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Abstract: The intervention on historic buildings through building energy retrofitting has become
one of the current challenges of improving energy efficiency. Nonetheless, this building typology
presents certain complexities. Among them, one of the most relevant is the protection on their façades
due to the historical and/or artistic values of a given façade and, therefore, the addition of external
thermal insulation is restricted. However, at the same time, in several of those buildings indoor
surfaces do not present that architectural value, and then internal thermal insulation becomes a
promising strategy for improving their thermal performance. Nevertheless, its application must be
carefully evaluated to avoid possible pathologies caused by moisture problems. This paper aims to
identify constructive solutions for interior insulation of walls free from moisture problems. For this
purpose, a comprehensive analysis of a series of constructive solutions based on internal insulation
has been carried out through hygrothermal simulations. The results show how the application of
water-repellent impregnation becomes essential to guaranteeing the integrity of the envelope. In
addition, the combination of insulations with or without inner membranes, such as smart vapor
retarders or vapor diffusion barriers, has been evaluated detecting the solutions that best fit the
objective. Finally, taking advantage of the great potential of 2D simulation tools, the post-processing
of the data has been performed to apply the wood decay model, and thus assess the behavior of a very
conflictive point in this type of intervention, i.e., the wooden beam-ends. The results in this critical
point have shown how the application of the proposed constructive solutions becomes essential to
guarantee the integrity of the element and how the application of traditional solutions could lead to
a hazard that must be avoided.

Keywords: building energy retrofitting; built heritage; historic buildings; hygrothermal performance;
internal thermal insulation composite system (ITICS); wooden beam-ends; wooden decay model

1. Introduction

Currently, the buildings are one of the main focuses of attention due to their high
energy consumption. As they account for 40% of total final energy consumption, improving
their energy performance may enable a fulfilment of energy objectives [1]. New buildings
can be built under energy efficient designs, however the growth trend of these buildings
has depleted due to the impact of the financial crisis in this sector [2]. Therefore, the
scope of action is located under the existing buildings. One-third of residential buildings
in Europe were built before 1960, and almost 84% are at least 20 years old [3]. With the
thesis that the age of the buildings is a clear indicator of their energy consumption [4],
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the refurbishment of the buildings’ envelopes to the present standards supposes a great
opportunity for energy and CO2 emissions savings.

Within this work area, historic buildings with different levels of protection due to
their historical or artistic values are also considered. The intervention on them is of great
necessity and interest, owing to the positive impact they have in the culture and society [5].
However, the implementation of the European energy efficiency regulations [1] for these
historic buildings has been left to each member state [6]. As a consequence, there are
few energy retrofit interventions in these kind of buildings. Nonetheless, the research in
this area is growing [7] in accordance with the recent regulation [8], and thus showing its
relevance for the coming years.

Although the architectural value of a part of the heritage buildings can derive from
their external or internal features (rich stuccos, decorated, painted tableaus, etc.) of the
walls, many of them do not have remarkable interior values, and therefore can be objects
of intervention. For these cases, the reduction in the transmission losses through the
application of Internal Insulation Composite Systems (ITICS) becomes a possible way to
improve its energy performance. Nonetheless, one of the key issues of these interventions
is the assessment of moisture risk, as these solutions could involve the appearance of
condensations, mold growth [9,10] and, in extreme cases, a risk of decay [11,12]. These
types of assessments are usually carried out through numerical hygrothermal simulations
based on combined heat, air, and moisture transfer models [13,14].

These kinds of assessments are able to predict the moisture behavior of buildings’
components while avoiding the expensive and time-consuming experimental investiga-
tions. In the building sector, the use of the steady-state Glaser method is common when the
hygrothermal behavior evaluation of building envelopes is necessary [15–17]. However,
the strategies based on this model overlook many of the aspects that substantially affect
the system. For example, the process takes into account condensation when the water
vapor pressure exceeds that of saturation, as occurs in materials such as glass or metal,
but it does not take into consideration the hygroscopic capacity of the porous materials
to adsorb or absorb moisture. Due to this, numerical models [18–21] have become more
relevant, as they allow a more advanced analysis of buildings’ thermal envelopes, taking
into account multiple variables that, presenting great relevance in historic buildings, are
not considered in the Glaser method. These numerical methods are implemented through
Heat, Air, and Moisture (HAM) software, becoming an ideal method for carrying out
the hygrothermal assessments, and nowadays there are several available tools for it [22].
Furthermore, various standards and handbooks in this matter serve as support and guides
to establish the hygrothermal evaluation criteria of buildings’ envelopes [23–26].

Previous research studies carried out in this field have generally focused on the
analysis of severe winter climates, with a medium or high precipitation rate and brick
assembled masonry walls [27–36]. Nevertheless, there are also other cases that have not
been investigated yet. For instance, in some cases where the winter climate is not so severe,
usually less moisture risks are presupposed, although in fact, due to their particularities,
they present the same risk of problems associated with the hygrothermal behavior of the
walls and its components. These cases correspond to situations in which, on the one hand,
there is a high rainfall rate and, on the other hand, the material that predominates the
composition of the masonry wall is of ashlars with a high coefficient of absorption. This
paradigm, despite not being widely evaluated, belongs to the casuistry that can usually
be found in the envelopes of heritage buildings. These two factors lead to high moisture
contents along the section of the wall and, therefore, to a high risk of pathological processes
(damp, mold growth, and/or structural degradation) that have to be avoided in the new
proposed designs for the energy retrofits.

This paper’s aim is to analyze different constructive solutions to achieve the energy
performance improvement of heritage buildings. It focuses on those cases in which the
intervention of the thermal envelope could be made from the interior side of the walls.
The study has been performed through a series of hygrothermal simulations to detect
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the most appropriate solutions. It is based on the analysis of different materials that are
common in the sector and that, in turn, differentiate themselves from one another due to
their hygrothermal behavior. For this, the case to be evaluated should take into account the
aforementioned conditions, i.e., a high rate of rain and facade material with high capillary
absorption. Additionally, the proposed solution must be a decay safe solution and, to
check this issue, an evaluation of a structurally essential element is proposed, the wooden
beam-ends. Taking into consideration that energy refurbishment of buildings is one of the
main aims of global energy policies, and that the built heritage plays an important role
in this, the obtained results can be useful information to support the proper selection of
construction solutions in this kind of intervention.

2. Background
2.1. Energy Efficiency and Historic Buildings

The built heritage has become a major issue in recent times. Among others, the
historic buildings contribute to maintain the urban identity of neighborhoods [5]. One
of the characteristic aspects of built heritage is its impact on culture and society, which is
why intervention on this type of building becomes both a challenge and an opportunity.
Furthermore, this opportunity can be considered as an investment to improve urban
sustainability by improving the energy efficiency of the built heritage [37].

As a result, several papers focused on this issue have been published in the last
decade, which shows the relevance of this topic for the upcoming years [7]. Other out-
comes include multiple available guidebooks [38–42] and conferences [43,44], whose aim
is to serve as a pattern to energy performance interventions in this kind of building. Addi-
tionally, ASHRAE and CEN have paid great attention to this type of building through their
elaborated guidelines [45–47].

Several interventions, aimed to improve the performance in these buildings, can be
identified, such as reducing energy losses through building envelope by adding thermal
insulation [48], improving the airtightness [49,50], integration of new RES [51–53], or
implementing monitoring systems [54–58]. All these kinds of intervention follow a common
criterion, to maintain a balance among energy improvements while its heritage value is
preserved. As Arumägi et al. showed [59], this aim is affordable.

However, this kind of building usually presents difficulties as they are built using
traditional construction techniques. Moreover, the existing restrictions due to the built
heritage protection regulations must also be taken into account. This means that the energy
assessment and interventions in these buildings are substantially complex. Therefore, as
several studies agree [40,60], further research is needed in this area.

2.2. Hygrothermal Assessment of ITICS Interventions

Currently, multiple materials and constructive solutions can be used to improve the
energy efficiency of buildings. However, as mentioned above, the heritage buildings
present certain peculiarities in their interventions. Due to this, different guides related to
ITICS [61–65] provide keys for these types of interventions.

Internal insulation has become a possible solution for improving the energy perfor-
mance of heritage buildings. Nevertheless, it presents several risks that must be carefully
considered, such as the increase in condensation risk and moisture accumulation behind
the insulation layer [63,66]. To solve this issue, the so-called capillary active insulations,
CAI, are often employed due to their ability to transport liquid moisture from the wet layer
to the indoor surface, thus allowing the drying process through its high water absorption
coefficient Aw [67,68]. Various authors [28,69,70] have evaluated this kind of insulation
with different approaches, and all of them showed better results compared to traditional
insulations. However, as Vereckeen et al. [71] remarked, it is of great importance to dis-
tinguish the behavior of different CAIs as, nowadays, there is a wide range of thermal
insulation materials with small liquid conductivity and low Aw, and, therefore, there is
less dried moisture in the interior. For this reason, the relevance of properly asserting the
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hygric properties becomes essential, even more so in historic buildings where there is a
reliable lack of information about materials´ input parameters [72].

Insulations are not the only materials that take great relevance in interventions with
ITICS. As various authors concluded [27,28], the application of internal insulation entails a
rise of water content in the wall. Therefore, as to avoid an even greater increase in water
due to rain exposure, it is also necessary to apply external water-repellent layers. In these
kinds of materials, besides the Aw value, the vapor diffusion coefficient [73,74], δp, is of
great relevance to allow the proper vapor diffusion to the outdoors and avoid interstitial
condensation [75]. Guizzardi et al. [29] analyzed this topic through the evaluation of the
effect of application of different external plasters (lime plaster, cement lime plaster, lime
cement plaster, and cement plaster) and three kinds of insulation. The conclusion was that,
from the evaluated materials, the best combination is the cement plaster, due to its low Aw
value, and the calcium silicate, due to its capillary active insulating behavior. However,
often, this kind of water-repellents based on external plasters cannot be applied as they
alter the heritage value of the facade, as are the cases of stone or brick masonry walls. Due
to this, other silicon-based treatments could be an ideal impregnation for external surfaces
of historic façades, as their transparency allows the aesthetic appearance to maintain intact.
Its properties of low Aw, and high δp allow rainwater to be repelled, thanks to the increase
in the static contact angle θ [76], which at the same time allows the process of drying the
wall. Additionally, it is important to emphasize that if these impregnations are applied
in combination with internal insulation, the latter should be installed later, thus allowing
excess moisture in the masonry to dry out faster [30].

Other additional materials are the vapor diffusion barriers (VDB) [77] which hinder
the vapor diffusion from the interior to the exterior ambience and thus avoid the condensa-
tion in the cold layer. However, this also prevents the inward drying process and, therefore,
if there is an outdoor source of dampness (high wind-driven rain, broken plumbing, etc.)
the problem will be present. To solve this issue, the smart vapor retarders (SVR) were
developed allowing inward diffusion in summer through its variable vapor permeabil-
ity δp. Nonetheless, the proper performance of these materials depends heavily on the
workmanship quality to ensure the vapor and airtightness continuity.

One of the additional concerns that arises in this type of intervention with internal
insulation, and specifically in buildings with wooden structures, are the wooden beam-
ends. This fact can lead to a substantial variation of the hygrothermal conditions of these
points with respect to the initial conditions, increasing their humidity and reducing their
temperature and drying potential, thus increasing decay-hazard (Figure 1).
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Different research pieces about this topic can be found in the literature. Morelli et al. [31]
and Harrestrup et al. [32,33] showed the suitable behavior of a 200–300 mm insulation
gap above and/or below the joint of the beam-end. Thus, an intentional thermal bridge
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was created to increase the temperatures and reduce the humidity around the beams-ends.
However, they also demonstrated how the rain exposure intensity and exposure to the solar
radiation through different orientations were fundamental parameters that affect the hazard
of mold growth. With a similar concept, Ueno [34] proposed the implementation of the so-
called passive heated beam-ends through metallic sheets or by the use of thinner insulation
around the beam. He concluded that this system could be a solution, but also that more
depth studies through 3D hygrothermal models are necessary due to the complexity of the
topic. Ruisigner et al. [35] carried out an exhaustive experimental analysis by monitoring
the beam-ends with five different internal insulations (cellulose, insulation plaster, wood
fiber, reed, and perlite). They showed how, although there were no major differences in the
wooden beams-ends amongst the different insulations, there was a big difference in the
cold side of the wall. Only the perlite insulation kept the relative humidity values below
the over-hygroscopic range. However, they stated that the favorable conditions of low
driving rain load could affect the results. Finally, the existing great complexity to carry out
a detailed evaluation of beam-ends was also highlighted, as 3D hygrothermal simulation
tools are scarce.

Johansson et al. [36] also evaluated this detail numerically and experimentally, in a
laboratory under controlled conditions with a climate simulator and a constructed wall
sample. They evaluated the embedded beam-ends in the brick walls with and without the
implementation of vacuum insulation panels (VIPs). The research also revealed the utmost
relevance of the exterior rain in the wall moisture accumulation rather than the properties
of the interior insulation. Nevertheless, it was also pointed out that, in dry periods, the
VIP reduces the inward drying capacity, producing higher moisture levels compared to the
uninsulated wall. Finally, the importance of the gravity effects along the different height
levels in the moisture contents was also remarked.

As observed, energy interventions on historic buildings using ITICS are a complex
issue that cannot be addressed through a partial evaluation. All the parameters that affect
the behavior of the envelope must be taken into account in a holistic way. Only in this
manner the interventions can be carried out and guarantee both the hygrothermal behavior
and the integrity of the historical-artistic value of the heritage building typology.

3. Materials and Methods

Interventions on the thermal envelope by means of internal insulation become one
of the ways to improve the energy performance of historic buildings. Nevertheless, these
actions could involve to the appearance of complexities. As previously mentioned, the
research carried out so far has focused on the analysis of case studies in cold climates with
masonry brick walls.

To reach the main goal of this paper, the following stepwise method has been carried
out. Firstly, another geographical area where a high risk of dampness also exists has been
detected. Then, different ITICS solutions, aimed to improve building energy performance
without aggravating such moisture problems, have been assessed (Figure 2). The analysis
must take into consideration the behavior of different insulation materials in combination
with or without internal protective elements such as VDB, SVR, and/or exterior water
repellent impregnation. From this series of cases, the most relevant examples have been
selected for a subsequent detailed evaluation of the wooden beam-ends.

Additionally, it has been assumed that the workmanship quality is such that allows
us to contemplate the following hypotheses. Firstly, there is perfect contact between
the materials layers. Secondly, air flow paths through the component that can produce
a convective moisture source are omitted, and they are not considered in this analysis.
Finally, it is assumed that the membranes are not punched, and they are correctly taped to
each other.
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The rest of this section describes in detail the method followed in this study. The
numerical model and general bases considered in the study are presented in Section 3.1.
In Section 3.2, simulation model is described and, finally, Section 3.3 describes the main
conditions and characteristics of the cases studies evaluated in the simulations.

3.1. Numerical Model

The research carried out is composed of three different parts. The first consists of the
simulation process through which the hygrothermal records of the evaluated walls are
obtained. Once the results are collated, they are analyzed to detect the inappropriate and
appropriate solutions for their implementation in ITICS systems. The second step carries
out the post-processing of the records obtained from a group of selected cases, i.e., those
considered the most appropriate.

For the hygrothermal simulations, WUFI Pro v.6.2 and WUFI 2D v.4.1 from the Fraun-
hofer IBP has been used. They are both widely used software programs in this kind of
study and are also verified according to the EN 15026 [23]. As analyzed later, the first
is used to carry out the set of general simulations and thus be able to obtain some first
conclusions. The second software program is used to perform the detailed evaluation of
the wooden beam-ends with the solutions that are considered more interesting based on
the first obtained conclusions. The reason for not evaluating all the cases in two dimensions
is due to the fact that (1) the first software program already detects the general behavior of
the different solutions and (2) the volume of data generated in 2D implies high simulation
times. The WUFI model is governed according to the following coupled heat and moisture
transport equations (Equations (1)–(3)):

∂H
∂T

∂T
∂t

= ∇ (λ∇T) + hv∇
(
δp∇(φpsat)

)
(1)

∂w
∂φ

∂φ

∂t
= ∇

(
Dφ∇φ+ δp∇(φpsat)

)
(2)

Dφ = Dw
∂w
∂φ

(3)

where ∂H/∂T is the heat storage capacity of the moist building material (J/kg), ∂w/∂φ is
the moisture storage capacity (kg/m3), w is the moisture content (kg/m3), λ is the thermal
conductivity (W/(m·K)), Dφ is the liquid conduction coefficient (kg/(m·s)), Dw is the
capillary transport coefficient (m2/s), δp is the water vapor permeability (kg/(m·s·Pa)), hv
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is the evaporation enthalpy of the water (J/kg), psat is the water vapor saturation pressure
(Pa), T is the temperature (K), and φ is the relative humidity (%).

Finally, the post-processing of the data will be carried out through the application
of the wood decay model. Currently, there are two evaluation models that are the most
employed. The first, based on the WTA 6-8 [78], proposes that the daily mean of the relative
humidity of the pore air (averaged over the most critical 10 mm of the solid wood product)
must not exceed the limit between 95% at 0 ◦C and 86% at 30 ◦C (Figure 3). Well-considered
exceptions are permissible for individual short-term violations of the limit.
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However, this model does not specify these exceptions, nor does it evaluate the
dynamic behavior and its effect on wood. For the purpose of a detailed wooden damage
risk evaluation, the Decay Model developed by Viitanen [11,12] can be employed. It is
based on the fully developed fungi activation process (α = 1) with which the decay process
starts through the mass loss rate (ML), as presented in Equation (4):

α(t) =
∫ t

0
dα =

t

∑
0
(∆α) (4)

The fungi activation only occurs under specific conditions of temperature above 0 ◦C,
and a relative humidity above 95%. If these conditions are not met, the parameter α
decreases, and the drying process starts in order to stop the mass loss. However, this is
an irrecoverable loss. The time in which α = 0 is assumed to be two years (17,520 h, see
Equations (5) and (6):

∆α =
∆t

tcrit(RH, T)
when T > 0 ◦C and RH > 95% (5)

∆α = − ∆t
17520

otherwise

tcrit(RH, T) =
[

2.3T + 0.035RH − 0.024T·RH
−42.9 + 0.14T + 0.45RH

]
·30·24 [hours] (6)

Fungus activation leads off the mass loss, which is determined by the temperature
and relative humidity according to the expression presented in Equations (7) and (8):

ML(t′) =
∫ t′

t at α=1

ML(RH, T)
dt

dt =
t′
∑

t at α=1

(
ML(RH, T)

dt
·∆t
)

(7)
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where:

ML(RH, T) = −5.96·10−2 + 1.96·10−4T + 6.25·10−4RH
[

%
hour

]
(8)

Once the hygrothermal simulations have been performed and analyzed through
their post-processing, it will be possible to detect which ITICS solutions adequately fulfill
their function. Finally, the conclusions of the study will be obtained, thus allowing us to
enumerate guidelines for future energy refurbishment interventions.

3.2. Simulation Model

The simulation model must be a reflection of the most widespread element throughout
the historic buildings’ typology. These kind of buildings are characterized by thick masonry
walls and wooden structure. As the evaluation of the wall is essential, as it conforms the
thermal envelope, this point, along with the connection to the wooden structure, is chosen
to be the evaluation detail.

To assess this construction type, a reference must be taken as a case study. This must
meet the below mentioned requirements:

• It must be a heritage construction typology (load walls and wood structure).
• The intervention of energy retrofit through thermal insulation must be carried out

inside the wall.
• The wall must have a high water absorption coefficient.
• There must be a high rainfall rate.
• Winter severity must not be very high.

Keeping in mind these requisites, an oceanic climate or a Cfb climate according to the
classification of Köppen–Geiger [79] could turn into the application case. This climate is
characterized by very moderate temperatures throughout the year and a high concentration
of relative humidity and precipitation. In the first instance, it can be noted that the west
coast of the United Kingdom, Ireland, and Norway and the north coast of Spain meet these
requirements, being the regions with the highest rainfall rate of the European territory (see
Figure 4).

As previously observed, some hygrothermal research pieces have already focused on
the areas of the UK, Ireland, and Norway [36,63]. Furthermore, in these sites, the use of
brick for a masonry wall is very widespread. It can be said that this material is not one of
those that offers the worst protection against capillary suction of rainwater. In this way,
the northern coast of Spain has not yet been evaluated, and therefore becomes a suitable
candidate for the case study, specifically, the city of Donostia-San Sebastián located in the
territory of the Basque Country near the French frontier. The choice of this city, aside from
having first-hand knowledge of the area, is justified for two reasons. On the one hand,
the architecture of the environment is characterized by the predominant use of sandstone
walls with high capillary absorption [80] that leads to great moisture problems, which are
further punished by the high precipitation rate in the area. On the other hand, there is a
high risk of decay of wooden structures. Through the well-known Scheffer Index (SI) [81],
a quick assessment of the danger of wood structures can be made through the monthly
climatic records of temperature and number of rainy days. According to the SI values
obtained in various references [82,83], the city, due its climatic characteristics, belongs to
one of the sites with the greatest hazard for wood decay in Europe. Therefore, from a
macroclimatic perspective level that makes it possible to reflect this parameter, it seems
reasonable to focus the hygrothermal assessment in this city due to the high existing risk,
and then make a detailed evaluation of the wooden beam-end component through the
specific simulation models.

The city of Donostia-San Sebastián, characterized by its great built heritage, is known
as Le Petit Paris due to the clear influence of French architecture on their design [84]. Part of
the city center is protected by the municipal regulation [85] that controls the interventions
in these historic buildings and thereby prevents the gradual decay of the city. Therefore,
from the architectural heritage point of view, it could be proper example as the solutions of
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energy improvement of the main facades can only be performed from the interior side of
the walls.
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Regarding the constructive characteristics of the city buildings, they are composed
of sandstone ashlar stonework walls with a normally comprised thickness of 40 to 70 cm,
as previously cited. Figure 5 shows the composition of the masonry wall to which the
proposed ITICS is added. Additionally, the typical connection of the wooden beam-ends in
the wall with the load bearing beam is represented.
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Figure 5. Geometrical description of the simulation model.

As explained previously, the model is going to carry out a simulation with different
kinds on insulations in order to detect the overall hygrothermal behavior of these solutions.
For the selection of the insulations, it is going to take into account the general classification
of insulation according to its hygrothermal behavior [64]. It classifies the insulations into
three types: those that are permeable to water vapor, those that offer sufficient resistance to
vapor diffusion, and finally those that, in addition to being permeable to water vapor, offer
a high capillary absorption capacity, that is, the CAIs.
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Mostly, ITICS interventions are performed with the first type of insulations through
mineral wool insulation (MW) and, in some cases, with the addition of an interior VDB. As
these solutions do not allow the inward diffusion of the condensed moisture, the behavior
of the SVRs and CAIs is alternatively evaluated to verify if their response is adequate. On
the other hand, the appraisal of non-vapor permeable insulation is also carried out using
one of the materials commonly used in these cases, expanded polystyrene (EPS). Finally,
the effect of an exterior water-repellent protection (H) is taken into consideration so as to
reduce the rain absorption and thus reduce the damp accumulation in the wall.

3.3. Materials, Properties, Climate, and Surface Transfer Conditions

The external conditions taken into consideration for the simulation, as well as the
internal conditions, can be found in Figure 6. Considered internal boundary conditions
will be in accordance with Section 4.2 of the WTA 6-2 [25]. In this model, the indoor air
temperature is in function of the outside temperature, as well as the indoor air humidity
(see Figure 7). As the present study is based on a design phase, it has taken into account
the case of Medium Moisture Load, increasing its coefficient by 5% in order to offer a safety
margin. In addition, the external conditions have been obtained from the Meteonorm
database [87].
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radiation, (C) precipitation, and (D) wall radiation and wind-driven rain.

As pointed out above, the climate, although characterized by moderate temperatures,
is notable for its high humidity throughout the year (Figure 6A) as well as its high rate
of precipitation (Figure 6C). It is essential to analyze the actual exposure of the vertical
planes of the facades (Figure 6D), as the choice of the orientation to be evaluated will
later depend on it. As shown, the west facade is the most affected by the rain, so this has
been the orientation taken into account in the simulations in order to analyze the most
adverse scenario.
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Following the boundary conditions, the considered surface transfer coefficients defini-
tions for heat transfer coefficient α (W/(m2·K)) are αe = 17 and αi = 8 for the exterior and
interior surfaces, respectively. On the other hand, in relation to water vapor transfer coeffi-
cient βp (kg/(m2·s·Pa)), the WUFI model establishes that there is a relationship between the
vapor transfer coefficient and the convective component of the heat transfer coefficient. In
this way, βp is obtained through the following expression: βp = 7× 10−9·αc. To consider the
surface effects of short-wave radiation absorptivity (as) and long-wave radiation emissivity
(ε), the value of 0.9 (-) was considered for both coefficients according to the data offered
by the software for sandstone material. In order to consider the effect of the driving rain
load on the vertical surface of the façade, it was employed the proposed model by WUFI of
the ASHRAE Standard 160-2009. The considered model factors of rain exposure (FE) and
rain deposition (FD) have been 1.4 (-) and 0.5 (-), respectively. Additionally, the adhering
fraction coefficient value has been considered in order take into account the splash effect of
rain when hits the wall and is not available for capillary absorption. The considered value
has been of 0.7 (-) as proposed by the hygrothermal model for vertical components.

It should be noted that the initial hygrothermal conditions considered have been
constant throughout the components of the model, taking the reference value of 80% for
relative humidity and 20 ◦C for temperature.

As the employed software has a comprehensive material base, it is considered oppor-
tune to use it in the simulations carried out. The hygrothermal properties of the materials
are reflected in Figure 8 and Table 1. Firstly, the different behaviors of the materials can
be observed. The water content (Figure 8A) shows the large moisture storage capacity
offered by materials such as spruce, the sandstone, the original interior gypsum, or the
new interior plaster, and on the contrary the null or low capacity of storage for the sheet
materials (VDB and SVR) and the EPS. Due to the great variation of moisture content in
the over hygroscopic range, a second axis at the top and dash lines have been added to
reflect this with greater definition. Regarding the vapor diffusion resistance (Figure 8B)
the great difference between the sheets and the rest of the materials is highlighted. At the
same time, it allows the fundamental characteristic of the SVR, the variation of its diffusion
coefficient, to be observed. On the other side, the behavior of liquid transport (Figure 8C),
the difference in transport activity of the CAI with respect to the rest of the materials, is
noticeable. The inability of materials such as EPS, mineral insulation, and sheets should
also be noted. Finally, as proposed by Fraunhofer IBP [88], in order to take the effect of the
impregnation of the water repellent in the simulation model into account, a thin layer of
1 cm thick was adjusted on the outer face of the sandstone wall considering a typical water
absorption coefficient of 0.05 (kg/(m2·h0.5)).
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Table 1. Basic material data used for the developed model.

Material Bulk Density
(kg/m3)

Porosity
(m3/m3)

Spec. Heat.
Capacity (J/kg·K)

Thermal Conductivity
(W/(m·K))

Cottaer
Sandstone 2050 0.22 850 1.8

Mortar
(historical)

gypsum
915 0.64 850 0.52

Spruce 455 0.73 1400 0.23
EPS 30 0.95 1500 0.04

Mineral Wool 32.5 0.95 840 0.032
CAI 100 0.96 850 0.042

Plaster 1330 0.5 850 0.87
VDB 130 0.001 2300 2.3
SVR 85 0.086 2500 2.4

4. Results and Discussion

This section presents the detailed evaluation of the model and its results. In the first
place, a prior analysis of the previously discussed possibilities is carried out in order to de-
tect the interventions with greater viability and detect anomalous behavior through WUFI
Pro. Later, a more detailed analysis is made in the wood beam-end with WUFI 2D with
the solutions selected in the previous analysis and with those that are not recommended
in order to show the hazard that they entail if they are carried out. For that, the proposed
wood decay model is applied, and its evolution analyzed to determine the suitability of
the solution.

It is worth mentioning a relevant topic related to the insulations’ evaluation thickness.
Although it seems logical to use materials with the same thickness, this would mean that,
on the one hand, there would be a difference in terms of the obtained energy improvement,
and on the other, that the temperatures along the wall section of the different solutions
would be different. This last fact would bring with it that, when applying the decay
model, the different cases would be evaluated with temperature differences, and therefore
could not be comparative cases. Taking into account that a high thickness would lead
to an appreciable loss of the useful surface, it is considered appropriate to take 40 mm
of thickness from a traditional insulation such as mineral insulation. This would lead
to the need to use 50 mm for the case of EPS and 52 mm for the CAI due to its higher
thermal conductivity.

4.1. One-Dimensional Analysis

Figure 9 shows the results obtained in the simulations campaign carried out with
WUFI Pro. In them, certain tendencies can be distinguished. The first is related to the
solutions that do not have any protection, either on the outside, with the water-repellent
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impregnation (H), nor on the inside face, with a membrane. Firstly, it can be observed
that the hygrothermal equilibrium state is reached immediately as a result of being more
exposed to indoor and outdoor moisture sources. As can be seen, the three ITICS solutions
result in a higher relative humidity than the original wall. The reason is twofold: on the
one hand, the rain acts as an external moisture focus that easily penetrates the wall; and on
the other hand, the drying capacity of the wall has been reduced as the temperature along
the cross section of the wall also has been reduced after the application of the insulation.
Regarding the insulations, it can be observed that in the case of the MW and the CAI,
in comparison with the EPS, the hygrothermal profile of the valleys and peaks is more
pronounced as a consequence of the greater water vapor permeability. This characteristic
allows that, during the summer periods, the moisture accumulated during the cold periods
is able to be reduced. However, and in accordance with the specifications set by WTA
6-5 [65], none of the solutions can be recommended, as they exceed the 95% limit of relative
humidity and therefore there is a risk of excess moisture in the envelope.
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Similar behavior, but more aggravated, is perceived in those cases in which only an
inner sheet (VDB or SVR) is included with the insulation. The use of the sheets involves
the reduction in the inward drying capacity of the existing high moisture, and therefore
becomes trapped.

On the other hand, the effect of using only the water-repellent impregnation improves
exceptionally for the case of the EPS, notably for the case of the CAI and with appreciable
improvements in the case of mineral insulation. This result agrees with the vapor diffusion
behavior of the insulations. Although the external moisture source has been prevented from
taking effect in all cases, the internal moisture source and the resistance to vapor diffusion
of the insulation are what generates the differences existing at the evaluation point. As
the vapor diffusion resistance of the insulation decreases, the humidity increases at the
evaluation point. For this particular case, all the solutions could be taken into consideration
as they do not set the 95% limit imposed. However, it must be noted that, in the case of
mineral insulation, special attention should be paid as it is close to the limit and, therefore,
there is a contingency that preferably should be avoided.

Finally, the solutions that have technically shown the best results in the simulations
have been those that include an inner sheet in addition to the water-repellent. It can be seen
how the equilibrium regime is reached in a longer period of approximately four years. This
fact occurs as the wall is more dissociated from the internal moisture sources by the use of
the sheets and, progressively, the initial moisture is released. The appreciable difference
between the VDB and the SVR is worth noting. The first sheet offers, in all three cases,
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a lower and flatter moisture profile as it allows less moisture to enter the interior of the
wall section. However, cases with SVR result in higher humidity and a steeper profile in
which higher seasonal variations are observed. That is, the crests and valleys along the
registered humidity profiles are more noticeable and are due to the drying process towards
the interior that allows the SVR as a consequence of its greater vapor permeability in the
summer period. It should be noted that, in the case of EPS, the ridges and valleys are
not as pronounced, as the insulation itself acts additionally and lightly as a vapor flow
barrier. As previously mentioned, although VDB have technically shown the best behavior,
it must be taken into account that, if there is an uncontrolled moisture focus (installation
error or lack of maintenance of the exterior water repellent impregnation, leaks in water
pipes, etc.), it would accumulate moisture at that point, generating a difficult problem to
solve. Furthermore, in the case of CAI insulation, it must be taken into account that the
use of these sheets is not recommended, as once the insulation has performed its capillary
function with the moisture on the condensed face, by distributing it towards the inside face
of the enclosure, it would meet the barrier and therefore another conflicting point could
be generated.

In order to demonstrate the specific behavior at the critical point of the wooden
beam-end, a selection of case studies has been made to evaluate in the next section. The
selection criteria chosen are based on evaluating different hygrothermal behaviors, so those
that have proven to offer similar profiles are not considered, thus avoiding repeats. In
the first place, EPS + VDB and MW + VDB cases are chosen, as they are two of the most
obvious solutions that may present pathologies. Secondly, the CAI case is also considered
interesting, as it exceeds the 95% relative humidity barrier punctually, but it is not known if
the time that exceeds this limit is wide enough to activate the fungus phase (α = 1) and then
start the rotting process. Just as the CAI case, the MW+H solution occasionally reaches
relative humidity peaks close to the maximum limit values. In order to guarantee that the
constructive solution is moisture safe in the beam, and the results are not aggravated in
this point, the proposed solution requires a more in-depth analysis through 2D analysis.
Finally, there are those cases in which the results of the 1D simulations have shown the
nonexistence of any risk; however, in order to verify it, the cases of CAI + H, MW + H +
SVR, and EPS + H are also taken as examples.

4.2. Two-Dimensional Analysis

Once the assessment of the general behavior of the different solutions has been carried
out, a detailed evaluation using WUFI 2D proceeds it. Figure 10 shows the developed model
for the two-dimensional simulation, showing the position of the evaluated monitoring
point on the wooden beam-end. The beam head is embedded 10 cm into the wall, and a
20 mm air gap is included between the wall and the beam head.

The achieved results (presented in Figure 11) show a similar behavior to the previously
carried out 1D simulations. The original wall results show that peaks of moisture occasion-
ally overcome the limit of 95%. However, these do not produce in a prolonged manner, and
therefore can hardly carry a risk that may cause the beginning of wood decay. The heat flow
transferred along the wall section, as a consequence of the absence of insulation, allows
lower moisture levels to be maintained compared to insulated and non-waterproofed walls.
Regarding the latter, they have shown a hygrothermal profile similar to the original, but
with more moisture. This profile leads to a risk as it exceeds the 95% in a prolonged time
and therefore there is a decay hazard. In addition, through this evaluation, it is shown
more clearly that the case of the CAI is hazardous as it shows a higher profile of moisture
in the wooden beam than that obtained in the 1D simulation after the insulation layer. The
reason is that behind the face of the insulation (1D simulation), there is the possibility that
the capillary absorption property performs its function, thus reducing the accumulated
moisture, while in the wooden beam-end where the insulation is not found, said moisture
is retained. Nevertheless, in the case of the previous doubt of the MW + H, the results show
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that the moisture profile at this point is significantly reduced, thus offering exceptional
behavior, as well as the rest of the cases that behave very similarly.
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4.3. Wooden Decay Risk Analysis

The last step corresponds to implementing the results of the 2D simulation in the
wood rot model. Although the cause of potential problems could already be intuited in the
previous simulation cases, the risk cannot be quantified only using hygrothermal profiles.
Therefore, implementation of the wood rot model developed by Viitanen was carried out.
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Figure 12 shows the results obtained after the implementation of the model, both the
activation phase of the fungus (α) and the evolution of decomposition of the wood after
the activation of the fungus. As presented, none of the solutions that had water-repellent
impregnation show a wood decomposition process; even the development of the fungus
does not occur. This is due to the fact that none of the cases in the simulation reached
95% of the relative humidity. However, it can be observed on the original wall, which
reached this limit punctually, the development phase of the fungus begins but only reaches
maximum values of α = 0.15 and, therefore, it does not pose a danger for the decomposition
of the wood. Nevertheless, this behavior does not occur in the solutions without water
repellent impregnation. It can be observed that, in just over a year, the activation of the
fungus has completely occurred and, therefore, the decomposition of the wood begins. As
the hygrothermal records of the simulation of these cases are similar, the same happens
with the evolution of wood decay. Only a slightly lower forward speed is observed in the
case of the CAI compared to the cases of MW + VDB and EPS + VDB.
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In this way, it can be concluded that all ITICS solutions that do not have water-
repellent impregnation pose a danger in buildings’ energy retrofit interventions. As
observed, although the original wall allows us to guarantee the integrity of the structure
as a consequence of the drying process that allows the own heat leakage along the wall,
it does not happen in the same way in the solutions with ITICS. Therefore, the external
protection of the wall becomes an essential element in the energy envelopes interventions
of the built heritage.

5. Conclusions

This research has carried out an assessment of different ITICS solutions in order to
guarantee hygrothermal behavior of the energy performance retrofits of historic buildings.
For it, the influence of three types of thermal insulations has been evaluated. Completely
different behaviors of the refurbished thermal envelope have been observed due to the
difference of the hygrothermal properties between the proposed solutions. In order to
reduce the effect of indoor and outdoor moisture sources on the wall, the application of
moisture barriers, such as exterior water-repellent impregnation and interior VDB and SVR
sheets, has been analyzed. The effect of these types of interventions has also been evaluated
in a detailed manner on a very conflictive and typical point in this building typology, the
embedded wooden beam-ends.

In all evaluated cases, it has been evidenced that the lack of application of exterior
water-repellent leads to a risk for the envelope. The reduction in the drying capacity of the
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wall, as a consequence of the decrease in the transmitted heat flow due to the application
of interior insulation and the persistence of the rain entrance, leads to those high levels
of moisture registered in the cold face of the envelope. Solutions with VDB and rain
protection showed proper behavior; however, it is also important to keep in mind that, if a
damp source occurs, it could produce an accumulation problem behind the insulation (i.e.,
a similar result to what could be obtained with solutions without water-repellent could
occur). It should be added that the correct functioning of the VDBs depends very closely
on the quality of taping between the different sheets. Otherwise, water vapor would flow
between the VDBs and produce an additional moisture accumulation. Due to all this, the
same solution, but with SVR, would be the ideal system if an ITICS solution with internal
membranes is proposed. Although the results show a slightly higher humidity profile
compared to the case of VDB, the SVR, in the event of any leakage of water, would not allow
accumulation to occur due to its variable vapor permeability. It should also be pointed out
that, even if a good result has also been obtained in the case of the CAI, this solution with
VDB or SVR would be counterproductive, as it would be a barrier, and would not allow
the correct performance of the insulation.

The application of the wood decay model has proved to be a successful method for a
detailed beam-end evaluation. While the original wall was maintained without the risk
of rotting the wood, the modification of the hygrothermal conditions as a result of the
implementation of ITICS systems can lead a structural danger disintegrating the wood. In
this case, the implementation of the water repellent is also more relevant than the type of
insulation to be used to ensure the correct behavior of beam-end.

Throughout the development of this study, certain areas related to the subject have
been detected. The application of ITICS solutions leads to a modification in the thermal
behavior of the wall in relation to its thermal inertia. A loss of thermal damping that
allowed the original masonry wall is produced, and therefore a possible loss of comfort
is experienced. That is, after the application of the ITICS, any interior temperature peak
generated by a high internal load could, as a consequence, generate a rapid rise in the
interior temperature. One of the possible research lines could be the application of internal
Phase Change Materials (PCMs), e.g., through gypsum boards that allow the storage of that
surplus heat. However, hygrothermal behavior should also be taken into consideration, as
if, for example, it were a barrier to the CAI, it could jeopardize the correct functioning of the
complete system. Other research lines could be the evaluation of thermally modified timber
(TMT) [89] such as the ThermoWood® or Plato® processes in building energy retrofits.
These treatments improve the properties of the wood, among which is the resistance to
decay fungi. This could be an additional solution to apply with the aim of guaranteeing
the integrity of the wooden beam-ends in those cases where the external water repellent
cannot be applied. Finally, as mentioned in the background section, the application of three-
dimensional hygrothermal simulation models is another of the current lines of work scarce
developed. Recently, and as an example, the COMSOL Multiphysics software incorporated
the specific module of heat and moisture transfer in building materials, thus becoming an
alternative with a wide range of possibilities that could be applicable for detailed analysis.
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