases). Having this in mind, the aim
of this work is to provide the most personalized nutritional recommendations.

For this purpose, Clinical Practice Guidelines have been formalized along with experien-
ced nutritionists on the domain within the NUTRIGEP project. The project consists of
a product that, in addition to predicting the risk of malnutrition, can prevent it in the
geriatric environment, contributing to the good nutritional management of the elderly in
order to improve their health condition. Physically it consists of a back-end and a front-
end for clinicians and nutritionists, which conceives an integrated solution to support the
healthcare professional on the one hand, and to guide the nutritionist in developing perso-
nalized diets and preventing malnutrition on the other hand. This work has been focused
on the back-end part of this application for the creation, evaluation and management of
different rules, using the Drools rule engine and leaning on decision flows, which helped
us generating personalized recommendations for patients affected by either one or more
pathologies at the same time.

i

Contents

Abstract i

Contents iii

List Of Figures v

List Of Tables vii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives of the Project . 2

1.3 Structure of the Document . 2

2 Project Management 5

2.1 Description of the phases . 5

2.1.1 Project Management . 5

2.1.2 Project Development . 6

2.1.3 Project Documentation . 7

2.2 Estimations . 7

2.3 Risk analysis . 7

iii

CONTENTS

3 State of the Art 9

3.1 Clinical Practice Guidelines . 9

3.2 Computer-Interpretable Guidelines . 10

3.2.1 General Models . 11

3.2.2 Barriers for the creation of CIGs 14

3.3 Rule Engines . 15

4 Methodology 19

4.1 Creating the ontology . 19

4.2 Formalizing CPGs . 20

4.3 Multiple rules management . 22

4.3.1 Creation of a process . 23

4.3.2 Creation of a session . 26

5 Use Case: Management of malnutrition in the elderly 29

5.1 NUTRIGEP ontology . 29

5.2 Formalization of guidelines . 32

5.3 Creation of the process . 36

5.4 Patient type . 37

6 Conclusions 39

6.1 Conclusions . 39

6.1.1 Objectives achieved . 39

6.1.2 Personal reflection . 40

6.2 Future Work . 40

Bibliography 43

iv

List Of Figures

4.1 Condition format in JSON document . 21

4.2 Rule template based on DRL language 22

4.3 New RuleFlow process . 24

4.4 A simple process example . 24

4.5 Ruleflow-group atribute . 25

4.6 Creation of a session and starting a process 26

5.1 NUTRIGEP ontology . 31

5.2 Example of a recommendation in excel 32

5.3 Structure of JSON . 33

5.4 Conditions structure in JSON . 34

5.5 Recommendations structure in JSON . 34

5.6 Final DRL file . 35

5.7 DRL management process . 36

5.8 Gateway characteristics panel . 37

5.9 Patient type . 37

5.10 Recommendation with one pathology 38

5.11 Recommendations with more than one pathology 38

v

List Of Tables

2.1 Dedication table . 7

3.1 Representation of languages . 13

3.2 Structure of languages . 13

3.3 Drools, OpenRules and OpenL Tablets tool properties 17

5.1 Classes of the ontology . 30

vii

CHAPTER 1

Introduction

1.1 Motivation

Increased life expectancy and the progressive aging of the population lead to an increase
in the prevalence of chronic diseases. The sensory alterations, functional disability and
social isolation that accompany aging predispose people to inappropriate eating habits
and/or imbalances between nutrient intake and the needs of the individual for an optimal
physical status. This leads to a number of consequences such as weight loss, alterations
of the immune system, aggravation of the underlying disease, longer hospital stays and
readmissions, and a poorer quality of life. In addition, the presence of malnutrition in
patients at the time of patients on admission to hospital can have a major impact on the
evolution and prognosis of their disease and be a cause of increased hospital stay and
health care costs.

Therefore, it is necessary to consider new multidisciplinary approaches and the use of
nutritional formulas to solve disease-related malnutrition, as it is a health problem of high
prevalence and high costs for public health.

To achieve this, the company VICOMTECH, in the eHealth and Medical Devices depart-
ment, is involved in the NUTRIGEP project with the main objective of predicting and
preventing possible cases of malnutrition in elderly patients in addition to customize diets
for proper and preventive food management. This work has been developed in this project.

1

2 Introduction

1.2 Objectives of the Project

The general objective of the work is to implement a computer-based solution that offers
nutritional recommendations taking into account the comorbid profile of an elderly pa-
tient, to provide personalized recommendations that have into account all the different
pathologies he/she suffers of.

In order to achieve this general objective, some more specific objectives have been pro-
posed:

1. To study in depth the state-of-the-art of Clinical Practice Guidelines (CPG), Computer-
Interpretable Guidelines (CIG), and the Drools rule engine.

2. To learn the basic use of Protégé and how to build a domain ontology using different
standardized terminologies (e.g., LOINC, SNOMED CT) to structure knowledge in
a flexible, actionable, digital and semantically standardized way.

3. To formalize paper-based CPGs into CIGs to cope with the limitations identified in
the state-of-the-art.

4. To learn how to use the Drools and jBPM plugins in Eclipse to be able to work with
decision flows to manage multiple rule sets.

5. To learn how to use the Gitlab working environment for the technical project ma-
nagement process.

1.3 Structure of the Document

The work is structured in six chapters as follows:

• Introduction (Chapter 1): The present chapter, which provides an introduction to
the work that explains the motivations and lists the different main objectives.

• Project Management (Chapter 2): The management that has been carried out to
perform the present work, taking into account the risks that may be encountered, in
order to meet the objectives in an orderly way.

1.3 Structure of the Document 3

• State of the art (Chapter 3): The state of the art related to the problem to be solved
is studied in depth in terms of CPG (Section 3.1), CIG (Section 3.2) and the rule
engines (Section 3.3).

• Methodology (Chapter 4): The followed methodology to reach the objectives and
the output results during this work are described. First, a domain ontology to or-
ganize the knowledge in a structurally flexible way and semantically standardized
is build (Section 4.1), second several CPGs are formalized into CIGs (Section 4.2)
and finally, a solution for the management of these guidelines is implemented in
order to give consistent nutritional recommendations using the Drools rule engine
using decision flows (Section 4.3).

• Use case (Chapter 5): The NUTRIGEP project, the work done on this use case and
the results received are introduced.

• Conclusions (Chapter 6): The personal and academic conclusions drawn from the
work are explained. In addition, several pending tasks are proposed to improve the
work in the future.

CHAPTER 2

Project Management

This chapter describes in detail the planning process followed throughout the develop-
ment of the work. This planning process is based on an initial draft schedule made at the
beginning, which has evolved as the work has progressed. This has been a necessary step
to identify the risks involved in the project and the possible phases of development, and
to manage the most valuable resource in a work, which is the time.

To carry out the planning, the work has been divided into three different phases: project
management, project development and project documentation. The modules of each phase
contain different points of attention that need to be addressed for the most appropriate
transition and evolution towards the objectives.

2.1 Description of the phases

In this section a description of each phase mentioned above is made, to clearly see the
scheme that has been followed when carrying out the work.

2.1.1 Project Management

The main objective of this phase is to estimate the cost of the different tasks and how the
project might evolve throughout its duration. Therefore, it is a phase that is worked at the
beginning, estimating the work time during the work and classifying the risks that may be

5

6 Project Management

encountered in order to try to avoid them and, in case they occur, to solve them quickly.
In addition, in this phase, apart from estimating the hours, it has been very important to
follow up on how the work has been always going and to make sure that the estimate has
been met:

• Planning: In this task the main points of the work have been decided by estimating
its possible duration and the resources needed for its realization, as well as looking
for when these objectives can be met and the order in which they are completed.
The result has been a set of activities ordered and placed over time with their res-
pective milestones and with a risk management plan to be prepared for them with
prior knowledge on how to avoid them. Finally, the scope of the project has been
determined.

• Monitoring: The objective of this task has been to constantly check that the objec-
tives assigned at the beginning are being completed well and on time. In this section
new risks could be found and even new objectives could be created.

• Communication: This part unites the collaboration of the student and the tutor
to see if the plan is being followed. In this part, changes in the work have been
communicated to the mentor in order to reach an agreement of both. These issues
have been discussed in meetings and at the end the tasks have been decided until
the next meeting, which have been usually short term intentions.

2.1.2 Project Development

The work has been strongly oriented towards a decision support system based on Arti-
ficial Intelligence (AI) methods to provide the user with diet and/or supplement recom-
mendations. Most of the development phase has been focused on researching the current
state-of-the-art regarding how decision support systems work, the main difficulties cau-
sed by clinical practice guidelines both in paper and digital formats and the possibilities
to solve them.

Once all this have been studied, the practical application has been developed which inc-
ludes all the steps learned in the theoretical part to see in action the solution created and
see the results obtained.

2.2 Estimations 7

2.1.3 Project Documentation

The last part consists of the work report, where the most relevant knowledge and infor-
mation about the work done is collected, both for the theoretical part and for the practical
application. The amount of research in this phase has been quite long to ensure that every
aspect of the methodology can be fully understood and provide an enriching and valuable
insight.

2.2 Estimations

After defining the three phases that make up the work, the initial time estimate and the
amount of time ultimately required to complete the tasks have been assigned. Table 2.1
shows the estimates made both for the phases in general and for the tasks within each
phase.

Estimated time (h) Final time (h)
Project Management 50 45
Planning 20 15
Monitoring 20 15
Communication 10 15
Project Development 180 200
Knowledge Acquisition 100 100
Implementation 80 100
Project Documentation 70 85
Report 70 85
Total 300 330

2.1 Table: Dedication table

2.3 Risk analysis

The risk management plan has been a progressive plan to prevent risks, including new
ones, swapping other ones or discarding some others. Therefore, the risk management
plan has evolved to adapt to each moment. Particularly, the risks have been identified in
the monitoring process and later added or modified after a meeting with the directors to
discuss the potential consequences and how to prevent them.

8 Project Management

One risk has been the loss of information due to problems with the working machine.
To avoid this, it have been used cloud services (Drop Box for files, Gitlab for code, and
Overleaf for the documentation of the work) to store the information.

In addition, problems may arise when adding new functionalities or use different libraries.
To avoid wasting time in restructuring the code to return to the previous state, a version
control has been performed, where a current version of the application has been saved as
improvements were added, to ensure that if the code failed, the previous version has been
accessible.

Finally, another major risk of this project has been the consequences of the COVID pan-
demic. Due to the fact that the project was carried out in a company, students were sent to
work from home to deal with the pandemic and this could cause communication, organi-
zation and learning problems, since working at home is always more confusing. In order
to avoid any possible misunderstandings, it has been decided to organize meetings every
week to work progressively and to always have a goal to achieve before the end of the
week.

CHAPTER 3

State of the Art

This section will give an overview of the state of the art of clinical practice guidelines
(CPGs). The importance of formalizing CPGs into Computer-Interpretable Guidelines
(CIG) and how to manage one or more guidelines in a Clinical Decision Support System
(CDSS) using a rule engine will be analyzed.

3.1 Clinical Practice Guidelines

CPGs are defined as a set of systematically developed recommendations aimed at standar-
dizing the clinical care and optimizing patient’s outcomes [1]. They are based on a syste-
matic review of the latest clinical evidence and an assessment of the benefits and harms of
alternative care options. CPGs are developed by multidisciplinary teams, who review the
evidence comprehensively and systematically, evaluate the quality of the information, and
present specific recommendations. Recognition of the need for CPGs has been caused by
the following several observations: growing evidence of substantial unexplained and inap-
propriate variations in clinical practice patterns, concern that resource limitations could
reduce the possibility of providing high quality health care, and the difficulty clinicians
have in assimilating rapidly evolving scientific evidence into their practices [2].

The aim of clinical guidelines is to guide professionals and clinicians involved in the
decision-making process improving the quality of care, limiting unjustified variations in
clinical practice, and reducing healthcare costs [3].

9

10 State of the Art

However, paper format CPGs do have some problems by their own. On the one hand,
many guidelines discuss about the same topic and this makes them inconsistent and with
discrepancies when giving advice on the same pathology [4]. On the other hand, paper-
based guidelines have not been used on a large scale by doctors because of several ba-
rriers. The most relevant are the accessibility of the knowledge of the guideline when it
is long and complex and a quick and instantaneous response is required, the difficulty
of analyzing and observing several therapeutic guidelines at the same time, the need to
constantly update the guideline information, and the importance of having current patient
information at all times [5].

Seeing these inconveniences, the development of CDSSs was strengthened. To this pur-
pose, it was necessary to formalize the CPGs as CIGs in order to be able to apply them
as a knowledge base of CDSSs. These CDSSs combine the formalized knowledge of gui-
delines with up-to-date clinical data from patients to provide them with specific advice at
the point of care, which increases the potential to influence physician behavior compared
to the exclusive use of narrative guidelines [3]. This makes clear the benefit of improving
medical and professional knowledge by providing easy access to scientific resources, pre-
senting reminders, and providing useful information for desirable decision making with
minimal errors [6].

3.2 Computer-Interpretable Guidelines

CIGs are increasingly being applied in diverse areas, as knowledge base of CDSSs, co-
vering a wide range of clinical settings and tasks. These digital documents promote the
acceptance and implementation of guidelines in daily practice, as CDSSs are capable to
monitor the actions and observations of care providers and provide guideline-based advice
at the point of care [7].

In this section, the creation of CIGs has been analyzed. In subsection 3.2.1 some of the
general guideline models have been mentioned, distinguishing the model and the language
in which the guidelines are specified and giving a brief description of each. In subsection
3.2.2 the obstacles that may be encountered when creating CIGs have been discussed.

3.2 Computer-Interpretable Guidelines 11

3.2.1 General Models

When formalizing a CIG, the following two parts should be considered: the model and
the language in which the guidelines are going to be specified.

The model is the main characteristic of any guideline approach. It must be able to re-
present several types of guidelines that differ considerably in complexity and level of
abstraction. The model must contain a set of building blocks (primitives) used to cons-
truct guidelines, such as tasks, rules, nodes and framework. The guideline model must
be supported by a formal language that specifies the model primitives mentioned abo-
ve. Typically, a guideline language consists of two parts, a control flow language and an
expression language. The control flow language specifies the structure of the guidelines
in terms of the model primitives and their (temporal) relationships, while the expression
language usually describes the decision criteria [8].

Peleg et al. [9] compared five CIG models - Asbru, EON, GLIF, Guide and PROforma
- based on eight different dimensions which are the CIG modeling languages, know-
ledge acquisition and specification methodologies, CIG integration with organizational
workflow, validation and verification, execution engines and supportive tools, exception
handlings, CIG maintenance and finally CIG sharing. Each of the CIG frameworks studied
performs the following aspects: (1) represent a guideline as a set of tasks and relationships
between them, (2) provide expression/criterion languages to specify decision criteria such
as comparison operators, (3) specify the guideline’s intention or goal, (4) represents me-
dical concepts and (5) represents patient information and maps to an electronic medical
record.

Asbru is a CIG model that is used to express guidelines as time-oriented skeletal plans
that can be instantiated for each patient. This model allows the designer to represent the
prescribed actions of a plan, as well as process intentions and outcome intentions. Time-
oriented actions, conditions and intentions are expressed as patterns to be maintained,
achieved or avoided, during or at the end of a plan. A plan consists of a name, a set of ar-
guments, including a time notation (representing the temporal scope of the plan), and five
components: preferences, intentions, conditions, effects, and a plan body that describes
the actions to be executed. It may also have sub-plans that have the same structure.

EON is a model and execution system that uses a task-based approach to define deci-
sion support services that can be implemented using alternative techniques. It is also the
first energy-aware programming language. EON allows programmers to build programs

12 State of the Art

from code written in a variety of languages, including nesC and C. It provides a simple
way to associate particular control flows with abstract energy states that represent the
energy available in the system. Its own execution system only executes flows that the pro-
grammer has marked as appropriate for the given energy state. Thus, the programmer can
easily write programs that provide different functionality or data quality depending on the
current and future energy availability.

The Guideline Interchange Format (GLIF) is a computer-based format to distribute gui-
delines across different institutions and systems. It represents a clinical guideline as a
network of steps resembling a flowchart where steps can be implemented branching
logic or execute actions [10]. GLIF consists of classes, their attributes and the rela-
tionships between classes, all of which are necessary to model clinical guidelines [11].
These guidelines are represented as flow diagrams of nodes represented by an abstract
class called Guideline_Step. This class has the following subclasses: Decision_Step,
Action_Step, Branch_Step, Synchronization_Step and Patient_State_Step.

Its expression language was originally based on the Arden Syntax and its default medical
data model is based on the HL7 Reference Information Model (RIM). But a subsequent
object-oriented language, GELLO, is being refined for consideration as an HL7 standard.
GELLO grows as a standard query and expression language for decision support. It pro-
vides specialist physicians with the ability to customize their existing systems and create
flexible, purpose-built decision support systems. In addition, it uses an abstract "virtual
medical record"(vMR) so that the same GELLO code can run on multiple systems acces-
sing data stored in different formats [9].

The GUIDE model allows the developer to formally represent the guides and protocols.
The representation approach is flow-based. The main components are tasks (rectangles)
and decision points (diamonds). Given the complexity of care delivery processes, it adopts
a hierarchical representation. Thus, some tasks can be expanded to a lower, more detailed
level. This model produces four different XML data structures separating the general
properties of the CPG, the set of medical terms (such as clinical observations, diagnoses
and therapies), the set of abstractions to represent complex concepts and the GPC flow
indicating the activities and the decision processes.

PROforma combines logic programming and object-oriented modeling and is formally
grounded in the RL language. One aim of the model project is to explore the expressive-
ness of a deliberately minimal set of modeling constructs. It supports four tasks: actions,
compound plans, decisions, and enquiries. All tasks share attributes describing goals, con-
trol flow, preconditions, and postconditions.

3.2 Computer-Interpretable Guidelines 13

A summary of the analyzed languages is captured in the following tables. On the one
hand, Table 3.1 presents the representation of each language and on the other hand, Table
3.2 shows the structure and patient data modeling of each language. It can be observed
that in some boxes n/a is shown, this means that this language information is not available
in the publications.

Guideline Model Representation Primitives
Decision Action Patient

State
Execution
State

Asbru Condition,
preference

Plan Temporal
patterns

Plan state

EON Decision
step

Action, ac-
tivity

Scenario,
activity
state

No

GLIF Decision
step

Action step Patient sta-
te step

No

GUIDE Decision Task, wait,
monitor

(implicit) n/a

PROforma Decision Action, en-
quiry

n/a Task state

3.1 Table: Representation of languages

Guideline Model Structure for Primitives Patient Data ModelingTemporal Constraints Nesting
Asbru Plan-body Plan n/a
EON Flowchart Subguideline EMR ontology
GLIF Flowchart Subguideline Three-layer domain ontology

GUIDE Flowchart Task Relational
PROforma Constraints satisfaction graph Plan n/a

3.2 Table: Structure of languages

In conclusion, seeing that each model can provide different characteristics and different
functionalities, it can be said that there is no certain standardization language for the re-
presentation of CIGs. Nevertheless, is believed that it would be highly recommended to
apply Semantic Web Technologies (SWT) to process data in a more effective and effi-
cient way, to create a suitable framework for interoperability between systems and also to
integrate data from various sources.

14 State of the Art

3.2.2 Barriers for the creation of CIGs

Previously the most common models to represent CIGs has been studied. Knowing that
this work is based on a rule-based model, several disadvantages of its implementations
must be taken into account.

On the one hand, semantic problems occur not making distinctions between the different
types of knowledge presented. This is that the messaging standards used in healthcare use
different terms for the same concept, often resulting in clinical misinterpretation, poor
knowledge management and misdiagnosis of the patient’s disease. To solve this, compu-
tational ontologies are used. An ontology consists of a set of concepts organized by their
relationships. The concepts and relationships included must describe the agreed know-
ledge of a domain to be followed by both humans and machines [12]. Ontologies are
designed using standardized codifications that guarantee the interoperability of the im-
plemented knowledge and its univocal interpretation, since it allows the representation
of concepts with stable and single codes. Some of the known codifications for the repre-
sentation of the health domain applications are SNOMED CT [13] and NCI thesaurus
[14]. They have a great expressiveness in specifying the concepts, properties, constraints,
and type of relations included. They could be reused for the design of ontologies, due
to the fact that their declarative formalism based on logical descriptions enables them to
discover new information by inference.

On the other hand, syntactic problems are involved with guidelines that are developed
over long periods of time not being compatible, such as those defined for chronic pa-
tients. In order to overcome these limitations, different standards have been created called
messaging standards, used to encode and exchange health information. Messaging intero-
perability standards serve to ensure that the transmission of information between systems
is consistent. The main function of these standards is to define the structure, data type and
format so that systems, using this clinical information, can exchange data securely and
efficiently. An example of these standards is HL7 [15].

3.3 Rule Engines 15

3.3 Rule Engines

In the previous section the creation of CIGs has been analyzed in order to apply them as
knowledge base of CDSSs. In this section the functionality of these systems and a brief
comparison of different rule engines is presented.

Most CDSSs consist of three parts according to Miller et all. [16]. These parts are the
knowledge base, the inference or reasoning engine, and a mechanism to communicate
with the user. The first part, as explained in section 3.2, would be the knowledge base
which adopt different formats such as a set of clinical rules, models obtained from data,
etc. The second part of the CDSS is called the inference engine or reasoning mecha-
nism, which contains the formulas for combining the knowledge base with data entered
to analyze. Finally, there must be a communication mechanism, a way of getting the da-
ta into the system and getting the output of the system to the user who will make the
actual decision. In this work, clinical rules based on domain-specific clinical guidelines
are used as knowledge base, and patients’ data is entered into the system to generate the
recommendations.

Focusing now on the inference engine of a CDSS, it performs functions such as interpre-
ting and executing the guidelines encoded in the specific representation formats. Since the
core logic of clinical guidelines consist of complicated rule sets, commercially available
rule engines have been adopted on a wide-scale basis [17].

Some studies have suggested the adoption of the workflow concept in clinical guidelines
[9, 18]. It is very promising because it facilitates the decision support as it can analyze
patient specific clinical information using latest available evidence. By implementing a
workflow and automating the tasks contained in a guideline, all contents of the guidelines
are included within a pre-established order and hierarchy. Thanks to the workflow, pro-
cesses are automated and organized in a way that is much more accessible to all users.
Therefore, in this work we integrate the use of workflow in rule engines.

In order to select the most suitable workflow and rule engine, the following elements are
considered according to Lee et al. [17]:

• Integrity: In order to achieve fast response and correctness of execution, the work-
flow and the rule engine should be easily integrated.

• Extensibility: The framework of engines should be based on a well-known archi-
tecture so that its components can be easily added or reconfigured.

16 State of the Art

• Open source: The main advantage is the possibility of sharing, modifying and stud-
ying the source code of a computer system with the collaboration of different users.

There are different open-source rule engines such as CLIPS, Drools, NxBRE, OpenRu-
les, Jena, Hammurapi Rules, OpenL Tablets and CodaServer that implement a rule en-
gine and provide different management mechanisms. However, only Drools, OpenRules
and OpenL Tablets have the main components of a Business Rules Management System
(BRMS) [19]. A BRMS is a software solution used to define, deploy, execute, monitor
and manage rules and decision logic. With a BRMS, rules and decision making are au-
tomated across an organization’s processes. It can distinguish the relationships between
various rules and associate the rules with technology solutions that perform the required
functions.

The three main components are (i) a development environment (ii) the rules repository and
(iii) a rules execution environment. Rules are stored in a repository instead of embedding
the rules as code within the application. In this way, the rules can be accessed by more
than one application and are available for reuse. An execution environment is a hardware
and software infrastructure that enables the operation of a code base in real time. In a
BRMS, this allows applications to invoke the applicable rules and execute them using
a rule engine. In addition, a BRMS provides development tools for users to define and
manage business rules. In this way, users can develop business rules without writing code.
Table 3.3 shows a summary of the technological strengths of the Drools, OpenRules and
OpenL Tablets components.

3.3 Rule Engines 17

BRMS Rules engine Management mechanisms
Drools Performs inference with for-

ward and backward chaining.
Implements Rete algorithm
and JSR-94 standard. Hand-
les large number of rules, or-
ders/transactions and users

It allows editing rules in Java,
XML, Drools native language (drl),
domain specific languages and Ex-
cel. It has Eclipse plug-in and web
editor. Publishes rules as web ser-
vices. Generates reports. Allows to
create and execute test cases. Fa-
cilitates rule debugging. Allows to
create organizational vocabulary

OpenRules Performs forward chaining
inference. Implements the
Rete algorithm and a specific
algorithm for optimization
problems. Implements the
JSR-33 standard

It can represent rules in XML lan-
guage and decision tables in Excel,
OpenOffice or Google Docs. It has
an Eclipse plug-in and Web editor.
It has a Web application to edit ru-
les. Generates reports. Allows the
creation and execution of test cases.
Facilitates the creation of an organi-
zational vocabulary

OpenL Ta-
blets

Performs forward chaining
inference. Implements the
Rete algorithm

It has Web editor, publishes rules as
Web services. Makes it possible to
edit rules in simplified Java langua-
ge and in Excel tables. It has a plug-
in for the Eclipse program. Allows
creating and executing test cases

3.3 Table: Drools, OpenRules and OpenL Tablets tool properties

As seen on Table 3.3, all platforms have many ways to write rules (tables, an own langua-
ge, XML etc.), have different rules execution environments and have Open-Source licen-
ses, but only Drools platform has both, an advanced knowledge representation language
and an powerful inference engine that can perform the forward and backward inference.
In addition, by creating Domain Specific Languages, understanding, and writing rules be-
comes much easier, since it is written in natural language with the <if-then> expression.
It is also worth emphasizing that as mentioned before some studies have suggested the
adoption of the workflow concept in clinical guidelines and Drools contains the Drools-
Flow module that develops workflow activity types for rule management. Drools contains
within it the plugin to use workflows so there is no need to integrate any other language
(e.g., CLIPS, Asbru, PROforma, ...) to define the guidelines compared to the other two
rule engines. In conclusion, from our point of view Drools is the most suitable engine for
this work.

CHAPTER 4

Methodology

This work is based on the work done by N. Muro et al. [20], who developed a decision
event structure to collect all the information related to the decision-making process. Its
architecture is based on three modules which are (i) the definition of a decisional event in a
processable structure, (ii) the CPG formalization module and (iii) the semantic validation
module. In this work, this structure has been extended adding a tool to manage (i) more
than one rule group in a single CPG, and (ii) the handling of several CPG formalized as
DRLs at once when evaluating a comorbid patient. This section will describe the followed
methodology and the output result work done during this research project to reach the
objective.

In order to manage guidelines, they must first be formalized and, for this, it is necessary
to have a model of the domain to avoid semantic interpretation errors. Therefore, before
formalizing and creating a solution, an ontology that will be used during the formalization
of the rules has been generated.

4.1 Creating the ontology

Ontologies require a logical and formal language to be expressed. Numerous langua-
ges have been developed for this purpose such us Ontology Inference Layer (OIL), Web
Ontology Language (OWL), Resource Description Framework (RDF) or RDF Schema
(RDFS). The presented work interacts with a ontology formalized in RDF language with

19

20 Methodology

a connection to the formalization of CIG through the Protégé tool [21], which implements
this language based on frames (taxonomies of classes and attributes), with a significant
expressive power. Protégé allows:

• Modeling an ontology of classes describing a particular topic

• The creation of a knowledge acquisition tool to collect knowledge

• Entering specific cases of data and a knowledge base

In order to create the ontology, the following steps have been taken:

Step 1. Determine the domain and scope of the ontology. This step helps to determine the
extent of the model, defining the scope of the ontology with respect to its specific domain.

Step 2. List important terms for the ontology. In this step it is necessary to write a list
with all the variables that will potentially serve for the ontology. Variables are extracted
from the description of the application domain.

Step 3. Define classes and class hierarchy. There are several possible approaches to deve-
lop a class hierarchy: a top-down development process, bottom-up development process,
and a combination of top-down and bottom-up approaches. In this project, a top-down
development process has been used, which consists of starting with the definition of the
most general concepts in the domain and subsequent specialization of the concepts.

Step 4. Define class properties: slots. Once some of the classes are defined, the internal
structure of the concepts must be described

Step 5. Define the facets of the slots. Slots can have different facets that describe the type
of value, supported values, the number of values (cardinality), and other characteristics of
the values that the slots can take.

4.2 Formalizing CPGs

The formalization of CPGs into CIGs has been done starting from the work done by N.
Muro et al. [20] which consists of a java-based framework that facilitates this process.
CPGs can be written in many document-based format (e.g., .drl, .xml, .json), but in this
work they have been translated to JSON documents. This way it is possible to have the

4.2 Formalizing CPGs 21

CPG knowledge in a computerized form. This object can be edited at any time in the
future to include new knowledge contained in new CPGs versions.

The framework has an object called Condition. This object stores (i) the name of the
clinical variables to be evaluated, (ii) the mathematical operator (i.e., >, >=, =, <=), and
(iii) the value imposed by the condition to be evaluated.

The formalization process starts with defining the conditions that make up the rule. The
variables of the conditions are entered, and the ontology is queried to obtain the infor-
mation regarding its type and possible values. For example, if the first variable is "Age",
the condition value will be restricted to the possible values defined for that variable in
the ontology (i.e., natural numbers). Once the condition is fulfilled, a binary operator can
be introduced (i.e., AND, OR) for including more conditions or end building the rule
by defining the recommendation. Figure 4.1 illustrates the condition format in the JSON
document.

4.1 Figure: Condition format in JSON document

Once all the rules have been written in JSON, the object is parsed to generate an instance
of a Java Guideline object. This object is parsed into a DRL file using a template that has
the structure shown in Figure 4.2. The Java object contains the needed parsing methods
to translate the rules into the Drools Rule language. The translated rules are then inserted
into the DRL file using the mentioned template. The parts of the rule (name, data object,
conditions and recommendations) are entered in the template as a Java Map and its values
are mapped in the template, where each attribute will be replaced by its value.

22 Methodology

4.2 Figure: Rule template based on DRL language

4.3 Multiple rules management

So far, it has been introduced how to create the ontology and how rules have been forma-
lized in CIGs. In this section it is described how the work done by N. Muro et al. [20] has
been extended in order to add a new tool that allows to manage different CIGs with the
help of the decision flows.

The architecture has been created in Java following Drools rule engine, which activates the
rules in a production environment at runtime. These rules come from the formalized CIGs
and inputted patient data are evaluated to return the treatment that best fits the clinical
case.

Drools is composed of different modules that work on different aspects. These modules
are Drools expert, Drools fusion, Drools flow, Drools guvnor and Drools solver. Among
the modules, the ones that are interesting for this work are the following [22]:

• Drools expert: is basically the rule engine. Stores, processes, and evaluates data to
execute the business rules or decision models that are defined. The basic function is
to match incoming data, or facts, to the conditions of rules and determine whether
and how to execute the rules.

• Drools flow (jBPM): provides workflow capabilities to the Drools platform. A bu-
siness process or workflow describes the order in which a series of steps need to
be executed, using a flow chart. This makes it much easier to describe a complex

4.3 Multiple rules management 23

composition of various tasks. It allows end users to specify, execute and monitor
their business logic.

The Drools Flow module has been the focus of this project. The Drools Flow module
allows to visually define the flow in which business rules and their associated actions are
executed. Drools Flow is another way to have human-readable rules. It allows to define the
flow of execution between rules. It can execute arbitrary actions at specific points inside
the flow and becomes very interesting because with this a patient can be assessed at each
moment with the characteristics and needs that he/she has at that moment, which gives us
the possibility to execute certain DRLs according to the patient’s data.

There are two things that are necessary to run processes from an application: (1) create a
Knowledge Base containing the process definition, and (2) start the process by creating a
session to communicate with the process engine and start the process.

4.3.1 Creation of a process

When creating the Knowledge Base, many processes can be created using three different
methods: using the graphical RuleFlow editor in the Drools plug-in for Eclipse, as an
XML file, or directly creating a process using the Process API. In our case, the first method
has been implemented as it is the most visible and easy to understand. Figure 4.3 shows
the graphical RuleFlow editor. It allows to create a process by dragging and dropping
different nodes on a canvas and editing the properties of these nodes. The process itself
has the following properties:

• Id: the identification label of each process

• Name: the display name of the process

• Version: the version number of the process

• Package: the package or namespace where the process is defined

24 Methodology

4.3 Figure: New RuleFlow process

A rule flow process is a flow diagram in which different types of nodes are linked by
connections (folders column on the right in Figure 4.3), but the ones that have been studied
are the ones used in this project, the Start, End, Business Rule Task and Gateway nodes.
These modules have been chosen mainly because the Rules Task node makes it possible
to separate all the rules into groups that best suits us. Gateways are also used because they
are the element needed to guide an execution of patient’s data into one group of rules or
another. Next, a more detailed description of each of the nodes that have been used and
an example of a simple process are presented:

4.4 Figure: A simple process example

4.3 Multiple rules management 25

Start: The start of the ruleflow (green circle in Figure 4.4). A ruleflow should have exactly
one start node, which cannot have incoming connections and should have one outgoing
connection. Whenever a RuleFlow process is started, execution will start at this node and
automatically continue to the first node linked to this start node, and so on.

End: The end of the ruleflow (red circle in Figure 4.4). A ruleflow should have one or
more End nodes. The End node should have one incoming connection and cannot have
outgoing connections.

Business Rule Task: Represents a set of rules (rectangles in Figure 4.4). The rules are
evaluated when the node is reached. These rules are grouped using the ruleflow-group
attribute in the header as can be seen in Figure 4.5. This greatly reduces the execution
time by not needing to review all the rules and only analyzing the ones that correspond to
the group. When a BusinessRuleTask node is reached in the ruleflow, the engine will start
executing rules that are part of the corresponding ruleflow-group (if any). Execution will
automatically continue to the next node if there are no more active rules in this ruleflow
group.

4.5 Figure: Ruleflow-group atribute

Gateway: This node allows to create branches in your rule flow (diamond in Figure 4.4).
There are two types of Gateway nodes currently supported:

• INCLUSIVE means that the control flow will continue in all outgoing connections
simultaneously. This implies that the execution process will be follow several paths
at the same time and multiple drl files will be evaluated simultaneously.

• EXCLUSIVE means that exactly one of the outgoing connections will be chosen.

26 Methodology

The decision is made by evaluating the constraints that are linked to each of the
outgoing connections. Always at least one of the outgoing connections will evaluate
to true at runtime (the ruleflow will throw an exception at runtime if it cannot find at
least one outgoing connection). This implies that the execution process will follow
only one branch.

The conditions to choose a branch or several branches in both inclusive nodes and exclu-
sive nodes are specified within the node properties by writing them with the same syntax
as in a rule contained in the DRL file, or in plain java language.

4.3.2 Creation of a session

One of the first steps when creating a Drools project is to create a session that is in charge
of preparing the execution and setting up the ecosystem of rules associated with this exe-
cution. Adding a process to the session changes a little bit the way of creating the session
itself, since it must be loaded with its identifier (see line 2 in Figure 4.6) to direct the
session to the package that stores the knowledge base (process file and DRL files).

The process it is only executed if it is explicitly indicated. This is because more than one
process could be defined in the Knowledge Base and the engine must somehow know
when to start each one of them. To activate a particular process, it must be started by
calling the startProcess() method in its session.

4.6 Figure: Creation of a session and starting a process

The startProcess() method parameter represents the id of the process that needs to
be started. This id needs to be specified as a property as indicated above in the part of
creating the processes. If it also requires the execution of rules during the execution, it is
also needed to call the fireAllRules() method to make sure the rules are executed as
well.

Different ways to enter data into a process can be used. For example, it can be entered
using the startProcess(String processId, Map parameters) method, which ta-
kes an additional set of parameters as name-value pairs. These parameters are copied to

4.3 Multiple rules management 27

the process instance as process variables. There is also the option to enter the parameters
directly with the insert(Map parameters) method which become input data for the
process.

CHAPTER 5

Use Case: Management of malnutrition in the elderly

After explaining the methodology that has been followed during this work, in this chapter
the use case of the project is presented in detail.

This work is based on the NUTRIGEP project. This project aims to predict and prevent
possible malnutrition in geriatric patients, managing and personalizing diets to ensure
adequate and preventive nutrition. It consists of the development of a tool based on AI
to prevent, monitor and generate personalized diets in order to reduce the complications
caused by malnutrition (e.g., dehiscence, infections or ulcers) and which can consequently
lead to a admission of the patient, which in turn means a higher health cost.

5.1 NUTRIGEP ontology

The domain of the ontology has been the malnutrition in the elderly, with the extensions of
the guidelines received from nutritionists working on the project. Analyzing the guideli-
nes, the ontology has been separated into two important groups, being (i) patient variables
and (ii) treatment variables. They have been separated in this way because the treatments
are personalized and depend on the patients’ variables that can be introduced.

From this grouping, different classes have been determined in each group to define the
variables that each group will have as can be seen in Table 5.1.

29

30 Use Case: Management of malnutrition in the elderly

Clinical Variable Treatment Variable

Age MediterraneanDiet
Sex Fortification

DesnutritionRisk Adaptation
Pathology Suplementation

IntakeValuation Follow-up
Texture

5.1 Table: Classes of the ontology

To specify the values that each class can have, two other groups have been created that
belong, on the one hand, to the values of the classes of the clinical variables and, on the
other hand, to the values of the classes of the treatment variables. With the two classes and
the two groups of values created, finally the connection of them indicating the values each
class can obtain have been build. Figure 5.1 shows the result of the completed ontology.
In the example of the class Sex, the values that it will be able to obtain will only be
those specified in SexValue that, in this case, are Man or Woman. This can be seen in the
description of the Sex class that only admits having the values specified in the SexValue
group.

5.1 NUTRIGEP ontology 31

5.1 Figure: NUTRIGEP ontology

32 Use Case: Management of malnutrition in the elderly

5.2 Formalization of guidelines

For the knowledge base, CPGs have been translated into IF-THEN rules and formalized
in several DRL files. The used CPGs came as seven excel files, each one belonging to
a pathology. These guidelines were generated by nutritionists working on the project.
Figure 5.2 shows an example of a treatment in the format generated by nutritionist in
which they were sent to us. Each excel square belongs to a different type of patient. This
ensures that, as mentioned above, the recommendations are totally personalized for each
type of patient.

5.2 Figure: Example of a recommendation in excel

Once the guidelines were studied, the next step was to transform them into JSON docu-

5.2 Formalization of guidelines 33

ments so that they would be interpretable by computers and easier to handle. Figure 5.3
shows the structure that guidelines have in the JSON format.

The guideline contains the attributes of the author, creation date, guideline ID and name,
and a set of rule groups. Figure 5.3 also shows that the first group is the Alzheimer’s
pathology. Each rule group is composed of an id, a name, and a set of rules. Within the
set of rules, also identified by an id and a name, there are the sets of conditions and
recommendations. Figure 5.4 shows how the conditions are structured and Figure 5.5
shows the recommendations. The recommendations are separated by different orderSets
that belong to the different parts of the treatment (e.g. Mediterranean diet, fortification,
adaptation ...).

5.3 Figure: Structure of JSON

34 Use Case: Management of malnutrition in the elderly

5.4 Figure: Conditions structure in JSON

5.5 Figure: Recommendations structure in JSON

5.2 Formalization of guidelines 35

With all the guides written in JSON documents, using the Postman tool, these documents
have been finally transformed into DRL files. Postman is a tool for making requests to
APIs and for generating collections of requests to test them in a quick and easy way. In
this way, calling the function uploadGuidelineInDBfromGUI the DRL files have been
created. Each file contains 378 rules, being this the number of all the combinations that a
patient can have. Figure 5.6 shows the final result.

5.6 Figure: Final DRL file

36 Use Case: Management of malnutrition in the elderly

5.3 Creation of the process

With all the guidelines formalized in DRL files, the last step consisted of integrating the
decision flows in the code for the management of the seven DRLs. Figure 5.7 shows the
process that has been created.

5.7 Figure: DRL management process

The process starts with a start node called StartProcess. This is where the patient cha-
racteristics are received. Following the path below a gateway is encountered which in this
case is inclusive. The reason why it is inclusive is as a patient can be multi-pathological,
so the patient should receive more than one recommendation. Taking into account that
DRLs have been separated by pathology, the gateway has been separated into seven diffe-
rent paths, each one in the direction of a group of rules belonging to the same pathology.
These groups of rules are called Rule Tasks and are linked to the DRLs thanks to the
Rule Flow Group attribute, so that only the rules related to the pathologies suffered by
the patient are evaluate. Figure 5.8 shows how in the characteristic panel of the door, the
patient must fulfill a condition to continue along the paths. In the example it is observed
how the patient will arrive at the Alzheimer’s Rule Task if he/she respects to the condition
corresponding to the patient’s characteristic called "Pathology".

5.4 Patient type 37

5.8 Figure: Gateway characteristics panel

5.4 Patient type

To enter a patient into the project, the Postman tool has also been used, calling the function
getRecommendationsForPatient and entering a patient in JSON format as shown in
Figure 5.9.

5.9 Figure: Patient type

For this same example, Figure 5.10 illustrates the recommendations received belong to
the Diabetes rule group and exactly rule number 4 has been executed.

38 Use Case: Management of malnutrition in the elderly

5.10 Figure: Recommendation with one pathology

In case the patient is multi-pathological, the attribute Pathology will be formed by an
array, for example [Alzheimer, Diabetes]. So, if one more pathology is added to the pa-
tient, for example Alzheimer’s disease, the result would be as shown in Figure 5.11. It
can be seen that, apart from the previous recommendation, a new one is added by the
Alzheimer’s rule group. That way the patient can receive the recommendations of both
diseases.

5.11 Figure: Recommendations with more than one pathology

CHAPTER 6

Conclusions

After realizing the work, several conclusions have been drawn, at academic and personal
level. In addition, several possible improvements or changes for the future have been
analyzed.

6.1 Conclusions

6.1.1 Objectives achieved

During the development of the work, the initially proposed objectives have been achie-
ved. On the one hand, an exhaustive analysis of the current landscape of clinical practice
guidelines in both paper and digital format has been carried out, including the analysis of
the operation of rules engines and the management of the guidelines within them. Real
guidelines have been obtained from professionals in the field of malnutrition and have
been formalized in digital format. In addition, a domain ontology centered in the nutrition
domain has been created to restrict the semantic problems that may occur. Finally, a deep
understanding of Drools and decision flows have been developed to create a solution to
manage the guidelines and give personalized recommendations. After an on-site analysis
of the state-of-the-art, it has been shown that flows allow the management of different
DRL, which in real clinical practice it translates in the management of clinical guidelines,
allowing to evaluate clinical data against a set of different CIGs simultaneously.

39

40 Conclusions

6.1.2 Personal reflection

This work has meant a change in my academic career since I have joined a company and
it has enriched me a lot by the fact of working on projects that are in operation now.

On a personal level, the development of this work has been very satisfactory. On the one
hand, I am satisfied for having understood the functionality of the software that I was
given at the beginning on an individual way and for the constancy of the work done to
achieve the objectives, proposing different solutions along the way. On the other hand,
the organization of the project has been very orderly due to the experience of my mana-
gers in this type of work, focusing from the beginning on a goal, without letting me get
sidetracked.

Academically, doing the project in a technology park made me feel that I was part of the
company and that my work had the same importance and value as others. It also made
me realize that there are infinite areas that a computer science can contribute in different
ways. It has also made me realize that what I have learned in my career can be used to
work in different fields. In my case, I have noticed it when handling the java language,
since my project is based on a java structure and artificial intelligence. But without any
doubt, the most enriching thing has been to work with people with different backgrounds,
most of them had studied biomedical engineering. Besides, it has been very positive to
see that we could help each other a lot to carry out the project even though the situation
has not been the easiest due to the fact that I had to work telematically.

Finally, it is worth mentioning that this work has made me evolve both academically and
personally. Working on an existing project has increased my motivation to do it and I
took it as a challenge without having met anyone at the beginning. But finally, I am very
grateful for the adaptation and satisfied with the results I achieved.

6.2 Future Work

This chapter presents several open doors to be explored in the future to improve and
expand the work done:

• Create RuleFlow processes using the Process API: As mentioned before, there are
different ways to create processes. In this work, processes have been created using
the most visual approach using the graphical RuleFlow editor, but this can become

Conclusions 41

a problem to share it because it might not be compatible with other programs. The
Process API allows us to configure flows outside Eclipse. This way, anyone could
generate specific flows from a user-friendly web-based application, thus no specific
software is needed to generate the same flows. At this point it is necessary to have
Eclipse, to know how flows work and to have the help of an expert in the area.
In the future, it will be integrated in a process authoring tool, so that it will not be
necessary to have to install specific software and an expert is not needed to configure
a flow.

• Validation: a validation of the platform should be performed in order to ensure (i)
the correct execution of the configured processes and (ii) the clinical value of the
obtained recommendations. For this purpose, ideally, a study should be performed
in which a specialist (a nutritionist in our case) would use the developed system in
order to obtain recommendations, and then the specialist would indicate whether to
accept or not the obtained recommendation. In the future, it could even be possible
to test different patients in compliance with the recommendations and see if they
really improve the patient’s nutritional status. This way, by looking if the patient’s
condition improves because of the proposed nutritional recommendations, it could
be possible to assess the clinical value of the formalized nutritional recommenda-
tions, and that the developed platform is useful in a real-world scenario.

Bibliography

[1] P. Alonso and X. Bonfill. Clinical practice guidelines (I): Elaboration, implementa-
tion and evaluation. Radiologia, 49:19–22, 2007.

[2] R. Harbour and J. Miller. A new system for grading recommendations in evidence-
based guidelines. British Medical Journal, 2:115–120, 1924.

[3] M. Peleg. Computer-interpretable clinical guidelines: A methodological review.
Journal of Biomedical Informatics, 46:744–763, 2013.

[4] M. A. Navarro Puerto et al. ¿Las guías que nos guían son fiables? Evaluación de las
guías de práctica clínica españolas. Revista Clínica Española, 205:533–540, 2005.

[5] P. Gillois, G. Chatellier, M. C. Jaulent, et al. From paper-based to electronic guideli-
nes: Application to french guidelines. Studies in Health Technology and Informatics,
84:196–200, 2001.

[6] A. M. Shahsavarani, E. Azad, M. Abadi, and M. H. Kalkhoran. Cinical Decision
Support Systems (CDSSs): State of the art Review of Literature. International Jour-

nal of Medical Reviews, 2:299–308, 2015.

[7] P. de Clercq, K. Kaiser, and A. Hasman. Computer-interpretable Guidelines Forma-
lisms. Stud Health Technol Inform, 139:22–43, 2008.

[8] A. Latoszek-Berendsen, H. Tange, H. J. Van de Herik, and A. Hasman. From clini-
cal practice guidelines to computer-interpretable guidelines: A literature overview.
Methods of Information in Medicine, 49:550–570, 2010.

[9] M. Peleg et al. Comparing Guideline Models: A Case-study Approach. Journal of

the American Medical Informatics Association, 10:52–68, 2003.

43

44 6Appendix

[10] R. Minor. Computer-interpretable guidelines using GLIF with windows workflow
fundation. Master’s thesis, The school of Graduate Studies, Laurentian University,
2014.

[11] A. Boxwala et al. GLIF3: A representation format for sharable computer-
interpretable clinical practice guidelines. Journal of Biomedical Informatics,
37:147–161, 2004.

[12] A. Sarri and Y. Carri. Un acercamiento a las ontologías médicas y su importancia.
Master’s thesis, Centro de Información Médica, Cuba, 2016.

[13] M. Teresa Romá-Ferri and M. Palomar. Análisis de terminologías de salud para su
utilización como ontologías computacionales en los sistemas de información clíni-
cos. Gaceta Sanitaria, 22:421–433, 2008.

[14] G. Fragoso, S. de Coronado, M. Haber, F. Hartel, and L. Wright. Overview and
utilization of the NCI Thesaurus. Comparative and Functional Genomics, 5:648–
654, 2004.

[15] Y. Castillo Quiel, A. Saavedra, and V. Villarreal. Estándares de codificación e inte-
roperabilidad en Salud: evaluación del proyecto AmIHEALTH. Revista Cubana de

Información en Ciencias de la Salud, 30:1–13, 2019.

[16] R. Miller, L. Waitman, and S. Rosenbloom. Decision Support During Impatient

Care Provider Order Entry: Vanderbilt Experience. 2016.

[17] J. Lee, J. Kim, I. Cho, and Y. Kim. Integration of workflow and rule engines for
clinical decisions support services. Studies in Health Technology and Informatics,
160:811–815, 2010.

[18] Vimla L. Patel, Vanessa Allen, J. F. Arocha, and Edward H. Shortiffle. Representing
Clinical Guidelines in GLIF: Individual and Collective Expertise. Journal of the

American Medical Informatics Association, 5:467–483, 1998.

[19] Y. Pacheco Cárdenas, S. Estévez Abrahantes, and M.E. Martínez del Busto. Integra-
ción de un Sistema de Gestión de Reglas de negocio al flujo de trabajo control de
historias clínicas para trasplante renal. Rev. Cuba inf méd, 7:105–112, 2015.

[20] N. Muro et al. Architecture for a Multimodal and Domain-Independent Clinical
Decision Support System Software Development Kit. Proceedings of the Annual

BIBLIOGRAPHY 45

International Conference of the IEEE Engineering in Medicine and Biology Society,

EMBS, pages 1399–1404, 2019.

[21] Marcelo Martín Marciszack, Manuel Pérez Cota, Rubén Leandro Antonelli, Roxa-
na Silvia Giandini, and Marina E Cardenas. Construcción de una ontología para
gramáticas formales y máquinas abstractas utilizando protégé para la elicitación de
requerimientos. In XI Workshop de Investigadores en Ciencias de la Computación,
2009.

[22] D.J.V. García. Estudio de viabilidad de Dools-Guvnor para su integracion en el
simulador empresarial SIMBA. Master’s thesis, Universidad Carlos III de Madrid,
2012.

	Abstract
	Contents
	List Of Figures
	List Of Tables
	Introduction
	Motivation
	Objectives of the Project
	Structure of the Document

	Project Management
	Description of the phases
	Project Management
	Project Development
	Project Documentation

	Estimations
	Risk analysis

	State of the Art
	Clinical Practice Guidelines
	Computer-Interpretable Guidelines
	General Models
	Barriers for the creation of CIGs

	Rule Engines

	Methodology
	Creating the ontology
	Formalizing CPGs
	Multiple rules management
	Creation of a process
	Creation of a session

	Use Case: Management of malnutrition in the elderly
	NUTRIGEP ontology
	Formalization of guidelines
	Creation of the process
	Patient type

	Conclusions
	Conclusions
	Objectives achieved
	Personal reflection

	Future Work

	Bibliography

