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Abstract: In this paper, an optimization procedure for path generation synthesis of the slider-crank
mechanism will be presented. The proposed approach is based on a hybrid strategy, mixing local and
global optimization techniques. Regarding the local optimization scheme, based on the null gradient
condition, a novel methodology to solve the resulting non-linear equations is developed. The solving
procedure consists of decoupling two subsystems of equations which can be solved separately and
following an iterative process. In relation to the global technique, a multi-start method based on a
genetic algorithm is implemented. The fitness function incorporated in the genetic algorithm will take
as arguments the set of dimensional parameters of the slider-crank mechanism. Several illustrative
examples will prove the validity of the proposed optimization methodology, in some cases achieving
an even better result compared to mechanisms with a higher number of dimensional parameters,
such as the four-bar mechanism or the Watt’s mechanism.

Keywords: path generation; dimensional synthesis; hybrid optimization; slider-crank mechanism

1. Introduction

Dimensional synthesis consists of finding a geometry that enables a mechanism
to generate certain motion characteristics, such as trajectories or positions of elements.
It is tough to solve this problem intuitively and often requires the implementation of
specific methods. Depending on the type and amount of prescribed motion characteristics,
it is not always possible to obtain an exact solution to this problem, forcing us to use
optimization methods to find an approximation with minimal error. The target most
commonly addressed in bibliographies is the synthesis type, known as path generation,
where a point of a single degree of freedom mechanism is sought to run through a sequence
of prescribed positions. This motion may or may not be synchronized with the location of
the input element, resulting in prescribed or unprescribed timing problems, respectively.
It should be noted that there also exist two other goals that are frequently studied, these
being beyond the scope of this paper. These are function generation, where the motion of
two elements of the mechanism is synchronized, and motion generation, where a sequence
of locations for a certain element of the mechanism is prescribed.

Most of the literature on dimensional synthesis focuses on individual cases, the four-
bar hinged mechanism being the most widely studied. In the existing literature, both the
exact synthesis, by means of graphic [1] or analytical methods [2], and the approximate syn-
thesis, by means of dimensional optimization [3,4], have been studied. On the other hand,
the slider-crank mechanism has been used to solve function generation problems [5–8], for
dynamic synthesis [9,10], and to serve as an adjustable mechanism [11–14]. However, no
publications on dimensional optimization for path generation have been found. It should
be noted that, in addition to the usual kinematic objectives, some papers include more
specific characteristics within the error function. For example, in [15] a formulation is
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developed by using exact differentiation that allows for establishing the position of the
instant center of rotation and the centrode.

An often-employed dimensional optimization procedure consists of minimizing the
error function, formulated as the sum of squared differences between the points of the
discretized prescribed path, and those belonging to the real generated path. The min-
imization process can be solved with different methods that can be classified into two
main groups, these being local and global methods, which are mentioned below. On the
other hand, there are also publications focused not so much on studying the mathematical
optimization techniques, but on proposing new ways of describing the output generated
by the mechanism. This may result in a more advantageous definition for the optimization
error function or for the elaboration of atlases and databases. In relation to the path gen-
eration problems discussed in this paper, there exist different approaches to describe the
trajectories, and probably the most typical ones are based on the Fourier series [16] or Haar
Wavelet transform [17]. Similarly, reference [18] describes a unified theory of the harmonic
characteristic parameter method for mechanism synthesis. Apart from the dimensional
synthesis, other publications focus on the phase that precedes it, i.e., structural synthesis,
the first step in the conceptual design of mechanisms. In this sense, there can be found
some proposals of automatic algorithms intended for the structural synthesis of robots and
closed-loop mechanisms [19].

In relation to the mathematical optimization techniques for dimensional synthesis,
the most effective and widely used local methods consist of applying the null gradient
condition, which leads to a non-linear system of equations. This system often includes
some passive variables that cannot be eliminated. To solve it, the function is linearized and
an iterative method, such as Gauss–Newton, is used, starting from an approximate initial
solution provided by the designer. The original reference for this type of method is a paper
published in 1966 by Chi-Yeh [20], which was dedicated to the four-bar linkage. From then
on, several papers related to dimensional synthesis of this mechanism by means of gradient
methods have been published, exploring different ways to improve the effectiveness
of optimization. As part of these alternative approaches, in [21] the authors proposed
modifying the set of variables to be optimized, considering the nodal coordinates instead
of the usual dimensional parameters, thereby allowing the elimination of some constraints
that were present in the original problem. It is also noteworthy that other publications
focus on reformulating the error function, such as [22,23]. The authors of those works
proposed to minimize the strain energy originated when the mechanism is forced to run
exactly through the prescribed trajectory. On the other hand, some authors have chosen to
estimate the error by avoiding its sensitivity to translation and rotation effects, such as [24],
where a system of relative coordinates between precision points is used. Following the
same idea, the authors proposed to perform a prior and independent phase to optimize the
translation, rotation, and scaling parameters [25]. In addition to the different alternatives
to characterize the design parameters of the mechanism and to estimate the resulting error,
a relevant aspect to achieve good performance in gradient methods is to carry out an exact
calculation of the partial derivatives, avoiding the numerical derivation, since it increases
the computational cost and results in a lower efficiency. Given the interest in solving
this problem, reference [26] presents a general method for calculating the exact partial
derivatives from the loop equations previously identified by the designer.

Despite the large number of existing publications devoted to optimal dimensional
synthesis by means of gradient methods, and to the improvement of their performance,
none of them are capable of solving the main limitation they have. Unfortunately, these
methods are highly sensitive to the chosen starting approximation, since they are local
in nature and hence converge to the nearest minimum, which will not necessarily be the
optimal overall solution. To overcome this drawback, global methods make it possible to
explore the entire space where solutions can be found. Metaheuristic methods are the most
common ones, and they have been covered in several references. These include genetic
algorithms [27–29], differential evolution [30–32], ant search [33], krill herd algorithm [34],
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imperialist competitive algorithm [35], or neural networks [36]. Nevertheless, the weakness
of heuristic methods in comparison with gradient methods is their higher computational
cost and a lower convergence rate. Furthermore, there is no guarantee that they will
converge to a minimum, neither locally nor globally.

Hybrid optimization algorithms, such as [37], gain greater strength when a global
method generating seeds for starting mechanisms is combined with a good local method.
Normally, hybrid methods start by running a global method to obtain one or several designs
that will later be used as initial approximations in a local method to quickly converge to
the nearest relative minimum. In this paper, as described below, a hybrid optimization
approach is proposed.

In the case of the slider crank mechanism analyzed in this paper, thanks to the
simplicity of its kinematics, it is possible to express the synthesis variables directly as
a function of the dimensional and input parameters, and thus completely eliminating
the passive variables. A novel aspect of the proposed approach is the way in which the
resulting system of equations is solved. Considering the more general case of unprescribed
timing synthesis, the final system of equations associated with the null gradient condition
can be divided into two subsystems with different characteristics. As will be explained,
the procedure described in this article allows each subsystem to be solved separately
within an iterative process that connects them together. This makes it possible, in some
particularly simple cases, such as the two-parameter slider-crank, to solve all the equations
analytically, while in more complex cases, numerical methods must necessarily be adopted.
The optimum solution reached will be a relative minimum of the error function and will be
influenced by the initial approximation used to solve the system of equations numerically.
In this paper, reducing this dependency will be attempted by running the local optimization
algorithm from different starting points previously selected by a genetic algorithm. The
generation of the starting points could also be done by another type of heuristic method,
or through a sweeping process that generates random points within the entire search
space. Even so, the latter technique would not achieve the most promising regions as the
genetic algorithm does, but it would only generate a wide grid of different starting points.
Therefore, the genetic algorithm is the preferred choice.

It is important to highlight that the procedure described in this paper seeks to obtain
reliable solutions, not only from a mathematical vision, but also from a practical point of
view. For this reason, it will be stated how to avoid the circuit defect in the slider-crank
mechanism, relying on the concept of branch index. This concept was introduced in
reference [21] to analyze the kinematics of the four-bar hinged linkage. The incorporation
of design constraints will be addressed by means of penalty functions included in the error
function to be minimized. This is essential to impose the Grashof criterion and thus ensure
that the input element is able to fully rotate (crank input).

Finally, the effectiveness of the proposed methodology will be illustrated through
different examples. The final solutions obtained in this paper are as accurate as the ones
reached in other papers when solving the same problem by using more complex designs,
such as four-bar or Watt linkages.

The main novelties and highlights of this paper are:

• Deduction of the equations required for the optimal dimensional synthesis of the slider-
crank mechanism, which constitutes an alternative to the hinged four-bar linkage
usually used in the literature to solve this type of problem.

• Proposal of an original methodology to solve a non-linear system of equations re-
sulting from the null gradient condition, based on the decoupling of two subsystems
of equations. It facilitates the resolution of the system and, in some cases, allows to
obtain all the solutions in an analytical way.

• Integration of the local optimization methodology within a hybrid optimization
method, which uses a genetic algorithm to search for the best starting approximations.
The fitness function has been adapted to solve not only the prescribed timing problem,
but also unprescribed timing.
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• Solving and comparison of examples proposed by other authors in the literature
dealing with the four-bar linkage. Thanks to the effectiveness of the method proposed
in this work, the slider-crank mechanism, though being simpler and more limited, is
able to provide similar performances (or even better in some cases) in path generation
problems.

2. Materials and Methods

In this section, the basis of the optimum synthesis procedure as well as the functioning
of the hybrid optimization strategy is presented.

2.1. Bases of the Optimum Synthesis Procedure

Before tackling the optimization process, the loop-closure equations of the mechanism
and the position equations of the coupler point that traces the trajectory will be obtained.
In addition, the variables that take part in the synthesis process and their functional
dependence law will be described. This enables obtaining the partial derivatives that
intervene in the minimization process.

2.1.1. Synthesis Equations for a General Design

First, the kinematic problem of the slider-crank mechanism with five dimensional
parameters, represented in Figure 1, is obtained.
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Figure 1. Slider-crank mechanism with 5 dimensional parameters.

The loop-closure equations are the following:

a1·sinϕ = a5 − a2·sinθ (1)

s = a1·cosϕ + a2·cosθ (2)

From Equation (1) yields:

sinθ =
a5 − a1·sinϕ

a2
(3)

Then, cosθ is given by Equation (4), where K = ±1.

cosθ = K

√
1−

(
a5 − a1·sinϕ

a2

)2
(4)

The synthesis equations are as follows:

x′ = s− (a2 − a3)·cosθ + a4·cos
(

θ − 3π

2

)
(5)

y′ = −(a2 − a3)·sinθ + a5 + a4·cosθ (6)
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Using the loop equations to solve the passive variables s (Equation (2)) and θ
(Equations (3) and (4)), and substituting them in Equations (5) and (6), the following
expressions are obtained for the synthesis variables, referring to the local system O’X’Y’:

x′ = a1cosϕ + a3·K

√
1−

(
a5 − a1sinϕ

a2

)2
− a4·(a5 − a1sinϕ)

a2
(7)

y′ =
(a3 − a2)·(a5 − a1sinϕ)

a2
cosϕ + a5 + a4·K

√
1−

(
a5 − a1sinϕ

a2

)2
(8)

Remark Regarding Branches and Circuits

The sign ± in Equations (7) and (8), which has been substituted for K = ±1 for
simplicity, is related to the two possible positions of the coupler point P for the same
input ϕ. This means that two branches exist, each one associated with the positive or
negative value of K. This circumstance is illustrated in Figure 2, in which the two possible
configurations of the mechanism, for a given value of the input ϕ, are represented.

Mathematics 2021, 9, x FOR PEER REVIEW 5 of 18 
 

 

𝑥′ = 𝑠 − (𝑎2 − 𝑎3) · 𝑐𝑜𝑠 𝜃 + 𝑎4 · 𝑐𝑜𝑠 (𝜃 −
3𝜋

2
) (5) 

𝑦′ = −(𝑎2 − 𝑎3) · 𝑠𝑖𝑛 𝜃 +𝑎5 + 𝑎4 · 𝑐𝑜𝑠 𝜃 (6) 

Using the loop equations to solve the passive variables 𝑠  (Equation (2)) and 𝜃 

(Equations (3) and (4)), and substituting them in Equations (5) and (6), the following ex-

pressions are obtained for the synthesis variables, referring to the local system O’X’Y’: 

𝑥′ = 𝑎1 𝑐𝑜𝑠 𝜑 + 𝑎3 · 𝐾√1 − (
𝑎5 − 𝑎1 𝑠𝑖𝑛 𝜑

𝑎2
)
2

−
𝑎4 · (𝑎5 − 𝑎1 𝑠𝑖𝑛 𝜑)

𝑎2
 (7) 

𝑦′ =
 (𝑎3 − 𝑎2) · (𝑎5 − 𝑎1 𝑠𝑖𝑛 𝜑)

𝑎2
 𝑐𝑜𝑠 𝜑 + 𝑎5 + 𝑎4 · 𝐾√1 − (

𝑎5 − 𝑎1 𝑠𝑖𝑛 𝜑

𝑎2
)
2

 (8) 

Remark Regarding Branches and Circuits 

The sign ± in Equations (7) and (8), which has been substituted for 𝐾 = ±1 for sim-

plicity, is related to the two possible positions of the coupler point 𝑃 for the same input 

𝜑. This means that two branches exist, each one associated with the positive or negative 

value of 𝐾. This circumstance is illustrated in Figure 2, in which the two possible config-

urations of the mechanism, for a given value of the input 𝜑, are represented. 

 

Figure 2. Two possible configurations for the same input. 

The two possible trajectories of point 𝑃 associated with the different configurations 

of the coupler element, commonly known as branches, can be connected or unconnected, 

resulting in a unique circuit (a unicursal curve), or two circuits (a bicursal curve). In this 

work, designs where the crank input is able to perform a 360° full rotation are considered, 

meaning that the Grashof criterion must be fulfilled. Therefore, the two possible branches 

will be two unconnected circuits. To avoid branch defects, all the selected points must 

have the same value of 𝐾. This value will be the one corresponding to the branch that 

yields a minimum error with respect to the desired path. 

In the most general case, represented in Figure 3, the local reference system O’X’Y’ 

has a rotation relative to the global system OXY, defined by the parameter 𝑎6, and a trans-

lation in the plane defined by the parameters 𝑎7 and 𝑎8. 

Figure 2. Two possible configurations for the same input.

The two possible trajectories of point P associated with the different configurations
of the coupler element, commonly known as branches, can be connected or unconnected,
resulting in a unique circuit (a unicursal curve), or two circuits (a bicursal curve). In this
work, designs where the crank input is able to perform a 360◦ full rotation are considered,
meaning that the Grashof criterion must be fulfilled. Therefore, the two possible branches
will be two unconnected circuits. To avoid branch defects, all the selected points must have
the same value of K. This value will be the one corresponding to the branch that yields a
minimum error with respect to the desired path.

In the most general case, represented in Figure 3, the local reference system O’X’Y’ has
a rotation relative to the global system OXY, defined by the parameter a6, and a translation
in the plane defined by the parameters a7 and a8.

The equations that express the synthesis variables in the global reference system are
the following:

xi = xi
′·cos(a6)− yi

′·sin(a6) + a8 (9)

yi = xi
′·sin(a6) + yi

′·cos(a6) + a7 (10)
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Now that all the variables involved in the synthesis problem have been defined, the
following classification can be established:

• Dimensional variables: a1, a2, . . . , a8. These are variables that define the lengths of
the bars and the translation or rotation parameters of the studied mechanism.

• Input variable: ϕ. This is an independent variable corresponding to the degree of
freedom of the mechanism under study.

• Passive variables: θ, s. These are not independent variables, but rather depend on the
input and the dimensional parameters.

• Output variables or synthesis variables: x, y. These correspond to the coordinates
of the coupler point P. In the case of path generation synthesis, these are indeed the
synthesis variables.

2.1.2. Optimal Design Based on the Error Function

The error function E, commonly used in synthesis problems, is defined as the sum of
the squared Cartesian distances between the prescribed points and those actually generated:

E =
N

∑
i=1

[(
xi − xd

i

)2
+
(

yi − yd
i

)2
]

(11)

The error between prescribed and generated trajectory must be minimized to obtain
the optimal mechanism. There are two options for carrying out this minimization. In the
modality known as prescribed timing, only the dimensional parameters are optimized,
requiring solving the system shown in Equation (12). In this case, the input parameters
ϕi are not variables to be optimized, but constant values (prescribed values). However,
in an optimization known as unprescribed timing, both the dimensional parameters aj
and the set of input parameters ϕi are optimized, requiring solving the systems given by
Equations (12) and (13). This last option is more complex but its potential to obtain precise
solutions is greater, since the value of the input parameters is not being restricted.

∂E
∂aj

= 0 →
N

∑
i=1

[(
xi − xd

i

)∂xi
∂aj

+
(

yi − yd
i

)∂yi
∂aj

]
= 0 ∀j = 1, 2, . . . , n (12)

∂E
∂ϕi

= 0 →
N

∑
i=1

[(
xi − xd

i

) ∂xi
∂ϕi

+
(

yi − yd
i

) ∂yi
∂ϕi

]
= 0 ∀i = 1, 2, . . . , N (13)
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2.2. Hybrid Optimization Procedure

Thanks to the simplicity of its kinematics, in the slider-crank mechanism it is possible
to eliminate the passive variables. In this way, the synthesis variables (x, y) are expressed
as an explicit function of parameters

{
aj
}

and ϕ, facilitating the obtaining of the partial
derivatives that appear in Equations (12) and (13). After performing the substitution, it
can be verified that the system of Equations (12) and (13) is non-linear. This system can be
decomposed into two subsystems of equations. On the one hand, Equation (12) is composed
of 8 equations, as many as the dimensional parameters of the mechanism. Each of these
equations has the form g(a1, a2 . . . a8, ϕ1, ϕ2, . . . ϕN) = 0. On the other hand, Equation (13)
is made up of N equations, as many as points of precision has the trajectory. Each of these
equations has the form h(a1, a2 . . . a8, ϕi) = 0. This circumstance is fundamental when
establishing the procedure for solving the system of equations.

In addition, in order to find the optimal initial approximation, the one that will be
the starting point of the local optimization process, and that plays a relevant role in the
process, a multi-start approach will be implemented. In the following sections, the hybrid
procedure proposed by the authors of this work will be explained.

2.2.1. Solving the Equation System for Local Optimization

In this section, the iterative algorithm to solve the non-linear system of equations
resulting from the null gradient condition is addressed. The procedure is based on the
decoupling of the two subsystems (12) and (13), as described below.

• First phase:

This starts from a certain mechanism, coming from the multi-start procedure that
will be explained in Section 3.2. The dimensions (a1, a2, . . . , a8) of this mechanism are
assumed constant in this phase. The values of these dimensions are substituted in each of
the equations of subsystem (13), resulting in a total of N equations, each with a unique ϕi.

In the simplest case of the slider-crank mechanism, with 2 dimensional parameters
(a1 = a2 = a3 and a5 = a6 = a7 = a8 = 0), and using the transformation of half-angle
tangent, ti = tan ϕi

2 , Equation (13) becomes a fourth degree polynomial:(
2a1a4 + xd

i a4

)
t4
i +

(
8a1

2 + xd
i a1 + 2yd

i a4

)
t3
i − 12a1a4t2

i +
(
−8a1

2 + 4xd
i a1 + 2yd

i a4

)
ti + 2a1a4 − xd

i a4 = 0 (14)

From the 4 possible values of ti(ϕi), the one that gives the minimum error is the
selected one.

For a design with 3 dimensional parameters, Equation (13) becomes a polynomial of
degree 10. Even so, it is easy to obtain the 10 roots and detect the correct one proceeding as
in the previous case. However, with 4 or more dimensional parameters, it is no longer as
easy to determine its corresponding univariate polynomial, nor is it really worth it. It is
more practical to operate as explained next.

The Equation (13) is solved numerically, starting from an initial approximation, and
arriving at a unique solution of the parameter ϕi. To guarantee that the global optimal
value of ϕi is obtained, it will be necessary to start from an initial approximation obtained
as follows: each sum of Equation (11), which represents the error made in each synthesis
position i, is evaluated as a function of the input parameter ϕi along the discretized domain
[0,2π). In this way, a graph similar to the blue curve represented in Figure 4 will be obtained,
where two minima of the error function appear, the one indicated on the right being the
one with the lowest value. The latter value of ϕi is taken as a starting approximation to
solve Equation (13) (in our case, using the MATLAB fsolve command).
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To illustrate this concept, in Figure 5 the prescribed point for a synthesis position i
and the trajectory generated by the mechanism of dimensions

{
aj
}

in the current iteration
are indicated. The effect of evaluating the sum of the error function (11) and choosing
the absolute minimum is equivalent to traversing the generated trajectory and selecting
the point of it (the black point) closest to the prescribed one (red point). In this example,
the black point indicated in Figure 5 corresponds to the absolute minimum, ϕ = 5.88 rad,
which is the one previously indicated in Figure 4.
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• Second phase:

In this phase, the values ϕi obtained in the previous phase will be assumed as
constants, and the unknowns (a1, a2, . . . , a8) will be calculated from the subsystem from
Equation (12).

As an example, in the simplified particular case of the slider-crank mechanism with
2 parameters, Equation (12) becomes the following linear system:

 4
N
∑

i=1
cos2 ϕi

N
∑

i=1
sin2ϕi

N
∑

i=1
sin2ϕi N




a1

a4

 =


2

N
∑

i=1
cosϕi · xd

i

N
∑

i=1

(
sinϕi · xd

i + cosϕi · yd
i

)
 (15)

However, in the design cases with 3 or more dimensional parameters, the subsystem
of equations turns out to be non-linear, making it necessary to apply numerical solving
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methods. As a starting approximation, the values (a1, a2, . . . , a8) that were assumed as
constants in the previous phase will be taken.

• Next steps:

With the new values of
{

aj
}

obtained in the second phase, we go back to the first phase,
and thus continue iteratively until convergence. The chosen stopping criterion consists
of comparing the current values of the optimization variables (a1, a2 . . . a8, ϕ1, ϕ2, . . . ϕN)
with those of the previous iteration, so that when the difference is less than a specified
tolerance, the iterative process will stop.

2.2.2. Implementing a Multi-Start Strategy

The method proposed in Section 3.1 has the disadvantage of being very sensitive to
the starting approximation. To avoid this drawback, a multi-start approach based on a
genetic algorithm will be used to guide the local optimization method towards a search for
the global optimal solution.

The proposed multi-start approach obtains a sufficiently large set of starting approxi-
mations, representative of a global sweep of the design space

{
aj
}

. In this article, a genetic
algorithm is used to locate 100 candidate solutions that serve as initial approximations. It is
decided to use the genetic algorithm incorporated in MATLAB, assigning as arguments of
the fitness function the values for the 8 dimensional parameters. The latter function assigns
the optimal correspondence of input parameters, according to the procedure outlined in
the first phase of Section 3.1, and returns a scalar value that quantifies the individual’s
fitness as the quadratic sum of the distances between generated and prescribed points.

It is important to bear in mind that, considering the way the fitness function is posed,
each starting solution for the unprescribed timing problem will not depend on 8 + N
variables (8 dimensional + N inputs), but only on the 8 dimensional parameters, which
facilitates the exploration of the search space by the genetic algorithm without the need to
restrict the input parameters.

The complete scheme of this hybrid procedure is shown in Figure 6. As can be seen,
it consists of executing a local optimization from the different starting points obtained
in the scan of the space of the dimensional parameters

{
aj
}

. In this way, different local
minimums will be obtained and the best of them will be selected.

To avoid excessive computational cost, the execution time of the genetic algorithm
is limited to an acceptable value (i.e., 1 min). Bear in mind that it will not be necessary to
obtain the optimal solutions, but that it will be enough to be close to them. On the other
hand, the execution time of the local method to be applied later will depend on the number
of iterations performed, but it generally consumes a few seconds for each starting point
used.

2.2.3. Incorporation of Design Constraints

Searching for an optimal design usually implies adapting the generated trajectory to
a prescribed one. In addition, some design requirements must be fulfilled. These design
constraints are related to several aspects, such as the maximum size of the mechanism, the
maximum and minimum lengths of certain bars, the Grashof criterion, the transmission
angle limits, and so on.
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In general, the optimization problem with certain inequality constraints can be formu-
lated as the minimum error subjected to

gk{a1, . . . , an} ≥ 0 ∀k = 1, 2, . . . , l

A typical constraint equation, gk, is expressed as follows:

m

∑
j=1

ajCj ≥ C0 (16)

When an inequality constraint, such as Equation (16), is included in the process, the
error function yields

E =
N

∑
i=1

(
xi − xd

i

)2
+

N

∑
i=1

(
yi − yd

i

)2
+ λ·

(
m

∑
j=1

ajCj − C0

)2

(17)
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If, on the one hand, Equation (16) is not fulfilled during the iterations of the optimiza-
tion process, it is necessary to amplify the value of the error to invalidate the corresponding
design

{
aj
}

. This can be done by means of the λ parameter, which acts as a penalty factor,
proceeding as follows:

If
m
∑

j=1
ajCj − C0 < 0 then λ = Prede f ined value

If
m
∑

j=1
ajCj − C0 ≥ 0 then λ = 0

If, on the other hand, the condition to be imposed is an equality constraint, then λ
will always be a certain predefined value. In this paper, after reviewing similar works in
the literature and conducting several trials with different values, the value λ = 50 was
established, insofar as it provides good results for all the analyzed design cases.

3. Results

The following examples will demonstrate the validity of the proposed methodology,
showing the results of each design case.

3.1. Demonstrative Example 1

The desired trajectory, shown in Figure 7, is formed by two straight lines and two
circumference arcs tangent to these lines. Considering the simplicity of the slider-crank,
achieving a design that traces this trajectory is challenging. Moreover, this example is inter-
esting because the trajectory combines both straight lines and arcs, which are trajectories
commonly used in the path planning synthesis of planar mechanisms. The coordinates of
the desired points,

(
xd

i , yd
i

)
, are given in Table 1. A total of 16 points are defined.
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Figure 7. Example 1. Desired trajectory. 

Table 1. Example 1. Initial data. 

i 𝒙𝒊
𝒅 𝒚𝒊

𝒅 

1 3.2500 1.7010 

2 3.6294 1.6510 

Figure 7. Example 1. Desired trajectory.

The eight dimensional parameters and the 16 input parameters (unprescribed timing)
will be optimized, that is, the most complete case possible. Following the previously
described technique, this example is solved using the proposed multi-start method, starting
from 100 different starting mechanisms. The conditions of the crank-input (based on
Grashof’s criterion) and a maximum 3:1 ratio between the longest and shortest bar are
imposed by means of penalty functions.
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Table 1. Example 1. Initial data.

i xd
i yd

i

1 3.2500 1.7010
2 3.6294 1.6510
3 3.9330 1.8840
4 4.0995 2.1724
5 4.2665 2.4616
6 4.4330 2.7500
7 4.4829 3.1294
8 4.2500 3.4330
9 4.0000 3.5000
10 3.7143 3.5000
11 3.4286 3.5000
12 3.1429 3.5000
13 2.8571 3.5000
14 2.5714 3.5000
15 2.2857 3.5000
16 2.0000 3.5000

The best solution, shown in Figure 8, leads to an error equal to 0.0073. The correspond-
ing design parameters are included in Table 2. In the Supplementary Materials, a video
showing the motion of this optimum mechanism can be found.
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Figure 8. Example 1: best multi-start solution for slider-crank, E = 0.0073.

To illustrate the influence that the starting point has on the final solution obtained,
Figure 9 shows, by way of example, the optimal mechanism obtained from another starting
point, which does not reach a solution as good as the one shown above, so it would be
excluded.

Table 2. Example 1: optimum design parameters and inputs.

Parameters Inputs

a1 1.292 ϕ1 4.877 ϕ9 2.992
a2 3.277 ϕ2 4.568 ϕ10 2.804
a3 1.292 ϕ3 4.409 ϕ11 2.634
a4 3.875 ϕ4 4.267 ϕ12 2.476
a5 1.970 ϕ5 4.104 ϕ13 2.323
a6 3.090 ϕ6 3.905 ϕ14 2.171
a7 1.356 ϕ7 3.579 ϕ15 2.014
a8 −0.583 ϕ8 3.192 ϕ16 1.846
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Figure 9. Example 1: comparison to other multi-start solution (multi-start no. 10), E = 0.0227.

This same example has been used by the authors of this work in a recent work, in
particular reference [38], making use of another optimization method and applying it to
the four-bar mechanism. It should be taken into account that the four-bar mechanism has
an additional dimensional parameter with respect to the slider-crank and thus, in principle,
a greater potential to adjust to the prescribed trajectories. Nevertheless, comparing the
results of both achieved optimal mechanisms (the error in [38] with the four-bar was 0.0089),
it can be seen that they are almost of the same value, even having a slightly smaller error in
the current case.

3.2. Demonstrative Example 2

Figure 10a shows the results obtained by other authors [30,34,39,40] for an example of
path generation synthesis of a closed path formed by 25 points marked in red. Each of the
authors uses a different optimization method, but all of them use the four-bar mechanism.
On the other hand, Figure 10b shows the results obtained when solving the same example
with the slider-crank under the methodology proposed in this paper.

The comparison is made with other studies that analyze the four-bar because, as
mentioned in the introduction, the vast majority of path generation synthesis works make
use of the four-bar. Even so, as it has been shown in the previous example and it will
happen in this one, the method that we propose achieves very similar (or even better)
results, despite making use of a more limited mechanism such as the slider-crank.

The optimal solution obtained in this paper with the slider-crank mechanism (Figure 10b)
corresponds to an error of 0.103 and is of similar quality to Bulatović et al. [34]. They ob-
tained an error of 0.0392, which is slightly lower than the one we found, but is of the same
order of magnitude. On the other hand, in [34] they also indicated the error achieved by
Laribi et al. [39] and Smaili and Diab [40], these being 0.9022 and 0.5504, respectively, so
they would be considerably higher. On the other hand, the error obtained by Kafash and
Nahvi [30] is not directly comparable with the rest because they use a different error func-
tion. However, the trajectory generated by the authors in [30] is graphically represented
in Figure 10a. The corresponding optimal design parameters for the more general case of
slider-crank are shown in Table 3. As in the previous example, a video showing the motion
of this optimum mechanism is included as Supplementary Materials.
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Table 3. Example 2: Optimum design parameters and inputs.

Parameters Inputs

a1 2.309 ϕ1 4.703 ϕ9 −0.237 ϕ17 2.715 ϕ25 4.451
a2 48.819 ϕ2 4.92 ϕ10 0.049 ϕ18 2.933
a3 −3.304 ϕ3 5.041 ϕ11 0.672 ϕ19 3.17
a4 24.498 ϕ4 5.181 ϕ12 1.331 ϕ20 3.483
a5 46.315 ϕ5 5.362 ϕ13 1.698 ϕ21 3.762
a6 4.726 ϕ6 5.528 ϕ14 1.996 ϕ22 3.752
a7 −18.02 ϕ7 5.745 ϕ15 2.281 ϕ23 4.091
a8 15.293 ϕ8 5.875 ϕ16 2.494 ϕ24 4.265

3.3. Demonstrative Example 3

On this occasion, a path generation problem, previously solved in reference [41] for
the Watt mechanism, is presented. Their optimal solution is represented in Figure 11a,
together with the set of prescribed points represented in red. The optimal solution obtained
with the slider-crank mechanism, represented in Figure 11b, has an equal, and, it could
be said, even higher precision, despite being a simpler mechanism that has fewer design
parameters involved.

The optimal design parameters of the slider-crank mechanism are listed in Table 4.
Yet again, a video showing the motion of this optimum mechanism is included as Supple-
mentary Materials.
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Figure 11. (a) Watt’s mechanism optimal solution from [41]; (b) optimal solution for slider-crank
mechanism.

Table 4. Example 3: Optimum design parameters and inputs.

Parameters Inputs

a1 6.719 ϕ1 5.580 ϕ9 3.502
a2 15.635 ϕ2 5.349 ϕ10 3.101
a3 5.217 ϕ3 5.116 ϕ11 2.708
a4 8.737 ϕ4 4.918 ϕ12 2.549
a5 −6.710 ϕ5 4.703
a6 −2.924 ϕ6 4.508
a7 42.513 ϕ7 4.124
a8 35.584 ϕ8 3.848

4. Discussion

In this paper, a hybrid optimization procedure has been presented to address the
dimensional synthesis of path generation using the slider-crank mechanism. On the one
hand, a novel approach has been proposed to solve the non-linear equations corresponding
to the null gradient condition, which is based on the decoupling of two subsystems of
equations, and which simplifies the resolution procedure without prejudice to the precision
obtained. On the other hand, the incorporation of the multi-start method manages to give
the local optimization method a global character, carrying out a previous sweep of the total
space of the dimensional variables to find the most promising starting approximations.
To carry out this search, a genetic algorithm is used where only the eight dimensional
parameters are involved, thanks to the fact that the fitness function has been programmed
to select the optimal input parameters based on the dimensions.

In addition, it should be noted that this methodology is aimed at achieving designs
that are valid from a practical point of view. Therefore, the non-existence of branch defects
is ensured, and different design restrictions can be incorporated in a simple way through the
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use of penalty functions. In this way, it can be ensured that the crank input mechanism does
not exceed a maximum ratio between bar lengths or other additional design requirements
at the discretion of the designer.

Finally, the effectiveness of the method has been proved by verifying, through various
examples, that the slider-crank mechanism allows us to achieve solutions with a precision
comparable to other one degree of freedom mechanisms that have a greater number of
dimensional parameters, such as the four-bar or the Watt’s mechanism, with the additional
advantage of having simpler kinematics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9131581/s1. The three videos corresponding to the motion of the optimum mechanisms
are available.
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