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Abstract: In this paper, the 3-D squeezing flow of viscous incompressible fluid between two parallel
plates rotating at the same rate is investigated. The flow is observed under the influence of the
varying magnetic field. The flow phenomena are modeled by utilizing the basic governing equations,
i.e., equation of continuity, coupled Navier Stokes, and Magnetic Field equations. Using appropriate
similarity transformations, the resultant partial differential equations are then transformed into
a system of ordinary differential equations. The computational technique is developed via the
Homotopy Analysis Method (HAM) to obtain the solution of transformed systems of ordinary
differential equations. The influence of several engineering fluid parameters, such as squeeze
Reynolds number, magnetic field strength parameter, and magnetic Reynolds number, on velocity
and magnetic field components, are observed from different graphs. It has been investigated that by
increasing the squeeze Reynolds number, fluid velocity in the y and z directions will be increased
as well. On the magnetic field component along the y-axis, an increasing influence of squeezing
Reynolds number is also noticed. Similarly, raising the magnetic Reynolds number increases the
velocity along the y-axis, whereas the inverse relationship is found for magnetic field components.
Furthermore, for each flow phenomenon, an error analysis is also presented.

Keywords: MHD; Homotopy Analysis Method; heat and mass transfer; time dependent squeeze
phenomenon; variable magnetic filed; viscous fluid

1. Introduction

When a fluid is squeezed between two parallel plates approaching one other, it is
called a squeeze flow. The unsteady squeezing flow between two plates rotating at different
angular velocities is regarded as one of the most important study subjects due to its exten-
sive applications in science and technology. Among these are hydrodynamic lubrication,
polymer technology, biomechanics, the petroleum sector, and aerodynamic heating. The
interaction of conducting fluids with electromagnetic fields is widely known as Magento-
Hydro Dynamics (MHD). The use of an MHD fluid as a lubricant in industrial applications
is appealing because it prevents the unanticipated variation of lubricant viscosity with
temperature under such high working conditions. Many experts are showing interest in this
field; for example, the unsteady squeezing flow between parallel plates was considered for
viscous MHD fluid by Siddiqui et al. [1]. Further, Erik Sweet [2] investigated the analytical
solution for a viscous fluid flow between moving parallel plates in an unstable MHD flow.
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They used the Homotopy Analysis Method to find the solution, which indicated that the
magnetic field’s strength has a significant impact on the flow. Later on, Murty et al. [3]
observed the electrically conducting fluid in a two-phase MHD convective flow under
the action of a constant transverse magnetic field through an inclined channel in a rotat-
ing system. Onyango et al. [4] experimented on an unsteady MHD flow of viscous fluid
between two parallel plates under a constant pressure gradient. Khan et al. [5] observed
the flow of a viscous fluid between compressing parallel plates under the influence of a
varying magnetic field. They investigated the entropy generation due to magnetic fields,
fluid friction, and heat transfer in a two-dimensional flow problem. Muhammad et al. [6]
discussed the squeezing MHD flow between two parallel plates using Jeffrey fluid. MHD
fluid flow between two parallel plates was investigated by Verma et al. [7]. Later on, Hayat
et al. [8] analytically treated the squeeze flow of MHD nanofluids between two parallel
plates. Furthermore, Linga Raju [9] discussed the MHD two-fluid flow of ionized gases
and investigated the effect of hall current on temperature distribution. The effect of mag-
netohydrodynamics on a fluid film was then observed by Hamza [10], who studied the
squeezed flow between two surfaces while rotation was added to the surfaces. Unsteady
Couette flow was then studied by Das et al. [11] where the flow was unsteady, and the
MHD effect was added. The flow was observed in a rotating system.

A viscous fluid flow between rotating parallel plates with varying but constant angular
velocities was investigated by Parter et al. [12]. In addition, [13] also added remarks on the
flow when the viscous fluid is flowing between two parallel rotating plates. Further on,
Rajagopal [14] also studied second ordered fluid flowing in a rotating system. Later on, the
MHD double-diffusive flow of nanofluids was studied by Tripathi et al. [15], the flow was
observed in a rotating channel with viscous dissipation and hall effect.

The MHD flow of viscous fluids in a rotating frame was also studied in cylindrical coor-
dinates, as was discussed by Hughes et al. [16]. They examined the lubrication flow of such
viscous fluids between rotating parallel disks. In addition, Elshekh et al. [17] talked about
the film of a fluid squeezed between rotating parallel disks where an external magnetic field
was applied. The influence of a changing magnetic field on the unsteady squeezing flow of
viscous fluids between rotating discs was also examined by Shah et al. [18]. The squeezing
unsteady flow of MHD fluid between two disks was also discussed by Ganji et al. [19],
they observed the flow with suction or injection involved. Between squeezing discs mov-
ing at various velocities, the effects of MFD viscosity and magnetic field-based (MFD)
thermosolutal convection of the fluid dynamics were examined by Khan et al. [20].

The unsteady squeeze flow of viscous fluids is also observed in three-dimensional
rotating systems. Recently, Munawar et al. [21] studied the squeeze flow of viscous fluids
in a three-dimensional rotating system. The flow was considered between parallel plates
with the lower stretching plate kept porous. Further on, Alzahrani et al. [22] numerically
treated the squeezed flow of viscous fluid between rotating parallel plates in a three-
dimensional system and examined the effect of Dufour and Soret number. Similar work
has been done on third-grade nanofluids in a three-dimensional rotating system, where the
thermophoresis effect and Brownian motion were observed by Shah et al. [23]. In addition,
the thin-film flow of Darcy Forchheimer hydromagnetic nanofluid between rotating parallel
disks in a three-dimensional system was discussed by Riasat et al. [24]. They examined the
importance of the Magnetic Reynolds number in such a system. Moreover, Fiza et al. [25]
examined the flow of Jeffrey fluid in a three-dimensional rotating system. Very recently, for
different fluid flow phenomena, the well-known HAM method was utilized by different
authors [26–30]. They utilized the HAM method to examine the behavior of their study
and predict the behavior of different problems.

The above existing literature witnessed that no study in past has been conducted so far
on the 3-dimensional squeeze flow of viscous fluids between two parallel plates under the
influence of the variable magnetic field, while both the plates have some angular velocity.
Hence, the suggested work is the best approach toward such problems and is a way of
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motivation for researchers bringing a new idea of studying the flow between unsteady
rotating parallel plates.

2. Modeling and Formulation of the Physical Problem

The incompressible viscous fluid flow between two horizontal squeezing plates sepa-
rated by a distance D(t) = l(1− βt)1/2 (Please see Figure 1), where l is the spacing between
plates at time t = 0. The upper plate rotates with an angular velocity of Ωu, whereas the
lower plate moves with angular velocity Ωl . The effect of variable magnetic field M is added
externally, which produces the induced magnetic field B with the following components,
Bx, By, and Bz.

Figure 1. Geometry of the flow problem

The system of coordinates selected, is Cartesian coordinates. The origin is placed in the
lower plate’s center, in which the x-axis is taken along the horizontal axis and the z-axis is
at a right angle to both the plates (along the vertical axis). The rotation of plates is along the
y-axis. The flow between the plates occurs due to the motion of plates towards each other,
i.e., the squeezing effect. The effect of gravity on the fluid is negligible. Now we observe
the velocity profile of the given fluid, and the effect of the magnetic field on the velocity
of fluid for these viscous fluids in a three-dimensional system. Since the coordinates of
the flow are in such a way that the x-component is along the direction of the fluid and the
z-component is normal to the direction of flow; thus, the component form of equation of
continuity, Navier–Stokes, and magnetic field equation are,
Continuity equation:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (1)

Navier–Stokes equation x-component:

ρ

[
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

]
= −∂P

∂x
+ µ

[
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

]
+

1
µ2

[
Bz

∂Bx

∂z
− Bz

∂Bz

∂x
− By

∂By

∂x
+ By

∂Bx

∂y

]
.

(2)

Navier–Stokes equation y-component:

ρ

[
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

]
= −∂p

∂y
+ µ

[
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

]
+

1
µ2

[
Bx

∂By

∂x
− Bx

∂Bx

∂y
− Bz

∂Bz

∂y
+ Bz

∂By

∂z

]
.

(3)
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Navier–Stokes equation z-component:

ρ

[
∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

]
= −∂p

∂z
+ µ

[
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

]
+

1
µ2

[
By

∂Bz

∂y
− By

∂By

∂z
− Bx

∂Bx

∂z
+ Bx

∂Bz

∂x

]
.

(4)

Magnetic field equation x-component:

∂Bx

∂t
=

[
u

∂By

∂y
+ By

∂u
∂y
− v

∂Bx

∂y
− Bx

∂v
∂y
− w

∂Bx

∂z
− Bx

∂w
∂z

+ u
∂Bz

∂z
+ Bz

∂u
∂z

]
+

1
δµ2

[
∂2Bx

∂x2 +
∂2Bx

∂y2 +
∂2Bx

∂z2

]
.

(5)

Magnetic field equation y-component:

∂By

∂t
=

[
v

∂Bz

∂z
+ Bz

∂v
∂z
− w

∂By

∂z
− By

∂w
∂z
− u

∂By

∂x
− By

∂u
∂x

+ v
∂Bx

∂x
+ Bx

∂v
∂x

]
+

1
δµ2

[
∂2By

∂x2 +
∂2By

∂y2 +
∂2By

∂z2

]
.

(6)

Magnetic field equation z-component:

∂Bz

∂t
=

[
w

∂Bx

∂x
+ Bx

∂w
∂x
− u

∂Bz

∂x
− Bz

∂u
∂x
− v

∂Bz

∂y
− Bz

∂v
∂y

+ w
∂By

∂y
+ By

∂w
∂y

]
+

1
δµ2

[
∂2Bz

∂x2 +
∂2Bz

∂y2 +
∂2Bz

∂z2

]
.

(7)

3. Boundary Conditions

The boundary conditions for the above fluid flow are given as:

u = 0, v =
Ωl x

1− βt
, w = 0, Bx = By = Bz = 0, at z = 0.

u = 0, v =
Ωux

1− βt
, w =

dD(t)
dt

, Bx = 0, By =
xN0

1− βt
, Bz =

−βM0

(1− βt)1/2 ,

at z = D(t) where D(t) = l(−βt)1/2.

Here, ρ is the density of fluid, P is pressure, and B is the induced magnetic field. Now,
using the following transformation to convert the above partial differential equations to
ordinary differential equations:

u =
βx

(1− βt)
f ′(η), v =

Ωl x
(1− βt)

g(η), w =
−βl

(1− βt)1/2 f (η), Bx =
βxM0

l(1− βt)
m′(η),

By =
xN0

(1− βt)
n(η), Bz =

−βM0

(1− βt)1/2 m(η), η =
z

l(1− βt)1/2 .

After non-dimensionlizing the above equations and given boundary conditions will
be converted to the following O.D.E.’s:

f
′′′′

= Sz

[
3 f
′′
+ (η − 2 f ) f

′′′ − 2 f
′
f
′′
]
+

2Sz M2
x

[
2Rm

(
mm

′
+ ηmm

′′ − f mm
′′
+ m2 f

′′
)
−m

′
m
′′
]
,

(8)

g
′′
= Sz

[
2g + ηg

′
+ 2 f

′
g− 2g

′
f
]
− 2Sz Mx My

[
m
′
n− n

′
m
]
, (9)

m
′′
= Rm

[
m + ηm

′ − 2m
′
f + 2 f

′
m
]
, (10)
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n
′′
= Rm

[
2n + ηn

′ − 2n
′
f + 2 f

′
n− 2

(
Mx

My

)(
g
′
m−m

′
g
)]

, (11)

where Sz =
βl2

2ν
, denotes the Squeezing Reynolds number, Mx =

M0

l
√

ρµ2
, represents the

Magnetic field strength along the x-axis , My =
N0

Ωl
√

ρµ2
is the Magnetic field strength along

x-axis and Rm = SzBt which is given by, Rm =

(
βl2

2ν

)
(νσµ2) is the Magnetic Reynolds

number, and the boundary conditions become of the form:

f (0) = 0, f ′(0) = 0, g(0) = 1, m(0) = 0, n(0) = 0.

f (1) =
1
2

, f ′(1) = 0, g(1) =
Ωu

Ωl
= S, m(1) = 1, n(1) = 1.

4. Method of Solution

An analytical technique was used to find the solution of Equations (8)–(11), known as
the Homotopy Analysis Method. We express the functions f , g, m, and n (where f , g, m,
and n are the functions of η, ηK, K ≥ 0) as a set of base functions:

fn =
∞

∑
K=0

aKηr (12)

gn =
∞

∑
K=0

bKηr (13)

mn =
∞

∑
K=0

cKηr (14)

nn =
∞

∑
K=0

dKηr (15)

where the constant co-efficients aK, bK, cK, and dk are to be determined. Initial approxima-
tions are chosen as follows:

f0 = 1.5 ∗ η2 − η3; (16)

g0 = (S− 1) ∗ η + 1; (17)

m0 = η; (18)

n0 = η (19)

now to choose the auxiliary operators:

£ f =
∂4

∂η4 , £g =
∂2

∂η2 , £m =
∂2

∂η2 , £n =
∂2

∂η2 (20)

with the following properties

£ f (k1∗η
3 + K2∗η

2 + K3∗η + K4∗) = 0 (21)

£g(K5∗η + K6∗) = 0 (22)

£m(K7∗η + K8∗) = 0 (23)

£n(K9∗η + K10∗) = 0 (24)

where K1∗ , K2∗ , K3∗ , K4∗ , K5∗ , K6∗ , K7∗ , K8∗ , K9∗ , and K10∗ are arbitrary constants.
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We can obtain the Zeroth order deformation as:

(1− s)£ f [ f (η; s)− f0(η)] = sh̄ fℵ f [ f (η; s), m(η; s)] (25)

(1− s)£g[g(η; s)− g0(η)] = sh̄gℵg[ f (η; s), g(η; s), m(η; s), n(η; s)] (26)

(1− s)£m[m(η; s)−m0(η)] = sh̄mℵm[ f (η; s), m(η; s)] (27)

(1− s)£n[n(η; s)− n0(η)] = sh̄nℵn[ f (η; s), g(η; s), m(η; s), n(η; s)] (28)

From Equations (14)–(17), the nonlinear operators are define as:

ℵ f [ f (η; s), m(η; s)] =
∂4 f (η; s)

∂η4 − Sz

(
3

∂2 f (η; s)
∂η2 + (η − 2 f )

∂3 f (η; s)
∂η3

− 2
∂ f (η; s)

∂η

∂2 f (η; s)
∂η2

)
− 2Sz M2

x(
M

∂3M(η; s)
∂η3 − ∂M(η; s)

∂η

∂2M(η; s)
∂η2

) (29)

ℵg[ f (η; s), g(η; s), m(η; s), n(η; s)] =
∂2g(η; s)

∂η2 − Sz

(
2g + η

∂g(η; s)
∂η

+ 2
∂ f (η; s)

∂η
g

− 2
∂g(η; s)

∂η
f
)
− 2Sz Mx My(

∂m(η; s)
∂η

n−m
∂n(η; s)

∂η

) (30)

ℵm[ f (η; s), m(η; s)] =
∂2m(η; s)

∂η2 − Rm

(
m + η

∂m(η; s)
∂η

− 2(
f

∂m(η; s)
∂η

−m
∂ f (η; s)

∂η

)) (31)

ℵn[ f (η; s), g(η; s), m(η; s), n(η; s)] =
∂2n(η; s)

∂η2 − R
(

2n + η
∂n(η; s)

∂η

−2
(

∂n(η; s)
∂η

f − n
∂ f (η; s)

∂η

)
+ 2

∂Mx

∂My(
∂g(η; s)

∂η
m− g

∂m(η; s)
∂η

)) (32)

where s is a fixed parameter, nonlinear parameters are ℵ f , ℵg, ℵm and ℵn, while h̄ f , h̄g, h̄m,
and h̄n are the nonzero auxiliary parameters.

For s = 0 and s = 1, we have:

f (η, 0) = fo, f (η, 1) = f (η)

g(η, 0) = go, g(η, 1) = g(η)

m(η, 0) = mo, m(η, 1) = m(η)

n(η, 0) = no, n(η, 1) = n(η)

(33)

as s varies from 0 to 1, exact solutions of f (η), g(η), n(η), and n(η) can be obtained from
initial guesses of f0, g0, m0, and n0, respectively.

For these functions, the Taylor’s series are given by:

f (η; s) = f0 +
∞

∑
n=1

qn fn(η) (34)
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g(η; s) = g0 +
∞

∑
n=1

qngn(η) (35)

m(η; s) = m0 +
∞

∑
n=1

qnmn(η) (36)

n(η; s) = n0 +
∞

∑
n=1

qnnn(η) (37)

fn(η) =
1
n!

∂n f (η; s)
∂ηn

∣∣∣∣
s=0

, gn(η) =
1
n!

∂ng(η; s)
∂ηn

∣∣∣∣
s=0

mn(η) =
1
n!

∂nm(η; s)
∂ηn

∣∣∣∣
s=0

, nn(η) =
1
n!

∂nn(η; s)
∂ηn

∣∣∣∣
s=0

(38)

It can be noted that in the above series convergence strongly depends upon h̄ f , h̄g, h̄m,
and h̄n.

Assuming that these nonzero auxiliary parameters are chosen so that the equations
converge at s = 1, one can obtain:

f (η) = f0 +
∞

∑
n=1

fn(η) (39)

g(η) = g0 +
∞

∑
n=1

gn(η) (40)

m(η) = m0 +
∞

∑
n=1

mn(η) (41)

n(η) = n0 +
∞

∑
n=1

nn(η) (42)

Differentiating the Equations (28)–(31) n-times with respect to s and putting s = 0,
we have:

£ f [ fn(η)− χn fn−1(η)] = h̄ f R f ,n(η) (43)

£g[gn(η)− χngn−1(η)] = h̄gRg,n(η) (44)

£m[mn(η)− χnmn−1(η)] = h̄mRm,n(η) (45)

£n[nn(η)− χnnn−1(η)] = h̄nRn,n(η) (46)

with the given boundary conditions,

fn(0) = 0, f ′n(0) = 0, gn(0) = 1, mn(0) = 0, nn(0) = 0

fn(1) = 0.5, f ′n(1) = 0, gn(1) = S, mn(1) = 1, nn(1) = 1
(47)

R f ,n(η) = f ′′′′n−1(η)− Sz

(
3 f ′′n−1(η) + (η) f ′′′n−1(η)− 2 f ′n−1(η) f ′′n−1(η)

− 2
n−1

∑
j=0

f j(η) f ′′′n−j−1(η)

)
+ 2Sz M2

x

(
2Rm

n−1

∑
j=0

mj(η)

[
m′n−j−1(η)

+ ηm′′n−j−1(η) + mn−j−1(η) f ′′n−j−1(η)

]
−m′n−1(η)m

′′
n−1(η)

) (48)



Energies 2022, 15, 2473 8 of 21

Rg,n(η) = g′′n−1(η)− Sz

(
2gn−1(η) + (η)g′n−1(η) + 2

n−1

∑
j=0[

gj(η) f ′n−j−1(η)− f j(η)g′n−j−1(η)

]
+ 2Sz Mx My

n−1

∑
j=0

(
nj(η)m′n−j−1(η)− nj(η)m

′
n−j−1(η)

) (49)

Rm,n(η) = m′′n−1(η)− Rm

[
mn−1(η) + (η)m′n−1(η)+

2
n−1

∑
j=0

(
mj(η) f ′n−j−1(η)− f j(η)m′n−j−1(η)

)] (50)

Rn,n(η) = n′′n−1(η)− Rm

[
2nn−1(η) + (η)n′n−1(η)+

2
n−1

∑
j=0

(
nj(η) f ′n−j−1(η)− f j(η)n′n−j−1(η)

)

− 2
Mx

My

(
mj(η)g′n−j−1(η)− gj(η)m′n−j−1(η)

)] (51)

and χn =
{

1, i f n > 1, and 0, i f n = 1
}

.
Finally, the general solution of (41–43) can be written as:

fn(η) =
∫ η

0

∫ η

0

∫ η

0

∫ η

0
h̄ f R f ,n(z)dzdzdzdz + χn fn−1 + K1∗η

3 + K2∗η
2 + K3∗η + K4∗ (52)

gn(η) =
∫ η

0

∫ η

0
h̄gRg,n(z)dzdz + χngn−1 + K5∗η + K6∗ (53)

mn(η) =
∫ η

0

∫ η

0
h̄mRm,n(z)dzdz + χnmn−1 + K7∗η + K8∗ (54)

nn(η) =
∫ η

0

∫ η

0
h̄nRn,n(z)dzdz + χnnn−1 + K9∗η + K10∗ (55)

and so for f (η), g(η), m(η), and n(η), the exact solution becomes:

f (η) ≈
n

∑
m=0

fm(η)

g(η) ≈
n

∑
m=0

gm(η)

m(η) ≈
n

∑
m=0

mm(η)

n(η) ≈
n

∑
m=0

nm(η).

(56)

5. Optimal Convergence Control Parameters

It sholud be noted that the nonzero auxiliary parameters h̄ f , h̄g, h̄m, and h̄n contained
in the series solutions (41–43), through which the rate of the homotopy series solutions and
convergence region can be determined. Average residual errors were used to obtain the
optimal values of h̄ f , h̄g, h̄m, and h̄n:

ε
f
n =

1
K + 1

K

∑
j=0

[
ℵ f

( n

∑
i=0

f (η),
n

∑
i=0

m(η)

)
m=jδm

]2

dη (57)
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ε
g
n =

1
K + 1

K

∑
j=0

[
ℵg

( n

∑
i=0

f (η),
n

∑
i=0

g(η),
n

∑
i=0

m(η),
n

∑
i=0

n(η)
)

m=jδm

]2

dη (58)

εm
n =

1
K + 1

K

∑
j=0

[
ℵm

( n

∑
i=0

f (η),
n

∑
i=0

m(η)

)
m=jδm

]2

dη (59)

εn
n =

1
K + 1

K

∑
j=0

[
ℵn

( n

∑
i=0

f (η),
n

∑
i=0

g(η),
n

∑
i=0

m(η),
n

∑
i=0

n(η)
)

m=jδm

]2

dη (60)

Furthermore,
εt

n = ε
f
n + ε

g
n + εm

n + εn
n (61)

where the total squared residual error is εt
n. We can minimize the total average squared

residual error by applying the Mathematica package BVPh 2.0. To acquire the local optimal
convergence control parameters, the command Minimize was used.

6. Error Analysis

Taking 10−40 as a maximum residual error, the problem was solved with the HAM
BVPh 2.0 package. An investigation was made using 40th-order approximations. The
provision of error analysis supports the authentication of results for many relevant physical
parameters in Figure 2 and from results given in Table 1.

Figure 2. Total residual error, with Sz = −0.1, Mx = 0.1, My = 0.3, Rm = 0.01, and S = 1.

Table 2 is provided to determine the equations’ inaccuracy from the Navier–Stokes
and magnetic field equations. An increase in the order of approximation can be seen, the
solution obtained from these equations converges to the exact analysis.

Table 1. Estimating the total residual error with fixed values of Sz = −0.1, Mx = 0.1, My = 0.3,
Rm = 0.01, and S = 1, for different orders of approximations.

m ε
f
m ε

g
m εm

m εn
m CPU Time

1 5.56818 × 10−7 1.50838 × 10−5 2.75325 × 10−8 3.42075 × 10−8 0.42 s
5 1.04968 × 10−24 4.31742 × 10−19 7.60909 × 10−23 1.89839 × 10−18 4.19 s

10 1.48326 × 10−30 9.10580 × 10−33 1.64090 × 10−35 4.81645 × 10−34 18.5 s
15 1.47350 × 10−30 9.86847 × 10−33 1.86358 × 10−35 1.38805 × 10−35 33.5 s
20 1.48626 × 10−30 9.78372 × 10−33 1.79738 × 10−35 1.50240 × 10−35 61.6 s
25 1.47036 × 10−30 9.78372 × 10−33 1.79738 × 10−35 1.48434 × 10−35 106.08 s
30 1.47036 × 10−30 9.78372 × 10−33 1.79738 × 10−35 1.48434 × 10−35 163.13 s
35 1.47036 × 10−30 9.78372 × 10−33 1.79738 × 10−35 1.48434 × 10−35 240.95 s
40 1.47036 × 10−30 9.78372 × 10−33 1.79738 × 10−35 1.48434 × 10−35 456.57 s
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Table 2. With fixed values of Sz = −0.1, Mx = 0.1, My = 0.3, Rm = 0.01, S = 1, observing the
optimal values of convergence control parameters in comparison to different orders of approximation.

Order h f hg hm hn εt
m

2 −1.00242 −1.02522 −0.99578 −1.01863 7.07983 × 10−9

3 −1.00597 −1.02361 −0.98895 −1.00881 3.11944 × 10−12

4 −1.00854 −1.02152 −0.98596 −1.01663 1.17465 × 10−15

5 −1.02616 −1.03854 −0.96740 −0.97698 −3.79267 × 10−15

6 −0.93502 −1.07429 −1.07428 −0.94309 2.53023 × 10−14

7 −0.89878 −0.95454 −1.09525 −0.90992 3.93815 × 10−14

The total residual error is represented in Table 1 and graphically through Figure 2, for
different orders of approximation. These results show that at the 25th order of approxima-
tion, the solution converges where the error almost reduces continuously. With the fixed
values of parameters, Sz = −0.1, Mx = 0.1, My = 0.3, Rm = 0.01, and S = 1. With fixed
values of Sz = −0.1, Mx = 0.1, My = 0.3, Rm = 0.01, and S = 1, Table 2, shows the optimal
values of convergence control parameters for various approximation orders. Table 3, shows
the estimated values of f (η), g(η), m(η), and n(η) at different values of n. These results
show that the solution is accurate by verification through the given boundary conditions
of the problem (since the boundary conditions can be verified by observing the obtained
numerical values at different points). Table 4 shows the convergence of the HAM solution
for different orders of approximation for the skin-friction, i.e., for f

′′
(0), −g

′
(0), −m

′
(0),

and −n
′
(0), with Sz = −0.1, Mx = 0.5, My = 0.3, Rm = 0.01, and S = 1. It can be observed

that the solution is convergent for the 10th order of approximation. The analysis is carried
out up to the 40th order of approximation.

Table 3. Estimated values for f (η), g(η), m(η), and n(η), by fixing Sz = −0.1, Mx = 0.1, My = 0.3,
Rm = 0.01, S = 1, and different values of η.

η f (η) g(η) m(η) n(η)

0. 0. 1. 0. 0.
0.1001 0.013999 1.014380 0.099721 0.099865
0.2002 0.052032 1.026218 0.199465 0.199696
0.3003 0.108119 1.034940 0.299257 0.299529
0.4004 0.176245 1.040324 0.399126 0.399401
0.5005 0.250378 1.042131 0.499097 0.499346
0.6006 0.324481 1.040296 0.599192 0.599396
0.7007 0.392515 1.034878 0.699428 0.699577
0.8008 0.448449 1.026084 0.799814 0.799904
0.9009 0.486271 1.014256 0.900345 0.900383

1. 0.5 1. 1. 1.

Table 4. For different orders of approximation for f
′′
(0), −g

′
(0), −m

′
(0), and −n

′
(0), evaluating the

convergence of the HAM solution with fixed values of Sz = −0.1, Mx = 0.5, My = 0.3, Rm = 0.01,
and S = 1.

m f
′′
(0) −g

′
(0) −m

′
(0) −n

′
(0)

1 2.990612172696 −0.153255933196 −0.996111208570 −1.011230294203
5 2.990713652636 −0.154752127452 −0.996176676870 −1.011568276329

10 2.990713652641 −0.154752127484 −0.996176676875 −1.011568276329
15 2.990713652641 −0.154752127484 −0.996176676875 −1.011568276329
20 2.990713652641 −0.154752127484 −0.996176676875 −1.011568276329
25 2.990713652641 −0.154752127484 −0.996176676875 −1.011568276329
30 2.990713652641 −0.154752127484 −0.996176676875 −1.011568276329
35 2.990713652641 −0.154752127484 −0.996176676875 −1.011568276329
40 2.990713652641 −0.154752127484 −0.996176676875 −1.011568276329
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Tables 5–8, shows the numerical results for f
′′
(0), −g

′
(0), −m

′
(0), and −n

′
(0) by

varying Sz, Mx, My, and Rm, respectively. This shows that increasing the squeeze parameter
Sz, results in a decrease in the value of f

′′
(0) and −m

′
(0), while oppositely −g

′
(0) and

−n
′
(0) increases with increasing Sz. Similarly, for increasing Mx, there is a gradual increase

in the values of f
′′
(0), −g

′
(0), and −m

′
(0), while the values of −n

′
(0) show a gradual

decrease. In Table 6, the increasing values of My show a certain decreasing effect on both
−g

′
(0) and −n

′
(0), while the effects on f

′′
(0) and −m

′
(0) are negligible. Table 7 depicts

the impact of the magnetic Reynolds numbers of the skin friction, showing that with an
increase in the values of Rm, the values of −g

′
(0) and −n

′
(0) increase gradually, but on the

other hand, f
′′
(0) and −m

′
(0) decreases.

Table 5. Estimated values for f
′′
(0), −g

′
(0), −m

′
(0), and −n

′
(0) with fixed Mx = 0.5, My = 0.3,

Rm = 0.01, S = 1, and different values of Sz.

Sz f
′′
(0) −g

′
(0) −m

′
(0) −n

′
(0)

−0.1 2.990713 −0.154752 −0.996176 −1.011568
−0.5 2.953293 −0.888098 −0.996174 −1.013783
−0.75 2.929678 −1.472508 −0.996172 −1.015593
−1.1 2.896317 −2.546940 −0.996170 −1.018992

Table 6. Estimated values for f
′′
(0), −g

′
(0), −m

′
(0), and −n

′
(0) with fixed Sz = −0.1,My = 0.3,

Rm = 0.01, S = 1, and different values of Mx.

Mx f
′′
(0) −g

′
(0) −m

′
(0) −n

′
(0)

0.1 2.990701 −0.154715 −0.996177 −0.997930
0.5 2.990713 −0.154752 −0.996177 −1.011568
1 2.990753 −0.154882 −0.996177 −1.028616

1.5 2.990818 −0.155101 −0.996177 −1.045666

Table 7. Estimated values for f
′′
(0), −g

′
(0), −m

′
(0), and −n

′
(0) with fixed Sz = −0.1, Mx = 0.5,

Rm = 0.01, S = 1, and different values of My.

My f
′′
(0) −g

′
(0) −m

′
(0) −n

′
(0)

1 2.990713 −0.154740 −0.996177 −0.999635
3 2.990713 −0.154705 −0.996177 −0.996226
5 2.990713 −0.154670 −0.996177 −0.995544
7 2.990713 −0.154635 −0.996177 −0.995252

Table 8. Estimated values for f
′′
(0), −g

′
(0), −m

′
(0), and −n

′
(0) with fixed Sz = −0.1, Mx = 0.5,

My = 0.3, S = 1, and different values of Rm.

Rm f
′′
(0) −g

′
(0) −m

′
(0) −n

′
(0)

0.1 2.990819 −0.155092 −0.962698 −1.110618
0.5 2.991071 −0.156280 −0.831865 −1.456702
1 2.991040 −0.157259 −0.701194 −1.729091

1.5 2.990777 −0.157899 −0.597468 −1.883300

Furthermore, Figure 3 represents the error profile for different velocity and magnetic
field components, i.e., f (η), g(η), m(η), and n(η). Meanwhile, a 3-dimensional profile for
the velocity components and the magnetic field components are represented in Figure 4.
Showing that flow variables are satisfying the given boundary conditions.
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Figure 3. Error profile for f (η), g(η), m(η), and n(η), with fixed Sz = −0.1, Mx = 0.1, My = 0.3,
Rm = 0.01, and S = 1.

Figure 4. Cont.
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Figure 4. 3D graph for f (η), g(η), m(η), and n(η) with Sz = −0.1, Mx = 0.1, My = 0.3, Rm = 0.01,
and S = 1.

7. Results and Discussion

In this section, the effects of the different involved flow parameters are discussed
graphically on velocity and magnetic field components. The effects of squeezing the
Reynolds numbers can be depicted from Figures 5–7. It is observed that for fixed values
of the other parameters, i.e., Mx, My, Rm, and S. It is clear that increasing the squeeze
Reynolds number (moving upper disc towards lower disc with increasing order pattern)
has a direct effect on the velocity components in both the y- and z-directions. Meanwhile,
in the x-direction, the velocity increases initially but shows a decreasing effect as η → 1.
Where, as in the case of magnetic field, the increase in squeeze Reynolds number results in
a decrease in the magnetic field component along the z-direction, while a direct relation is
observed for the y-component of the magnetic field, i.e., increasing the squeeze number
causes an increase in the magnetic field along the y-direction.

Figure 5. Impact of squeeze reynolds number Sz on the velocity component f and f ′, keeping
Mx = −3.25, My = 10, Rm = −0.75, and S = 1.
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Figure 6. Impact of squeeze reynolds number Sz on velocity component g and n, keeping Mx = −1,
My = 0.5, Rm = −0.75, and S = 1.

Figure 7. Impact of squeeze Reynolds number Sz on the magnetic field component m, keeping
Mx = −1.5, My = 0.5, Rm = −1, and S = 1.
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The magnetic field strength Mx is the dimensionless axial strength of the magnetic
field. For fixed values of other parameters, from Figures 8–11, it is observed that an increase
in Mx causes an increase in the velocity component f (n), but a decrease in the velocity
g(n) was found with an increasing magnetic field strength along the x-component. For the
velocity component f ′(n), it was observed that the initial velocity along the x-component
increased with the increasing magnetic field strength, but starts decreasing as η → 1.
Further on, a decreasing effect of Mx in the magnetic field component m can be depicted
from the figure. However, in the case of the magnetic field component n(n), a direct relation
could be seen. The impact of the magnetic field strength My is observed from Figure 12,
which is the strength of the magnetic field in the y-direction. It was found that both the
velocity g(n) and the magnetic field component n(n) decrease with an increase in magnetic
field strength, i.e., an inverse relation was observed in both cases.

To observe the effects of the magnetic Reynolds number Rm, Figures 13–15 illustrate
the relations. As can be seen from the figures, with the fixed values of other parameters,
increasing the magnetic Reynolds number caused a decrease in the velocity component f ,
but an increase in the velocity component g(n) was observed, while increasing Rm, which
led to an increase in the value of shear force due to the non-uniform distribution of the
body force. Body force accelerates near the relative core wall layer because the Lorentz
force is small near the squeezed plate (because of the current being almost parallel to
the magnetic field). For the x-component of velocity, a decrease in the velocity occurred
initially, but started increasing as η → 1, the maximum value of f ′ was observed at the
center. In the case of the magnetic field component m(n) for Rm = 0.1, the almost linear
profile was observed. Meanwhile, increasing the value of Rm, the profile became parabolic.
Furthermore, it is shown that by increasing Rm, the profile for m(n) decreases. Similarly,
an inverse relationship was observed in the case of the magnetic field component n(n), i.e.,
when increasing the values of Rm, the profile of n(n) decreases. Similarly, for larger values
of Rm, the profile becomes more parabolic.

Figure 8. Impact of magnetic field strength Mx on the velocity component f , keeping Sz = −2,
My = 3, Rm = 1, and S = 1.
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Figure 9. Impact of magnetic field strength Mx on velocity component f ′, keeping Sz = −2, My = 3,
Rm = 1, and S = 1.

Figure 10. Impact of Magnetic field strength Mx on velocity component g and magnetic field
component n, Keeping Sz = −0.25, My = 3, Rm = 0.5 and S = 1.
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Figure 11. Impact of magnetic field strength Mx on magnetic field component m, keeping Sz = −1.75,
My = 3, Rm = 1, and S = 1.

Figure 12. Impact of magnetic field strength My on velocity component g and magnetic field compo-
nent n, keeping Sz = −0.5, Mx = −0.5(for g), Mx = −1.5 (for n), Rm = −2 (for g), Rm = −1 (for n),
and S = 1.
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Figure 13. Impact of magnetic Reynolds number Rm on velocity component f and f ′, keeping
Sz = −1.5, Mx = −1.5, My = 3, and S = 1.

Figure 14. Impact of magnetic Reynolds number Rm on velocity component g, keeping Sz = −1.5,
Mx = −0.75, My = 1, and S = 1.
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Figure 15. Impact of magnetic Reynolds number Rm on magnetic field components m and n, keeping
Sz = −1.5, Mx = −0.75, My = 1, and S = 1.

8. Conclusions

In this paper, the 3-D squeezing MHD flow of viscous fluids was considered between
two parallel plates, where both the plates are rotating with the same angular velocities.
The effect of the variable magnetic field was applied and the phenomenon was modeled
using the coupled governing equations, i.e., continuity, Navier–Stokes, and the magnetic
field equation. Furthermore, by using the suitable similarity transformation, the modeled
equations of the flow phenomena were transformed to the ordinary differential Equa-
tions (8)–(11) and were solved by using the analytical technique (HAM) using Mathematica
package BVPh 2.0. The error analysis was carried out up to 10−40th order, and the effect of
different parameters on the velocity and magnetic field were observed through graphs and
tables. Given below are some conclusions made from the above analysis:

• It was observed that increasing the squeeze effect on the upper plate causes an increase
in the flow velocity along the y- and z-direction, while along the x-direction, the
velocity increase initially, but a decrease in the velocity has been observed in the upper
domain (η → 1).

• It was also investigated and concluded that, by increasing the squeeze Reynolds
number, the magnetic field component decreased the effect of the magnetic field along
the z-component, whereas the effect increased along the y-component.

• Furthermore, from the above problem, it was observed that increasing the magnetic
field strength parameter Mx, which is the strength of the magnetic field along the
x-axis, increases the fluid velocity along the z-axis; however, velocity along the y-axis
showed a gradual decrease by increasing Mx. Moreover, along the x-axis, first an
increase in the velocity component was observed, but as η → 1 the velocity started
decreasing.

• An inverse relation was observed between the magnetic field strength parameter Mx
and the magnetic field component along the z-axis, i.e., increasing the value of Mx
showed a decreasing effect in the value of the magnetic field along the z-component,
and a direct relation could be seen along the y-axis.

• Furthermore, it was seen that an increasing value of the magnetic field strength
parameter along the y-component caused a decrease in the velocity of the fluid along
the y-axis and the effect of the magnetic field along the y-axis.
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• It is concluded that for the magnetic Reynolds number Rm, a decrease in the flow
velocity along the z-axis was observed with increasing Rm. On the other hand, velocity
along the y-axis showed an increasing effect by increasing the Rm flow velocity along
the x-axis; this showed a decreasing pattern initially, but as η → 1, an increasing effect
was observed.

• It was also observed that for the magnetic field, increasing the magnetic Reynolds
number showed a decrease in the value of the magnetic field along both the y- and
z-axes.
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