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1. Introduction

Fixed points (FPs) have many applications in several fields, including topology, game
theory, artificial intelligence, dynamical systems (and chaos), logic programming, eco-
nomics, and optimal control.

After Banach [1] presented his principle in 1922, which states “There is a unique FP
of single-valued contractive type mapping in a complete metric space” the importance of
FPs increased and became more prevalent in non-linear analysis, through it, finding the
existence and uniqueness of the solution to differential and integral equations became easy
to obtain [2-6]. Moreover, a lot of fixed point problems are realized by many researchers
for single and multi-valued mapping in metric spaces, see for example the contributions
of [7-11].

The notion of cone metric spaces was utilized in 2007 by Huang and Zhang [12]
as an extension of the ideas of ordinary metric spaces. They discussed the topological
properties and some FP consequences via the idea of the underlying cone is normal. After
a year, some FP theorems were discussed without the normality of cone by Rezapour
and Hamlbarani [13]. After that, in this direction, the authors made their contributions in
obtaining the FPs under appropriate conditions in the mentioned space, these contributions
can be found in [14-16].

In 1920 the idea of fuzzy set theory was introduced by Zadeh [17]. Fuzzy set theory
has been considered, utilized, and modified in various trends, in which the one direction
of this theory is fuzzy logic, which has a lot of vital applications, like engineering fields,
business, and education. In education, fuzzy logic is used to evaluate student outcomes,
which a teacher can observe directly, for example, see [18-20]. The other direction which is
not less important than the previous one is “fuzzy metric theory”. The concept of fuzzy
metric space (FM-space) was presented by Kramosil and Michalek [21]. They proved some
basic properties of the FM-space by using the notion of a fuzzy set on metric space. Many
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fixed, coupled and TFP results in the setting of FM-space were discussed and obtained,
some references in this direction can be found in [22-24].

In 2015, cone metric properties have been combined with fuzzy sets on metric space
to obtain a new space called fuzzy cone metric spaces (FCM-spaces). This contribution
was made by Oner et al. [25], where they also studied topological properties and obtained
some FP results with applications under appropriate contractive conditions in FCM-spaces.
Moreover, through the concept of FPs, the ideas of quasi-contraction mappings, compatible
and weakly compatible mappings, coupled contractive type mappings, rational contraction
mappings and their applications to find the existence solution to some integral equations
in FCM-spaces were discussed by many authors, see, for example [26-28].

In 2006, the concept of mixed-monotone functions and coupled FPs was introduced
by Bhaskar and Lakshmikantham [29]. Via this concept, pivotal results in partially ordered
metric spaces have been driven by the same authors. There are many papers that have
been extracted in this direction, and for brevity, for example, see, [30-35].

In 2011, coupled fixed points were extended to triple fixed points by Berinde and
Borcut [36]. They presented some important results of this trend in partially ordered metric
spaces. To go deeper in this line, we will refer to the references [37-42].

The outline of this work is as follows: In Section 2, we give some elementary properties
of FCM-spaces. Some new TFP results are obtained by inserting the triangular property
with a continuous, one-one and SC self-mapping in FCM-spaces. Additionally, two exam-
ples are presented to justify our theoretical results in Section 3, and at the end, in Section 4,
the existence and uniqueness solution to a system of VIEs is proved.

2. Fundamental Facts

This part is inherited for the study of elementary properties of a FCM-space.

Definition 1. Consider Z # @. A fuzzy set () on Z is a function whose domain is Z and the range
is [0, 1].

Definition 2 ([43]). A binary relation % : [0,1] x [0,1] — [0,1] is called continuous T—norm, if
it fulfills the hypotheses below:

(1) x is continuous;

(2)  * is associative and commutative;

(3) forallec [0,1],1xe=c¢;

(4) fore, f,gh€0,1],ife < gand f < h,thenex f < g«xh.

Here, N refers to the set of natural numbers, E represents a Banach space, and ¢
represents a zero element in =.

Definition 3 ([12]). A subset Y of & is called a cone if

(1) Y # Qisclosed and Y # {0};
(2) ife,f €Rsothate+ f>0,s,0 €Y, thenex+ fL €Y;
(3) ifbothsc € Yand —sx €Y, then s = 0.

A partial ordering on a given cone Y C Eisdefinedby » < { & - €Y. x < {
refers to s < ¢ and s # (, while s < { refers to ¢ — s € int(Y). In this manuscript all
cones have a nonempty interior.

Definition 4 ([21]). A trio (Z,Q,*) is called a FM-space if Z is any non-empty set, x is a
continuous T—norm and Q is a fuzzy set on Z? x (0,00) verifying

(@) Q@ L,T)>0;

(b)) Qe l,1)=1if x=14;

() QGrt,1)=Q(, 1)

(d) Q(ro,1)+Q(0,4,x) <Q(s,l,T+x);
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(e) Q(s,4,.):(0,00) — [0,1] is continuous;
forall 0,0 € Z, T,k > 0.

Definition 5 ([25]). A trio (Z, Qc, *) is called a FCM-space if Y is a cone of E, Z is an arbitrary
set, x is a continuous T—norm and Q. is a fuzzy set on Z> x int(Y) verifying

(@) Qc(xt,7)>10;

(b)) Qc(s,0,7)=1iffx=1¢;

© Qe 4,1) = Qc(l, ,7);

() QC(%JT)—FQC(UE k) < Qc(s, 0, T +x);

() Qc(52,¢,.) - int(Y) — [0,1] is continuous;

forall 52,00 € Z, for T,x € int(Y).

Definition 6 ([25]). Let (Z, Qc, ) be a FCM-space, {* € Z a sequence {35} C Z is called
e converging to »* if @ € (0,1), T > O and there exists B1 € N so that Q. (%/3, 7, T) >
1—w, for B > B1. As another form, one can write limﬁ_>oo g = »* or g — »x*as f — oo,

e Cauchy sequence if @ € (0,1), T > O and there exists B1 € N so that Q. (%/3, %a,T) >

1-— w/for,Bra 2 ﬁl/
*  (Z,Qc,*) complete if every Cauchy sequence is convergent in Z,
*  Fuzzy cone contractive (FCC) if there is ¢ € (0,1), justifying

1 1
— 1< =—— -1, fort >0, p>1
Qc(%ﬁr%ﬁJrer) Q(Qc(%ﬁlz%ﬁ/T) ) J P

Definition 7 ([25]). Assume that (Z, Qc, ) is a FCM-space. The FCM Q. is triangular if the
inequality
1

1 1
_ 1< -1+ | = -1,
QC(%Ing) B (QC(%/U/T) ) (QC(UIKIT) )
holds, for all s¢,¢,0 € Z, for T > 0.

Definition 8 ([25]). Assume that (Z, Q.,*) is a FCM-space and 6 : Z — Z. A mapping 0 is
called FCC if there is ¢ € (0,1) so that

1 1
- 1< - - .
0c(072,60,7) 1_Q<QC(%,E,T) 1>,V%,€€Z,forr>>19

Definition 9 ([29]). A pair (3¢, £) is called a coupled FP of the mapping ® : Z x Z — Z if
O(s,0) = xand O(L, ») = (.

Definition 10 ([36]). A trio (3,¢,0) is called a TFP of the mapping © : Z® — Z (where
Z3=Z7ZxZxZ)if

O, l,0) =3, O, 0,%) =Land O(c, 3, 0) =0

Definition 11 ([44]). Let (Z,d) be a metric space. A mapping 6 : Z — Z is called sequentially
convergent if we have, for every sequence {x, }, if {0x, } is convergent then {x,} is convergent. 6
is called subsequentially convergent if we have, for every sequence {x, }, if {6x,} is convergent
then {xy } has a convergent subsequence.

3. Main Theorems

Now, we are ready to present our pivotal results.
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Theorem 1. Assume that (Z, Q., *) is a complete fuzzy cone metric space (CFCM-space), such
that Q. is triangular and © : Z% — Z is a given mapping. Let 0 be a SC, one-one and continuous

mapping, that is, 0 : Z — Z satisfying
1
Qe (9@(%, %, 5),00 (z,?,?);r)

1
< - -
= aH(QC(Q%,Gé,T) 1)
1

-1

‘lez

1

1 _

_(QC(G%,G(@(%,%%),T) _1> " (Qc(eﬁ,e@(e,z,'é),r) _1)_
i 1

e _(QC (9%,9®(£,Z,Z),r) - 1) i <Qc(9€/9@(% %,7%),T) 1>

4

)

forall »,¢, 2,0,5,0 € Z, for T > O and ayy,ax,a33 € [0,1] with ayq + 242 + 2a33 < 1. Then
©® has a TFP. Moreover, if 0 is sequentially convergent, then for every ¢y € Z, the sequence {@g )

converges to this TFP.

Proof. Let 9, 5%, 3% € Z, we build a sequences {5}, {35} and {323} in Z such that

%,BJrl = @(%/3, 5«\(/3, ;f‘g), 52,34,1 = @(2/3, JN{lg, %/5) and ;f‘ngl = @(;t‘g, %’3, 52[3), V‘B Z 0.

From (1), for T > ¢, we obtain

1
Qc (055, 05¢641,7)

-1

1
Qe (00 (5051, 3251, 32p-1), 00 (505, 32, 525), T)

1
a -1
H (Qc(g%ﬂ—lze%ﬁ/'f) )

-1

1 1
+a — — -1+ —— -1
22 <Qc(9%ﬁ—l/9®(%ﬁ—1/%/3—1/%’3—1)/1') ) (Qc (9%ﬁ’ 9@(%[3, %ﬁ’ %ﬁ),T) )1
+a ! -1]+ ! -1
3 QC(G%ﬁ—l/GG)(%ﬁ/ 2/3, JN{ﬁ),T) Qc (9%/3, 9@(%{3 1,52[3 1,%[3 1),’[)

1
i <Qc(ezﬁ1,9%ﬁ,r) _1> a2 (Qc(e}fﬁ 1, 0525, 7) 1) * <QC (03¢5, 025117 4)]
—1 -1
<Qc(9%ﬁ 1,051, 7) ) " (Qc(G%ﬁ,Q%ﬁ, )]
-1+ -1
<QC(9%ﬁ 1,9%‘5, ) (Qc 9%‘5 1’9%ﬁ' ) <Qc 9%‘3,9%/3+1T) >]

+a
-1
<Qc (9%13 1,9%ﬁ, ) ( 9%‘5, 9%/5+1, >‘|

this implies that

+€l33

+€l33

1 1

(1 —dyy — 1133) ( ) - 1) < (all +ax» + 1133) (

Qc (G%ﬁ, 9%/3+1, T

QC (9%‘571/ 9%’8’ T)

_1>,
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Thus, we can write

IN

(1111 +ﬂzz+1133> 1 1
1—ax —as3 Qe (05¢5—1,05,7)

1
—1), 2
p(QC(G%ﬁl,exﬁ,r) ) @

< 1. Analogously, using (1), for T > ¢, we get

1
-1
<QC(9%’3,9%/5+1,T) )

1111 +axptass

where p = S22

1 1
—-1< —1].
Qc(05¢5—1,0,7) =P <Qc (052,051, 7) ) )

It follows from induction, (2) and (3) that

! 1< ! —1
Qe (0525, 05251, 7) = P\ Qe(0p_1,055,7)

1
< o2 -1
= F <QC (05452, 0525 1,7) >
< .
< pfg(Qc(l)—1>—>Oas,B—>oo, (4)

0s¢9,05¢1, T
this implies that the sequence {6¢3} is a FCC. Therefore

ll-IIl QC 9 ,9 +1s T — 1, f()I T 19.
Agaln uslng (1), f()r T >> 19, we haVe

1
Qc (95’\(,3, 92/3+1, T)
1

_ _ _ 1
Qc (00 (5251, 3251, 22p-1), 00 (525, 32, 725, ), T)

a 1 —1
" Q07 1,052,7)

-1

IN

1 1
~+a — — — —1]+ — —— -1
2 <Qc(9%/31,9®(%/51,%/51,%/51),T) > (Qc (0325, 00 (325, 328, 7¢5), T) )1
+a L -1 L —1
1\ Q (03251, 00 (523, 328, 23, T) Qc (072,00 (3281, 5251, 75-1), T)

1
- 1 1 1
= <QC(92[;1,9%!5,T) > o (QC(G%ﬁ 1,exﬁ, ) * (QC (032, 0525 17) >]
1
= — 1]+ —1
(Qc (0325_1,032641, T) > <Qc (6325, 0523, 7) )]
1
a — — —1]+a -1+ -1
11<QC(9%5_1,9%‘5,T) ) 22 (QC(G%‘B 1,6%‘5, ) <QC 6%‘3,9%}94’_11’) )]

1
-1 -1
<QC(63\£’3_1,62‘3,T) ) + (Q (6%,3’0%,5-"-1' >‘|

+a33

IN

‘|‘6133
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By simple calculations, we get

1 1
~ ~ -1 S ~ =~ -1 s (5)
Qc (072, 072641, T) P (Qc(9%/3—1,9%/3,T) )
where p is the same as in (2). Analogously, using (1), for T > ¢, we get

1 1
—-1< —-1].
Qc(0725-1,07,7) =F <Qc (0325_2,0325_1,7) ) (©)

It follows from induction, (5) and (6) that

! 1< ! _1
Qc(0525,0525.1, 7) = P\ Q021,075 7)

1
< PP — — -1
s P <QC(9%[32’9%.51'T) >
<
1
S
= f (Qc(e%o,efq,r) 1>%°asﬁ%°°’

this leads to the sequence {6545} is a FCC. Therefore

li 0325,0525.1,T) =1, f 0.
Jim Qc (052, 03241,7) or T >

Similarly, one can show that the sequence {637} is a FCC. Then

/Slgl;lo Qc (9%& 6%‘5+1,T) = 1, for T > 0.
Now, for ¢ > ¢ and for T >> ¢, we get

1
Qc (054,054, 7)

1 1 1
< 1]+ —1]4+..+ ( — 1)
(Qc(e}fﬁ/@%ﬁﬂ,T) ) <Qc (05241, 05¢642, T) ) Qc(05¢5-1,05, T)
1 1 1
< o —1> + ﬁ+1<—1) - 0’l<—1>
= F (ch%o,em,r) "\ Qel00,01,7) # \Qel0,050,7)

1
_ (B o1 ~
(07 +07* 4t )<Qc(9%0,9%1,7) 1)

= o (QC( ! )1>%0asﬁ%oo,

1—p 039,01, T

this shows that {6¢5} is a Cauchy sequence and we have that

lim Q. (0sg,05,7) =1, for 7> 0.

B,o—0c0

By following the same scenario it can easily be proved that {653} and {03} are
Cauchy sequences,
ﬁ,lgigloo Q. (9?{/5,92(7, T) =1, fort> 9,
and
lim Q. (07@,6%(7, T) =1, fort> 0.

B,o—00
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The completeness of Z leads to there exist a,b, ¢ € Z such that 05 — a, 9213 — band
0325 — cas B — 0. Since 6 is SC and {55}, {323} and {3 } have convergent subsequences,
E‘ten there exisi a,b,c € Z and {0551}, {03251) } and {0325(1) } in Z so that 55y — 4,
#g(k) — band 35 — ¢, as k — oo, respectively. The continuity of 6 implies that

lim 6 = 0a, lim 0325 = 0band lim 03¢, = fc.
Jim 05) = 02, Jim 635 = 6band lim 9525) = fe

From (1) and (4), for T > ¢, we have

1
Q.(00(5, 52, 3),03,T)
1
< —— — — -1
(QC(9®(%, 5, %),00 (31,381, 54-1), T) )
+ ! ~1
Qc (00 (351, 5251, 325-1), 00 (54, 525, 525),, T)
+ ! ~1
Qc(9®(%‘5/ J/%’B, JN{,B),G%,T)
1
< _
< an <Qc (9%,9%571&) 1)
+a ( L - 1> + ! -1
21\ Qc(05,00 (5, 32,32, T) Qc (051,00 (551, 5251, 5251),T)
+a L 1)+ ! ~1
» Qc (652,60 (351, 5281, 55-1), T) Qc(0525-1,00(5, 2, 32), T)
1 1
+ 1|+ — ~1}.
<QC(0%‘3,9%‘5+1,T) ) (QC(6®(%,5/ %/5, %ﬂ),@%,’l’) )
<

1
a -1
H <Qc(9%,9%ﬁ—1,'f) )

1 1
-1 -1
(QC(G%,(J@(%, %,%),7) ) - (Qc(f’%ﬁ—hf)@(%ﬁ—l,?ﬁ—l,%ﬁ—l)ﬂf) >]

+022

+as3

1 1
~1 ~1
(Qc(9%19®(%/§—1/2/5—1/%/5—1)/7) ) + (Qc(f)%ﬁ_l,g@)(%, 2, %),T) )]
B 1 _ 1 _
P (QC(G%OIQ%er) 1) * (QC(QG)(%ﬁ, Ef\t‘g, %ﬁ),@%, T) 1)

this yields
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IN

%

1

1
Qc(g@(%, JAf, J?), 9%, T)

ai 1 ax 1
—1]+ — — —1
1—a2 \ Qc(6,6x5_1,7) 1 —a2 \ Qc(0505-1,00 (21, -1, %6-1),T)

a33

1 1
+1 — an» l(QC(G%,G(*D(%‘B_LJ/Z‘B_L%‘3_1),’1') B 1) + <Q5(6%5_1,6®(%,%,%),T) B 1)]

p
+-L ( ! = 1) - L. —1
1 —axn \ Qc(05, 05, T) 1—an \ Qc (00 (s, 325, 725), 05, T)
Oas B — oo.

Thus, we have Q. (00(, 7, ), 0, T) = 1, this implies that 00(s, 7, ) = 0. Anal-
ogously, one can obtain that 00 (3z, 3¢, ) = 03 and 603z, 5, 3r) = 03¢ Since 6 is one-one,
then ©(, 2, 32) = 5, ©(3z, 7, ) = 3z and O(3¢, ¢, x) = . This leads to the point (s, z, )
is a TFP of the mapping ©.

For the uniqueness, consider (¢, 521, 3¢ ) is another TFP of © so that @ (¢, 31, 361) =
1, @(;ﬂl, 321/ %1) = %1 and @(%1, 1, Ql) = %1. Using (1), for t > ¢, we get

1
= ~1

S
Q,;(Q%,Q%l,’f) QC(GG‘)(J{,2,%),9@(%1,21,;41),1’)

IA

1
" (chmem,r) B 1)

1 1
a2 Kchz,e@(m %9),10 1) - (Qc(9%1,9®(%1,%1,%1),f) B 1)]
1

1
a3 [(QC(G%,G(B(%L%,%),T) - 1) + (QC(6%1,6®(%, 2,5),1) 1)]
= (a1 +2a33) (1 - 1>
Qc(05¢,05¢, T)

= (a1 +2a33) L -1
- TSI Q.00 (5, 3, 52), 00 (341, 54, 741 ), T)

< (a1 +2a33) {all <Q(9%19%1T) - 1)

+”22<(Qc(e%,e@(1%, %,5),7) 1) i (Qc(f)m,f’@(;ﬁh%)fﬂ R 1>)
+“33<(Qc<9%, 9@(;,21,%1»@ - 1) i (Qc<9%1,9®t% %3),7) 1>)}
= (a1 + 2a33) [(ﬂn + 2a33) (W - 1)]

1

2

= - — <.
(a11 + 2a33) (QC(H%,9%1,T) 1> <

1
B -~
(a11 + 2a33) (QC(G%,G%l,T) 1) — 0as f — oo.

IN

Hence, Q. (0,03, 7T) = 1, this implies for T > ¢ that s»x = 5. By the same manner,
we can find that 32 = 371 and > = . This finishes the proof. O

Corollary 1. Theorem 1 is still valid if we replace the contractive condition (1) with one of the
following:

(i)  forall »,¢, 2,2, %,Z € Z, for T > 0, we have
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1

Qe (9@(;{, %, %),9@(@,?]),r) !

1 1 1
< a —— —1)+4a ( — —1>—|— — -1 ’
1 (QC(G%, 67,7) > = [ Qe(0,00(2, 7, %), 7) (Qc (e,00(0,2,7),7) )]
where a1, a € [0,1] with a1y + 2axp < 1.
(ii) forall 5¢,0,5¢,0,3,0 € Z, for T > 0, we get
1
— -1
Qe (9@(%, %,3%),00 (e, 7, e),r)
< 1

1 (QC(B%, 00, 7) 1) +as

where a1y, a3 € [0,1] with agy + 2a33 < 1.
(iit) forall 5¢,0,52,0,3¢,£ € Z, for T > 0, set 0 = I (where I is the identity map) and neglect the
SC property, we obtain

1 1
(QC (000(0,2,0).7) 1) (et 1)]

1
Qe (@(%, %,3),0 (e,?,’é),r)
1

= m (wu B 1)
+a ( ! - 1) + !
2\ Q00425 7) Q(0(01,7),7)

-1

-1

~

1 1
+as3 P 1|+ ( ~—— — 1)
(QC (=0(027),7) ) Qe(t,0(x, 7, 3),7)
where ay1,a11, 433 € [0, 1] with ayq + 2ax + 2a33 < 1.

To strengthen Theorem 1 by fulfilling its assumptions, we will give the following
example:

Example 1. Consider Z = {0} U {3, %, 3 wtandlet Qc 1 Z% x (0,00) — [0,1] be defined by

T

T d(z 0 where d(s2,0) = |sc—{|, Vae,0 € Z, T > 0. @)

Qc(s,¢,7) =

It is clear that Q. is a triangular and (Z, Qc, *) is a CFCM-space. Define the mappings
@:73 = Zand0:7Z — Z by

(0,0,0), iff=8=h=0,
O(f, g h) = .
(f.8&h) {+sit+3 iff=1¢=1n=1vrst>2

and

[0 iff=0,
G(f)—{ 1 iff:%,VrEZ,

T
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respectively. Based on (7), for T > 0, we get

EeenR
- Lo D)

1 1
(r+s+t+3)r+s+t+3 (u+v+w+3)u+v+w+3

-1

<

, ®)

1
T

forallv,s, t,u,v,w > 2. Assume that

1 1 <L E_ 1 ©)
T\ (r4s4t43) M3 | = 5T (r s+ t43)FsHH3 )

Hence by (8) and (9), we obtain

1
a(eo (L) ee(h b))
< (¢ Trr) - (- )
T ST\ (rst43) TS u' (utow 4 3) T
_ 1 <1+1_ 1 ) 1 )
T|\ 5" 5" 10(r+s+t+3)r+5“+3 10(r+s+t+3)r+s+t+3
_<1+1_ 1 B 1 )\
Sut  5u 10(u+o+w+3)" T 10(u+ v 4w 4 3) TV
_ol g1 <1_ 1 - 1 )
ooThr ol 57 10(r+s+t+3)T T 10(r 5 £ 43)FHH
1 1 1
N <5M” S 10(u+o+w+3) T 10 +v+w+3)“+v+w+3>
o1 1(1_ 1 >+<1_ 1 )
-~ |57 bu*|  T|\10r 10(r+s+t+3)’+5+t+3 10uH 10(u+v+w+3)u+v+w+3
+< 1 1 >+< 1 1 )
10" 10(u + v +w + 3)*T0He 3 10u"  10(r+s+t+3)
o1yt 1<1_ 1 >+<1_ 1 )
- 5t u*| 10T |\ 7" (r+s+t+3)”s”+3 i (u+v+w+3)u+v+w+3
1](1 1 1 1
107 (1’7_ (u+v+w+3)u+v+w+3> + (Lt”_ (r+s+t+3)r+s+t+3> .

hence, we have
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a(ve(L L) 0L 1)) |
1 1
(s COnOEN
0\ o (o(2) v 11).7) a(o() et h) ) )]
1 1 1
"o _(QC@(;),@@(;,,;,;J),T) ‘1) ' (Qc@(;),g@@,g,w ) "

Thus, inequality (10) fulfills all assumptions of Theorem 1 with a;1 = %, ayy = a3z = 11—0 and
(0,0,0) is a unique TFP of ©.

Theorem 2. Suppose that (Z,Qc,*) is a CFCM-space, which Q. is triangular and © : Z3 — Z
is a given mapping. Let 6 : Z — Z be a SC, one-one and continuous mapping so that

1
Qe (9@(%, %, %),9@(@,@,’2),7)

1
< -
= all(Qc(G%,(M,T) 1)
1

1
+iz [(QC(G%,9®(%, %,3),T) 1) " (QC (94,9@(g,2,?),r) - 1)]

-1

1
+ass (Qc(eé, 00(x,%,2),7) * Qc (04,00(4,2,7), 7) - 1) , (11)

forall 5, ¢, 2,0,3,0 € Z, for T > O and ay1, ax, a3z € [0, 1] with ayq + 2ax + 2az3 < 1. Then
©® owns a TFP. Moreover, if 0 is sequentially convergent, then for every > € Z, the sequence
{ @g s} converges to this TFP,

Proof. Let », 2, 59 € Z, we form a sequences {3}, {323} and {34} in Z so that
%ﬁ+l = 8(%[3’ Qﬁr %'3), 2ﬁ+1 = ®(;fﬁ/ %ﬂr %[;) and %‘BJ’,l = @(;tﬁ, %,B/ %‘B)/ VIB Z 0.

Using (11), for T >> ¢, we have
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1 -1
QC(9%5,9%5+1,T)
Qe (00 (551, 5251, 325-1), 0O (3¢5, 525, 525), T)
1

< a -1
B “(Qc(f)%,g_l,exﬁ,r) )

+a ! —1|+ ! -1

2 Qc(05¢5-1,00 (551, 231, 3-1), T) Qc (05,00 (3¢, 725, 23), T)

1
o (QC (03¢5, 00 (3¢5 1,725 1,725 1), 7) * Qc (0725, 00 (525, 25, 725),7) 1)
1
= ap (Qc (9%,5—1,9%/3/1') - 1) + ax
+a33< L - 1)
Qc (528, 05, T) * Qc (0545, 052811, T)

= a 1 —1]+4a L -1+ L -1
" Q055 1,055, 7) 21\ Qe (051,055, 7) Qc (6525, 05¢5417)

1
+a —1].
33<Qc (03¢5, 05511, 7) )

After simplification, we obtain

! —1) 4+ L ~1
Qe (05¢5—1,05,7) Qc (05, 08117)

! 1< ! ~1), (12)
QC (9%’3/ 9%ﬁ+1lr) QC (9%,3—119%/5/ T)
where a = % < 1. Again, using (11), for T > 9, we see that
1 1
1<a “1). (13)
Qc(05¢5-1,05,7) (Qc (652,051, 7) )

It follows by induction, (12) and (13) that

! -1 < « ! -1
Qc(G%ﬁ,G%‘B+l,T) - QC(G%B,l,G%ﬁ,T)

5 1
o -1
Qc (05052, 05051, T)

IN

IN

(1 .
n (QC(9%0,9%1,T) 1)%0asﬁ% 3 (14)

this leads to {6¢5} g~ is a FCC and we have that

li 03¢3,0 ,T) =1, f 9.
ﬁgr;o Qe (05¢, 052641, 7) or T >

Again for the sequence {33}, by (11), for T >> ¢, we get
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— 1A -1
Qc (072,032,411, 7)
Qc (00 (5251, 5251, 225-1), 0O (325, 525, 25, ), T)
1

< a — — —1
- (Qc(em_l,e%ﬁ,r) )

+a ! —1|+ ! -1

2 Qc(0525-1,00 (3251, 731, 1), T) Qc (072,00 (52, 725, 73), T)

1
s (QC (035,00 (3251, 751, 75 1), T) * Qe (055,00 (35, 325, 75),7) 1)
1
- m (Qc(eﬁﬁ_l,eaﬁ,r) _1> iz
+a33< — — 1 — — — 1)
Qc (052, 0328, T) * Qc (0328, 0523, T)

1
_ 1
= <Qc(eaﬁ1,92ﬁ,r) ) T+

1
+a — —1].
33<Qc (0325, 052511, 7) )

Hence, one can write

1 1
-1 -1
(QC(GQﬁ_l,Q;}ﬁ,T) ) + <QC(952[3,9J/2/3+1T) >]

1 1
-1 -1
(Qc(eﬁﬁl/ej’\fﬁ; T) ) + <QC<9J/>{,B’ 92/3+1T) >]

1 1
—— 1< — — -1,
Qc (072, 03241,7) (Qc (0325_1,0328, T) )
where « is the same as in (12). Again, from (11), for T > ¢, we get

L —-1<a 1 -1
Qc(0725-1,07,7) — \ Qc(0325_2,0525_1,7) '

It follows by induction, (15) and (16) that

! -1 < « ! -1
Qc(GQﬁ,GQ‘BJ’,l,T) - Qc(Gﬁﬁ,l,GQﬁ,T)

5 1
o — — -1
Qc (0525, 0525_1, 7)

IN

1
B
o — 1) —0asfB — oo,
(QC(G%O,G%l,T) ) p

IN

therefore, the sequence {03z } 4> is a FCC,

li 035,0%5.1,7T) =1, f 9.
ﬁgr;o Qc (052,032,411, 7) or T >

Similarly, one can illustrate that the sequence {63} 5> is a FCC,

/511330 Qc (6525, 652541, 7) = 1, for T>> 9.

(15)

(16)
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IN

IN

Now, for ¢ > ¢ and for T >> ¢, we get

1

-
QC (9%[3/ 9%(7/ T)

1 1 1
-1+ 1) +..+ —1
(Qc (03¢5, 050541, 7T) ) (Qc(()}fﬁ+1/9%ﬁ+21 7) > (Qc(9%01,9%a, T) )

1 1 1
e(_ - p+1(_ + o—1(_ X
« (Qc(9%0,9%1,T) 1) e (Qc(9%0,9%117) 1)*"*"‘ <Qc(9%o,9%1,’f) 1)

1
B B+1 c—1 e
(zx +aPt L ta ) (QC(G%O,G%LT) 1>

of ! —1) —0asp — o
1—a\ Qc(05q,05, 1) P g

this proves that {6¢ } is a Cauchy sequence and we have that

lim Q. (0sg,05,7) =1, for 7> 0.

B,o—r00

By following the same manner it can easily be showed that {6323} and {65} are also

Cauchy sequences,

ﬁ,laigoo Qc (072,052, 7) =1, for T > 0,
and

ﬁ,lgigloo Qe (9%/5,6%0, T) =1, fort> 0.

The completeness of Z leads to there are 4,b,c € Z so that O — a, 0?{/5 — b
and 03¢5 — cas B — co. Because 6 is SC and {5}, {344} and {3} have convergent
subsequences, then there are a,b,c € Z and {0y}, {0323(1) } and {05%5;) } in Z so that
Mg(k) — 4, #p(x) — band 54) — ¢, as k — oo, respectively. The continuity of 6 implies
that

From (11) and (14), for T > ¢, we get
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1
Qc(00(5, 72, 5),0,T) !
e e )
Q¢ (9@(%, %, %),0@(%5_1,%5_1,%5_1),1’)
R
Qe (60 (5¢p-1, %1, 75-1), 00O (505, 325, %) T)
Q. (9@(%,3, 528, %/3),9%, )
1
s m <QC (05¢,05¢5_1,7) B 1)
+a ( ! == —1)—|—< L ——— —1)1
Qc(05¢,00(5, 32, 32), T) Qe (05¢5-1,00 (5¢5_1, 231, 33-1),T)
+as3 ( —— ! = — - 1)
QO (9%5,1,96)(%, %, %),T) * QO (9%571,9®(%ﬁ,1, 51, %ﬁ—l)/ T)
+( N 1> s ( LR 1>
Q¢ (9%/5,9%/3“,'() Q¢ (9@(%5,%5,%5),9%, T)
1
s (QC (05,0025 _1,7) 1)
+an < ! == —1)—1—( L ——— —1)]
Qc(052,00(5, 72, 5),T) Q. (9%13,1,9@(%/3,1,%/3,1,%/3,1),T)
B e
Q¢ (9%5,1, 00(s, 32, ), T) * Q¢ (6%/;,1, 9@(%,3,1, p1, %/5—1)/ T)
1 1
o ﬁ(Qa(f)%o,@%LT) B 1) " (Qc(e@(%ﬁ, %5, 525), 650 T) 1)'
After simplification, for T > ¢, we obtain
1 —
Qc(00(5, 72, 32),0,T)
= 9 i12122 (QC (05, Gl%ﬁl,r) a 1) 1 izflzz (Qc (9%/51,99(%/311,%/31,%/31)17) - 1)

ass 1
+ —— — — -1
1—ay ( Q. (9%,3,1, 00(s, 3, ), T) * Q¢ (G%ﬁ,l, 9@(%13,1, -1, %ﬁ—l)/ T) )

oP ( 1 ) 1 1
+ ~1)+ e 1
1 —axn \ Qc(050,05,T) 1—a2 \ Qc(00(sp, 72, 325), 0, T)
— QOasp — co.

Hence, we have Q.(00(s, 3, 3),0s,T) = 1, this implies that 00 (s¢, 3z,3¢) = 6.
Similarly, one can obtain that 00 (3z, 3z, ) = 03 and 003z, », ) = 03¢. Since 0 is one-one,
then ©(s, 32, 3¢) = 3, O(3¢,3¢, ) = 3 and O(3, 5, ) = . This implies that the point
(5, 3, 7) is a TEP of the mapping ©.

For the uniqueness, let (3¢, 371, 771 ) be another TFP of ® so that @ (s, 711, 37) = 31,
O(321, 511, 511) = 311 and O(3¢q, 31, 311) = 3¢1. Using (11), for T > ¢, we have
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1 4 - L -1
Qc(05, 050, 7) © Qe(00(5, 32, 52), 00 (501, 51, 31, T)
1
S = (QC(G%r 9%11T) - 1)
1 1 1 1
a2 [(Qc(ex,e@(m, %),1) ) * (ch%l,e@(m,%l,%l),r) - ﬂ

1
-1
+a33(QC(GJ{l,G@(%,f{,%),T)*QC(9%19®(%1,21,%1),T) )

= (a11 +4a33) (QC(Q%}G%L) - 1)

1
= (o +as) <Qc(6®(z 7,7),60(a,71,5),T) 1>
X 1
< (an +as) (QC(Q%(MT) a 1) =
1
< (ﬂ11+‘133)ﬁ<(QC(49;4,9;{1,~() _1) TompT e

Hence, Q. (05,0511, T) = 1, this implies that, for T > 8, >z = 5. By the same manner,
one can obtain 3z = 37 and 3z = 3. This completes the proof. [

Corollary 2. Theorem 2 remains true if we replace the hypothesis (11) with one of the following
hypotheses:

(i) forall 5,0, ?:,z, %,Z € Z, for T > ¥, we have

1
o) (e@)(%, %,5),00 (z,?,?),T)

-1

1 1
< —_—— — 1)+ — -1,
o < Q. (02,60, 7) ) 3 ( Qe (06,60 (£,1,7),7)  Qe(01,60(52, %, 7),7) )

where ayy,a33 € [0,1] with a1y + 2a33 < 1.
(i) forall ¢,0,3¢, 0,3, 0 € Z, for T > ¢, put 0 = I and ignore the SC property, we get

D CEEEr GRS
= <Qc L, T )
1 1
oz (Qe(%,@(%,%,%),f) _1) " (Qc(é,®(€,?,2),r> _1>]

1
e (Qc(ﬂ,@)(;{, %,3),7) % Q:(4,0(0,1,7),7) - 1)’

where ay1,a11,a33 € [O, 1] with ayq + 2ax + 2a33 < 1.

In order to support Theorem 2, we present the following example:
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Example 2. Assume that all assumptions of Example 1 hold. Define the mappings © : 73 — Z,

0 : Z — Z and the function % : [0,1] — [0,1] by
0,0,0),

o(f,8,h) = { ( 1 :

r+s+t+17

ff=g=h=0,
7St >2,

l:ff:%,g:%,h:

{0, iff=0,
G(f)—{ Loiff=1 vr>2,

and x(A, ) = A9, forall A, ¢ € [0, 1] respectively. Using (7), for T > 8, we get

Q:(60(3, 1 1)
= (0053
T t

(r+s+t+1)’+s+t+1 o (u—}—v—i—w—i—l)”ﬂﬂwl

(17)

7

1
T

forallv,s, t,u,v,w > 2. Consider the assumption (9) holds, then by (17), we can write

1 2 1
)r+s+t+l T\ u )u+v+w+l

(ﬂ_(7+5+t+1 ut (u+o+w+1
1.1 1 B 1

5" 5r" 10(r+s+t+1)r+s+t+1 10(r+s+t+1)r+s+t+l

1 >‘

1 1 1
( 10(u+v+w+ 1) 10w+ 04w+ 1) OO
1 )

IA

1 1
(51” 10(r+s+t+1)r+s+t+l 10(7+s+t—|—1)r+s+t+1
1 >

IN
\

1 1
( 10(u+v+w+1)u+v+w+1 10(u +v+w+1)u+v+w+1
1 1
T B yutotwtl

1 1 1
T <10r’ B 10(1’—|—s—|—t+1)’+5+t+1 100" 10(u+o+w+1
+< 13 3 B 1 )
107" 10u* 10(u+v+w+1)”+v+w+l 10(7+s+t—|—1)r+s”+1
1 1 1 1 1 .
5 5ut <1O”r - 10(7’+S+t+1)’+5+t“> * <10u” B 10(u+v+w+1)”“’+w+1>‘
3 1 )

1 3
(10r7 ~ 10ut 10(u+v+w+1)u+v+w+l o 1O(T+S+t+1)r+s+t+l

1

1 1 1
T

5 But

1 1
T T

IN

1
T
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IN

It is easy to check

1 3 3 1
J— _|’_ _

10 10u* 10(u+o+w+ 1)u+v+w+l 10(r+s+1t+ 1)r+s+t+3

1
<

(10u” —10(r +s+t+ 1)””*“).(101&! —10(u+o+w+ 1)M+v+w+l>
1

(lOu” —10(r+s+t+ 1)”5“*1) * (]Ouu _10(u+o+wt 1)u+v+w+1>

Therefore,

1 1 1 1
(101” B 1O(T+S+t+1)r+5+t+1> + <10u“ - 10(u+v+w+1)u+v+w+l>|

1

<10u” —10(r+s+t+ 1)r+s+t+1> * (10u” —10(u+v+w+ 1)u+v+w+1)

Thus, all requirements of Theorem 2 are fulfilled with a1 = %, Ay = az3 = 11—0 and (0,0,0)
is a unique TFP of ©.

4. Solving a System of Integral Equations

This part is devoted to applying Theorem 1 to study the existence solution to the
system of Volterra integral equations (VIEs). The solution of the system of VIEs depends
on finding a unique TFP of the mappings ® and 6 which are described in (20) to support
our theoretical results.

Assume that Z = (CJ[0,1],R) is the space of all real continuous functions on [0, 1].
Define a supremum norm on Z by

||| = sup |s(r)], Vs € Z.
re(0,1]

Letd : Z x Z — R be a metric defined as

d(s,0) = sup |2(r) —£(r)| = || — ]|, V3,0 € Z.
rel0,1]
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Because * is continuous T—norm, we have x(A,9) = A9, for all A, 9 € [0, 1]. Define a
fuzzy metric Q. : Z x Z x (0,00) — [0,1] by

Qc(s,0,1) = d(s,0) = || —¢||, (18)

T
T4d(s, L)’

for s, € Z and for T > 9. Clearly Q. is triangular and (Z, Q,, ) is a CFCM-space.
Consider a system of VIEs as follows:

(0) = 1(0) Ofl (0 1, 2(1))p,
2(0)=§2(0)+b}02(0/%2(ﬂ))d% (19)
(o) = 3(0) (joe,(a,ww))du,

where ¢ € R, and &1, {2, 83 € Z. System (19) will be considered under hypotheses below:
Hypothesis 1 (H1). The functions ; : [0,1] — Rand Q);: [0,1] x [0,1] xR = R (i =1,2,3);

Hypothesis 2 (H2). for », 67,% € B, ?4,?, x € Cand 3,¢,% € D, where B,C,D C Z, we define

(o, p, (32,52, 52) (n))dp

1
J
01
Cuaplo) = beZ(‘T (00 (w)dp o €[0,1];
1
J
0

H( ?y%%) + gl) N (CE},E,Z) (o) + Cz) H AQ<B(%,%,%)'C(M,Z))
H(Cm +82) = (Diuen (@) + ) | < A0(Czp D)
Bl 25 T61) = (Dizn (@) + @3) H AQ<B(%,;?,%)r D(K,f,z))
where
B — Cell,
7 B — B + Hc

&

+HB o)+ Ba — ch)

%

(B(mw)/ (eu))‘max (

(It

similarly Q(C(fﬁ)’D(K?f)) and Q( (56,5,5)7 D(Kgg))

where BE‘%%%),C(MO D( 7 Bz, Cg,, De;, By, Cy, Dy € Z.

+ Ce, —

Now, we state and prove our main theorem in this part.

Theorem 3. Via hypotheses (Hy )—(H3), system (19) has a unique solution in Z.
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Proof. Define operators @ : Z> — Zand 6 : Z — Z by

@(%, %, ) = B( 57) +¢1, 9(%) = B,,
G)(K K, K) (Kf;c +CBI 0(x) = Dx.
Therefore

00(x,%,%) = 0(B( 5,2 + &1 ) = Br,, ., + By = Bl,.5. + B, (21)
O(1,7,7) = 0(Cy 77 +&) =,y +Car = Clyzy + Cor (22)

and
00(x,,%) = 0(D(czz) + &) = Dby, + Des = Djzr) + Desy (23)
where BF%%%) BB (27) CE}@E) Cec ih and D(KKK) = DD(x,m' Now, we shall finish the

proof by the following cases:

G) IO (B(%W,), C m)) = ||B,, — Cy||, then from (18)~(20) and (22), we get

1 ~ o~ o~ ~
PR G I e Sl

A
_ ;Q<B(%,a,;7)rc(é,?,?))
A

A 1 .
- Hameas 1)

for T > 4, and for %,Z, € B, Q,Z € Cand 7,/ € D. Hence ®© and 6 fulfills the
stipulations of Theorem 1 with 417 = A and a3 = a33 = 0in (1). Therefore VIEs (19)
have a unique solution in Z.

(i) If

) + B — B + HC( 7 T Ca =G

Q(B(%,@,;)rc(e,?,?)) B (

it follows from (18)—(20) and (22), we get

1
Qc(60(x, 7,2),00(,1,7),7)

- v (i)
|

s T B — B%H + Hc’(‘m) +Cs,—Cy

-1

= ;Q( (3252 C i)
A
- ¥ |
1 1

A
B (QC(G%,9®(%, z0,0 Q.(6,60(¢,2,7),7) - 1)'

for T > 9, and for %,Z, € B, ;f,Z € Cand 5,¢ € D. Hence ® and 6 justify the
assumptions of Theorem 1 with a1; = a33 = 0 and a3 = A in (1). Thus, VIEs (19)
have a unique solution in Z.
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(iii) If

C

,32,5¢)7

Q(B(

(f,u (Hc*zw FCo =B HBQ?ﬂ)jLB@ _Cf“>’

it follows from (18)—(20) and (22), we get

1
Qc (9@(% %, %), 6®<€ 7 E),T)

-1

ST QC(QK,GG)(E,/@,Z),T)_1+QC(96/9®(%,2,52),7)_1 '

,u]

for T > ¢, and for %,?, € B, 2,27 € Cand 7,/ € D. Hence O and 6 satisfy the
hypotheses of Theorem 1 with a1 = a2 = 0 and a33 = A in (1). Thus, VIEs (19) have
a unique solution in Z.

Analogously, if we take in our consideration the definitions of (2 (C (iTy D(K,’K\f)) and

Q (B (56,3,5%)7 D(Kr,@f)) and apply the same steps (i)—(iii), we conclude that the system (19) has
a unique solutionin Z. O

5. Conclusions

We presented in this manuscript a new concept of TFP results by using a control
function in the setting of FCM-spaces. Additionally, some uniqueness TFP theorems
are illustrated via the triangular property of FCM by using different contractive type
conditions. The control function is a continuous one-to-one self-map that is subsequentially
convergent in FCM-spaces. Further, the existence and uniqueness solution of a system of
VIEs are studied. In lieu of VIEs, the authors use various types of applications such as
Riemann integral equations, Lebesgue integral equations, and nonlinear integral equations
to support their findings.
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