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Abstract: This paper deals with the closed-loop stabilization of a network which consists of a set of
coupled hybrid single-input single-output (SISO) subsystems. Each hybrid subsystem involves a
continuous-time subsystem together with a digital (or, eventually, discrete-time) one being subject
to eventual mutual couplings of dynamics and also to discrete delayed dynamics. The stabilizing
controller is static and based on linear output feedback. The controller synthesis method is of algebraic
type and based on the use of a linear algebraic system, whose unknown is a vector equivalent form
of the controller gain matrix, which is obtained from a previous algebraic problem version which is
based on the ad hoc use of the matrix Kronecker product of matrices. As a first step of the stabilization,
an extended discrete-time system is built by discretizing the continuous parts of the hybrid system
and to unify them together with its digital/discrete-time ones. The stabilization study via static linear
output feedback contains several parts as follows: (a) stabilizing controller existence and controller
synthesis for a predefined targeted closed-loop dynamics, (b) stabilizing controller existence and its
synthesis under necessary and sufficient conditions based on the statement of an ad hoc algebraic
matrix equation for this problem, (c) achievement of the stabilization objective under either partial or
total decentralized control so that the whole controller has only a partial or null information about
couplings between the various subsystems and (d) achievement of the objective under small coupling
dynamics between subsystems.

Keywords: hybrid dynamic systems; decentralized control; stabilization; output feedback; static
output feedback controller

MSC: 93C05; 93D20; 93C55

1. Introduction

The stabilization of dynamic systems via feedback is a very important topic in Control
Theory since a necessary minimum requirement for any controlled system is that it operates
in a stable way. Therefore, the stabilization theory is relevant in continuous-time systems,
discrete-time systems and the hybrid ones which have mixed continuous-time and discrete-
time parts. See, for instance, [1–13] and some related references therein. The discretization
of continuous-time systems can be performed to constant sampling rates or to non-uniform
ones [3,6] so as to take the sampling rate as an extra design function which can be accommo-
dated to the rate of variation of the signals of interest in the system under study. The works
in [1,2] focus on the stabilization of saturated discrete-time switching systems. On the other
hand, the works in [1,4] are focused on the stabilization of multirate control systems, so on
those which have signals being sampled at different sampling rates, also with the objective
of facilitating the accommodation of signals in the system that, because of their different
nature, evolve at different variation rates or which are needed to be sampled at different
rates. A useful design technique for stabilization purposes is the use of Lyapunov functions,
which can involve the structure of the closed-loop system parameterization (that is, the
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one involved the incorporation of the feedback control law), so as to allow the appropriate
synthesis of the feedback controller, [7]. Some stabilization problems also incorporate the
extra effort of needing to follow the behavior of a certain prescribed model which is known
as the “model-matching” or “model-following” objective. In this case, it is not only needed
to stabilize the closed-loop modes (stabilization problem) but also to prescribe the values of
both the zeros and poles of the closed-loop transfer function to prescribed values defined
by the reference model [8,9]. Different devices and design techniques which should be
examined to decide on combining discretization tools with continuous-time analysis in
complex dynamic systems are the use of appropriate sampling and hold devices [8–10]
to update discretized signal information for control purposes, the eventual influence of
delays either in the input or output, or in the sates, and also the possible stabilization via
state or output feedback involving either centralized control, i.e. involving all the available
output information, or decentralized control, i.e. involving only local information or a
partial information on the whole system. See [9,11–38] and references therein.

The main objective of this work is to deal with hybrid dynamic systems. Such systems
that combine the involvement of both continuous-time signals and digital signals in an
integrated way have received important attention [4,39–46]. They involve modeling tools
which are very versatile allowing to describe the whole system in a discrete-time way for a
certain sampling period as a first modeling stage due to the combination of the discretization
of the continuous-time subsystem with the either discrete or digital subsystem. In particular,
the optimization of inputs and the fundamental properties of such systems have received
attention in [39] and their multirate sampling modeling tools to accommodate the various
signals in the system and its control performance concerns have been studied in [4,40,45].
The main importance of hybrid dynamic systems arises from the fact that continuous-time
and digital subsystems usually operate in a combined and integrated fashion in many
real world situations. A second reason to establish such hybrid models is their suitability,
for technological implementation reasons, for describing the use of either discrete-time or
digital controllers to either stabilize or control continuous-time plants. For that purpose, a
wide class of linear hybrid systems proposed in [39], and also dealt with in [40–44], have
been considered for model-following purposes. The whole state of the hybrid dynamic
systems studied in the above approaches is described by its continuous-time substate
being forced by both the current input in continuous time and its sampled value at the last
preceding sampling instant as well, while the discrete-time or, eventually, digital subsystem
is driven by the sampled control at sampling instants. In general, there are dynamical
couplings between both substates.

In this paper, we focus on the closed-loop stabilization of a hybrid dynamic system
which is a network consisting of a tandem of q subsystems, each of them being described by
a continuous-time substate together with a discrete-time one. In the most general case, there
are mutual couplings between both continuous and discrete substates of each subsystem,
couplings between the dynamics of the various subsystems and delayed point dynamics in
the whole system also with couplings between subsystems. The closed loop stabilization
of such a network is investigated though linear output feedback by synthesizing a static
controller. The possibility of partial or total lack of information of couplings between subsys-
tems available for the synthesis of the controller is also studied. This leads to designs based
on partial or total decentralized linear output feedback stabilizing control, [14–26], which is
of interest as a design technique to reduce the amount of online information to be processed
to control the total system, especially, in the case of complex high-dimensional systems.

The paper is organized as follows. Section 2 presents the proposed hybrid system
which consists of a set of continuous-time systems with mutual dynamic couplings on a
set of digital subsystems, both sets being integrated in a system network. Each subsystem
is assumed of single-input single-output (SISO) type. The whole dynamics can be also
eventually affected by discrete-time delayed dynamics for a finite number of point delays,
and it is driven, in general, by a combined action of the continuous-time input along the
intersample time interval together with its sampled values at the sampling instants. This
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section also contains two descriptions of an extended discretized system, built with the
discretization of the continuous parts of the whole hybrid system being eventually coupled
with the digital ones, whose stabilization objective is the first and main intended step
for the stabilization of the whole hybrid system. Section 3 deals with the stabilization
through linear static output feedback of the modified extended discrete system with zero
input–output direct interconnection gains, what implies basically that the relative degree, or
pole-zero excess in the transfer function, is greater than one. The mechanism for designing
the controller gain is of algebraic type and based on converting the set of equations to solve
in a linear algebraic system of equations based on a vector form version of them being
obtained from the use of ad hoc Kronecker products of matrices [31,32] in the original
synthesis problem. In general, the algebraic problem can be: (a) non-compatible, so that
it has no solution for a pre-defined suited stable closed-loop dynamics of the extended
discrete system being defined by a convergent matrix of closed-loop dynamics, or (b) it can
be algebraically compatible with either one (compatible determinate) or infinitely many
(compatible indeterminate) solutions for the controller to be synthesized.

In short, remember that a simple linear algebraic system of equations y = Ax is
solvable in x, or compatible if and only if y ∈ Im(A). This holds if and only if rank(A) =
rank(A, b) (Rouché–Capelli theorem). The solution x is unique if and only if A is non-
singular so that the algebraic system is compatible determinate. Otherwise, if the Rouché–
Capelli theorem still holds, there are infinitely many solutions, and the algebraic system
is compatible indeterminate. If rank(A) < rank(A, b), then y /∈ Im(A) and the algebraic
system has no solution so that it is incompatible. In the case of incompatible systems, it
can be found the best approximate solution x, which minimizes ‖y− Ax‖ by involving the
pseudoinverse matrix techniques on the singular matrix A. The whole sets of compatible
(either determinate or indeterminate) solutions, if they exist, or the best approximate
solution (if no exact solution exists) can be calculated by pseudoinverse matrix techniques
applied on the algebraic system. In our case, the solutions consist of finding a linear output
feedback stabilizing controller gain, it does exist, so that the closed-loop dynamics equalizes
some prescribed stability matrix.

A technical concern is that the algebraic test for linear output feedback stabilizability
cannot be performed generically for some convergent closed-loop matrix but only for given
targeted convergent matrices of closed-loop dynamics. On the other hand, Section 4 relies
on linking the existence of some static linear output feedback stabilization control law
of the modified extended discrete system with special Riccati matrix algebraic equalities.
Section 5 is devoted to the characterization of keeping the stabilization under a total of
partial degree of decentralized control. Such a decentralization consists of the achievement
of the closed-loop stabilization under either a total or a partial lack of information about
the couplings of mutual dynamics between couples of subsystems being transmitted to
the overall controller. In this way, each subsystem controller operates just with local
information about its own subsystem with eventually a minimum of available information
taken about the mutual dynamical couplings between the various subsystems able to
achieve the closed-loop stabilization. The final part of the article addresses, in Section 6,
the particular cases of small influences of the delayed discrete dynamics and that of the
couplings between the pairs of subsystems in the whole dynamics of the hybrid system. In
those cases, the main controller synthesis process is performed on the nominal part of the
system (that is, the one being free of uncertainties) with a sufficient stability degree so as to
fight against the influence of the uncertainties while keeping the closed-loop stability of the
whole system. Finally, conclusions end the paper.
Notation

n = {1, 2, · · · , n}

Z, Z0+ and Z+ are, respectively, the sets of integer numbers, non-negative integer
numbers and positive integer numbers.



Mathematics 2022, 10, 1066 4 of 29

R, R0+ and R+ are, respectively, the sets of real, non-negative real numbers and
positive real numbers.

C is the set of complex numbers, Cα = {z ∈ C : |z| ≥ α} and Cα+ = {z ∈ C : |z| > α}
for any real constant α ∈ R0+.

In is the n-th identity matrix and 0n×m is a zero n×m-matrix.
For any square real matrix M, sp(M) is its spectrum, that is, the set of its eigenvalues,

det(M) is its determinant, and adj(M) is its adjoint matrix and MT is the transpose of M.
Let us denote M =

(
Mij
)
� N =

(
Nij
)

for any two n × m real matrices N, M if

Mij ≤ Nij; ∀(i, j) ∈ n× m, and denote as ρ(M) the spectral radius of any given square
matrix M. In the same way, M ≺ N if N, M 6= N if Mij ≤ Nij; ∀(i, j) ∈ n×m. Note that,
at least one pair of corresponding matrix entries, the associated inequality is strict, and
M ≺≺ N if Mij < Nij; ∀(i, j) ∈ n×m. Particular cases are related to comparisons with the
zero matrix so that M ∈ Rn×n

0+ , or M � 0, denotes a non-negative matrix, that is, Mij ≥ 0;

∀(i, j) ∈ n × m; M( 6= 0) ∈ Rn×n
0+ , or M � 0, denotes a positive matrix, that is, Mij ≥ 0;

∀(i, j) ∈ n×m with M 6= 0; M ∈ Rn×n
+ , or M �� 0, denotes a strictly positive matrix, that is,

Mij > 0; ∀(i, j) ∈ n×m.
If M is a square real matrix, then M ≥ 0 and M > 0 denote that it is, respectively,

positive semidefinite and positive definite. M ≤ 0 and M < 0 denote that the matrix is
negative semidefinite and negative definite, respectively.

A square matrix M is a stability matrix if its spectral abscissa is negative, i.e., if
max Re λi < 0 for λi ∈ sp(M). where sp(M) is the set of eigenvalues, or spectrum, of
M. A real or complex square matrix M is convergent if and only if its spectral radius
ρ(M) = {max|λi| : λi ∈ sp(M)} < 1.

i =
√
−1 is the imaginary complex unit.

σ[M(iω)], for ω ∈ R, stands for the singular values of the complex-valued rational
matrix M : C→ Cn×m .

The H∞-norm of such a matrix, which is the supremum of its singular values on the
boundary of the unit circle centered at the origin of the complex plane, provided that it
exists and is finite, is denoted by ‖M‖H∞

. If M ∈ Rn×m, then the symbols ‖M‖∞, ‖M‖1
and ‖M‖2 stand, respectively, for the ∞, 1 and 2 matrix norms, that is, for the maximum
absolute sum of its rows, that of its columns and for its maximum singular value.

M ⊗ N =
( [

MijN
]

kl

)
is the Kronecker product of the real matrices of any orders

M =
(

Mij
)

and N =
(

Nij
)
. In particular, if M and N are m× n and p× q, then its Kronecker

product is mp× nq defined by

M⊗ N =

 M11N · · · M1nN
...

. . .
...

Mm1N · · · MmnN


vec(M) is a real vector formed by the entries of the real matrix M ordered in the order

of its rows.
A† ∈ Rr×m is the Moore–Penrose generalized inverse, or Moore-Penrose pseudoin-

verse, of A ∈ Rm×r which satisfies A = AA† A and A† = A† AA†. If A ∈ Rm×r is of
rank p is, in general non-uniquely, factorized as A = FG with rankP = rankG = p and
F ∈ Rm×p and G ∈ Rp×r (thus being, respectively, full column rank and full row rank),
then A† = GT(GGT)−1(FT F

)−1FT . Note that such F and G always exist for a given A of
rank p.

The continuous time states or signals are denoted under the argument “t”in paren-
thesis, say x(t), (running on the non-negative real set) while the discrete-time ones or the
digital ones are denoted with the argument “k” in brackets, say x[k], (running on the set of
non-negative integer numbers).
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2. Hybrid Continuous-Time and Digital System
2.1. Simple Motivation Example

To fix some ideas, we discuss a simple motivating example for purely continuous-time
or discrete-time systems so that a family of static linear output feedback controllers exist
defined by an open ball around a linear output feedback stabilizing controller:

Example 1. Consider the either unstable or critically stable discrete characteristic polynomial
p(z) = det(zIn − A) which describes the open-loop (i.e., uncontrolled) dynamics of the discrete
continuous-time unstable n-th order system of state x[k] ∈ Rn, control u[k] ∈ Rr and output
y[k] ∈ Rmfor k ∈ Z0+, given by x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k], x(0) = x0; k ∈ Z0+,
with B ∈ Rn×r and C ∈ Rm×n with max(r, m) ≤ n. Note that the system is stabilizable by static
linear feedback state control if all the unstable open-loop modes are controllable, that is, if and only
if rank[zIn − A, B]s∈C1∩sp(A) = n. Assume that it is intended to stabilize it by a static output
feedback control law u[k] = Ky[k] = kCx[k]; k ∈ Z0+, for some constant control gain K ∈ Rr×m,
so that the closed-loop system becomes x[k + 1] = (A + BKC)x[k]; k ∈ Z0+. Taking z-transforms
in the closed-loop equation under zero initial conditions yields that the closed-loop characteristic
polynomial is:

zIn − A− BKC = zIn − A− Am + (Am − BKC)

for any given Am ∈ Rn×n supposed to be convergent (that is, a convergent matrix in the discrete context),
i.e., with eigenvalues of modulus less than unity so that it exists (zIn − Am)

−1, ∀z ∈ C1 . Then,

(zIn − A− BKC)−1 =
[

In − (zIn − Am)
−1(A + BKC− Am)

]
(zIn − Am)

−1; ∀z ∈ C1

exists for all z ∈ C1 if the H∞- norm of (zIn − Am)
−1(Am − A− BKC) is less than one which

occurs if ‖Am − A− BKC‖ is sufficiently small to guarantee that∥∥∥∥ 1
det(zIn − Am)

[adj(zIn − Am)(A + BKC− Am)]

∥∥∥∥
H∞

= sup
ω∈R0+

∥∥∥∥∥ adj
(
eiω In − Am

)
(A + BKC− Am)

det(eiω In − Am)

∥∥∥∥∥
H∞

< 1

Note that the test is performed on the boundary of the complex unity circle centered at zero. In
addition, in this case, the closed-loop eigenvalues are stable, which is, in particular, guaranteed if

‖A + BKC− Am‖2 ≤ ε < 1/
∥∥∥(zIn − Am)

−1
∥∥∥

H∞

Now, the problem reduces to find if it exists, a triple(Am, K, ∆), such that A+ BKC− Am = ∆
with K ∈ Rr×m and Am, ∆ ∈ Rn×n such that Am is a convergent matrix with ‖∆‖2 = ε for any

real constant ε ∈ [0, ε) ≡
[

0, 1/
∥∥∥(zIn − Am)

−1
∥∥∥

H∞

)
. Since it also has to be fulfilled for ε = 0,

one concludes that a necessary condition is that A + BK0C = Am for some convergent matrix Am
so that (A, B) has to be stabilizable and (C, A) detectable, that is, rank[zIn − A, B]z∈C1∩sp(A) =

rank
[
zIn − AT , CT]

z∈C1∩sp(A) = n. Then, any other static linear output feedback controller of
gain K stabilizes the closed-loop system if ∆ = A + BKC − Am has a norm ε ∈ [0, ε). Thus,

A + BKC is a convergent matrix for any K ∈ Kd =

{
K : ‖K− K0‖ < 1

‖B‖‖C‖
∥∥∥(zIn−Am)−1

∥∥∥
H∞

}
.

The above conclusion will be identical if p(s) = det(sIn − A) is the either unstable or
critically stable characteristic polynomial which describes the open-loop dynamics of the linear
continuous-time unstable n-th order system of state x(t) ∈ Rn, control u(t) ∈ Rr and output
y(t) ∈ Rm given by

.
x(t) = Ax(t) + Bu(t); y(t) = Cx(t), x(0) = x0
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To stabilize it under a static output control law u(t) = Ky(t), the open-loop system has to be stabi-
lizable and detectable, that is, rank[sIn − A, B]s∈C0∩sp(A) = rank

[
zIn − AT , CT]

s∈C0∩sp(A) = n
so that a closed-loop equation A + BK0C = Am is achieved for some convergent matrix Am and some
stabilizing static output linear feedback controller of gain K0 and any other static linear output feedback
controller of gain K stabilizes also the closed-loop system if

∆ = A + BKC− Am = A + B(K− K0)C + BK0C− Am = B(K− K0)C

has a norm ε ∈ [0, ε) with ε =
[
0, 1/

∥∥∥(sIn − Am)
−1
∥∥∥

∞

)
so that A + BKC is a convergent matrix

for any K ∈ Kc =

{
K : ‖K− K0‖ < 1

‖B‖‖C‖
∥∥∥(sIn−Am)−1

∥∥∥
∞

}
.

2.2. System Structure

Consider the subsequent single-input single-output hybrid linear system which con-
sists of q coupled subsystems:

xc(t) =
[

xT
c1(t) , xT

c2(t) , · · · , xT
cq(t)

]T
; xd[k] =

[
xT

d1[k] , xT
d2[k] , · · · , xT

dq[k]
]T

(1)

u(t) =
[
u1(t) , u2(t) , · · · , uq(t)

]Ty(t) =
[
y1(t) , y2(t) , · · · , yq(t)

]T (2)

.
x ci (t) = ∑q

j=1 ∑p
`=0

(
A cij x cj(t) + A c s`ij x cj [k− `] + A cd`ij x dj [k− `]

)
+ b ci ui (t) + b c si ui [k] (3)

xdi [k + 1 ] = ∑q
j=1 ∑p

`=0

(
Ad`ij xdj[k− `] + Adc`ij xcj [k− `]

)
+ b di u i[k] (4)

yi(t) = cT
ci xci (t) + cT

csi xci [k] + cT
di xdi [k] + d ci ui (t) + ddi ui[k] (5)

for all t ∈ [kT, (k + 1) T) for any integer k ≥ 0 with T being the sampling period, where
xci(t) ∈ Rnci and xdi[k] ∈ Rndi ; ∀i ∈ q are, respectively, the dimensions of the i-th con-
tinuous and digital subsystems, respectively, whose scalar input and output are ui(.)
and yi(.), respectively, for i ∈ q, and p is the number of discrete internal delays. Thus,
nc = ∑

q
i=1 nci and nd = ∑

q
i=1 ndi are the continuous and digital dimensions of the whole

system integrated by the various subsystem. The parameterization of (1)–(5) is given by ma-
trices Acij, Acs`ij ∈ Rnci×ncj , Ad`ij ∈ Rndi×ndj , Acd`ij ∈ Rnci×ndj , Adc`ij ∈ Rndi×ncj ; ∀i, j ∈ q,
∀l ∈ p∪ {0}, which are matrices of continuous and digital dynamics; bci, bcsi, cci, ccsi ∈ Rnci ;
∀i ∈ q, which are control and output vectors of the i-th subsystem; bdi, cdi ∈ Rndi , ∀i ∈ q,
which are control and output vectors of the i-th digital subsystem; and dci, ddi ∈ R, which
are the continuous and digital direct input–output interconnection gains of the i-th con-
tinuous and digital subsystem, respectively; ∀i ∈ q. The continuous-time argument is
denoted by ‘(t)’ while the discrete-time argument is denoted by ‘[k]’ and the associated
continuous and digital variables are denoted correspondingly. Thus, a continuous variable
at sampling instants is denoted in the same way as a digital variable so that xc[k] = xc(kT),
u[k] = u(kT) and y[k] = y(kT) for any integer k ≥ 0. Similar notations with brackets and
parenthesis are for the time arguments of the discrete and continuous variables of the sub-
systems. In this way, there is no distinction in the treatment of digital and time-discretized
variables at sampling instants. The orders of all the real constant matrices in (1) agree with
the dimensions of the substates and scalar input and output. It can be pointed out that
a digital system within the whole hybrid structure could instead be a dynamic system
being discretized from a continuous one at a certain sampling period in a situation such
that the original continuous-time structure has no specific interest in the analysis since
the associated signals are only relevant at the sampling instants. This kind of system can
be treated in the same way within the proposed hybrid continuous/discrete structure. It
can be also pointed out that a typical structure of a hybrid dynamic system can be found
in cases when a continuous system is in operation under a discretized controller so that
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the whole structure has a hybrid continuous-time/discrete-time nature consisting of a
minimum of two subsystems.

The above system can be described in a compact form as follows:

.
xc(t) = Acxc(t) + ∑p

`=0(Acs`xc[k− `] + Acd`xd[k− `]) + Bcu(t) + Bcsu[k] (6)

xd [k + 1 ] = ∑p
`=0

(
A dc` x c [k− `] + A d` x dj[k− `]

)
+ B d u [k] (7)

y(t) = Ccxc(t) + Ccsxcs[k] + Cdxd[k] + Dcu(t) + Ddu[k] (8)

where Ac ∈ Rnc×nc , Acs`, Acd` ∈ Rnc×nd , Bc, Bcs ∈ Rnc×q, Adc ∈ Rnd×nc , Ad ∈ Rnd×nd ,Bd ∈
Rnd×q, Cc , Ccs ∈ Rq×nc , Cd ∈ Rq×nd , Dc , Dd ∈ Rq×q; ` = 0, 1, . . . , p, with nc = ∑

p
i=1 nci

and nd = ∑
p
i=1 ndi are defined by:

Ac =

 Ac11 · · · Ac1q
...

...
...

Acq1 · · · Acqq

 (9)

Acs` =

 Acs`11 · · · Ac`s1q
...

...
...

Acs`q1 · · · Acs`qq

; Acd` =

 Acd`11 · · · Acd`1q
...

...
...

Acd`q1 · · · Acd`qq

; ` = 0, 1, . . . , p (10)

Adc` =

 Adc`11 · · · Adc`1q
...

...
...

Adc`q1 · · · Adc`qq

; Ad` =

 Ad`11 · · · Ad`1q
...

...
...

Ad`q1 · · · Ad`qq

; ` = 0, 1, . . . , p (11)

Bc = block diag
[
bc1 · · · bcq

]
;

Bcs = block diag
[
bcs1 · · · bcsq

]
; Bd = block diag

[
bd1 · · · bdq

] (12)

Cc = block diag
[
cT

c1 · · · cT
cq

]
;

Ccs = block diag
[
cT

cs1 · · · cT
csq

]
; Cd = block diag

[
cT

d1 · · · cT
dq

] (13)

Dc = diag
[
dc1 · · · dcq

]
Dd = diag

[
dd1 · · · ddq

]
(14)

The continuous-time substate evolves through time according to the following solution
equation obtained from (6):

x c (kT + σ) = e A c σ
(

I n c +
( ∫ σ

0 e − A c τ d τ
)

A c s0
)

x c [ k]
+
( ∫ σ

0 e A c ( σ−τ ) d τ
) (

∑
p
`=1 A cs` x c [k− `] + ∑

p
`=0 A cd` x d [k− `]

)
+
( ∫ σ

0 e A c ( σ−τ ) d τ
)

Bc s u [k]

+
∫ σ

0 e Ac ( σ−τ ) B c u(kT + τ) d τ ≥ 0 ; ∀ k ∈ Z0+, ∀σ ∈ (0 , T]

(15)

which can be compacted as follows at the sampling times:

x c [k + 1] = Ψc[k]x[k]+Γcs(T) u [k] +
∫ T

0 e Ac ( T−τ ) B c u(kT + τ) d τ ≥ 0 ; ∀ k ∈ Z0+

, ∀σ ∈ (0 , T]
(16)

where

x[k] =
(

xT
c [k], xT

d [k]
)T
∈ R(p+1)n, Ψc[k] =

[
Ψcc[k], Ψcd[k]

]
∈ Rnc×(p+1)n (17)
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xT
c [k] =

(
xT

c [k], xT
c [k− 1], · · · , xT

c [k− p]
)
∈ R(p+1)nc (18)

xT
d [k] =

(
xT

d [k], xT
d [k− 1], · · · , xT

d [k− p]
)
∈ R(p+1)nd (19)

Ψcc[k] =
[
Φc(T) + Γcs0(T), Ψ̃cc[k]

]
=
[
Φc(T) + Γcs0(T), Γcs1(T), · · · , Γcsp(T)

]
∈ Rnc×(p+1)nc (20)

Ψcd[k] =
[

Γcd0(T), Ψ̃cd(T)
]
=
[

Γcd0(T), Γcd1(T), · · · , Γcdp(T)
]
∈ Rnc×(p+1)nd (21)

Φc(T) = eAcT , Γcs`(T) =
(∫ T

0 eAc(T−τ)dτ
)

Acs`, Γcd`(T) =
(∫ T

0 eAc(T−τ)dτ
)

Acdl;
l = 0, 1, . . . , p

(22)

Γcs(T) =
( ∫ T

0
e A c ( T−τ ) d τ

)
Bc s (23)

;∀ k ∈ Z0+, with n = nc + nd, nc = ∑
q
i=1 nci and nd = ∑

q
i=1 ndi. The dimension of the

extended discrete state x[k] =
(

xT
c [k], xT

d [k]
)T

is n = (2p + 1)n. The discrete-time substate
evolves through time according to the following solution equation, rewritten equivalently
from (7):

x d [k + 1] = Ψdx[k]+ Bd u [k]; ∀ k ∈ Z0+ (24)

where
Ψd(T) =

[
Ψdc(T), Ψdd

]
∈ Rnd×(p+1)n (25)

Ψdc =
[

Adc0, Ψ̃dc

]
=
[

Adc0, Adc1, · · · , Adcp

]
∈ Rnd×(p+1)nc (26)

Ψdd =
[

Ad0, Ψ̃dd

]
=
[

Ad0, Ad1, · · · , Adp

]
∈ Rnd×(p+1)nd (27)

2.3. Extended Discrete System

Combining (16) and (23), one concludes that the extended discrete vector, built with
the sampled values of the continuous-time substate and the discrete substate, evolves
according to the following extended discrete Equation:

x[k + 1] = Adx[k] + Bdu[k] +
(

Bcτ

)
u[k] (28)

where

Ad =


Ψcc[k]

Ipnc

Ψdc
0p×(p+1)nc

Ψcd[k]
0p×(p+1)nd

Ψdc
Ipnd

 ∈ Rn×n (29)

Bd =


Γcs

0pnc×2q
Bd

0pnd×2q

 ∈ Rn×q;
(

Bcτ

)
u[k] =


∫ T

0 e A c ( T−τ ) B c u(kT + τ) dτ
0pnc×2q
0nd×2q
0pnd×2q

 ∈ Rn×q (30)

For purposes of generating the intersample input from a discrete sequence defined at
the sampling instants, the following technical assumption is made which will be useful for
some of the coming results:

Assumption 1. Assume that u(kT + τ) = L(kT + τ)v[k]; ∀k ∈ Z0+, ∀τ ∈ (0, T) for some
control sequence {v[k]}∞

k=0 and some matrix function L : Z0+ × [0, T)→ Rq×q ; ∀τ ∈ [0 , T)
which satisfies the constraints:

(1) It is periodic with period T, that is, L(kT + τ) = Lk(T, τ) = L(T, τ); ∀k ∈ Z0+, ∀τ ∈ [0, T).
(2) It has a support of nonzero Lebesgue measure on [0, T).
(3) The Lebesgue integral Bc =

∫ T
0 e Ac ( T−τ ) B c L(τ)dτ exists and it is finite.
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Remark 1. Note that Assumption 1 allows a large variety of definitions for L : Z0+ × [0, T)→ Rq×q

including isolated bounded discontinuities or even a finite numbers of Dirac impulses on each interval
[kT, (k + 1)T). Moreover, if u[k] and v[k] are designed independently of each other from, in general,
distinct pre-calculated bounded sequences {u[k]}∞

k=0 and {v[k]}∞
k=0, according to some beneficial

design criterion, namely without using a constraint L[k]v[k] = u[k]; k ∈ Z0+, then the control
function u : Z0+ × [0, T)→ Rq can have bounded discontinuities at the sampling instants since
L[k]v[k] 6= u[k]. However, an advantage of this situation is that the extended discrete control

sequence
{(

uT [k], vT [k]
)T
}∞

k=0
∈ R2q which governs (28)–(30) has a dimension 2q instead of q

such that the potential stabilization of such a modified extended discrete system might be achievable
under weaker conditions than the use of the equalizing control constraint L[k]v[k] = u[k] at the
sampling instants.

The output at sampling instants becomes from (8):

y[k] = (Cc + Ccs, Cd)

(
xc[k]
xd[k]

)
+ (Dc + Dd)u[k]= Cx[k] + (Dc + Dd)u[k] (31)

where C =
(

Cc + Ccs, 0q×nc`, Cd, 0q×nd`

)
.

2.4. Modified Extended Discrete System with Two Input Channels

We now generate the continuous-time control from a discrete sequence being, in
general, distinct of the primary discrete control sequence {u[k]}∞

k=0. This strategy allows
taking advantage of the use of a double dimensioned control input for the extended discrete
system which will facilitate its potential stabilization. In fact, the second control channel is
obtained from the generation of the intersample continuous-time input from the auxiliary
discrete sequence. As a result, the extended system is controlled by a 2q dimensional
discrete control sequence. Under Assumption 1, Equations (28)–(30), together with (32),
take the compact form of the following modified extended discrete system of state of
dimension n = (2p + 1)n which describes at sampling times the joint discretized dynamics
of the continuous-time system plus that of the digital one for a discrete control sequence
{u[k]}∞

k=0 with u[k] =
(
uT [k], vT [k]

)T ∈ R2q:

x[k + 1] = Adx[k] + Γdu[k]; y[k] = Cx[k] + Du[k] (32)

where u[k] =
(
uT [k], vT [k]

)T , and

Γd =
[

Bd , Bc
]
∈ Rn×2q; Bc =


Bc

0pnc×2q
0nd×2q
0pnd×2q

 ∈ Rn×q; Bc =
∫ T

0 e Ac ( T−τ ) B c L(kT + τ) dτ

C =
(
Cc + Ccs , 0q×nc p, Cd , 0q×nd p

)
∈ Rq×n ; D =

(
Dc + Dd, 0q×q

)
∈ Rq×2q

(33)

The following preliminary stabilizability result is of interest for subsequent results to
be then obtained:

Remark 2. The extended discrete system (32) and (33) is stabilizable by static linear state feedback
u[k] = Kx[k] if and only if rank

(
zIn − Add, Γd

)
= n for each z ∈ C1 ∩ sp

(
Ad
)

[22,27,33,34].
This result follows directly from the Popov–Belevitch–Hautus stabilizability test, [40,41] for discrete
systems applied to (32) and (33) by using a similarity transform on Ad to a triangular form

Âd =

[
Âd11 Âd12

0 Âd22

]
, which makes the associated control matrix Γ̂d =

[
Γ̂d1
0

]
and the

transformed state vector becomes x̂(t) =

[
x̂1(t)
x̂2(t)

]
, such that Âdd22 is stable describing the
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dynamics of the uncontrollable modes and
[

Âd11, Γ̂d1

]
is controllable and describes the dynamics of

the unstable and critically stable modes. Moreover, a necessary condition for the discrete system (32)
and (33) to be stabilizable by static linear output feedback u[k] = Ky[k] is that it be stabilizable and

detectable, that is, that rank
(
zIn − Ad, Γd

)
= rank

(
C

zIn − Ad

)
= n for each z ∈ C1∩ sp

(
Ad
)
.

Such a condition is not sufficient, and it can be proved that, even if a stronger joint controllability
and observability condition, it is not sufficient for the stabilizability of any linear system under some
linear static output feedback control law [28–30,32,37,38].

Remark 3. Concerning the discussion in Remark 2, note that it is obvious that rank
(
zIn − Ad, Γd

)
= n;

z ∈ sp
(

Ad
)

implies and it is implied by rank
(
zIn − Ad, Γd

)
= n; ∀z ∈ C1 since

(
zIn̂ − Ad, Γd

)
is everywhere full row rank if it is full rank in any complex subset at the eigenvalues of Ad since
det
(
zIn − Ad

)
6= 0; z ∈ C\sp

(
Ad
)
. Therefore, it is sufficient to apply the stabilizability test to

the set C1 ∩ sp
(

Ad
)
, that is, for joint critically stable and unstable eigenvalues of Ad, as Lemma 1

states. Since
(
zIn − Ad, Γd

)
can only be eventually rank defective at the eigenvalues of Ad, then

the Popov–Belevitch–Hautus controllability test of (32) and (33) is similar to that of Remark 2 by
extending the rank test to all the eigenvalues of Ad, that is, (32) and (33) is controllable if and
only if rank

(
zIn − Ad, Γd

)
= n; ∀z ∈ sp

(
Ad
)
, which is equivalent, by the mentioned reasons of

potential rank defectiveness at the eigenvalues, to rank
(
zIn − Ad, Γd

)
= n; ∀z ∈ C.

Remark 4. Note from (16) that if {u[k]}∞
k=0 → 0 , then {u[k]}∞

k=0 → 0 and {v[k]}∞
k=0 → 0 , if

{x[k]}∞
k=0 → 0 , then u(t)→ 0 , and xc(t)→ 0 as t→ ∞ and y(t)→ 0 as t→ ∞ .

3. Stabilization by Linear Static Output Feedback of the Modified Extended Discrete
System with Zero Input–Output Direct Interconnection Gains

The closed-loop asymptotic stabilization of the extended discrete system is a first basic
design step to stabilize the hybrid system since the state and output sequences at the sampling
instants are bounded for any given finite initial conditions and they converge asymptotically to
zero at the sampling instants. This does not imply that the state and output signals converge
also asymptotically to zero as time tends to infinity without extra conditions.

Through this section, it is assumed that Dc + Dd = 0, which implies that D = 0 and
which includes the case when Dc = 0 and Dd = 0, that is, the particular case of zero direct
input–output interconnection gains. The stabilization of the extended discrete system (32) and
(33) under linear static output feedback is now discussed. Assume a control law of the form:

u[k] = Ky[k] = KCx[k]; k ∈ Z0+ (34)

The following result gives a simple algebraic necessary and sufficient condition for the
existence of a static linear output feedback stabilizing controller for (32) and (33) as well as
further conditions related to the eventual stabilization by a class of controllers which are
perturbations of a nominal stabilizing one.

Theorem 1. Assume that Dc + Dd = 0 . Then, the following properties hold:

(i) The modified extended system (32) and (33) is stabilized by some linear control law of the form
(34) if and only if for some convergent matrix Acld , being of the same order as that of Ad , the
following condition holds:

rank
[

Γd ⊗ CT
]
=
(
rankΓd

) (
rankC

)
= rank

[
Γd ⊗ CT , vec

(
Ac`d − Ad

)]
(35)

(ii) Assume that (35) holds, so that Acld = Ad + ΓdKC is a convergent matrix for some controller

gain matrix K . Assume also that Ãcld = ΓdK̃C � σAcld is a perturbation of Acld under

the controller gain matrix K + K̃ for some σ ∈ R and some incremental controller gain K̃ .
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Then, a controller K + K̃ stabilizes also (32) and (33) provided that, for some matrix Ξ � 0

of the same order as Acld , the incremental controller gain matrix K̃ is chosen to satisfy the
subsequent equivalent vector equality:

0 � vec(Ξ) = σ vec
(

Acld
)
−
(

Γ
T
d ⊗ CT

)
vec
(

K̃
)

(36)

with

σ ∈
(
−

1− ρ
(

Acld
)

ρ
(

Acld
) ,

1− ρ
(

Acld
)

ρ
(

Acld
) )

(37)

(iii) Assume that, in Property (ii), Acld � 0 , −σAcld � Ãcld = ΓdK̃C � σAcld for some

σ ∈ R+ . Then, a controller K + K̃ stabilizes also (32) and (33) provided that, for some real
scalars, λ1 ∈ [0, 1] and λ2 ≥ min(0, 2λ1 − 1) , either the incremental controller gain matrix
K̃ � 0 is chosen to satisfy the vector equality:

(
Γd ⊗ CT

)
vec
(

K̃
)
−
(

1− 2λ1

1 + λ2

)
σ vecAcld � 0 (38)

subject to
λ2 ≥ min(0, 2λ1 − 1) (39)

or, K̃ ≺ 0 is chosen to satisfy the vector equality:

−
(

Γd ⊗ CT
)

vec
(

K̃
)
+

2λ1λ2

1 + λ2
vecAcld � 0 (40)

subject to

0 < σ <
(1 + λ2)

(
1− ρ

(
Acld

))
(1 + λ2 − 2λ1)ρ

(
Acld

) (41)

Proof. It is direct since the closed-loop stabilization of (32) and (33), via (34), holds if and
only if Acld = Ad + ΓdKC is a convergent matrix for some control gain K ∈ R2q×q. The
above matrix identity is equivalent to the following linear algebraic equation:(

Γd ⊗ C
)
vec
(
K
)
= vec

(
Acld − Ad

)
(42)

which is algebraically compatible, so that there is at least a solution vecK ∈ R2q2
(and thus

at least a solution matrix K exists) if and only if (35) holds from Rouché–Frobenius theorem.
Property (i) has been proved.

To prove Property (ii), note that, since Acld = Ad + ΓdKC, if the control gain is

perturbed from K to K + K̃, so that Ãcld = ΓdK̃C � σAcld, then

Acld + Ãcld = Ad + ΓdKC + ΓdK̃C � (1 + σ)Acld (43)

Thus, Acld + Ãcld is a convergent matrix if

ρ
(

Acld + Ãcld

)
≤ |1 + σ|ρ

(
Acld

)
< 1 (44)
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which holds if 1 + |σ| < 1/ρ
(

Acld
)
, that is, if

σ ∈
(
−

1− ρ
(

Acld
)

ρ
(

Acld
) ,

1− ρ
(

Acld
)

ρ
(

Acld
) )

(45)

Since ΓdK̃C = σAcld − Ξ for some Ξ�0, K̃ should be chosen to satisfy the equivalent
vector equality (36), subject to (37), while noting that σ = 0 implies that K̃ = 0 and Ξ = 0,
and then vec

(
K̃
)
= 0 and vec (Ξ) = 0. Property (ii) has been proved.

To prove Property (iii), note from (38) that, for Acld � 0 and some σ ∈ R+, one has:

Acld + Ãcld = Ad + ΓdKC + ΓdK̃C ≺ (1 + σ)Acld (46)

Thus, Acld + Ãcld is a convergent matrix if ρ
(

Acld + Ãcld

)
< 1. Then, for some Ξ1�0

and Ξ2�0, one has from (46) that:

− σAcld≺− σAcld + Ξ2≺Ãcld = ΓdK̃C≺ σAcld − Ξ1≺σAcld (47)

which also implies that Ξ1 + Ξ2 = 2σλ1 Acld≺2σAcld for some λ1 ∈ [0, 1]. Now, choose Ξ2
via the constraint Ξ2 = λ2Ξ1 for some λ2 ∈ R0+. Thus, one has:

Ξ1 =
2σλ1 Acld

1 + λ2
; Ξ2 =

2σλ1λ2 Acld
1 + λ2

(48)

Then, one finds that (47) holds if:(
2λ1λ2

1 + λ2
− 1
)

Acldσ≺ ΓdK̃C≺
(

1− 2λ1

1 + λ2

)
σ Acld (49)

In addition, since σ ∈ R+ and Acld � 0 being stable implies that, if (40) holds, then

Acld + Ãcld is stable if

ρ
(

Acld + Ãcld

)
≤ max

(
1 +

∣∣∣( 2λ1λ2
1+λ2

− 1
)∣∣∣σ,

[
1 +

(
1− 2λ1

1+λ2

)
σ
]
ρ
(

Acld
))

=
(

1 +
(

1− 2λ1
1+λ2

)
σ
)

ρ
(

Acld
)
< 1

(50)

That is, if Γd � 0, C � 0, then (44) holds, implying that Acld + Ãcld is stable, if either
K̃� 0 satisfies (38), subject to (39), or K̃ ≺ 0 satisfies (40) subject to (41). Property (iii) has
been proved. �

Remark 5. Two necessary conditions for (35) to hold are:

(1) The extended system (32) and (33) is stabilizable and detectable. It is obvious that (35) holds

for some convergent matrix Acld only if rank
(
zIn − Ad, Γd

)
= rank

(
C

zIn − Ad

)
= n

for each z ∈ C1 ∩ sp
(

Ad
)

(see Remark 2).
(2) The extended system has no critically stable or unstable fixed mode. Note that it is obvious

that the matrix Ad + ΓdKC is not a convergent matrix for some controller matrix K if, for
any such a static control gain K, Ad + ΓdKC has at least a critically stable or unstable mode.
The second necessary condition is weaker than the first one. If the system is stabilizable and
detectable, then it has no critically stable or unstable fixed mode since, otherwise, it would not
be stabilizable and detectable. However, the converse is not true in general.
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Remark 6. The most general case when Dc + Dd 6= 0 , which includes, in particular, the case of the
two nonzero direct input–output interconnection gains Dc and Dd being nonzero can be addressed
with Theorem 1 under two possible slight modifications as follows:

(1) Define the auxiliary output y0[k] = y[k] − Du[k] = Cx[k]; k ∈ Z0+, which does not
account for the direct input–output interconnection contribution, and consider the control
law u[k] = Ky0[k] = KCx[k]; k ∈ Z0+. In this case, Theorem 1 applies directly. Note that
the use of the auxiliary output in the controller design keeps the closed-loop stability of the
modified discrete extended system since the closed-loop state x[k]→ 0 as k→ ∞ implies that
y0[k]→ 0 and u[k]→ 0 as k→ ∞ and that y[k]→ 0 as k→ ∞ .

(2) Assume that the implicit control law u[k] = Ky[k] = KCx[k] + KDu[k] is used. This law

may be explicit in the form u[k] = K′x[k] =
(

I2q − KD
)−1KCx[k] if I2q − KD is non-

singular and it provides a unique control law. Thus, the problem is solved by first calculating
the auxiliary static control gain K′ under the conditions of Theorem 1 (with the replacement
K → K′ ). The above matrix equation is rewritten in a vector form, via the Kronecker product
of matrices, as follows (

I2q2 ⊗
(

C + DK′
)T
)

vec
(
K
)
= vec

(
K′
)

(51)

which is solvable in K if and only if

rank
(

I2q2 ⊗
(

C + DK′
)T
)
= rank

(
I2q2 ⊗

(
C + DK′

)T
, vec

(
K′
))

(52)

It is obvious that if the algebraic system in matrix form ΓdKC = Acld − Ad is compatible,
equivalently if its equivalent vector form (42) is compatible, which holds if and only if (35) in Theorem
1 holds, then the matrix algebraic system is solvable in K through the use of the Moore–Penrose
generalized inverse techniques. Thus, we have the following solvability result of the stabilizing static
controller gainK.

Theorem 2. Assume that Dc + Dd = 0 and that (35) holds for some convergent matrix Acld so
that ΓdKC = Acld − Ad is solvable for a static output linear feedback stabilizing controller of gain
K ∈ Rq×2q, such that the following properties hold:

(i)

ΓdΓ
†
d
(

Acld − Ad
)
C

†
C = Acld − Ad (53)

(ii) The set of solutions in K to ΓdKC = Acld − Ad is given by the static stabilizing con-
troller gains:

K = Γ
†
d
(

Acld − Ad
)
C

†
+ X− Γ

†
dΓdXCC

†
(54)

where X is any matrix of the same order as that of K. The solutions (54) are equivalent to the
set of solutions in vector form of the algebraic system (42).

(iii) Assume that rank
(

Γd
)
= r1 ≤ min(n, 2q) and rank

(
C
)
= r2 ≤ min(q , n) = q. Then,

the following factorizations exist for some matrices C1 ∈ Rn×r1 , D1 ∈ Rr1×2q, C2 ∈ Rq×r2

and D2 ∈ Rr2×n :

Γc = C1D1; C = C2D2 (55)

Then, their generalized inverses are:

Γ
†
d = DT

1

(
D1DT

1

)−1(
CT

1 C1

)−1
CT

1 ; C†
= C2

(
C2CT

2

)−1(
D2DT

2

)−1
D2 (56)
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so that (54) becomes

K = DT
1
(

D1DT
1
)−1(CT

1 C1
)−1CT

1
[
Acld − Ad − ΓdXC

]
C2
(
C2CT

2
)−1(D2DT

2
)−1D2 + X (57)

(iv) The vector form equivalent set of solutions (54) is:

vec
(
K
)
=

(
Γ

†
d ⊗ C

†T )
vec
(

Acld − Ad
)
+
[

I2q2 −
(

Γ
†
dΓd ⊗ C†TCT

) ]
vec (X) (58)

where vecX is any real vector of dimension 2q2.

Proof. Note that the algebraic system ΓdKC = Acld− Ad is solvable in K, equivalently (42) is
solvable in vecK, if and only if (35) holds. However, this implies also that such a solvability
holds if and only if (53) holds [31,32]. This proves Property (i).

Property (ii) follows directly from Property (i) since (54) gives the whole set of solutions.
Property (iii) follows from Property (ii) since (in general, non-unique) factorizations (55)

exist, under the given rank conditions, leading to the Moore–Penrose pseudoinverses (56)
making the set of solutions (54) to take the form (57).

To prove Property (iv), note that the solution of (42) is of the form (58), by taking into
account (54), and that the Moore–Penrose generalized inverse of the Kronecker product

Γd ⊗ C is
(

Γd ⊗ C
)†

= Γ
†
d ⊗ C

†
[31]. �

4. Linking Static Linear Output Feedback Stabilization of the Modified Extended
Discrete System with a Riccati Equation

The following result retakes the stabilization under static linear output feedback
control without the need for invoking some convergent matrix which describes a prefixed
closed-loop dynamics of the modified extended discrete system as it has been formulated
via Theorem 1 and Theorem 2. The study is based on the use of a particular algebraic Ricatti
matrix inequality for stabilization through a static linear output feedback controller. See,
for instance, [11–13,28–30,34–38].

Theorem 3. Assume that Dc + Dd = 0. Then, the following properties hold:

(i) The following statements are equivalent:

1. The modified extended discrete system (32) and (33) is static output linear feedback stabilizable.
2. There exists a symmetric positive definite matrix P and a controller gain matrix K

satisfying the subsequent matrix inequality:(
Ad + ΓdKC

)T P
(

Ad + ΓdKC
)
− P < 0 (59)

3. There exist positive semidefinite symmetric matrices P ∈ Rn×n and R ∈ R2q×2q and
a static controller gain matrix K ∈ R2q×q satisfying the following matrix inequalities:

Φd > 0; I − GdΦ
−1
d GT

d > 0 (60)

Φd = −
(

AT
d PAd − P− AT

d PΓd

(
Γ

T
d PΓd + R

)]−1
Γ

T
d PAd − CTK T RKC

)
(61)

Gd =
(

Γ
T
d PΓd + R

)−1/2
Γ

T
d PAd +

(
Γ

T
d PΓd + R

)1/2
KC (62)
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(ii) The extended discrete system (32) and (33) is static output linear feedback stabilizable if and
only if it is stabilizable and detectable and, furthermore, there exist real matrices K ∈ R2q×q,
i.e., the gain of the stabilizing static linear output controller, and G ∈ R2q×n such that

KC = G−
(

Γ
T
d PΓd + R

)−1
Γ

T
d PAd (63)

where P is the real symmetric non-negative definite solution of

AT
d PAd− P− AT

d PΓd

(
Γ

T
d PΓd + R

)−1
Γ

T
d PAd +CTC + GT

(
Γ

T
d PΓd + R

)
G = 0 (64)

In addition, R is a real symmetric positive definite matrix of appropriate order.
Furthermore, K satisfies the linear algebraic compatible equation:(

AT
d PΓd ⊗ CT

)
vecK = −

[
AT

d ⊗ Ad − In̂2 − AT
d ⊗ GT

Γ
T
d + GT

Γ
T
d ⊗ GT

Γ
T
d

]
vec P (65)

whose set of solutions is given by

K = K1C†
+ K2

(
Iq − C C†

)
(66)

=
(

Γ
T
d PΓd + R

)−1
GT†

K3C†
+ K4 −

(
Γ

T
d PΓd + R

)−1
GT†

GT
(

Γ
T
d PΓd + R

)−1
K4C C† (67)

For arbitrary matrices K2 , K4 ∈ R2q×q, K1 ∈ R2q×n and K3 ∈ Rn×n given by

K1 = G−
(

Γ
T
d PΓd + R

)−1
Γ

T
d PAd (68)

K3 = P− AT
d PAd − CTC +

(
AT

d PΓd

(
Γ

T
d PΓd + R

)−1
+ GT

)
Γ

T
d PAd (69)

(iii) The matrix G has to satisfy the subsequent general constraint in order to be compatible with
(63) and (64):

[
G−

(
Γ

T
d PΓd + R

)−1
Γ

T
d PA−

(
Γ

T
d PΓd + R

)−1
GT†

(
P− AT

d PAd − CTC +

(
AT

d PΓd

(
Γ

T
d PΓd + R

)−1
+ GT

)
Γ

T
d PAd

)]
C†

+ L = 0 (70)

where

L = K2

(
Iq − CC†

)
− K4 +

(
Γ

T
d PΓd + R

)−1
GT†

GT
(

Γ
T
d PΓd + R

)−1
K4CC†

= 0 (71)

which is also satisfied under the simpler constraint:

G =
(

Γ
T
d PΓd + R

)−1
Γ

T
d PA−

(
Γ

T
d PΓd + R

)−1
GT†

(
P− AT

d PAd − CTC +

(
AT

d PΓd

(
Γ

T
d PΓd + R

)−1
+ GT

)
Γ

T
d PAd

)
(72)

Thus, a set of stabilizing linear output feedback controller gains is given by:

K =

[(
Γ

T
d PΓd + R

)−1
Γ

T
d PA−

(
Γ

T
d PΓd + R

)−1
GT†

(
P− AT

d PAd − CTC +

(
AT

d PΓd

(
Γ

T
d PΓd + R

)−1
+ GT

)
Γ

T
d PAd

)
−
(

Γ
T
d PΓd + R

)−1
Γ

T
d P
]

C†
+

[
K4 −

(
Γ

T
d PΓd + R

)−1
GT†

GT
(

Γ
T
d PΓd + R

)−1
K4CC†

](
Iq − CC†

)†(
Iq − C C†

) (73)

for any arbitrary K4 ∈ R2q×q.

Proof. Property (i) follows from (Theorem 5, [37]) applied to the extended discrete system
(32) and (33).

Property (ii) related to the joint solvability of (63) and (64) follows from [Theo-
rem 1, [38]] applied to the linear output feedback via stabilization through a static controller
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for the modified extended discrete system (32) and (33). The controller gain satisfies the
equivalent conditions (65) and (66), subject to (68), since static stabilizing controller gains K
exist such that (65) is an algebraic compatible system so that

rank
(

AT
d PΓd ⊗ CT

)
= rank

[ (
AT

d PΓd ⊗ CT
)

, −
(

AT
d ⊗ Ad − In̂2 − AT

d ⊗ GT
Γ

T
d + GT

Γ
T
d ⊗ GT

Γ
T
d

)]
(74)

In addition, (67), subject to (69), follows by replacing G in the last additive left-hand-
side term of (64), obtained from (53) into (64), and then calculating K with the general
solution based on pseudoinversion rules.

To prove Property (iii), note that one obtains by equalizing the two right-hand-sides of
(66) and (67) that[

K1 −
(

Γ
T
d PΓd + R

)−1
GT†

K3

]
C†

+ K2

(
Iq − CC†

)
− K4 +

(
Γ

T
d PΓd + R

)−1
GT†

GT
(

Γ
T
d PΓd + R

)−1
K4CC†

= 0 (75)

which leads to (71) after replacing (68) and (69) in its left-hand side. Since K2 , K4 are
arbitrary, one obtains (72) by taking

K2 =

[
K4 −

(
Γ

T
d PΓd + R

)−1
GT†

GT
(

Γ
T
d PΓd + R

)−1
K4CC†

](
Iq − CC†

)†
(76)

or, simply, by zeroing K2 and K4. On the other hand, (73) follows by replacing K2,
Equation (72), in (68), and the obtained result, together with and (76), in (66). �

Remark 7. Theorem 3(iii) implies that, in general, G is not unique in Theorem 3(ii). As a result,
P is positive definite and unique in (64) once G has been fixed for each given symmetric positive
matrix R if and only if the pair

(
Ad, Γd

)
is controllable.

It turns out that a general application of Theorem 3 might be very involved in the
cases of a certain dimensionality, and generalized inverses not being coincident with the
standard ones are involved in the computations. However, it can be useful for discussing
in a closed form the existence of a stabilizing static linear output feedback controller for the
extended discrete system.

5. Decentralized versus Centralized Control of the Extended Discrete System

It is now discussed if the stabilizing control gain can be sparse if not in its off-diagonal
entries and how sparse it can be. As it is admitted to being more sparse in its off-diagonal
part, more information could be deleted for each individual subsystem from the remaining
ones while still keeping the stabilization property of the whole system. Note that the static
controller gain is of the form:

K = Kd + Kod =

[
K1
K2

]
; Kd :=

[
K1d
K2d

]
; Kod :=

[
K1od
K2od

]
(77)

where the above six column matrix blocks are square q-matrices and Kid and Kiod are
diagonal, respectively, and of diagonal zero entries, for i = 1, 2. Note that K has 2q
diagonal entries and 2q(q− 1) of non-diagonal ones. Assume that the whole family of such
stabilizing controllers via linear output feedback of the modified extended discrete system
is K. Note that the above consideration is only of interest if q > 1, i.e., if there are at least
two coupled subsystems in the whole structure. The whole decentralization implies that
each subsystem is controlled by a control input which has available information only on its
own output. The two subsequent definitions rely on how strong the decentralization of the
output information is to make possible the stabilization of the whole coupled system.
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Definition 1. The maximum decentralized degree of output linear feedback stabilization (MDdos) of
the extended discrete system is the maximum number of non-diagonal zero entries
i ∈ [0 , 2q(q− 1)] ∈ Z0+ in Kod, between all the gains K ∈ K.

Definition 2. The minimum centralized degree of output linear feedback stabilization (mCdos) of the
extended discrete system is the minimum number of non-diagonal zero entries i ∈ [0 , 2q(q− 1)] ∈ Z0+
in Kod, between all the gains K ∈ K.

It can be observed that Definitions 1 and 2 have only sense for q ≥ 2 since, if q = 1,
that is, the whole system consists of a single subsystem, then there is no distinction between
centralized and decentralized control. Note that, trivially, 2q(q− 1) = (mCdos) + (MDdos).
Note also that if MDdos = 2q(q− 1), then the linear output feedback stabilization of the
extended discrete system may be performed with some fully decentralized control of
gain K = Kd ∈ K, that is, the whole closed-loop stabilization may be performed under
individual controllers of each subsystem which only take information on the output of
such a subsystem, that is, just of one of the components of the output vector which is the
output of the involved subsystem. Furthermore, note that if MDdos = 2q(q− 1), then the
closed-loop stabilization can only be performed under fully centralized control, i.e., each
subsystem has to acquire available information on the outputs of all the subsystems in the
whole structure.

The subsequent result addresses the closed-loop fully decentralized stabilization of
the modified extended discrete system via linear output feedback based on Theorem 2 and
on Theorem 3.

Theorem 4. Assume that Dc + Dd = 0 . Then, the following properties hold:

(i) Assume that there exists some convergent matrix Acld such that ΓdKC = Acld − Ad is
solvable with a solution:

K = Kdiag + Kodiag = Γ
†
d
(

Acld − Ad
)
C

†
∈ K (78)

or, equivalently,

vec
(
K
)
=

(
Γ

†
d ⊗ C

†T )
vec
(

Acld − Ad
)

(79)

In addition, assume also that

rank
[

I2q2 − Γ
†
dΓd ⊗ C†TCT T

]
= rank

[
I2q2 − Γ

†
dΓd ⊗ C†TCT ,

[(
Γ

†
d ⊗ C

†T )
vec
(

Acld − Ad
)]

od

]
(80)

Then, MDdos = 2q(q− 1) so that the closed-loop modified extended discrete system can be
stabilized with fully decentralized control which allocates the closed-loop modes of the modified
extended system at the eigenvalues of Acld.

(ii) Assume that the hypotheses of Theorem 3 and (72) hold. Assume also that rank Ω2 =

rank
[
Ω2 , vec Ω1od

]
, where

Ω1 =

[(
Γ

T
d PΓd + R

)−1
Γ

T
d PA−

(
Γ

T
d PΓd + R

)−1
GT†

(
P− AT

d PAd − CTC +

(
AT

d PΓd

(
Γ

T
d PΓd + R

)−1
+ GT

)
Γ

T
d PAd

)
−
(

Γ
T
d PΓd + R

)−1
Γ

T
d P
]

C†
= Ω1d + Ω1od

(81)

Ω2 =

[
Iq ⊗

(
Iq − C C†

)T(
Iq − CC†

)T
−
(

Γ
T
d PΓd + R

)−1
GT†

GT
(

Γ
T
d PΓd + R

)−1
⊗
(

Iq − C C†
)T(

Iq − CC†
)T(

CC†
)T ]

(82)

Then, MDdos = 2q(q− 1) so that the closed-loop modified extended discrete system can
be stabilized with fully decentralized control which allocates the closed-loop modes at the
eigenvalues of some existing convergent matrix.
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Proof. Property (i) follows from (53) and (54) by taking into account that CT†
= C†T

since
(78) is a particular solution with X = 0, then vec(X) = 0, for ΓdKC = Acld − Ad which is
solvable if and only if (80) holds, and then there is a real matrix X of order 2q2 × q given by

[
I2q2 − Γ

†
dΓd ⊗ CTC†T

]
vec (X) = vec

[
ΓdΓ

†

d
(

Acld − Ad
)
C

†
C
]

od
=

[(
ΓdΓ

†
d ⊗ CTC†T

)
vec
(

Acld − Ad
)]

od
(83)

See (58), such that there is some K = Kd ∈ K since Kod = K − Kd = 0 if (80) holds,
since one has that the general solution in K which includes as a particular case (79) is:

vec
(
K
)
= vec

(
Kd
)
+ vec

(
Kod
)
= vec

(
Kd
)

=

(
Γ

†
d ⊗ C

†T )
vec
(

Acld − Ad
)
+
[

I2q2 −
(

Γ
†
dΓd ⊗ C†TCT

) ]
vec (X)

(84)

=

[(
Γ

†
d ⊗ C

†T )
vec
(

Acld − Ad
)]

d

+

([(
Γ

†
d ⊗ C

†T )
vec
(

Acld − Ad
)]

od
+
[

I2q2 −
(

Γ
†
dΓd ⊗ C†TCT

) ]
vec (X)

) (85)

=

[(
Γ

†
d ⊗ C

†T )
vec
(

Acld − Ad
)]

d
(86)

In addition, (86) holds by zeroing the second additive term of the right-hand side of
(85) by the choice of a solution vecX which exists since (80) holds. Property (i) has been
proved. To prove Property (ii), note that if the hypotheses of Theorem 3 and (72) hold, then
a set of stabilizing controller gains satisfying (73) can be calculated which can be vectorized
as follows:

vec
(
K
)
= vec(Ω1d) +

(
Ω1od + Ω2vec

(
K4
))

(87)

Note that vec(Ω1od) + Ω2vec
(

K4
)

= 0, if rank(Ω2) = rank
[
Ω2 , vec Ω1od

]
, for

vec
(
K4
)
= −

(
Ω2 ⊗ I2q2

)
vec
(
Ω1od

)
, then vec

(
K
)
= vec

(
Kd
)
= vec(Ω1d) so that a fully

stabilizing controller of gain K = Kd ∈ K stabilizes the closed-loop system under linear
output feedback fully decentralized stabilization. Property (ii) has been proved. �

Remark 8. Note that Theorem 4 relies on the fully decentralized output feedback stabilization
through a static controller of the modified extended discrete system. Its extension to a partial
decentralized stabilization is direct under similar tools via alternative, more general decompositions
vec
(
K
)
= vec

(
Kqd

)
+ vec

(
Kqod

)
in Theorem 4(i) and Ω = Ω1qd + Ω1qod for Theorem 4(ii) in

quasi-diagonal and off-quasi-diagonal column matrix blocks by including the tentative minimum
number of the quasi-diagonal entries coming, deleting them from the off-quasi-diagonal blocks. In
this case, the decentralized stabilization is not full and can have different degrees of decentralization
depending on the off-diagonal entries transferred to the quasi-diagonal column matrix blocks.

Example 2. Consider the following hybrid delay-free system consisting of two subsystems given by:

.
xc1(t) = xc2(t)

xd1[k] = −xc1[k]− 2xd1[k] + u[k]
(88)

.
xc2(t) = −xc2(t)− 0.8xc1(t)− 2xd1[k] + u(t) + 0.8u[k]

y(t) = y1(t) = xd1[k]; ∀k ∈ Z0+, ∀t ∈ [kT (k + 1) T)

subject to any given finite initial conditions, where T is the sampling period. The discretization
of (88) yields the following description of third order through extended discrete vector x[k] =
(xc1[k] , xc2[k] , xd1[k])

T :
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 xc1[k + 1]
xc2[k + 1]
xd1[k + 1]

 =

 −0.8
(
T + e−T)+ 0.2 1− e−T −2

(
T − e−T)− 1

0.8
(
1− e−T) e−T 2

(
1− e−T)

−1 0 −2

 xc1[k]
xc2[k]
xd1[k]

+

 0.8
(
T + e−T − 1

)
0.8
(
e−T − 1

)
1

u[k]

+1.5


∫ T

0

(
1− e−(T−τ)

)
u(kT + τ)dτ∫ T

0 e−(T−τ)u(kT + τ)dτ

0

; y[k] = (0 , 0 , 1)

 xc1[k]
xc2[k]
xd1[k]


(89)

To define an auxiliary input sequence {v[k] }∞
k=0 generate the continuous control input

u(kT + τ) = L(T , τ)v[k] in the intersample intervals with L(T, τ) =
(

1
1−e−(T−τ)

1
e−(T−τ) 0

)T
;

∀k ∈ Z0+, ∀τ ∈ (0 , T) . For a sampling period of T = 0.4 s, the matrix of dynamics of
the uncontrolled extended discrete system Equation (89) has as eigenvalues z1 = 0.21226 and
z2,3 = −1.26942± 3.12457i, the two complex conjugate ones being unstable. The extended discrete
control 3× 2 matrix associated with the two-dimensional extended control sequence {u[k] , v[k]}∞

k=0
for T = 0.4 s becomes:

Γd =
[

Bd , Bc
]
=

 0.05625
−0.263744

1

0.6
0.6
0

 (90)

The static controller gain of the extended discrete system is of the form K =
(
K1 , K2

)T ∈ R2

leading to the following closed-loop matrix of dynamics of the modified extended discrete system

Acld =

 −0.8
(
T + e−T)+ 0.2 1− e−T 2

(
e−T − T

)
− 1 + 0.1125 + 0.6K2

0.8
(
1− e−T) e−T 0.65936− 0.526549 + 0.6K2
−1 0 K1 − 2

 (91)

Since T = 0.4 , if K1 = 2 and K2 = 0.34686/ = 0.5781 , then a solution to Equation (42) is
vec
(
K
)
=
(
K1 , K2

)T
= (2, 0.5781) , which is solvable according to (35), for a targeted matrix of

closed-loop dynamics given by the ordered row-per-row vector defined by:

vec
(

Acld
)
= (−0.656256, 0.32968 , 0 , 0.263744 , 0.67032 , 0.479671 , −1, 0, 0) (92)

The ordered row-per-row vector corresponding to the matrix ΓdKCT is given by:

vec
(

ΓdKCT
)
=
(
0, 0, 0.05625K1 + 0.6K2, 0, 0,−0.2632744K1 + 0.6K2, 0, 0, K1

)
(93)

corresponding to the matrix:

Acld =

 −0.656256 0.32968 0
0.263744 0.67032 0.479671
−1 0 0


with characteristic polynomial p(z) = z3 − 0.0146z2 − 0.526853z + 0.150995 whose zeros are all
stable with values z1 = −0.83432; z2,3 = 0.42419± 0.03213i. As a result, as k→ ∞ , {x[k]} → 0 ,
{y[k]} → 0 , {u[k]} → 0 , {v[k]} → 0 , xd1[k]→ 0 , xc1[k]→ 0 , xc2[k]→ 0 for any given fi-
nite initial conditions. Since {v[k]} → 0 as k→ ∞ , u(t)→ 0 as t→ ∞ , xc1(t)→ 0 ,
xc2(t)→ 0 and y(t)→ 0 as t→ ∞ . The controller is of decentralized type since it only picks up
information of the first subsystem through its output which is also the global output of the whole system.
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6. Cases of Small Influences of the Delayed Discrete Dynamics and of the Couplings
between Subsystems

Note that the closed-loop extended discrete system can be re-formulated with its
state evolution by taking into account a separation of terms with associated sufficiently
small norms in the relevant equations of (17) to (27) and (32) and (33) associated with the
delayed dynamics:

x[k + 1] = Âdx[k] + B̂du[k] +
(

Bcτ

)
u[k] + Ãdx[k]

=
(

Âd + ΓdKC + Ãd

)
x[k] = Acld x[k]

(94)

where

Âd =


Φc(T) + Γcs0(T) 0nc×pnc

Ipnc

Adc0 0nc×pnc

0p×(p+1)nc

Γcd0(T) 0nc×pnd

0p×(p+1)nd
Ad0 0nc×pnd

Ipnd

;

Ãd =


0nc×nc Ψ̃cc(T)

0pnc×pnc

Ψ̃dc
0p×(p+1)nc

0nc×nd Ψ̃cd(T)
0p×(p+1)nd

Ψ̃dd
0pnd×pnd


(95)

Âd + ΓdKC

=


Φc(T) + Γcs0(T) + Γcs(T)K1 + BcK2)(Cc + Ccs)x0nc×pnc Γcd0(T) + (Γcs(T)K1 + BcK2)Cdx0nc×pnd

Ipnc 0p×(p+1)nd

Adc0 + BdK1(Cc + Ccs)x0nc×pnc Ad0 + BdK1Cdx0nc×pnd

0p×(p+1)nc
Ipnd

 (96)

Because of its structure, the eigenvalues of Âd are a zero eigenvalue of multiplicity
2pn plus the n = nc + nd additional eigenvalues of

Âd0 =

[
Φc(T) + Γcs0(T) Γcd0(T)

Adc0 Ad0

]
(97)

By the same reason, the set of eigenvalues of Âd + ΓdKC are a zero eigenvalue of
multiplicity 2pn plus the n = nc + nd extra eigenvalues of

Âd∗ =

[
Φc(T) + Γcs0(T) +

(
Γcs(T)K1 + BcK2

)
(Cc + Ccs) +

(
Γcs(T)K1 + BcK2

)
Cd

Adc0 + BdK1(Cc + Ccs) Ad0 + BdK1Cd

]
(98)

Furthermore, note that

zIn − Acld = zIn −
(

Âd + ΓdKC
)
− Ãd =

(
zIn − Âd − ΓdKC

) (
In −

(
zIn − Âd − ΓdKC

)−1 Ãd

)
; ∀z ∈ C\

{
sp
(

Âd
)}

(99)

Additionally, that

det
(
zIn − Acld

)
= det

(
zIn − Âd − ΓdKC

)
× det

(
In −

(
zIn − Âd − ΓdKC

)−1 Ãd

)
(100)

Since det
(
zIn − Acld

)
and det

(
zIn − Âd − ΓdKC

)
are entire functions, they have the

same number of zeros in the open unit circle of the complex plane centered at the origin
{ z ∈ C : z < 1} if ∣∣det

(
zIn − Acld

)
− det

(
zIn − Âd − ΓdKC

)∣∣
=
∣∣ det

(
zIn − Âd − ΓdKC

) ∣∣ ∣∣∣ 1− det
(

In −
(
zIn − Âd − ΓdKC

)−1 Ãd

)∣∣∣
< det

(
zIn − Âd − ΓdKC

) (101)
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at the boundary { z ∈ C : z = 1} of such a circle (Rouché theorem, [47]) provided that(
zIn − Âd − ΓdKC

)−1 exists, equivalently, if∣∣∣ 1− det
(

In −
(
zIn − Âd − ΓdKC

)−1 Ãd

)∣∣∣ < 1 for |z| = 1 (102)

which holds if

0 <
∣∣∣det

(
In −

(
zIn − Âd − ΓdKC

)−1 Ãd

)∣∣∣ < 1 for |z| = 1 (103)

That is, guaranteed if the H∞-norm
∥∥∥(zIn − Âd − ΓdKC

)−1 Ãd

∥∥∥
H∞

of(
zIn − Âd − ΓdKC

)−1 Ãd is less than unity, that is, if

σ

[(
eiθ In − Âd − ΓdKC

)−1
Ãd

]
= max

0≤θ<2π

∥∥∥∥(eiθ In − Âd − ΓdKC
)−1

Ãd

∥∥∥∥
2
< 1

which holds for sufficiently small
∥∥∥Ãd

∥∥∥
2
. Thus, since Âd + ΓdKC is convergent if Âd∗ is

convergent, we have proved the following closed-loop global asymptotic stability result by
taking into account also Remark 4:

Theorem 5. Assume that Dc + Dd = 0. If Âd∗ is convergent and
∥∥∥Ãd

∥∥∥
2

is sufficiently small,

according to
∥∥∥(zIn − Âd − ΓdKC

)−1 Ãd

∥∥∥
H∞

< 1, then Acld is convergent. As a result, the

resulting closed-loop modified extended discrete system is globally asymptotically stable in the
sense that, for any given finite initial conditions, the sequences {u[k]}∞

k=0 and {x[k]}∞
k=0 are

bounded, and {u[k]}∞
k=0 → 0 and {x[k]}∞

k=0 → 0 . Moreover, u(t)→ 0 , xc(t)→ 0 , xc(t)→ 0
and y(t)→ 0 as t→ ∞ , so that the complete hybrid system is also globally asymptotically stable.

In view of (9)–(11) and (20)–(22), the delay-free dynamics couplings of each subsystem
with the remaining ones within the whole network are reflected in Âd + ΓdKC defined
in (96) by the off-diagonal matrix blocks of the matrices Φc(T) = Φcd(T) + Φcod(T) =

eAcdT +
(∫ T

0 eAcd(T−τ)dτ
)

Acod ,where Acd and A0cd are the diagonal (subscripted with “d”)
and off-diagonal (subscripted with “od”) matrix blocks of Ac, Acs0 = Acsd + Acsdo and
Adc0 = Adcd + Adcdo. To evaluate when the closed-loop stabilization by fully decentralized
control is possible under sufficiently weak couplings between the various subsystems and,
at the same time, sufficiently weak delayed dynamics, we now further decompose the

controller gain as K =
[
KT

1 , KT
2

]T
= Kd + Kod according to (77) to yield:

Acld = Âdd + ΓdKdC +
(

Âdod ++ΓdKodC + Ãd

)
(104)

where

¯̂Ada = Âdd + Γ̄dK̄dC̄

=


Φc(T) + Γcs0(T) + (Γcs(T)K̄1d + BcK̄2d)(Cc + Ccs) 0nc×pnc Φc(T) + Γcs0(T) + (Γcs(T)K̄1d + BcK̄2d)Cd 0nc×pnd

Ipnc 0p×(p+1)nd
Adc0 + BdK̄1d(Cc + Ccs) 0nc×pnc Ad0 + BdK̄1dCd 0nc×pnd

0p×(p+1)nc Ipnd

 (105)

˜̄Ada = Âdod + Γ̄dK̄odC̄ + ˜̄Ad
(Γcs(T)K̄1od + BcK̄2od )(Cc + Ccs) + ˜̄Ψcc(T) 0pnc×pnc

(
Γcs(T)K1od + BcK2od

)
Cd + Ψ̃cd(T)

0pnc×pnc 0p×(p+1)nd

Ψ̃dc(T) + BdK1od(Cc + Ccs) Ψ̃dd(T) + BdK1odCd
0pnc×(p+1)nc 0pndc×pnd

 (106)

Âda∗ =

[
Φc(T) + Γcs0(T) +

(
Γcs(T)K1d + BcK2d

)
(Cc + Ccs) +

(
Γcs(T)K1d + BcK2d

)
Cd

Adc0 + BdK1d(Cc + Ccs) Ad0 + BdK1dCd

]
(107)
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In addition, Âda∗ has the same number of structural nonzero eigenvalues as Âdd
in the same way as it has Âd∗ Equation (98) versus Âd0 Equation (97). The appropriate
modification of Theorem 5 by taking into account (104)–(107) under sufficiently small
couplings of mutual dynamics between pairs of subsystems leads to the subsequent result:

Theorem 6. Assume that Dc + Dd = 0 . If Âda∗ is convergent and
∥∥∥Ãda

∥∥∥ is sufficiently

small satisfying
∥∥∥(zIn − Âdd − ΓdKdCd

)−1 Ãda

∥∥∥
H∞

< 1 , then Acld is convergent under fully

decentralized control, that is, MDdos = 2q(q− 1) and the closed-loop modified extended discrete
system is globally asymptotically stable in the sense that, for any given finite initial conditions,
the sequences {u[k]}∞

k=0 and {x[k]}∞
k=0 are bounded, and {u[k]}∞

k=0 → 0 and {x[k]}∞
k=0 → 0 .

Moreover, u(t)→ 0 , xc(t)→ 0 , xc(t)→ 0 and y(t)→ 0 as t→ ∞ , so that the complete
hybrid system is also globally asymptotically stable.

Remark 9. It turns out that, for the partial decentralized stabilization problem with the maximum
degree of decentralization and, correspondingly, with the minimum degree of centralization, Theorem
6 can be directly re-addressed as a parallel result in the sense that Âda , Ãda and Âda∗ can be re-
placed, respectively, by Âda(MDdos) , Ãda(MDdos) and Âda∗(MDdos) defined accordingly to an
estimation of the maximum decentralization degree MDdos = {max i ∈ [0 , 2q(q− 1)] ∈ Z0+}
such that:

(a) Kdao = minimum number between K1od and K2od of off-diagonal entries to be used in the

re-definition of Âda(MDdos) , previously defined in (105), by replacing Kd → Kd + Kdao
in Âd being defined in (95);

(b) Kod − Kdao to be used in the re-definition of Ãda(MDdos) , previously defined in (106), by

replacing Kod → Kod − Kdao in Ãd being defined in (85);
(c) Reformulate Theorem 6 according to the two above replacements.

The above modification of Theorem 6 is based on an estimation of the maximum decentralization
degree, rather than on such a degree itself, since Theorem 6 is rather a local robustness stability result
for sufficiently weak delayed dynamics and sufficiently weak coupling dynamics between the various
pairs linking the q subsystems. In fact, the result is based on the stability of a nominal closed-loop
system without delayed dynamics and couplings between each pair of the various subsystems and a
sufficient smallness of the remaining contributive terms to the whole dynamics.

It is also possible to rewrite, equivalently, (94) by decomposing the controller into
two parts, one to be used to address the nominal closed-loop design while the other being
used to partially compensate the effect of uncertainties in the closed-loop dynamics. The
resulting version of (94) is:

x[k + 1] =
(

Âd + ΓdK∗C + Γd
(
K− K∗

)
C + Ãd

)
x[k] = Acld x[k]

The subsequent example visualizes the above ideas.

Example 3. Consider the following hybrid delay-free system of sampling period T = 0.1 s which
consists of two subsystems described by:

.
x1c1(t) = x1c2(t)− x1c2[k]

x1d1[k + 1] = −x1d1[k] + x1c1[k] + α0.1x1c1[k] + ∑3
i=1 α12ix2di[k] + u[k]

x2d1[k] = x2d2[k]; x2d2[k] = x2d3[k]

x2d3[k + 1] = 0.15x2d1[k]− 0.1x2d2[k− 1] + 1.05x2d3[k] + ∑2
i=1 α21ix1di[k]

y(t) = y1(t) = x1c1[k]; ∀k ∈ Z0+, ∀t ∈ [kT (k + 1) T)

(108)
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The α(.) takes account for small dynamic coupling uncertainties of not very precise knowledge.
The whole extended discrete system of state x[k] = (x1c1[k], x1d1[k], x2d1[k], x2d2[k], x2d3[k])

T ,
with the continuous part discretized for the period T = 0.1, is described by the following equations:

x1c1[(k + 1)T] = x1c2[kT]

x1d1[k + 1] = −x1d1[k] + x1c1[k] + α111x1c1[k] + ∑3
i=1 α12ix2di[k] + u[k]

x2d1[k] = x2d2[k]; x2d2[k] = x2d3[k]

(109)

x2d3[k + 1] = 0.15x2d1[k]− 0.1x2d2[k− 1] + 1.05x2d3[k] + ∑2
i=1 α21ix1di[k] + u[k]

y(t) = y1(t) = x1c1[k]; ∀k ∈ Z0+, ∀t ∈ [kT (k + 1) T)

which can be rewritten in a compact form, which is also in companion controllability form [27,48],
for each of the subsystems as follows:

Ad =

[
Ad11 Ad12
Ad21 Ad22

]
=


0 1 0 0 0
1 −1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0.15 −0.1 1.05

 (110)

B =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

; C =

[
1 0 0 0 0
0 0 1 0 0

]
(111)

Ãd =

[
Ãd11 Ãd12

Ãd21 Ãd22

]
=


0 0 0 0 0
0 0 α121 α122 α123
0 0 0 0 0
0 0 0 0 0

α211 α212 0 0 0

 (112)

vec
(

Ãd

)
= (0 , 0, 0 , 0, 0 , 0 , 0 , α121 , α122, α123 , 0, 0 , 0, 0 , 0 , 0 , 0, 0 , 0, 0 , α211 , α212 , 0 , 0 , 0

)T

where Ãd is the matrix dynamics of the uncertainties. The matrix Ad is not convergent since it
has two unstable eigenvalues z = 1.08521 and z = − 1+

√
5

2 . The controller is proposed to have
the structure:

K =

[
K1
K2

]
=


K111
K112
K121
K122

K211
K212
K221
K222

 (113)

Leading to a closed-loop dynamics of the whole extended discrete system given by the matrix:

Acld = Ad + BKC + Ãd =


0 1 0 0 0

1 + K111 −1 K112 + α121 α122 α123
0 0 0 1 0
0 0 0 0 1

K221 + α211 α212 0.15 + K222 −0.1 1.05

 (114)
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which can be equivalently decomposed also as Acld = Acld∗+ Ãcld in terms of a closed-loop coupling
nominal and uncertain dynamics between both subsystems being given by the matrices:

Acld∗ =


0 1 0 0 0

1 + K111 −1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0.15 + K222 −0.1 1.05

 (115)

Ãcld =


0 0 0 0 0
0 0 K112 + α121 α122 α123
0 0 0 1 0
0 0 0 0 1

K221 + α211 α212 0 0 0

 (116)

Then,
vec
(
K
)
=
(
K111, K112 , K121, K122, K211 , K212 , K221 , K222

)T

Because of the sparse structure of the matrix of dynamics, the whole number of controller
entries is simplified by zeroing directly K121 , K122, K211 , K212. Moreover, K112 and K221 are used
to address the achievement of the sufficient norm smallness of the uncertainties vector, so they are
also zeroed in the unknowns vector vec

(
K
)

and transferred to vec
(

Ãd

)
so that the nominal linear

algebraic Equation (42) is solved in the unknown vector:

vec
(
K
)
=
(
K111, 0 , 0, 0, 0 , 0 , 0, K222

)T

with

vec
(

Ad
)
= (0 , 1, 0 , 0, 0 , 1 , −1 , 0 , 0, 0 , 0 , 0, 0 , 1 , 0 , 0, 0 , 0, 0 , 1 , 0 , 0 , 0.15 , −0.1 , 1.05

)T

and

vec
(

Ãd

)
=
(
0 , 0, 0 , 0, 0 , 0 , 0 , K112 + α121 , α122, α123 , 0, 0 , 0, 0 , 0 , 0 , 0, 0 , 0, 0 , K221 + α211 , α212 , 0 , 0 , 0

)T

One checks the static controller synthesis solvability for three intended matrices of the nominal
closed-loop dynamics (that is, excluding the contribution of the uncertainties, which are incorporated
to the matrix Ãd, in this first synthesis step) which are, respectively, defined depending on the
unknown K111 by:

vec
(

Acld∗1
)
=
(
0 , 1, 0 , 0, 0 , 1 + K111 , −1 , 0 , 0, 0 , 0 , 0, 0 , 1 , 0 , 0, 0 , 0, 0 , 1 , 0 , 0 , 0.20 , −0.1 , 1.05

)T

vec
(

Acld∗2
)
=
(
0 , 1, 0 , 0, 0 , 1 + K111 , −1 , 0 , 0, 0 , 0 , 0, 0 , 1 , 0 , 0, 0 , 0, 0 , 1 , 0 , 0 , 0.15 , 0.30 , 1.05

)T

vec
(

Acld∗3
)
=
(
0 , 1, 0 , 0, 0 , 1 + K111 , −1 , 0 , 0, 0 , 0 , 0, 0 , 1 , 0 , 0, 0 , 0, 0 , 1 , 0 , 0 , 0.15 , 0.40 , 1.05

)T

Now, note that the closed-loop characteristic polynomials which define the respective closed-loop
self-dynamics of both subsystems in the extended discretized system, after compensation via static
linear output feedback, are:

p1(z) = z2 + z−
(
1 + K111

)
; p2(z) = z3 − 1.05z2 + 0.1z−

(
0.15 + K222

)
(117)

The first one depends on the still undetermined K111. The eigenvalues of Acld∗ are triv-
ially the zeros of the product of both characteristic polynomials p1(z)p2(z) since the matrices
of targeted closed-loop dynamics are in companion forms in the self-dynamics of both subsys-
tems integrated in the extended discrete one. Note that p1(z) is stable for K111 ∈

(
− 5

4 ,− 1
2

)
while p2(z) is stable for K222 = −0.35 with zeros −0.34454 and 0.69727 ± 0.30707i, for
K222 = −0.45 with zeros −0.41913 and 0.73457± 0.41973i or for K222 = −0.55 with zeros
−0.47971 and 0.7649± 0.49881i. Those zeros are in Acld∗i, respectively, for i = 1, 2, 3. How-



Mathematics 2022, 10, 1066 25 of 29

ever, in the absence of closed-loop compensation through the choice K222 = 0, the polynomial
p2(z) = z3 − 1.05z2 + 0.1z− 0.15 is not stable having a zero z = 1.08521. In summary, the
above system in the absence of coupling dynamics is unstable in the absence of control, that is, the
open-loop system is unstable. However, the closed-loop one can be stabilized with linear static output
feedback control just with two nonzero scalar gains, that is, with two nonzero entries in the control
gain matrix (113). With both self-dynamics being stable under the conditions given for the choices
of K111 and K222, one concludes that Acld∗ is convergent.

It turns out that any norm of Ãcld is arbitrary small for α = max(|α122|, |α123|, |α212|,∣∣K112 + α121
∣∣, ∣∣K221 + α211

∣∣) being arbitrary small. Under the given conditions which guarantee
that p1(z) and p2(z) are stable, so that Acld∗ is convergent, it follows that Acld is also convergent if
α is sufficiently small related to 1/

∥∥∥(zI5 − Acld∗)
−1
∥∥∥

H∞
so since, for any complex number z which

is not an eigenvalue of Acld∗, one has that

zI5 − Acld = (zI5 − Acld∗)
(

I5 − (zI5 − Acld∗)
−1 Ãcld∗

)
(118)

so that the eigenvalues of Acld are not in C1. In particular, note the following features:

(a) Assume that α121 and α211 are known precisely. Then, the additional choices of the previously
unspecified gains K112 = −α121 and K221 = −α211 as entries of the controller gain guarantee
that Acld is convergent, so that the extended closed-loop system is
stable if α0 = min( |α122|, |α123| , |α212| ) is sufficiently small satisfying

α0 < 1/

(
√

5 sup
0≤θ<2π

∥∥∥(eiθ I5 − Acld∗
)−1
∥∥∥

2

)
after using the norm inequality

∥∥∥Ãcld

∥∥∥
2
≤

√
5min

(∥∥∥Ãcld

∥∥∥
∞

,
∥∥∥Ãcld

∥∥∥
1

)
[49], for the matrix Ãcld of order 5.

(b) Assume that α121 and α211 are not known precisely but they are known to belong to known respective

real subsets
[

α
−121

, α121

]
and

[
α
−211

, α211

]
, which is a reasonable assumption in practice. Then,

choose the previously unspecified gains K112 = −α121∗ = −
α
−121

+α121

2 and K221 = −α221∗ =

−
α
−221

+α221

2 as entries of the controller gain guarantee that Acld is convergent, so that the extended

closed-loop system is stable if α = max(|α122|, |α123|, |α212|,
∣∣∣∣α−121

∣∣∣∣, |α121,|, 1
2

∣∣∣∣α121−α
− 121

∣∣∣∣,
1
2

∣∣∣∣α221−α
− 221

∣∣∣∣) is sufficiently small so that α < 1/

(
√

5 sup
0≤θ<2π

∥∥∥(eiθ I5 − Acld∗
)−1
∥∥∥

2

)
.

As a result, as k→ ∞ , {x[k]} → 0 , {y[k]} → 0 , {u[k]} → 0 , x2dj[k]→ 0 (j = 1, 2, 3),
x1ci[k]→ 0 (i = 1, 2) for any given finite initial conditions. Moreover, u(t)→ 0 as t→ ∞ ,
x1ci(t)→ 0 ( i = 1, 2) and y(t)→ 0 as t→ ∞ . The controller is of decentralized type since it
only picks up information of the first subsystem through its output which is also the global output of
the whole system.

Note that for the sparse control and output matrices defined in (111), four of the eight control
gains which are entries of the control matrix (113) do not play a role in the closed-loop matrix of
dynamics and can be zeroed.

Example 4. Assume a fifth order system as that of Example 4 but with, in general, a less sparse
parameterization of the control and output matrices. In this case, the stability of the self-dynamics of
both subsystems and the influence of the coupling dynamics to keep the achieved closed-loop stability
might be more difficult to deal with. The general idea of stabilizing the uncoupled dynamics under a
sufficiently small influence of the coupling one will be addressed as follows. Assume that the matrix
of the closed-loop dynamics is partitioned into four block matrices as:

Acld =

[
Acld11 Acld12
Acld21 Acld22

]
(119)
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Assume that its diagonal part, which contains the coupling-free self-dynamics of both subsystems

Acld =

[
Acld11 Acld12
Acld21 Acld22

]
(120)

is convergent. Then, the characteristic polynomial of the whole system is given by

det
(
zI5 − Acld

)
= det

[
zI2 − Acld11 −Acld12
−Acld21 zI3 − Acld22

]
= det

(
zI2 − Acld11

)
det
(
zI3 − Acld22

)
det
(

I −
(
zI3 − Acld22

)−1 Acld21
(
zI2 − Acld11

)−1 Acld12

) (121)

which has no zeros on z ∈ C1 if the system is stabilizable by some linear output feedback static
controller, so that the matrix Acld is convergent, then all its poles are in z(< 1) ∈ C if the following
constraint holds (Banach’s Perturbation Lemma [49]; see also existence and calculation of the
inverses of partitioned non-polynomial and polynomial matrices [[50],[51],[52],[53],[54]):∥∥∥(zI3 − Acld22

)−1 Acld21
(
zI2 − Acld11

)−1 Acld12

∥∥∥
∞
= sup

0≤ω<2π

σ
[(

eiθ I3 − Acld22
)−1 Acld21

(
eiθωI2 − Acld11

)−1 Acld12

]
<
√

5min

×
[

max
0≤θ<2π

∥∥∥(eiθωI3 − Acld22
)−1 Acld21

(
eiθωI2 − Acld11

)−1 Acld12

∥∥∥
2
, max

0≤θ<2π

∥∥∥(eiθωI3 − Acld22
)−1 Acld21

(
eiθωI2 − Acld11

)−1 Acld12

∥∥∥
1

]
≤
∥∥∥(zI3 − Acld22

)−1 Acld21

∥∥∥
H∞

∥∥∥(zI2 − Acld11
)−1 Acld12

∥∥∥
H∞

≤
∥∥∥(zI3 − Acld22

)−1
∥∥∥

H∞

∥∥∥(zI2 − Acld11
)−1 Acld12

∥∥∥
H∞
‖Acld21‖2

∥∥Acld12
∥∥

2

(122)

for any z ∈ C\
(
spAcld11 ∪ spAcld22

)
, since Acld22 and Acld11 are convergent. This constraint

holds if

∥∥Acld12
∥∥

2

∥∥Acld21
∥∥

2 < 1/
(∥∥∥(zI − Acld11

)−1
∥∥∥

H∞

∥∥∥(zI − Acld22
)−1
∥∥∥

H∞

)
= 1/

(∥∥∥(eiθ I3 − Acld22
)−1
∥∥∥

2

∥∥∥(eiθ I2 − Acld11
)−1
∥∥∥

2

) (123)

which is also guaranteed if, for some ε ∈ R+ ,

max
(∥∥Acld12

∥∥
2,
∥∥Acld21

∥∥
2

)
≤ ε < ε = 1/

(
max

(∥∥∥(zI − Acld11
)−1
∥∥∥

H∞
,
∥∥∥(zI − Acld22

)−1
∥∥∥

H∞

))
= 1/

(∥∥∥(eiθ I3 − Acld22
)−1
∥∥∥

2

∥∥∥(eiθ I2 − Acld11
)−1
∥∥∥

2

) (124)

Then, Acld is convergent, provided that Aclddis convergent, implying that det
(
zI − Acld11

)
det
(
zI − Acld22

)
6= 0 for |z| ≥ 1 under (123) or under (124). Thus, the extended discrete closed-

loop system has been stabilized for small off-diagonal dynamics which has not been considered by the
designed stabilizing controller. The specific solution is found by following generically the basic ideas
of Example 3.

The invoked discretization tools on the continuous substate are based on the use of
a zero-order-hold on the continuous time-input to obtain its sampled value at sampling
instants which is kept constant along the current intersample time period. A potential
extension for the use of fractional order holds can be performed by using first-order and
rate correction sampling and hold discretization. See, for instance [55].

7. Conclusions

This paper has studied a hybrid dynamic system which consists of a set of single-input
single-output continuous-time systems with mutual dynamic couplings on a set of digital
subsystems. Each one of the combined continuous-time/discrete subsystems is assumed
of single-input single-output (SISO) type. The dynamics of the whole system can also
be eventually affected by discrete-time delayed dynamics for a finite number of point
delays and it is driven, in general, by a combined action of the continuous-time input



Mathematics 2022, 10, 1066 27 of 29

along the intersample time interval and its values at the sampling instants. An extended
discretized system, built with the discretization of the continuous parts of the whole
hybrid system being eventually coupled with the digital ones, is formulated and an ad hoc
particular version of it is also given where the continuous-time input in the intersample
period is generated for an auxiliary discrete control sequence. Both discrete sequences, the
discretized version of the primary control and the auxiliary discrete sequence, are used
as a double control channel to stabilize through static linear output feedback control the
extended discrete dynamic system associated with the original hybrid one. The stabilization
objective is the first and main intended step for the stabilization of the whole hybrid system.
Later on, one deals with the stabilization through linear static output feedback of the
modified extended discrete system with zero input–output direct interconnection gains,
which implies basically that the relative degree, or pole-zero excess in the transfer function,
is greater than one. The mechanism for designing the controller gain is of algebraic type
and it is based on converting the set of equations to be solved into a linear algebraic system
of equations with an equivalent vector form presentation of the controller gain matrix. The
initial algebraic linear system is derived from the synthesis problem initial statement of
the needed equations in terms of ad hoc Kronecker products of matrices and vectors of
the unknowns (that is, the entries of the controller gain matrix) and the data (that is, the
entries of the targeted close-loop matrix of dynamics). In general, the algebraic problem
to be solved can be either non-compatible, so that it has no solution for a pre-defined
suited stable closed-loop dynamics of the extended discrete system being defined by a
convergent matrix of closed-loop dynamics, or it can be algebraically compatible with
either one or infinitely many solutions for the controller to be synthesized. Then, the
existence of static linear output feedback stabilization of the modified extended discrete
system is investigated through special matrix Riccati algebraic equalities. The final part
of the manuscript is devoted to the characterization of keeping the stabilization under a
total of partial degree of decentralized control. Roughly speaking, such a decentralization
is related to the achievement of the closed-loop stabilization under a total or partial lack of
information of couplings of dynamics between subsystems being transmitted to the overall
controller so that controllers with just local information about its own subsystem with
eventually minimum information taken about the mutual dynamic couplings between the
various subsystems are able to achieve the closed-loop stabilization. Section 6 addresses
the cases of small influences of the delayed discrete dynamics and that of the couplings
between subsystems in the whole dynamics of the hybrid system.
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