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Laburpena

Tesi hau Europako Batzordeko arrantza batzorde zientifiko, tekniko eta ekonomikoak

identifikatutako simulazio bioekonomikoko eredu integratuak garatzeko beharrak

eragin zuen. Eredu horiek aplikatzeko esparrua arrantza kudeatzeko estrategien

inpaktu-analisia izan behar zen. Gainera, arrantza-kudeaketako estrategia eremu za-

bal batean aplikatzeko bezain orokorra eta generikoa izan behar zuen, eta kudeaketa-

estrategien ebaluazio (management strategy evaluation, MSE, ingeleszko sigletan

deritzona) metodologiari (Punt et al. 2016) jarraitu behar zion.

Sistema naturalak deskribatzen duten eredu matematikoak deskribatzen duten

sistemaren abstrakzioak dira, eta inoiz ezin dute sistema erreala modu perfektuan

deskribatu. Aitzitik, ezarritako helbururako ereduak modelatutako sistema egoki

irudikatzea da behar dena (Rykiel 1996). Ereduen egokitasuna ebaluatzeko proze-

suari balioztapena deritzo. Hala ere, ez dago ereduak egokiak direla erabat berma-

tzeko erabil daitekeen prozedurarik. Balioztatzea, ereduaren garapen osoan zehar

gertatzen den prozesua da (Sargent 2011). Sentikortasun-analisi globala (global sen-

sitivity analysis, GSA, ingelesezko sigletan) simulazio-ereduen balioztapenean aur-

rera egiteko erabil daitekeen teknika kuantitatiboa da (ikusi Norton 2015, Borgonovo

eta Plischke 2016 edo Pianosi et al. 2016 azken urteetako errebisioetarako). GSA si-

mulazio ereduen irteerako aldakortasuna sarrera-faktoreen aldakortasunaren arabera

azaltzean datza.

Simulazio bioekonomikoko ereduen beharra asetzeko, FLBEIA (Bio-Economic Im-

pact Assessment in FLR) garatu genuen. Simulazio-ereduen garapenean balioztape-

nak duen garrantzia kontuan hartuta, tesi honek bi helburu ditu: lehenik, FLBEIA

garatzea, stock eta flota 1 anitzeko simulazio-eredua, MSE ikuspegiari jarraitzen

1stock arrain-populazio baten kudeaketa-unitate bateri deritzo eta flota karakteristika tekniko
berdinak konpartitzen duen itsasontzi multzoa da.

xi
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diona; eta bigarren, haren balioztapenean aurrera egitea GSA erabiliz, arrantzako-

simulazio ereduetan metodologia horren erabilera sustatzen den bitartean.

Halaber, arrantza-kudeaketa simulatzeko ereduak eta GSA metodoak aplikatze-

ari dagokionez, tesi honek hiru hipotesi planteatzen ditu:

� Ohi ziurgabetzat hartzen diren sarrera-faktoreak ez dira beti garrantzitsuenak.

� GSA metodo kuantitatiboetarako existizen diren konbergentzia-irizpideek ez

dituzte egoera guztiak kontutan hartzen.

� Dimentsio anitzeko irteera duten ereduetan, sarrera-faktore garrantzitsuenen

hautaketarako baheketa-metodoen aplikazioa alboratuta dago.

Sarreran, tesiaren edukia testuinguruan ipintzeko, haren lau zutabeei buruzko

berrikuspena egin dugu: arrantza-kudeaketa, MSE, ereduen balioztapena eta GSA.

Arrantza-kudeaketari buruz egindako berrikuspen bibliografikoak hurrengo artikulu

zientifikoa sortarazi du: “Contribution of mathematics to fisheries management

throughout history”. Artikulua prestatzen ari gara eta “Fish and Fisheries” al-

dizkarira bidaliko dugu.

Sarreraren ondoren, bigarren kapituluak FLBEIA ereduaren deskribapen zehatza

ematen du, nola kodetu den eta eredua osatzen duen prozesu bakoitza deskrib-

atzeko erabilitako ekuazioak aurkeztuz. FLBEIA eredua R estatistika-softwarea eta

FLR paketeak erabiliz kodetu da, eta software bereko pakete gisa banatzen da. Ere-

dua garatzen hasteko unean, eredu gehienak arrantza-sistemaren osagai biologikoa

desbribatzen zuten, inolako osagai ekonomiko barik edo oso sinplea, edo alderantziz,

osagai ekonomiko osoa, osagai biologiko sinpleaz. Beraz, FLBEIA MSE marko baten

pean arrantza-sistemaren bi osagai horiek orekatzeko sortua izan zen, “ekosistemak

ebaluatzeko konplexutasun ertaineko eredu” gisa sailka daitekelarik (Plagányi et al.

2014), arrantza-jardueraren kudeaketan ardazten dena, arrantza mistoen testuin-

guru batean. Ereduaren deskribapena SoftwareX aldizkari zientifikoan argitaratu

da:“FLBEIA: a simulation model to conduct bio-economic evaluation of fisheries man-

agement strategies”, (Garcia et al. 2017b).

Tesiaren bigarren zatian, ereduaren balioztapenari erreparatu genion, eta GSA

metodologia aukeratu genuen FLBEIA-n konfiantza sortzeko prozesuan aurrera egit-

eko. Egile askok (Homma eta Saltelli 1996, Sarrazin et al. 2016) erreferentziazko

metodotzat hartzen dute Sobolen bariantzaren deskonposizio-metodoa, eta, beraz,

hasieran GSA aplikatzeko, Sobolen metodoa soilik erabiltzea pentsatu genuen. Hala

ere, bere kostu konputazional handiak beste aukera batzuk kontuan hartzera era-

man gintuen. Literaturan emandako gomendioei jarraituz (Confalonieri et al. 2010,

Saltelli et al. 2008), Sobolen metodoa Morrisen baheketa-metodoarekin konbinatzea
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erabaki genuen, sarrera-faktoreen kopurua murrizteko. Bi metodoak konbinatzean,

modu robustoan egingo zela bermatzearen arazoari aurre egin behar izan genion.

Hau da, aukeratutako sarrera-faktoreak benetan garrantzitsuenak zirela bermatzea.

Alde batetik, Morrisen metodoan sarrerako faktore garrantzitsuenen hautaketa

bisualki egiten da, sarrera faktoreen oinarrizko efektuen batez besteko balio absolutua

gainerakoetatik bereizten direnak aukeratuz (Campolongo et al. 2007). Dimentsio

anitzeko irteera duten ereduetan, ereduaren irteera-aldagai bakoitzerako egiten da

hautaketa, eta aldagai bakoitzerako hautatutako sarrera-faktoreen multzoak, multzo

bakar batean biltzen dira. Arazoa da, irteera-aldagai asko daudenean, zaila dela

hautaketa bisuala konstante mantentzea. Gainera, hautaketa bisuala ezin da er-

abili bootstrap bezalako simulazio metodoetan. Arazo hori gainditzeko, hautaketa-

irizpide berri bat garatu genuen, irizpide horrek hautaketa bisuala egitean kon-

tuan hartzen diren hiru aspektuetan oinarritzen da: hautatutako sarrera-faktoreen

kopuruan, oinarrizko efektuen batez besteko balio absolutuan balio maximoarekin

alderatuta, eta ondoz ondoko faktoreen oinarrizko efektuen batez besteko balio ab-

solutuetan dagoen aldea. Bestalde, GSA metodoetarako dauden konbergentzia-

irizpideek sentikortasun-indizeen balioan, horien sailkapenean edo sailkapenaren be-

healdean dauden indizeen konbergentzian jartzen dute arreta (Sarrazin et al. 2016).

Hala ere, tesi honetan Morrisen metodoa aplikatzearen helburua ezberdina zen, hau

da, sailkapenaren goikaldean dauden sarrera-faktoreak identifikatzea, horien posizio

edo balio zehatzari garrantzia emon barik. Sarrazin et al. (2016)-en agertzen diren

helburuak zorrotzagoak direnez, lotutako konbergentzia-irizpideen erabilerak gain-

zama konputazionala sor lezake. Beraz, ezarritako helbururako bereziki diseinatu-

tako konbergentzia-irizpide berri bat definitu genuen. Tesi honetan proposatutako

bi irizpide berri horiek, hain zuzen hautaketa-irizpidea eta konbergentzia-irizpidea,

3. kapituluan deskribatzen dira, eta horien deskribapena eta funtzionamenduaren

ebaluazioa Environmental Modeling & Software aldizkari zientifikoan argitaratu dira:

“Robust combination of the Morris and Sobol methods in complex multidimensional

models”,(Garcia et al. 2019a).

Garatutako metodologiaren aplikazioa 4. kapituluan hasten da. Kapitulu hone-

tan, FLBEIA-ren aplikazioa, Iberiar penintsularen alde atlantikoaren inguruan jar-

duten duen demertsal arrantzan, aurkezten da. Aplikazio horretan, arrantza-sis-

temaren errendimendu bioekonomikoa bi kudeaketa-politikarekin alderatzen dugu:

batetik, Europako arrantza-politika bateratuaren azken erreforman sartutako lehor-

reratzeko betebeharraren politika (i.e harrapatutako arrainak itsasora botatzeko de-

bekua), eta, bestetik, harrapatutako arrainak itsasora botatzea baimentzen zuen
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aurreko politika. Gainera, arrantza kudeatzeko erreferentzia-puntu berriak zehaztu

genituen, eta politika berriaren eragin negatiboa arintzeko erabil ote zitezkeen pro-

batu genuen. Lehorreratzeko betebeharraren inpaktua denboraldiaren eta flotaren

araberakoa zela, eta haien dinamika eragin handia zuela ondorioztatu genuen. Arran-

tza osoari dagokionez, erreferentzia-puntu berriek lehorreratzeko betebeharra ezar-

tzeak sortutako etekin ekonomikoen murrizketa arindu zuten. Hala ere, flota mailan,

eragina flotaren eta kontuan hartutako denbora tartearen araberakoa zen. Kapitulu

honen edukia ICES journal of Marine Science aldizkari zientifikoan argitaratu da:

“Bio-economic multi-stock reference points as a tool for overcoming the drawbacks

of the landing obligation”, (Garcia et al. 2017a).

Bostgarren kapituluan, hirugarren kapituluan proposatutako irizpideak eta jarra-

ibideak probatu ziren, laugarren kapituluan aurkeztutako FLBEIA inplementazioan.

Hirugarren kapituluko jarraibideak erabiliz, eredua parametrizatu egin zen, eta sar-

rera-faktoreen benetako kopurua %90a murriztu zen. Sarrera-faktoreen aldakorta-

suna laugarren kapituluan erabilitako batez besteko balioa eta %30eko aldakuntza-

koefizientea erabiliz parametrizatu zen. Hirugarren kapituluan definitutako hauta-

keta- eta konbergentzia-irizpideak Morrisen oinarrizko efektuen batez besteko balio

absolutuei aplikatu zitzaizkien, irteerako 37 aldagairen gainean. Ondoren, Sobol

metodoa aplikatu zen soilik Morris metodoaren bidez aukeratutako sarrera-faktoreak

kontuan hartuz. Irteerako aldagai gehienen bariantza sarrera-faktoreen arteko kor-

relazioaren ondorio zen. Gainera, emaitzak stockaren eta flotaren menpekoak ziren.

Bariantza globalaren deskonposizioa Lamboni et al. (2011)-k proposatutako metodoa

erabiliz kalkulatu zen. Oro har, emaitzetan eragin handiena zuten sarrerako fak-

toreak floten epe laburreko dinamikarekin lotutakoak izan ziren (zenbat arrantza es-

fortsu egin eta nola zelan banatu), eta baita arrain stocken hilkortasun naturala eta

pisua ere. Aitzitik, stocken erreklutamenduari zuzenean lotutako sarrera-faktoreak

(ziurgabetasunaren parametrizazioan literaturak arreta gehien jartzen duen parame-

troak) sailkapenaren behealdean zeuden. Sistemaren kudeaketa-prozesuan egindako

erroreekin lotutako sarrerako faktoreetatik, ikerketaren bidez murriztu daitezkeene-

tatik, sailkapenaren goiko aldean zeuden bakarrak, arrantzarako objetiboa diren

stocketakoak ziren. Tesi honen idazketa amaitzean, artikulu bat idazten ari gara,

GSA eta MSE metodologiak konbinatzearen potentziala nabarmenduz, eta analisi

bien konbinazioan lortutako emaitzak erakutsiz. Artikulua Methods in Ecology and

Evolution aldizkarira bidaliko da: ”Potential of applying global sensitivity analysis

to fisheries management simulation models” .

Seigarren kapituluan, tesiaren esparruan garatutako tresnak aurkezten ditugu,



Laburpena xv

doan eskuragarri daudenak. Kapituluaren edukia teknikoa da eta ezagutza trans-

feritzen laguntzen du, FLBEIA eta tesi honetan garatutako irizpideen erabilera er-

raztuz. Bigarren eta hirugarren kapituluetan FLBEIA eraikitzeko eta hautaketa-

eta konbergentzia-irizpideak definitzeko erabilitako egitura eta formulak azaltzen

badira, kapitulu honetan praktikan nola erabili erakusten dugu. FLBEIA paketearen

osagarri gisa, Shiny aplikazio bat ere garatu dugu, emaitzen analisia errazteko. Ka-

pitulu honetan, azken hau nola erabili ere erakusten dugu. Azkenik, Morris eta Sobol

metodoen aplikazioan lortutako emaitza guztiak Shiny aplikazio batean kokatu dira,

sentikortasun-indizeetan patroiak identifikatzea izugarri erraztu zuena.

Arrantza kudeaketa simulatzeko stock eta flota anitzeko ereduei esker, kudeaketa-

estrategiek arrantza-sistemetan duten inpaktua aurreikus daiteke. Hortaz, oinarri zi-

entifikoa ematen dute erabakiak hartzeko prozesuan laguntzeko, arrantza-sistemaren

dimentsio biologikoa, ekonomikoa eta soziala esparru berean integratuz. Lehen,

kudeaketa erabakiak kontsiderazio biologikoetan oinarritzen ziren nagusiki. Hala

ere, ekosisteman oinarritutako arrantza-kudeaketak bultzatuta (Pikitch et al. 2004),

dimentsio ekonomiko eta sozialak kontutan hartzea ezinbestekoa bihurtu da. Beraz,

FLBEIA motako ereduak tresna baliotsu bihurtu dira kudeaketa-erabakiak sosten-

gatzeko. Eredu horien erabileran dagoen arazo nagusietako bat arrantza-sistemen

modelizazio matematikoan dagoen ziurgabetasun handia da. Ziurgabetasuna sis-

teman dagoen aldakortasun naturalatik eta haren behaketan egindako erroreetatik

dator. MSE metodologiak ziurgabetasun horiek guztiak erabakiak hartzeko proze-

suan txertatzeko esparrua ematen du. Era berean, GSA ziurgabetasunak ereduen

funtzionamenduan duen inpaktua karakterizatzeko tresna bat da. GSA eta MSE

metodologiak, ordea, gutxitan konbinatzen dira arrantza-kudeaketaren simulazio

ereduetan. Beraz, tesi honek arrantza-kudeaketan erabakiak hartzeko prozesua la-

guntzeko tresna berri bat eraiki ezezik, praktikan arrantza-simulazioko ereduen er-

abilera hobetzeko metodologia ere proposatzen du.

Tesiaren lehen helburuaren lorpena, hau da, kasu askotan aplika daitekeen simu-

lazio-eredu bat garatzea, agerian geratzen da FLBEIA aplikatu den kasu guztiekin.

Gainera, eredua erreferentea da gaur egun Europan: arrantza-kudeaketari aholku-

laritza emateko (ICES 2018b) eta Europako hainbat ikerketa-proiektutan erabiltzen

ari da, eta nazioarteko hainbat ikastaro eman ditugu mundu osoko ikasleekin. Gain-

era, kanpoko arrantza-zientzialariekin elkarlanean ari gara, FLBEIA-ren gaitasunak

are gehiago handitzeko. Bereziki, Norvegiako itsas ikerketako institutuarekin, IMR-

rekin, elkarlanean ari gara FLBEIA espezie anitzdun Gadget ereduaz lotzeko. Loturak

FLBEIA-n tamaina egitura eta interakzio trofikoak txertatuko ditu, eta FLBEIA kon-
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plexutasun ertaineko ekosistema-ereduen artean posizio nabarmena izatea eragingo

du. Bigarren helburua simulazio-ereduak balioztatzeko prozesuarekin lotuta dago,

eta arrantza-kudeaketako simulazio-ereduetan GSA tekniken aplikazioa sustatzean

datza. Helburua lortzeko, irizpide berriak zehaztu dira literatura zientifikoan gehien

erabiltzen diren bi metodoetarako, eta bi metodo horiek simulazio-eredu konplexue-

tan aplikatzea errazteko jarraibideak ere proposatu dira. Jarraibideak ziurgabeta-

sunaren parametrizazioan eta sarrera-faktoreen kopurua murriztean, dimentsional-

tasunaren madarikazioari aurre egiteko, zentratuta daude .

Hipotesiei dagokienez, hirurak GSA eta FLBEIA metodoen konbinazioarekin be-

rretsi ziren. Lehenik, arrantzarako simulazio-ereduetan orokorrean ziurgabetzat

jotzen diren sarrera-faktoreetako batzuk sailkapenaren behealdean zeuden. Bigar-

renik, hemen zehaztutako hautaketa-irizpideak literaturan aurkitutako beste bi iriz-

pideak gainditu zituen (irteera-aldagai bakoitzerako sarrera-faktore kopuru finko

bat hautatzen duen irizpidea eta Savageren puntuazioetan oinarritutako irizpidea).

Hirugarrenik, hemen definitutako konbergentzia-irizpidearen kostu konputazionala

Sarrazin et al. (2016)-ek proposatutakoa baino baxuagoa zela aurkitu zen. Gainera,

beste bi ondorio garrantzitsu lortu ziren. Lehenik eta behin, arrantza-kudeaketako

simulazio-ereduetan sentikortasun analisi lokalak baliogabetzea, irteera-aldagai ge-

hienen aldakuntza sarrera-faktoreen arteko korrelazioak eragin zuelako. Eta bigar-

renik, MSE eta GSA metodologiak konbinatzeak izan dezakeen erabilgarritasuna

stocken ebaluketarako eredu zehatzen beharrik ez duten stockak identifikatzeko.

Amaitzeko, hainbat ikerketa lerro proposatzen dira, arrantza-kudeaketaren simu-

lazio-ereduen kalitatea nabarmen hobetuko dutenak, eta, beraz, arrantza-kudeaketa

bera ere: metamodeloen garapena sentsibilitate-indizeen kalkulua sustatzeko eta

kudeaketa-estrategien ebaluazioa denbora errealean burutzeko, oreka ekonomikoko

ereduen integrazioa FLBEIA-n, arrantza-kudeaketaren sinplifikazioa GSA eta MSE

metodologiak konbinatuz, arrantza-simulazioko ereduen ziurgabetasunaren parame-

trizazioa eta flotaren dinamika-ereduen hobekuntza.



Resumen

Esta tesis nace de la necesidad de desarrollar modelos integrados de simulación

bioeconómica identificada por el comité cient́ıfico, técnico y económico de pesca de

la Comisión Europea. El marco de aplicación del modelo deb́ıa ser la evaluación

de impacto de las estrategias de gestión de pesca. Además, el modelo desarrollado

deb́ıa de ser lo suficientemente genérico y general como para aplicarse en una amplia

gama de estrategias de gestión pesquera y deb́ıa seguir el enfoque de evaluación de

estrategias de gestión (management strategy evaluation, MSE, en sus siglas en inglés)

(Punt et al. 2016).

Los modelos de simulación de sistemas naturales son abstracciones de la realidad

y no son capaces de describir el sistema real de manera perfecta. Por lo que es

necesario que el modelo represente el sistema modelado de forma tan precisa como

sea necesario según el propósito preestablecido (Rykiel 1996). El proceso de evaluar

la idoneidad de los modelos se conoce como validación. Sin embargo, no existe un

procedimiento que garantice categóricamente que un modelo dado es válido. La

validación, es un proceso que tiene lugar a lo largo de todo el proceso de desarrollo

de un modelo (Sargent 2011). El análisis de sensibilidad global (global sensitivity

analysis, GSA, en sus siglas en inglés) es una técnica cuantitativa que se utiliza para

avanzar en la validación de los modelos de simulación (ver Norton (2015), Plischke

(2016) o Pianosi et al. (2016) para revisiones recientes en este campo). La técnica

consiste en caracterizar la variabilidad en los resultados que ofrece el modelo en

función de la variabilidad en los factores de entrada.

Para satisfacer la demanda de un modelo de simulación bioeconómica, desarrol-

lamos FLBEIA (Bio-Economic Impact Assessment in FLR). Teniendo en cuenta la

importancia de la validación en el desarrollo de modelos de simulación, esta tesis

tiene dos objetivos: primero, desarrollar FLBEIA, un modelo de simulación multi-
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stock y multiflota 2 genérico que sigue el enfoque MSE, y segundo, avanzar en su

validación usando GSA, mientras se promueve el uso de esta metodoloǵıa en modelos

de simulación de pesqueŕıas.

En relación con la aplicación de modelos de simulación de gestión pesquera y

métodos de GSA, esta tesis plantea tres hipótesis:

� Los factores de entrada que generalmente se consideran inciertos, no siempre

son los más importantes en téminos de la variabilidad total.

� Los criterios de convergencia definidos para los métodos cuantitativos de GSA

no cubren todas las situaciones en las que se aplican estos métodos.

� La selección de los factores de entrada mas importantes en la aplicación de

métodos de cribado en modelos con datos de sálida multidimensionales está

sesgada.

En la introducción, para familiarizar al lector con el contenido de la tesis, hace-

mos una revisión sobre sus cuatro pilares: gestión pesquera, MSE, validación de

modelos y GSA. La revisión bibliográfica realizada sobre gestión pesquera ha moti-

vado el art́ıculo cient́ıfico titulado: “Contribution of mathematics to fisheries man-

agement throughout history”. El art́ıculo está en preparación y se enviará a la revista

“Fish and Fisheries”.

Después de la introducción, el Caṕıtulo 2 proporciona una descripción detallada

del modelo FLBEIA, presentando cómo se ha codificado internamente y las ecua-

ciones utilizadas para describir cada uno de los procesos que constituyen el modelo.

El modelo se ha codificado usando el software estad́ıstico R, los paquetes FLR, y se

distribuye como un paquete del mismo software. En el momento de comenzar el de-

sarrollo del modelo, la mayoŕıa de los modelos existentes describ́ıan exlusivamente el

componente biológico del sistema pesquero o téıan un componente económico muy

simple, o al revés. Por lo tanto, FLBEIA fue concebido para equilibrar estas dos

componentes del sistema pesquero bajo un marco de MSE. FLBEIA puede clasifi-

carse como un “modelo de complejidad intermedia para evaluación de ecosistemas”

(Plagányi et al. 2014) que se enfoca en la gestión de la actividad pesquera en un

contexto de pesqueŕıas mixtas. Se ha publicado una descripción del modelo en la

revista cient́ıfica SoftwareX : “FLBEIA: A simulation model to conduct bio-economic

evaluation of fisheries management strategies”, (Garcia et al. 2017b).

En la segunda parte de la tesis, nos centramos en la validación del modelo y

elegimos la metodoloǵıa de GSA para avanzar en el proceso de generar confianza en

2stock se refiere a una unidad de gestión de una población de peces y flota a un grupo de buques
que comparten similares caracteŕısticas técnicas
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FLBEIA. Como el método de descomposición de la varianza de Sobol es considerado

el método de referencia por muchos autores (Homma and Saltelli 1996, Sarrazin

et al. 2016), inicialmente, pensamos en usar exclusivamente el método de Sobol

para aplicar el GSA. Sin embargo, su alto costo computacional nos hizo considerar

otras alternativas. Siguiendo las recomendaciones en la literatura (Confalonieri et al.

2010, Saltelli et al. 2008), decidimos combinar el método de Sobol con el método

de cribado de Morris para reducir el número de factores de entrada. Al combinar

ambos métodos, nos enfrentamos con el problema de garantizar que esta combinación

se realizara de manera robusta. Es decir, garantizar que los factores de entrada

seleccionados fueran realmente los más importantes.

La selección de los factores de entrada más importantes en el método de Morris

se realiza visualmente, seleccionando aquellos que se diferencian del resto en el valor

absoluto del efecto elemental medio (Campolongo et al. 2007). En los modelos con

salida multidimensional, la selección se realiza para cada una de las variables de

salida del modelo, y el conjunto de factores de entrada seleccionados para cada una

de las variables se fusionan en un solo conjunto. El problema reside en que, si

hay muchas variables de salida, es dif́ıcil mantener inalterada la selección visual.

Además, la selección visual no se puede utilizar en métodos de simulación como el

bootstrap. Para superar este problema, desarrollamos un nuevo criterio de selección

que se basa en los tres aspectos que se tienen en cuenta al realizar la selección visual:

el número de factores de entrada seleccionados, el valor absoluto del efecto elemental

medio en relación con su valor máximo, y la diferencia en los valores absolutos de

los efectos elementales medios de factores consecutivos. Por otro lado, los criterios

de convergencia existentes para los métodos de GSA se centran en el valor de los

ı́ndices de sensibilidad, su clasificación o la convergencia de los ı́ndices en la parte

inferior de la clasificación (Sarrazin et al. 2016). Sin embargo, en nuestro caso el

objetivo en la aplicación del método de Morris en esta tesis era identificar los factores

de entrada en la parte superior de la clasificación, sin importar su posición o valor

exacto. Como los objetivos en Sarrazin et al. (2016) son más exigentes, el uso de los

criterios de convergencia asociados podŕıa generar un recargo computacional. Por

lo tanto, definimos un nuevo criterio de convergencia diseñado espećıficamente para

el objetivo establecido. Los dos nuevos criterios propuestos en esta tesis, es decir los

criterios de selección y convergencia, se describen en el Caṕıtulo 3 y su descripción

junto con la evaluación de su funcionamiento se ha publicado en la revista cient́ıfica

Environmental Modeling & Software: “Robust combination of the Morris and Sobol

methods in complex multidimensional models”, (Garcia et al. 2019a).
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La aplicación de la metodoloǵıa desarrollada comienza en el Caṕıtulo 4. En este

caṕıtulo, presentamos la aplicación de FLBEIA a la pesqueŕıa demersal que opera

alrededor de la fachada atlántica de la peńınsula Ibérica. En esta aplicación, com-

paramos el rendimiento bioeconómico del sistema pesquero bajo dos poĺıticas de

gestión diferentes: la poĺıtica de obligación de desembarque (i.e la prohibición de

descartar los peces) introducida en la última reforma de la poĺıtica pesquera común

europea, y la poĺıtica anterior en la que el pescado capturado pod́ıa descartarse (ar-

rojarse al mar). Además, definimos nuevos puntos de referencia para gestionar la

pesqueŕıa, y probamos si podŕıan usarse para reducir el presumible efecto negativo

de la nueva poĺıtica. Como resultado se obtuvo que el impacto de la obligación

de desembarco depend́ıa del periodo de tiempo, de la flota y que estaba muy in-

fluenciado por los supuestos sobre la dinámica de la misma. A nivel global, los

nuevos puntos de referencia mitigaron la disminución de los beneficios generados

por la implementación de la obligación de desembarque. Sin embargo a nivel de

flota los resultados variaban. El contenido de este caṕıtulo ha sido publicado en la

revista cient́ıfica ICES journal of Marine Science: “Bio-economic multi-stock refer-

ence points as a tool for overcoming the drawbacks of the landing obligation”, (Garcia

et al. 2017a).

En el Caṕıtulo 5, se probaron los criterios y las directrices propuestos en el

Caṕıtulo 3, en la implementación de FLBEIA presentada en el Caṕıtulo 4. Siguiendo

las directrices del Caṕıtulo 3, el modelo fue condicionado de tal manera que se redujo

el número efectivo de factores de entrada en un 90%. La incertidumbre en los factores

de entrada se condicionó utilizando el valor medio utilizado en el Caṕıtulo 4 y un

coeficiente de variación del 30%. Los criterios de selección y convergencia definidos

en el Caṕıtulo 3 se aplicaron a los valores absolutos de los efectos elementales medios

de Morris sobre 37 variables de salida. El método de Sobol se aplicó después con-

siderando solamente los factores de entrada seleccionados por el método de Morris.

La varianza de la mayoŕıa de las variables de salida se deb́ıa a la interacción entre los

factores de entrada. Además, los resultados eran dependientes del stock y de la flota.

La descomposición de la varianza global se estimó utilizando el método propuesto

por Lamboni et al. (2011). En general, los factores de entrada que teńıan un mayor

impacto en los resultados fueron los relacionados con la dinámica a corto plazo de

las flotas (cuánto esfuerzo pesquero se ejerce y como se distribuye), la mortalidad

natural y el peso de los stocks de peces. Por el contrario, los factores de entrada

directamente relacionados con el reclutamiento de los stocks (que son aquellos en los

que la literatura más se centra en términos de incertidumbre) se encontraban en la
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parte inferior de la clasificación. Los factores de entrada relacionados con los errores

cometidos en el proceso de gestión del sistema, cuya variación se puede reducir a

través de la investigación, se encontraban en la parte superior de la clasificación

únicamente para los stocks objetivo de la pesqueŕıa. En el momento de finalizar la

redacción de esta tesis, estamos escribiendo un art́ıculo destacando el potencial de

combinar las metodoloǵıas de GSA y de MSE, y mostrando los resultados obtenidos

en la combinación de ambos análisis. El art́ıculo se enviará a la revista cient́ıfica

Methods in Ecology and Evolution: “Potential of applying global sensitivity analysis

to fisheries management simulation models”.

En el Caṕıtulo 6, presentamos las herramientas desarrolladas en el marco de

la tesis que están disponibles gratuitamente. El contenido del caṕıtulo es pura-

mente técnico y contribuye a la transferencia de conocimiento, facilitando el uso

de FLBEIA y de los criterios desarrollados en esta tesis. Si bien la estructura y

las fórmulas utilizadas para construir FLBEIA y definir los criterios de selección y

convergencia se explican en los Caṕıtulos 2 y 3, en este caṕıtulo mostramos cómo

usarlos en la práctica. Como complemento del paquete FLBEIA, también hemos

desarrollado una aplicación Shiny para facilitar el análisis de los resultados. En

este caṕıtulo, mostramos cómo usarlo. Finalmente, se han incroporado todos los

resultados obtenidos en la aplicación de los métodos de Morris y Sobol en una apli-

cación Shiny que facilitó enormemente la identificación de patrones en los ı́ndices de

sensibilidad.

Los modelos de simulación multistock y multiflota de gestión de pesqueŕıas per-

miten anticipar el impacto de las estrategias de gestión en los sistemas pesqueros.

Como tal, proporcionan una base cient́ıfica para apoyar el proceso de toma de deci-

siones integrando en el mismo marco las dimensiones biológica, económica y social

del sistema pesquero. Antes, las decisiones de gestión se basaban principalmente

en consideraciones biológicas. Sin embargo, impulsados por la gestión de la pesca

basada en el ecosistema (Pikitch et al. 2004), la incorporación de las dimensiones

económica y social se ha vuelto indispensable. Por lo tanto, los modelos del tipo de

FLBEIA se han convertido en una valiosa herramienta para apoyar las decisiones de

gestión. Uno de los principales problemas en el uso de estos modelos es la gran in-

certidumbre que existe en la modelización matemática de los sistemas de pesca. La

incertidumbre proviene de ambos, la variabilidad natural en el sistema y el error en

su observación. La aproximación MSE proporciona el marco para incorporar todas

estas incertidumbres en el proceso de toma de decisiones. A su vez, el GSA permite

caracterizar el impacto de la incertidumbre en el funcionamiento de los modelos.
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Sin embargo, las metodoloǵıas de GSA y MSE rara vez se combinan en modelos

de simulación de gestión pesquera. Por lo tanto, esta tesis no solo proporciona una

herramienta para apoyar el proceso de toma de decisiones en la gestión pesquera,

sino también una metodoloǵıa para mejorar la forma en que se utilizan los modelos

de simulación pesquera en la práctica.

La consecución del primer objetivo de la tesis, el desarrollo de un modelo de

simulación que se pueda aplicar ampliamente, se evidencia por la gran cantidad de

casos de estudio en los que se ha aplicado FLBEIA. Además, el modelo es hoy en

d́ıa un referente en Europa: se está utilizando para proporcionar asesoramiento so-

bre gestión pesquera (ICES 2018b), en varios proyectos europeos de investigación

y hemos impartido varios cursos internacionales con estudiantes de todo el mundo.

Además, estamos colaborando con cient́ıficos pesqueros externos para aumentar aún

más las capacidades de FLBEIA. En particular, estamos colaborando con el insti-

tuto de investigación marina (IMR) en Noruega para vincular FLBEIA con el modelo

múltiespecies Gadget. El enlace permitirá incorporar la estructura por talla e inter-

acciones tróficas a FLBEIA y hará que FLBEIA ocupe una posición destacada entre los

modelos de ecosistema de complejidad intermedia. El segundo objetivo, se relaciona

con el proceso de validación de los modelos de simulación y consiste en promover la

aplicación de técnicas de GSA en los modelos de simulación de gestión pesquera. El

objetivo se ha logrado definiendo nuevos criterios para combinar dos de los métodos

de GSA más populares en la literatura cient́ıfica, y un conjunto de directrices para

facilitar la aplicación de estos métodos en modelos de simulación complejos. Las di-

rectrices se centraron principalmente en el condicionamiento de la incertidumbre y

en la reducción del número efectivo de factores de entrada para combatir la maldición

de la dimensionalidad.

En cuanto a las hipótesis, las tres fueron corroboradas con la combinación de

los métodos de GSA y FLBEIA. De la tesis se deduce que algunos de los factores

de entrada generalmente considerados inciertos en los modelos de simulación de

pesqueŕıas estaban en la parte inferior de la clasificación. También se obtiene que el

criterio de selección definido aqúı superó a los otros dos criterios encontrados en la

literatura (el criterio que selecciona un número fijo de factores de entrada para cada

variable de salida y el criterio basado en las puntuaciones de Savage). Finalmente,

se encontró que el coste computacional del criterio de convergencia definido aqúı era

más bajo que el propuesto por Sarrazin et al. (2016). Además, se obtuvieron otras

dos conclusiones relevantes. Primera, la invalidación del análisis de sensibilidad

local en los modelos de simulaciones de gestión pesquera debido a que la variación
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de la mayoŕıa de las variables de salida estaba motivada por la interacción entre

los factores de entrada. Segunda, la potencial utilidad de la combinación de las

metodoloǵıas de MSE y GSA para identificar los stocks para los cuales podŕıa ser

innecesario implementar modelos precisos de evaluación de stocks.

Al final de la tesis se proponen varias ĺıneas de investigación que mejorarán con-

siderablemente la calidad de los modelos de simulación de gestión pesquera y por

ende la misma gestión pesquera: el desarrollo de metamodelos para promover el

cálculo de ı́ndices de sensibilidad y la evaluación en tiempo real de estrategias de

gestión, la integración de modelos de equilibrio económico en FLBEIA, la simplifi-

cación de la gestión de la pesca mediante la combinación de las metodoloǵıas de

GSA y MSE, el condicionamiento de la incertidumbre en los modelos de simulación

pesquera y la mejora de los modelos de dinámica de flota existentes.
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Summary

This thesis was motivated by the need of developing integrated bio-economic si-

mulation models identified by the scientific, technical and economic committee for

fisheries of the European Commission. The model should be appropriate to carry

out impact assessment of management strategies on fisheries. Moreover, it should

be general enough to be applicable to a wide variety of fisheries and management

strategies and should follow the management strategy evaluation (MSE) approach

(Punt et al. 2016).

Mathematical models of natural systems are abstractions of reality and can never

describe the real system perfectly. Instead, what is needed is that the model rep-

resent the modelled system well enough for the stated purpose (Rykiel 1996). The

process of evaluating the adequacy of a model is called validation. However, there

is no procedure that can be used to ensure categorically that a given model is valid.

Instead, validation is a process that takes place throughout the whole of the devel-

opment process of the model (Sargent 2011). Global Sensitivity Analysis (GSA) is

one of the quantitative techniques that can be used for such a validation (see Norton

(2015), Plischke (2016) or Pianosi et al. (2016) for recent reviews on the field). It

consists in characterising the variability in the model output as a function of the

variability in the input factors.

To satisfy the demand for a bio-economic simulation model, we developed FLBEIA

(Bio-Economic Impact Assessment in FLR). Considering the importance of validation

in the development of simulation models, this thesis has two objectives: first, to

develop FLBEIA, a generic multi-stock and multi-fleet model 3 that follows the MSE

approach, and second, to advance its validation using GSA, while promoting the use

3Stock refers to a management unit of a fish population and fleet to a group of vessels that share
similar technical characteristics.

xxv
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of GSA in fisheries simulation models.

Furthermore, in relation with the application of fisheries management simulation

models and GSA methods this thesis raises three hypotheses:

� The input factors that are usually considered uncertain are not always the

most important.

� The convergence criteria defined for quantitative GSA methods do not cover

all situations where GSA is applied.

� The selection of important input factors in the application of screening meth-

ods in multi-dimensional output models is biased.

In the Introduction, to familiarise the reader with the contents of the thesis,

we provide a background for its four pillars: fisheries management, MSE, model

validation and GSA. The review conducted of fisheries management has motivated

a scientific article titled: “Contribution of mathematics to fisheries management

throughout history”. That article is in preparation and will be sent to the journal

“Fish and Fisheries”.

After the Introduction, Chapter 2 provides a detailed description of the FLBEIA

model, presenting how it has been coded internally and the equations used to de-

scribe each of the processes that build up the model. FLBEIA has been coded in the

R language, it uses the FLR packages and it is distributed as an R library. At the

time of starting the development of the model, most of the existing models were bio-

logically oriented with a very simple economic component, or the other way around.

Hence, FLBEIA was conceived to balance those two dimensions of the fishery system

within an MSE framework. FLBEIA can be categorised as a ‘model of intermediate

complexity for ecosystem assessments’ (Plagányi et al. 2014) which is focused on the

management of fishing activity in the context of mixed fisheries. A description of the

model has been published in the scientific journal SoftwareX : “FLBEIA: A simula-

tion model to conduct bio-economic evaluation of fisheries management strategies”,

(Garcia et al. 2017b).

In the second part of the thesis, we focused on the validation of the model and

chose GSA to make progress in the process of building trust in FLBEIA. As the

Sobol variance decomposition method is considered the reference method by many

authors (Homma and Saltelli 1996, Sarrazin et al. 2016), we initially planned to

use exclusively the Sobol method to apply GSA. However, its high computational

cost made us consider other alternatives. Following the recommendations in the

literature (Confalonieri et al. 2010, Saltelli et al. 2008), we decided to combine the

Sobol method with the Morris screening method to reduce the number of input
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factors. When combining both methods we were faced with the problem of ensuring

that it was being done robustly, that is, ensuring that the selected input factors were

really the most important ones.

On the one hand, the selection of the most important input factors in the Morris

method is done visually: selecting those that are distinguished from the rest in the

value of the mean absolute elementary effect (Campolongo et al. 2007). In multi-

dimensional output models, the selection is done for each of the output variables of

the model, and the set of input factors selected for each of the variables are merged

into a single set. However, if there are many output variables, it is difficult to main-

tain the visual selection unaltered. Furthermore, the visual selection cannot be used

in simulation approaches like bootstrap. To overcome this problem, we developed a

new selection criterion that is based on the three aspects that are taken into account

when carrying out the visual selection: the number of input factors being selected,

the value of the mean absolute elementary effect relative to their maximum value,

and the difference in the mean absolute elementary effects of consecutive factors. On

the other hand, the existing convergence criteria for GSA methods were focused on

the value of the sensitivity indices, their ranking, or the convergence of the indices

in the lower part of the ranking (Sarrazin et al. 2016). However, the objective in

the application of the Morris method in this thesis was different, namely, to identify

the input factors in the top of the ranking, no matter their exact position or value.

As the objectives in Sarrazin et al. (2016) are more demanding, using the associated

convergence criteria could lead to a computational surcharge. Hence, we defined a

new convergence criterion specifically designed for the stated objective. The two

new criteria proposed in this thesis, namely the selection and the convergence crite-

ria, are presented in Chapter 3 and their description together with the evaluation of

their performance have been published in the scientific journal Environmental Mod-

elling & Software: “Robust combination of the Morris and Sobol methods in complex

multidimensional models”, (Garcia et al. 2019a).

The application of the developed method starts in Chapter 4. In that chapter,

we present the application of FLBEIA to the demersal fishery that operates around

the Atlantic part of the Iberian Peninsula. In this application, we compared the

bio-economic performance of the fishery system under two different management

policies: the landing obligation policy (a fish discard ban) introduced in the last

reform of the European common fisheries policy, and the previous policy where the

fish caught could be discarded (i.e. thrown back into the sea). Furthermore, we

defined new reference points to manage the fishery, and tested whether they could
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be used to cushion the negative effect of the new policy. We found that the impact

of the landing obligation was time and fleet dependent and highly influenced by the

assumptions about fleet dynamics. At the fishery level, the new reference points

mitigated the decrease in profits generated by the implementation of the landing

obligation. However, at the fleet level, the effect depended on the fleet and the time

period considered. The content in this chapter has been published in the scientific

journal ICES journal of Marine Science: “Bio-economic multi-stock reference points

as a tool for overcoming the drawbacks of the landing obligation”, (Garcia et al.

2017a).

Chapter 5 presents the results of testing the criteria and guidelines proposed

in Chapter 3 with the FLBEIA implementation presented in Chapter 4. Following

the guidelines in Chapter 3, the model was conditioned in such a way that the

effective number of input factors was reduced by 90%. The uncertainty in the input

factors was conditioned using the mean value used in Chapter 4 and a coefficient of

variation of 30%. The selection and convergence criteria defined in Chapter 3 were

applied to the Morris mean absolute elementary effects over 37 output variables. The

Sobol method was applied afterwards, considering only the input factors selected

by the Morris method. The variance of most of the output variables was driven

by the interaction between input factors. Moreover, the results were stock and

fleet dependent. The decomposition of the overall variance was estimated using the

method proposed by Lamboni et al. (2011). Overall, the input factors that had the

biggest impact on the results were those related with the short-term dynamics of the

fleets (how much fishing effort to exert and how to distribute it), and the natural

mortality and weight of the fish stocks. Oppositely, the input factors directly related

with stock-recruitment (which are the ones the literature most focuses on in terms

of uncertainty) were in the lower part of the ranking. The input factors related with

the errors committed in the management process of the system, whose variance can

be reduced through further research, were in the upper part of the ranking only

for the stocks targeted by the fishery. At the time of finalising the writing of this

thesis, we are writing an article highlighting the potential of combining GSA and

MSE, and presenting the findings obtained in the combination of both approaches.

The article will be sent to the scientific journal Methods in Ecology and Evolution

and titled “Potential of applying global sensitivity analysis to fisheries management

simulation models”.

In Chapter 6, we present the computational tools developed in the framework of

the thesis that are freely available. The content of the chapter is purely technical
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and contributes to the transfer of knowledge, facilitating the use of FLBEIA and the

criteria developed in this thesis. While the structure and formulas used to build up

FLBEIA and define the selection and convergence criteria are explained in Chapters

2 and 3, in this chapter we show how to use them in practice. As a complement

to the FLBEIA package, we have also developed a Shiny application to facilitate the

analysis of the results, and in this chapter, we show how to use it. Finally, we have

placed all the results obtained in the application of the Morris and Sobol methods

in a Shiny application which facilitated enormously the identification of patterns in

the sensitivity indices.

Multi-stock and multi-fleet fisheries management simulation models allow an-

ticipating the impact of management strategies in fishery systems. As such, they

provide a scientific basis for a decision making process integrating the biological,

economic and social dimensions of the fishery system in the same framework. In the

past, management decisions were mainly based on biological considerations. How-

ever, encouraged by the ecosystem-based fishery management (Pikitch et al. 2004),

the incorporation of economic and social aspects has become indispensable. Thus,

FLBEIA-like models have become a valuable tool to support management decisions.

One of the main problems in the use of these models is the great uncertainty that

exists in the mathematical modelisation of fishery systems. The uncertainty comes

from both the natural variability in the system and the errors in its observation.

MSE provides a framework to incorporate all these uncertainties in the decision

making process. In turn, GSA allows characterising the impact of the uncertainty

on the performance of the models. However, GSA and MSE are rarely combined in

fishery management simulation models. Thus, this thesis not only provides a tool

to support the decision making process in fisheries management but also a set of

guidelines to improve how fishery simulation models are used.

The achievement of the first objective of the thesis, the development of a si-

mulation model that can be applied widely, is evidenced by the large number of

case studies in which FLBEIA has been applied. Moreover, the model is nowadays a

reference in Europe: it is being used to provide fisheries management advice (ICES

2018b), by several European research projects, and we have taught several interna-

tional courses with students around the world. Additionally, we are collaborating

with external fisheries scientists to further increase FLBEIA’s capabilities. In partic-

ular, we are collaborating with the Institute of Marine Research (IMR) in Norway

to link FLBEIA with the Gadget multi-species model. The link will make it possi-

ble to incorporate length structure and trophic interactions into FLBEIA and will
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make FLBEIA occupy a prominent position among ecosystem models of intermediate

complexity. The second objective relates with the process of validating simulation

models and consists in promoting the application of GSA techniques to fishery man-

agement simulation models. The objective has been achieved, defining new criteria

to combine two of the most popular GSA methods in the scientific literature, and a

set of guidelines to facilitate the application of these methods in complex simulation

models. The guidelines were mostly focused on the conditioning of the uncertainty

and principally on the reduction of the effective number of input factors to fight the

curse of dimensionality.

Regarding the hypotheses, the three were corroborated with the combination

of GSA and FLBEIA. First, some of the input factors usually considered uncertain

in fisheries simulation models were in the lower part of the ranking. Second, the

selection criterion defined here outperformed the other two criteria found in the

literature (the criterion that selects a fixed number of input factors per output

variable and the criterion based on Savage scores). Third, the computational cost of

the convergence criterion defined here was found to be lower than that proposed by

Sarrazin et al. (2016). Additionally, another two relevant conclusions were obtained.

First, local sensitivity analysis in fishery management simulations models was found

to be invalid because the variance of most of the output variables was driven by

the interaction between input factors. And second, the combination of the MSE

approach and GSA was found to be useful for identifying those stocks for which

implementing accurate stock assessment models could be unnecessary.

Finally, several research lines that will considerably improve the quality of fish-

eries management simulation models, and fisheries management itself, are proposed:

the development of metamodels to promote the calculation of sensitivity indices and

the real-time evaluation of management strategies, the integration of economic equi-

librium models in FLBEIA, the simplification of fisheries management by combining

GSA with MSE, the uncertainty conditioning of fisheries simulation models and the

improvement of existing models of fleet dynamics.



Chapter 1
Introduction

The historical review conducted on fisheries management has motivated the

scientific article titled: “Contribution of mathematics to fisheries management

throughout history”. The article is under preparation and will be sent to the

journal “Fish and Fisheries”.

1.1 Introduction

In this chapter we conduct a historical revision of the main fields covered in this

thesis. We start with a revison of fisheries science, focused on the development of

mathematical models over years. Then, we explain how fisheries management is

implemented nowadays in practice. The model we have developed in this thesis,

FLBEIA, has been build following the management strategy evaluation approach

(Punt et al. 2016). Hence, the historical development of this modelling approach

is also presented in this chapter. The use of simulation models provide a perfect

framework to test different aspects of fisheries management. However, as models

are simplifications of the system they represent, it is necessary to validate them and

prove they are good enough for the intended purpose (Rykiel 1996). Therefore, in

Section 1.3, we move from fisheries management to the validation of mathematical

models. We review the application of validation techniques since its emergence

around 1950. Then, we focus on global sensitivity analysis (GSA) (Saltelli et al.

2008), the methodology used and further developed as part of this thesis to validate

FLBEIA. In the next two sections we explain the motivation and the objectives of

the thesis. Finally, as this thesis has emerged as a result of the work carried out in

AZTI technological center, in the last part of the introduction we briefly present the

1
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work carried out by this center in relation with fisheries management.

1.2 Mathematical modelling in fisheries management

1.2.1 The evolution of mathematical models in fisheries manage-

ment

At the beginning, fisheries science was exclusively concerned with the dynamics

and the sustainability of exploited fish stocks. However, it has became a multi-

disciplinary research field that embraces the study of biological, economic and social

dimensions of the fishery systems. Fisheries science is a relatively modern science

where the first steps took place in the second half of the 19th century (Pauly 1993).

The ultimate objective of fisheries science is to inform managers about the biolog-

ical, economic and social impact of alternative options to manage fisheries, based

on scientifically sound analysis. In turn, some of the main objectives of fisheries

management are: to ensure the sustainability of fisheries resources while promoting

an economically efficient fishing sector, protecting local communities, and covering

the demand of fish protein. In this section, we will summarize the history of fisheries

management, with the focus on the evolution of mathematical modelling. Figure 1.1

shows some of the most important events as regards to the evolution of mathematical

modelling in fisheries management in chronological order.

In 1854 Cleghorn was the first in introducing the idea of overfishing, concerned

about the fluctuations in English herring fishery (Cleghorn 1854) . However, at that

time it was a general believe that the oceans were so vast that fishing practices of

the time were unable to impact negatively on fish stocks. The zoologist Huxley, in

the inaugural presentation of the International Fisheries Exhibition in 1883 (Finley

(2009), https://mathcs.clarku.edu/huxley/SM5/fish.html), said in relation to

the fishing technologies of the moment that “. . . the cod fishery, the herring fishery,

the pilchard fishery, the mackerel fishery, and probably all the great sea fisheries,

are inexhaustible; that is to say, that nothing we do seriously affects the number

of the fish. And any attempt to regulate these fisheries seems consequently, from

the nature of the case, to be useless.” Unfortunately, in less than a century, the

reality proved otherwise. Although, it is also true, that the efficiency of fishing gears

improved greatly over the years. Hence, the fishing technologies of the second part

of the 20th century had nothing to do with those which Huxley was referring to.

Before the end of the 19th century, the decrease of fish abundance in several fishing

https://mathcs.clarku.edu/huxley/SM5/fish.html
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Figure 1.1: Historical evolution of fisheries science focused on the evolution of ma-
thematical modelling.
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grounds begin to raise voices against the thought of inexhaustibility of fish stocks

(Sims and Southward 2006).

At the beginning of the 20th century, fishery science was divided into two differ-

ent branches (Pauly 1993). In one of them, which main exponent was the Russian

Baranov, the scientists thought that the fish stocks were regulated by the fishery.

In the other one, represented by the Norwegian Hjort, they thought that the en-

vironmental conditions were the main drivers of the fish abundance. Baranov in

1918, was the first in combining growth and abundance to develop a catch equation

(Larkin 1977). Based on this equation, he laid the foundations of quantitative fish-

eries science. Nowadays, it is still one of the most important equations in fisheries

modelling. The 1930s were the years of the rational exploitation of fishing resources.

Russel was the first in dealing with this issue (Russell 1932). He concluded that it

was impossible to stabilize a fishery in a level that could yield a constant maximum

level of catch annually. The solution was to predict the stock level in advance to

predict the time varying optimum level of catch. Besides, he introduced the question

of the best size to start harvesting a stock. In 1933, Horjt introduced the concept

of optimum catch, which evolved afterwards to maximum sustainable yield (MSY)

(Rosenberg et al. 1993). In 1935, Graham introduced the concept of the ‘economy of

effort’ and the optimum age to harvest. He was concerned about the idea that fishers

were wasting fishing effort by exerting fishing levels that ultimately were leading to

a decrease in catch.

The II World War was an unintentional and valuable experiment in fisheries sci-

ence. The fishing activity in the North Sea stopped during the war years (1939-1945)

which produced a great increase in the abundance of fish populations. The quick

decrease in the abundance, once the fishing activity was re-established, motivated

the seminal work of Beverton and Holt (Beverton 1957). Basically, they recompiled

and further developed the existing knowledge. They structured the work around

what they call the “four primary factors”: recruitment1 , natural mortality, fishing

mortality and growth. Furthermore, they applied the models they revised to the

North Sea data. In the same decade, Schaefer was the first author in proposing

a surplus-production model to estimate the biomass of a fish population over time

(Schaefer 1954). This model had the advantage of providing an analytical solution

for the estimation of MSY. This fact increased enormously the popularity of MSY

as reference point (Mace 2001). Still today, surplus production models are one of

the most popular stock assessment models used in practice.

1Recruitment refers to the fishes that becomes accessible to the fishery anually
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Fishing is an economic activity and many authors in the first half of the 20th

century already acknowledged the importance of economy in fisheries management

(Baranov 1925, Beverton 1953, Huntsman 1944). However, specific research in the

field was not carried out until the second half of the century (Gordon 1954). Nowa-

days, the fisheries research in economy and biology is still quite separate from each

other. In general, the existing mathematical models are focused in biological or eco-

nomic aspects of the system and tend to obviate or simplify the other (Garcia et al.

2017b). Gordon (1954) was the first author in considering fishery economics explic-

itly. He gave an analytical solution for the optimum intensity of fishing effort for

a population in equilibrium. Clark, one of the most influential fishery economists,

published in 1973 the paper “The economics of overexploitation” (Clark 1973). In

the paper he suggested that MSY should be generally adopted at least as an upper

limit and concluded that “The conservation of renewable resources would appear

to require continual public surveillance and control of the physical yield and the

condition of the stocks”. Time has confirmed that he was right.

The popularity of MSY decreased in the 1970s. In 1977, Larkin forecasted it’s

dead in his paper “The epitaph of MSY”, (Larkin 1977). Larkin argued that, MSY

is associated to a high risk of recruitment failure because at MSY the most pro-

ductive components of the populations have been reduced dramatically, it can not

be attained simultaneously in mixed fisheries and it is not the best economic strat-

egy. However, nowadays, it is the management objective of many fishery manage-

ment agencies. Although, it is also true, that nowadays the objective is defined in

terms of fishing mortality, instead of yield, and it comprises a broader definition

than in the past (Rindorf et al. 2017). In fact, in 1992, the participants on the

World Summit on Sustainable Development (http://www.unmillenniumproject.

org/documents/131302_wssd_report_reissued.pdf), the European Commission

among others, commit to bring depleted fish stocks to MSY no later than 2015.

Nowadays, many fish stocks in Europe, and elsewhere, continue being below MSY.

In consequence, one of the main objectives of the Europe’s common fisheries pol-

icy (CFP) is to achieve MSY for all the stocks no later than 2020 (Salomon et al.

2014). One of the main criticism to MSY is that it is too high from an ecosystem

functioning point of view (Larkin 1977, Mace 2001). As Clark already suggested in

1973 many authors consider that MSY should be a management limit and not an

objective (Clark 1973, Mace 2001). However, from an economic perspective, when

several fish stocks are exploited together, in the so called mixed fisheries, exceeding

single stock MSY target could be more profitable than to stop fishing (Da Rocha

http://www.unmillenniumproject.org/documents/131302_wssd_report_reissued.pdf
http://www.unmillenniumproject.org/documents/131302_wssd_report_reissued.pdf
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et al. 2012, Garcia et al. 2017a). Also in the 70s, the equations of Virtual Popula-

tion Analysis, the first generation of age structured stock assessment models, were

formalized by Gulland (Angelini 2007).

As happened with MSY, the use of mathematical models had its own mistrust

crisis at the end of the 20th century (Schnute and Richards 2001). This fact was

motivated by the collapse of several fisheries. Holt himself, one of the promoters

of mathematical modelling in fisheries science, recognized that an excessive weight

had been placed on mathematics. The main problem in the application of mathe-

matical models to manage fish stocks is the uncertainty that surrounds the system,

from the data collection, through the choice of the correct assessment model, to the

implementation of the management advice. Motivated by the problem with uncer-

tainty, at the turn of the 20th century, a new approach to fisheries management

emerged, the management strategy evaluation (MSE) approach (Punt et al. 2016).

The ultimate objective of the approach is to identify management strategies that

are robust to the uncertainty inherent in the fishery system. The new approach

supposed a change of paradigm. Instead of looking for the model that best fitted to

the data available, the objective is to find a management procedure which is robust

to the uncertainty in the fishery system. The MSE approach was first used by the

international whale commission (Punt and Donovan 2007) and it has been extended

nowadays all around the world.

With the new century, the need of a more holistic approach to fisheries man-

agement, which takes into account ecosystem aspects, was identified, the so called

Ecosystem Based Fisheries Management (EBFM) (Curtin and Prellezo 2010, Pikitch

et al. 2004). The objective of EBFM is to ensure healthy marine ecosystems that

are able to support sustainable fisheries. In order to support EBFM, end-to-end

ecosystem models that considers target and non-target species and their predator-

prey relationships were developed —(Christensen and Walters 2004, Fulton et al.

2011a, Shin and Cury 2004) . Furthermore, fishers are part of the ecosystem and

their behaviour is considered a key factor in the success of management strategies

(Fulton et al. 2011a). The MSE approach started being an approach focused ex-

clusively on the stock. However, along the years and driven by the EBFM, more

complex configurations arose and nowadays multi-stock and multi-fleet approaches

are broadly applied (Garcia et al. 2017a, Marchal and Vermard 2013, Simons et al.

2015).
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Figure 1.2: Steps taken annually to set the total allowable catch (TAC).

1.2.2 Fisheries management in practice

In Europe, fisheries management is operationalized through the CFP (Salomon et al.

2014), which establishes the overall objectives and rules of fisheries management in

Europe. One of the main tools of the CFP is the total allowable catch (TAC) that

is set annually for many of the exploited stocks in European waters. The principal

steps taken in the process to set the TACs are shown in Figure 1.2. Usually, this

process is conducted annually.

The first step in the provision of management advice is the sampling. Routinely

the fisheries research institutes and the corresponding administrations collect the

data relative to stock exploitation, biology and abundance. In Europe, the data

collection is regulated through the data collection framework. The most basic data

collected for each stock is the total landings. This data is normally recorded in

logbooks 2 and communicated to research institutes by national administrations.

Length distribution of landings is sampled at port by scientists for a number of trips

selected randomly. Discards (the catches that are thrown into the sea), are sampled

by observers on board commercial fishing vessels. Sampled trips represent a small

proportion of total number of trips. Biological data, such as weight, fecundity and

age at length are a sub-sample of the length distribution samples that are brought

from the port to the laboratories to conduct the necessary analysis. Finally, for

2Logbooks store records of catch and effort registered at the time of the catch operation.
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some stocks, there are scientific surveys at sea that are run periodically and which

objective is to obtain relative or absolute abundance estimates of a certain fraction of

the population (the recruitment or the spawning biomass for example). Sometimes

there is alternative data available such as tagging or genetic data that provides

additional information to the management advice provision process.

Fish stocks are usually shared by several countries and their management is

conducted through international collaboration. The procedure used to merge the

international data depends on the data available. In turn, the mathematical models

used to assess the status of the stock depends on the data available, its quality

and its informativeness. These models are mathematical models that are solved

numerically to obtain estimates of abundance and exploitation levels over time.

Undoubtedly, the most common assessment models are biomass dynamic and age

structured assessment models. The estimates obtained from these models are then

used to derive reference points for the stocks. The reference points are particular

biomass and exploitation levels that are used to determine the stock status, i.e if it

is being exploited sustainably, overexploited or overfished, and to generate the catch

advice.

The management advice is generally produced using harvest control rules (HCRs).

The HCRs are mathematical formulas used to generate the catch advice, commonly

known as TAC, using the reference points, and current stock and exploitation levels.

The HCRs can be divided in two groups depending on the type of data they used to

generate the advice, model-based and model-free HCRs. Model-based HCRs used

the output of an assessment model and reference points, and the model-free HCRs

used time series of landings and or abundance indices. When there is not enough

data to apply an assessment model or a model-free HCR the management advice is

normally based on expert opinion and precautionary principles.

The implementation of the scientific management advice depends on several fac-

tors. On the one hand, the managers set the TAC based not only on the scientific

advice but also on political considerations. On the other hand, the fishers will com-

ply with the TAC depending on different factors, such as, the existing control and

enforcement, or the economic incentives.

The whole process of generating and implementing the management advice is

subject to a great uncertainty (Francis and Shotton 1997), from the typical sam-

pling and measurement error in the data collection step, to the uncertainty in the

implementation of the scientific advice. MSE emerged in the last part of the last

century to cope with the uncertainty in fisheries systems, providing a framework to
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formalize its incorporation in the decision making process.

1.2.3 Management strategy evaluation

The management of fisheries systems is characterized by being subject to a great

uncertainty. The uncertainty is derived from both, the natural variability in the

system and the uncertainty in the different steps of the management process. MSE

approach, also known as operational management procedure approach, arose as a

tool to cope with large uncertainties and inconsistent information in the decision

making process (Polacheck et al. 1999). It is widely used in fisheries management to

evaluate the performance of management strategies, by means of simulation, before

they are put in place. It consists in simulating the fish stocks and the fleets that

exploit them together with the management process. One of the goals of MSE is

to analyse the performance of different management strategies and identify those

strategies that are robust to the uncertainties considered. The approach facili-

tates interaction between scientists and stakeholders in the management process

(deReynier et al. 2010). Furthermore, it promotes the use of HCRs, which auto-

mate the generation of the management advice, and hence, removes the influence of

politics in the decision making process (Punt and Donovan 2007).

The first application of MSE was developed by the international whaling com-

mission (IWC) in the 1980s. In 1982, due to the uncertainty in the data available

and the impossibility to obtain a reliable estimate of the abundance of whale popula-

tions, the IWC decided to impose a moratorium in the commercial fishing of whales

from 1986 onwards (Kirkwood 1997). In order to be able to end with the mora-

torium the IWC scientists looked for a procedure that was robust to the inherent

uncertainties and was able to ensure, with high probability, that the management

objectives were fulfilled. The process of developing the management procedure took

six years. Initially, they defined several management procedures and as experimental

testing was not possible, they were tested by means of simulation. The management

procedures finally selected performed quite well managing simulated whale stocks

and it was adopted by the IWC. Paradoxically, the IWC was the pioneer in adopt-

ing a management procedure developed following an MSE but it has never been

implemented because the moratorium is still in place (Punt and Donovan 2007)

(https://iwc.int).

The simulations that run under MSE approach have two main components, the

operating model (OM) and the management procedure (MP). The OM represents

https://iwc.int
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the system that is being managed (the ‘true’ population). It simulates the system

using plausible hypothesis about its dynamic. As a minimum, it includes a single

stock and a single fleet that exploits it. But it can also be represented by a more

realistic system with many stocks and fleets or even by a full ecosystem model such

as Atlantis (Fulton et al. 2005).

The explicit simulation of the management procedure is what distinguishes the

MSE approach from other simulation approaches. It reproduces the management

strategy that is being tested, from the data collection to the generation of the man-

agement advice. The link between the OM and the MP is done through the obser-

vation model. This model generates the sampling data which can include biological

data, time series of stock abundance obtained through scientific surveys at sea, catch

and effort data from the fleets or others. The data is then used to feed the assess-

ment model which generates an estimate of the true fish population status. In the

MSE literature this population is known as the perceived population. The manage-

ment advice is then generated by a HCR based on the perceived population. The

management advice is normally a TAC but could also correspond with technical

measures like spatio-temporal closures or minimum landings sizes. Finally, the link

between the management procedure and the operating model is done through the

implementation model. This model describes how the management advice obtained

in the MP is really implemented in the OM. The managers could modify the man-

agement advice based on other factors and/or fishers could not catch exactly the

TAC.

The simulation of the whole MP, together with the simulation of the response

of fishers to the management advice, make that the catch in the OM does not

necessarily correspond with the TAC obtained in the MP. Punt et al. (2016) state

that to be qualified as an MSE the simulation should include at least some kind of

implementation error.

After the pioneer approach of the IWC, one of the most relevant MSE imple-

mentations, for the commercial importance of the resource and the scope of the

process, was that of southern bluefin tuna (Polacheck et al. 1999). In a process that

expanded from 2002 to 2011 a management procedure was agreed on July 2011 and

the TAC has been set according to the HCR defined in this MP since that year.

It is applied every three years and it provides TAC advice for the next three. It is

planned to develop a new management procedure in 2021 to account for the new

data available (https://www.ccsbt.org/en/content/management-procedure).

The first applications of MSE were focused in the performance of MPs at stock

https://www.ccsbt.org/en/content/management-procedure
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level and they used single stock approaches (Garcia et al. 2011, Kell et al. 2006b,

Polacheck et al. 1999, Punt and Smith 1999). However, nowadays the multi-stock

and multi-fleet approaches are becoming more frequent (Dichmont et al. 2008, Garcia

et al. 2019b; 2017a, Prellezo et al. 2016). However, most of these applications do

not include a complete uncertainty analysis. This problem was already pointed out

by Kraak et al. (2010).

1.3 Validation of mathematical models

Simulation models are simplified descriptions of reality and can never replicate the

real world exactly. Hence, validation of models is needed to ensure that the model

describes the real system well enough for the intended purpose. The absolute vali-

dation of ecosystem models is impossible because the ecosystems are open systems

Oreskes et al. (1994). Nevertheless, we can gain confidence in the model through

the application of validation techniques.Validation and verification of mathematical

models arose in the 1950s. Sargent and Balci (2017) conducted a historical review

of the evolution in validation since the 1950 that is summarized here. The concepts

of validation and verification of simulation models arose in the 1950s when the use

of the computers was extended. However, at that time, validation and verification

methodologies were not available and they were rarely conducted. Furthermore,

there was confusion about the meaning of both terms. Fishman and Kiviat (1968)

were the first authors defining validation formally. From 1970 to 1990 the need of

conducting validation and verification of simulation models to demonstrate the reli-

ability of models was acknowledged. In those years, there were few papers published

and most of the work was included as book chapters. Since 1990, verification and

validation of models is a requirement in many organizations and new developments

and research papers increased enormously.

The controversy in the use and definition of validation has been a constant since

the beginning (Schmolke et al. 2010). Oreskes et al. (1994) argue that verification

and validation can never be accomplished because “natural systems are never closed

and model results are always non-unique”. However, other authors like Schmolke

et al. (2010) and Rykiel (1996) advocate the use of validation for the process of

ensuring that the model behaviour is good enough for the stated purpose. The

validation and verification of simulation models is a process that goes hand in hand

with the development process. It is almost impossible to ensure that a model is valid

over its full application domain, instead the model is tested in different case studies
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and scenarios until enough confidence in its suitability is build (Sargent 1991).

Augusiak et al. (2014) made a review on the use of validation and verification

terms in mathematical modelling. They found that validation term is frequently

used with two different meanings:

� Assessment of the implications of errors made in the design and the implemen-

tation in the model output, and whether the output behaviour exhibits the re-

quired accuracy with regard to the model’s intended purpose. The assessment

is mainly built on comparing model output to data that were preferably not

used for model development.

� The entire process of forming the decision whether and when a model is suitable

to meet its intended purpose by building confidence in model applications and

increasing the understanding of model strengths and limitations.

Verification has been also used with the two meanings above, but the most com-

monly used definition for verification is “Assuring that the computer programme and

implementation of the conceptual model are correct.” Sargent (1991) distinguishes

between conceptual model and computerized model. The conceptual model refers to

the graphical/mathematical representation of the model and computerized model to

its implementation as a computer program. With this differentiation, validation is

carried out on the conceptual model and verification on the computerized one. Al-

though the computerized model is an invaluable tool to perform the validation of the

conceptual model.

In what all the authors agree, is that validation and verification needs to take

place in every stage of simulation model development and application. Furthermore,

there is not a universal technique that can be used to validate models and they can

not be validated absolutely. The validation of models is case and objective specific.

Balci (1997) presented a long list of techniques for the validation of simulation

models divided in four groups:

� Informal techniques which rely on human reasoning and lack mathematical

formalism (external audit, face validation, ...);

� Static techniques which are concerned with accuracy assessment on the ba-

sis of characteristics of the static model design and source code (cause-effect

graphing, data analysis,...);

� Dynamic techniques which evaluate the model based on execution behaviour

(graphical comparisons of the results, sensitivity analysis, ...);

� Formal techniques which are based on the mathematical proof and correctness

(induction, inference...).
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The dynamic techniques are the most numerous. One of the most widespread

technique in this group is sensitivity analysis.

1.3.1 Global Sensitivity Analysis

The use of sensitivity analysis arose in the second part of the last century. In 1957,

Maffey already forecasted the importance that sensitivity analysis would have in

the future (Maffei 1957). The initial applications were applied in linear models and

their use in highly non-linear models was only valid locally. The use of sensitivity

analysis in nonlinear models was generalized from 1960, when the first screening

methods appeared. These methods are able to rank the input factors of a model

according to their impact on the results, but do not provide a quantification of

the impact. The first methods consisted on moving one factor at a time and did

not included interactions (Li 1962, Watson 1961). Some years later methods that

consider interactions were developed (Cotter 1979). The most popular screening

method, the Morris elementary effects method, was published by Morris in 1991

(Morris 1991).

Variance decomposition methods are more advanced than the screening ones

and apart from providing a rank of the input factors, also provide an estimate of the

contribution of each input factor to the output variance. The first variance decom-

position method, the Fourier Amplitude Sensitivity Test (FAST), was introduced by

Cukier in 1973 (Cukier et al. 1973). The FAST method consist on defining a curve to

search the multidimensional sampling space and using the multidimensional Fourier

transformation to decompose the variance using an ANOVA like approach. The

FAST sensitivity index only provides the main contribution of the input factors,

i.e, they do not included the contribution of the interactions between input factors.

In 1993, Sobol introduced an alternative variance decomposition method based on

the decomposition of the model as a sum of elements which depend on the different

dimensions of the model (Sobol 1993). Furthermore, the elements can correspond

with a single dimension or a group of them and they are a function of the integrals

of the original model over the domain of the dimensions. In the framework of Sobol

variance decomposition method, Homma and Saltelli (1996) introduced the concept

of main effect to account for the effect of interactions and avoid the computation of

all the terms in the decomposition of the model. Later, Saltelli et al. (1999) applied

this concept to the FAST method and extended it to allow the calculation of the

main effects. Nowadays, Sobol decomposition method is one of the most widespread
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method, surely because it is easy to understand, easy to implement and model-free.

Two of the main drawbacks of this method are its high computational cost and its

inability to represent the output’s uncertainty correctly if the model output is highly

skewed (Borgonovo et al. 2011, Pianosi and Wagener 2015).

Rabitz (1989) conducted a review of sensitivity analysis methods in the frame-

work of molecular systems and concluded that modelling can not be considered com-

plete without a sensitivity analysis. At that moment, GSA methods were emerging

and the applications in real modelling implementations were scarce. Almost two

decades later, Saltelli et al. (2006) analysed the use of sensitivity analysis in prac-

tice, despite the advances in the development of GSA methods, they found that

most of the applications of sensitivity analysis were based on the one factor at a

time approach, that is only correct when the model is linear. They also proposed

a guide of good practices to apply GSA. Last year, they carried a similar review

Saltelli et al. (2019) but with the focus on highly cited papers only. They found

that there has been an advance in the use of GSA methods in modelling papers per-

forming some sensitivity analysis. However, still 42% of the articles did not explore

the domain of the model properly. Recently, Norton (2015), Pianosi et al. (2016)

and Plischke (2016) conducted a review of GSA methods. Norton (2015) provide

an informal introduction to the aims and methods of sensitivity analysis. Pianosi

et al. (2016) carry out a systematic review of sensitivity analysis methods where

apart of describing the methods available they provided a workflow for the applica-

tion of sensitivity analysis. In turn, Plischke (2016) focused in recent advances in

distributional sensitivity analysis and the use of metamodelling to conduct it. While

traditional GSA methods uses output variance to characterize the uncertainty in the

model output, distributional sensitivity analysis considers the entire distribution of

the output. In multi-modal or highly skewed models where variance does not repre-

sent the uncertainty adequately distributional sensitivity analysis could be a good

alternative to traditional methods.

GSA is a valuable approach in the validation process of simulation models (when

validation is understand as the second definition in the previous section) and the

verification process. The ranking of the input factors and the decomposition of

the variance provide a deep understanding of the internal behaviour of the model.

Furthermore, unexpected relation between input factors and output variables can

reveal an incorrect definition in the conceptual model. Additionally, variance de-

composition methods provide a precise estimation of the effect of input factors and

their interactions in output variables which can highlight possible errors (in the im-
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plementation of the model, its structure or conditioning) if the obtained effects are

contradictory.

1.4 Motivation of the PhD

1.4.1 Development of FLBEIA

At the beginning of this century the European Commission started using multiannual

management plans for the management of fish stocks in European Waters (e.g. EC

(2004a;b; 2006)). These multiannual plans should be evaluated to ensure that they

met the pre-defined management objectives. In the first decade of the century

the scientist started to use quantitative biological MSE models to evaluate these

management plans (Kell et al. 2006a, Kelly and Codling 2006, Needle 2008). If

necessary economic indicators were calculated a posteriori without any feedback

between the fleets and the stocks. Furthermore, most of the approaches were single

stock and single fleet. However, many fleets catch several stocks simultaneously (the

so called mixed fisheries) and an adequate economic analysis should include all the

stocks caught. Furthermore, the stocks are exploited by several fleets. Hence, to

be able to carry out adequate bio-economic evaluations of multiannual management

plans, the necessity of developing multi-stock and multi-fleet MSE simulation models

was identified (STECF 2010).

AZTI is a Basque technological centre focused in marine research and food tech-

nology; and most of the fisheries research related to fisheries management in Basque

Country is carried out by its researchers. Furthermore, they participate actively

in the working groups and organizations that deal with the problems that affect

Basque fishing fleets. Thus, a decade ago, we, as AZTI’s researchers, already had

experience in developing single stock and multi-fleet case specific MSE simulation

models (Garcia and Prellezo 2009, Garcia et al. 2008; 2011, Murua et al. 2010).

Although there were many components of the models that were common in all the

cases, in each new application we had to start from scratch to develop a new model.

Hence, we decided to develop a generic multi-stock and multi-fleet MSE model. The

model should be generic enough to be applied to Basque fleets and the stocks that

they exploit. Furthermore, it should be flexible enough to allow the incorporation

of new developments easily. The model was named FLBEIA and is the cornerstone

of this thesis.



16 Chapter 1.

1.4.2 Global Sensitivity Analysis

The motivation to conduct a GSA of an FLBEIA application was the need for en-

hancing the validation of the model and the need of having a deeper understanding

of the model behaviour. Furthermore, the little use of GSA in MSE applications

motivated the elaboration of a set of guidelines to promote and facilitate its use.

The definition of selection and convergence criteria arose as a tool to ensure the

robust application of the Morris elementary effects screening method (Morris 1991)

when combining it with the Sobol variance decomposition method (Sobol 1993).

1.5 The Hypothesis and Objectives

The first part of this thesis has been dedicated to develop FLBEIA model and the

second part to advance in its validation process. In both parts, the model has been

applied to a complex case study with several stocks and several fleets. In relation

with the application of FLBEIA like simulation models and GSA methods this thesis

raises three hypotheses:

� The input factors that are usually considered uncertain are not always the

most important;

� the existing convergence criteria in Morris method are too demanding when

the objective is to select a certain fixed number of factors;

� the selection criteria used in Morris method lead to a suboptimal selection of

factors.

The veracity of the hypotheses have been evaluated through two main objectives.

The first one is related with the development of FLBEIA and states the properties

that the model must have to respond to existing needs. In turn, the second objective

relates to the validation process and seeks to facilitate the application of GSA in

fisheries management simulation models.

The first objective is to develop a generic multi-stock and multi-fleet MSE simu-

lation model that:

� is general enough to be applied to stocks and fleets with different structures

and dynamics.

� can incorporate observation errors in the observation model;

� can easily incorporate new assessment models;
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� can be used to evaluate different harvest control rules and technical manage-

ment strategies.

The second objective is operationalized in three milestones:

� Application of FLBEIA to a complex case study and deepen in the validation

of the model applying a GSA;

� proposition of a set of guidelines to facilitate the application of GSA in fisheries

management simulation models;

� definition of an efficient procedure to carry out a quantitative GSA of complex

simulation models.

1.6 The Structure

The thesis has been divided in seven chapters including the introduction which

corresponds with the present one. The second chapter provides a detailed description

of the FLBEIA model, including the mathematical formulation of the processes that

build up the model and the structure of the algorithm. The third chapter, on the one

hand includes a description of the Morris and Sobol GSA methods, and on the other

hand, presents the new criteria and guidelines proposed in this thesis to promote

the application of GSA methods. In the fourth and fifth chapters we focus on the

application of the methods presented in the previous chapters, FLBEIA and GSA.

In the fourth chapter we test the new landing obligation policy and new biological

reference points in a complex case study. In turn, in the fifth chapter, we use the

same case study to apply the criteria and guidelines proposed previously. In the

sixth chapter we describe the software that has been developed in the framework

of this thesis; the FLBEIA model distributed as a R package (R Core Team 2018),

the FLBEIAShiny package use to analyse the results and the R functions developed

to implement the criteria defined in Chapter 3. The last chapter of the thesis,

exposes the conclusions obtained throughout the thesis that have been separated

in four sections: the use and development of FLBEIA, the proposed selection and

convergence criteria, GSA in fisheries simulation models and GSA in practice. We

finalize the chapter with a proposal of several research lines to continue with the

work initiated in this thesis. An scheme of the thesis with the chapters and their

interactions is shown in Figure 1.3.
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Figure 1.3: Structure of the manuscript.



Chapter 2
FLBEIA: A model to conduct bio-economic

impact assessment of fisheries management

strategies

A summary of this chapter, describing FLBEIA model in general terms, has

been published in SoftwareX scientific journal: ”FLBEIA: A simulation model

to conduct Bio-Economic evaluation of fisheries management strategies”

2.1 Introduction

In the previous chapter we described the evolution throughout history of mathema-

tical modelling in fisheries management. Management of fisheries systems is nece-

ssary to ensure a sustainable and efficient exploitation of marine resources (Gordon

1954). The scientific advice is produced routinely by regional fisheries management

organizations to inform administrations about fisheries management measures. Tra-

ditionally, fisheries management has relied on biological models. However in recent

years, the focus on mathematical description of economic and social dimensions has

increased driven by the ecosystem based fisheries management approach (Curtin and

Prellezo 2010, Pikitch et al. 2004). According to this approach, the management

advice should be based not only on biological criteria but also on economic and

social ones. Therefore, approaches that integrate these three disciplines are needed.

However, such approaches are currently scarce and usually case specific. Further-

more, scientists tend to focus on biology or economy whereas sociology is still quite

undeveloped (Plaganyi et al. 2013).

Multi-annual management plans (MMPs) provide a mechanism to automatically

19
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set harvest rates and fishing opportunities for a number of years using pre-agreed

formulas (i.e. HCRs). The food and agriculture organization of the united nations,

FAO, defines MMPs as a key toolbox in the precautionary approach to fisheries

management and states that MMPs should not be put in place before proving that

they will not lead to undesirable results (FAO 1996). On the same line, Beddington

et al. (2007) highlight the importance of testing harvest strategies in the success

of fisheries management. The European Commission (EC) introduced MMPs in

the 2002 reform of the CFP as a tool to recover endangered stocks (Beddington

et al. 2007). Before approving a new MMP, the EC runs an impact assessment, a

process where the likely biological, economic and social responses to the MMP are

evaluated (EC 2009, Simmonds et al. 2011). Biological impact assessment of MMPs

are usually conducted under the MSE approach (Butterworth and Punt 1999, De la

Mare 1998, Punt et al. 2016, Punt and Donovan 2007). The MSE implementations

have been generally biologically oriented, single stock, single fleet and case specific

(see for example Garcia et al. (2011), Kell et al. (2006a), Punt and Smith (1999)).

There are many examples where the biological impact assessment was carried out

using MSE but few of them included economy in the simulations (Dichmont et al.

2008, Garcia et al. 2017a; 2013, Pilling et al. 2008, Prellezo et al. 2016). Economic

evaluation were usually run afterwards on top of biological models, but the models

used were not coupled or integrated and not even congruent (Garcia et al. 2011,

STECF 2010).

A review of bio-economic models which focus on assessing the performance of

management strategies can be found in (Prellezo et al. 2012). Apart of the models

revised in that paper, BIOMAS (BIO-economic Modelling and ASsessment, Ives and

Scandol (2013)), Fishrent (Salz et al. 2011, Simons et al. 2014) and IAM (Impact

Assessment Model, Guillen et al. (2013)) are recent developments of multi-stock and

multi-fleet integrated bio-economic models. BIOMAS was primarily developed to be

used as multi-stock assessment model and the economic and management process

components are fairly rudimentary. Fishrent and IAM are annual and do not follow

strictly the MSE approach. They allow testing management strategies by means

of simulation but they do not simulate the whole management process. They do

not include the observation nor the assessment processes, and hence they cannot

assess the uncertainty associated to them. The main advantage of Fishrent and

IAM is that in addition to simulating the fishery system they also allow to estimate

the parameters of the management strategy that maximize the profitability of the

fleets. Apart from these bio-economic simulation-optimization models there are
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other approaches to deal with potential trade-offs between biological, economic and

social dimensions such as viability theory (Gourguet et al. 2013) or cost benefit

analysis (Kronbak et al. 2009).

There exist several examples of integrated bio-economic models developed un-

der the MSE approach (see for example Andersen et al. (2010), Bastardie et al.

(2009), Dichmont et al. (2008)). However, they are all case specific models built

to address case specific problems. Integrated bio-economic models that follow the

MSE approach, that satisfy the requirements of impact assessment and that can

be applied in a wide range of case studies and management strategies are therefore

needed (STECF 2010).

To respond to this need we developed FLBEIA (Bio-Economic Impact Assessment

using FLR (Fisheries Library in R)), a bio-economic simulation model, aimed at

facilitating the development of impact assessment under the MSE approach. The

model allows the bio-economic evaluation of a wide range of management strategies

in a great variety of case studies and scenarios. To facilitate this, the model has

been developed in a composable 1 manner (Jordan et al. 2011). The model has a

covariates module that allows new variables of interest to be introduced, such as, for

example, social or environmental indicators. FLBEIA is available as an R statistical

software package (R Core Team 2019), it depends on basic FLR libraries (Kell et al.

2007) and the code is freely available at http://github.com/flr/FLBEIA.

The rest of the chapter is structured as follows, first FLBEIA model is described in

general terms, the philosophy behind it and its main features. Then, the processes

that build up the fishery system are described, what do they represent, how FLBEIA

interlinks them and the specific functions available to model them. In the third

section the validation and verification of FLBEIA thorough its development process

is described. Finally, the usefulness of the model to conduct impact assessment of

management strategies is discussed identifying its strengths and weakness in relation

to other existing tools and models.

2.2 Model description

FLBEIA is a R (R Core Team 2018) library which makes use of FLR tools (Kell et al.

2007). FLR provides the basic pieces to construct the model and FLBEIA assembles

them to build a composable bio-economic model. The basic FLR packages, FLCore

1Composability : a model is nothing more than the ‘sum’ of its parts, which can be individually
modelled and then put together, as defined in Jordan et al. (2011).

http://github.com/flr/FLBEIA
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Figure 2.1: Conceptual diagram of FLBEIA which shows the main components of the
model and how they are interlinked. Figure modified from Garcia et al. (2013).

and FLFleet, provide the data containers (the classes) of the input and output

objects and the methods to operate with them. FLash and FLAssess packages

are used in the advice module to do some of the calculations in the HCRs. Finally,

FLSa4a, FLXSA, FLSAM or other stock assessment model packages, can be used within

the assessment module to generate stock status estimates. All these R packages are

freely available in http://github.com/flr.

FLBEIA’s simulation algorithm (from here referred as the algorithm) is divided

into two blocks, the OM and the MP (Figure 2.1). In the MSE approach two worlds

must be distinguished, the real world, which represents the fish stocks and the fleets

simulated in the OM, and the perceived world, which corresponds to the observations

or the estimations of the real world in the MP. In FLBEIA the OM is made up of fish

stocks, fleets, covariates and their interactions. In turn, the MP is formed by the

data, the perceived system and the advice, generated by the observation model, the

assessment model and the HCR, respectively.

Thus, when a management strategy is tested, the management advice is not

based on the real system simulated in the OM but on the perceived system obtained

through the observation and/or assessment models in the MP. In this way, when a

http://github.com/flr
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management strategy is evaluated, not only is the strategy itself evaluated, but also

its performance in conjunction with the data collection and the assessment model.

The uncertainties in the fishery systems were described and categorized by Fran-

cis (1997) into six groups. Three of them relate to the dynamics of the fishery

system (process, implementation and institutional uncertainty), and the other three

refer to the accuracy of the management process (observation, model and estimation

uncertainty). The impact of all these uncertainties, except institutional uncertainty

(which relates to the misspecification of management objectives), can be evaluated

using FLBEIA.

The algorithm has been developed by composition (Jordan et al. 2011), which

main components are shown in Figure 2.1. The fishery system has been broken up

into several modules (dark grey rectangles in Figure 2.2) and several functions have

been implemented to model each of them. The modules correspond with the most

basic processes of the fishery system that are explicitly modelled within FLBEIA.

The modules are grouped into bigger components (light grey rectangles in Figure

2.2) which are connected by the main function FLBEIA. Implementing the algorithm

modularly eases checking and debugging, and allows for increased complexity adding

extra modules (Jordan et al. 2011). If in a specific case the functions available do

not satisfy the needs for a specific module, new functions can be implemented and

used within FLBEIA.

The assembly within FLBEIA follows a top-down approach (Figure 2.2). The

algorithm is divided into three main levels. The functions in the two highest levels

are fixed and those in the third level are selected by the user:

First Level. The main function (FLBEIA, see Figure 2.2), is in the first (top) level,

and it calls second level functions sequentially.

Second Level. The functions in this level are called by the main function in the

order shown in Figure 2.2 . The functions in the OM (biols.om, fleets.om

and covar.om) control how the fish stocks, the fleets and the covariates are

projected each season in the future. Those in the MP (observation.mp,

assessment.mp and advice.mp) control how the observed data, the perceived

system and the stock based advice are generated each year.

Third Level. The functions in this level need to be chosen by the user (dark grey

rectangles in Figure 2.2) and are called by the second level functions. The user

can choose among existing functions or develop new ones. Besides, depending

on how the third level functions are coded, in turn, they can call functions at

lower levels (fourth and so on). Several functions have been implemented to
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Figure 2.2: Scheme showing the assembly of the functions within FLBEIA algorithm.
The main function FLBEIA calls the functions in the light grey rectangles in the order
indicated. In turn these functions call the functions in the dark grey rectangles. The
dark grey rectangles correspond with the most basic processes of the fishery system
modelled within FLBEIA and the functions that model them must be declared by the
user. Figure taken from Garcia et al. (2017b).

model each process and new ones can be coded in R and used within FLBEIA.

In the first step of the simulation, the biological populations (fish stocks) are

projected one season ahead, independently, stock by stock. Afterwards, fleets are

projected independently one by one and four processes are modelled: effort alloca-

tion, catch production, price formation and capital dynamics.

The OM projects the covariates independently into the future using each own

dynamic model. Covariates are used to allow including in the simulation of the real

system variables that are not included in the biological and fleet OMs. The model

that describes their dynamic must be coded in R following the input and output

structure used in FLBEIA.

The management procedure takes place once a year for each stock. In seasonal

models the season when it takes place is selected by the user and depends on the

stock. The observed data is divided into two types: stock data and abundance

indices 2. Stock data comprises catch data (landings and discards at age or biomass

2Abundance indices are time series that are correlated with the abundance of the stock.
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Figure 2.3: Flow chart of FLBEIA’s algorithm explaining how it moves along the
simulation. White rectangles represent the modules and grey diamonds contain the
condition to move from one module to the next. y, ss, st, fl, cov and id are the
counters for year, season, stock, fleet, covariate and abundance index respectively,y0
and yny corresponds to the first and last simulation years, ass.seasonst to the as-
sessment season for st-th stock, and ny, nst, nfl, ncv, nss and nid,st to the number of
simulation years, stocks, fleets, covariates, seasons and abundance indices for st-th
stock respectively. Figure modified from Garcia et al. (2017b).
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level) and biological data (maturity, weight and natural mortality) at stock level.

Abundance indices are simulated by stock and each stock can have more than one

index. Regarding fleets the only data that is observed in the management procedure

are the landings and discards and they are simulated in an aggregated way at stock

level. The simulated data, stock data and abundance indices, are used to feed the

stock specific assessment models. The estimates obtained through the assessment

models, usually estimates of stock biomass and exploitation level, provide estimates

of the real stocks simulated in the OM. In the MSE literature these estimates are

known as the perceived stocks. Then, HCRs are applied to each perceived stock

to obtain the management advice. Hence, the management advice is not based on

the status of the real stock but on its estimate, the perceived stock. Finally, this

information is transmitted to the fleets in the OM and the loop starts again.

The symbols used along the text, figures, tables and equations are listed in

Appendix A.

2.2.1 The Operating Model

The OM is the part of the model that simulates the true dynamics of the fishery

system (the real population). Biological populations and fleets are its essential

elements and they interact through fishing effort and catch. Covariates are part

of the OM but they are not mandatory. If necessary, they could interact with the

stocks and the fleets.

2.2.1.1 Biological Operating Model

The biological OM is formed by the stocks that can be age structured or in biomass.

Three models are available to describe stock dynamics.

In the first model all the stock’s data, in both the historical and projection

periods, is given as input data. It implicitly assumes that population growth is

independent from the catch produced by the fleets. This model can be useful, for

example, in the case where nothing is known about the stock dynamics, but its

incorporation into the model is justified by the economic importance of the stock to

a particular fleet.

A second model projects age structured populations one season ahead using a

stock-recruitment model 3 for incoming recruitment and an exponential survival

3Stock-recruitment models relate stock’s reproductive potential with the entry of new individuals
into the population or fishery. Different indicators can be used as a proxy for stock’s reproductive
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equation (Quinn and Deriso 1999) for existing age classes. Fish individuals are ag-

gregated in cohorts that comprise individuals born in the same year and season. All

the individuals move from one age class to the next on 1st of January regardless of

the season in which they were born. The catch is assumed to take place instanta-

neously in the middle of the season. Mathematically, for the first season, ss = 1,

the model can be written as:

PNu,1
a,y =



φrec

(
RPy=y−a0,ss=ssspwn1

)
a = a0

(PNu,nss
a−1,y−1 · e−

M
u,nss
a−1,y−1

2 − CNu,nss
a−1,y−1) · e−

M
u,nss
a−1,y−1

2 a0 < a < a+

(PNu,nss
a+−1,y−1 · e

−
M
u,nss
a+−1,y−1

2 − CNu,nss
a+−1,y−1) · e

−
M
u,nss
a+−1,y−1

2 +

(PNu,nss
a+,y−1 · e

−
M
u,nss
a+,y−1

2 − CNu,nss
a+,y−1) · e

−
M
u,nss
a+,y−1

2 a = a+

where PN denotes the number of individuals, M the natural mortality, CN the

catch in number of individuals and a, y, u and ss are the subscripts for age, year,

seasonal cohort and season, respectively. a+ is the plus group 4, nss is the number

of seasons, a0 is the age at recruitment, ssspwnj is the season when recruitment of

j-th seasonal cohort is spawn and φrec denotes the stock-recruitment model. φrec

can correspond with any of the stock-recruitment models available in the FLCore

library of FLR (Kell et al. 2007) or a new one can be defined in R and used within

the simulation.

RP is the reproductive potential of the stock, the variable used as recruitment

predictor. For a given year and season RP is calculated as:

RPy,ss =

a+∑
a=a0

nu∑
u=1

PNu,ss
a,y · wu,ssa,y · fecu,ssa,y ·matu,ssa,y · e−(M

u,ss
a,y ·Mu,ss

spwna,y+F
u,ss
a,y ·Fu,ssspwna,y )

where nu is the number of seasonal cohorts of the stock, fec is the fecundity of

the individuals, mat the proportion of matured individuals, and Mspwn and Fspwn

are the proportion of fishing and natural mortality that occurs before spawning in

season ss, respectively.

For subsequent seasons,

potential: total stock biomass, spawning stock biomass or egg production among others.
4The plus group is an artificial age group where individuals of age a+ and older are merged.



28 Chapter 2.

PNu,ss
a,y =

 φrec

(
RPy=y−a0,ss=ssspwnss

)
a = a0

(PNu,ss−1
a,y · e−

M
u,ss−1
a,y

2 − CNu,ss−1
a,y ) · e−

M
u,ss−1
a,y

2 a0 < a < a+

.

Populations aggregated in biomass are projected using the Pella-Tomlinson growth

model (Pella and Tomlinson 1969). Mathematically:

PBss,y =

{
PBy,ss−1 + φpop(PBy,ss−1)− CBy,ss−1 ss 6= 1,

PBy−1,nss + φpop(PBy−1,nss)− CBy−1,nss ss = 1,

where PB denotes total population biomass, CB catch in biomass, and φpop repre-

sents the seasonal population growth model. The following parameterisation of the

Pella-Tomlinson growth model is implemented in FLBEIA:

φpop(PBy,ss) = PBy,ss ·
ι1
ι2
·
[
1−

(
PBy,ss
PB0

)ι2]
where ι1 represents the intrinsic growth rate, PB0 the carrying capacity 5 of the

population and ι2 is a parameter used to give flexibility to the model (ι2 = 1 corre-

sponds to traditional logistic growth model).

In the three population dynamics models, the catch is assumed to take place in

the middle of the season in accordance with the fleet dynamics models defined in

the fleets OM (see section 2.2.1.2).

In the equations in this section only CB,CN,F, PN,PB and RP are internally

calculated by the model, the rest are input factors. All these equations are applied

at stock level but the stock subscript has been omitted for simplicity.

2.2.1.2 Fleets Operating Model

Fleets OM is divided into four processes: effort, catch, price and capital. Effort

allocation determines how much effort is exerted and how it is allocated among

fleet’s metiers 6. Catch production gives the catch generated by each effort unit.

Price formation calculates the price of the stocks. And finally, capital dynamics

forecasts, only in the last season of each year, the variation in the number of fleet’s

vessels. Fleet’s activity is divided into metiers and the projection into the future

5Carrying capacity is the maximum population size that the stock can support.
6Metiers are defined as fishing trips of a fleet that share the same characteristics in terms of

gear used, fishing area and catch profiles (Marchal 2008).
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is performed independently fleet by fleet. Thus, the models used to describe fleets’

dynamics can differ from fleet to fleet.

Effort model. This model describes the fleet short-term dynamics (tactical be-

haviour). For each season it models how much effort is exerted and how it is dis-

tributed along metiers. In single-stock and single-metier fleets, assuming that it

executes the effort that produces exactly the fleet’s quota share, the proportion of

the TAC that corresponds to the fleet, is a reasonable working assumption, but

in multi-stock and multi-metier fleets the problem is not straightforward. For these

fleets, two different groups can be distinguished: fleets that catch a number of stocks

at the same time and are unable to discriminate among them, the so called mixed

fisheries, and fleets that target only one stock at a time and whose metiers are sea-

sonal, the so called sequential-fisheries. The models developed in FLBEIA capture

the dynamics of these two types of fisheries.

In the first model, effort and its distribution along metiers are given as input

data. Thus, the effort exerted by the fleet is independent of the state of the stocks

and the management advice. Apart from this simple model, three effort dynamics

models are available, two of which describe mixed fisheries dynamics and a third

one that describes sequential-fisheries.

The first model used to mimic mixed fisheries is based on the Fcube method

(Ulrich et al. 2011) and is used in FLBEIA to approximate mixed fisheries dynamics.

The effort share along metiers is given as input data and only the total effort is

estimated in each step. First, the effort corresponding to the quota-share of each of

the stocks caught by the fleet is calculated, which returns a vector with one effort

per stock. The final effort is selected based on this vector of efforts. The selection

is done using different options (min the minimum, max the maximum, mean the

mean, previous the most similar to the previous year effort and stock-name the effort

that produces a catch level equal to the quota share of the aforementioned stock).

The second model used to simulate mixed fisheries dynamics calculates the total

effort and the effort allocation among metiers that maximises profit. Profits are a

function of the total effort exerted by fleet fl, Efl, and how this effort is distributed

along its metiers, γfl,1, . . . , γfl,nmt,fl , where γfl,i is the proportion of effort exerted

by fleet fl in metier i, and nmt,fl is the number of metiers in fleet fl. Moreover,

profits can be decomposed as the difference between the gross value of the landings

and the total variable and fixed costs. Mathematically:
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max
Efl;

γfl,1,...,γ
fl,nmt,fl

profits
(
Efl, γfl,1, . . . , γfl,nmt,fl

)
=

max
Efl;

γfl,1,...,γ
fl,nmt,fl

∑
mt

∑
st

∑
a
LBfl,mt

st,a · PR
fl,mt
st,a − Efl · γfl,mt · V aCfl,mt − FxCfl · n

fl
V

(2.1)

additionally, the maximization has several constraints:
and

∑
mt γ

fl,mt = 1,

γfl,mtmin ≤ γfl,mt ≤ γfl,mtmax

Efl ≤ κfl,
CBfl

st =
∑

a LB
fl,mt
st,a ≤ QSflst for st ∈ Ξfl.

where mt is the subscript for metiers, LB is the landings in weight, where PR is the

price of the fish landed, V aC the variable cost of fishing effort, which depends on

the metier and is given as cost per unit of effort, FxC the fixed costs of each fishing

unit, which is given at fleet level and in terms of cost per vessel, nV is the number of

vessels in the fleet, κ, the capacity of the fleet, is defined as the maximum effort that

the fleet can execute in each season and Ξ is the set of stocks for which the constraint

on catch must be fulfilled. In biomass dynamics populations, landings and prices

are given at stock level. The first constraint guarantees that the effort-shares along

metiers, the γ-s, sum up 1 and the second one limits the time the fleet can expend

in each of the metiers, with an upper and lower bound, γmin and γmax, respectively.

The third one ensures that total effort is lower than the actual capacity of the fleet,

κ. Finally, the fourth constraint describes the fulfilment of the management advice

for a set of the stocks included in, Ξ. Ξ can be an empty set, in which case the fleet

will not be constrained to comply with any quota share, QS, or it can be a subset

of the stocks for which the fleet will comply with their quota share.

In the model used to describe sequential fisheries dynamics, historical effort

dynamics guides the present performance of the fleet. Seasonally, each metier has

only one target stock, and thus the metier is uniquely defined by the stock it catches.

The expected effort to be allocated to each metier follows the historical trend, but

it is restricted by the quota share of the fleet. In the case where the quota share is

exhausted for a particular stock, then the remaining effort is reallocated among the

rest of the metiers which target other stocks.

In the equations in this section year, season and unit subscripts have been omit-
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ted for simplicity.

Catch model. This model describes the relationship between catch and effort.

Cobb-Douglas production model (Cobb and Douglas 1928) is widely used to describe

production in industry in general and it is commonly used in economic fisheries

models. Two variants of the model have been implemented, one at biomass level

and another one at age level. The catch, in weight, derived from the Cobb-Douglas

production model at biomass level is given by:

CBfl,mt
st =

a+,st∑
a=a0,st

CBfl,mt
st,a =

a+,st∑
a=a0,st

qfl,mtst,a · (Efl · γfl,mt)
αfl,mt1,st,a ·wst,a ·PN

αfl,mt2,st,a

st,a (2.2)

where fl and mt are the fleet and metier subscripts, respectively, q is the catchability
7, E is the effort exerted by the fleet, γfl,mt is the proportion of effort of fleet’s fl

exerted in metier mt (0 ≤ γfl,mt ≤ 1 and
∑

mt γ
fl,mt = 1), and α1 and α2 are

the output elasticities for effort and biomass, respectively. The catch is divided in

landings and discards using the proportion of individuals retained onboard, ret, by

fleet, metier, stock and age:

Cfl,mtst = Lfl,mtst +Dfl,mt
st =

a+,st∑
a=a0,st

Lfl,mtst,a +Dfl,mt
st,a =

=

a+,st∑
a=a0,st

retfl,mtst,a · C
fl,mt
st,a + (1− retfl,mtst,a ) · Cfl,mtst,a

(2.3)

where L denotes landings andD discards and it can be given in number of individuals

or total biomass. In populations aggregated in biomass catch and biomass are given

at stock level, and the age subscript and the sum disappear. .

One of FLBEIA’s objective is to integrate the models used by biologists and

economists in fishery science. Exponential survival model and the Cobb-Douglas

production model are among the most popular models in fisheries biology and eco-

nomy, respectively. Nevertheless, they cannot be coupled in a natural way. The ex-

ponential survival model describes population growth and catch in a continuous way

7Catchability is a measure of the fishing mortality generated on a stock by one unit of effort. It
has different meaning depending on the mathematical model used to relate catch, effort and stock
abundance.
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and on the contrary, the Cobb-Douglas model describes catch production discretely

and instantaneously. To overcome this discrepancy in the models implemented, it

has been assumed that the catch takes place in the middle of the season.

Besides, for a sufficiently large effort, the catch derived from equation (2.2) can be

higher than the biomass of the population. This problem has been solved truncating

the Cobb-Douglass production function. The maximum catch level that any effort

level can produce is defined as ϑst·PBst, where PBst is the biomass of the stock, ϑst is

the maximum proportion of the total biomass that can be caught by the fishery and

0 < ϑst ≤ 1 is set by the user. If E0 is the effort that produces ϑst ·PBst catch level,

the catch for any effort level above E0 is equal to C(E) = ϑst ·PBst. The proportion

of catchable biomass, ϑ, is defined at stock level because it is a characteristic of

the stock itself. Sometimes, even with this restriction, it could happen that when

the catch of all the fleets is summed up, the total catch for certain ages is higher

than the biomass. In this case, the catch of the affected age, CNa, is equated to

the corresponding abundance, PNa, reducing the catch in the same proportion in

all the fleets. This means that implicitly the catchability of the affected age class is

reduced.

Price formation. Price changes at fleet and stock level and there are two models

available to model its dynamic. In the first one price is given as input data and it is

not changed in the simulation. In the second one we implement the model described

in Kraak et al. (2004) where price depends on the ratio between current landings

and landings in a baseline time period . As price usually depends on the landings of

all the fleets, current landings may refer to the landings of the fleet itself or the total

stock landings. Furthermore, price can vary independently by age. Mathematically

the model is expressed as:

PRss,flst,a,y = PRss,fl0,st,a ·

(
Lss,fl0,st,a

Γss,flst,a,y

)βss,flst,a

where Γ corresponds to the landing of fleet fl, LBss,fl
st,a,y, or total stock landings

in biomass,
∑nfl

fl=1 LB
ss,fl
st,a,y, depending on the user choice. PR0 is the base price

corresponding to base landings, LB0, and β is the price elasticity parameter.

Capital model This model describes the long-term dynamics of the fleets (strate-

gic behaviour); the investment or disinvestment in new vessels or technological im-
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provements. In FLBEIA the capital dynamics could be modelled through changes in

fleet’s capacity or changes in fleet’s catchability (i.e. technological improvements).

The capital can be given as input data and maintain it fixed for the whole simulation

or it can vary according to the model described in Salz et al. (2011). This model

relates the investment and disinvestment in new vessels with the ratio between the

gross value (GV ):

GVy =
∑
st

∑
a

∑
ss

Lssst,a,y · PRssst,a,y

and break even revenue (BER), that is the amount of revenue needed to cover

both fixed and variable costs:

BERy =
CrCy + FxCy · nVy + CaCy

1− FuCy+
∑
mt γ

mt
y ·V aCmty

Revy

where CrC is crew cost, CaC capital cost and FuC fuel cost. In turn, crew

cost is formed by a fixed part and a variable part proportional to the gross value,

mathematically:

CrCy = FxSy + η0 ·GVy

where FxS represents the fixed part of the whole crew wages and η0 is the

proportion of income dedicated to wages.

The maximum annual investment, Invmax, for each fleet is determined by:

Invmaxy = 1− BERy
GVy

But only a certain proportion of this rate, η1, is dedicated to increase the fleet,

i.e.:

Invy = η1 · Invmaxy

Furthermore, investment in new vessels will only occur if the operational days

of existing vessels is equal to maximum days. Finally, the investment/disinvestment

decision, i.e. the variation in capacity, Υ, follows the rule below:
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Υy+1 =



Invy · κy if Invy < 0 and − Invy < η2,

−η2 · κy if Invy < 0 and − Invy > η2,

0 if Invy > 0 and Ey < κy,

Invy · κy if Invy > 0 and Invy < η3 and Ey = κy,

η3 · κy if Invy > 0 and Invy > η3 and Ey = κy.

where η2 and η3 stands for the limit on the decrease and increase of the fleet relative

to the previous year, respectively. The increase in number of vessels is then obtained

dividing the final investment in new vessels, Υ, by the maximum effort that a vessel

can operate in a year, Emax. Thus the new number of vessels is given by:

nVy+1 = nVy +
Υy+1

Emax

The formulas in this section are applied every year at fleet level but fleet subscript

has been omitted for simplicity.

At present, models that dynamically change catchability are not available in

FLBEIA. Catchability can vary over time but only if time dependent catchability is

provided in the input data.

2.2.1.3 Covariates Operating Model

As indicated previously, the role of the covariates OM is to have room to incorporate

into the model variables that are not included in biological and fleet OMs but are

relevant to the fishery system or even to the ecosystem they belong to. The idea is

similar to that of effects in BIOMASS model (Ives and Scandol 2013). The variables

can be of any kind (biological, economic, environmental, social, ...) and appropriate

models should be defined to simulate their dynamics and their interactions with other

model components. At present the only function available maintains the covariates

unaltered in the whole projection and it is used, for example, to store the variables of

the capital dynamics function that have no place in biological and fleet components,

namely: fuel cost, capital cost and salaries.

2.2.2 The Management Procedure

MP describes the management process and it runs annually. In FLBEIA, MP is

divided into three modules, the observation model (the link between the OM and
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the MP), the assessment procedure and the management advice. The observation

model together with the assessment procedure generate the perceived population

based on which the management advice is calculated. The fish stocks and the fleets

are observed to generate the necessary data to feed an assessment model. The

perceived population in the assessment module is represented by the stock estimates

or by a set of abundance indices per stock.

2.2.2.1 The Observation Model

The observation model simulates for each stock, independently, on the one hand,

catch and biological data, and on the other hand, stock abundance indices. As most

of the assessment models use annual data and at present all the assessment models

available in FLR are annual, all the data is generated annually despite OM’s seasonal

dimension. Furthermore, all the observable variables can be subject to observation

error.

In FLBEIA observed data contains data related to fleets’ production (landing and

discard data), to stock biology (natural mortality, fecundity and individual weight),

to abundance indices, and to stock status (here defined as number of individuals and

harvest rate). In reality, stock status data is not obtained through data collection,

but applying assessment models to the observed data. However, in simulation studies

knowing real stock status would be useful in cases where the interest is not on

testing the goodness of the observation or assessment models but on assessing the

performance of the management strategy in isolation. In FLBEIA there are two ways

to obtain stock status indicators within the MP, through the assessment model, as

it is done in reality, or through the observation model obtaining these indicators

directly from the OM.

There are several models in FLBEIA to generate observed data. One of the models

gathers data from fish stocks and fleets without error, including stock status data.

The only difference with the OM data is that seasonal data is aggregated by year

in the observation. A more realistic model generates data related to stock biology

and fleets’ production in age structured stocks adding two types of errors, an error

associated with age determination and a multiplicative error associated to any other

reason. The aging error is simulated using a square matrix, Γ, with dimension

equal to the number of age classes. The element λij in the matrix corresponds to

the proportion of individuals of age i that are erroneously assigned to age j. This

matrix is multiplied matricially with the vector of real data at age to obtain the
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observed data. The general error is then multiplied using a vector of positive values,

εj , with length equal to the number of age classes of the stock. This vector is

multiplied with the vector obtained after applying the aging error. Therefore, the

observed value for age j is obtained using the following equation:

χMPj
=

(
A∑

i=a0

χOMi
· λij

)
· εj (2.4)

where χOM represents the value of the variable in the OM, and χMP the observed

data in the MP. χ can be any observable variable (e.g., natural mortality-, landings-,

maturity-at-age...).

Age structured stocks can also be observed at biomass level. First, the age

dimension is collapsed by applying the correct procedure for each data type (sum for

catch in numbers, weighted mean for individual weight, ...) and then a multiplicative

error is applied as in (2.4).

Observed data for stocks in biomass can only be observed at biomass level. The

observation errors are only multiplicative and they are introduced in the same way

as for age structured stocks.

Abundance indices are an important source of information in fisheries manage-

ment. They are time series related to the abundance of the stock. The most com-

monly used relationship is the linear model, i.e:

idy = qy · Py (2.5)

where id denotes the abundance index, q the catchability of the index and P the

abundance, in numbers at age or total biomass. The catchability can vary over time,

therefore the violation of constant catchability assumption made in most of the stock

assessment models could be tested using FLBEIA. In FLBEIA, abundance indices can

be generated at age or biomass level. At age level the abundance is measured in

number of individuals and at biomass level in total weight. In both cases equation

(2.5) is used and q depends on the index and the age class. Multiplicative and aging

errors can be introduced in the observed indices in the same way as for stock data

in equation (2.4).

All the variables in the equations in this section are stock specific but the sub-

script has been omitted for simplicity.
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2.2.2.2 The Assessment Procedure

The assessment models are applied independently stock by stock. They provide

estimates of the status of the stocks simulated in the OM. Any assessment model

coded in R can be used within FLBEIA if the input and output data have the right

shape. FLBEIA does not provide any alternative assessment model but the assessment

models available in FLR can be almost directly integrated in FLBEIA. Some of them

have been already used, FLXSA in Garcia et al. (2013), and FLa4a (Jardim et al.

2014b) and SPiCT (Pedersen and Berg 2017) in Garriga et al. (2018) for example.

Moreover, more complicated models have been used in an ad-hoc way, for example

SS3 (Methot Jr and Wetzel 2013) in the evaluation of a management procedure

for Iberian Sardine (ICES 2019) and an bayesian assessment model built in JAGS

(Plummer 2003) to analyse management strategies for cod (González-Troncoso et al.

2015).

2.2.2.3 Management Advice

The management advice for each stock is generated by means of an stock specific

HCR. All the implemented HCRs provide advice in terms of catch, i.e. they generate

the TAC. To provide effort based management advice, an effort based HCR should

be accompanied with effort models restricted by effort based advice in the biological

OM.

Available HCRs can be divided into two groups depending on the input data used

to generate the advice, stock status indicators (model-based HCR) or abundance

indices obtained through scientific surveys or statistical analysis of fishery depended

data (model-free HCR).

The HCRs are briefly described in Table 2.1 and detailed information about them

can be found in the references given there. All the HCRs generate a TAC advice

and for all of them, except for the Bay of Biscay anchovy one, the TAC for year

y is given based on the perceived population up to year y − 2. The same happens

in reality where in year y − 1, when the TAC advice for year y is calculated, only

data up to year y − 2 is available. The perceived population can refer to either an

stock or an abundance index depending on the type of the HCR. In the case of Bay

of Biscay anchovy HCR, the stock was managed in the middle of the year and the

TAC for year y was given based on perceived population in the same year.
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2.2.3 Model Initialisation

To initialise the model two types of data are needed, historical data (starting condi-

tions) and model parameters in the projection. For each stock the historical period

should include at least as many years as the age at recruitment so the spawning

stock biomass that will produce the recruitment of the first year of the simulation

can be calculated from the historical data. Furthemore, if the assessment model or

the HCR depend on the historical period, then the historical data should include

at least this time period, otherwise, just one year to start the simulation would be

enough.

The uncertainty in the simulation is introduced using Monte Carlo simulation.

The model runs independently in each model replicate and in each replicate the

values of the input factors are changed. Each input factor can be conditioned using a

single value or a vector, in this last case each replicate in the Monte Carlo simulation

is conditioned taken a single value from this vector each time.

In theory, FLBEIA supports unlimited number of stocks, fleets, metiers, covariates

and replicates. In practice, memory allocation in the operating system could set the

limit.

2.3 Validation and Verification of FLBEIA

Along the development process of FLBEIA and its use in different case studies, the

model has been verified and validated by different users employing different tech-

niques. The application of the model in practical cases has been an essential part in

the validation of the model. It has allowed to ensure that the coding is free of bugs

and that it behaves as expected. Based on the terminology used by Balci (1997),

below we explain which of the techniques listed there have been used, and how,

along time.

Modularity The model has been developed modularly, which facilitates the ver-

ification of the model (Kleijnen 1995, Sargent 2011). Each of the functions

(modules) that built up the model has been tested individually to check that

it behaves as intended and produces the correct answer.

Face validity The implementation of FLBEIA presented in Chapter 4 of this thesis

has been build in colaboration with stakeholders from the fishing sector in the

framework of the MyFish European project http://www.myfishproject.eu/.

The fishermen face validated the model in dedicated sessions. In these sessions

http://www.myfishproject.eu/
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the model was presented together with the main assumptions and the data

used. The assumptions and results were discussed and improvements to the

model configuration and new management scenarios were suggested. The sug-

gestions and new scenarios were considered and the new results were presented

again to them. The model results have been presented to stakeholders in other

model implementatins too.

Documentation checking FLBEIA has an extend documentation:

� R-help pages,

� Scientific paper describing the model (Garcia et al. 2017a),

� User manual which latest version is available within the R package.

� Set of thematic tutorials dedicated to different aspects of model set up

and of fisheries management. They can be find in www.flr-project.org.

This documentation is routinely revised by the FLBEIA development team to

ensure it is up to date and it is compatible with the lasts developments.

Inspection The model was inspected by a group of fisheries scientist experts with

different expertises. The inspection consisted on the presentation of the model

with the main assumptions, comparison with other modelling approaches and

the implementation of an specific case study. The group made several sug-

gestions for the improvement of the model that were later on included in the

development process. A detailed report of the meeting is avaible in Jardim

et al. (2013).

Structural Analysis The control flow chart of FLBEIA in Figure 2.3 was designed

to show the model structure and steps followed in the simulation.

Assertion Checking In the model development process notifications are used wi-

thin many of the functions to ensure that the model behaves as expected.

Beta Testing The beta testing has not been carried out officially but the model

has been tested by several experts outside the development team and they

routinely report bugs, through email or github, and unexpected results are

discussed to ensure their adequacy.

Bottom-up Testing The model has been developed using a bottom-up approach

and as indicated before each of the modules was independently tested. Fur-

thermore, the individual modules were then assembled and further tested as

the model was put together.

Comparison Testing FLBEIA was used to produce mixed fisheries advice for Ibe-

rian Waters in the ICES mixed fisheries working group (ICES 2018a). The

results obtained with FLBEIA were compared with those obtained in the short-

www.flr-project.org
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term forecast carried out in the single stock assessment working groups to

ensure that both models were consistent and provide the same answer in a

single stock basis.

Debugging The model has been extensively debugged to correct bugs and to ensure

that the model behaves adequately in all the steps.

Execution tracing As the simulation progresses several messages are printed in

the screen with the values obtained in specific processes.

2.4 Discussion

FLBEIA provides a model to conduct integrated bio-economic impact assessment

of a wide range of management strategies. It allows simulating the two most used

structures in fish population dynamics modelling, age and biomass. Regarding fleets,

it includes several functions to model their long- and short-term dynamics. More-

over, there is a covariates module that can incorporate variables of interest not

present in biological and economic components. This module can be used, for exam-

ple, to simulate the abundance of non-commercial species or environmental factors

which interact with the abundance of some of the stocks in the biological OM. The

MP describes an annual management process and the management advice can take

place in any season. In addition, the management can incorporate measures such as

changes in gear selectivity, temporal closures or capacity restrictions.

FLBEIA complements the already existing integrated bio-economic impact assess-

ment models (BIOMAS, IAM, Fishrent,...). The strengths of FLBEIA are that the

MP is modelled explicitly, it is composable and uses FLR libraries. Furthermore, the

MP in FLBEIA does not only include the HCR as occurs in many simulation models

(for example all those cited in the introduction), but it also includes the observation

and assessment models. The composability of the model allows different functions

to be selected to describe each of the processes that build up the fishery system

and to introduce new models to satisfy specific user requirements. The functions

implemented correspond with already published models and their implementation in

R has been individually tested to avoid coding bugs. Furthermore, the assembly of

the models has also been tested following a bottom-up approach. FLR libraries have

contributors across a number of laboratories and universities and hence FLBEIA can

automatically benefit from new developments in FLR. Furthermore, as FLR is being

used in a large number of case studies and the input data structures in FLR are
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standard, the data used in these specific cases can be directly used to feed FLBEIA.

Trophic interactions are a crucial step when moving from single stock based

fisheries management to ecosystem based fisheries management. Hilborn (2011) and

Punt et al. (2016) recommend the incorporation of trophic interactions in the OM in

a set of best practice guidelines in MSE. At present, none of the models in FLBEIA

includes trophic relationships and stock interactions come about mainly through

fleets’ catch. At stock level, there is a stock-recruitment relationship which includes

the abundance of a different stock as a covariate. However, the structure of FLBEIA

allows trophic interactions to be incorporated by adding the adequate functions in

the biological and covariates OM. For example, a new population dynamics model

could be coded where the natural mortality of preys would be updated by a function

dependent on predators’ abundance before the survival equation is applied in the

biological OM. On the other hand, there is a prototype that links Gadget multi-

species model (Begley 2004, Howell and Bogstad 2010) with FLBEIA. This will allow

to use all the flexibility of Gadget in the OM of FLBEIA, with throphic interactions

and a length structure in the fish stocks, and combine it with the other FLBEIA

components.

The fleets dynamics are a key source of uncertainty in fisheries management

(Fulton et al. 2011b). However, there are no fleet dynamics models that are gen-

erally accepted, as it happens with population dynamics models, where production

models, exponential survival model in age structured populations or specific stock

recruitment models (Quinn and Deriso 1999) are well endorsed by fishery scientists.

A review of fleet dynamics models can be found in van Putten et al. (2012) (short-

and long-term) and Nøstbakken et al. (2011) (only long-term). The wide range of

possibilities to describe the dynamic of the fleets makes it difficult to develop inte-

grated bio-economic models that can be used in a wide range of case studies. FLBEIA

does not provide a general solution to the incorporation of fleet dynamics models

in the MSE framework, but it allows new fleet dynamics models to be incorporated

to fulfil case specific requirements. In particular FLBEIA provides four short-term

fleet dynamics models. In the first one al the parameters are given as input data

and serves for example to test different effort management scenarios. A second one

describes the dynamic of sequential fisheries and the other two describe the dynamic

of mixed fisheries fleets. The two mixed fisheries dynamics models are governed by

opposite principles, whereas in the Fcube like approach (Ulrich et al. 2012) the dy-

namic of the fleet is driven by the inertia of the system (effort distribution along

metiers is commonly conditioned using historic data), in the profit maximization
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approach effort distribution is driven by the economic performance of the fleet. The

idea that fishermen follow a purely profit maximization approach is controversial

(Salas and Gaertner 2004). For example, tradition (Marchal et al. 2013) or inertia

(Prellezo et al. 2009) have been demonstrated to be more important than economic

performance in some cases. Probably, the true dynamic of the fleets are somewhere

between both approaches and a fleet dynamics model that mixes both approaches

could represent better the dynamic of mixed fisheries as it was done in (Marchal

et al. 2013). However, in FLBEIA it is not straightforward to build a model that

mixes both approaches. The reason is that apart of having a different distribution

of effort along metiers they also have a different total effort. A possible solution

would be modifying the profit maximization function to incorporate an additional

parameter, which penalizes the departure from the historical effort distribution and

calibrate it using historical data.

Fishing effort allocation is highly dependent on spatial dimension (Pelletier and

Mahévas 2005) and area based management is being increasingly used (Hilborn

2011). In principle, both require spatial models in order to be included into simu-

lations. However, these types of models only make a difference when there is time

dependent stock movement. Otherwise, fleets’ spatial allocation or area based man-

agement could be simulated implicitly through metiers associated with determined

areas and metier specific stock catchabilities. Closing an area would mean to cancel

the catchability or effort share of the metiers associated to this area. Stock move-

ments between areas are not normally known. Thus, in most cases, tools that are

not spatially explicit, such as FLBEIA, could be valid to conduct impact assessments

of spatial fleets’ dynamics or management. In DAMARA project the closure of an

area was evaluated using this approach (EC 2016).

The management procedure focuses on the North East Atlantic management

procedure which principal characteristic is the annual TAC advice (Daw and Gray

2005). This approach is followed in many cases elsewhere, but is not currently appli-

cable, for example, in the Mediterranean Sea, where most of the stocks are managed

using effort restrictions. In order to incorporate such a management into FLBEIA,

as we mentioned above, effort based HCR and fleet dynamics models restricted by

effort advice should be implemented. Individual transferable quotas are increasingly

used as a fisheries management tool (Beddington et al. 2007). Such a system could

be implementable in FLBEIA, but it would require the simulation of a catch quota

market which, in each year of the simulation, updates quota shares of the fleets for

each of the stocks. In FLBEIA it would imply the incorporation of an additional
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module within the fleets OM which updates the quota shares at fleet level before

they are used in the short-term dynamics module.

In summary, FLBEIA is a flexible and extendible model which can be used to

carry out bio-economic impact assessment of a wide range of management strategies

in diverse case studies. Besides, specific model implementations can incorporate

social and environmental variables into the simulation. Thus, it can be categorized

as a model of intermediate complexity for ecosystem assessments (Plagányi et al.

2014), half way between simple bio-economic models and full ecosystem models

such as Atlantis (Fulton et al. 2005; 2004) or Ecosim with Ecopath (Christensen

and Pauly 2004). The model is composable and the complexity of specific model

implementations is determined by the user choices.

MSE has been postulate as an appropriate tool to engage stakeholders in the

modelling and decision making processes of fisheries management. In this respect,

the composable nature of FLBEIA makes it a suitable model to be used in partici-

patory modelling or participatory decision analysis process (Voinov and Bousquet

2010).

Conditioning this kind of complex models is out of the scope of most of the

stakeholders. However, once the model is conditioned running it and analysing the

results by non-experts could be achievable. Future developments of FLBEIA will be

focused on providing a platform to run the model and analyse the results once the

model is conditioned. The implementation of new models to describe the dynamic

of the processes that build up FLBEIA, such as trophic interactions or new fleet

dynamics models, will be driven by the work in specific case studies.



Chapter 3
Global sensitivity analysis

The criteria defined and the guidelines proposed in this chapter have been presented

and published in the following forums:

The criteria and the evaluation of their performance in Environmental Mod-

elling & Software journal: “Robust combination of the Morris and Sobol

methods in complex multidimensional models”

The criteria, the guidelines and the potential of using GSA in MSE simulation

models in the Ninth International Conference on Sensitivity Analysis

of Model Output: “Global sensitivity analysis of fishery management simu-

lation models: Efficient conditioning and Robust combination of the Morris

and Sobol methods”

The criteria and the guidelines in the XVII Conferencia Española y VII

Encuentro Iberoamericano de Biometŕıa: “Global Sensitivity Analysis

of complex models: Combining Morris and Sobol methods in a robust way”

3.1 Introduction

GSA consist on explaining the variability in the output of the models through the

variability in the input factors. This approach has been postulated by many authors

as a key ingredient in the validation process of simulation models (Saltelli et al. 2000).

Nowadays there exist a variety of methods to conduct GSA (see Pianosi et al.

(2016), Plischke (2016) or Norton (2015) for recent reviews on existing methods and

practices). The available methods range from qualitative methods, like scatterplots,

to the most complex variance decomposition methods. In the last group, the Sobol

45
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variance decomposition method (Sobol 1993), is considered the reference method by

many authors (Confalonieri et al. 2010, Homma and Saltelli 1996, Sarrazin et al.

2016, Yang 2011).

The methods can be characterized by:

� Their ability to cope with non-linearities.

� Their ability to cope with interactions.

� The way the sampling is defined in the experimental design, using probability

distributions or a finite number of levels defined in the domain of existence of

each input factor.

� The number of model runs needed to obtain a reliable output (the cost of the

analysis).

� The type of output generated (plots, a ranking of the input factors or estimates

of the sensitivity indices).

� How do they characterize the uncertainty (usually using the output variance

but also using the whole probability distribution).

One of the main drawbacks of the Sobol variance decomposition method is its

high computational cost. The cost depends on the number of input factors and

the CPU time needed to run one instance of the model. In simulation models with

tens of input factors and model execution time of several minutes the computational

cost of the analysis could be unaffordable. Fisheries management simulation models

like FLBEIA usually belong to this category with many input factors and significant

execution time. Furthermore, the number of iterations needed for the methods to

converge is not known. Saltelli et al. (2008) give a rough approximation for some of

the methods. However, Sarrazin et al. (2016) found out that the number of model

iterations needed by the methods to converge are higher.

One alternative, for computationally intensive models, is to use emulators or

metamodels to approximate the original model (Coutts and Yokomizo 2014, Ratto

et al. 2012). The metamodels should be simpler and computationally less intensive

models from which sensitivity indices can be calculated easily. Other alternative is

to combine variance decomposition methods with a screening method to reduce the

number of input factors (Saltelli et al. 2008). First, the most important input factors

are identified with the screening method and then the variance decomposition is

applied only to those input factors, fixing the rest of the factors to any value in their

existence domain. The most popular screening method is the Morris elementary

effect method (Morris 1991).

When a variance decomposition method is combined with a screening method it
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is essential that the factors identified by the screening method are really the most im-

portant ones. The selection of the input factors need to be accurate and the method

need to have converged. In the Morris screening method there is no quantitative

method to select the most important factors, a visual selection is used instead. This

is not a big problem when there is only one output variable. However, when the

output is multivariate, maintaining the same selection criterion along all the output

variables is usually difficult. Even more, it is not possible to carry out a bootstrap

simulation to assess convergence using a visual criterion. The most common ap-

proach is to select a fixed number of factors for each output variable (DeJonge et al.

2012, Hussein et al. 2011, Morris et al. 2014). Alternatively, Campolongo et al.

(2007) proposed to use Savage scores (Savage 1956). Regarding convergence, Sarra-

zin et al. (2016) proposed several convergence criteria to assess the convergence of

GSA methods. The criteria defined there are specific to the objective of the analy-

sis. However, none of the objectives was to identify the input factors that should

enter into the variance decomposition method after the application of an screening

method. If applied for this purpose they could lead to a computational surcharge.

On the other hand, although GSA seems a natural complement of MSE, none of

the fisheries simulation models combined with a GSA found in the literature review

followed the MSE approach strictly. For the case of the most complex full ecosystem

models, Fulton (2010) and Plagangy (2007) stated that performing a GSA is not

feasible. We believe that the infrequent application of GSA to MSE simulation

models is due to:

� the complexity of the models, which inhibits the use of the available GSA

software,

� the high computational cost, and

� the lack of practical applications in the field.

MSE models like FLBEIA are characterized by including many correlated input

factors, a multivariate output, simulating the management process explicitly, and

being computationally intensive.

Thus, the objective of this chapter is to define a scientifically sound and com-

putationally efficient methodology to apply GSA to complex fishery MSE models.

We approach the problem of reducing the computational cost from two directions:

we propose reducing the number of effective factors in the GSA by conditioning the

model efficiently and introduce new selection and convergence criteria for a robust

selection of the input factors in the Morris method. While the selection criterion re-

moves the subjectivity from the screening process, the convergence criterion ensures
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that the procedure has converged to select the most important factors. Additionally,

we propose some guidelines to facilitate GSA of MSE simulation models.

This chapter is organized as follows, first the Morris elementary effect method is

presented. In the next two sections the selection and convergence criteria proposed

in this thesis for the Morris method are presented. In the third section, the Sobol

variance decomposition method is described; the derivation of sensitivity indices and

how to estimate them numerically, and the sensitivity indices for multivariate out-

put. Then, the performance indicators to compare the efficiency of several selection

criteria in the Morris method are defined. Finally, a set of guidelines to facilitate

the application of GSA to fisheries management simulation models are proposed.

3.2 The elementary effects method

Morris introduced the elementary effects method in 1991 (Morris 1991) and other

authors developed it further (Campolongo et al. 2007; 2011, Ruano et al. 2012). It

is an effective mean of identifying important input factors at a lower computational

cost than the Sobol method (Saltelli et al. 2008). Campolongo et al. (2007) improved

the method’s convergence through more efficient sampling of the input space. Fur-

thermore, they developed an expression that allows grouping input factors and treat

them as if they were a single input factor, with the subsequent reduction in compu-

tational cost. Extension of the methods of Campolongo et al. (2007) and criticism

of their examples appeared in Norton (2009).

The method consists of evaluating the simulation model, ϕ, along a set of tra-

jectories, P, defined in the unit hypercube, ω = [0, 1]K , where K corresponds with

the number of input factors. The intervals in [0, 1] are divided in subintervals of

with ∆ and the trajectories are defined throughout the bounds of the subintervals.

When the existence domain of the model is different to the unit hypercube, the

trajectories are transformed into the model’s original domain, Ω, using a transfor-

mation function. The absolute elementary effect for each trajectory p in P, AEEp,

is calculated for each input factor Xk, for k ∈ {1, ...,K}. For simplicity of notation,

we will omit the k subscript for the input factor whenever it is not necessary in the

context. Therefore, the AEEp for trajectory p and input factor Xk is defined as:

AEEp,Xk(X) =
|ϕ(X)− ϕ(X′)|

∆

where ϕ denotes the simulation model, ϕ(X) = Y and Y = (Y1, . . . , YJ) repre-
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sents the output of the model, J denotes the number of output variables, X and

X′ are two consecutive points in the trajectory p that differ only in the value of

Xk. Finally, the AEE of the input factor Xk, AEEXk , is equal to the mean of the

AEEp-s along all the trajectories:

AEEXk =

∑
p∈P

AEEp,Xk

R
: k ∈ {1, . . . ,K} (3.1)

where R denotes the cardinality of P. The AEE-s are calculated for each output

variable. Hence, for each input factor Xk there is a set of AEE-s {AEEXk,Yj}
j=J
j=1 ,

where j is the subscript for the output variable. For simplicity of notation, we will

omit the j subscript for the output variable whenever it is not necessary in the

context.

The following subsections present the calibrated visual criterion to select the

most important input factors and the convergence criterion for the Morris method.

3.2.1 The calibrated visual criterion

First, we define three selection criteria that jointly provide mathematical sense to

the criterion used in the visual selection. To give a closed expression for the three

criteria, for each output variable Y , we order the input factors according to their

AEE value, i.e., AEEX1,Y ≤ AEEX2,Y ≤ . . . ≤ AEEXK ,Y and define F as the set of

all the input factors.

1. Fixed number of factors: the selected input factors are those that verify that

their AEE are among the δF input factors with the highest AEE for at least

one output variable Yj0 . The set of selected input factors is denoted as FF and

it is defined as,

FF =
{
X ∈ F : ∃ j0 ∈ {1, . . . , J} s.t. AEEX,Yj0 > AEEXK−δF ,Yj0

}
2. Factors with high AEE value: the selected input factors are those that verify

that their AEE is higher than a proportion, δH, of the maximum value of all

the AEE-s for at least one output variable Yj0 . The set of selected input factors

is denoted as FH and it is defined as,

FH =
{
X ∈ F : ∃ j0 ∈ {1, . . . , J} s.t. AEEX,Yj0 ≥ δH ·max{AEEXk,Yj0}

K
k=1

}
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3. Factors distinguished from the others: the selected input factors are those that

verify that the difference between all the consecutive AEE-s is higher than a

proportion δD, for all the AEE-s with a higher AEE than the input factor

itself, for at least one output variable Yj0 . The set of selected input factors is

denoted by FD and it is defined as:

FD =

{
X ∈ F : ∃j0 ∈ {1, . . . , J} s.t.

AEEXk,Yj0 −AEEXk−1,Yj0

AEEXK ,Yj0
≥ δD, ∀Xk : AEEXk,Yj0 > AEEX,Yj0

}

Then, given P a set of trajectories along ω and KEE < K the number of input

factors we intend to enter into the Sobol method, the calibrated visual criterion

is defined as the weighting of the three criteria defined above and it is applied as

follows.

1. Evaluate the model at the points that form the trajectories in P and calculate

the {AEEXk,Yj}Kk=1 for all j ∈ {1, . . . , J} using (3.1).

2. Find the parameters δF, δH, and δD that result in the selection of KEE input

factors. With the fixed number of factors criterion, it may be impossible to

select exactly KEE input factors, in which case δF is selected as the minimum

number of input factors that results in selecting a total number of input factors

equal or bigger than KEE .

3. To support calibration of the selection criterion, conduct a visual selection of

the input factors. A set of input factors is selected for each output variable

and the resulting sets are then merged in a single set FV. The selection is done

in such a way that the cardinality of FV is equal to KEE .

4. Apply the weighted criterion for the three previously defined criteria using

different combination of weights. Firstly, define a three dimensional set of

values that provide a good coverage of the unit hypercube. Secondly, for each

triplet in the set of weights and each output variable, the number of input

factors selected is equal to the weighted mean of those selected with each of

the three criteria. Finally, once the number of input factors to be selected for

each triplet is decided, the ones with the highest AEE are selected. Then, the

set of input factors that corresponds to each triplet of weights, FW, is formed

by the union of the sets of input factors selected for each output variable.
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5. For each triplet compare the corresponding set of input factors calculated in

the previous step, FW, with FV. Then, identify the weights, wF, wH and wD

that produce the largest intersection between both sets and among those select

the triplet that produces the smallest cardinal of FW .

Thus, we obtain a procedure that uses the same criterion for the selection of

input factors in all the output variables. Furthermore, the input factors selected

with this procedure highly agree with the visually selected ones.

3.2.2 Convergence criterion

We consider that the Morris method has converged when the input factors identified

as the most important do not change when the cardinal of P is increased. We assess

convergence using bootstrapping and the selection criterion defined previously.

First, we generate randomly a sufficiently large set of trajectories, P, with car-

dinal R. Then, using the method in Campolongo et al. (2007) we find the set of

trajectories Pr for different values of r such that r < R. In particular, for each i and

l such that ri < rl, once AEE-s are calculated for Pri , we need only to evaluate the

model in the trajectories that are not included in Pri in order to calculate AEE-s

for Prl .
For each r, we perform the bootstrap in three steps using Nboot iterations:

1. Apply the calibrated visual criterion to Pr to obtain the weights, wF, wH, wD

as proposed for the calibrated visual criterion.

2. Sample with replacement r trajectories from the original set Pr.
3. Find the value of the parameters δF, δH, and δD as proposed for the calibrated

visual criterion.

4. Apply the calibrated visual criterion to that sample using the set of parameters

{wF, wH, wD, δF, δH, δD} obtained in previous steps.

5. Repeat steps 2 to 4 Nboot times.

To assess convergence, we define the indicator mr
X for each r and each input

factor X:

mr
X =

Nboot∑
h=1

πrX(h)

where πrX is equal to 1 if input factor X has been selected in iteration h, and

0 otherwise. If an input factor is selected in all the bootstrap iterations, i.e., if

mr
X = Nboot, the input factor is among the most relevant ones. Therefore, to
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identify the KEE most important input factors, it would be sufficient to increase the

number of trajectories r until KEE input factors are selected in all the bootstrap

iterations.

However, this condition could be very demanding, and therefore, the criterion

can be relaxed using a proportion ν of Nboot. We define Fr as the set of input factors

selected in, at least, ν ·Nboot bootstrap iterations when r trajectories are used:

Fr = {X ∈ F : mr
X ≥ ν ·Nboot}

If Kr is the cardinality of Fr, Kr increases with r and we consider that the

process has converged when ∃ r0 ≤ R such that:

Kr0 = Kr0+1 = . . . = Krmax

In general Krmax is lower than KEE because the number of input factors selected

in each bootstrap iteration are constrained to result in the selection of KEE input

factors. Hence, in general, those selected in ν · Nboot bootstrap iterations will be

equal or lower than KEE .

When convergence has been achieved for the number of input factors to be

selected, we define three criteria to select the input factors to be considered when

applying the Sobol method, FM.

The set of input factors selected with the maximum r, rmax, used in the appli-

cation of the Morris method:

FM = Frmax

The union:

FM =

rmax⋃
r=r0

Fr

The intersection:

FM =

rmax⋂
r=r0

Fr

The three criteria yield a different number of selected input factors, because in

the tail of the distribution the AEEs of some input factors go in and out of Fr. In

terms of selecting a smaller number of input factors, the most restrictive option is

the third, whereas the second is the most conservative, and the first is intermediate.

As a general procedure, we can examine the degree of difference between the three
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options in terms of the set of selected input factors.

Figure 3.1 shows the application of the whole proposal including the two criteria,

the calibrated visual criterion for selection and the bootstrap for convergence.

3.3 Variance decomposiotion method

Sobol variance decomposition method is based on the decomposition of the output

variance as a function of the variance of conditional expectations of the model output

on the input factors (Sobol 1993).

Sobol (1993) proved that any square integrable function ϕ(X) = Y in Ω = [0, 1]K

can be decomposed as:

ϕ(X) = ϕ0 +
∑
i

ϕi(Xi) +
∑
i<j

ϕij(Xi, Xj) + . . .+ ϕ12...K(X1, . . . , Xk) (3.2)

where each individual term is also square integrable and depends solely on the

input factors corresponding with its index. This expansion is called high dimensional

model representation. Furthermore, if the terms in the equation above have zero

mean (i.e the integral of each term over each of the variables is zero), the terms in

(3.2) are orthogonal and can be calculated using the conditional expectations of the

model output. Mathematically:

ϕ0 =

∫
ϕ(X)dX = E(X) (3.3a)

ϕi(Xi) =

∫
ϕ(X)

∏
k 6=i

dXk − ϕ0 = E(Y |Xi)− E(X) (3.3b)

ϕij(Xi, Xj) =

∫
ϕ(X)

∏
k 6=i,j

dXk − ϕi(Xi)− ϕj(Xj)− ϕ0

= E(Y |Xi, Xj)− E(Y |Xi)− E(Y |Xj)− E(X)

(3.3c)

and so on. Now, if we square on both sides of (3.2), replacing the terms in the

right hand side by the expression obtained in (3.3), and integrate over ω, we get:

∫
ϕ2(X)dX − ϕ0 =

K∑
s=1

K∑
i1<...<is

∫
ϕ2
i1...isdXi1 . . . dXis
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Figure 3.1: Steps for the application of the selection and the convergence criteria
given P a set of trajectories and r the number of trajectories to use in the analysis.
Figure taken from (Garcia et al. 2019a).
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The constants:

V =

∫
ϕ2(X)dX − ϕ0 and Vi1...is =

∫
ϕ2
i1...isdXi1 . . . dXis

correspond with the conditional variances of the model output on the input factor

and:

V =

K∑
s=1

K∑
i1<...<is

Vi1...is

In variance decomposition methods, the variance is used to characterize the

variation in the output of simulation models. Hence, Sobol (1993) proposed to use

the ratio between the conditional variances and the total variance as sensitivity

measures, i.e:

Si1,...,is =
Vi1,...,is
V

Hence,

K∑
s=1

K∑
i1<...<is

Si1,...,is = 1

And,

K∑
i=1

Si = 1

means that the model is additive and there is no interaction between input

factors. On the contrary, values much lower than 1 indicate that the model is highly

non-linear.

In simple cases, the sensitivity indices can be calculated analytically. However,

in most cases the models are too complex to allow the derivation of analytical ex-

pressions for the integrals in (3.3). For each of the sensitivity indices, the numerical

approximation developed by Sobol (1993) requires evaluating the simulation model

in a large set of Monte Carlo points. Hence, the computational cost of calculating all

the terms in the decomposition (3.2) is equal to N ·2K , where K corresponds with the

number of input factors and N with the base sample size that should be big enough

to ensure the convergence of the method. Hence, the number of model evaluations

required can be unapproachable even for relatively low number of factors.
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As an alternative, Homma and Saltelli (1996) proposed summarizing the con-

tribution of the input factors to the output variance using two sensitivity indices:

first-order and total-effect indices. The first is equal to the ratio between the vari-

ance of the conditional expectation of the model output on k-th input factor and

the total variance of the model output, mathematically:

Sk =
V (E(Y |Xk))

V (Y )
(3.4)

where Xk denotes the k-th input factor, Y = ϕ(X) is the unidimensional output

of the simulation model represented by ϕ and X = (X1, . . . , XK) represents the

model input. This index represents the contribution of the k-th input factor to the

output variance in isolation.

In turn, the total-effect is equal to the expected value of the conditional variance

of the model output on all the input factors but one, the k-th input factor, denoted

here as X∼k. It represents the contribution to the variance of the k-th input factor

alone and in combination with the remaining input factors. Mathematically it is

written as:

STk =
E(V (Y |X∼k))

V (Y )
(3.5)

In this way the decomposition of the output variance can be summarized using

just two indices for each factor, the first-order and the total-effect sensitivity indices

and the cost of the analysis is reduced to N · (K + 2).

3.3.1 Numerical calculation of the sensitivity indices

In this thesis we followed the numerical approximations proposed by Saltelli et al.

(2010) which are based on the work by (Sobol 2001). Saltelli et al. (2010) compared

different approaches for calculating the Sobol sensitivity indices using Monte Carlo

simulations. Here, we have used the approach that was identified by the authors as

the best in terms of convergence rate.

First, two independent matrices of dimension N ×KNG are constructed, A and

B, the so-called sample and re-sample matrices, where N and KNG are the number

of base simulations and input factors of the model, respectively. The input factors

can be multivariate, and therefore, KNG can be larger than the number of effective

input factors in the GSA, K. When the input factors are divided in groups, instead

of considering every input factor alone, the elements in the Sobol decomposition that
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include this input factor represent the contribution to the variance of all the input

factors in the group as a whole, in isolation in the case of first-order index, and in

combination with other sets of input factors, in the case of the rest of the elements in

the decomposition of variance. Hence, the input factors should be grouped sensibly

to obtain meaningful results.

Second, additional K matrices,
{
ABk
}
k∈1,...,K , are constructed from the A and B

matrices. Each ABk matrix is equal to A, except in the columns that correspond to

the k-th input factor, which are taken from matrix B. If the k-th input factor is a

group all the columns corresponding to this factor are replaced. Finally, the model

is applied to each of the rows of A, B, and
{
ABk
}
k∈1,...,K matrices. The numerator

in (3.4) is then approximated by:

V (E(Y |Xk)) =
1

N

N∑
i=1

ϕ(Bi.) ·
(
ϕ(ABk,i.)− ϕ(Ai.)

)
(3.6)

where Ai., Bi. and ABk,i. denote the i-th row of matrices A, B, and ABk , respec-

tively. In turn, the numerator in (3.5) is estimated as:

E(V (Y |X∼k)) =
1

2N

N∑
i=1

(
ϕ(Ai.)− ϕ(ABk,i.)

)2
(3.7)

Finally, the total variance V (Y ) is approximated by:

V (Y ) =
1

N

N∑
i=1

ϕ(Ai.)
2 −

(
1

N

N∑
i=1

ϕ(Ai.)

)2

The convergence of the estimators can be assessed using the bootstrap confidence

intervals’ width (Sarrazin et al. 2016).

3.3.2 Global Sensitivity Analysis of Multivariate Output

The sensitivity indices introduced in the previous section are specific to unidimen-

sional models. If the model were multidimensional, the sensitivity indices should

be calculated independently for each of the dimensions. However, the same model

evaluations could be used for their calculation. If the dimension of the output were

high and the output variables were correlated summarizing the information obtained

from the sensitivity indices could be very messy.

An alternative to the calculation of the sensitivity indices for each output vari-

ables is to use the generalized sensitivity indices (GSI) proposed by (Lamboni et al.
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2011). These indices are the equivalent of the sensitivity indices defined in the

previous section but for the overall variance of the output of a model with a multidi-

mensional output. The generalized indices are based on the work of Campbell et al.

(2006) who proposed to decompose the multivariate output using an orthogonal

system and then apply the sensitivity indices individually to the most informative

components. Lamboni et al. (2011) developed further the idea proposed by Campbell

et al. (2006) and using principal component analysis as orthogonal decomposition,

proved that the first-order and total-effect indices, (equations (3.6) and (3.7)), calcu-

lated on the sum of the principal components are to a multivariate output what the

Sobol sensitivity indices are to the univariate one. The same model results used to

calculate sensitivity indices are used in the calculation of generalized indices. Hence,

their calculation do not imply any additional computational cost.

3.4 Performance of the selection criteria

Two performance indicators are defined to evaluate the performance of the calibrated

visual criterion and other two selection criteria, the selection of a fixed number of fac-

tors for each output variable and the criterion based on Savage scores (Campolongo

et al. 2007). The performance indicators are based on the total-effect indices calcu-

lated on the reduced simulation model obtained introducing variability exclusively

in the KEE input factors selected with the Morris method. The first performance in-

dicator, uses the set of Sobol’s total-effect sensitivity indices for each output variable

Yj , SjT = {SjTk}
KEE
k=1 , to assess the performance of the criterion, where SjTk denotes

the total-effect of the k-th input factor for output variable Yj . In turn, the second

one, the generalized performance indicator, uses the generalized total-effect indices

for multivariate output defined by Lamboni et al. (2011), GT = {GTk}
KEE
k=1 , where

GTk denotes the generalized total-effect index of k-th input factor.

To assess the performance of the criterion under different conditions, the perfor-

mance indicators are calculated for different sets of output variables and different

number of input factors in the Morris method. Let us Z denote the number of input

factors used in the fixed number of factors criterion to calculate the set of input

factors in the Morris method. Then, the performance indicators are calculated as

follows:

� The fixed number of factors criterion is applied to the Morris elementary effects

selecting the Z input factors with the highest elementary effect value. The

resulting number of selected input factors is denoted as KEE,Z.
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� The calibrated visual criterion is applied using KEE,Z number of input factors

as threshold.

� The Savage criterion is applied selecting the KEE,Z input factors with the

highest score.

� For a given selection criterion, to calculate the performance indicator for out-

put variable Y , first the corresponding total-effect values are assigned to the

input factors selected in the application of the criterion, {X1, . . . , XKEE,Z
}, i.e

:

ρjk =


0, if Xk /∈ FM.

SjTk∑KEE
i=1 SjTi

, otherwise.
(3.8)

where SjTk corresponds with the total-effect of input factor Xk for output vari-

able Yj . Then, the first performance indicator, Θ, is calculated as the ratio

between the sum of all the ρjk over all the input factors selected by the cri-

terion and all the output variables {Y1, . . . , YJ}. The sum is then divided by

the number of output variables to place the possible values of the indicator

between 0 and 1.

Θ =
1

J

J∑
j=1

KEE,Z∑
k=1

ρjk (3.9)

The second performance indicator, the generalized indicator, ΘG, is calculated

similarly but instead of having one total-effect index per output variable Y ,

there is only one total-effect index for all the output variables. Hence, ρ

depends only on the input factors and in (3.9) the sum along output variables

and the division by the number of output variables disappear.

In the comparison of the three criteria the one with the highest Θ is the criterion

which produces the best selection of input factors. Values of Θ equal to 1 indicate

that the input factors selected by the criterion are the KEE,Z input factors in the

top of the ranking, for all the output variables in the case of the first indicator,

and for the ranking obtained with the generalized total-effect index in the case of

generalized one. The procedure is not applied to Z = 1 because it implies to select

δH and δD in such a way that only one input factor per output variable is selected,

i.e., the three criteria are equivalent for Z = 1.
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3.5 Guidelines

3.5.1 Vectors at age

Most fishery simulation models describe the stock dynamics using age structure in

the population, implying that most input factors are multivariate with one value

per age class. Furthermore, as the values at age are related with the growth process

they are usually correlated. Hence, if all these values are considered in the GSA, as

well as increasing enormously the number of factors, the correlation precludes using

standard GSA techniques. The number of factors can be reduced and the correlation

overcome by modelling the values at age as a function of uncorrelated parameters:

xa = Φ(a, θ1, . . . , θs, ε) : s < na

where xa denotes an observed value of the factor at age a, Φ the mathematical

model, {θi}si=1 the model’s parameters, ε the error term, and na the number of age

classes. The parameters that enter into the GSA are {θi}si=1 and ε and they should

be independent. If {θi}si=1 were correlated, some of the parameters could be modeled

as a function of the others (see Section 5.2.1).

One of the most simple approaches to model vectors at age is quantile trans-

formation. For each vector, random numbers sampled from a uniform distribution

in [0, 1] are transformed into the value of each age class using the inverse transfor-

mation method on the probability distribution of each value at age of the vector.

This approach uses only one input factor corresponding with the sampling of the

uniform distribution and maintains the correlation structure in the values at age.

The resultant vectors at age with this method are translations of the original vector

through the quantiles of their distribution (Figure 3.2), i.e., all the values in the

vector corresponded to the same quantile. In the same figure, the curves obtained

using an alternative model with two parameters is shown. In this case the input

factors are the parameters of the model.

3.5.2 Grouping of variables

A common procedure to reduce computational cost of GSA is to group factors and

then treat them as a single factor (Saltelli et al. 2008). In both, the Morris and

Sobol methods, the factors within the same group are moved simultaneously but

independently. In the Sobol method, the groups are included in matrices A and

B as if they were single factors, but when ABk is generated the entire group is
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Figure 3.2: Two different means of modelling the uncertainty in the vectors at age.
a) corresponds to quantile transformation and b) to a parametric modelization of
the observed data.

interchanged. For the Morris method, Campolongo et al. (2007) developed the

mathematical expression needed to calculate the AEE when groups are used.

Some set of factors are commonly used in most of the MSE implementations and

they could be considered as a group, because the focus, in general, is on the impact

of the entire set of input factors:

� The initial abundance at age of the stocks;

� The annual variability around the recruitment curve;

� The parameters of the stock-recruitment relationship;

� The annual observation error in total landings, total discards, or stock abun-

dance;

� The aging error along year and ages. The aging error measures the probability

of age ai being assigned to an individual of age aj . If the parameters are not

grouped, this error implies (na−1)2 individual factors if the error is considered

time-invariant, and (na − 1)2 · ny otherwise, where ny denotes the number of

years in the simulation (na − 1 and not na, because they are proportions and

the factors along age classes sum up to 1).

Note that when groups are used, the save on computational cost is attained at

the cost of losing information. Hence, we need to be sure we are not interested in

the effect of individual input factors within the group.

3.5.3 Observable variables in management procedure

The explicit simulation of the uncertainty in the MP renders MSE different from

other simulation approaches. In MSE models aleatory and epistemic uncertainty
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can be separated accurately. The source of the aleatory uncertainty is the natural

variability in the variables of the OM. In turn, the uncertainty in the MP has two

components, that derived from the variability in the OM and that derived from a

lack of knowledge of the system. The latter could be reduced through an increase

in sampling and/or through further research, but not the former.

The variables in the MP correspond with the observation of variables in the

OM. Thus, real and corresponding observed input factors are correlated; however,

this can be avoided by introducing into the GSA the error term that relates the

two variables instead of the observed variable itself. For each model replication, the

values of the observable variables in the OM are generated as:

χOMy
= µ · ξy

where µ denotes the mean value of the variable, ξ the natural variability, and y

the year. If χ and µ are vectors at age, ξ can be either a scalar or a vector, depending

if the observation error is age dependent or not.

Input factors sampled routinely are observed each year with observation and

measurement error (Francis and Shotton 1997), i.e., for input factor χ:

χMPy
= χOMy

· εy

where ε is the observation error term. The mean of the distribution of ε repre-

sents the bias in the observation of χOM and its coefficient of variation (CV) the

precision. The two variabilities, ξ and ε, are independent and represent different

sources of uncertainty, natural variability the first and observation error the second.

Here, we use multiplicative errors, because in FLBEIA all the errors are multiplicative,

but they could be additive.

The factors that are naturally variable but are assumed constant in the MP can

be modeled as

χMP = µ · ζ (3.10)

where ζ is a scalar that models the perception bias in χOM . The drawback is

that the importance of observation errors in variable χMP cannot be directly assessed

because the observation error, ζ
ξ , cannot be included as a factor.

Moreover, the age structured variables can be subject to aging error, as described

in Section 2.2.2.1 . They are introduced in ~χMP using matrix multiplication, i.e.,
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~χMPy
= (~χOMy

· ζy) · Λ

where ~χ denotes a vector with values at age of a given input factor.

3.5.4 Convergence of individual factors

The convergence of the sensitivity indices is factor-dependent. While the conver-

gence for some factors is reached with a few iterations, others require many itera-

tions to converge. Furthermore, the sensitivity indices are calculated independently

for each factor using factor-dependent model evaluations. Hence, when a factor

Xk has converged, we can stop evaluating the model in the corresponding ABk ma-

trices, consequently reducing computation time. In practice, a set of benchmarks

can be defined in the base sample size {Nt}t∈T with Nt < N ; when Nt iterations

are reached, the factors that have converged from Nt−1 to Nt, Fconv(Nt), are iden-

tified. From iteration Nt + 1, the model is no longer evaluated in ABk for Xk in

Fconv(Nt). This strategy leads to a reduction in the analysis’ computational cost of∑
t∈T
|Fconv(Nt)| · (N −Nt) model replications.

3.6 Discussion

We have defined a selection criterion for the Morris elementary effects method that

allows to select the most important input factors using a criterion that mimics the

visual selection. Ideally, the selection should be done visually. However, the visual

selection is not easily applied consistently when the number of output variables is

high and the discrimination among input factors is unclear. Furthermore, it cannot

be applied in an automatic way, for example in bootstrap simulations. The new

criterion defined here provides an approximation of the visual selection and has the

advantages of being consistently applied in all the output variables and of being

able to be used in an automatic way. Other authors use the fixed number of factors

criterion applied to each output variable (DeJonge et al. 2012, Hussein et al. 2011,

Morris et al. 2014). This approach is consistent along output variables, but could

lead to unimportant input factors being selected in some cases and to important

ones being discarded in others. Campolongo et al. (2007) use Savage scores (Savage

1956) to identify the most important input factors in a multidimensional output

model. However, Savage scores are mostly used to compare ranking of input factors

obtained using different approaches (Borgonovo et al. 2003, Confalonieri et al. 2010,
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Cucurachi et al. 2016) and their performance as a selection criterion has never been

evaluated.

Campolongo et al. (2011) proposed an alternative way of sampling the input

domain in the application of elementary effects screening method. This sampling

scheme allows to use the model evaluations in the application of the Morris method

in the application of the Sobol method, and it is not necessary to define levels for

the input domain. In the examples tested, they found that the radial sampling

proposed was superior in the computation of the elementary effects. We used the

Morris method because it is still the most popular screening method used in the

literature. However, the criteria proposed here could be used exactly in the same

way changing the Morris sampling scheme by the radial sampling in the application

of the elementary effects screening method.

The convergence could be assessed with the “factor screening” criterion in Sa-

rrazin et al. (2016). This criterion focuses on the width of the confidence interval

of the non-selected input factors (input factors X for which mr
X < 0.95 ·Nboot) and

considers that it has converged when the width is narrower than a certain thresh-

old. However, as we are not interested in the value of the absolute elementary effect

of the input factors, having narrow confidence intervals is not strictly necessary to

ensure that they are in the lower part of the ranking. Hence, this criterion could led

to a computational surcharge.

Most of the GSA methods focus on the variance of the output to describe its

variability. However, variance is not able to represent the outputs’ uncertainties

correctly, for example, when model output is highly skewed (Borgonovo et al. 2011,

Pianosi and Wagener 2015). This problem is solved with the use of “moment-

independent” methods which do not use any specific moment to characterize uncer-

tainty. The development of these methods has increased in the last years (Pianosi

and Wagener 2015, Plischke et al. 2013). The two methods used in this chapter,

the Morris and Sobol method, are based on the variance of the probability distribu-

tions. However, performance indicators of fisheries simulations models do not show,

in general, a high skewness and we have wanted to focus on most common methods.

We propose the method by Lamboni et al. (2011) to calculate the generalized

sensitivity indices. However, there exists other methods to deal with sensitivity

measures for multidimensional output models. Gamboa et al. (2013) defined a new

sensitivity index based on the decomposition of the output variables’ covariance.

In the framework of metamodels, Garcia-Cabrejo and Valocchi (2014) developed

an analytical expression for multivariate sensitivity indices of polynomial chaos ex-
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pansion. Recently, Xu et al. (2018) proposed an index to assess the inputs’ effect

on the entire joint probability distribution of the multivariate output. We chose

Lamboni et al.’s (2011) method to calculate the multivariate indices because of its

simplicity and ease of application. Gamboa et al. (2013) did not have any appar-

ent advantage over Lamboni’s method but its implementation was more complex.

We discarded Garcia-Cabrejo and Valocchi’s (2014) method, because it requires ad-

justing a metamodel based on the polynomial chaos expansion. The most recent

method, Xu et al.’s (2018), uses an index to assess the inputs’ effect on the en-

tire joint probability distribution of the multivariate output but its application is

complex.

Sheikholeslami et al. (2019) propose a method to automate the grouping of fac-

tors based on merging input factors with similar sensitivity indices. Conversely, we

propose the grouping of factors based on their nature. The strategy of Sheikholes-

lami et al. (2019) is optimal in terms of convergence speed and stability but if input

factors with very different nature were merged the interpretation of results could be

difficult.

The explicit simulation of the MP differentiates MSE simulation models from

other simulation approaches in fisheries management (Punt et al. 2016). The input

factors corresponding with the observation of variables in the OM require an specific

conditioning to overcome correlation between input factors as proposed in one of

the guidelines. The explicit incorporation of the errors committed in the MP, as

proposed in Section 3.5.3, allows to separate epistemic uncertainty from natural

variability and could help in the definition of sampling programs and application of

stock assessment models.

When the number of input factors is low, the save in computational cost derived

from the application of the guideline related with the convergence of individual

factors could be marginal. However, when the number of input factors is high

the convergence rate among input factors could be very different. Hence, to stop

evaluating ABk for input factors that have a quick convergence rate would lead to a

great save in the computational cost of the analysis.

The computational cost of the variance decomposition method increases expo-

nentially with the number of input factors. Furthermore, The greater the number

of input factors, the greater the base sample size needed to sample the entire in-

put domain correctly and achieve convergence, i.e., the method suffers the curse of

dimensionality (Sheikholeslami et al. 2019). If we add that the execution time of

fisheries simulation models is usually high, it becomes extremely important to re-
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duce the dimension of the model, i.e to reduce the number of effective input factors

to fight the curse of dimensionality. The aim of both, the proposed methodology to

combine the Morris and Sobol methods, and the guidelines related with the condi-

tioning of the model, is to reduce the number of effective input factors in the model.

Furthermore, the guidelines can be used to overcome the correlation between input

factors which is crucial to allow the application of standard GSA methods. Hence,

the guidelines and criteria defined in this chapter are useful to promote the use of

GSA methods by non-experts and reduce the computational cost of the analysis.



Chapter 4
Bio-economic multi-stock reference points as a

tool for overcoming the drawbacks of the

landing obligation

The work carried out in this chapter has been published in ICES journal

of Marine Science and presented in MYFISH symposium on Targets and

Limits for Long-term Fisheries Management with the same title used in

the chapter “Bio-economic multi-stock reference points as a tool for overcoming

the drawbacks of the landing obligation”:

4.1 Introduction

Fisheries management in Europe comes under the CFP. The CFP is revised every

few years, with the latest reform having been made in late 2013. The main inno-

vations were the landing obligation of all catches and a governance shift towards

regions (Salomon et al. 2014). The landing obligation policy was introduced grad-

ually, for some fleets, the rule was implemented in January 2015 and for the rest

it was implemented in 2019 (Salomon et al. 2014). Although MSY has been the

management target in Europe for years, it was not until the last reform when it was

introduced explicitly in the CFP.

The landing obligation is expected to have a big impact on the performance

of the fishing fleets, especially in the so-called mixed fisheries where a variety of

stocks are caught simultaneously and they cannot discriminate among the stocks

they catch. These fleets will be obliged to stop fishing when the quota of any of the

67
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stocks they catch is reached. In order to reduce the impact of the landing obligation

policy, the fleets could employ more selective gears or direct their effort to areas

where the bycatch of unwanted stocks is lower. However, these measures are not

always feasible or economically profitable. The major causes of discard in Europe

are the minimum landing size, the TAC and quota limitations, and the low or null

economic value of catches (Borges 2015).

TAC advice in Europe has traditionally been given on a single-stock basis without

taking into consideration the interactions among stocks at fleet level. Inconsisten-

cies between single-stock TAC advice in a mixed fisheries context is an important

reason for over-quota discards (Ulrich et al. 2011). For this reason and in the wake

of the closure of the cod fisheries in the North sea in 2002, European fisheries scien-

tists started working on reconciling single-stock TACs in a mixed fisheries context

(Vinther et al. 2004). Currently, the Fcube method (Iriondo et al. 2012, Ulrich

et al. 2011) is routinely used to provide mixed fisheries advice in the North sea

(ICES 2014a). Outside the framework of ICES, Da Rocha et al. (2012) have de-

veloped a bio-economic model for calculating reference points in a mixed fisheries

context. Fcube and the bio-economic model of Da Rocha et al. (2012) can be used

to produce consistent single-stock TACs, i.e., catch levels that in theory will be

exhausted simultaneously for all stocks. While the Fcube method could be used

to harmonize single-stock TACs produced independently at stock level, the fishing

mortality targets obtained with the model of Da Rocha et al. (2012) could be used

directly to produce consistent single-stock TACs.

Since its announcement in 2013, the landing obligation policy has provoked

great expectations among local administrations, fishermen and scientists. During

this time, several studies have been published dealing with discarding practices and

the landing obligation policy. Batsleer et al. (2013), Condie et al. (2014; 2013)

and Hatcher (2014) focused on incentives to fishermen to comply with the landing

obligation in various European fleets. Using different economic approaches they all

conclude that the landing obligation needs to be accompanied by strong controls and

enforcement in order to reduce discards. Simons et al. (2015) used a bio-economic

model to evaluate the performance of two alternative discard-prevention strategies

in the North sea saithe fishery. They found that the negative effects of the land-

ing obligation could be reduced by allowing a quota increase for the most restrictive

stock at the expense of the quota for the least restrictive stock. For the Atlantic Ibe-

rian Waters Fernandes et al. (2015) characterized the discards of trawler fleets and

Wise et al. (2015) analysed the long-term bio-economic effect of selectivity changes
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in Portuguese crustacean trawler fleets. The first found that the minimum landing

size for hake and blue whiting high-grading are the major reasons for discarding in

this fishery and Wise et al. (2015) concluded that improvements in selectivity have

little effect on the revenue of the fleets, a positive effect on the biomass of some

target species and reduced fish bycatch.

In this work we focused on the Spanish demersal fishery operating in Atlantic

Iberian waters and the main stocks they catch. The results in Fernandes et al.

(2015) suggest that the landing obligation will significantly impact the performance

of trawler fleets in this area. Apart from trawlers the fishery also comprises gillnetters

and vessels using hooks and lines. From 2019 onwards, the discard plan for demersal

species (EU 2015) affects fisheries targeting hake, nephrops, plaice and sole, which

include the Spanish demersal fleets. Fishermen and the fishing industry recognize

that discards are an unacceptable waste of natural resources that must be addressed.

However, they consider that there is a lack of definition in the implementation of

the landing obligation and they fear that there will be a big discrepancy between

intended incentives and operational ones (de Vos et al. 2016).

Simons et al. (2015) carried out a quantitative forecast of the effect of the landing

obligation policy in European fleets using an integrated bio-economic model. Their

work focused on certain fleets operating in the North sea, as well as the existing

technical interaction between the saithe and cod stocks. However, the results ob-

tained cannot be extrapolated to the Iberian demersal fishery system, where several

stocks are caught simultaneously and fleets are segmented with different target and

bycatch species.

Here, we used a bio-economic MSE approach (Punt et al. 2016) to analyse the

impact of the landing obligation on the Iberian waters fishery system. Further-

more, we investigated whether the drawback of the landing obligation could be

overcome using multi-stock reference points to produce TAC advice. We compared

the bio-economic performance of the system in eight scenarios, which differed in

the reference points used, the implementation, or not, of the landing obligation and

the model used to describe fleet dynamics. The work has standalone relevance, but

also provides a tool that can be used to evaluate regional management plans for

Iberian waters. The model has been conditioned following a participatory mod-

elling process (Voinov and Bousquet 2010) in the framework of the MyFish project

(http://www.myfishproject.eu/). The stakeholders validated the tool qualita-

tively, gave us insight into the conditioning of the model and proposed management

scenarios of their own that were later tested and presented to them.

http://www.myfishproject.eu/
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Figure 4.1: Case study area. Figure taken from Garcia et al. (2017a).

The chapter is organized as follows: first, in the material and methods section we

describe the case study, the data used and the conditioning of the OM and the MP in

FLBEIA. Then, in the same section we list the scenarios used to investigate the impact

of the landing obligation, the proposed reference points and the indicators used to

summarize the results. Afterwards, the results are analysed using the indicators

defined in material and methods section and are presented at stock and fleet level

separately. Finally, the discussion verses about the performance of the proposed

reference points, the sustainability of the stocks and different aspects of landing

obligation and fleet dynamics.

4.2 Material and Methods

4.2.1 The case study

Iberian waters comprise the northwestern waters of the Iberian Peninsula, corre-

sponding to the ICES divisions 8c and 9a (Figure 4.1). Portugal and Spain are the

main countries operating in this area with France making a minor contribution to

the catch of some stocks. The demersal fleet catch comprises a great number of

stocks, most of which have not an analytical assessment.

In 2012 the fishery was made up of 2524 vessels grouped into seven fleet segments.
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Although our focus was the economic performance of the Spanish demersal fleets, the

Portuguese fleets were also included, because they account for the remainder of the

catch of the majority of the stocks included in the simulation. The Spanish fishery

comprises four fleet segments, gillnetters, demersal trawlers, vessels using hooks and

lines, and purse seiners. In turn, the Portuguese fleet is composed of three segments,

demersal trawlers, polyvalent artisanal fishing boats and purse seiners. Purse seiners

are pelagic, but were included in the analysis because they account for the entire

catch of southern horse mackerel (Trachurus trachurus) not caught by the demersal

fleets.

Eight stocks were explicitly included in the model, hake (Merluccius merluccius),

megrim (Lepidorhombus whiffiagonis), four spot megrim (L. boscii), white anglerfish

(Lophius piscatorius), mackerel (Scomber scombrus), southern horse mackerel (T.

trachurus), western horse mackerel (T. trachurus) and blue whiting (Micromesistius

poutassou). All these stocks are assessed analytically by ICES. The first four are

demersal stocks whose distribution coincides with the area of interest. The rest are

pelagic stocks and only the distribution of southern horse mackerel coincides with the

study area. Mackerel and blue whiting are widely distributed from Iberian waters

to the northern Norwegian sea. In turn, horse mackerel in the northeastern Atlantic

is divided into three stocks, the two considered in this study correspond with the

southern stock distributed throughout Iberian waters and the western stock, which

is found along the northeast continental shelf of Europe from the Bay of Biscay to

Norway.

The contribution of the Iberian waters demersal fleets to the total catch of mack-

erel, blue whiting and western horse mackerel is around 3% for the first two stocks

and about 16% for the third. Moreover, they only contribute significantly to the

catch and income of trawlers. However, these stocks could play a crucial role under

the new European landing obligation policy (Salomon et al. 2014) if the low quotas

combined with a high abundance of stocks convert them into choke species (Schrope

2010) for the fleets. The eight stocks included account for 34%, 40% and 53% of

the income of the gillnetters, longliners and trawlers, respectively (Table 4.1). The

majority of the remaining stocks caught by the fleets are not assessed by ICES and

for those which are, the data necessary to condition the simulation model is not

available. Hence, in order to account for the income from the stocks not considered

in the study, an artificial stock was introduced into the model (denoted as OTH).

All the stocks considered are subject to annual TAC and quotas. Technical

measures such as limits mesh size restrictions, minimum landing sizes and spatio-
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Table 4.1: Contribution of the stocks included in the model to the income of the
Spanish demersal fleets. Reprinted from Garcia et al. (2017a).

Fleet Stock Contribution to Income

Gillnets

H.Mack (S) 1%
Hake 25%
Mackerel 5%
Anglerfish 3%

Total 34%

Longlines

Hake 26%
Mackerel 13%
Anglerfish 1%

Total 40%

Trawlers

4S Megrim 5%
B.Whiting 3%
H.Mack (S) 1%
H.Mack (W) 4%
Hake 32%
Mackerel 5%
Megrim 1%
Anglerfish 2%

Total 53%

temporal closures are also in place.

In addition, a recovery plan for hake and Norway lobster (Council Regulation,

CE 2166/2005) has been enforced in the area since 2006.

4.2.2 Data

Stock data used to condition the model was taken from the data used in ICES as-

sessment working groups: hake, the two megrims and anglerfish from ICES (2013b);

southern horse mackerel from ICES (2013a); blue whiting, western horse mackerel

and mackerel from ICES ICES (2013a).

All the stocks, with the exception of hake and anglerfish, are assessed using

annual age-structured models and the outputs of the assessments were directly used

to condition the simulation model. Hake and anglerfish are assessed using quarterly-

length-structured assessment models, Gadget (Begley 2004) and SS3 (Methot and

Wetzel 2013), respectively. For hake, quarterly-length-based results were converted

to annual age ones based on individual growth and mortality and for anglerfish the
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annual-age-based outputs of SS3 were used to condition the model.

Catch (landings and discards) and effort data by fleet and métier was compiled

by national institutes, the IEO in Spain and the IPMA in Portugal, within the

framework of the GEPETO project (Atlantic Area, 2011/1-159). Catch data in-

cluded discard data for hake, megrims and mackerel and it was equal to landings

for the other stocks. The landings and effort data were based on official statistics

(logbooks, sales notes and fleet censuses) provided by the national administrations

and discards were estimated using on-board sampling programs of IEO and IPMA.

The data was desegregated by technical fleet groups as established by the European

Data Collection Framework (DCF) (EC 2008). The fleet segment was defined as a

group of vessels using the same predominant fishing gear throughout the year. In

turn, métiers were identified by cluster analyses of catch profiles per trip (Castro

et al. 2010, Punzón et al. 2010). The list of métiers by fleet is given in Table 4.2.

Table 4.2: List of métiers by fleet with the notation used along the text and figures
and a short description. The métiers in vessels using hooks and lines and gillnetters
are the same. Reprinted from Garcia et al. (2017a).

Fleet(s) Metier Description

Trawlers

OTB DEF
Bottom otter trawl targeting hake,
anglerfish and megrim using “Baka” nets.

OTB MPD
Bottom otter trawl targeting mixed pelagic
and demersal fish using “Baka” nets.

PTB MPD
Bottom pair trawl targeting mixed
pelagic and demersal fish.

GTR DEF
Trammel net targeting demersal fish
with mesh size range 60-79

LHM DEF Hand line targeting demersal fish
Vessels using LLS DEF Longline targeting demersal fish

&
GNS DEF 100

Set gillnet targeting demersal fish
Gillnetters with mesh size ≥ 100

GNS DEF 60-79
Set gillnet targeting demersal fish
with mesh size range 60-79

GNS DEF 80-99
Set gillnet targeting demersal fish
with mesh size range 80-99

Monthly fish price data from 2001 to 2012 for all the stocks was obtained from

a webpage of the regional government of Galicia (www.pescadegalicia.com). The

data showed seasonal patterns and a weighted mean of the price over months, using

the monthly catch as weight, was used to calculate the average annual price. The

www.pescadegalicia.com
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prices did not show any clear trend throughout the years and the average price for

2010 to 2012 was used to condition the model in the projection. Prices were only

available at the regional level and the same price was used for all the fleets, métiers

and age groups. As the catch composition of the stocks included in OTH varied by

métier, the mean price of OTH stock was calculated at métier level. Catch and price

data for the stocks included in OTH, at métier level, were only available for 2011;

hence the mean price per ton at métier level in that year was used to condition the

price of OTH stock in the projection. Fishing costs were obtained from the Annual

Economic Report on the EU Fishing Fleet (STECF 2014). The costs in the report

were given by gear and vessel length and a weighted mean, using effort as weighting

factor, was used to calculate them by gear. Fixed costs were calculated per vessel

and by definition were assigned at fleet level. Variable costs were calculated by unit

of effort and were only available at fleet level; hence they were equal for all the

métiers within the same fleet. Both costs were assumed to be constant throughout

the simulation.

4.2.3 Conditioning

The models used to simulate the dynamic of the stocks and the fleets are summarized

in Table 4.3 and described in more detail in the following sections.

4.2.3.1 Stocks

The five stocks distributed throughout Iberian waters were simulated using an age-

structured exponential survival model together with a stock-recruitment model to

generate the new cohorts. The recruitment of hake was modeled using the Bayesian

Ricker model estimated in Cerviño et al. (2013). In each of the iterations of the

model, a set of stock-recruitment parameters were randomly drawn from the joint

posterior probability distribution. For the other stocks, a deterministic segmented

regression model was adjusted to the historical recruitment and spawning stock

biomass (SSB) data. Recruitment uncertainty in the projection was introduced

using a multiplicative lognormal error around recruitment point estimates. The

median of the error was equal to one and the coefficient of variation was equal

to the historical one obtained in the model fit. Thus, hake’s recruitment had two

sources of uncertainty, one coming from the random Bayesian parameters and a

second one arising from the uncertainty around the model curve.

In the projection, the abundance of widely-distributed stocks, blue whiting, west-
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Table 4.3: Models used for each stock and fleet in each model component in Figure
2.1. Reprinted from Garcia et al. (2017a).

Component Stock/Fleet Models Used

O
p
e
r
a
t
in

g
M

o
d
e
l

B
io

lo
g
ic

a
l

Hake Exponential Survival & Ricker Recruitment Model
H.Mackerel

Exponential Survival & Segment Regresion Recruitment Model
4 Spot M.
Megrim
Monkfish

Western H. Mac.

Age Structured Fixed PopulationMackerel
Blue Whiting

OTH No population

F
le

e
t

Spanish Trawlers Multi-metier fleets. Effort share along metiers given as input data.

Spanish Gillnetters
Schaefer catch production model. Total effort calculated for the quota
share of all the stocks

Spanish Longliners
and the one most similar to the previous one is selected. Entry-Exit
model.

Portuguese Trawlers

Portuguese Polivalent
Single Metier fleets. Total effort in each step restricted by the most
relevant stock caught.

Spanish Purse Seiners No economics considered.
Portuguese Purse Seiners

M
a
n
a
g
e
m

e
n
t

P
r
o
c
e
d
u
r
e

O
b
s
e
r
v
a
t
io

n Hake

H.Mackerel
All the variables are oberved with error. Two types of errors multi-
plicative and aging error.

4 Spot M.
Stock numbers at age and fishing mortality at age not estimated
through assesssment model,

Megrim generated in the observation model.
Monkfish

Rest of the stocks Not observed

A
s
s
e
s
s
.

All the stocks No assessment model

A
d
v
ic

e

Hake

The harvest control rule (HCR) used by ICES in the framework of MSY.
H.Mackerel
4 Spot M.
Megrim
Monkfish

Western H. Mac.

The historical TAC with uncertaintyMackerel
Blue Whiting

ern horse mackerel and mackerel, was maintained constant and equal to the 2010-

2012 mean level. The biomass of OTH stock was also constant and equal to one

thousand billion (1e12) tons throughout the simulation. The biomass level was set

sufficiently high to ensure that it would not restrict the catch of OTH stock in the

projection.

The biological parameters, natural mortality-, weight- and maturity-at-age were

considered constant and equal to the average of last three data years for all the

stocks. In the case of widely distributed stocks, as population size was constant in

the simulation, only weight-at-age was used.

4.2.3.2 Fleet dynamics

The catch was generated using a Cobb Douglas production function (Cobb and Dou-

glas 1928) with constant return to scale (elasticity parameters equal to 1). Historical
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catchability (2010-2012) was calculated using historical biomass and effort data in

the Cobb Douglas function, i.e., catchability was equal to the ratio between catch

and the product of biomass and effort. In the projection, catchability was assumed

to be constant and equal to the 2010-2012 average. Effort share between métiers

was constant and equal to the average of the last three years in the traditional fleet

dynamics approach and was a model variable in the profit maximization approach.

Selectivity-at-age was implicitly included in catchability, assuming catchability is

the product of selectivity, vulnerability and availability (Arregúın-Sánchez 1996).

Hence, it was constant and equal to the average of the last three data years. In

turn, the catch was divided into landings and discards using a retention ogive that

was calculated as a ratio of landings- and catch-at-age data. In the projection, the

average of last three years’ retention ogives was used. The only fleets with discards

were the trawlers, which discarded hake, megrims and mackerel.

The short-term dynamics of Spanish demersal fleets were simulated using two

different approaches, one based on tradition and another on profit maximization. For

the Portuguese fleets and Spanish purse Seine fleet only the traditional approach was

used because no economic data was available.

The traditional fleet dynamics approach was based on the Fcube method (see

Section 2.2.1.2 and Ulrich et al. (2011)). First, the total effort that corresponded

with the catch quota of each of the stocks, Est,y, was calculated. Then, assuming

no landing obligation, the effort that was closest to that of the previous year was

selected, mathematically:

Ey = Est0,y where

∣∣∣∣1− Est0,y
Ey−1

∣∣∣∣ = min
st

(∣∣∣∣1− Est,y
Ey−1

∣∣∣∣)
where y and st are the subscripts for year and stock respectively and Ey is the

total effort in year y. Under the landing obligation policy, as over-quota discards

were not allowed, total effort was equal to the lowest effort, mathematically:

Ey = min
st

(Ey,st)

In the profit maximization approach, the effort share between métiers and the to-

tal effort to maximize profits were calculated using the profit maximization approach

described in Section 2.2.1.2 and equation (2.1). The optimization was restricted by

the capacity of the fleet and the hake quota, assuming no landing obligation and

by all the quotas subject to the landing obligation. It should be noted that with

this model, the overall selection pattern of the fleet alters with the change of effort
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distribution between métiers.

The long-term dynamics of the fishery, i.e., the entry and exit of vessels in the

fishery, were modeled using the model described in Section 2.2.1.2 (Salz et al. 2011).

Here, the (dis)investment in vessels depends on the difference between revenue and

the amount of revenue needed to cover both fixed and variable costs. If the dif-

ference is positive and the fleet is operating at full capacity, the number of vessels

is increased. On the contrary, if the difference is negative the number of vessels is

decreased. The annual variation was restricted to 3% because historically the de-

crease in capacity has always been below 3%. Furthermore, no more than 20% of

the profits could be used to buy new vessels. The investment data from different

Basque fleet segments (purse seiners, hookers and trawlers) was compared to their

profits. There was enormous inter-annual variability in the resulting percentages

and the average between segments (20%) was used to condition the model. The

model was only applied to the Spanish demersal fleets, for the rest of the fleets the

number of vessels was kept constant.

4.2.4 The Management procedure

Within the MP the focus of this study was in the performance of the HCR. Hence,

it was assumed that the data (landings- and discards-at-age) and the stock status

were known without error. The difference between the real system in the OM and

the data used to generate management advice in the MP arose from the two year

time lag between the data used to calculate and to implement the TAC. The same

happens in reality where the TAC for year y, is calculated the year before, y − 1,

using data and stock estimates up to previous year, y − 2. Hence, when the fleets

caught the TAC in year y, the stocks in the real system could be different from the

estimated stocks used to calculate the TAC.

From 2013 to 2015 historical TACs were utilized instead of using a HCR to

produce them. From 2016 onwards, the ICES MSY framework HCR (ICES 2012)

was used to generate annual TAC advice. The objective of this HCR is to maintain

stock exploitation at levels in accordance with MSY. The HCR uses three reference

points, a fishing mortality target, Fmsy, and two SSB reference points, Btrigger and

Blim. When the SSB of the stock is above Btrigger the TAC advice corresponds with

Fmsy and when it is between Btrigger and Blim the fishing mortality is decreased

linearly. Below Blim ICES has not defined a universal rule and in this study we used

zero TAC advice. The fishing mortality was translated into TAC using the Baranov
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catch equation (Baranov 1925). Biomass reference points were not available either

for the demersal stocks or the southern horse mackerel. For these stocks the biomass

references points were computed using a common ICES approach where Blim is set

as the lowest biomass observed in the historical time series and Btrigger is equal to

Blim · 1.4 (Hauge et al. 2007).

Single-stock fishing mortality targets (Fmsy) for demersal stocks and southern

horse mackerel were taken from ICES assessment reports (ICES 2013a;b). Multi-

stock fishing mortality reference points were calculated using the bio-economic op-

timization model developed by Da Rocha et al. (2012). The reference points cor-

responded with those that maximize the Net Present Value (NPV) of the whole

fishery using a discount factor of 5%. The model returns a multiplier that ap-

plied to the status quo reference fishing mortalities of the stocks result in a fishing

mortality that could produce the highest NPV in the long-term while maintaining

biomasses above given reference points. The discount factor was selected based on

macroeconomic literature (Prescott 1998) which considers 5% an adequate value for

calibration. The status quo reference fishing mortality for each stock was calculated

as the average over the last three data years (2010-2012) and the reference age range.

The reference age ranges were taken from assessment reports (ICES 2013a;b). For

widely-distributed stocks, instead of a HCR, a constant catch quota equal to the

mean catch of last three years was used.

The landing obligation was implemented in 2018. Although the fishing mortality

targets in the HCR were the same prior and subsequent to that year, up to 2017 the

TAC was given in terms of landings and after 2017 in terms of catch. To calculate

the TAC in terms of landings the retention ogive resulting from dividing landings-

by catch-at-age was used.

4.2.5 Scenarios

Eight scenarios were run which depended on:

� The fishing mortality target used in the HCR: single-stock reference points

used by ICES (denoted as ‘ices’), or multi-stock reference points calculated

using the bio-economic model (denoted as ‘msmsy’).

� Fleet dynamics model using either a traditional approach (denoted as ’trad’)

or profit maximization approach (denoted as ‘mpro’).

� Implementation, or not, of the landing obligation (denoted as ’lo’).

The eight scenarios resulted from a combination of the two options in each of
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the three points above. As the objective of the study was to evaluate whether multi-

stock reference points overcome the drawbacks of the landing obligation, we had

to compare the current management scenario, i.e., ICES reference points and no

landing obligation, with the scenarios including the landing obligation and both sets

of reference points. Additionally, we combined these scenarios with two contrasting

hypotheses on fleet dynamics because there was a high uncertainty related to their

real dynamics and this could have a great impact on the results. Table 4.4 lists the

notation used for each scenario with the options used. Each scenario was projected

from 2013 to 2025 using 250 independent iterations run in parallel.

Table 4.4: List of scenarios with the modelling options used in each of them.
Reprinted from Garcia et al. (2017a).

Scenario
Reference
Points

Fleet Dynamics
Landing
Obligation

ices trad
ices

traditional

No
ices mpro profit maximization
msmsy trad

msmsy
traditional

msmsy mpro profit maximization
ices trad lo

ices
traditional

Yes
ices mpro lo profit maximization
msmsy trad lo

msmsy
traditional

msmsy mpro -
lo

profit maximization

4.2.6 Indicators

The performance of the system was analysed using a set of indicators, at stock,

fleet and fishery level in order to analyse the biological sustainability and economic

performance of the system:

� p(SSB < Blim) and p(SSB < Btrigger): for each stock and year the probability

of being below Blim and Btrigger respectively, calculated as the ratio between

the number of iterations where SSB was below the reference biomass and the

total number of iterations. This indicator measures the sustainability of the

management strategies in biological terms.

� Quota uptake: for each stock, fleet and year, the ratio between the catch

and the quota advice minus one. It shows the use of quotas at fleet level.

With no landing obligation a value above 0 indicates the existence of discards.

Under the landing obligation it is always equal or less than zero. The stocks
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with quota uptake equal to zero are the stocks that limit the fleet’s activity,

which in cases where the quota is very small may act as choke species, severely

constraining the possibility of the fleet to catch its fishing opportunities. Stocks

with values close to -1 indicate wastage of fishing opportunities.

� Profits: the profits for each fleet and year, calculated as the revenue minus

total costs. Total costs were calculated as the sum of fixed costs and variable

costs. In turn, fixed costs were equal to NV ·FxC and variable costs to E ·V aC.

This indicator measures the annual economic performance of the fleets.

� Effort share: the proportion of effort exerted by each fleet in each métier

and year. In the traditional approach scenario this indicator is constant by

definition. In the profit maximization scenario it corresponds with the métier

combination resulting in the highest profits under the given restrictions.

� NPV: the net present value of the Spanish fleet in the projection period using

a discount factor of 5%, mathematically:

NPV =

2025∑
y=2016

PRFy
1.051−2015

where PRFy denotes profits in year y. This indicator measures the profitabil-

ity of the whole Spanish fishery over the entire projection period taking into

account the fact that one euro today is more valuable than one euro will be in

fifteen years’ time.

4.3 Results

The results were analysed at stock level for the stocks distributed exclusively in

Iberian waters and at fleet level for Spanish demersal fleets.

4.3.1 Stock level

Reference points

Multi-stock and ICES fishing mortality targets and biomass reference points per

stock are shown in Table 4.5. Multi-stock reference points implied a 30% reduction

in status quo fishing mortalities. The multi-stock reference points were lower than

the ICES single stock estimates except for hake, which showed an approximately

80% higher estimate.

The biomass reference points were well below the SSB in the most recent his-
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torical years for all the stocks except horse mackerel. The SSB in the initial year of

the simulation was well above Blim for all the stocks except horse mackerel, where

the SSB was only 4% higher.

Table 4.5: ICES and multi-stock fishing mortality targets and biomass reference
points, in thousands of tons, for the stocks distributed along Iberian waters exclu-
sively. Reprinted from Garcia et al. (2017a).

Hake H.Mackerel Megrim Four Spot
Megrim

Anglerfish

Ftarget - ICES 0.24 0.11 0.17 0.18 0.19
Ftarget - MSMSY 0.43 0.07 0.11 0.16 0.11
Blim 8836 215571 605 3205 1925
Btrigger 12371 301799 846 4487 2695

Spawning stock biomass

The probability of SSB being below Blim was positive only for southern horse

mackerel in the last two years of the two ‘ices’ scenarios with no landing obligation

(Table 4.6). However, the probability was low (≤ 3%). The probability of being

below Btrigger was higher than 0, in at least one year, for southern horse mackerel

in all the scenarios, as well as for the megrims in the ‘msmsy-mpro’ scenario (Table

4.6). The probability for the megrims was always less than 4%. For southern horse

mackerel, the probability of being below Btrigger in the scenarios with no landing

obligation and ‘ices’ reference points was greater than 20% for all the years from

2019 onwards. On the other hand, the probability in the scenarios with the landing

obligation and ‘msmsy’ reference points was always less than 3%. In the ‘ices-mpro-

lo’ scenario the probability from 2018 to 2021 decreased from 18% to 11%. In the

other cases the probability was always less than 10%.

Fishing Mortality

In the scenarios with the landing obligation, fishing mortality decreased signifi-

cantly when it was introduced in 2018. Beginning in that year, the fishing mortality

time series became fairly stable throughout the projection in all the scenarios. In

2025, under the landing obligation, fishing mortality for all the stocks was well be-

low the target (Figure 4.2). Under the current management framework and ‘ices’

reference points, fishing mortality was above the target only for hake (Figure 4.2).

In contrast, using ‘msmsy’ reference points the fishing mortality of hake was the

only one below the target. For the other stocks the fishing mortality was around the

target, with the exception of anglerfish and four spot megrim in the profit maximiza-

tion scenario, where the target was exceeded. In general, the uncertainty was low
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and under the landing obligation it was even lower. The scenarios with the highest

uncertainty corresponded to profit maximization scenarios.

4.3.2 Fleet level

Profits

The profits were highly affected by the fleet dynamics model. In the short-term

there was an adjustment period with high inter-annual variability, but in the long-

term the time series were fairly stable. Under both fleet dynamics models the effect

of the landing obligation and reference points was fleet dependent.

In the traditional fleet dynamics scenario, vessels using hooks and lines obtained

higher profits when the landing obligation policy was in place, both in the short-

and long-term (Figure 4.3). Furthermore, the increase in profits was enhanced by

the use of ‘msmsy’ reference points. On the contrary, the profits of trawlers were

lower, although the difference was somewhat reduced in the long-term (Figure 4.3).

In the short-term, the profits obtained in the ‘msmsy-trad-lo’ scenario were almost

the same as those obtained in the ‘ices-trad’ scenario. However, in the long-term the

profits in ‘msmsy-trad-lo’ scenario were significantly lower. The landing obligation

caused a decrease in the profits of gillnetters in the first years of implementation

and an increase in the final year of simulation (Figure 4.3). As with trawlers, the

use of ‘msmsy’ reference points cushioned the impact of the landing obligation in

the short-term, but it generated a loss in profits in the long-term.

In the profit maximization dynamics scenario the landing obligation produced

a decrease in the profits of vessels using hooks and lines and trawlers in the short-

term (Figure 4.3). For gillnetters the profits were slightly higher. Under the landing

obligation ‘msmsy’ reference points resulted in higher profits than ‘ices’ reference

points for all the fleets. However, in the short-term they did not cover the losses

observed in trawlers and vessels using hooks and lines. In the long-term, profits

were covered for the vessels using hooks and lines, but not for trawlers. In general,

the loss in profits derived from the landing obligation under profit maximization

dynamics was lower than that observed for traditional fleet dynamics.

Quota share utilization

By definition, under the landing obligation policy the quota was not exceeded

for any of the stocks. In the traditional fleet dynamics scenario, quota uptakes

in 2025 were low in general and even lower under the landing obligation (Figure

4.4). The effect of ‘msmsy’ reference points was slight and stock dependent. For
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Figure 4.2: Fishing mortality in 2025. The points indicate the median value and
the vertical lines correspond with the 95% confidence intervals. Circles correspond
with scenarios without landing obligation and triangles with scenarios with landing
obligation. Red points correspond with ‘ices’ reference points and traditional fleet
dynamics, green with ‘msmsy’ reference points and traditional fleet dynamics, blue
with ‘ices’ reference points and profit maximization fleet dynamics and purple with
‘msmsy’ reference points and profit maximization fleet dynamics. Horizontal lines
correspond with fishing mortality targets, solid one correspond with ‘ices’ reference
points and dashed one with ‘msmsy’ ones. ‘4S Megrim’ stands for ‘four spot megrim’
and ‘H.Mack (S)” for ‘southern horse mackerel’. Figure taken from Garcia et al.
(2017a).
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Figure 4.3: Spanish demersal fleets’ profits in 2018 and 2025 by fleet dynamics model
scenario. Bars correspond with median values along iterations and vertical lines with
95% confidence intervals. Figure taken from Garcia et al. (2017a).
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gillnetters and trawlers the utilization under the landing obligation was lower than

under the current management framework and for vessels using hooks and lines it was

higher (Figure 4.4). Southern horse mackerel and hake were the limiting stocks for

gillnetters (Figure 4.4). Furthermore, the former was a choke stock which produced

a decrease of 23% in profits (Figure 4.3). In the scenarios with no landing obligation

and when these stocks were not limiting the effort, their quota was exceeded. The

quota uptake of anglerfish was significantly higher in the scenarios with ‘msmsy’

reference points. The quota uptake of mackerel and OTH catch was slightly affected

by the landing obligation. Hake was always the limiting stock for vessels using hooks

and lines and the quota was not exceeded for any of the stocks (Figure 4.4). The

quota uptake of non-hake stocks was more than 20% higher when ‘msmsy’ reference

points were used. The effort of trawlers was restricted by the western horse mackerel

quota when there was no landing obligation. With the landing obligation southern

horse mackerel and hake became the choke stocks in the ‘ices’ and ‘msmsy’ reference

point scenarios causing a loss of 20% and 36% in profits, respectively (Figures 4.3

and 4.4).

Using profit maximization fleet dynamics, the quota uptake and over-quota in

2025 was significantly higher than under traditional fleet dynamics (Figure 4.4).

The gillnetters’ quota of southern horse mackerel was highly underutilized in all the

scenarios except in the ‘mpro-msmsy’ scenario (Figure 4.4). In contrast, the quotas

of hake, mackerel and anglerfish were almost fully consumed in all the scenarios. The

catch of OTH stock was always above the historical catch particularly in ‘msmsy’

scenarios. Vessels using hooks and lines fully consumed their quota of hake and

mackerel in all the scenarios (Figure 4.4). The over-quota of some stocks in vessels

using hooks and lines and trawlers was very high and it was even higher when

‘msmsy’ reference points were used (Figure 4.4). The catch of OTH stock was higher

than historical catch only when the landing obligation was not in place (Figure

4.4). The quota of blue whiting was highly underutilized in all the scenarios. For

trawlers, the quota utilization under the landing obligation was significantly higher

when ‘msmsy’ reference points were used.

Effort share

In vessels using hooks and lines, almost all the effort concentrated in a métier

that was minor in the past (GTR-DEF); on the other hand the effort in the prin-

cipal métier (LLS-DEF) was low in general (Figure 4.5). The effort distribution of

gillnetters was concentrated in the métier with the highest effort in the historical

period, except in the ‘msmsy-mpro-lo’ scenario (Figure 4.5). In this scenario the
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Figure 4.4: Spanish demersal fleets’ quota uptake in 2025 by fleet dynamics model
scenario. Bars correspond with median values. For other stock the bar corresponds
with the ratio between catch in 2025 and historical catch instead of quota uptake
(‘4S Megrim’ corresponds with ‘four spot megrim’, ‘B. Whiting’ with ‘blue whiting’,
‘H. Mack (S)’ with ‘southern horse mackerel’ and ‘H. Mack (W)’ with ‘western horse
mackerel’). Figure taken from Garcia et al. (2017a).



88 Chapter 4.

uncertainty was very high and although in median 75% of the effort concentrated

in one métier (LLS-DEF) the 90% probability interval covered almost the whole

domain. The effort share per scenario in trawlers was more variable than in the rest

of the fleets (Figure 4.5). With no landing obligation, the effort concentrated in the

OTB-MPD métier, especially in the case of ‘ices’ reference points where, in median,

all the effort was exerted in this métier. Under the landing obligation, the effort

distribution was more heterogeneous and closer to the historical effort distribution.

With the exception of the ‘msmsy-mpro-lo’ scenario for gillnetters, the uncertainty

was low.

Net present value

The ‘msmsy’ reference points were designed to maximize NPV, as such these sce-

narios performed better with relation to NPV than the homologous ‘ices’ scenario.

The highest NPV was obtained when no landing obligation was combined with

‘msmsy’ reference points and the lowest was obtained under the landing obligation

and ‘ices’ stock reference points, independently of the fleet dynamics model used (Ta-

ble 4.7). The loss in profits under the landing obligation was reduced when ‘msmsy’

reference points were used. The NPV under traditional fleet dynamics, landing obli-

gation and ‘msmsy’ reference points (msmsy-trad-lo scenario), was slightly higher

than the NPV under current management framework (‘ices-trad’ scenario), (Table

4.7). Using profit maximization dynamics, the NPV in ‘msmsy-mpro-lo’ scenario

was lower than under the current management framework (‘ices-mpro’ scenario),

but was significantly higher (12%) than using single-stock reference points with the

landing obligation (ices-mpro-lo scenario) (Table 4.7).

Table 4.7: Net present value of demersal Spanish fleets in each scenario. Current
management refers to ‘ices-trad’ and ‘ices-mpro’ scenarios (i.e., ices reference points
and no landing obligation). Reprinted from Garcia et al. (2017a).

Difference with
Fleet Dynamics Scenario Euros current management

Traditional

ices trad 556 -
msmsy trad 597 107%
ices trad lo 517 93%

msmsy trad lo 558 100%

Profit
ices mpro 888 -

msmsy mpro 969 109%

Maximization
ices mpro lo 778 88%

msmsy mpro lo 870 98%
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Figure 4.5: Spanish demersal fleets’ effort share in 2025 in profit maximization fleet
dynamics scenarios for the most important metiers. Bars correspond with median
values, vertical lines with 95% confidence intervals and dashed horizontal lines with
the average historical effort share in each of the métiers. Figure taken from Garcia
et al. (2017a).
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4.4 Discussion

In this study we analysed the bio-economic performance of the Iberian waters demer-

sal fishery system under different management scenarios. The management scenarios

are distinguished by the reference points used and the implementation, or not, of the

landing obligation policy. Moreover, two different fleet dynamics models were used

to describe the fleet behaviour, one based on tradition and another one on profit

maximization. Various indicators at stock, fleet and fishery level were analysed to

evaluate the sustainability of the management strategies and investigate whether

the loss in the profits of the fleets caused by the landing obligation can be overcome

using multi-stock reference points.

Performance of multi-stock reference points

This is the first time that multi-stock reference points, as proposed by Da Rocha

et al. (2012), have been tested at fleet level. Their implementation in practice has

been proven to partially overcome the loss in profits under the landing obligation.

At the fishery level, ‘msmsy’ reference points compensated the losses derived from

the landing obligation using current ‘ices’ reference points, independently of the fleet

dynamics employed. The lower profits seen in ‘msmsy-mpro-lo’ and ‘msmsy-trad-lo’

scenarios compared to those in ‘ices-mpro’ and ‘ices-trad’ scenarios in some fleets

were compensated for by higher profits in other fleets. At fleet level, this depended

on the fleet itself and the time period. Under profit maximization, ‘msmsy’ reference

points always compensated, to some extent, the losses of the landing obligation, in-

dependent of the time period and fleet. Under traditional fleet dynamics, ‘msmsy’

reference points compensated for the losses in all the fleets in the short-term, al-

though in the long-term, under the landing obligation, the profits of trawlers and

gillnetters were lower in ‘msmsy-lo’ scenarios.

Multi-stock reference points were estimated by multiplying the status quo fishing

mortalities by a common factor. Therefore as status quo fishing mortalities were,

in percentage, at the same distance from the targets, a simultaneous depletion of

the catch quotas of these stocks was expected. However, this did not occur in any

of the ‘msmsy’ scenarios. There were three differences between the real system

and the system estiamted in the MP which precluded the simultaneous exhausting

of quotas. Firstly, in the real system the catch was calculated using the Cobb-

Douglas function (Cobb and Douglas 1928) and in the MP the TAC was calculated

using Baranov catch equation (Baranov 1925) (see Section 2.2.1.2 for details on the

difference between both equations). Secondly, as the TAC is calculated the year
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before its implementation using data up to two years before, there was a two-year

time lag between the calculation of the TAC in the MP and its implementation in

the OM. Finally and most importantly, the inter-species catch profiles at fleet level

differed from that used at overall level to calculate the TAC advice. Hence, the

quota consumption at fleet level was not reached simultaneously.

Stock sustainability

Both sets of reference points, single- and multi-stock, were precautionary in the

sense defined by ICES (ICES 2014c), i.e., the probability of being below Blim was less

than 5% for all the stocks and scenarios. In the case of hake, where the multi-stock

reference point was almost double than the ICES reference point, the biological risk

for the stock was not increased. This was not surprising given that the hake multi-

stock reference point is between Beverton-Holt (0.23) and Ricker (0.56) MSY fishing

mortalities estimated by Cerviño et al. (2013) and the stock-recruitment model used

to simulate recruitment was the Ricker model proposed in that study. This suggests

that current hake fishing mortality target could be increased without increasing the

risk for the stock. However, in order to propose this as a new management target,

at least its robustness to different stock-recruitment dynamics should be evaluated.

Impact of the landing obligation at fleet level

The impact of the landing obligation depended on the fleet, the fleet dynamics

used and the time period (short- or long-term). The landing obligation rewarded

the most selective fleets, namely vessels using hooks and lines and gillnetters, as

observed in Condie et al. (2014). The catch quota utilization of these fleets was

higher and therefore so were their benefits. Moreover, these fleets do not have un-

dersize discarding like trawlers. Hence, the quota uplift derived from generating the

TAC in terms of catch instead of landings, since the implementation of the landing

obligation, fully contributed to their landings. However, the trawlers had to use this

increment to cover the undersize discards that counted towards the quota and did

not produce any revenue. Here, the quota uplift was divided among fleets in the

same percentages as the TAC quotas. In reality, it is be distributed per country

using relative stability and, afterwards, member states can use it to compensate the

fleets most affected by the landing obligation. This could benefit the correspond-

ing fleets but would reduce the CFP objective of improving selectivity by reducing

catches of small individuals.

The catch quota uptake by vessels using hooks and lines and gillnetters de-

pended on fleet dynamics. Under traditional dynamics, quota utilization was higher

for hookers and lower for gillnetters, while this was reversed in a profit maximization
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scenario (Figure 4.3 and Figure 4.4). When the landing obligation was implemented,

that resulted in an increase in the profits of vessels using hooks and lines under tra-

ditional fleet dynamics and those of gillnetters under profit maximization dynamics.

In trawlers, the quota utilization was always lower under the landing obligation and

thus the profits were always lower regardless of the fleet dynamics employed.

Jardim et al. (2010) analysed the recovery plan of southern hake using alternative

fishing mortality targets combined with different discard scenarios. They concluded

that Fmax = 0.25 combined with a total discard ban would be the best strategy in

terms of sustainability and total yield. Furthermore, they suggested that the fishery

would be more profitable under a discard ban scenario, in contrast to the results

obtained in this study. They analysed the problem from a single-stock and single-

fleet point of view and linked the discard ban to a hypothetical change in selection

pattern leading to a very different conclusion about the effect at fishery level. This

difference highlights the importance of using multi-fleet approaches and including

all the stocks caught by the fleets when analyzing the economic performance of any

management strategy. This is especially relevant in the case of selectivity scenarios

where the benefits forecasted from a single-stock perspective could not compensate

for the losses derived from the decrease in the catch of other stocks.

The importance of selectivity under the landing obligation

The métier definition uses data from the European data collection framework

that groups trip data with common gear, vessel size, target ecological group and

mesh size. This level of aggregation may underestimate the ability of vessels to

discriminate between species. On the one hand, this is because ecological groups do

not distinguish the stocks within a group and on the other, because the trip category

may not be fine enough to capture the selectivity of the fleet. Trawlers, characterized

for being unselective, make several hauls in the same trip. The catch composition of

the hauls varies depending on the target species and in the same trip the skipper may

change the target species from haul to haul. Moreover, under the landing obligation

it is expected that skippers will try to be more selective in order to be able to consume

all their quotas without exceeding any of them (Batsleer et al. 2013, Condie et al.

2013). In this sense, the traditional approach could underestimate the inter-species

selectivity of the fleets and in reality quota-share utilization could be higher than

estimated. Under a profit maximization scenario, the movement between métiers

improves the quota-utilization in relation to the traditional approach; nevertheless,

it could also underestimate the real utilization capacity. In some mixed fisheries, in

order to understand the real inter-species selectivity of vessels, especially in mixed
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fisheries, units of measurement finer than “trip” and ecological group are necessary

to define the métiers.

When subjected to the landing obligation, if selective fishing is not possible, the

quotas of limiting stocks become an input management factor, i.e, they determine

the amount of effort that the fleets are able to execute. In this regard, the loss in

profits generated by the implementation of the landing obligation in some fleets is

not only generated by the loss in the landing of the stocks subject to the quota

system but from the loss in the landing of other valuable stocks for which there is

no catch restriction. In fact, in the case of demersal fleets in Iberian waters the

chance to catch OTH stock marked to a large degree the economic performance of

the fleets. Although pelagic stocks are not the target stocks of the fleets considered

in this study, under the landing obligation their quota in some cases became an

input management measure that allowed fishing for the target stocks.

Implementation of the landing obligation in practice

In practice, the implementation of the landing obligation will be more complex

than simulated here. On the one hand, the fleets will try to improve their selectivity

to make the best use of fishing opportunities by changing their gear configuration

(Bayse et al. 2016) and/or altering their behaviour (Batsleer et al. 2016). On the

other hand, the landing obligation policy includes several exemptions (Salomon et al.

2014) that provide flexibility and which have not been simulated in this study. In

turn, the change in selectivity will generate a change in Fmsy and the reference points

will have to be recalculated in order to manage the fishery optimally. Therefore, the

version of the landing obligation implemented here is the most restrictive possible

and the impact on the fleets could be less than that forecasted.

Fleet dynamics models

Fleet dynamics models are a key element in the simulation of fishery systems

(Fulton et al. 2011a). In this study, instead of looking for the model that best

describes the dynamic of the fishery we have used the scenario approach (“what if”).

Fishermen may not behave exactly as in the past and may not be able to execute

the exact effort distribution that maximizes their profits but we expect that the real

dynamic is somewhere in between. Other approaches to approximate fleet dynamics

exist and have been applied elsewhere, for example Andersen et al. (2010) used a

discrete choice model to predict effort allocation and Marchal et al. (2013) combined

tradition with anticipated economic opportunities in the same model. A review of

fishermen’s tactical behaviour can be found in van Putten et al. (2012). They

concluded that although economic drivers are the key components of fleet dynamics
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models, ‘hybrid’ models that include explanatory variables related to tradition are

required to improve their predictability. In the case of FLBEIA this would imply,

for example, combining the tradition and profit maximization models into a single,

inclusive model. The pivotal question would be how to weight both approaches in

practical implementations. Nøstbakken et al. (2011) carried out a literature review

on economic models of strategic behaviour. They found that although there is a

large amount of literature on the measurement of capacity, there is little work on

investment modelling and most of it is theoretical. They encourage the incorporation

of this type of models into bio-economic models in order to improve the medium-

and long-term predictability of a fishery’s response to management strategies.

Limitation of profit maximization dynamics

The profit maximization approach provides information on the gains that could

be obtained from the fishery changing only the effort allocation. FLBEIA allows full

flexibility to move from métier to métier as in FcubeEcon (Hoff et al. 2010). In

practice, this flexibility resulted in an effort distribution far from the historical dis-

tribution, so much so that in some cases the historically more important métiers

almost disappeared. Under the landing obligation a big change was expected as the

fishermen reacted to the new situation. However, in the case of vessels using hooks

and lines and trawlers, the change was greater under the current management frame-

work. The effort share in these fleets under no landing obligation was concentrated

mainly in one métier which did not match the historically more important métier.

Under the landing obligation the flexibility of the model was restricted by the discard

ban. Hence, the fleets were forced to diversify their effort among métiers in order to

make the best use of their quotas without exceeding any of them. Uncertainty in the

gillnetters’ effort share was very high in the ‘msmsy-mpro-lo’ scenario. However, the

uncertainty was not translated into profits, meaning that the optimization surface

was quite flat and different combinations of effort share produced similar profits.

In practice, the mobility between métiers could be restricted by different factors.

In the case of trawlers, the seasonality of the OTB-MPD métier restricts the amount

of effort that the vessels can expend in it, as pelagic stocks only approach the Iberian

coast in the spring months. As in this case FLBEIA implementation is annual, an

additional restriction in the profit maximization function would be needed to limit

the effort in this métier. In the case of gillnetters and vessels using hooks and

lines, the movement between métiers is restricted by the administrative permissions

needed to change métier, which could be denied or delayed in time. However, we

have no information to assess the importance of this restriction or to allow it to
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be included in the model. Furthermore, tradition and risk aversion are important

factors that preclude the fishermen changing their behaviour from year to year, as

pointed out by various authors (Marchal et al. 2013, van Putten et al. 2012).

On the other hand, variable costs were equal for all the métiers within the same

fleet and stock prices were equal for all the métiers and fleets. Hence, the difference

in the profitability of the métiers was only driven by the difference in the catch

profile and the catchability of the stocks. If the differences in costs and prices

among métiers were high, distribution of effort obtained would differ significantly

from that obtained here. The effort share in métiers with lower variable costs and/or

higher prices would be underestimated and overestimated otherwise.

Need for a different approach to mixed fisheries management

Under the landing obligation, fishing mortalities were, in general, well below the

targets, independently of the reference point used. Each fleet had a limiting stock

that prevented it from reaching the quotas for the rest of the stocks. Hence, the

overall TACs were never reached and fishing opportunities were lost for all of them.

In order to ensure the optimum use of fishing opportunities, the landing obligation

should be accompanied by a management system that ensures consistency between

single-stock TACs.

The inconsistency of TACs and quotas is a problem in mixed fisheries (Ulrich

et al. 2011) that could be exacerbated with the implementation of the landing obli-

gation as proven here. In the North sea, single-stock advice is already harmonized,

taking into account the mixed fisheries nature of the fishery using the Fcube method

(ICES 2014b, Ulrich et al. 2011). However, the multi-stock reference points pro-

posed here are independent of the traditional single-stock advice provided by ICES

and their fit within current ICES management framework is complicated. The EC

is planning to introduce fishing mortality ranges around the current ICES targets

(STECF 2015b). These ranges will provide flexibility to the current European TAC

and quota system, which in turn will allow single-stock TACs to be harmonized.

Within this new framework, multi-stock reference points have a natural fit. They

could be used as management targets in a multi-stock HCR to automatically pro-

duce multi-stock TAC advice. But before this, the algorithm used to calculate

multi-stock reference points will have to be slightly constrained to ensure the values

fall inside the predefined ranges. One of the drawbacks of the multi-stock reference

points used here is that they depend on the relative exploitation levels of stocks

and hence need to be periodically updated to account for changes in the relative

exploitation patterns of the fleets. Garcia et al. (2019b) developed an adaptative
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multi-stock HCR which solves the problem applying annually a common multiplier

to the status quo fishing mortalities, which give fishing mortalities within the ranges,

to produce single-stock TACs. When there was only a fleet with a single metier the

HCR produced catch advice that was consistent among stocks. However, in a com-

plex multi-stock and multi-fleet situation the HCR was not able to completely solve

the problem.

Simons et al. (2015) analysed the landing obligation policy using a quantitative

multi-stock and multi-fleet bio-economic model. They found that the landing obliga-

tion with no exemptions would produce a decrease in the biomass of saithe stock and

in the profits of all the fleets. They studied the combination of the landing obliga-

tion with exchange rates between cod and saithe quotas and found that the exchange

would be beneficial for both fleets and stocks. The different results obtained in both

studies highlight the importance of evaluating the impact of the landing obligation

at regional level in order to pinpoint case-specific corrective measures to overcome

the possible negative effects of the policy.



Chapter 5
Global sensitivity analysis of FLBEIA applied to

the demersal fishery operating around Iberian

coast

The preliminary results obtained in the application of the Sobol method were

presented in the ICES annual conference celebrated in 2016: “Definition of

sampling priorities using global sensitivity analysis and management strategy

evaluation”.

To promote the combination of MSE and GSA we are using the content of this

chapter to write a scientific paper that will be sent to the Methods in Ecology

and Evolution scientific journal: “Potential of applying global sensitivity

analysis to fisheries management simulation models”.

5.1 Introduction

In this chapter we applied the guidelines and criteria defined in Chapter 3 to the

base case scenario simulated with FLBEIA in Chapter 4.

In Section 3.5 we defined a set of guidelines to promote the application of GSA

methods to fisheries simulation models. Most of the guidelines were related with

effective conditioning of models, i.e., with reduction of the number of input factors

through an adequate conditioning. In this chapter we followed those guidelines to

condition the implementation of FLBEIA model presented in Chapter 4. In this

case, we introduced uncertainty in all the input factors, not only in those related to

stock-recruitment process as done in Chapter 4.

Once the model was conditioned as described in Section 5.2.1, the Morris method

97
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was applied iteratively using an increasing number of trajectories, from 25 to 300.

The AEEs were calculated for the set of output variables described in Section 5.2.2,

which together summarized the output of the simulation model; five output variables

per stock and four per fleet, which resulted in 37 output variables. The selection

of input factors in the application of the Morris method was automatized using

the selection criterion defined in Section 3.2.1. Afterwards, the convergence of the

method was evaluated using the criterion defined in Section 3.2.2. Once convergence

was reached the most important factors were identified.

The Sobol variance decomposition method was then applied to the reduced model

as described in Section 5.2.1. This model included uncertainty only in the factors

identified as the most important by the Morris method. The rest of the factors were

fixed to their mean value. The results of the model were summarized using the same

output variables employed in the Morris method. The first-order and total-effect

sensitivity indices were calculated for all the output variables. To synthesize the

information, the method proposed by Lamboni et al. (2011) was used to compute

the generalised sensitivity indices, which are analogous to the Sobol importance

indices but for the overall variance in all the output variables. Using the generalised

sensitivity indices, the performance of the selection criterion was compared with the

performance of the selection criterion based on Savage scores (Campolongo et al.

2007) and the criterion which selects a fixed number of factors for each output

variable.

The results of the conditioning of the uncertainty and the application of the

Morris and Sobol methods were presented in Section 5.3. Then in Section 5.5, the

results were discussed in terms of the performance of the selection and convergence

criteria defined in this thesis, how the Morris and Sobol method were implemented,

and their implications for fisheries modelling and management.

5.2 Methods

5.2.1 Uncertainty conditioning

The scenario with traditional fleet dynamics and without the implementation of

landing obligation defined in Chapter 4 was used as the basis for the uncertainty

conditioning.

As a general rule, a uniform distribution with a CV equal to 30% and a mean

equal to the value used in Garcia et al. (2017a) were used to condition the uncer-
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tainty in the input factors. The exceptions were the maturity and retentions ogives,

effort share along metiers, and aging error. All the input factors introduced in the

GSA are described in Appendix B. Following the recommendations in Saltelli et al.

(2010), the unit hypercube was sampled using the Sobol pseudo-random sequences

(Sobol 1967) to accelerate the convergence. For univariate input factors, the values

were transformed from the unit hypercube to the original space Ω using the inverse

transformation method.

Maturity and retention ogives. Maturity and retention ogives are vectors at

age which represent the proportion of mature individuals and of fishes retained on

board, respectively. The values range from 0 to 1 and are correlated. We modelled

the values that differed from 0 and 1 using a Beta distribution, which is commonly

used for modelling proportions (Ferrari and Cribari-Neto 2004). We did not intro-

duce uncertainty in the parameters equal to 0 or 1, because in the observed data all

the individuals belonged to the same group (mature or immature), i.e., there was no

variability. For the remaining age classes, we parametrized the distribution in such

a way that the expected value was equal to the value used in Garcia et al. (2017a)

and the CV was equal to 30%. The two parameters of the distribution, %1 and %2,

were given by:

%1 =
1−mat · (CV 2 + 1)

CV 2

%2 =
(1−mat)2

mat · CV 2
+ (mat− 1)

where mat was equal to the observed value and CV = 0.3.

Aging error. The aging error was modelled using the matrix Λ defined in Section

3.5.3. In each iteration, the elements were generated using the Dirichlet distribution

that is the generalization to multiple dimensions of the Beta distribution. The

Dirichlet distribution was conditioned such that the expected probability of assigning

age i to a fish of age a was equal to that in the “noise-only, unbiased” matrix proposed

by Reeves (2003). The CV of the proportion of fishes aged correctly was equal to

30%. As the variance in the parameters of Dirichlet distribution is constant, when

the CV in the fish aged correctly was set, the CV of the rest was derived from it.

For each age group a, the parameters of the Dirichlet distribution, {υi}Ai=a0
, were

given by:
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υa =

(
1− λaa · (1 + CV 2)

)
CV 2

υi = λai
υa
λaa

i = a0, . . . , a− 1, a+ 1, . . . , a+.

where a is the true age and λai corresponds to the (ai) element in Λ. As Dirichlet

distribution is multivariate, it was not possible to use the inverse transformation

method to transform the data from the unit hypercube. Instead, the two step method

defined in Devroye (1986) was used. First, each random number was transformed

into a Gamma distribution (using first parameter equal to the mean value of the

proportion and the second equal to 1). Second, the obtained values were divided by

their sum to obtain a Dirichlet random number.

Effort share. The effort share is the proportion of effort that the fleets expend in

each metier. We modelled it using the Dirichlet distribution. The distribution was

conditioned using the value of the effort share used in Garcia et al. (2017a) and a

CV of 30%. The transformation from the unit hypercube to the original domain Ω

was done using the procedure described in the previous paragraph.

Stock-recruitment relationship. The stock-recruitment model is a key element

in fishery simulation models because it determines, to a great extent, the produc-

tivity of the stocks. The associated uncertainty is high and future recruitments are

highly unpredictable.

The structure of the stock-recruitment models used to condition the model were

the same used in Garcia et al. (2017a). However, in addition to the uncertainty

around the stock-recruitment curve considered there, we also introduced variability

in the models’ parameters.

The joint probability distribution estimated in Cerviño et al. (2013) was used to

condition the mean and the correlation of the hake’s stock-recruitment parameters.

Megrim’s recruitment was modelled using a mean recruitment with variability and a

fixed breakpoint from where the recruitment level decreased linearly with spawning

stock biomass, until zero biomass which produced zero recruitment. For the rest of

the stocks a segmented regression model was used. The join probability distribution

of the parameters was obtained carrying out a parametric bootstrap of the model

residuals of the base fit in Garcia et al. (2017a). As for hake the join probability

distribution was used to condition the mean and the correalation of the parameters.
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Figure 5.1: Scatter plot of the bootstrap stock-recruitment model parameters. The
line corresponds to the linear model fitted to model one parameter, ψ2, as a function
of the other, ψ1. The ’x’ axis corresponds with ψ1 in the case of hake and horse
mackerel and with log(ψ1) in the case of four spot megrim and monkfish.

As the parameters of the stock-recruitment relationship tend to be highly cor-

related (Hilborn, 1992), a linear relationship was used to model the logarithm of

one parameter as a function of the other (Figure 5.1). In the GSA, the independent

parameter, ψ1 and the residuals, ε, were included as input factors and aggregated in

one group. They were conditioned using a uniform distribution with the observed

mean value and a CV euqal to 30%.

Observable variables in the management procedure. The maturity and nat-

ural mortality were considered constant in the MP using equation (3.10), because

usually stock assessment experts consider them constant. With this approach, the

natural variability in the input factor generated a departure from the value used in

the MP. However, its influence on the results could not be assessed directly, because

no associated input factor existed. In fact, the importance of the original factor in

the OM was enhanced by its observation error.

For weight at age, we used a quantile transformation to include an observation

error independent of age and year. For landings and discards, we introduced a
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multiplicative error, constant along ages and variable along years. To simulate the

error incurred when an assessment model is applied to obtain an estimate of the

abundance of the stocks, we introduced an error in the observed abundance. As for

landings and discards, the error was constant along ages and variable along years.

Furthermore, we introduced an aging error in all the observed variables using the

matrix defined in Section 5.2.1.

5.2.2 Output variables

The output of the simulation model was summarized using five output variables per

stock and four variables per fleet, which resulted in 37 output variables per year.

The output variables related with the stocks were:

� Spawning stock biomass (SSB) which is related with stock abundance;

� recruitment which is related with the productivity of the stock;

� fishing mortality (F) which is an indicator of exploitation level;

� catch which is related with the exploitation and productivity of the stock;

� total allowable catch (TAC) which is the output of the decision making process.

The fleets’ performance was summarized using:

� Effort which represents fleets’ activity;

� profits which represents fleets’ economic performance;

� gross value added (GVA) which is a measure of the goods produced by the

fishing activity;

� and capacity which measures the number of vessels in the fleets.

The sensitivity indices were calculated for each of the output variables. The

Morris method was applied to the value of the output variables in the last year of

the simulation. However, the sensitivity indices of the Sobol method were calculated

for all the years.

5.2.3 Global sensitivity analysis

Morris elementary effects method. First, we generated a set of trajectories,

P, along ω. Then, for r = 25, 50, 100, 150, 200, 250, 300, the procedure described in

Campolongo et al. (2007) was applied to find Pr.
The selection criterion defined in Chapter 3 was applied with the objective of

reducing the number of factors to the half, i.e. KEE = 67. For the weighting

procedure a grid of weights covering the unit hypercube with intervals of 0.01 width
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was used. As several weight combinations produced the best match with the visual

selection, the combination with the most similar weights for the three criteria was

chosen, i.e, the weights w1, w2 and w3 that minimized the expression
∑i=3

i=1((wi −
1/3)2).

Sobol variance decomposition method. The Sobol variance decomposition

method was applied to the reduced model, i.e the model obtained introducing un-

certainty only in the input factors identified as the most important ones by the

Morris elementary effect method. In the reduced model, the discarded input factors

were fixed to their mean value. The conditioning of the uncertain input factors was

exactly the same used in the application of the Morris method.

We analysed the convergence of the Sobol sensitivity indices examining the width

of the bootstrap confidence intervals as proposed by Sarrazin et al. (2016). The

model was run for a base sample size of N = 10000 iterations. The convergence of in-

dividual input factors was verified forNt = 150, 300, 500, 1000, 1500, 2000, 2500, 3500,

4500, 5500, 7000, 8500, 10000. As proposed in section 3.5.4, when a factor, Xk, con-

verged, we stopped evaluating the model in the corresponding Ck matrix.

The sensitivity indices were calculated for the 37 output variables defined in

Section 5.2.2 and all the simulation years. Moreover, we used the method proposed

by Lamboni et al. (2011) to calculate the generalised sensitivity indices using all the

output variables over all the projection years.

5.3 Results

5.3.1 Conditioning of the model

5.3.1.1 Selection of the coefficient of variation

We evaluated if the input factors selected were sensitive to the CV used to condition

the uncertainty, comparing the results obtained with the Morris method with a CV

equal to 30%, with those obtained using a CV of 10% and 50%. For CV = 10% and

CV = 50%, we ran the method using 25 trajectories and carried out a bootstrap with

500 iterations. We compared the input factors selected in all the bootstrap iterations

using the three CVs. From the 56 factors selected with a CV of 30% (Section 5.3.2),

39 were selected when CV = 10% and 51 when CV = 50%. crewshare.dfn,

crewshare.hok, stkN.error.meg and q.ho8 were selected with CV = 30% but not

with the other two CV s. The Sobol method showed that the first three were among
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the least influential input factors (Figure 5.23) and therefore it is not surprising that

they were not selected when the CV was changed. There were other input factors

not selected with one of the two CVs which were also among the less influential input

factors. However, there were also a few input factors not selected with CV = 0.10%

or CV = 0.50% which where in the top of the ranking obtained with the generalised

total-effects in the application of the Sobol method, mainly catchability input factors.

On the opposite side, there were also input factors selected with CV = 10% and

CV = 50% but not selected with CV = 30%, some catchabilites and biological input

factors. In summary, even if the selected input factors were sensitive to the selection

of the CV, the results were quite robust, with a match higher than a 90% between

the sets obtained with the three CVs.

5.3.1.2 Vectors at age and grouping of variables

Weight, maturity, and catchability at age for all the main stocks, natural mortality

for horse mackerel, and retention ogives of hake and the two megrims were modelled

using quantile transformation. With this technique, the 524 factors involved in the

vectors at age were reduced to 42 factors.

The grouping of factors reduced the number of effective factors by 91%, from 348

individual factors to 31 groups of factors (Table 5.1). In addition to those proposed

in Section 3.5.2, we defined two groups that were specific to this case study: the

effort share per fleet and the variability of the TAC of widely distributed stocks. For

each stock, the yearly deviations from the mean TAC were grouped to reduce the

number of effective factors in the GSA to three.

For the aging errors we used both techniques; we modelled the parameters of the

aging error matrix using a Dirichlet distribution and one uniform random number

per column in the aging error matrix, and then we group all the random numbers

in one single group. The two techniques together generated a save in the number of

input factors of 99%, from 652 to 5.

In summary, the number of input factors was reduced by 85%, from 1580 input

factors to 135; note that these numbers include the 56 factors that were not part of

any vector at age or group. The table in Appendix B contains a description of the

135 input factors.
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Table 5.1: Number of individual input factors in the model and effective number
of factors considered in the global sensitivity analysis after applying the guidelines
proposed in Chapter 3.

Technique
Number of input factors

Original Final

No Action 56 56
Groups 348 32
Age Models 524 42
Age Models + Groups 652 5

Total 1580 135

5.3.2 Morris elementary effects method

5.3.2.1 Selection and convergence criteria

In the selection criteria the greatest weight, between 0.5 and 0.75, was assigned to

fixed number of factors criterion, between 0.20 and 0.40 to factors with high AEE

value criterion, and between 0.05 and 0.35 to factors distinguished from the others

criterion.

The convergence of the method was assessed using a bootstrap with 500 itera-

tions. The number of factors selected in the 500 iterations increased quickly with

the number of trajectories. With 25 trajectories, only 19 factors were selected in

all the iterations and with r = 300 trajectories this number increased to 50 (Figure

5.2). When the criterion was relaxed to 95% of the iterations (i.e ν = 0.95), for

r = 25, 42 factors were selected and then the number of factors increased steadily

and became stable at 55 factors for r ≥ 200. The sets F200,F250, and F300 differed in

only one factor. This occurred because the boundary between the most and the least

important factors was diffuse. Hence, to be cautious, we used the union criterion

for r ≥ 200, which resulted in the selection of the 56 factors listed in Table 5.3.

The AEEs for each output variable for r = 300 are provided as supplemen-

tary material in a shiny application (https://aztigps.shinyapps.io/GSAApp/,

password: flbeiaGSA. The code used to produce the application is provided in

zenodo.org, Garcia et al. (2019b)). In general, for recruitment, SSB, TAC, and

number of vessels, there was a set of input factors that were differentiated from the

rest because of their high AEE value (see Figures 5.5 to 5.11). However, for the

remaining variables the differentiation was not equally clear. For most of the output

variables, the difference between the number of input factors selected visually and

https://aztigps.shinyapps.io/GSAApp/
zenodo.org
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Figure 5.2: Number of factors selected (IFr) in all the bootstrap iterations (blue and
triangle dots) and the number of those selected in 95% of the iterations (red and
square dots) as a function of the number of trajectories (r) used in the computation
of the elementary effects. Figure taken from Garcia et al. (2019a)

those selected with the calibrated visual criterion was equal or lower than one factor

(see Table 5.2). Furthermore, the variability in the number of input factors selected

was higher for the visual criterion. Although variable by variable some differences

exist between the visual and calibrated criteria, as the input factors were aggregated

in a single set and the most important input factors appear at the top of many of

the variables, at overall level, the differences were small.

The fixed number of factors criterion had the highest weight in the definition

of calibrated visual criterion. However, the number of factors selected with the cal-

ibrated visual criterion differed from the number of factors selected with the fixed

number of factors criterion in most of the cases (see Table 5.2). The other two

selection criteria had less weight but the number of factors selected with these cri-

teria was more extreme and they deviated the number of factors selected with the

calibrated visual criterion from those selected with the fixed number of factors one

(see Table 5.2).

The application of the Morris method resulted in the selection of most of the

biological input factors (24 input factors out of 35, 69%). On the contrary only a

few economic input factors were selected (5 out of 33, 15%). In the observation error

category almost half of the input factors were selected (16 out of 34, 47%) and in the

case of technical input factors one third (11 out of 33, 33%). The selected factors

are listed in Table 5.3.
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Table 5.2: Number of input factors selected by each of the selection criteria for each
output variable. The column ’Fixed’ corresponds with the fixed number of factors
criterion, ’High’ with the factors with high AEE value criterion, ’Diff’ with the
factors distinguished from the others criterion, ’Visual’ with the number of factors
selected visually and ’Calib.’ with the visual calibrated criterion. (F = fishing
mortality, Rec. = Recruitment, Prof. = Profits, Eff. = Effort, nVes. = Number
of vessels, HKE = hake, HOM = horse mackerel, LDB = four spot megrim, MEG
= megrim, MON = monkfish, DFN = gillnetters, DTS = trawlers and HOK =
longliners). Reprinted from Garcia et al. (2019a).

Fixed High Diff. Vis. Calib.

HKE 6 5 2 5 5
HOM 6 2 6 6 5

SSB LDB 6 5 8 8 6
MEG 6 5 9 5 6
MON 6 5 8 8 6

HKE 6 16 5 5 9
HOM 6 6 11 7 6

Catch LDB 6 9 1 6 6
MEG 6 17 9 6 10
MON 6 12 6 5 8

HKE 6 19 5 9 10
HOM 6 7 1 5 6

F LDB 6 10 6 5 7
MEG 6 9 6 4 7
MON 6 32 4 14 15

HKE 6 8 8 6 7
HOM 6 3 6 6 5

Rec. LDB 6 2 2 7 4
MEG 6 2 2 2 4
MON 6 3 4 3 5

HKE 6 8 9 6 7
HOM 6 5 7 7 6

TAC LDB 6 5 9 5 6
MEG 6 7 16 7 7
MON 6 10 6 5 7

DFN 6 14 3 8 8
Prof. DTS 6 9 4 12 7

HOK 6 11 9 8 8

DFN 6 21 8 8 11
Eff. DTS 6 10 6 10 7

HOK 6 13 9 8 9

DFN 6 16 1 7 9
GVA DTS 6 8 6 11 7

HOK 6 11 3 8 7

DFN 6 1 5 5 4
Nves. DTS 6 1 1 5 4

HOK 6 1 4 4 4
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Table 5.3: Input factors identified as the most important by Morris elementary
effects method. SRR = Stock recruitment relationship, Obs. = Observation, HKE
= hake, HOM = horse mackerel, LDB = four spot megrim, MEG = megrim, MON
= monkfish, PTB = Pair trawlers, DTS = Trawlers. = four spot megrim, MEG
= megrim, MON = monkfish, DFN = gillnetters, DTS = trawlers and HOK =
longliners). Reprinted from Garcia et al. (2019a).

Stock Level
Factors Stock

Aging error all
Maturity HKE, MON
Natural mortality all
Weight all
Initial population HKE, HOM
SRR parameters all
Uncertainty around SRR all
Obs. error in abundance HKE, HOM, MEG, MON
Obs.error in weight all
TAC MAC, HO8

Fleet Level
Factor Fleet

Crewshare ALL
Effortshare ALL
FuelCost DTS
Maximum days at sea ALL
w1 DTS

Fleet-Metier and Stock level
Factor Stock Fleet-metier

Cachability HKE PTB metier in DTS SP
Cachability HO8, LDB, MAC, MEG all

5.3.2.2 Absolute elementary effects

The 15 factors with the highest AEE value for each output variable and stock or

fleet are shown in Figures 5.3 to 5.11, which we will comment one by one below.

Catch (Figure 5.3). For the two megrims and monkfish the factors with the

highest AEE were the natural mortality, the weight, the uncertainty around the

stock-recruitment curve and the effort share of trawlers (not necessarily in this or-

der). For the two megrims the catchability of western horse mackerel and its TAC

had also a high AEE. After those factors the value of the AEEs decreased steadily.

For hake the factors that differentiated somewhat from the rest were natural mortal-

ity, the effort share of trawlers and weight. For horse mackerel, weight and natural
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mortality differentiated clearly from the rest and then there was a second group with

the errors in the assessment, the initial abundance and the uncertainty around the

stock-recruitment curve.

Fishing mortality (Figure 5.4). For all the stocks but horse mackerel the factor

with the highest AEE value was the effort share of trawlers. The second one was

the catchability of western horse mackerel for hake and the two megrims. For hake,

the AEE of the rest of the factors decreased steadily without forming groups. For

the megrims four factors differentiated from the rest which were the two already

mentioned, their catchability and the TAC of western horse mackerel. For monkfish

the value of all the AEEs decreased steadily without forming groups. For horse

mackerel the weight, the natural mortality and the errors in the assessment (weight,

aging error and abundance) were the factors which AEEs differentiated from the

rest.

Recruitment (Figure 5.5). For all the stocks except hake the parameters of the

stock-recruitment relationship and the uncertainty around the stock-recruitment

curve were the factors with the highest AEEs. For monkfish, besides those two

factors, maturity had also a high AEE value and for horse mackerel weight and

natural mortality. In the case of hake, there was not a clear differentiation of the

factors with high and low AEE value. Among the most important were natural

mortality, the parameters of the stock-recruitment relationship and the uncertainty

around it, the effort share of trawlers, weight and maturity.

Spawning stock biomass (Figure 5.6). For hake and the two megrims the four

factors with the highest AEE were weight, natural mortality, the effort share of

trawlers and the uncertainty around the stock-recruitment curve. For monkfish, the

maturity replaced the effort share of trawlers in the group of the four most important

factors. Besides, for the two megrims the catchability was the factor with the 5-th

highest AEE value and the value of the 6-th was significantly lower. Something

similar happened for hake for which the 5-th with the highest value was maturity.

For horse mackerel the AEE of natural mortality and weight differentiated clearly

from the rest of the AEEs.

Total allowable catch (Figure 5.7). The errors in the assessment were among

the factors with the highest AEE value for all the stocks. Besides, for hake, weight,
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Figure 5.3: Barplot with the AEE of catch for each of the stocks. The vertical
lines indicate the factors selected by each selection criteria: fixed number of factors
(blue), factors distinguished from the others (green), factors with high AEE value
(red), the visual selection (pink) and the calibrated visual criterion (light blue). Solid
and dashed lines differentiate between the criterion based on a single rule defined in
chapter 3 (solid line) and the visual and calibrated visual criteria (dashed line).
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Figure 5.4: Barplot with the AEE of fishing mortality (F) for each of the stocks.
The vertical lines indicate the factors selected by each selection criteria: fixed number
of factors (blue), factors distinguished from the others (green), factors with high
AEE value (red), the visual selection (pink) and the calibrated visual criterion (light
blue). Solid and dashed lines differentiate between the criterion based on a single
rule defined in chapter 3 (solid line) and the visual and calibrated visual criteria
(dashed line).
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Figure 5.5: Barplot with the AEE of recruitment for each of the stocks. The
vertical lines indicate the factors selected by each selection criteria: fixed number of
factors (blue), factors distinguished from the others (green), factors with high AEE
value (red), the visual selection (pink) and the calibrated visual criterion (light
blue). Solid and dashed lines differentiate between the criterion based on a single
rule defined in chapter 3 (solid line) and the visual and calibrated visual criteria
(dashed line).
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Figure 5.6: Barplot with the AEE of spawning stock biomass (SSB) for each of
the stocks. The vertical lines indicate the factors selected by each selection criteria:
fixed number of factors (blue), factors distinguished from the others (green), factors
with high AEE value (red), the visual selection (pink) and the calibrated visual
criterion (light blue). Solid and dashed lines differentiate between the criterion
based on a single rule defined in chapter 3 (solid line) and the visual and calibrated
visual criteria (dashed line).
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natural mortality and effort share of trawlers were in the group of factors that

differentiated from the others. For horse mackerel the factors with highest AEE were

exactly the same as in the case of catch. For megrim, the weight and the effort share

were also in the group of the factors with highest AEE value. For four spot megrim,

the uncertainty around the stock-recruitment curve and the natural mortality closed

the group of the five factors with highest AEE value. In the case of monkfish the

group was complemented by the uncertainty around the stock-recruitment curve and

the weight.

Effort, gross value added and profits (Figures 5.8, 5.9 and 5.10). The

relative value of the AEEs for effort, GVA and profits output variables was similar

but with different scale. The factors with the highest AEEs were the same and

their order, from the highest AEE to the lowest, was similar. Furthermore, the

difference between consecutive AEEs was similar. For the three fleets the factor

with the highest AEE was their effort share. For trawlers the catchability and the

TAC of western horse mackerel were in the second and third position, respectively.

For gillnetters, the observation error in the abundance of monkfish, the effort share

of trawlers and the natural mortality of hake were in the highest positions. Finally,

in the case of longliners, the observation error in the weight and abundance of hake

were the most important ones after effort share.

Number of vessels (Figure 5.11). In the number of vessels variable, for all the

fleets, the maximum number of days that each vessel operates yearly was the factor

with highest AEE value. Furthermore, the difference with the AEE value of the rest

of the factors was big. The proportion of income used to pay salaries, the proportion

of profits invested in buying new vessels and effort share were in the first positions

for the three fleets; however, in comparison with the AEE value of maximum days,

the value of the AEE of these factors was negligible.

5.3.3 Sobol variance decomposition method

5.3.3.1 General patterns

We analysed the convergence of the Sobol sensitivity indices examining the width

of the bootstrap confidence intervals as proposed by Sarrazin et al. (2016). The

width decreased rapidly with N for N < 2000 (Figure 5.12). For N = 150, the

width of the confidence interval of the total-effect index of all the input factors and
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Figure 5.7: Barplot with the AEE of total allowable catch (TAC) for each of the
stocks. The vertical lines indicate the factors selected by each selection criteria: fixed
number of factors (blue), factors distinguished from the others (green), factors with
high AEE value (red), the visual selection (pink) and the calibrated visual criterion
(light blue). Solid and dashed lines differentiate between the criterion based on
a single rule defined in chapter 3 (solid line) and the visual and calibrated visual
criteria (dashed line).
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Figure 5.8: Barplot with the AEE of effort for each of the fleets. The vertical
lines indicate the factors selected by each selection criteria: fixed number of factors
(blue), factors distinguished from the others (green), factors with high AEE value
(red), the visual selection (pink) and the calibrated visual criterion (light blue). Solid
and dashed lines differentiate between the criterion based on a single rule defined in
chapter 3 (solid line) and the visual and calibrated visual criteria (dashed line).
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Figure 5.9: Barplot with the AEE of profits for each of the fleets. The vertical
lines indicate the factors selected by each selection criteria: fixed number of factors
(blue), factors distinguished from the others (green), factors with high AEE value
(red), the visual selection (pink) and the calibrated visual criterion (light blue). Solid
and dashed lines differentiate between the criterion based on a single rule defined in
chapter 3 (solid line) and the visual and calibrated visual criteria (dashed line).
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Figure 5.10: Barplot with the AEE of gross value added (GVA) for each of the
fleets. The vertical lines indicate the factors selected by each selection criteria: fixed
number of factors (blue), factors distinguished from the others (green), factors with
high AEE value (red), the visual selection (pink) and the calibrated visual criterion
(light blue). Solid and dashed lines differentiate between the criterion based on
a single rule defined in chapter 3 (solid line) and the visual and calibrated visual
criteria (dashed line).
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Figure 5.11: Barplot with the AEE of number of vessels for each of the fleets. The
vertical lines indicate the factors selected by each selection criteria: fixed number of
factors (blue), factors distinguished from the others (green), factors with high AEE
value (red), the visual selection (pink) and the calibrated visual criterion (light blue).
Solid and dashed lines differentiate between the criterion based on a single rule
defined in chapter 3 (solid line) and the visual and calibrated visual criteria (dashed
line).
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Figure 5.12: Boxplot of the width of the confidence intervals of the total-effect index
for all the input factors and output variables in 2020. The x-axis correspond with
the base sample size N used. Figure taken from Garcia et al. (2019a)

output variables in 2020 was greater than 0.5, but for N = 1500, 75% of the intervals

were already narrower than 0.05. However, the convergence rate slowed down for

N ≥ 2000 and for N = 10000 the confidence interval of 4% of the total-effects over

all the input factors and for all the output variables were wider than 0.05.

When a factor, Xk, converged, we stopped evaluating the model in the corre-

sponding ABk matrix. We assessed the convergence of the factors for several base

samples from N = 150 to N = 10000. For N = 300, 3 input factors had already

converged in all the output variables and for N = 8500, 19 input factors (Table 5.4),

which led to a 21% saving in model evaluations. The remaining 37 input factors had

a confidence interval wider than 0.05 for at least one of the output variables. These

input factors corresponded with those which had the biggest impact on the variance

of the output variables.

Table 5.4: Number of factors (Nb. Factors) that converged for each base sample N.

N Nb. Factors N Nb. Factors

150 0 3500 14
300 3 4500 15
1000 3 5500 16
1500 5 7000 17
2000 6 8500 19
2500 7 10000 19

In the first year of the simulation, the importance of the first-order indices was
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prevalent, but it decreased with years in favor of the total-effects (Figure 5.13). The

importance of the interactions was especially marked in the output variables related

to the fleets’ activity (Figure 5.14).

The results were fleet- and stock-dependent (Figure 5.14). While a great part of

the variance in horse mackerel output variables was explained by few input factors,

the variance of hake’s output variables was the consequence of the variance in many

input factors. The same happened with the variance of the output variables related

with the fleets’ activity, except number of vessels. For example, in trawler fleet most

of the factors (> 80%) had a total effect higher than 5%.

The variance explained by first-order indices was disaggregated in the variance

derived from natural and epistemic variability (Figure 5.15). The effect of epistemic

variability in biological output variables was marginal. In contrast, the variability

in TAC was largely explained by epistemic variability, which explained between 25%

and 40% of the variability. The effect of epistemic uncertainty in effort and related

output variables was also relevant. As the variance in the graph refers only to first-

order variance, the contribution of the epistemic variance is expected to be higher

due to the contribution of interactions in the output variance.

A complete set of barplots with the first-order and total-effect indices and

their confidence intervals is available in a shiny application (https://aztigps.

shinyapps.io/GSAApp/, password: flbeiaGSA. The code used to produce the ap-

plication is provided in zenodo.org, Garcia et al. (2019b)).

The plots with the 15 factors with the highest total-effect index for each output

variable and stock or fleet are shown in Figures 5.19 to 5.22.

5.3.3.2 Stock level

While for hake most of the factors had a significant total-effect, for horse mackerel

the variance was mainly derived from first-order effects. Recruitment was the only

output variable where first-order effects were predominant for all the stocks. The

economic factors did not have any significant impact on the stock output variables.

Catch (Figure 5.16). In the year 2013, the variability of catch was explained by

the direct effect of few factors. However, in the second year the number of factors

contributing to the variance increased significantly and in 2020 most of the vari-

ance was explained by the interaction of two or more factors (Figure 5.16). Natural

mortality and weight were among the most important factors for all the stocks.

Furthermore, there were seven factors that appeared in the top 15 of all the stocks

https://aztigps.shinyapps.io/GSAApp/
https://aztigps.shinyapps.io/GSAApp/
zenodo.org
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Figure 5.13: Total variance explained by first-order indices for each of the output
variables and stock or fleet along years. Light yellow represents 0 and dark red 1.
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Figure 5.14: Variance explained by total-effects for all the output variables in 2020
year. Light yellow represents 0 and dark red 1. (FishMort = Fishing mortality,
Recr. = Recruitment and nVes. = Number of vessels). Figure taken from Garcia
et al. (2019a)
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Figure 5.15: Sum of the proportion of variability explained by first-order effects
disaggregated by the source of variability, natural (blue bars) or epistemic (red
bars).

but horse mackerel (efs dts, stkN error mon, TAC HO8, q mac, Hom wt, TAC -

MAC and Hom m). Most of the variability in the catch of horse mackerel was explained

by few factors directly related with the stock. For the rest of the stocks some addi-

tional factors not directly related with the stock itself contributed significantly to the

variance. The variance in the catch of the two megrims had similar decomposition

as a function of the variability of the input factors. In 2020, the variance associated

to first-order effects was higher than 50% for the two megrims and horse mackerel

and lower than 25% for hake and monkfish.

Fishing mortality (Figure 5.17). The variance in fishing mortality, except in

the case of horse mackerel, was explained by the variance of many factors (Fig-

ure 5.17). More than half of the factors considered in the variance decomposition

method contributed significantly to the variance of fishing mortality of those stocks.

In the top 15, eleven factors were common to all of those stocks (Nhom, Hke m,

Hom m, hke wt, hom wt, mon wt, efs dts, q mac, q ho8, stkN error mon and

TAC MAC). In the case of horse mackerel six were the factors that had a significant

contribution in the variance of its fishing mortality, the three errors in the assess-

ment, weight and mortality, stock-recruitment parameters and initial abundance of
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Figure 5.16: Sobol first-order and total-effect indices for catch of all the stocks.
Only the 15 factors with highest total index are shown. The red part corresponds
with first-order index and the entire bar (blue + red) with the total-effect.
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the stock itself in all the cases.

Recruitment (Figure 5.18). The variability in recruitment, except for hake,

was explained almost completely by the variability in the stock-recruitment model

parameters and the variability around stock-recruitment model curve (Figure 5.18).

Moreover, the effect of interactions was marginal. In the case of hake, the uncer-

tainty in the stock-recruitment model parameters was the most important factor,

explaining around 35% of the variance. Other 10% of the variance was explained

by the direct impact of several factors. However, the rest of the variance was ex-

plained through the interaction of a great number of factors, the most important

being natural mortality and weight of hake, and effort share of trawlers.

Spawning stock biomass (Figure 5.19). Most of the variability in SSB was

explained by less than five factors for all the stocks but hake (Figure 5.19). For hake,

the impact of interactions was high and there were many factors contributing to the

variance of its SSB. The most important were the natural mortality, the effort share

of trawlers, the stock-recruitment parameters and its weight. The variance of horse

mackerel’s and monkfish’s SSB was explained mostly by the variability in natural

mortality and weight. Moreover, the effect of interactions was marginal. For the

two megrims, the most important factors were the weight, the natural mortality, the

catchability, the stock-recruitment parameters and the effort share of trawlers (not

necessarily in this order). For these two stocks the impact of interactions was higher

than in the case of horse mackerel or monkfish but lower than in the case of hake.

Total allowable catch. Except in the case of hake the variance in the TAC was

produced by the variability in less than 10 factors. The three errors in the man-

agement procedure were the most influential factors in the TAC followed by natural

mortality and weight. Recruitment model parameters, effort share in trawlers and

some of the catchabilities were also important. In the case of hake there were more

than 20 factors that contributed significantly to its variance.

5.3.3.3 Fleet level

At fleet level the variance of the output variables was derived mainly from interaction

between factors. In 2013 the variance was explained by few factors but from the

second year of the simulation the number of factors with significant impact on the

results increased. In the long-term around two thirds of the factors had total-effect
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Figure 5.17: Sobol first-order and total-effect indices for fishing mortality (F)
of all the stocks. Only the 15 factors with highest total index are shown. The red
part corresponds with first-order index and the entire bar (blue + red) with the
total-effect.



128 Chapter 5.

Figure 5.18: Sobol first-order and total-effect indices for recruitment of all the
stocks. Only the 15 factors with highest total index are shown. The red part
corresponds with first-order index and the entire bar (blue + red) with the total-
effect.
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Figure 5.19: Sobol first-order and total-effect indices for the spawning stock
biomass (SSB) of all the stocks. Only the 15 factors with highest total index
are shown. The red part corresponds with first-order index and the entire bar (blue
+ red) with the total-effect.
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Figure 5.20: Sobol first-order and total-effect indices for total allowable catch
(TAC) of all the stocks. Only the 15 factors with highest total index are shown.
The red part corresponds with first-order index and the entire bar (blue + red) with
the total-effect.
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higher than 5%. In the short-term, the economic input factors were in the top ten

list but in the long-term other factors gained relevance to the detriment of economic

ones.

Effort, gross value added and profits (Figure 5.21 and 5.22). In the long-

term, for the three fleets, the results for effort, GVA and profits were very similar .

The biggest difference was observed in the ranking of economic factors which impact

was higher on profits than in the other two output variables. Hence, for simplicity,

here, we focus only in the results of profits. For gillnetters, the effort share was the

most important factor followed by the observed error in the abundance of monkfish

and hake. After these three factors the impact of the factors decreased steadily.

In the top 15 list there were the natural mortality and weight of hake and horse

mackerel, the weight of monkfish, the aging error in hake and monkfish, the TAC

and catchability of mackerel, the effort share of trawlers and the observation error in

the abundance of horse mackerel and the weight of monkfish. In the case of trawlers

the effort share was in the first place and then the impact decreased steadily. Among

the most important factors were the TAC and catchability of mackerel and western

horse mackerel, the observation error in the abundance and weight of monkfish, the

weight and natural mortality of hake, horse mackerel and monkfish and the initial

abundance of hake. In the case of longliners the observation error in the abundance

of hake was most important than the effort share. In this fleet the factors related

with hake were predominant. In fact, the catchability of the pair metier of trawlers

was also in the top 15 list. The effort share of the other two fleets, the catchability

and the TAC of mackerel and the weight of horse mackerel and monkfish had also a

significant impact on the profits of the longliners.

Number of vessels (Figure 5.22). The variability in the number of vessels was

explained almost completely by the maximum number of days a vessel was able

to work annually. In the case of gillnetters and longliners, this factor in isolation

explained around 95% of the variance and for trawlers the percentage decreased up

to 86%. The other factors that contributed to the variance were, the share of the

income used to pay the salaries (crewshare), the maximum proportion of vessels that

are allowed to exit the fishery yearly (w1), and the effort share. The contribution

of crewshare was specially relevant, a first-order effect around 6%, in the case of

trawlers.
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Figure 5.21: Sobol first-order and total-effect indices for gross value added
(GVA) and profits at fleet level. For each fleet and output variable only the
input factors with the highest total index are shown. The red part corresponds with
first-order index and the entire bar (blue + red) with the total-effect.
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Figure 5.22: Sobol first-order and total-effect indices for effort and number of
vessels (nVessels) at fleet level. For each stock and output variable only the 15
input factors with the highest total index are shown. The red part corresponds with
first-order index and the entire bar (blue + red) with the total-effect.
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5.3.3.4 Global indices

We used the method proposed by Lamboni et al. (2011) to calculate the generalised

sensitivity indices using all the output variables over all the projection years. The

main result obtained at single output variable level was corroborated by the global

index: the output variance was largely explained by the interaction between input

factors (Figure 5.23). Thirty factors were “lower sensitivity” factors (contributing

less than 5% to the overall variance (Sarrazin et al. 2016)), i.e., only 26 factors had

a significant contribution to the output variance. The 19% of the input factors if we

take into account also those discarded by the Morris method.

The effort share of trawlers was, by far, the factor which had the highest impact

on the output variables. It has a first-order effect of only 5% and most of the

impact was in interaction with other stocks. In the second position there was the

effort share of gillnetters followed closely by the natural mortality of hake and horse

mackerel and the weights of these stocks and of monkfish. In a second group that

covers until the 23-th factor, there were all the catchabilities, the observation errors

in abundance, some biological parameters and the effort share of longliners. The

observation errors in age reading and weight for hake, horse mackerel and monkfish,

some biological parameters and the crew-share of gillneters. In the lower part of the

table there were the maximum number of days factor, which contribution was mainly

of first-order, all the stock-recruitment parameters, all the economic factors except

the crew-share of trawlers, the maximum proportion of vessels that were allow to

exit the fishery yearly (w1) and the errors in the MP related with the two megrims.

5.4 Performance of the selection criterion

The individual and overall level performance indicators defined in Section 3.4 were

calculated for Z = 2, 3, 4 and for the three criteria, the calibrated visual criterion, the

fixed number of factors criterion and the Savage criterion. For Z > 4, the number of

input factors selected with the calibrated visual criterion was higher than 56. Hence,

it made no sense to calculate the performance indicator because all the input factors

selected by the Morris method were selected by the calibrated visual criterion.

Furthermore, we evaluated the sensitivity of the performance of the calibrated

visual criterion to the choice of the output variables. We took three subsets of out-

put variables, calculate the corresponding generalised sensitivity indices and apply

the selection criterion using the output variables selected to calculate the perfor-
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Figure 5.23: Generalised first-order and total-effect sensitivity indices. Blue bars
correspond with the first-order sensitivity indices and the sum of the blue and red
bars with the total-effects. Figure taken from Garcia et al. (2019a)
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mance indicator. In the first set we used all the output variables, i.e., a set with

37 variables. In the second subset, we removed fishing mortality and GVA from the

output variables because they were highly correlated with the rest of the variables.

The resulting subset had 29 output variables. In the third subset, besides fishing

mortality and GVA we also eliminated catch and effort, resulting in a subset with 21

output variables. With this selection of output variables we removed the those that

were highly correlated with the rest and made the output variables which variance

was explained by few input factors predominant.

The performance indicator of the calibrated visual criterion was always closer to

one than that of fixed number of factors criterion (Table 5.5), i.e, the input factors

selected with the calibrated visual criterion corresponded with input factors that

were higher in the ranking of the total-effects. The indicator for Savage criterion

was the indicator closest to one only for the indicator at overall level when Z 6= 4

(Table 5.5).

Table 5.5: The performance indicator that measures the match between the ranking
obtained in the generalised sensitivity indices and the indices selected by the Morris
method using the calibrated visual criterion, the fixed number of factors criterion
and the Savage criterion. The first column corresponds with the number of output
variables used, the second column with the number of input factors, and the rest of
the columns with the value of the performance indicator defined in equation (3.9)
and the generalised performance index for each of the criteria. = four spot megrim,
MEG = megrim, MON = monkfish, DFN = gillnetters, DTS = trawlers and HOK
= longliners). Reprinted from Garcia et al. (2019a).

Output Input Performance Indicator Generalised Performance Indicator

variables factors Fixed Number Savage Calibrated Fixed Number Savage Calibrated

21 29 (Z=2) 0.56 0.52 0.64 0.47 0.68 0.56
29 31 (Z=2) 0.59 0.60 0.69 0.55 0.71 0.64
37 32 (Z=2) 0.59 0.62 0.66 0.56 0.72 0.63
21 39 (Z=3) 0.69 0.63 0.78 0.61 0.79 0.73
29 41 (Z=3) 0.70 0.72 0.81 0.67 0.82 0.77
37 44 (Z=3) 0.73 0.76 0.84 0.72 0.84 0.81
21 46 (Z=4) 0.82 0.71 0.91 0.72 0.84 0.85
29 50 (Z=4) 0.87 0.79 0.94 0.83 0.86 0.92
37 53 (Z=4) 0.86 0.81 0.96 0.83 0.87 0.94

5.5 Discussion

We conducted a GSA of FLBEIA bio-economic model applied to the demersal fishery

around the Iberian Waters. The efficient conditioning of the model and the robust

combination of Sobol (Sobol 1993) and Morris (Morris 1991) methods allowed us

to carry out the analysis at a moderate computational cost. First, we identified
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the most important factors using the Morris elementary effects screening method.

We used the selection and convergence criteria defined in Chapter 3 to avoid the

subjectivity in the selection process and to ensure the convergence of the method.

Then, we decomposed the output variance using the Sobol first-order and total-effect

indices. Both methods were applied to the multi-dimensional output of the model.

Finally, we calculated the generalised sensitivity indices proposed by Lamboni et al.

(2011) to decompose the overall variance using only two indices per factor, the

generalised first-order and total-effect indices.

5.5.1 The Morris method

The selection criterion defined in this thesis allows to select the most important

factors using the same criterion for all the output variables and to use it in an

automatic way, for example in bootstrap simulations. The new criterion provides a

good approximation of the visual approach and has the advantage of being consistent

along the whole selection process and of being able to be used in an automatic

way. Other authors use the fixed number of factors criterion applied to each output

variable (DeJonge et al. 2012, Hussein et al. 2011, Morris et al. 2014). This approach

is consistent along output variables, but could lead to unimportant input factors

being selected in some cases (for example, in recruitment) and to important ones

being discarded in others (for example, in profits). Campolongo et al. (2007) used

Savage scores (Savage 1956) to identify the most important input factors in a multi-

dimensional output model. However, Savage scores are mostly used to compare

ranking of input factors obtained using different approaches (Borgonovo et al. 2003,

Confalonieri et al. 2010, Cucurachi et al. 2016) and this is the first time that their

performance as a selection criterion has been evaluated.

The calibrated visual criterion was better than fixed number of factors and Sav-

age criteria when comparing their performance for each output variable. Hence,

if the objective is to explain the variance of every single output variable the cali-

brated visual criterion would be always preferred. For example, in the case study

used here, the Savage criterion discarded the input factor that explains most of the

variance in the number of vessels output variable. This happened because Savage

criterion penalizes the input factors that are important in only one output variable

in favor of those that are important in several variables, even if the variables are cor-

related. However, at overall level, if a small number of input factors were selected,

the performance of the Savage criterion was better. This was because the basis of
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the generalised sensitivity index is more similar to the Savage criterion than to the

calibrated visual one.

The comparison of the performance of the criteria was evaluated using the rank-

ing of the total-effects estimated by the Sobol method, considered as the reference

method by many authors (Confalonieri et al. 2010, Homma and Saltelli 1996, Sa-

rrazin et al. 2016, Yang 2011). The input factors in the application of the Sobol

method were selected by one of the criteria evaluated, the calibrated visual criterion.

This fact may seem to produce a positive bias towards this criterion. However, the

number of input factors selected by the criteria in the evaluation were lower than

those considered in the Sobol method, especially for Z < 4. Hence, the ranking

used for the performance evaluation was considered sufficiently broad to provide an

unbiased assessment.

The initial abundances and the maturity were discarded for most of the stocks by

the Morris method. The screening was based on the output variables in 2020 when

the effect of initial abundance was already dissipated, specially for the stocks with

shorter lifespan. The effect of maturity was low in the whole time series because in

the older ages, the ages with the highest contribution in weight to the SSB, there

was no variability (note that the individuals in old age classes are always mature,

hence there was no uncetainty) and the contribution of young classes was marginal.

The Morris method discarded most of the economic factors. On the one hand,

the model used to describe the effort allocation in each year was independent of

economic factors. Hence, the economic performance of the fleets was primarily

affected by the stock abundance and the economic factors acted only as multipliers.

On the other hand, although the entry-exit of new vessels in the fishery was driven

by the economic performance of the fleet, in most of the iterations there was either

no variation in the number of vessels or a constant decrease limited by the parameter

w1 (the input factor that limits, in percentage, the annual decrease in number of

vessels). Hence, the variability in the number of vessels was driven principally by the

maximum number of days a vessel operates along the year and by w1. As economic

factors were basically multipliers, unlike the biological factors and observation errors,

their impact on the short-term was higher than in the long-term.

While the observation errors in abundance were among the most important fac-

tors in the Morris method, the observation errors in landings and discards were

discarded. The abundance estimates were obtained applying two errors to the real

abundance, a multiplicative error and an error associated to the wrong assignation of

age. However, in reality, the abundance estimate is obtained using a mathematical
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model which depends on yearly landings and discards. Hence, the accuracy of the

abundance estimates is directly related with the quality of the data used to estimate

it. Thus, it is likely that the importance of the observation errors in landings and

discards was under-estimated.

5.5.2 The Sobol method

The MSE approach allows the formal incorporation of uncertainty in the decision

making process (Punt et al. 2016). However, a proper uncertainty conditioning is

not always carried out to condition the models. Uncertainty in recruitment process

is one of the uncertainties most commonly used in fisheries management simulation

models (Kraak et al. 2010). In fact, in the evaluation of multiannual management

plans and the subsequent application presented in Chapter 4 only stock-recruitment

parameters were considered uncertain (Garcia et al. 2017a, STECF 2015a). The

GSA carried out in this chapter showed that recruitment was the most important

factor only in the recruitment variable itself. In the SSB the variability around

recruitment curve had also a significant impact. However, for the rest of the output

variables its contribution to their variance was marginal. In fact, in the generalised

sensitivity index the factors related with recruitment appear in the lower part of

the ranking (Figure 5.23). Similar behaviour was observed by Gasche et al. (2013).

On the contrary, the parameters of the stock-recruitment of one of the stocks in

Drouineau et al. (2006) was among the most important factors. In this case, the

use of a linear model to simulate the recruitment made it more influential on the

results. A complete uncertainty conditioning is usually difficult to carry out due

to the effort needed to condition all the input factors. With the application of

the Morris and Sobol methods we found that only 19 input factors, i.e the 14% of

the total input factors, had significant impact on the output variance. Carrying a a

proper uncertainty conditioning of only those 19 input factor would be approachable

task.

The first thing that drawed attention in the Sobol variance decomposition method

was the prevalence of the total-effects. In the first year of simulation the variance was

explained mainly by first-order effects but their importance decreased with years.

Most of the processes in the model are interlinked through the stock abundance,

and therefore, the emergence of interactions was somewhat expected. The impor-

tance of interactions was specially marked in those output variables related with

the effort of the fleets, that is, the catch, the effort itself, the fishing mortality, the
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GVA and the profits. Fleets’ effort depended on the stocks’ TAC, catchability, and

biomass. In turn, the TAC depended on the errors in the management procedure,

and the abundance on the recruitment and biological parameters. That is, although

not directly, the effort was closely related to many of the factors of the system, so

that total-effect indices were significant for many of them. Because of this interde-

pendence, most of the factors contributed to the variance of many output variables

(Figure 5.14). The same behaviour was observed by Gasche et al. (2013) where fish-

ing mortality was the output variable most affected by interactions between factors.

However, unlike here, in that analysis the interactions did not drive the variability.

Their effort allocation model could depend on less factors than our model or have

less technical interactions between stocks which could produce that the variability

of fishing mortality and catch variables are less affected by interactions.

Effort share, the key factor in the simulation of fleets’ short-term dynamics, was

among the most important factor in many of the output variables. Furthermore,

the effort share of trawlers and longliners were the two most important factors in

the generalised sensitivity indices. Fleets’ short-term dynamics is one of the main

components in bio-economic simulation models and there exists different approaches

to simulate them (see for example Marchal et al. (2013), Salas and Gaertner (2004),

van Putten et al. (2012) or Girardin et al. (2016)). However, the parameters of the

models used are often maintained fixed along the simulation (Andersen et al. 2010,

Bartelings et al. 2015, Bellanger et al. 2018, Garcia et al. 2017a, Simons et al. 2015).

Gasche et al. (2013) used a short-term dynamics model which mixed tradition and

economic expectation to predict the effort allocation. Using GSA they found that

some of the input factors of the short-term dynamics model were among the most

important factors. However, the relative importance was lower than the importance

of effort share in the present implementation, predictably because they did not

consider any economic variable to summarize the results. In three years of data

available, the CV varied from 5% to 112%. A longer time series should be necessary

to conduct an adequate uncertainty conditioning.

Natural mortality was among the most important factors. However, the knowl-

edge about natural mortality is generally very poor (Legault and Palmer 2016).

Moreover, in many MSE applications it is considered deterministic and equal to the

value used in the assessment model of the stock (Garcia et al. 2017a, Kell et al.

2006b, Marchal and Vermard 2013, Simons et al. 2014). In turn, stock assessment

model implementations often assume it constant along years and ages (Johnson et al.

2015). Here we mimicked the MP used in reality for the stocks, i.e, natural mortality



5.5. Discussion 141

was equal to the value used in their assessment model independently of the value

used in the OM. However, this way of simulating the system did not allow us to

quantify explicitly the contribution of the observation error in natural mortality on

the output variance. The contribution of this error was implicit in the contribution

of the natural mortality itself. If we wanted to quantify the impact of increasing

the knowledge about natural mortality we should include an error factor in the MP

that increases the accuracy of the value used in the MP in relation to the value in

the OM.

For all the stocks but hake, the variability in recruitment, SSB and TAC was

explained by a small set of factors. The mean recruitment of the non-hake stocks

was constant for biomasses bigger than a reference level and the probability of falling

below it was very low in the simulation. Hence, the recruitment of these stocks was

driven mainly by the variability in the factors related with the recruitment itself.

The variability in SSB was mainly driven by weight and natural mortality and the

impact of maturity was residual, as explained above. However, using SSB as a proxy

for reproductive potential may not be adequate (Murua et al. 2010) and the factors

associated to alternative proxies, like egg production by age, could be more sensitive.

The sensitivity indices obtained for effort, GVA and profits were similar, the

ranking of factors was almost the same and also their value. The profits and GVA

are considered in the simulation as a translation of effort into monetary terms using

economic factors and the catch production. Many of the economic factors were

discarded by the screening method and in the variance decomposition approach

they were fixed to their mean value. Hence, the uncertain factors in the variance

decomposition method had similar roll in the calculation of sensitivity indices for

effort, profits and GVA and their value was similar.

The variability of the TAC for all the stocks was explained in a great extend

by the observation errors, i.e, the epistemic uncertainty. It would be expected that

these factors had similar importance in catch, but this happened only for hake and

horse mackerel. These two stocks were the main target stocks of the fleets and

the effort was driven by their catch advice. Hence, the actual catch of the other

stocks was almost independent of their TAC and the fishery could be managed

through the management of hake and horse mackerel. This is a relevant finding for

fisheries management. At present, a lot of research is being carried out to manage

the so called data-limited stocks (Carruthers and Hordyk 2018, Jardim et al. 2014a,

Kokkalis et al. 2017), the stocks for which the lack of reliable data prevents the

quantitative assessment of the stocks. If results from GSA could be used to conclude
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that the assessment for some stocks is not necessary it would save a lot of time to

fisheries scientist and therefore a lot of money to society. However, the lack of a

quantitative assessment should not preclude having a catch limit because not having

it could create incentives to over-exploit the stock.

From the management point of view, one of the potential uses of GSA is to

identify the most efficient way of reducing variability to improve the decision making

process. The epistemic uncertainty, the uncertainty that could be reduced with

further research, corresponds solely with the observation errors in the MP (see the

table in Appendix B.1). The sum of the variability associated to these factors

indicate how much the variability could be reduced if the management process was

improved through data collection, improvement of stock assessment accuracy or

further research for example to estimate natural mortality. TAC for all the stocks

and economic output variables for trawler fleet were the only variables that could

be directly benefited from a decrease in epistemic uncertainty. If the uncertainty in

the observation errors could be removed completely the uncertainty in those output

variables would decrease in at least a 30% (Figure 5.15). This amount corresponds

with the uncertainty produced by the input factors in isolation, hence it would

increase with the variability associated with the interaction between observation

errors and other factors.

The patterns in the sensitivity indices of hake and horse mackerel differentiated

from those of the other three stocks. In the case of hake there were two main reasons,

first, the recruitment was simulated with a ricker model, and sencond, it was the

target stock of most of the fleet/metiers. The ricker stock-recruitment model (Ricker

1954), unlike the model used for the rest of the stocks, is sensitive to changes in SSB

in the whole domain of existence, hence all the factors with an impact on SSB had

also an impact on recruitment. Moreover, hake was caught in most of the metiers

and had a big technical interaction with the rest of the stocks. Thus, most of them

had at least a small contribution to the variance of hake’s output variables when

interacting with other factors. In the opposite side was horse mackerel. Most of the

catch of horse mackerel (around 60%) was generated by two fleets that catch only this

stock (these fleets were not included in the economic analysis because they were not

part of the Spanish demersal fishery). Hence, horse mackerel’s output variables were

explained by a few number of input factors and the variance explained by interaction

between input factors was low. Another remarkable pattern at stock level was the

similarity between the importance indices of both megrims. These two stocks are

caught in the same metiers so are subject to the same technical interactions. Hence,
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the impact of factors not directly related with the two stocks themselves was the

same.

As happened at stock level, at fleet level, the dynamic of the fleets also marked

the contribution of the factors to the variance. Trawlers catch all the stocks without

a clear target, hence the variance of its output variables was explained by a big

number of input factors. On the contrary, as longliners target hake and the catch of

the other stocks is less important, the variance of its output variables was primarily

explained by the variance in the hake input factors.

5.5.3 The conditioning

Although uncertainty should be conditioned according to the existing data, usually

the limited data available do not allow an adequate uncertainty conditioning. An

approach frequently used in GSA is to introduce uniform distributions centred in

the mean of the observed values with a CV of 20% (Lehuta et al. 2010). Gasche

et al. (2013) used a CV of 50% and oppositely Morris et al. (2014) considered that

a CV of 10% was sufficient to encompass the existing uncertainty. We evaluated the

robustness of using a CV of 30% by comparing the results of the Morris method

with those obtained using a CV of10% and 50% and found that the input factors

selected in both cases were similar. The intervals should be sufficiently wide to

represent the inherent uncertainty and sufficiently narrow to obtain rational results

(Leamer 1985). But, the larger the input domain, the greater the number of iter-

ations needed to achieve convergence. Hence, a compromise is needed between the

size of the input domain and the computational cost of the GSA implementation.

The results of this analysis should be used to guide the uncertainty conditioning of

future implementations of FLBEIA in this case study. As mentioned previously, the

analysis should be only focus on 19 input factors.

The efficient conditioning of the model lead to a big reduction in the number

of effective input factors of the model. This resulted in the exact same reduction

in the computational cost of the analysis. Applying the Sobol method with the

original number of input factors would have been unfeasible without a system with

an enormous computational power. When the number of effective factors is reduced,

information is lost. In the case of groups, the effect of individual factors is hidden

by that of the group. Hence, the groups should be as homogeneous as possible in

relation to the impact of the individual factors in the output variables. Alternatively,

Sheikholeslami et al. (2019) proposed a methodology to identify the groups based
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on the convergence and stability properties of the Sobol method. The group formed

with this method ignore completely the nature of the elements that form it. In turn,

in the quantile transformation approach all the values in the vector are moved in

the same direction and with the same intensity. Therefore, the individual values’

variability is ignored. Hence, to avoid a misrepresentation of the variability when this

approach is used, the individual values’ variance should be negligible in comparison

with that of the vector as a whole.

Weight is routinely sampled for commercially important stocks and the CV as-

sociated to weight at length would be less than 30%. However, here we considered

weight at age which implicitly took account of growth in length of fishes. Further-

more, growth in length is not easy to estimate due to the difficulty in validating an

aging method. Hence, a CV of 30% in weight at age, which includes variability in

growth and in weight at length, did not seem unreasonable.

In the application presented, we mimicked a typical European management pro-

cedure (Salomon et al. 2014); however, the uncertainty conditioning should be ad-

justed to the reality of the fishery system and the study’s objective. As the MSE

simulation models differentiate clearly epistemic and natural uncertainty, GSA can

be used to perform a cost-benefit analysis of increasing the sampling intensity or

of improving the assessment models. Therefore, the conditioning of the variables in

the management procedure should be adapted to the study’s objective.

5.5.4 Implementation of the methods

We applied the convergence criteria defined in chapter 3 with a value of ν equal to

95%, but other values could also be adequate. Higher values of ν could slow down

the convergence and lower ones could lead to the selection of unimportant factors.

We recommend using high values of ν, as long as computational resources allow it.

We could have assessed the convergence using the input factor screening criterion in

Sarrazin et al. (2016). This criterion focuses on the width of the confidence intervals

of the non-selected factors (factors Xk for which mr
Xk

< 0.95 ·Nboot) and considers

that it has converged when the width is narrower than 0.05. Of the 79 factors with

mr
Xk

< 0.95 · Nboot, only 26, i.e., 33%, had converged when r = 300. Therefore,

according to this criterion we should increase r with the subsequent increase in

computational cost.

We used a base sample of N = 10000 iterations. However, for few combinations

of output variables and input factors, (< 5%) the width of the confidence interval
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was still bigger than 0.05 (Figure 5.12). Even so, we are confident that increasing

the size of the base sample will not alter the conclusions because the general picture

obtained with 2000 iterations did not change increasing the base sample size.

The extended FAST method (Saltelli and Bolado 1998) and metamodels (see

Saltelli et al. (2008) for a brief introduction to metamodels and relevant references)

are quicker GSA alternatives to the Sobol method (Pianosi et al. 2016). However,

FAST is biased and unstable when the number of input factors increases (Iooss 2015)

and the Sobol method is considered the reference by many authors (Confalonieri

et al. 2010, Homma and Saltelli 1996, Sarrazin et al. 2016, Yang 2011). Using

emulators implies to fit an statistical model to a big enough realizations of the

original model and to calculate the importance indices using the emulator. Finding

a model that provides an adequate fit would require a big personal effort and the

save in computational time might not be worth it.

The ranking obtained with the generalised sensitivity index depends on the out-

put variables used to summarize the results. In this case for example, as the gen-

eralised index removed correlation and effort, GVA and profit variables were corre-

lated, the weight of economic input factors was lower than that of biological ones

that were influential in less correlate output variables such as SSB and recruitment.

As the output variance was driven by the interaction between factors, a deeper re-

search would involve to identify the specific components of those interactions. Saltelli

(2002) proposed a method to compute the importance indices for the interactions

of order K − 2 using the same model outputs used to compute the first-order and

total-effects indices. Nevertheless, for K = 56, the indices corresponding to K − 2

order interactions would not shed much light on the problem. He also proposed a

method to calculate the indices of order 2 at a cost of 2N(K+1) model evaluations,

i.e., almost double the actual cost. However, as many factors have a large total-effect

index, the interactions would probably involve more than two factors and the extra

computational cost would not be worthwhile.

In summary, the efficient conditioning of the model together with the application

of the Morris method allowed to decrease the number of the input factors in 96%.

The reduction in the number of input factors was directly translated in the same

reduction in the computational cost of the GSA. Moreover, the conditioning removed

the correlation between the input factors which allowed to apply standard GSA

methods. From the point of view of the application of the methodology, the variance

decomposition method provided a deep understanding of the internal behaviour of

the model. Moreover, we found that the combination of GSA and the MSE approach
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could be used to identify the stocks for which it is necessary to have an accurate

stock assessment model to guarantee an adequate management of the fishery system.



Chapter 6
Software

6.1 Introduction

FLBEIA model described in Chapter 2 was implemented in R (R Core Team 2019) and

it is distributed as an R package. Furthermore, a second package FLBEIAShiny was

developed to provide an easy and interactive way to analyse the simulation results

obtained with FLBEIA. The selection and convergence criteria defined in Chapter 3

were also implemented in R to facilitate their use. In addition, the whole set of plots

of the AEEs and sensitivity indices calculated in Chapter 5 were made available in

a Shiny application. In this chapter we present the two packages and the Shiny

application with the GSA results.

First, in Section 6.2 FLBEIA package is described, how to install it in R , the input

data needed to run it and the functions available to facilitate the conditioning of

the model and the analysis of the results. In the same section, the main function of

the package is described in detail and several examples are given on how to run the

model. Then, in Section 6.3 the FLBEIAShiny library is presented, how to launch

the Shiny application, the input data needed and the contents. A practical example

on how to use the R functions that implement the selection and convergence criteria

are described in Section 6.4. Finally, in Section 6.5 the Shiny application developed

to store all the sensitivity indicators obtained in the application of the GSA is

described, how to access it and the plots available.

147



148 Chapter 6.

6.2 FLBEIA

FLBEIA model is distributed as a R package and is available in GitHub. FLBEIA

is part of the FLR collaborative project and the FLBEIA Github repository is em-

bedded in FLR Github repository too. FLBEIA depends on some of the FLR pack-

ages (FLCore and FLFleet) and other are used in specific situations (FLash and

FLa4a for example). The source code can be directly downloaded from the GitHub

webpage https://github.com/flr/FLBEIA. The compiled packaged can be down-

loaded from the FLBEIA site in AZTI’s webpage (http://flbeia.azti.es). Within

an R session the compiled package can be downloaded from FLR webpage directly

typing the following command :

install.packages(repos="http://flr-project.org/R", pkgs = "FLBEIA")

The development version of the package can be installed from GitHub within a R

session. For doing so, it is necessary to install Rtools software available in https://

cran.r-project.org/bin/windows/Rtools/ and the R package ‘devtools’. Then,

within the R session the following two commands need to be executed:

library(devtools)

install.github("FLR\FLBEIA”)

Note that to install FLBEIA it is mandatory to install FLCore and FLFleet pack-

ages previously. The options to install these packages are the same as for FLBEIA.

The model was build up modularly; it was divided in small processes and one

or more functions were implemented to describe each of the processes. Then these

functions were assembled by functions at higher level. The functions at lower level

are not available to the user. Only the function FLBEIA, that represents the whole

model, the functions used to facilitate the conditioning of the model and the analysis

of the results, and the functions used to describe HCRs are available to the user. The

HCRs belong to an individual process and they should not be available to the user.

However, it could be useful to apply them outside FLBEIA. Hence, it was decided to

made them available to the final user.

Each of the public functions has its own help page explaining what the function

does, the arguments (input objects) needed to use them and the shape of the output.

Furthermore, in some cases there are practical examples of the application of the

functions.

https://github.com/flr/FLBEIA
http://flbeia.azti.es
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
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6.2.1 New classes

The FLR libraries were developed using object oriented programming and make use

of S4 classess in R (Chambers 1998). In FLCore and FLFleet packages specific S4

classes (special classes defined in R for object oriented programming) were defined

to store the most common data used to model fishery systems. FLBEIA uses those

classes to store and operate with the data but it also defines new classes. The terms

listed below correspond with the name of the new classes defined in FLBEIA and

with the methods to construct them.

FLBDsim stores the data and parameters needed to project biomass dynamics pop-

ulations.

FLCatchExt stores the data relative to the catch of each stock at fleet-metier level.

FLCatchesExt stores the catch data of all the stocks caught at fleet-metier level. It

is a list of FLCatchExt objects.

FLFleetExt stores catch, economic and technical data relative to the activity of

the fleet at fleet, metier and stock level. It is formed by an element of class

‘FLMetiersExt’, some descriptive elements of class character and some ele-

ments with fleet level data of class ‘FLQuant’. The class ‘FLQuant’ is the basis

class defined in FLCore to store quantitative information.

FLFleetsExt is used to store economic, technical and catch data of all the fleets in

the fishery system. It is a list of ‘FLFleetExt’ objects.

FLMetierExt stores economic, technical and catch data relative to the activity

of the fleet at metier and stock level. It is formed by an element of class

‘FLCatchesExt’ and some additional elements of character and FLQuant

class.

FLMetiersExt stores economic, technical and catch data of all the metiers within a

fleet. It is a list of ‘FLMetierExt’ objects.

FLSRsim stores the data and parameters needed to simulate the recruitment in age

structured populations.

6.2.2 Functions to generate FLBEIA input data

FLBEIA package provides a set of functions to facilitate the generation of the in-

put data and arguments needed to run the model. There are two types of in-

put arguments in the call to FLBEIA; the data objects and the control objects.

The data objects are used to store the data and the control objects to specify

the model settings. The control objects are used to declare the models that will
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be used to describe the processes and the parameters of these models. There

are functions to generate both, the data objects and the control objects. There

are two type of functions available to generate the data objects which differen-

tiate on the shape of the input data they use, data frames or arrays. The tu-

torial http://www.flr-project.org/doc/Conditioning_FLBEIA.html explains in

detail how to condition FLBEIA using these functions. The FLBEIA call has the fol-

lowing arguments:

biols, SRs, BDs, fleets, covars, indices, advice,

main.ctrl, biols.ctrl, fleets.ctrl, covars.ctrl,

obs.ctrl, assess.ctrl, advice.ctrl

A description of each of the arguments is given in section 6.2.6 and they can be

created using the functions listed below.

� create.advice.data, create.assess.ctrl, create.BDs.data,

create.biols.data, create.fleets.data, create.indices.data,

create.SRs.data: Creates the advice, BDs, biols, fleets, indices and SRs

arguments respectively necessary to run FLBEIA using data frames stored in

files of ‘cvs’ format.

� create.biol.arrays, create.fleets.arrays: The first function creates

the FLBiols object necessary to run FLBEIA using input data stored in R

arrays or in excel files. The second one creates the FLFleets object necessary

to run FLBEIA using input data stored in Intercatch like data format http:

//www.ices.dk/marine-data/data-portals/Pages/InterCatch.aspx).

� create.advice.ctrl, create.biols.ctrl,create.fleets.ctrl,

create.obs.ctrl: Create the control objects necessary to inform FLBEIA

about the models and parameters needed to simulate advice, stocks dynamics,

fleets dynamics and generation of observed data.

6.2.3 Functions to analyse the results

The FLR objects used to simulate the fishery system in FLBEIA are suitable for

programming but they are incompatible with the functions and plots available in R

to carry out exploratory data analysis. Most of these functions are based on data

frames. There are several functions that ease the analysis of the results of FLBEIA.

They summarize the results using a set of output variables and they store then in

data frames or plot them directly. The output variables are calculated at stock,

http://www.flr-project.org/doc/Conditioning_FLBEIA.html
http://www.ices.dk/marine-data/data-portals/Pages/InterCatch.aspx
http://www.ices.dk/marine-data/data-portals/Pages/InterCatch.aspx
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metier or fleet level and some of them are available at different levels, for example

catch can be obtained at stock, fleet or metier level depending on the function used.

The available output variables are:

biomass: total biomass, it can be obtained through bioSum function.

catch: total catch at stock, fleet and metier level, it can be obtained through

bioSum, fltStkSum and mtStkSum functions.

capacity: the maximum effort that the fleet can execute in each time step, it can

be obtained through fltSum.

catch.iyv, disc.iyv, land.iyv: interannual variability in catch, discards and

landings, they can be obtained through bioSum function.

effort: effort exerted by the fleets in each time step, it can be obtained through

fltSum function.

effshare: the proportion of total effort exerted by the fleet in each metier in each

time step, it is available in mtSum function.

discRat: the discard rate, the ratio between total discards and total catch, it can

be obtained through advSum, fltStkSum and mtStkSum functions.

discards: total discards in weight, it can be obtained through bioSum, fltStkSum

and mtStkSum functions.

fcosts, vcosts, costs: fixed costs at fleet level, variable costs at fleet or metier

level and total costs at fleet level. It can be obtained through fltSum function

and vcost also through mtSum function. Fixed cost are obtained multiplying

fcost and capacity slots and vcost multiplying vcost and effort slots. At

metier level the effort to compute variable cost is calculated using effort share.

f: instantaneous reference fishing mortality rate per stock. It is obtained using

the Baranov catch equation to calculate fishing mortality at age and calculating

the mean over the reference age range. It is obtained through bioSum function.

fep: full equity profit economic indicator at fleet level. It is calculated as the

difference between grossSurplus and the product between Depreciation and

NumbVessels. It is obtained through fltSum function.

grossValue: the monetary value of all the landings of a fleet, i.e. the sum product

of landings in weight and price. It is obtained trough fltSum function.

grossSurplus: the difference between the grossValue and the sum of fixed and

variable cost. It is obtained trough fltSum function.

gva: the sum of grossSurplus and the salaries. It is an indicator of the goods

that the fishing activity reports to the society. It is obtained through fltSum

function.
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landings: total landings in weight at stock, fleet or metier level. It is obtained

through bioSum, fltStkSum and mtStkSum functions.

npv: net present value. It is calculated applying a discount rate to the annual

grossSurplus over a period of time and adding them. It is obtained through

npv function.

nVessels: the number of vessels by fleet, it is obtained through fltSum function.

pBlim: the probability of SSB falling below Blim reference point. It is obtained

through riskSums function.

pBpa: the probability of SSB falling below Bpa reference point. It is obtained

through riskSums function.

pPrflim: the probability of grossSurplus falling below a pre-specified reference

point. It is obtained through riskSums function.

price: the price of the stocks at fleet or metier level. It is obtained through

fltStkSum and mtStkSum functions.

profitability: the ratio between grossSurplus and grossValue, it is obtained

through fltSum function.

quota: the part of the TAC assigned to each fleet. It is obtained through fltStkSum

function.

quotaUpt: the ratio between the catch and the quota share by fleet. It is obtained

through advSum, fltSum and fltStkSum functions.

rec: the recruitment, it is obtained through bioSum function.

salaries: the salaries, they are formed by two components, a fixed component and

a variable one being the last one equal to a percentage of the gross value. It

is obtained through fltSum function.

ssb: the spawning stock biomass, calculated as the sum-product of the abundance

at age, weight and maturity. It is obtained through bioSum function.

tac: the total allowable catch (TAC). It is obtained through advSum function.

tacshare: the proportion of the TAC that belongs to each fleet, it is obtained

through fltSum function).

The available functions to calculate and plot these output variables are listed below:

� F flbeia, SSB flbeia, B flbeia, R flbeia, C flbeia, L flbeia, D flbeia:

calculate the fishing mortality, SSB, biomass, recruitment, catch, landings or

discards for all the stocks from the output of a call to FLBEIA function. The

ouput is an array with four dimensions, one for the stocks, the second one for

years, the third for seasons and the last one for iterations.

� annexIVHCR, ghlHCR, little2011HCR, pidHCR, pidHCRItarg, aneHCRE,
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annualTAC, CFPMSYHCR, F2CatchHCR, FroeseHCR, IcesHCR, MAPHCR,

neaMAC ltmp: these functions corresponds with the HCRs described in Table

2.1 in Chapter 2. The first five correspond with model-free harvest control

rules and the rest are model-based.

� bioSum, fltSum, fltStkSum, mtSum, mtStkSum, riskSum: calculate the

biological, technical and economic output variables listed previously. The out-

put are data frames with the values of the variables by stock and/or fleet, year,

season and iteration.

� bioSumQ, fltSumQ, fltStkSumQ, mtSumQ, mtStkSumQ: calculates the quan-

tiles of the biological, technical and economic output variables. The input is

the output of the functions in the previous point.

� plotEco, plotFLBiols, plotFLFleets, plotbioSum, plotfltSum,

plotfltStkSum: these functions generate the plot of the economic, biological

and technical output variables listed above. The first three functions operate

directly in the output of FLBEIA function and the rest in the output of bioSum,

fltSum and fltStkSum functions.

� revenue flbeia, costs flbeia], totvcost flbeia, totfcost flbeia,

price flbeia: calculate the revenue (gross value), total costs, variable costs,

fixed costs and price from an FLFleetxExt object.

6.2.4 Auxiliary functions

There are several functions that are useful from the programming and data analysis

point of view and have been made available in FLBEIA package.

� stock.fleetInfo: identifies the stocks caught by each of the metiers of a

certain fleet. It operates in a FLFleetExt object.

� tlandStock, tdiscStock: compute total landings or discards, in weight,

from a FLFleetsExt object.

� catchStock.f, discStock.f, landStock.f: compute total catch, discards

and landings at age, in numbers, from a FLFleetExt object.

� catchWStock.f, discWStock.f, landWStock.f: compute total catch, dis-

cards and landings at age, in weight, from a FLFleetExt object.

� catchStock, discStock, landStock: compute total catch, discards or land-

ings at age from a FLFleetsExt object.

� catchWStock, discWStock, landWStock: compute total catch, discards or

landings at age, in weight, from a FLFleetsExt object.
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6.2.5 Datasets within FLBEIA package

The objective of having datasets is twofold, first to illustrate the use of the model

to the new users and second to have a dataset against which new developments can

be easily tested. The two datasets provide two contrasting examples to illustrate

and test the functioning of FLBEIA. Each of the datasets contains all the necessary

data to run FLBEIA and both are used in the examples provide in the FLBEIA R-help

page.

6.2.5.1 one and oneIt dataset

The one and oneIt data sets provide an example of the simplest case study that

can be simulated with FLBEIA, a single age structured stock and a single fleet with

a single metier. The difference between both sets is that the ‘one’ data set only has

one iteration and the ‘oneIt’ has three. The objects available in these datasets are:

oneAdv, oneItAdv: a list with two elements “TAC” and “quota.share”. The TAC

is used to store the yearly catch advice and the “quota.share” is used to store

the proportion of the TAC that belong to each fleet yearly, in this case there

is only one fleet so the “quota.share” is just an FLQuant filled with ones.

oneAdvC, oneItAdvC: a list used to control how the advice is generated, the HCR

used, the reference points and other settings needed in the MP.

oneAssC, oneItAssC: a list used to store the settings to apply the stock assess-

ment models. In this case no assessment is used.

oneBio, oneItBio: a FLBiols object, with only one element, with the biological

data of the stock.

oneBioC, oneItBioC: a list used to store the settings to simulate the stock dy-

namics.

oneCv, oneItCv: a FLQuants object used to store the values of the covariates. In

this case, it is used to store the economic variables that are not included in

the FLFleets objects.

oneCvC, oneItCvC: a list where the models used to simulate the covariates and

additional parameters needed to feed those models are stored. In this particu-

lar case all the covariates are constant along time and the ‘fixedCovar’ model

is used for all of them.

oneFl, oneItFl: a FLFleets object, with one element, used to store fleet’s tech-

nical and economic data at fleet, metier and stock level.

oneFlC, oneItFlC: a list used to control the fleet dynamics models, the models
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used to simulate the short-term dynamics, the catch production, the price

formation, the capital dynamics and additional parameters needed to apply

those models.

oneIndAge, oneItIndAge: a list of age-structured FLIndices object used to store

abundance indices of the stocks, each FLIndices belong to one stock.

oneIndBio, oneItIndBio: a list of biomass FLIndices object used to store abun-

dance indices of the stocks, each FLIndices belong to one stock. In this case

there is only one element.

oneMainC, oneItMainC: a list used to control the main function FLBEIA. It has

two elements one with the time frame of the simulation and a second one with

the type of management used (simultaneous for all the stocks or independent).

oneObsC, oneItObsC: a list used to control the generation of the observed data

which includes the generation of the abundance indices and the observation of

the stock data. In this case the stock is observed without error and even the

numbers and exploitation at age are observed perfectly. No abundance index

is observed in this case.

oneObsCIndAge, oneItObsCIndAge: the same as oneObsC with an additional ele-

ment to generate an age structured abundance index.

oneObsCIndBio, oneItObsCIndBio: the same as oneObsC with an additional ele-

ment to generate an biomass abundance index.

oneSR, oneItSR: a list with one FLSRsim object. This object stores the model

and parameters needed to simulate the recruitment and also the yearly error

around the stock recruitment curve.

6.2.5.2 multi dataset

The multi data set provides an example of a complex case study with four seasons,

two stocks and two fleets, both fleets with two metiers. One of the stocks is age

structured and the other one is aggregated in biomass.

The objects available in this dataset are:

multiAdv: a list with two elements “TAC” and “quota.share”. The TAC is used

to store the yearly catch advice and the “quota.share” is used to store the

proportions of the TAC that belong to each fleet yearly.

multiAdvC: a list used to control how the advice is generated, the HCR used, the

reference points and additional parameters neede to apply the HCR.

multiAssC: a list used to store the settings to apply the stock assessment models.
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In this case no assessment is used.

multiBD: a list with one FLBDsim object used to simulate the population growth of

the stock stk2 aggregated in biomass.

multiBio: a FLBiols object with two elements, one per stock, used to store the

biological data.

multiBioC: a list with one element per stock used to declare the model used to

simulate stock dynamics, “ASPG” for stk1 and “BDPG” for stk2.

multiCv: a FLQuants object used to store the value of the covariates. In this case,

it is used to store the economic variables that are not included in the FLFleets

objects.

multiCvC: a list used to declare the models used to simulate the covariates and

additional parameters needed to feed those models. In this particular case all

the covariates are constant along time and the “fixedCovar” model is used

for all the covariates.

multiFl: a FLFleets object used to store technical and economic data about the

fleets at fleet, metier and stock level. It has two elements, one per fleet, and

each of the FLFleet objects has two FLMetier objects which in turn have two

FLCatch objects.

multiFlC: a list used to control the fleet dynamics models, the models used to

simulate the short-term dynamics, the catch production, the price formation

the capital dynamics and additional parameters needed to apply those models.

multiMainC: a list used to control the main function at the highest level, the time

period of the simulation and the type of management used, simultaneous for

all the stocks or independently stock by stock.

multiObsC: a list used to control the generation of the observed data which in-

cludes the generation of the abundance indices and the observation of the stock

data. In this case the stock is observed without error and even the numbers

and exploitation at age are observed perfectly. No abundance index is observed

in this case.

multiSR: a list with one FLSRsim object corresponding with the stk1 object, the

age structured stock.

6.2.6 FLBEIA help page

FLBEIA is the main function of the package. Below the help page available in the

R package is presented. This help page describes the model in brief, the input
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data needed to run it and the output produced. Furthermore, if provides several

examples on how to run FLBEIA using the datasets described in section 6.2.5 and

how to analyse the results using the functions in section 6.2.3.

FLBEIA Run the FLBEIA bio-economic simulation model

Description

FLBEIA is a simulation model that describes a fishery system under a manage-

ment strategy evaluation framework. The objective of the model is to facilitate

the bio-economic evaluation of management strategies. The model is multi-

stock, multi-fleet and seasonal. The simulation is divided in two main blocks,

the operating model (OM) and the management procedure (MP). In turn, the

OM is divided in three components, the biological, the fleets and the covariables

component. The MP is also divided in three components, the observation, the

assessment and the advice.

Usage

FLBEIA(biols, SRs = NULL, BDs = NULL, fleets, covars = NULL,

indices = NULL, advice = NULL, main.ctrl, biols.ctrl,

fleets.ctrl, covars.ctrl, obs.ctrl, assess.ctrl, advice.ctrl)

Arguments

biols An FLBiols object.

SRs A list of FLSRSim objects. One per age structured stock in biols

object.

BDs A list of FLSRSim objects. One per biomass dynamics stock in

biols object.

fleets An FLFleetsExt object. An extended version of the FLFleet

object defined in FLCore.

covars A list of FLQuants used to store any kind of variables that are

used within the simulation and are not stored in the standard

objects.
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indices A list of FLIndices. Each element must correspond with one

of the stocks in the biols object.

advice A list with two FLQuant elements, TAC and quota.share. TAC is

an FLQuant with quant dimension equal to the number of stocks

in biols object, the names used in the quant dimension must

be equal to those used in biols. quota.share is a list with one

element per stock in biols object indicating the quota share

per stock and fleet. The quant dimension of the elements must

be equal to the number of fleets and the names used must be

equal to those in fleets objects.

main.ctrl A list with the settings to control the main function (the year

range sim.years and the type of management

SimultaneousMngt).

biols.ctrl A list with the settings to control the biological operating model

for each stock (the population dynamics model used, additional

parameters needed to simulate stock dynamics if necessary).

fleets.ctrl A list with the settings to control the operating model for each

fleet (the models used to describe fleets’ short and long-term

dynamics, price model, catch production and additional param-

eters needed to simulate any of these four processes).

covars.ctrl A list with the settings to control the operating model for each

covariate (the dynamic model used to describe the each covariate

and any additional parameters needed to apply those models).

obs.ctrl A list with the settings to control the observation model for each

stock (the observation model for the catch and biological data,

for abundance indices and additional parameters needed to run

the model).

assess.ctrl A list with the settings to control how the assessment model for

each stock is applied (the assessment model for the stock and

the control parameters used to run the model)

advice.ctrl A list with the settings to control how the advice is generated

for each stock (the HCR for each stock, the reference points used

in the HCR and any additional parameters needed to apply the

HCRs).
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Value

A list with 9 elements: biols, fleets, covars, BDs, advice, stocks, indices,

fleets.ctrl and pkgs.versions. All the elements except stocks and

pkgs.versions correspond with the updated versions of the objects used in the

call to FLBEIA. ‘stocks’ is a list of FLStock objects containing the perceived

stocks generated in the management procedure to produce the management ad-

vice in the last year of the simulation. pkgs.versions is a matrix indicating

the packages and package version used along the simulation.

Examples

## Not run:

library(FLBEIA)

library(FLAssess) # required to use the IcesHCR.

library(FLash) # required to use the IcesHCR.

library(ggplot2)

#----------------------------------------------------------------

# Example with 1 stock, 1 Fleets, 1 seasons and 1 iteration: one

#----------------------------------------------------------------

# Load the data to run FLBEIA in a one stock one fleet example using the

# HCR used by ICES in the MSY framework.

data(one)

# The names and the class of the objects needed to run FLBEIA.

# sapply(ls(), function(x) class(get(x)))

# In this scenario a single, age structured, stock is exploited by a

# single fleet with a unique metier.

# The fleet catches yearly exactly the adviced TAC and there is no

# exit-entry of vessels in the fishery.

# The stock abundance and exploitation level is observed without error

# in the observation model.

# There is no assessment model and the TAC advice is used through the

# HCR used by ICES in the MSY framework.

s0 <- FLBEIA(biols = oneBio, SRs = oneSR, BDs = NULL, fleets = oneFl,
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covars = oneCv, indices = NULL, advice = oneAdv, main.ctrl = oneMainC,

biols.ctrl = oneBioC, fleets.ctrl = oneFlC, covars.ctrl = oneCvC,

obs.ctrl = oneObsC, assess.ctrl = oneAssC, advice.ctrl = oneAdvC)

# Names of the object returned by FLBEIA

names(s0)

# The default plot for FLBiol defined in FLCore

plot(s0[[biols[[1]]]])

# Create summary data frames (biological, economic, and catch)

proj.yr <- 2013

s0_sum <- bioSum(s0)

s0_flt <- fltSum(s0)

s0_fltStk <- fltStkSum(s0)

# Create several plots and save them in the working directory using

# 'pdf' format and 's0' suffix in the name.

plotFLBiols(s0$biols, pdfnm='s0')

plotFLFleets(s0$fleets, pdfnm='s0')

plotEco(s0, pdfnm='s0')

plotfltStkSum(s0, pdfnm='s0')

#------------------------------------------------------------

# Example with several iterations: oneIters

#------------------------------------------------------------

# Load the same data set as before but with 3 iterations.

# Run FLBEIA and plot the results

data(oneIt)

s1 <- FLBEIA(biols = oneItBio, SRs = oneItSR, BDs = NULL,

fleets = oneItFl, covars = oneItCv, indices = NULL,

advice = oneItAdv, main.ctrl = oneItMainC, biols.ctrl = oneItBioC,

fleets.ctrl = oneItFlC, covars.ctrl = oneItCvC, obs.ctrl = oneItObsC,
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assess.ctrl = oneItAssC, advice.ctrl = oneItAdvC)

# Names of the object returned by FLBEIA

names(s1)

# The default plot for FLBiol defined in FLCore

plot(s1$biols[[1]])

# Create summary data frames (biological, economic, and catch)

proj.yr <- 2013

s1_bio <- bioSum(s1)

s1_flt <- fltSum(s1)

s1_fltStk <- fltStkSum(s1)

s1_bioQ <- bioSumQ(s1_bio)

s1_fltQ <- fltSumQ(s1_flt)

s1_fltStkQ <- fltStkSumQ(s1_fltStk)

s1b_bio <- bioSum(s1, long = FALSE)

s1b_flt <- fltSum(s1, long = FALSE)

s1b_fltStk <- fltStkSum(s1, long = FALSE)

s1b_fltQ <- bioSumQ(s1b_bio)

s1b_fltQ <- fltSumQ(s1b_flt)

s1b_fltStkQ <- fltStkSumQ(s1b_fltStk)

# Create several plots and save them in the working directory using

# 'pdf' format and 's1' suffix in the name.

#' plotFLBiols(s1$biols, pdfnm='s1')

plotFLFleets(s1$fleets, pdfnm='s1')

plotEco(s1, pdfnm='s1')

plotfltStkSum(s1, pdfnm='s1')

#------------------------------------------------------------------

# Example with 2 stock, 2 Fleets, 4 seasons and 1 iteration: multi

#------------------------------------------------------------------

# Load the multi data set. This dataset has 2 stocks, one stk1 is
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# age structured and the second one stk2 is aggregated in biomass.

data(multi)

# Run FLBEIA.

s2 <- FLBEIA(biols = multiBio, SRs = multiSR, BDs = multiBD,

fleets = multiFl, covars = multiCv, indices = NULL, advice = multiAdv,

main.ctrl = multiMainC, biols.ctrl = multiBioC, fleets.ctrl = multiFlC,

covars.ctrl = multiCvC, obs.ctrl = multiObsC, assess.ctrl = multiAssC,

advice.ctrl = multiAdvC)

# Names of the object returned by FLBEIA

names(s2)

# The default plot for FLBiol defined in FLCore

plot(s2$biols[[1]])

# Create summary data frames (biological, economic, and catch)

s2_sum <- bioSum(s2)

s2_flt <- fltSum(s2)

s2b_flt <- fltSum(s2, byyear = FALSE)

s2_fltStk <- fltStkSum(s2)

# Create several plots and save them in the working directory

# using 'pdf' format and 's2' suffix in the name.

plotFLBiols(s2$biols, pdfnm='s2')

plotFLFleets(s2$fleets, pdfnm='s2')

plotEco(s2, pdfnm='s2')

plotfltStkSum(s2, pdfnm='s2')

## End(Not run)
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6.3 FLBEIAshiny package

The aim of the FLBEIAShiny package is twofold, to provide a tool that can be used

by the developers to quickly analyse and present the results and a decision support

tool that can be used by the stakeholders.

FLBEIAShiny package launches a Shiny application using the output of FLBEIA

directly or from a set of data frames obtained using the functions in Section 6.2.3. In

principle, this library could be used with the output of other models as long as the

data is arranged in data frames with the same format as those described in Section

6.2.3, but not necessarily with the same output variables. To load this package into

an R session it is necessary to install ‘coda’, ‘emdbook’, ‘kobe’, ‘reshape’,

‘shiny’ and ‘shinyBS’ R packages beforehand. These packages are available in

CRAN repository (https://cran.r-project.org/).

The package contains only one function , flbeiaApp, which help page is shown

in the following section.

6.3.1 flbeiaApp help page

Description

FLBEIAShiny application is an interactive interface to analyse the biological,

economic and social indicators obtained through FLBEIA simulation model. It

provides lots of graphics at scenario, stock, fleet and metier level to facilitate the

analysis of the results and the comparison among scenarios.

Usage

flbeiaApp(flbeiaObjs = NULL, RefPts = NULL, bio = NULL,

flt = NULL, fltStk = NULL, mt = NULL, mtStk = NULL, adv = NULL,

risk = NULL, years = dimnames(flbeiaObjs[[1]][[1]][[1]]@n)[[2]],

calculate_npv = NULL, npv = NULL, npv.y0 = NULL, npv.yrs = NULL)

Arguments

flbeiaObjs A named list with a set of FLBEIA outputs, each element of the

list corresponding with one scenario. The names of the list are

used to name the scenarios.

RefPts A data frame with columns, ‘stock’, ‘scenario’, ‘indicator’, and

‘value’, with the values of ‘Bmsy’,‘Fmsy’, ‘Bpa’, ‘Blim’, ‘Fpa’

https://cran.r-project.org/
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and ‘Flim’ per stock and scenario. If the value for certain stock

and/or scenario is not available NA should be used. If the

data.frame is not available in the function call the data frame is

created internally with NA-s in all the cases.

bio The output of bioSumQ function.

flt The output of fltSumQ function.

fltStk The output of fltStkSumQ function.

mt The output of mtSumQ function.

mtStk The output of mtStkSumQ function.

adv The output of advSumQ function.

risk The output of riskSum function.

years The years to be included in the application.

calculate npv

logical, should the net present value (NPV) be calculated?

npv The output of npvQ function.

npv.y0 The first year in the calculation of NPV.

npv.yrs The range of years to be considered in the NPV calculation.

Details

If flbeiaObjs is provided most of the other arguments (from bio to npv) are

not needed, they are internally calculated. If it is not provided, it is necessary

to provide the rest of the arguments.

Value

The function launches a Shiny-App to analyse the results of FLBEIA in an inter-

active way.

Examples

library(FLBEIAShiny)

#----------------------------------------------------------------

# Example with the summary indicators stored in data.frame-s

#----------------------------------------------------------------
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data(FLBEIAShiny)

flbeiaApp(RefPts = RefPts,bio = bioQ, flt = fltQ, adv = advQ,

fltStk = fltStkQ, mt = mtQ, mtStk = mtStkQ, risk = risk,

years = as.character(2010:2024),

calculate_npv = FALSE, npv = NULL, npv.y0 = NULL, npv.yrs = NULL)

#----------------------------------------------------------------

# Run FLBEIA first and then use the output to launch flbeiaApp.

# In this case we use the output of FLBEIA directly.

#----------------------------------------------------------------

library(FLBEIA)

data(oneIt)

one_sc1 <- FLBEIA(biols = oneItBio, SRs = oneItSR, BDs = NULL,

fleets = oneItFl, covars = oneItCv, indices = NULL, advice = oneItAdv,

main.ctrl = oneItMainC, biols.ctrl = oneItBioC, fleets.ctrl = oneItFlC,

covars.ctrl = oneItCvC, obs.ctrl = oneItObsC, assess.ctrl = oneItAssC,

advice.ctrl = oneItAdvC)

# We change the target reference point in HCR and run a second scenario

oneItAdvC$stk1$ref.pts['Fmsy',] <- 0.2

one_sc2 <- FLBEIA(biols = oneItBio, SRs = oneItSR, BDs = NULL,

fleets = oneItFl, covars = oneItCv, indices = NULL, advice = oneItAdv,

main.ctrl = oneItMainC, biols.ctrl = oneItBioC, fleets.ctrl = oneItFlC,

covars.ctrl = oneItCvC, obs.ctrl = oneItObsC, assess.ctrl = oneItAssC,

advice.ctrl = oneItAdvC)

scnms <- c('Ftarget_Fmsy', 'Ftarget_0.15')

stknms <- 'stk1'

RefPts <- expand.grid(

indicator = c("Bmsy", "Fmsy", "Bpa", "Blim", "Fpa", "Flim"),

scenario = scnms, stock=stknms, value=NA)[,c(3,2,1,4)]

RefPts$value <- c(800, 0.11, 800, 550, 0.25, 0.50,
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800, 0.2, 800, 550, 0.25, 0.50)

flbeiaObjs <- list(Ftarget_Fmsy = one_sc1, Ftarget_0.15 = one_sc2)

flbeiaApp(flbeiaObjs = flbeiaObjs, RefPts = RefPts,

years = ac(2000:2025), calculate_npv = TRUE,

npv.y0 = '2012', npv.yrs = ac(2013:2025))

6.3.2 Appearance

Figure 6.1 shows the main page of the FLBEIAShiny application. It is the page that

emerges when the call is done from the R session. The ‘about’ page gives a short

description of FLBEIA and the ‘simulations’ dropdown gives access to the summary

output variables at different levels. In the dropdown, there is one link for each of

the summary indicator categories:

Stocks: page with the stock output variables. It has three plot types available that

are displayed in different sub-pages, ‘Time Series’, ‘Kobe plot’ and ‘Biological

risk’.

Fleets: page with the fleet output variables. It has three plot types available that

displayed in different sub-pages, ‘Time Series’, ‘Net Present Value’ and ‘Eco-

nomic risk’.

Fleets by stocks: Page with fleet output variables related with the stocks. Only

plots of time series are available in this page.

Metiers: page with output variables at metier level. Only plots of time series are

available in this page.

Metiers by stock: page with metier output variables related with the stocks. Only

plots of time series are available in this page.

Summary: page with a summary plot of the biological and economic results.

Advice: page with the output variables related with the advice. Only plots of time

series are available in this page.

The time series plots are the same for all the output variables (Figure 6.2). The

lines correspond with the quantiles provided in the data frames or the 5%, 50% and

95% in case they are calculated internally. The shaded area corresponds with the

confidence interval between the two quantiles and the line in the middle with the

median. The output variables, stock or fleets, and scenarios are selected in the left
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Figure 6.1: Main page of the FLBEIA Shiny application.

hand side of the window. For each combination of indicator and stock or fleet there

is one panel and the scenarios are plotted in the same panel using different colors.

As the value of the output variables can have very different scale the plots can share

the same scale or not using the bottom in the left hand side.

At stock level there is the option of generating Kobe plots (Nishida et al. 2011)

(Figure 6.3). The Kobe plot divides the [0,∞)2 area in four quadrants. The x-

axis represents the ratio between the SSB and the SSB reference point at MSY. In

turn, the y-axis represents the ratio between the fishing mortality and the fishing

mortality reference point corresponding to MSY. The green quadrant, [1,∞)× [0, 1)

corresponds with the area where the stocks are exploited sustainably, i.e., the SSB is

above the reference level and the fishing mortality is below it. The yellow quadrants

correspond with the stock being overfished (F > Fmsy but SSB > Bmsy, i.e, [1,∞)×
[1,∞)) or suffering of overfishing (F < Fmsy but SSB < Bmsy, i.e, [1,∞)× [0, 1)).

The red quadrant corresponds with the area where the stock is being overfished and

suffering of overfishing, i.e. [0, 1)× [1,∞) .

The biological risk window shows the probability of SSB being below a given

precautionary (pBpa) or limit (pBlim) reference point (Figure 6.4). The plots are

time series of the probabilities over time. Similar plots are also available, only at

fleet level, for the probability of the profits being below a given threshold. There
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Figure 6.2: Time series plots for biomass and fishing mortality (f) output variables
for Hake and Cod stocks.

Figure 6.3: Kobe plot of cod, hake and sole stocks.
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Figure 6.4: Risk plots.

is one panel per stock or fleet and the scenarios are drawn in the same panel using

different colors. The stock, fleets, output variables and scenarios are selected in the

left hand side.

The results in each scenario are summarized using the polar plots in the summary

page (see Figure 6.5). These plots are divided in four quadrants and each one

correspond with one indicator SSB, fishing mortality, gross surplus and capacity.

In each quadrant the fleets or the stocks are represented with triangles of different

colors. The area of the triangle is proportional to the ratio of value of the indicator

in the last year and the reference value. If the triangle is equal to the circle it means

that the value of the indicator in the last year of simulation and the reference period

is the same. Each plot corresponds with one scenario and the scenarios are selected

in the left hand side of the plot.

All the plots can be downloaded using the option in the bottom of the left hand

side of the page (Figure 6.6). There are several formats available to save the plots.

The size and the name of the plot are selected by the user. The scale is used to

change the size of the text in the plot and corresponds with the argument scale in

the ggsave function in ggplot2 R package.
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Figure 6.5: Polar plots. In each quadrant a different indicator is shown, spawning
stock biomass (SSB), fishing mortality (F), gross surplus and capacity. The circle
represents the status quo situation.

Figure 6.6: All the plots can be downloaded using the options in the left hand size
of the page.
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6.4 Calibrated visual selection and convergence criteria

in practice

The calibrated visual selection criterion defined in Section 3.2.1 has been imple-

mented in R using two functions, selection criterion and

selection criterion boot. The first one calibrates the selection criterion based

on a visual selection of the input factors, i.e, it calculates de values wD, wF and

wH defined in Section 3.2.1. Then, the second function uses the weights calculated

by the first function to apply the calibrated visual selection criterion to a bootstrap

sample of the Morris AEEs. Hence, for each bootstrap iteration, it returns the set

of factors selected with the calibrated visual criterion.

Thus, to apply the convergence criterion it is enough to produce bootstrap sam-

ples of the AEEs increasing the number of trajectories used until the number of

factors selected with the selection criterion, Fr do not change when the number of

trajectories are increased.

To use the selection criterion function, first we need to define the arguments

of the function KEE , Nboot and ν, for example:

K_EE <- 15

Nboot <- 500

nu <- 0.95

Afterwards we have to carry out a visual selection of the input factors to identify

the set Fvis. For doing so, first we plot the AEE for each of the output variables,

in this example, the SSB, recruitment and catch of hake and horse mackerel. As an

illustrative example, only the 15 factors with the highest AEE are plotted.

We select the factors in such a way that the selected input factors for each output

variable differentiate from the rest of the factors and they result in the cardinality

of Fvis equal to KEE = 15:

Nvis <- c(ssb_HKE = 3, ssb_HOM = 2,

rec_HKE = 2, rec_HOM = 4,

catch_HKE = 4, catch_HOM = 3)

And we identify the input factors selected in the visual selection.

Fvis <- unique(unlist(lapply(names(Nvis), function(id)

as.character(subset(AEE, outVar == id)[1:Nvis[id],'name']))))
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Figure 6.7: Barplots with the AEEs for six output variables the spawning stock
biomass (ssb), recruitment (rec) and catch of hake and horse mackerel. Only the 15
factors with the highest AEE are plotted.
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Fvis

[1] "q.oth_HOK_DFN_5" "price_HOK6" "w1" "TAC_HO8"

[5] "stkN_error_mon" "q_mon_PT_TRAWL" "Hke_m" "q_hom_PT_ART"

[9] "stkN_error_hom" "rec_mod_hom" "ldb_wt" "Disc_error_ldb"

[11] "stkN_error_ldb" "w2" "fcost_hok"

Once we have the visual selection we use the function selection criterion

to calibrate the selection criterion to obtain parameters, δF, δH, δD wF, wH and wD

needed to apply the selection criterion:

FM <- selection_criterion(AEE, K_EE, Nvis)

To ensure the convergence of the method we apply a bootstrap to the calibrated

visual selection criterion using selection criterion boot function. We start using

25 trajectories and increase the number gradually until we see that the number of

input factors selected does not vary. With 25 trajectories, 5 input factors are selected

in more than 95% of the bootstrap iterations.

load('./example/AEE_Boot_25.RData')

F25_all <- selection_criterion_boot(AEEboot, K_EE, FM$weights)

Bootstrap iteration: 1

Bootstrap iteration: 2

Bootstrap iteration: 3

.

.

.

Bootstrap iteration: 500

F25 <- names(F25_all[which(F25_all>=alpha*Nboot)])

length(F25)

[1] 5

We apply the same process: the visual selection, the calibration and the boot-

strap for 50, 100and150 trajectories and we see that the method converges with

100 trajectories and 10 input factors are selected: "Hke m", "Hom m", "hom wt",



174 Chapter 6.

"rec hke", "rec mod hom", "efs dts", "rec mod hke", "hke wt", "rec hom"

and "Nhom". .

An R script with the whole code and the data needed to run it is available in

github https://github.com/dorleta/robust_Morris_Sobol and zenodo Garcia

(2019).

6.5 Shiny application for Global Sensitivity Analysis re-

sults

The complete set of plots of the GSA conducted in Chapter 5 are presented in a Shiny

application explicitly developed to present these results. The application is accesible

in https://aztigps.shinyapps.io/GSAApp/ with the password ‘flbeiaGSA’. The

plots are divided in two pages, the plots corresponding with the results of Morris

elementary effect method and the plots corresponding with the results of the Sobol

variance decomposition method. In turn, for each of the methods the plots are

divided in two groups, the plots corresponding with the stock’s output variables

and the plots corresponding with the fleet output variables. The stocks, fleets and

output variables are selected using the buttons available in the left hand side of the

page. In each page several plots can be plotted and the configuration of the page

is defined by the user; the variables that appear in the columns and the rows, the

output variables, and the stocks or the fleets. This feature is specially important

to facilitate the identification of patterns at indicator, stock or fleet level depending

on how they are displayed. The number of factors displayed can be selected by the

user and only the factors with the highest AEE or importance index are shown.

The value of the elementary effects and the importance indices are represented in

barplots, ordered according to its value from the highest to the lowest.

In the case of Morris method, the factors selected with each criterion can be

visualized selecting the criterion in the left hand side of the web page (Figure 6.7).

When a criterion is selected, a vertical line is drawn which divides the factors in

two groups, the factors selected by the criterion on the right of the line, and the

non-selected ones on the left of the line.

In the case of Sobol variance decomposition method there are two bars. When

the bars are not stacked the blue bars correspond with the total-effect indices (Figure

6.9). In both cases, the first-order indices correspond with the red bars, but when

the bars are stacked, the total-effects are represented with the sum of both bars, the

https://github.com/dorleta/robust_Morris_Sobol
https://aztigps.shinyapps.io/GSAApp/
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Figure 6.8: Barplots of the Morris elementary effects. The horizontal lines corre-
spond with the selection criteria. Due to the restriction in space only part of the
page is shown.
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blue and the red ones (Figure 6.10). In the left hand side menu of the web page the

user chooses how to show the bars. Furthermore, if the option is non-stacked there

is the option of plotting the 95% confidence intervals (the black lines in Figure 6.10).

The number of factors shown for each indicator can be selected using the desired

number of factors or the desired group of factors in the ‘set of factors menu’ (the

factor related with a certain stock distinguished by the acronym of the stock,the

economic factors ‘ECO’, the technical factors ‘TEC’, the factors related with the

catch advice ‘ADV’ and the factors related with the observation error ‘OBS’).
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Figure 6.9: Barplots of the Sobol variance decomposition indices. The red bars
corresponds with the first order indices and the blue ones with the total indices.
The black segments represent the 95% confidence intervals. Due to the restriction
in space only part of the page is shown
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Figure 6.10: Barplots of the Sobol variance decomposition indices. The red bars
corresponds with the first order indices and the blue ones with the total indices.
The black segments represent the 95% confidence intervals. Due to the restriction
in space only part of the page is shown



Chapter 7
Conclusions and future work

7.1 Conclusions

7.1.1 Use, application and validation of FLBEIA.

Use Nowadays, the use of FLBEIA has been extended beyond the development

team. Furthermore, it has become one of the most used bio-economic simulation

models to support the fisheries management decision making process in Europe. In

practice, the flexibility and utility of FLBEIA has been demonstrated by the large

number of case studies in which it has been applied.

FLBEIA includes the two most common structures used to model the growth of

fish populations: age and total biomass structures. The growth of the former is mod-

elled using the exponential survival model based on Lotka (1922) and McKendrick

(1926), and the latter using a model based on Verhulst (1838). The short-term

dynamics of a fleet can be modelled using models based on tradition or profit max-

imisation. These models have been used to model fleets that target a single stock

(Sánchez et al. 2018), as well as mixed fisheries where a set of stocks are caught

simultaneously (Garcia et al. 2017a) and sequential fisheries, which are a specific

case of mixed fisheries but with a strong seasonal component (Andres et al. 2020).

For the long-term dynamics, only the model described in Salz et al. (2011) is in-

cluded in FLBEIA. In the literature, these models have received less attention and

their practical use in bio-economic models is scarce (Nøstbakken et al. 2011).

In the MP, the observation of all the variables simulated in the OM can be subject

to error. In the application of GSA in this thesis, we saw the usefulness of including

these errors explicitly in the simulation. Several assessment models (FLa4a, FLXSA

179
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and SPiCT) can be already used within FLBEIA. SS3 (Methot Jr and Wetzel 2013)

and Bayesian models implemented in JAGS (Plummer 2003) have been also used for

the Iberian sardine (ICES 2019) and for cod in the Northwest Atlantic (González-

Troncoso et al. 2015), respectively. However, their use has not been generalised in

FLBEIA, in the first case, because the model is too complex and has many options

to configure the fit, and in the second, because the model itself is case specific.

FLBEIA includes a wide range of HCRs which return catch advice for the stocks.

They can be model-free or model-based, depending on whether they use the output

of an assessment model to generate the advice or an abundance index. Recently,

a multi-stock harvest control rule has been implemented which is applied to a set

of stocks simultaneously (Garcia et al. 2019b). Additionally, technical management

measures can be also simulated, for example Prellezo et al. (2017) analysed a change

in the mesh size of the trawler fleet. Effort-based management can also be simulated,

defining the overall effort as an input factor.

The use of FLBEIA has been focused on providing scientific advice and on con-

ducting scientific research. The main implementations of FLBEIA carried out over

the years are listed in Table 7.1. Its extended use has led us to teach three inter-

national courses since 2017, and in 2020 we have a fourth course already planned.

The model has awakened the interest of other scientists not only for the application

of the model but also for collaboration in new developments. Within the MARES

European project (http://www.mares-eu.org/), we are collaborating with a re-

search team to show the value added of using realistic models of fleet dynamics in

the decision making process. As a result of this collaboration, new models of fleet

dynamics will be coded in FLBEIA. Moreover, we are collaborating with the Institute

of Marine Research in Norway to link FLBEIA with the Gadget multi-species model.

One of the strengths of FLBEIA is that it is built using FLR libraries. FLR is a

collaborative project oriented towards developing quantitative fisheries management

tools. Since the preliminary versions of the basic FLR libraries, more than 10 years

ago, its use for exploratory data analysis, stock assessment, bio-economic modelling

and MSE has been extended among fishery scientists, especially in Europe. Accord-

ing to Google Scholar, the FLR article (Kell et al. 2007) has been cited more than

290 times since 2007, a significant number of those papers use FLR to carry out their

analysis and have been published in peer reviewed journals. Most of them involve

some kind of MSE and a few present generic methods implemented as R packages

(R Core Team 2019). Jardim et al. (2014b) present a new stock assessment model,

Ulrich et al. (2011) and Poos et al. (2010) fleet dynamics models, and Jardim et al.

http://www.mares-eu.org/
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Table 7.1: Main applications of FLBEIA in working groups, international projects
and other research activities.

Activity Entity Description Reference

Advice ICES Generation of mixed fisheries man-
agement advice in ICES

ICES (2018b)

Advice STECF Evaluation of mixed fisheries
multi-annual management plans
for Western Waters

STECF (2015b)

Advice STECF Evaluation of the management
plan for Bay of Biscay Anchovy to-
gether with stakeholders

Sánchez et al. (2018),
STECF (2014)

Advice ICES Evaluation of rebuilding strategies
for Iberian Sardine

ICES (2019)

Advice NAFO Development of a MSE for cod in
division 3M

González-Troncoso
et al. (2015)

Research DAMARA
project

Development of a scientific deci-
sion support tool for mixed fish-
eries in the Celtic Sea

EC (2016)

Research STECF Contrast FLBEIA against flexibil-
ity, applicability and utility crite-
ria. Recommendations used to im-
prove FLBEIA development

Jardim et al. (2013)

Research DeepFisMan
Project

Management strategies for three
deep-water case studies

Garcia et al. (2013)

Research MyFish
project

Bio-economic performance of
multi-stock reference points for
mixed fisheries. Modelling ap-
proach validated by stakeholders

Garcia et al. (2017a;
2015)

Research DrumFish
Project

Multi-stock harvest control rule to
produce consistent catch advice for
mixed fisheries

Garcia et al. (2019b;
2016)

Research AZTI Sampling priorities for Iberian Wa-
ters demersal fishery

Garcia and Prellezo
(2016)

Research AZTI Bio-economic impact of changing
the mesh size in a trawler fleet

Prellezo et al. (2017)

Research Discardless The good and the bad side of the
landing obligation policy in Euro-
pean waters

Prellezo et al. (2016)

Research DrumFish
Project

Bio-economic impact of the com-
mon fisheries policy in the North
Sea demersal fishery

Taylor et al. (2018)
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(2014a) HCRs. All these developments can be directly integrated into FLBEIA.

We believe that the main reasons for the extensive use of FLBEIA are: its being

part of the R and FLR (Kell et al. 2007) projects, its use of standard input data

formats, its having extensive material to help new users implement their own case

studies, and the great dedication of the FLBEIA team in both applying it in a broad

range of case studies and in helping new users.

Last but not least, it is being used as part of three doctoral theses to contribute

to answer research questions about the behaviour of fishers in mixed fisheries, the

management of the Bay of Biscay sardine, and the management of data limited

stocks in mixed fisheries.

Application The application of FLBEIA described in Chapter 4 shows the useful-

ness of these type of models in informing the policy making process. In particular,

it demonstrated how the definition of alternative reference points could mitigate

the negative economic impact of the landing obligation policy while ensuring the

sustainability of fish stocks.

When subjected to the landing obligation, if selective fishing is not possible, the

quotas of limiting stocks become an input management factor, i.e. they determine

the amount of effort that the fleets are able to execute. In this regard, the loss in

profits generated by the implementation of the landing obligation in some fleets is

not only generated by the loss in the landing of the stocks subject to the TAC and

quota system but from the loss in the landing of other valuable stocks for which

there is no catch restriction, but of which the catch is limited by the limitation in

effort generated by the restrictive stocks.

If the landing obligation were fully implemented and enforced, current distri-

bution of catch quota shares together with the incapacity of the fleets to be fully

selective would prevent a full use of fishing opportunities. Hence, the landing obli-

gation should be accompanied by a management system that ensures consistency

between single-stock TACs at the fleet level to ensure the full use of fishing oppor-

tunities.

The selectivity of the fleets was calculated using the catch and effort data ob-

tained through the European data collection framework. The detail provided by this

data in relation to the inter-species selectivity of the fleets could be too coarse to

obtain an adequate description of the real capacity of fishers to discriminate between

stocks in their fishing operations. Ideally, the data should be provided at fishing op-

eration level, but this could only be attained if fishermen recorded the composition
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of the catch in each operation. Nevertheless, video sampling together with machine

learning open a range of possibilities in this field.

Validation The validation of FLBEIA has been carried out mainly on four sides:

the systematic checking of the code, an extensive use of the model in diverse case

studies, the presentation of the model to stakeholders and the GSA carried out in

this thesis.

The GSA conducted as part of this thesis constituted a breakthrough in the

validation process of bio-economic models providing scientific advice in fisheries

management. It provided a deep understanding of the behaviour of the model and an

invaluable tool to identify how the input factors drive the dynamics of the output

variables. Furthermore, it estimated the contribution of the input factors to the

variance of the output variables and the overall variance. The estimates of the

generalised sensitivity indices provided a ranking of the overall contribution of the

input factors to the output variance, which, in turn, provided a scientific basis

to prioritise the research effort needed to make advances in the knowledge of the

functioning of this fishery system in particular.

7.1.2 Selection and convergence criteria

We defined a selection and a convergence criteria to ensure a robust combination

of the Morris and the Sobol methods. Furthermore, these criteria could be used

with other elementary effect screening methods and computationally costly GSA

methods. On the one hand, the calibrated visual criterion mimics the visual selection

criterion. On the other hand, the convergence criterion was specifically defined

to ensure the convergence of the Morris method when the objective is to select

a maximum number of input factors. While the selection criterion outperformed

other existing criteria, the computing load required to achieve convergence with the

new convergence criterion was lower than that needed by criteria related with other

objectives.

The selection criterion provides an objective and robust way of selecting the most

important input factors in the Morris method. The criterion needs to be calibrated

using a visual selection in an initial application of the method but then it can be

applied automatically. Such automating is essential to assess the convergence by

means of bootstrap. Furthermore, it is also useful when there are several output

variables because it allows applying the same criterion in the selection of input
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factors for all the variables and avoids the inconsistencies that could arise with the

visual criterion.

If the aim is to explain the variance of every single output variable or the number

of input factors to be selected is high, the calibrated visual criterion is always better

than the other criteria used in the literature (fixed number of factors and Savage

criteria). However, if the interest is to select the input factors that are the most

important at an overall level, even if the input factors that explain a significant

part of the variance of a single output variable are left out and the number of input

factors to be selected is low, the Savage criterion (Campolongo et al. 2007, Savage

1956) performs better than the calibrated visual criterion.

7.1.3 Global sensitivity analysis of fisheries management simulation

models

The computational cost of the Sobol method increases exponentially with the num-

ber of input factors. Hence, it is extremely important to condition the model ef-

ficiently, so that the effective number of input factors is kept as low as possible.

In Chapter 3 we approached the problem of reducing the number of input factors

from two sides: the robust combination of the Morris and the Sobol methods and

the reduction in the number of input factors through an efficient conditioning of

the model. The guidelines proposed to condition the model efficiently also remove

the correlation between some of the input factors, allowing the use of standard

GSA methods. Additionally, we proposed other guidelines to deal with observable

variables in the MP, and to reduce the computational burden of the variance decom-

position method looking at the convergence of the sensitivity indices of individual

input factors. Thus, this thesis contributes to fight one of the biggest drawbacks of

the method, its high computational cost, and also facilitates the use of the standard

methods.

Multi-stock and multi-fleet fisheries management simulation models usually have

hundreds of input factors. Performing an adequate uncertainty conditioning includ-

ing all the input factors would be practically unaffordable. As done here, the GSA

can be applied with wide confidence intervals in the input factors, and subsequently,

use the results to guide the effort in the uncertainty conditioning of a reduced num-

ber of input factors.

Local sensitivity analysis is usually used in fisheries management simulation mod-

els (Essington 2007, Ives et al. 2013, Mackinson et al. 2003) and elsewhere (Saltelli
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et al. 2019) to assess the impact of variability in the input factors in the output vari-

ables. Here, we have proved that local sensitivity analysis is not adequate for FLBEIA

because the output variance was explained largely by the interaction between input

factors and local sensitivity analysis ignores the effect of the interaction between

input factors. Hence, local sensitivity analysis would result in an underestimation of

the importance of the input factors. Many fisheries simulations models use the same

mathematical models used in FLBEIA to describe the processes that build them up.

Hence, for those models local sensitivity analysis would be also invalidated with this

analysis.

Even if included by the European Commission in the impact assessment guide-

lines (EC 2009), the routine application of this type of approach in the framework of

impact assessment would be compromised due to the time available to carry out the

whole impact assessment process. If even with the guidelines proposed in this the-

sis the cost of applying the variance decomposition method is unaffordable and the

purpose of the analysis is only to identify the most influential factors in the model,

the Morris method could be a good approximation to the more informative variance

decomposition approach (Gan et al. 2014, Ikonen 2016, Kristensen and Petersen

2016). To improve the estimation of the importance indices, the sampling in the

Morris method could be replaced by the radial sampling proposed by Campolongo

et al. (2011).

7.1.4 Global sensitivity analysis in practice

The GSA provides valuable information for understanding the inner behaviour of

FLBEIA. It provides information about the direct effect of the input factors and the

effect of the interaction between factors on the output variables. Furthermore, this

information revealed the importance of the processes that build up the model. For

example, the short-term dynamics of the fleets were revealed to be a key component

in the model, as already noted by other authors (Fulton et al. 2011a). In contrast,

the importance of the stock-recruitment process, which is usually considered one of

the most important processes (Rademeyer et al. 2007), was proved to be lower than

expected. The general patterns observed in the sensitivity indices were largely ex-

plained by the models used to describe the dynamic of the system. For example, the

Morris method discarded most of the economic indicators because the fleet dynamics

were not constrained by economic incentives. Regarding the management process,

the analysis showed that an improvement in the management process, through a
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higher accuracy in the observable variables and stock status estimates, would im-

pact directly on the catch advice and fleets’ indicators, such as effort or profits, but

would have a minor impact on biological indicators.

GSA has proven to be a useful tool to identify the stocks for which accurate

assessment is required in the framework of mixed fisheries. The stocks that drive

the fleet dynamics (the target stocks) should be accurately assessed. But the uncer-

tainty in the assessment of the non-target (secondary) stocks has little impact on

the performance of the bio-economic system and the accuracy in its assessment is

not that important. However, this does not mean that the non-target stocks could

be managed exclusively through the management of target stocks in a mixed fish-

eries framework. Non-target stocks need to be monitored and managed by specific

measures because otherwise the absence of management could create incentives to

over-exploit them. Furthermore, we suspect that the result could be related with

the short-term dynamics of the fleets.

Although the GSA has been applied in a particular case study, many of the

conclusions can be extrapolated to other FLBEIA model implementations, or similar

model implementations, whenever the stock and fleet dynamics are governed by

similar conditions.

In summary, this thesis not only provides a tool to support the decision making

process in fishery management but also a set of guidelines for improving the way

fisheries simulation models are used in practice.

7.2 Further work

7.2.1 Economic equilibrium models

The economic variables used in bio-economic fisheries simulation models are usually

maintained constant along time and conditioned based on past data. However,

fish prices and salaries, for example, are the consequence of an equilibrium in the

market (the supply and demand). In recent years, fisheries simulations models that

estimate the economic indicators dynamically based on the future expectations of the

fishers have been developed. A detailed description of these models can be found

in Da-Rocha et al. (2017) . However, these models cannot be integrated directly

with FLBEIA because the two modelling approaches are different. While FLBEIA is

discrete in time and uses equations in differences to describe the dynamic of the

fishery system, the model in Da-Rocha et al. (2017) is continuous and uses partial
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differential equations. However, under the principle of rational expectations they

could be made compatible. The model in Da-Rocha et al. (2017) can be applied at

each time step to dynamically update the prices based on the rational expectations of

the fishers. Then, the other components of FLBEIA could be executed independently.

Nevertheless, this is a simplification of what is really needed. The link between

both models is not straightforward and coupling both approaches requires further

research.

7.2.2 Link of FLBEIA with the Gadget model.

The FLBEIA development team is collaborating with the Norwegian Institute of

Marine Research to link it with the multi-species model Gadget (Begley 2004). This

link would provide length structure and trophic interactions to FLBEIA’s biological

OM. This development would make the biological OM of FLBEIA much more general

and it would make FLBEIA occupy a prominent position among ecosystem models of

intermediate complexity. The model will need to be tested and put into practice in a

real case study. However, conditioning such a complex model is not straightforward

and will require a big research effort in defining the stocks and their interactions

among others.

7.2.3 Metamodels

Metamodels are statistical approximations of simulation models in which the ex-

ecution time is negligible in comparison with that of the original model (Barton

1998, Coutts and Yokomizo 2014). They are usually used to approximate complex

simulation models to address the problem of their computational burden. In GSA

they have been extensively used to calculate sensitivity indices (Gratiet et al. 2016,

Marrel et al. 2009). In some cases, depending of the form of the metamodel, the

sensitivity indices can be calculated analytically, and the computational cost of the

analysis is thus reduced to the cost of adjusting the metamodel. In the framework

of FLBEIA, metamodels could be useful in two areas: in the calculation of sensitivity

indices and in the real-time application of FLBEIA. On the one hand, the metamodel

could enormously reduce the cost of the sensitivity analysis and would allow calcu-

lating high order sensitivity indices. On the other hand, if the metamodel provided

a good enough FLBEIA fit and executed quickly, it could be used in life sessions with

stakeholders to test alternative hypotheses about the system dynamics and man-

agement strategies on demand. Nowadays, a battery of scenarios needs to be run
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beforehand to be able to show a wide range of alternative scenarios.

A possible drawback of metamodels could be the effort needed to build them,

which may not compensate for the computational saving in the estimation of the

sensitivity indices. However, the development of a statistical framework to facilitate

building metamodels for particular FLBEIA implementations could reduce the effort

needed to build the metamodels in practice. The metamodels would promote the

application of GSA methods. Moreover, they would be an invaluable tool to interact

with stakeholders in the definition of fishery management strategies.

7.2.4 Assessment of data-limited stocks

In this thesis we found that the combination of GSA and MSE can be used to identify

the stocks for which the accuracy in the assessment could be relaxed. In many

fisheries the number of exploited stocks is so high that it is practically impossible to

have quantitative assessments for all of them. Traditionally, the most commercial

valuable stocks were only assessed. However, in the last decade there has been

a tendency to increase the number of stocks assessed. As having enough data to

apply traditional stock assessment models is usually impossible for all the stocks, the

research on the assessment and management of data-limited (also known as data-

poor) stocks became a hot topic in the last decade (Carruthers and Hordyk 2018,

Chong et al. 2019, Dowling et al. 2019, Kokkalis et al. 2017). However, there are

still many stocks without reliable quantitative assessments. In this framework, a

robust method for identifying the stocks for which stock assessment is not needed

to guarantee a sustainable exploitation, could provide a scientific basis to efficiently

allocate the research effort of stock assessment.

However, the simulations carried out in this thesis were not designed to identify

those stocks; the finding was incidental, indeed. Hence, further research would

be needed to prove that the assessment of some stocks could be relaxed or even

eliminated. The design of the scenarios and their conditioning should be focused

on determining under which conditions and assumptions the assessment of a certain

stock can be removed. Based on the results obtained, we can anticipate that the

answer to this question will depend largely on the model used to describe fleet

dynamics. Moreover, the uncertainty in effort share, one of the key parameters in

fleet dynamics models, is the input factor with the biggest contribution to the overall

variance. Hence, it could be necessary to apply GSA to scenarios with different fleet

dynamics. Additionally, the uncertainty conditioning of the model, and especially
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that of the errors in the assessment and parameters of the fleet dynamics, should be

carried out cautiously to obtain reliable results.

7.2.5 Uncertainty conditioning

In the application of the GSA in Chapter 5, as done usually in the literature, we

used the same CV and probability distribution to condition the uncertainty in all

the input factors. A more detailed approach would require adjusting the CV and the

distribution to the observed data and prior knowledge. However, in most of the cases

the available data and time precludes to perform a detailed uncertainty conditioning.

The application presented in Chapter 5 proved that uncertainty conditioning could

be focused exclusively on the 26 input factors that had a significant contribution

to the output variance. The rest of the input factors could be conditioned using

their mean value. Carrying out a complete uncertainty conditioning for the 26 input

factors will provide an improved sensitivity analysis compared to the one carried out

in this thesis. However, the research on uncertainty conditioning should be expanded

to advance in the uncertainty conditioning of fishery simulation models in general

with special attention to the conditioning of the correlation between input factors.

Although it is usually assumed that most of the input factors are independent, many

of them are in fact correlated. Correlation between input factors could prevent the

use of traditional GSA methods and it would be necessary to recondition the model

to avoid correlation, or to apply more sophisticated GSA methods.

7.2.6 Fleet dynamics models

The effort share was identified as the most important input factor. We are already

collaborating in a research project to develop new statistical approaches to describe

fleet short-term dynamics and to show the value added of using more realistic models

in the evaluation of fishery management strategies. Additionally, the era of big

data, the recent availability of vessel monitoring system data and other electronic

monitoring systems open a new window in the field of fleet dynamics modelling.

Statistical analysis of this data could provide new insights on fleet dynamics, in

relation to the spatio-temporal dimension, availability of stocks or environmental

variables, for example. As the effort share was estimated to be the most important

input factor in the application of the model, any improvement in the conditioning of

fleet short-term dynamics will have a direct impact on the reliability of the results

obtained.
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Garćıa-Cutŕın, J., and Gutiérrez, M.-J. (2017a). Bioeconomic multistock reference

points as a tool for overcoming the drawbacks of the landing obligation. ICES

Journal of Marine Science, 74(2):511–524. 10.1093/icesjms/fsw030.



References 199

Garcia, D., Prellezo, R., Sampedro, P., Da Rocha, J.-M., Cervino, S., and Castro, J.

(2015). Could multistock reference points mitigate the impact of landing obligation

in the economic performance of the fleets? the case study of spanish demersal fleets

operating in iberian waters. Targets and limits for long term fisheries management.

ICES symposium.

Garcia, D., Prellezo, R., Santurtun, M., and Arregi, L. (2011). Winners and losers of

a technical change: A case study of long-term management of the northern european

hake. Fisheries Research, 110(1):98–110.

Garcia, D., Prellezo, R., Urtizberea, A., and Sanchez, S. (2016). A multi-stock

harvest control rule as a step towards an ecosystem based fisheries management.

Working Document presented to the ICES WKMIXFISH working group, October

2016 and in the ICES annual sciencitic conference, Riga (2016).

Garcia, D., Sánchez, S., Prellezo, R., Urtizberea, A., and Andrés, M. (2017b).

FLBEIA: A simulation model to conduct bio-economic evaluation of fisheries man-

agement strategies. SoftwareX, 6:141–147.

Garcia, D., Urtizberea, A., Diez, G., Gil, J., and Marchal, P. (2013). Bio-economic

management strategy evaluation of deepwater stocks using the flbeia model. Aquatic

Living Resources, 26(04):365–379.

Garcia-Cabrejo, O. and Valocchi, A. (2014). Global sensitivity analysis for multi-

variate output using polynomial chaos expansion. Reliability Engineering & System

Safety, 126:25 – 36.

Garriga, M., Ramı́rez, J. G., Taylor, M., Kokkalis, A., Maynou, F., Pawlowski, L.,

Davie, S., Nielsen, J. R., Ulrich, C., Macher, C., Tserpes, G., Coro, G., Schreiber

Plet-Hansen, K., Poos, J. J., Walker, N., Vermard, Y., Ibaibarriaga, L., Earl, T.,

Haslob, H., Kempf, A., Bertignac, M., Sgardeli, V., Garcia, D., Robert, M., Scar-

cella, G., De Oliveira, J., Minto, C., Angelini, S., Recasens, L., Carpi, P., Lleonart,

J., Merzéréaud, M., Mildenberger, T., Brunel, T., Fischer, S., and Martin, P. (2018).

Study on the approaches to management for data-poor stocks in mixed fisheries.

DRuMFISH : final report.
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Mahévas, S., Marchal, P., Tidd, A., and Ulrich, C. (2012). Managing mixed fish-

eries in the european western waters: Application of fcube methodology. Fisheries

Research, 134–136(0):6–16.

Ives, M., Scandol, J., and Greenville, J. (2013). A bio-economic management strat-

egy evaluation for a multi-species, multi-fleet fishery facing a world of uncertainty.

Ecological Modelling, 256:69 – 84.

Ives, M. C. and Scandol, J. P. (2013). Biomas: A bio-economic modelling and as-

sessment system for fisheries management strategy evaluation. Ecological Modelling,

249(0):42–49.

Jardim, E., Azevedo, M., and Brites, N. M. (2014a). Harvest control rules for

data limited stocks using length-based reference points and survey biomass indices.

Fisheries Research, 171(1):12–19.

Jardim, E., Cerviño, S., and Azevedo, M. (2010). Evaluating management strategies

to implement the recovery plan for iberian hake (merluccius merluccius); the impact

of censored catch information 10.1093/icesjms/fsp233. ICES Journal of Marine

Science: Journal du Conseil, 67(2):258–269.

Jardim, E., Millar, C. P., Mosqueira, I., Scott, F., Osio, G. C., Ferretti, M., Alzorriz,

N., and Orio, A. (2014b). What if stock assessment is as simple as a linear model?

the a4a initiative. ICES Journal of Marine Science: Journal du Conseil.

Jardim, E., Urtizberea, A., Motova, A., Osio, C., Ulrich, C., Millar, C., Mosqueira,

I., Poos, J., Virtanen, J., Hamon, K., Carvalho, N., Prellezo, R., and Holmes, S.

(2013). Bioeconomic modelling applied to fisheries with r/flr/flbeia. JRC Scientific

and Policy Report, EUR 25823 EN.



References 203

Johnson, K. F., Monnahan, C. C., McGilliard, C. R., Vert-pre, K. A., Anderson,

S. C., Cunningham, C. J., Hurtado-Ferro, F., Licandeo, R. R., Muradian, M. L.,

Ono, K., Szuwalski, C. S., Valero, J. L., Whitten, A. R., and Punt, A. E. (2015).

Time-varying natural mortality in fisheries stock assessment models: identifying a

default approach. ICES Journal of Marine Science, 72(1):137–150.

Jordan, F., Scotti, M., and Priami, C. (2011). Process algebra-based computational

tools in ecological modelling. Ecological Complexity, 8:357–363.

Kell, L. T., De Oliveira, J. A., Punt, A. E., McAllister, M. K., and Kuikka, S.

(2006a). The knowledge base for fisheries management, volume 36 of Developments

in aquaculture and fisheries science, chapter Operational Management Procedures:

An introduction to the use of evaluation frameworks, pages 379–403. Elsevier, Am-

sterdam.

Kell, L. T., Mosqueira, I., Grosjean, P., Fromentin, J.-M., Garcia, D., Hillary, R.,

Jardim, E., Mardle, S., Pastoors, M. A., Poos, J. J., Scott, F., and Scott, R. D.

(2007). Flr: an open-source framework for the evaluation and development of man-

agement strategies 10.1093/icesjms/fsm012. ICES J. Mar. Sci., 64(4):640–646.

Kell, L. T., Pilling, G. M., Kirkwood, G. P., Pastoors, M. A., Mesnil, B., Korsbrekke,

K., Abaunza, P., Aps, R., Biseau, A., Kunzlik, P., Needle, C. L., Roel, B. A., and

Ulrich, C. (2006b). An evaluation of multi-annual management strategies for ICES

roundfish stocks. ICES Journal of Marine Science, 63(1):12–24.

Kelly, C. J. and Codling, E. a. (2006). ‘Cheap and dirty’ fisheries science and

management in the North Atlantic. Fisheries Research, 79(3):233–238.

Kirkwood, G. (1997). The revised management procedure of the International Whal-

ing Commission, volume 20, chapter Global Trends: Fisheries Management, pages

91–99. American Fisheries Society Symposium.

Kleijnen, J. P. (1995). Statistical validation of simulation models. European Journal

of Operational Research, 87(1):21 – 34.

Kokkalis, A., Eikeset, A. M., Thygesen, U. H., Steingrund, P., Andersen, K. H., and

editor: Howard Browman, H. (2017). Estimating uncertainty of data limited stock

assessments. ICES Journal of Marine Science, 74(1):69–77.

Kraak, S., Buisman, F., Dickey-Collas, M., J.J., P., Pastoors, M., Smit, J., and

Daan, N. (2004). How can we manage mixed fisheries? a simulation study of the



204 References

effect of management choices on the sustainability and economic performance of a

mixed fishery. . Technical report.

Kraak, S. B. M., Kelly, C. J., Codling, E. A., and Rogan, E. (2010). On scientists’

discomfort in fisheries advisory science: the example of simulation-based fisheries

management-strategy evaluations. Fish and Fisheries, 11(2):119–132.

Kristensen, M. H. and Petersen, S. (2016). Choosing the appropriate sensitivity ana-

lysis method for building energy model-based investigations. Energy and Buildings,

130:166 – 176.

Kronbak, L. G., Nielsen, J. R., Jrgensen, O. A., and Vestergaard, N. (2009). Bio-

economic evaluation of implementing trawl fishing gear with different selectivity.

Journal of Enviromental Management, 90:3665–3674.

Lamboni, M., Monod, H., and Makowski, D. (2011). Multivariate sensitivity ana-

lysis to measure global contribution of input factors in dynamic models. Reliability

Engineering & System Safety, 96(4):450–459.

Larkin, P. A. (1977). An epitaph for the concept of maximum sustained yield.

Transactions of the American Fisheries Society, 106(1):1–11.

Leamer, E. (1985). Sensitivity analyses would help. American Economic Review,

75(3):308–13.

Legault, C. M. and Palmer, M. C. (2016). In what direction should the fishing

mortality target change when natural mortality increases within an assessment?

Canadian Journal of Fisheries and Aquatic Sciences, 73(3):349–357.
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Pillans, R. D., Thorson, J. T., Fulton, E. A., Smith, A. D. M., Smith, F., Bayliss,

P., Haywood, M., Lyne, V., and Rothlisberg, P. C. (2014). Multispecies fisheries



208 References

management and conservation: tactical applications using models of intermediate

complexity. Fish and Fisheries, 15(1):1–22.

Plischke, E., Borgonovo, E., and Smith, C. L. (2013). Global sensitivity measures

from given data. European Journal of Operational Research, 226(3):536–550.

Plischke, E. B. E. (2016). Sensitivity analysis: A review of recent advances. European

Journal of Operational Research, 248(3):869 – 887.

Plummer, M. (2003). Jags: A program for analysis of bayesian graphical mod-

els using gibbs sampling. In Hornik, K. L. and Friedrich Zeileis, A., editors, 3rd

International Workshop on Distributed Statistical Computing, Vienna, Austria.

Polacheck, T., Klaer, N. L., Millar, C., and Preece, A. L. (1999). An initial evaluation

of management strategies for the southern bluefin tuna fishery. ICES Journal of

Marine Science, 56(6):811–826.

Pomarede, M., Hillary, R., Ibaibarriaga, L., Bogaards, J. A., and Apostolaki, P.

(2010). Evaluating the performance of survey-based operational management pro-

cedures. Aquatic Living Resources, 23(1):77–94.

Poos, J. J., Bogaards, J. A., Quirijns, F. J., Gillis, D. M., and Rijnsdorp, A. D.

(2010). Individual quotas, fishing effort allocation, and over-quota discarding in

mixed fisheries. ICES Journal of Marine Science: Journal du Conseil, 67(2):323–

333.

Prellezo, R., Accadia, P., Andersen, J. L., Andersen, B. S., Buisman, E., Little, A.,

Nielsen, J. R., Poos, J. J., Powell, J., and Röckmann, C. (2012). A review of eu
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Appendix A
Nomenclature

AEE mean absolute value of the elementary effect.

AEEp absolute elementary effect of trajectory p.

a age.

a+ plusgroup age.

a0 age at recruitment.

ass.season assessment season.

A,B sample and re-sample matrices used to compute the importance indices in

the Sobol method.

ABk matrix that is equal to A except in the column(s) that correspond with the

k-th input factor which is (are) taken from matrix B.

Ai., Bi., A
B
k,i. i-th row in the corresponding matrix.

Blim limit biomass reference point in the precautionary approach framework.

Bmsy biomass at MSY reference point used in the HCR proposed by Froese et al.

(2011).

Btrig1, Btrig2, Btrig3 trigger biomass reference points used in an specific harvest con-

trol rule.

Btrigger trigger biomass reference point used in the ICES harvest control rule.
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BER break even revenue.

C catch in numbers or biomass.

Ctg target catch reference point in (Little et al. 2011).

CaC capital cost.

CB catch in weight.

CN catch in number of individuals.

cov covariate.

CrC crew cost.

CV coefficient of variation.

D discards in numbers or biomass.

DB discards in biomass.

DN discards in numbers.

E effort.

E0 an effort threshold.

Emax maximum annual effort.

F set of all the input factors.

Fr set of input the factors selected with morris method when r trajectories are

used.

Fbooti set of the input factors selected with the calibrated visual criterion in the i-th

iteration of the boostrap.

FD set of the input factors selected with the factors distinguished from the others

criterion.

FF set of the input factors selected using the fixed-number of factors criterion.

FH set of the input factors selected with the factors with high AEE value crite-

rion.



FV set of the input factors selected with the visual procedure.

FW set of the input factors selected with the weighted criterion.

Fconv(Nt) set of the input factors that have converged with Nt sample size, and not

with Nt−1, in the application of the Sobol method.

Frmax set of the input factors selected with morris method when rmax trajectories

are used.

F fishing mortality.

Flow fishing mortality rate lower than Fmsy that produces a yield at equilibrium

at most 5% lower than the yield produced by Fmsy.

Fmax fishing mortality rate that maximizes equilibrium yield per recruit.

Fmsy fishing mortality rate that maximizes equilibrium yield.

Fspwn proportion of fishing mortality before spawning.

Fupp fishing mortality rate higher than Fmsy that produces a yield at equilibrium

at most 5% lower than the yield produced by Fmsy.

fec fecundity.

fl fleet.

FuC fuel cost.

FxC fixed Cost.

FxS fixed part of the salaries.

FM set of the input factors selected when the selection and convergence criteria

are applied for the Morris method.

GT set of total generalized indices.

GTk generalized total-effect index of the k-th input factor.

GV gross value.

h iteration.



i generic subscript used along the manuscript.

Ilim, Itg target and limit reference point in abundance index used in the HCR tested

in Little et al. (2011).

id abundance index.

Inv annual investment, given as a proportion of total revenue.

Invmax the threshold (maximum) in annual investment, given as a proportion of

total revenue.

J the dimension of the output of the simulation model.

j subscript used to refer to output variables.

K number of effective input factors in the application the Sobol or the Morris

methods.

k subscript used to refer to k-th input factor.

Kp,Ki,Kd control parameters used in the HCR tested in (Pomarede et al. 2010).

Kr cardinality of Fr.

KEE,Z number of input factors selected with the fixed number criterion when Z

input factors are selected for each output variable.

KEE number of input factors chosen a priori to be selected with the Morris method

to be considered in the Sobol method.

KNG number of input factors, without grouping, in the Sobol method.

Krmax cardinality of Frmax .

L landings in numbers or biomass.

l generic subscript.

LB landings in biomass.

LB0 base landings in the price formation model.

LN landings in number of individuals.



M natural mortality.

mr
X number of iterations in which a input factor X is selected in the bootstrap

of the Morris method with r trajectories.

Mspwn proportion of natural mortality before spawning.

mat sample mean of maturity.

MSY maximum sustainable yield reference point.

mt subscript used to denote metiers.

N base sample size in the Sobol method.

na number of age classes.

nu number of units.

ny number of years in the simulation.

Nboot number of bootstrap iterations.

ncov number of covariates.

nfl number of fleets.

nid,st number of indices per stock.

nmt,fl number of metiers in fleet fl.

nmt number of metiers.

nss number of seasons.

nst number of stocks.

nV number of vessels.

P a large enough set of trajectories defined in ω.

Pr the r trajectories within P that provide the best coverage of ω.

P population abundance in numbers at age or biomass.

p a trajectory in ω that belongs to P.



PB population abundance in biomass.

PB0 carrying capacity of a population.

PN population abundance in numbers at age.

PR price.

PR0 base price.

PRF profits.

q catchability.

QS quota share.

R the cardinality of P.

r the number of trajectories used in the Morris method.

rmax maximum number of trajectories used in the Morris method.

ret retention.

RP reproductive potential.

SjT the set of total-effects of output variable Yj .

s number of parameters in the vectors at age model.

Sk first-order index for the k-th input factor.

STk total-effect index for the k-th input factor.

SjTk total-effect index for the k-th input factor and output variable Yj .

ss season.

ssspwn spawning season.

st stock.

T set of benchmark iterations in the application of the Sobol variance decom-

position method, such that Nt < N for Nt ∈ T .

t elements in T .



TACmax, TACmin the maximum and minimum possible TAC in and specific HCR.

u seasonal cohort.

V variance.

V aC variable Cost.

w individual weight.

wD the weight given to the factors distinguished from the others criterion in the

computation of the calibrated visual criterion.

wF the weight given to the fixed-number of factors criterion in the computation

of the calibrated visual criterion.

wH the weight given to the factors with high AEE value. criterion in the compu-

tation of the calibrated visual criterion.

X∼k multivariate input factor in Ω conditioned in all the input factors except the

k-th one.

X multivariate input factor in Ω.

X an unidimensional input factor.

Xk k-th input factor.

Y a multidimensional output variable.

Y an unidimensional output variable.

y year.

y0 first year of simulation.

Yj j-th output variable.

yny last year of simulation.

Z number of input factors selected for each indicator in the application of fixed-

number of factors in the evaluation of the performance of the selection indi-

cators.

α1, α2 the parameters of the Cobb-Douglass production function.



β elasticity parameter in the price function.

γi proportion of effort performed in metier i.

γfl,mtmax , γfl,mtmin maximum and minimum limit for the proportion of effort exerted by

the fleet fl in metier mt.

∆ width of the subintervals in the Morris method.

δD proportion used in the factors distinguished from the others criterion to select

those input factors that are aside of the rest.

δF number of input factors selected in the fixed-number of factors selection cri-

terion.

δH proportion used in the factors with high AEE value selection criterion.

ε residuals in vectors at age models.

ε observation error.

ζ perception bias in the management procedure.

η0, η1, η2 parameters in the capital function.

Θ first performance indicator.

ΘG generalized performance indicator.

θ parameters in the vectors at age models.

ϑ threshold for the maximum proportion of catch that can be caught from a

stock.

ι1, ι2 parameters in Pella-Tomlinson population growth model.

κ fleet’s capacity.

Λ matrix of aging errors, element (ij) represents the proportion of individuals

of age i assigned to age j.

λ the elements in matrix Λ.

µ mean value of the observable variables in the operating model.



ν threshold used for proportion to select the important input factors in the

bootstrap of the Morris methods.

χMP variable in the management procedure that comes from an observation in the

operating model.

χOM variable in the operating model.

~χ a vector with values at age of a given input factor.

Ξ set of stocks for which the catch constraint must be fulfilled in the profit

maximization function.

ξ natural variability in the operating model.

πrX indicates whether X has been selected in the iterations a bootstrap of the

Morris method with r trajectories.

ρjk auxiliar variable used to calculate the performance indicators, Θ and ΘG, in

the evaluation of the selection criteria corresponding to the k-th input factor

and the j-th output variable.

%1, %2 parameters of the beta distribution used to condition maturity ogives.

τi parameters in the HCRs.

Υ variation in capacity.

υa, υi parameters of the Dirichlet distribution in aging error.

φpop population growth model.

φrec stock-recruitment model.

Φ model to describe vectors at age

ψ1, ψ2 parameters of the stock-recruitment model.

ϕ simulation model.

ϕi elements in the high dimensional model representation.

Γ fleet’s landings or total landing in the fishery.

Ω existence domain of the simulation model.

ω [0, 1]K unit hypercube.





Appendix B
List of input factors

Table B.1: All the random factors considered in the GSA. They are ordered in
alphabetical order. The name column correspond with the name used to denote the
factors in the figures and the tables. The other three columns correspond with the
component of the model the factor belong to, its description and the stock and/or
fleet it belong to.

Name Component Description Stock/Fleet

AgingError HKE

Observation Model

Hake
AgingError HOM Error in the aging process. H.Mackerel
AgingError LDB The probability of assigning 4 Spot M.
AgingError MEG age ’i’ to a fish of age ’j’ Megrim
AgingError MON Monkfish

CapitalCost DFN SP Fleets OM Current value of the capital Gillnetters
CapitalCost DTS SP Entry-Exit Model invested multiplied with the Trawlers
CapitalCost HOK SP opportunity cost of capital Longliners

Crewshare DFN Fleets OM The proportion of the turnover Gillnetters
Crewshare DTS Entry-Exit Model that is paid to the crew Trawlers
Crewshare HOK Longliners

DiscNError HKE

Observation Model

Error in the observed numbers Hake
DiscNError LDB of discarded fishes 4 Spot M.
DiscNError MEG Megrim

DiscWError HKE
Observation Model

Error in the observed total Hake
DiscWError LDB weight of discards 4 Spot M.
DiscWError MEG Megrim

Effshare DFN Fleets OM Distribution of total effort Gillnetters
Effshare DTS Short Term among metiers Trawlers
Effshare HOK Dynamics Longliners

Fcost DFN Fleets OM Fixed Cost per vessel Gillnetters
Fcost DTS Entry-Exit Model Also used to calculate profits Trawlers
Fcost HOK at fleet level Longliners

FuelCost DFN SP Fleets OM

Fuel Cost per unit of effort

Gillnetters
FuelCost DTS SP Entry-Exit Model Trawlers
FuelCost HOK SP Longliners

InvestShare Fleets OM Entry-

Exit Model

Proportion of profits used to invest

in new vessels

Fleet independent

LandNError HKE

Observation Model

Hake
LandNError HOM Error in the observed numbers H.Mackerel
LandNError LDB of landed fishes 4 Spot M.
LandNError MEG Megrim
LandNError MON Monkfish

LandWtError HKE

Observation Model

Hake
LandWtError HOM Error in the observed total H.Mackerel
LandWtError LDB weight of landings 4 Spot M.
LandWtError MEG Megrim
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LandWtError MON Monkfish

M HKE

Biological OM

Hake
M HOM Instantaneous rate of H.Mackerel
M LDB natural mortality at age 4 Spot M.
M MEG Megrim
M MON Monkfish

Mat HKE

Biological OM

Hake
Mat HOM Proportion of mature H.Mackerel
Mat LDB individuals at age 4 Spot M.
Mat MEG Megrim
Mat MON Monkfish

MaxDays DFN SP Fleets OM Maximum Number of Days a Gillnetters
MaxDays HOK SP Entry-Exit Model vessel can operate Trawlers

MaxDaysCost DTS SP within a year Longliners

N HO8

Biological OM

Number of fish at age Western H. Mac.
N MAC along the simulation Mackerel
N WHB Blue Whiting

N HKE

Biological OM

Hake
N HOM Number of fish at age in the H.Mackerel
N LDB first year of the simulation 4 Spot M.
N MEG Megrim
N MON Monkfish

price HKE Hake
price HOM HO8 Fleets OM Horse Mackerels

price MAC Fleet and Metier Independent Mackerel
price MEG LDB Entry-Exit Model Price of fish per ton Megrims

price MON Monkfish
price WHB Blue Whiting

price OTH DTS SP M1 OTH Trawlers OTB DEM
price OTH DTS SP M2 OTH Trawlers OTB PEL
price OTH DTS SP M3 Fleets OM Price per ton of the OTH stock. OTH Trawlers PTB

price OTH HOK DFN M1 The composition of OTH OTH G&L Trammel net
price OTH HOK DFN M2 Entry-Exit Model depends on the metier and OTH G&L Hand Line
price OTH HOK DFN M3 hence the price is OTH G&L Longine
price OTH HOK DFN M4 metier dependent. OTH G&L Gillnet ¿= 100
price OTH HOK DFN M5 OTH G&L Gillnet 60-79
price OTH HOK DFN M6 OTH G&L Gillnet 80-99

q HKE Baka SP Hake SP Trawl
q HKE DTS PT Hake PT Trawl
q HKE GNs 60 Hake G&L 60-79
q HKE GNS 80 Hake G&L 80-99

q HKE LLS Hake G&L Longline
q HKE Pair Hake SP Trawl PTB

q HKE PGP PT Hake PT PGP
q HO8 W. Horse Mackerel

q HOM PS PT H. Mackerel PT PS
q HOM DFN HOK H. Mackerel G&L
q HOM DTS PT Fleets OM H. Mackerel PT Trawl
q HOM DTS SP Catchability per fish stock H. Mackerel SP Trawl
q HOM PGP PT Catch (Defined at metier/fleet level H. Mackerel PT PGP
q HOM PS SP Production depending on H. Mackerel SP PS

q LDB Model data availability) 4 Spot Megrim
q MAC Mackerel
q MEG Megrim

q MON DTS PT Monkfish PT Trawl
q MON DTS SP Monkfish SP Trawl

q MON HOK DFN Monkfish Sp. G&L
q MON PGP PT Monkfish PT PGP

q OTH DTS SP M1 OTH Trawlers OTB DEM
q OTH DTS SP M2 OTH Trawlers OTB PEL
q OTH DTS SP M3 OTH Trawlers PTB

q OTH HOK DFN M1 OTH G&L Trammel net
q OTH HOK DFN M2 OTH G&L Hand Line
q OTH HOK DFN M3 OTH G&L Longine
q OTH HOK DFN M4 OTH G&L Gillnet ¿= 100
q OTH HOK DFN M5 OTH G&L Gillnet 60-79
q OTH HOK DFN M6 OTH G&L Gillnet 80-99

q WHB Blue Whiting

ret HKE DTS SP Hake SP Trawl OTB
ret HKE DTS PT Fleets OM The retention ogive. A vector Hake PT Trawl
ret LDB DTS SP at age with the proportion of 4 Spot Megrim SP Trawl
ret MEG DTS SP Entry-Exit Model catch that is retained onboard 5 Spot Megrim SP Trawl

ret MAC Mackerel all fleets

SR params HKE Hake
SR params HOM Biological OM The parameters of the stock H.Mackerel
SR params LDB Stock recruitment models 4 Spot M.
SR params MEG Recruitment Megrim
SR params MON Model Monkfish

SR uncerta HKE Hake
SR uncerta HOM Biological OM A time series with the annual H.Mackerel
SR uncerta LDB Stock deviations of recruitment 4 Spot M.
SR uncerta MEG Recruitment from stock-recruitment model Megrim



SR uncerta MON Model Monkfish

StkNError HKE

Observation Model

Hake
StkNError HOM A vector at age with the H.Mackerel
StkNError LDB observation error in the 4 Spot M.
StkNError MEG stocks numbers Megrim
StkNError MON Monkfish

StkWError HKE

Observation Model

Hake
StkWError HOM A vector at age with the H.Mackerel
StkWError LDB observation error in the 4 Spot M.
StkWError MEG stocks weight Megrim
StkWError MON Monkfish

TAC HO8

Advice Model

The TAC of the Western H. Mac.
TAC MAC widely distributed stocks Mackerel
TAC WHB Blue Whiting

vcost DFN Fleets OM

Variable Cost per unit of effort

Western H. Mac.
vcost DTS Entry-Exit Model Mackerel
vcost HOK Blue Whiting

w1 Fleets OM Proportion in which capacity
Fleet independentw2 Entry-Exit Model (in/de)crease (w1/w2) yearly

Wt HKE Hake
Wt HOM Biological OM A vector at age with the mean H.Mackerel
Wt LDB Stock weight of the fish individuals 4 Spot M.
Wt MEG Recruitment Megrim
Wt MON Model Monkfish





Appendix C
Abbreviations

AEE mean absolute elementary effect.

CFP common fisheries policy.

CV coefficient of variation.

EC European Commission.

F fishing mortality.

FLR fisheries libraries in R.

GSA global sensitivity analysis.

GSI generalised sensitivity indices.

HCR harvest control rule.

ICES international council for the exploration of the sea.

MMP multi-annual management plan.

MP management procedure.

MSE management strategy evaluation.

MSY maximum sustainable yield.

NPV Net present value.

OM operating model.

SSB spawning stock biomass.

TAC total allowable catch.
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