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OBJECTIVES 

The main objective of this work is the study of non-alcoholic fatty liver disease and 

metabolic syndrome to better understand and characterized the patients suffering these 

diseases. Besides, we try to find non-invasive biomarkers and potential diagnostic 

methods to carry out metabolomic studies of big populations without compromising 

people well-being. 

1. As the etiology of non-alcoholic fatty liver disease is multifactorial, we want to 

emphasize that NAFLD is a syndrome more than a disease and: 

1.1. Demonstrate the existence of different subtypes of NAFLD patients. 

1.2. Categorized these subtypes depending on the mechanism causing the 

disease. 

1.3. Show how personalized medicine could address the specific treatments for 

each subtype. 

1.4. Investigate further Aramchol
® 

mechanism of action. 

 

2. Demonstrate that nuclear magnetic resonance can be used as a non-invasive 

diagnostic tool for metabolic syndrome. 

2.1. Study of OBENUTIC and PreMedEus populations as pilot project. 

2.2. Set up of human urine samples analysis by NMR and data analysis. 

2.3. Find a metabolic fingerprint that allows the discrimination between 

healthy people, metabolic syndrome patients and intermediate phenotypes 

using NMR. 





 

 

 

CHAPTER 1 

INTRODUCTION 
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 INTRODUCTION 1

1.1 Non-alcoholic fatty liver disease (NAFLD) 

The liver, which can be from 2% to 4% of the total body weight, is a key metabolic organ that 

governs whole body energy homeostasis being hepatic dysfunction usually associated with 

systemic metabolic unbalances and vice versa. The liver metabolically connects several tissues, 

such as adipose tissue and skeletal muscle. Moreover, it also regulates the blood levels for many 

metabolites, since most of the substances we ingest by food are absorbed by the intestine with a 

first pass through the liver. In turn, liver energy metabolism is controlled by multiple neuronal, 

hormonal and nutritional signals that regulate glucose, lipid and amino acid metabolism.  

An impairment in liver metabolism regulation, can lead to non-alcoholic fatty liver disease 

(NAFLD)
1
 among other diseases. 

NAFLD is a term used to describe a range of related disorders that comprise simple steatosis, 

non-alcoholic steatohepatitis (NASH) with varying degrees of fibrosis, cirrhosis and 

hepatocellular carcinoma (HCC)
2
, a liver pathology with poor prognosis. Liver damage caused 

by drug and/or alcohol consumption and virus-induced damage are not considered in this work. 

NAFLD is a growing health problem with a global prevalence of 25% being the most common 

liver disorder in western countries and has an annual cost of more than $100 billion only in 

United States. The prevalence increases in people with type 2 diabetes (T2D) (70%) and in 

morbid obesity (90%)
3
.  

The earliest stage of NAFLD is steatosis, which is characterized by the deposition of 

triglycerides (TGs) as lipid droplets (LD) in the cytoplasm of the hepatocytes. It is considered 

steatosis when more than 5% of the liver contains LD
4
. NASH is distinguished from steatosis by 

the presence of inflammation and hepatocyte injury, as it will be explained in more detail in 

section 1.3. Approximately 25% of patients with simple steatosis progress to NASH, of whom 

25% progress to cirrhosis and of those that develop cirrhosis at least 1-2% per year develop 

HCC
5,6,7

, which is the 4-27% of these patients
8
 (Figure 1).  
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Figure 1. Progression from Healthy liver to HCC in humans 

 

NAFLD may progress to liver cancer with no previous fibrosis or histologic NASH, or develop 

fibrosis without going to the NASH stage
6,́9

. 

During evolution of human beings, we have been changing our diet incorporating more 

energetic aliments. This fact was favorable and advantageous in primitive societies where the 

daily energetic demand was very high for most of individuals and caloric diets helped them to 

survive. Taking into account differences in body size, it has been estimated that our energy 

expenditure per kg of body weight is on average, less than 40% as compared to our prehistoric 

ancestors
10

. Sedentary lifestyles acquired in today’s modern societies and the consumption of 

high-caloric food, have paved the way for the development of metabolic diseases (among 

others) lowering the quality of life in terms of health. In this context, the last century’s changes 

in lifestyle and eating habits have made NAFLD the most common liver disease, tightly related 

with T2D, obesity and dyslipidemia
6,11

.  

In fact, NAFLD may be considered as a hepatic manifestation of the metabolic syndrome 

(MetS). MetS is a set of metabolic abnormalities comprising T2D, increased fasting plasma 

glucose, hypertriglyceridemia, low high-density lipoprotein levels, hypertension and increased 

waist circumference. MetS components are highly prevalent in NAFLD patients and the risk of 

mortality is higher when more components of MetS are present
12

. MetS will be explained 

further in section 1.4. 

1.1.1 De novo lipogenesis (DNL) 

The liver is the main organ which converts carbohydrates into fatty acids (FAs). FAs are 

biomolecules that provide energy and act as constitutive building blocks in biological 

membranes. FAs are very energetic molecules (9 kcal/g) and provide much more energy than 
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other biological molecules such as proteins or carbohydrates (4 kcal/g). FAs are stored into LD 

as TGs but they can also have other fates, as described in this section. 

Accumulation of FAs is an adaptive evolutionary mechanism in many animals that let them 

obtain energy in periods of food starvation
13

. For example, migratory birds store large quantities 

of TGs in the liver as an energy source in preparation for prolonged seasonal flights. This is in 

contrast to humans, where fatty liver is maladaptive and has severe clinical consequences.  

DNL is transcriptionally regulated mainly by two transcription factors: the sterol regulatory 

element binding protein 1 (SREBP1) activated by insulin, and the glucose sensor carbohydrate 

response element-binding protein (ChREBP), activated by glucose
14

. The peroxisome 

proliferator-activated receptor gamma (PPARꝩ), is another transcription factor involved in 

lipogenesis; hepatic PPARꝩ stimulates the expression of genes involved in FA uptake, 

trafficking and TG biosynthesis increasing liver lipid levels
1
.  

Through glycolysis, glucose is metabolized to pyruvate which is then imported to the 

mitochondria and further decarboxylated by the pyruvate dehydrogenase complex (PDC) that 

converts it into acetyl-coA. Citrate synthase (CS) combines acetyl-coA and oxaloacetate to form 

citrate that is exported to the cytoplasm where the ATP-citrate lyase (ACL) splits it into acetyl-

CoA and oxaloacetate. This oxaloacetate is metabolized by malic enzyme generating pyruvate 

and NADPH which is needed to synthesize palmitic acid (16-carbon FA) by the FA synthase 

(FAS). Once in the cytoplasm, acetyl-CoA carboxylase (ACC) carboxylates the acetyl-coA 

generating malonyl-CoA, which together with NADPH are precursors for the synthesis of 

palmitic acid. Palmitic acid is elongated by fatty acyl-CoA elongase family members (Elovl) to 

generate long chain FA (LCFA) (more than 16 carbon units) and these are desaturated by 

stearoyl-CoA desaturases 1 (SCD1). SCD1 products are monounsaturated fatty acids (MUFAs) 

being oleate and palmitoleate important regulators of glucose and lipid metabolism in the 

liver
15

. In addition to DNL, the adipose tissue and the diet are the other two major sources of 

hepatic FA (Figure 2). 

Once synthetized, the four major fates of hepatic FAs are: mitochondrial β-oxidation, 

biosynthesis of other lipids, esterification and storage of TGs into LD and the assembly of TGs 

into very-low density lipoproteins (VLDL) exported into blood (Figure 2). 
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Figure 2. Synthesis of TG in the liver. TG can be synthetized by 4 different routes: by desaturation, 

elongation and esterification of FA, or by the phosphatidylethanolamine N-methyltransferase (PEMT) 

pathway that generates phosphatidylcholine (PC) from phosphatidylethanolamine (PE)   

 

1.1.2 Triglycerides and Very-Low-Density Lipoproteins (VLDL) 

The main mechanism by which liver stores and exports FAs is by the assembly of TGs into LD 

and VLDL. As TGs are insoluble in water, they can be stored to high levels without causing 

adverse osmotic or colloidal effects on cells
2
.  

Under non-pathological conditions, the liver stores TGs in small amounts and exports them in 

the form of VLDL to deliver FAs to peripheral organs such as muscle or adipose tissue 

(depending on the nutritional status). The assembly of FAs as TGs is protective against FA-

mediated hepatotoxicity
16

.  

The glycerol-3 phosphate (G3P) pathway is the principal route of TGs synthesis in most of 

mammalian cell types (Figure 3). The first step of this pathway is the esterification of long-

chain acyl-CoA to G3P catalyzed by mitochondrial and microsomal G3P acyltransferase 

(GPAT) enzymes, and it is a rate-limiting step that generates lysophosphatidic acid (LPA) 

molecules. Acylglycerol-3-phosphate acyltransferases (AGPAT) present in endoplasmic 

reticulum (ER) membranes, acylate these LPA molecules to form phosphatidic acid (PA) that 

can have two fates: to be converted into cytidine diphosphate diacylglycerol (CDP-DG), that is 

a substrate for the synthesis of cardiolipins and certain glycerolphopholpids
17,18

, or be 

dephosphorylated by phosphatidate phosphohydrolase (PAP or lipin) to form diacylglycerol 

(DG). DG is a precursor for the synthesis of TGs, phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE). The final step of TGs synthesis is the acylation of DG by the 

action of DG acyltransferase  (DGAT)
16

.  
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Figure 3. Schematic representation of TG synthesis from G3P in the endoplasmic reticulum membrane.  

 

As shown in Figure 2, TGs also can be formed by the phosphatidylethanolamine N-

methyltransferase (PEMT) pathway that uses S-adenosylmethionine (SAMe) to methylate PE 

and generates PC
19

. 

Although TGs accumulation is the main cause of NAFLD, there are more toxic lipid species 

contributing to NAFLD and NASH progression that are currently under study
20

. 

VLDLs are particles enriched in TGs also constituted by apolipoprotein (Apo) B-100 and C 

(ApoC), cholesterol esters and phospholipids. They are built in the liver to be delivered from it 

and reach the adipose tissue for storage and the muscle for oxidation and energy. VLDL 

particles are assembled in two steps: the first step is carried out in the ER lumen, where the 

microsomal triglyceride transfer protein (MTP) incorporates TGs into apoB100 (apoB48 in 

rodents) while they are being translated by ribosomes and translocated to the ER membrane. 

The second step includes further TG packaging into the nascent apoB100-containing particles 

forming the mature VLDL particles
16

. Within hepatocytes, MTP promotes ApoB-100 fusion 

with TGs and VLDLs formation and export
14

. Besides, de novo biosynthesis of PC is tightly 

related with VLDL assembly and secretion; and alterations in the PC-generating pathways also 

alter these processes. The gene methionine adenosyltransferase 1A (MAT1A) and its protein 

products (MATI and MATIII) are necessary for proper VLDLs assembly and secretion because 

as we will see later, are the enzymes responsible of SAMe synthesis; and this molecule acts as 

the methyl donor for PC formation from PE, which is needed for VLDLs synthesis and 

assembly
21

.  
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1.1.3 Fatty acid oxidation 

FAs from de DNL, circulating lipids or derived from hydrolysis of hepatic TGs stores can be 

oxidized by multiple pathways. FA β-oxidation takes place in the mitochondrial matrix and in 

normal conditions is the main pathway for the oxidation of the majority of FAs found in 

hepatocytes including: short (<C4), medium (C4-C12) and long-chain (C12-C20) FAs. Through 

peroxisomal β-oxidation, long-change dicarboxylic acids and very-long-change FAs are 

metabolized to complete the oxidation process in mitochondria and genetic ablation of enzymes 

involved in peroxisomal β-oxidation leads to hepatic steatosis
22

. Under normal conditions, 

cytochrome P450 4A (CYP4A) Ω-oxidation of FAs, which takes place in the microsomes, is a 

minor pathway for FA oxidation. 

In normal conditions, FA β-oxidation occurs preferentially in the mitochondria rather than in the 

peroxisomes. Through β-oxidation of FA, acetyl-CoA is generated serving as a substrate for 

oxidative phosphorylation (OXPHOS), ketone body formation and other biochemical reactions 

such as DNL or gluconeogenesis
14

. Carnitine-palmityl-transferase 1 (CPT-1) is the main check 

point that controls the uptake of FAs into the mitochondrial matrix for oxidation and it is 

inhibited by malonyl-CoA
23,24

. PPARα is expressed at high levels in the liver and is involved in 

the regulation of mitochondrial and extra-mitochondrial FA oxidation
16

.     

1.1.4 Lipid homeostasis alterations 

In a non-pathological state, i.e. after a meal, dietary fat is delivered to the liver in form of 

chylomicrons (Figure 2). Besides, the products of glucose metabolism are used to synthesize 

FAs in the liver through DNL and hepatocytes incorporate long-chain fatty acids in form of 

TGs, phospholipids and cholesterol esters (as LD) or secrete them into the circulation as 

VLDLs. On the other hand, mitochondrial FA β-oxidation has a very important role because 

provides energy to the hepatocytes, generates ketone bodies that are delivered into the 

circulation to provide metabolic fuel to extrahepatic tissues during fasting, and burn the excess 

of FAs in the liver.  

NAFLD arises as a consequence of defects in diverse metabolic pathways that lead to an 

imbalance between the DNL and the uptake of FAs from circulation and the capacity of the liver 

to oxidize FAs and their elimination as TGs in form of VLDLs
25

. 

1.1.5 Lipid species in liver disease  

Lipids are composed by a few structural “building blocks” but due to the high combinatorial 

side chain possibilities, there are more than 100,000 lipid molecules
26

 and it is known that 

different lipid species belonging to the same class are differently associated with health and 
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disease states
27,28,29

. Regarding this, and unlike to what happens with discrete metabolites such 

as glucose, lipids can be built up from dozens of different molecules combined in different 

ways. For example, TGs result from the combination of various acyl chains esterified to 

glycerol so the molecular diversity is high. In this context, many studies are trying to uncover 

the lipid signatures of disease with promising results in insulin resistance
29

 and NAFLD
27

. 

Determining the lipid profile of NAFLD may help to stablish groups of NAFLD patients with 

specific lipid metabolic profiles that better respond to a specific treatment.   

1.1.6 Glucose and fructose metabolism in lipogenesis and NAFLD 

Dietary carbohydrates drive DNL and, as mentioned before, glycolysis and lipogenesis are 

connected since the main glycolysis product (pyruvate) provides a carbon source for 

lipogenesis. GCK (or hexokinase, HK) is the enzyme that catalyzes the first reaction of 

glycolysis and a variant of the glucokinase regulatory protein (GCKR) that negatively regulates 

it, has been found to be associated with hepatic steatosis and hyperglycemia in obese 

patients
1,30

.  

Glucose catabolism through the pentose phosphate pathway provides additional NADPH to 

carry out DNL. The main enzymes catalyzing the generation of NADPH (glucose-6-phosphate 

dehydrogenase and 6-phosphogluconate dehydrogenase) are likely to be involved in the 

regulation of lipogenesis (Figure 4).  

 

Figure 4. Lipogenic pathways. In blue appear lipogenic enzymes: ACC: acetyl-CoA carboxylase, ACL: 

ATP-citrate lyase, Elovs: fatty acyl-CoA elongases, FAS: fatty acid synthase, SCDs: stearoyl-CoA 

desaturases. Many steps are reversible by gluconeogenic enzymes. 
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Metabolized fructose provides fuel for central carbon metabolism
31

. Diets rich in sugar, 

particularly high fructose corn syrup (which is present in most daily products people consume: 

cookies, breakfast cereal, soft drinks, etc.), may lead to development of NASH by impairing 

insulin sensitivity
32

. Many studies demonstrated that fructose is lipogenic and stimulates TG 

synthesis. For instance, long-term administration of fructose to rats results in hepatic steatosis 

with an increase of 198% in hepatic TGs and 89% increase in hepatic cholesterol 

concentration
33

; ducks fed high fructose diets develop fatty liver
34

; and splanchnic perfusion 

studies demonstrate that fructose produces higher rates of TGs secretion from the liver than 

equimolar amounts of glucose
35

. 

The metabolism of fructose and glucose are different because before converging in the 

glycolytic pathway, fructose metabolism involves its phosphorylation by the action of 

fructokinase (ketohexokinase, KHK), generating fructose-1-phosphate (F1P) using ATP. In 

contrast to GCK, the phosphorylation of fructose to F1P by KHK is specific for fructose and the 

high activity of this enzyme in the liver could result in hepatic ATP depletion. This could be one 

of the mechanisms by which excess fructose consumption cause NAFLD
32

. 

1.1.7 NAFLD diagnosis and current therapies 

NAFLD diagnosis is heterogeneous and relies on a variety of assessment tools that include 

radiological tests such as ultrasonography, blood test of liver enzymes and liver biopsy
36

. 

Nowadays, liver biopsy is the gold standard to diagnose NAFLD and identify the presence of 

NASH and fibrosis in patients. Due to the invasiveness of the technique, and taking into account 

the complications that may cause in the patient, numerous ongoing studies
37

 use multiomics 

approaches
38

 for the identification of noninvasive NAFLD biomarkers in blood to provide a 

diagnose of the disease and to check on its progression and response to therapy. Metabolomics, 

genomics, transcriptomics and proteomics are promising fields that steadily progress towards 

this goal
13

. 

Despite representing the most common cause of chronic liver disease in western countries and 

the huge investment carried out by the pharmaceutical industry, so far, there is no treatment for 

NAFLD approved by the Food and Drug Administration agency (FDA) or the European 

Medicine Agency (EMA). As mentioned before, NAFLD is tightly related to diabetes and 

obesity so, the current recommendations of clinicians are based in weight loss and control of 

diabetes as it is shown to slow down the progression of the disease
3
. 

To control diabetes, insulin sensitizers or glitazones are used. Glitazones are antidiabetic drugs
39

 

that promote differentiation of insulin-resistant pre-adipocytes into proliferative insulin-

sensitive adipocytes through the direct activation of PPARꝩ avoiding the delivery of FAs to the 
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liver and enhancing FA uptake in these adipocytes. Their importance came since insulin 

resistance (IR) is a feature present in almost every NASH patient. That said, their beneficial 

effects are short-living after treatment and undesired side effects (bone loss and weight gain) 

have been reported
40

. Other insulin sensitizers acting as agonist of different metabolic pathways 

are being used as metabolic pathways activators as for example: agonist of FXR transcription 

factor (implicated in bile acid and cholesterol metabolism and homeostasis) or similarly, 

agonists of PPARα and PPARδ have shown to reduce or inhibit hepatic DNL and increase FA 

oxidation, reducing liver inflammation and fibrosis
41,42

. PPARα/δ agonist in NASH trials have 

shown improvement in dyslipidemia, inflammation, liver function and IR
43,44

. There is also a 

study showing the hepatoprotective effect of vitamin E and the possible positive effects of this 

vitamin in hepatic disease
45

 but while interesting, these results are not conclusive.  

Several possible therapies with different mechanisms of action are currently under clinical 

development
46

. Actually, there are more than 40 molecules
47

 in clinical trials for NASH 

treatment, some of them in phase III like obeticholic acid and arachidyl-amido cholanoic acid 

(Aramchol) (Figure 5). Obeticholic acid or the bile acid derivative 6-ethylchenodeoxycholic 

acid is a potent activator of the FXR that reduces fibrosis and liver fat content in animal models 

of fatty liver disease
41,48

. On the other hand, a phase IIa study, showed that 3 months 

administration of Aramchol to patients with NAFLD significantly reduced liver fat content
49

. 

The phase IIb has been successful too and the molecule is currently in phase III of the study. 

In the interim, until effective treatments are found, patients are told to endeavor to change their 

bad lifestyle habits, incorporate healthy food in the diet and practice exercise. Currently, this is 

the only therapeutic strategy that can stop (and sometimes improve) the progression of 

NAFLD
6,7

. 

1.1.7.1 Aramchol mechanism of action 

3β-arachidyl-amido, 7α-12α-dihydroxy, 5β-cholan-24-oic acid (Aramchol; Trima Israel 

Pharmaceutical Products Ltd, Maabarot, Israel) is a synthetic lipid resulting from the 

conjugation of a bile acid and a saturated FA, cholic acid and arachidic acid respectively 

through an amide bond
49

. As we mentioned before, SCD1 is a key enzyme involved in FA 

metabolism in the liver and in in vitro models, Aramchol achieves a 70-83% inhibition of this 

enzyme activity. SCD1 inhibition promotes FA β-oxidation and decreases FA synthesis 

resulting in decreased hepatic storage of FA esters and TGs
49,50,51

. Moreover, Aramchol 

administration to animal models fed with a high-fat diet, significantly reduced hepatic fat 

content
52

. 



INTRODUCTION 

 

14 

 

GALMED Pharmaceuticals (Tel Aviv, Israel) is a clinical-stage biopharmaceutical company 

focused in the research and development of therapies based in Aramchol for the treatment of 

NASH. In the phase IIb study in patients with NASH, ARamchol for the REsolution of 

STeatohepatitis (ARREST; study NCT 02279524), GALMED evaluated the efficacy and safety 

of two doses of Aramchol (placebo, 400mg/day and 600mg/day) in 247 NASH patients 

successfully. Currently, Aramchol is in phase III clinical trial (Figure 5) and ARMOR study is 

being carried out in a total of 2000 subjects.  

Although there are multiple therapeutic targets being evaluated and also other molecules in 

phase III of study (Figure 5), in this work we have investigated the effect of Aramchol in 

primary hepatocytes and mice model of NASH. So, promising previous results together with the 

fact that the phase IIb in humans was successful make Aramchol a possible and reliable drug for 

NASH treatment.  

 

Figure 5. Clinical trials of significant interest for NAFLD/NASH therapies. Modified from IQVIA 

institute study 201947. 
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1.2 Methionine and SAMe metabolism in the liver 

In the past and present centuries there have been many studies looking for the relationship 

between impaired methionine metabolism and the progression of liver disease. The first to show 

this link were Banting and Best, the discoverers of insulin, which in early 1930s observed that 

choline could prevent the development of steatosis in pancreatectomized diabetic dogs treated 

with insulin. Later work carried out in mice and rats revealed that diets deficient in methionine, 

choline as well as other methyl group donors (betaine, folates) produced liver steatosis; and that 

the prolonged administration of these diets, caused steatohepatitis, fibrosis and HCC. This work 

linked for the first time diabetes with steatosis and also manifested the importance of methyl 

groups in normal liver function and metabolism
53,54.

 Later, Kinsel demonstrated that plasma 

methionine (intravenously injected) clearance was delayed in patients with cirrhosis linking  

liver disease with hypermethionemia
55

. All these early observations have been confirmed by 

studies in patients and mice lacking key enzymes involved in methionine and folate metabolism. 

Besides, the use of methionine metabolites like SAMe in animal models has been shown to be 

hepatoprotective
56

. 

Methionine is a sulfur-containing amino acid that plays a key role in the liver. It is mostly 

metabolized by this organ to be converted in SAMe (also named SAM or AdoMet) by the action 

of the enzyme methionine adenosyl transferase (MAT I and MAT III) using ATP as co-

substrate
57

. In liver disease, elevated hepatic levels of methionine are due to a decrease in MAT 

activity, which consequently causes a reduction in hepatic SAMe
58

. SAMe is the most important 

biological methyl donor and, although it is produced in all cell types, is mainly synthesized and 

catabolized in the liver. Approximately 50% of dietary methionine is metabolized into SAMe by 

the liver where about 85% of all transmethylation reactions occur
59,60

. As SAMe is the major 

biological methyl donor, it is involved in transmethylation reactions, polyamine synthesis and in 

the transsulfuration pathway that generates glutathione (GSH), an important antioxidant agent 

of the cell. SAMe is also the key methyl donor in PC synthesis, required for VLDL formation 

and export of TGs from the liver
61

. In the transmethylation pathway SAMe donates its methyl 

group to sugars, phospholipids, proteins, RNA and DNA by means of specific 

methyltransferases
56,53,62

. A reduction in SAMe and GSH levels has been detected in many 

different types of liver diseases; and treatment with SAMe in patients with alcoholic liver 

cirrhosis has been found to rise GSH levels and increase survival
63,59

.  

Methionine serves as the precursor of other sulfur-containing amino acids such as 

homocysteine, cysteine and taurine, via the methionine cycle (Figure 6). The sulfur atom of 

methionine has a methyl group covalently bound which may be transferred to a large variety of 

acceptor molecules upon its activation to form SAMe. This reaction is catalyzed by the enzyme 
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MAT, which uses ATP as a co-substrate. SAMe can be demethylated by numerous 

methyltransferases (MTs), being the most abundant in the liver glycine N-methyltransferase 

(GNMT), to be converted in S-adenosylhomocysteine (SAH) which is a competitive inhibitor of 

many methyltransferases, although not GNMT. GNMT is an important enzyme since maintains 

the ratio SAMe/SAH which is an indicator of the methylation capacity of the cell
64

. SAH 

hydrolase catalyzes a reversible reaction which converts SAH in adenine and homocysteine, the 

latter being able to enter into two pathways: the remethylation pathway and the transsulfuration 

pathway. 

The regeneration of methionine from homocysteine through the remethylation pathway can be 

catalyzed by two different enzymes: betaine homocysteine methyltransferase (BHMT) and 

methionine synthase (MS). BHMT is an enzyme exclusive of liver and renal tissues and needs 

betaine as co-substrate. MS-mediated remethylation of homocysteine is coupled to the folate 

cycle and requires vitamin B12. 5-methyltetrahydrofolate (5-MTHF) is the methyl donor used by 

MS to convert homocysteine into methionine and tetrahydrofolate (THF). THF is then 

converted to 5,10-MTHF by the enzyme 5,10-MTHF synthase (MTHFS), and the enzyme 

MTFH reductase finally regenerates 5-MTHF completing the folate cycle. 

As mentioned above, homocysteine can also undergo the transsulfuration pathway where it is 

used as a substrate of cystathionine β-synthase (CBS), which requires vitamin B6 as cofactor, to 

generate cysteine and GSH
65,66

. The transsulfuration pathway is very important in the liver due 

to its high activity in this organ. The entrance of homocysteine in the transsulfuration pathway 

or in the remethylation pathway is regulated by SAMe. Thus, SAMe inhibits the remethylation 

enzymes MTHF and MS, whereas activates CBS, the first step of the transsulfuration 

pathway
67,68

.  

SAMe may also be used for polyamine synthesis, where it is first decarboxylated by the enzyme 

SAMe decarboxylase. The aminopropyl group of SAMe is then transferred to putrescine to form 

spermidine and then a second aminopropyl group is transferred to spermidine to form spermine.  

These reactions generate 2 molecules of 5’-methylthioadenosine (MTA). MTA is and inhibitor 

of methylation reactions, S-adenosylhomocysteine hydrolase (SAHH) activity and polyamine 

synthesis; and through the methionine salvage pathway MTA may be metabolized to regenerate 

methionine
69

.  

When there is an alteration in the expression of any of the key enzymes involved in the 

methylation cycle (MAT, GNMT, SAHH, MS, BHMT, CBS, MTHFR), the cycle gets 

dysregulated and the alteration in the homeostatic concentration of its products trigger liver 

disease. Both, increased levels of SAMe (caused by the downregulation of GNMT) and 

decreased SAMe levels (caused by the downregulation of MAT1A) cause liver steatosis that 
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progresses to steatohepatitis, fibrosis and finally liver cancer
70

. These results indicate that SAMe 

concentration in the liver must be tightly regulated to prevent the development of liver disease. 

 

 

Figure 6. Methionine cycle and SAMe metabolism in the liver 

 

1.2.1 Animal models of NAFLD 

There are several animal models (genetic and dietary) that allow the study of NAFLD. 

Unfortunately, the majority of the models available do not reflect the sequence of 

histopathological features that characterize NAFLD progression in humans: steatosis, 

inflammation, ballooning and fibrosis.  

1.2.1.1 Genetic models of NAFLD 

Genetic murine models of NAFLD are generally based in knocking down enzymes involved in 

lipid and carbohydrate metabolism, as for example Ob/Ob mice and db/db mice, which are two 

important classical genetic models based on absence or deficiency of leptin signaling (a 

hormone that regulates lipogenesis and appetite). Ob/ob mice have a mutation in the leptin gene 

and develop IR, obesity, steatosis, hyperglycemia and hyperinsulinemia but do not progress to 
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steatohepatitis nor develop fibrosis and a second stimulus is needed
71

. Db/db mice have a leptin 

receptor that is not functional so these mice are insulin resistant, obese and have hepatic 

steatosis but do not progress spontaneously to steatohepatitis requiring also a second stimulus
71

.  

Lldlr-KO mice, in turn, are knock outs in low density lipoprotein receptor (LDLr). These mice 

are a proper model for atherosclerosis
72

 but in combination with a high fat diet (HFD), they also 

develop NASH
73

. Actually, they develop higher plasma levels of cholesterol and phenotypically 

shows metabolic features similar to that of high-risk NASH patients, including insulin 

resistance
48,74

. 

Other animal model are the sterol regulatory element-binding protein (SREBP)-1c transgenic 

mice which develop NASH and insulin resistance but also followed by a decrease in adipose 

tissue mass
27,75

. Finally, there are other models that develop steatosis through the disruption of 

FA oxidation (PPARα-KO mice) or peroxisomal β-oxidation (AOX null mice).  

In our laboratory we work with two genetic murine models of NAFLD knocked-out in two 

genes that, a priori, do not seem to be directly related with lipid metabolism: MAT1A-KO
76

 and 

GNMT-KO
77

 mice. These murine models have disrupted key enzymes in methionine and SAMe 

metabolism
76,78

 and they are characterized by spontaneous development of steatosis and NASH. 

Alterations in these enzymes have been described in NAFLD patients. As a deficiency in MAT 

and GNMT enzymes leads to a deficiency and excess of SAMe respectively, and both facts 

cause liver disease, it seems clear that SAMe levels must be stable to avoid NAFLD 

development.  

The mechanisms by which MAT1A is involved and related with SAMe metabolism are 

explained in next sections. 

1.2.1.2 Methionine adenosyltransferase  

SAMe is the principal biological methyl donor and also a key metabolite in polyamine 

biosynthesis
41

.
 

Methionine adenosyltransferases (MATs) are enzymes that catalyze the 

formation of SAMe transferring the methyl group of methionine to the adenosine moiety of 

ATP liberating its tripolyphosphate moiety. MAT1A and MAT2A are the two genes (located in 

different chromosomes) that in mammals encode for α₁ and α₂, the two homologous MAT 

catalytic subunits. MAT1A is expressed in adults and in differentiated liver whereas MAT2A is 

expressed in fetal liver and extrahepatic tissues and is associated with rapid growth or 

dedifferentiation. α₁ subunits can form dimers (MAT III) or tetramers (MAT I), whereas α₂ 

forms tetramers (MAT II). The MAT gene is very well conserved throughout evolution as is one 

of the genes required for survival of organisms
39,79,80.
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In several liver diseases as HCC, MAT1A is downregulated while MAT2A is overexpressed. In 

murine liver, loss of MAT1A and increased MAT2A expression have been found in situations of 

rapid cell growth such as liver regeneration after partial hepatectomy
81

 and hepatocyte 

dedifferentiation to fibroblast in culture
82

. 

DNA methylation has an important implication in the regulation of MAT genes and there is a 

clear relation between liver cancer and the switch in gene expression from MAT1A to MAT2A
83

. 

The promoter of MAT1A has been found to be hypermethylated in two CpG sites in extrahepatic 

tissues, fetal liver, cirrhosis, HCC and hepatoma cell lines
70,59

. On the contrary, the promoter of 

MAT2A has been found to be hypomethylated in HCC
84

. 

When dealing with MAT enzymatic activity and regulation, its various isoforms differ in their 

kinetic and regulatory properties. MAT I and MAT II have low Km values for methionine (23 

µM-1 mM and 4-10 µM respectively) whereas the Km of MAT III is high (215 µM-7 mM)
53,85

. 

MAT II is strongly inhibited by physiological concentrations of SAMe (IC50= 60 µM) whereas 

MAT I is slightly inhibited (IC50= 400 µM) and MAT III, on the contrary is strongly activated 

by SAMe
86,87

. On the other hand, MAT I and MAT III are reversibly inactivated by nitric oxide 

(NO) and hydroxyl radicals and mechanisms as NO and ROS production are implicated in the 

regulation of its enzymatic activity by switching MAT I and MAT III to inactive conformational 

forms
59

.  

1.2.1.2.1 MAT1A knock-out mouse model 

MAT1A-KO mice lack MAT1A gene and consequently show a deficiency in MAT I/ MAT III 

enzymes. As partially explained in section 1.2.1.1, these mice are characterized by having 

reduced SAMe levels compared to WT, increased blood levels of methionine, decreased GSH 

levels and high levels of hepatic TGs
83

. All these facts, together with deficient VLDLs 

formation
21

, contribute to steatosis development in this animal model. The lack of this gene 

results in the spontaneous development of NASH at 8 months and HCC at 18 months. 

1.2.1.3 Dietary models of NAFLD 

There are several dietary models to study the onset and progression of NAFLD. Ideally, animal 

models should completely reflect the features of human disease such as steatosis, ballooning, 

inflammation and fibrosis. However, no existing model can reproduce the entire human NAFLD 

phenotype. These dietary murine models include the traditional high-fat and high-fructose diets 

that causes fatty liver by excess of fat and fructose
88

, and the methionine-choline deficient 

(MCD) diet model that causes fatty liver due to the deficiency in methionine and choline
71

. As 

mentioned above, methionine and choline are precursors of SAMe and PC, respectively, and 
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their deficiency compromises methylation reactions, antioxidant response and VLDLs 

formation
71

.  

Rodents fed with the MCD diet develop rapidly (within 2 weeks) steatosis, inflammation, 

release of transaminases, fibrosis and cell death. However, unlike humans they experiment a 

severe weight loss of up to 35% over 4 weeks and are not insulin resistant.  

High fat diets (HFD) have been used to induced NAFLD and metabolic alterations in rodents. 

Compared to MCD diet, HFD requires longer times to induce liver steatosis and produces less 

severe liver injury than the MCD diet model. In both models, the damage depends on the mouse 

strain used
89,90

. HFD is composed mostly by dietary fat (71%) and depending on the duration of 

the feeding time, induces steatosis, oxidative stress, expression of proinflammatory 

cytokines
91,92

, dyslipidemia, increased expression of lipogenesis regulators (SREBP1c, LXR), 

obesity and impaired glucose tolerance, which links this model diet tightly with MetS too.   

As mentioned before, fructose consumption in humans causes features of MetS. In animal 

models, high fructose diet also induces features similar to MetS such as weight gain, 

hypertriglyceridemia, hypertension and IR. These effects are not observed when using other 

simple sugars such as glucose
88

.  

1.3 Non-alcoholic steatohepatitis (NASH) 

The progression of NAFLD to NASH in humans comprises a series of behavioral, genetic and 

metabolic factors that are often tightly related with the MetS
93,94

 while not completely 

understood. The progression of NAFLD has been proposed to be the result of the “multiple hit 

theory”. According to this theory, there are 3 hits: during the first hit the accumulation of TG 

into LD takes place in more than 5% of hepatocytes. This first step of liver steatosis is usually 

associated with benign prognosis and may be reversible but it makes the liver prone to suffer a 

second hit which includes oxidative stress (ROS formation), mitochondrial dysfunction, release 

of pro-inflammatory cytokines
95,96

 and gut-derived bacterial endotoxemia, which switches the 

liver to a necroinflammatory stage or NASH. The third hit includes impaired hepatocyte 

regeneration and the involvement of palatine-like phospholipase 3 (PNPLA3) gene
3
.  

On the other hand, NASH may or not be associated with fibrosis
97,98,99

 which, at an early stage 

could be reversible. However, if maintained over time, fibrosis may progress to cirrhosis and 

HCC. As the prevalence of NAFLD is increasing worldwide, NASH-related cirrhosis and HCC 

will become the leading cause of liver transplantation in a near future being already the first 

cause of liver transplantation in women
100

. 
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It is important to note that NASH is not a simple disease and it has a multifactorial etiology. 

Genetic, environmental, nutritional and behavioral factors can cause NASH (Figure 7). 

 

Figure 7. Several factors that may cause NASH 

 

Due to the multifactorial etiology of NASH, different subtypes of patients (developing NASH 

through different mechanisms) may exist. If this were the case, the development of treatments 

adapted to every subtype might be required for controlling the disease in an effective manner. 

Regarding this matter, new ways of diagnosis are needed. Personalized medicine and 

metabolomics are promising fields on this topic as we will see in sections 1.4.3 and 1.5.  

1.4 Metabolic syndrome 

The high prevalence of NAFLD is associated with the rise in MetS and obesity. MetS has 

elevated socioeconomic cost and is considered a worldwide epidemic
101

. The components of 

MetS are: IR, hyperglycemia or high fasting glucose levels (> 110 mg/dL), obesity (body mass 

index BMI > 30 kg/m²), dyslipidemia (TGs >> 150 mg/dL or low cHDL < 34,79 mg/dL in men 

and < 38,66 mg/dL in women), high arterial blood pressure (≥ 140/90 mmHg or medical 

treatment) and microalbuminuria (Figure 8). As shown in Table 1, there are different 

definitions for this disorder such as that of the World Health Organization (WHO), the National 

Cholesterol Education Program: Adult Treatment Panel III (NCEP:ATPIII) and the 

International Diabetes Federation (IDF).  In this thesis we used the definition provided by the 

WHO.  
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WHO ATPIII IDF 

Fasting glycemia ≥ 110mg/dL 

plus 2 or more of the following 

factors: 

3 or more of the following 

factors: 
  

Obesity: BMI › 30 kg/m² 

Obesity: waist circumference  

> 102 cm in men  

> 88 cm in women 

Obesity: waist 

circumference depending 

on ethnic group. 

TGs >> 150 mg/dL  or                   

cHDL < 34,79 mg/dL in men 

cHDL <38,66 mg/dL women 

TGs ≥ 150 mg/dL                                  

cHDL < 40 mg/dL in men               

cHDL < 50 mg/dL women 

TGs ≥ 150 mg/dL                                  

cHDL < 40 mg/dL in men               

cHDL < 50 mg/dL women 

Hypertension:  blood pressure 

≥140/90 mmHg or medical 

treatment 

Hypertension:  blood pressure 

≥130/85 mmHg  

Hypertension:  blood 

pressure ≥130/85 mmHg  

or medical treatment 

Microalbuminuria: albumin 

excretion of 20µg/min 

Fasting glycemia ≥ 110mg/dL 

or T2D 

Fasting glycemia ≥ 

100mg/dL or T2D 

Table 1. Parameters to define metabolic syndrome following World Health Organization (WHO), Adult 

treatment panel III (ATPIII) and International Diabetes Federation (IDF) 

 

 

 

Figure 8. Schematic representation of MetS according to WHO 
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1.4.1 Obesity  

Obesity is a heterogeneous condition defined by an excess of body fat. It can be estimated by 

the body mass index (BMI), a ratio of weight over height being expressed in kilograms per 

square meter
102

.  

High sugar consumption in western countries is the main cause of obesity
3
. Obesity and 

overweight are serious public health problems affecting a high number of people around the 

world and it is the main etiologic factor that predisposes to MetS and IR
103

. It also plays a key 

role in the development of complex diseases as T2D and some types of cancer. In Caucasian 

adults, overweigh and obesity are tightly associated with rise in mortality
104

. Most NAFLD 

patients are obese or overweight and have associated MetS (although lean individuals may also 

develop features of MetS and NAFLD)
105

. Diet and moderate physical activity (30 minutes of 

aerobic exercise 4 times a week) are a good method to lose weight and it is recommended to 

these patients, as there are many studies showing the benefit of weight loss also in NAFLD
106

.  

1.4.2 Insulin resistance 

IR is a pathologic condition where organs fail to respond to insulin causing hyperglycemia 

setting the stage to organ damage and failure if maintained over time
107

. The multiple metabolic 

effects of insulin are mediated by different tissue-specific actions that include changes in protein 

phosphorylation and function as well as changes in gene expression. In a non-pathological 

situation, when blood glucose concentration is rising, pancreatic-β-cells release insulin which 

lowers blood glucose levels by increasing its uptake by muscle and adipose tissue cells and 

suppress hepatic glucose production. Adipocytes are one of the most insulin-responsive cells 

and insulin mechanism of action regulates numerous aspects of its biology: stimulates 

lipoprotein lipase activity incorporating FAs derived from circulating lipoproteins and also 

promotes TGs accumulation by inhibiting lipolysis and stimulating lipogenesis in mature 

adipocytes
103

.  

IR in obesity and T2D is manifested by decreased insulin-stimulated glucose transport and 

metabolism in adipocytes and skeletal muscle and by impaired suppression of hepatic glucose 

output
108

. Obesity and IR are tightly related since the more fat content (measured as BMI), the 

higher the risk for T2D and IR: this implies that the amount of body fat has an impact on insulin 

sensitivity
109,110

. It must be taken into account that not all fat depots in the body contribute the 

same to IR. Intra-abdominal fat depots (or central obesity) is much more strongly linked to IR, 

cardiovascular disease and T2D than peripheral fat depots
111

. 
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1.4.3 Personalized medicine 

Personalized or precision medicine refers to the individualized treatments that use new 

diagnostics and therapeutics that better fit the needs of a patient (or a group of patients) 

depending on their genetic, metabolic features and biomarker characteristics
112

. Personalized 

medicine has raised interest during the last decades and it is increasingly applied for diagnosis, 

clinical stratification and treatment of MetS and its associated risk, such as NAFLD, T2D and 

their complications
113

.  

As abovementioned, there is not a specific treatment approved for MetS or NAFLD, although 

an impressive effort is being currently applied in that direction. Due to the multifactorial 

etiology of these diseases and the possible existence of different subtypes, it is adequate and 

timely to characterize a large population of individuals to obtain a large data base that could 

help to define each subtype of patients and the most appropriate treatment. In this context, we 

aim to find subgroups of patients with similar genetic and/or metabolic features that could 

respond in a similar and more effective way to a specific drug or treatment.   

To that end, we require non-invasive techniques of diagnosis and metabolomics is a promising 

one. 

1.5 Metabolomics  

Disease is a biological process that operates through interconnected and complex interactions 

between genes, RNA, proteins, metabolites and coupled to environmental factors
114

. Thus, an 

integrative view at the subcellular level is required to understand the molecular basis of the 

disease. Several “omic” sciences have emerged during the last years in order to have a holistic 

vision of this particular problem. The term “omic” refers to any type of study that gives 

collective information of a biological system. Nowadays the most representative omics fields 

include genomics, transcriptomics, proteomics and metabolomics, as well as other new omics 

sciences that are constantly emerging such as lipidomics, fluxomics, epigenomics, glycomics, 

foodomics, etc. Each omic technique is complementary for the understanding of biological 

systems and also expand the information generated in other fields or provided by other 

approaches
115

.  

Metabolites are biomolecules of low molecular weight (<1500 Da) that play central roles in 

biology serving as metabolic intermediates, energy sources, signaling molecules and building 

blocks. Their relative levels give information of biological functions and define the phenotype 

of biological systems in response to environmental or genetic changes
115

.   
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Metabolomics can be defined as the study of all the metabolites present in a biological system 

and their variations in reaction to time and/or genetic or external stimuli. It aims to provide 

comparative and semi-quantitative information about all the metabolites present and its 

abundance. Metabolomics has applications in a wide variety of research fields including drug 

toxicity studies
116

, functional genomics
117

 and disease diagnosis
118

. 

The complete set of metabolites found in a cell, tissue, organ or organism can also be defined as 

the metabolome. The metabolome is dynamic and changes rapidly affected by genetic and 

environmental modifications so, it reflects the state of the system studied at a given time 

point
119

. The metabolomic field appeared in 1998
120

 and it is becoming more and more popular 

in the last times since the metabolome can be considered the molecular phenotype of an 

organism (Figure 9) or biological system. This does not happen with the genome, as it is not 

always transcribed, with the transcriptome or with the proteome. The transcriptome does not 

necessarily correlate with the proteome and this, although translated, may or not be functionally 

active. So, metabolomics by reflecting the final substrates and products of the cellular 

metabolism of living organisms, allow a better understanding of the phenotype of a specific 

biological condition and disease state
115

. Definitely, as metabolomics allows us to obtain a 

metabolomic fingerprint
121

 of a particular condition it is possible to identify potential 

biomarkers of disease. These biomarkers can be used clinically as diagnostic, screening or 

prognosis tools and studies to characterize the “normal” metabolome are required to determine 

the intra- and inter-individual variability and then compare them with “disease” metabolome
114

. 

Metabolomic experiments have many advantages but the most remarkable is, that compared 

with other techniques, a higher sample throughput is possible and, if combined with automation 

of sample preparation and loading, a measurement instrument can be measuring almost 24h a 

day. A problem is, however, how to analyze all the data generated and we will talk about data 

analysis tools in section 1.5.5.  

All this is very useful in the case of systemic diseases as for example, MetS, obesity or T2D, 

which are disorders affecting the whole body and in order to understand the biochemical 

changes that take place in one organ, it is necessary to understand how it interacts with systemic 

metabolism
122

.  

Currently, for the study of metabolomics there are two main tools: Nuclear Magnetic Resonance 

(NMR) and Mass Spectrometry (MS). 
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Figure 9. Main “omics” studied in biology 

 

1.5.1 Mass spectrometry 

MS is an analytical technique that measures the mass of a molecule by measuring the mass-to-

charge ratio (m/z)
114

. It relies on identifying metabolites according to their mass after they have 

been ionized and accelerated across a distance. In GC/MS metabolites are first vaporized into 

the gas phase and introduced into a column placed in an oven where the temperature raises 

across a time cycle, making molecules vaporize at different times and then, obtaining a 

chromatographic separation. In LC/MS metabolites are also separated chromatographically 

according to their solubility in the liquid phase against their affinity for the solid phase 

contained within the column with the difference that the mobile phase (o carrier) is liquid and 

not gas
122

. The metabolites are finally ionized and analyzed by the mass spectrometer. Several 

kinds of MS instruments can be used and combined such as quadrupoles, ion traps, triple quads 

and time-of-flight mass analyzers. Nowadays, LC/MS is the most important MS-based approach 

for metabolomics because the sensitivity and resolution are high, requires few amount of sample 

for the analysis, and gives a lot of information
115

. LC/MS is able to detect a very large number 

of metabolites in a given sample (several hundreds). 

1.5.2 NMR-metabolomics 

A complementary and key technique for metabolomic studies is NMR spectroscopy. High 

resolution 
1
H NMR spectroscopy is a rapid and nondestructive method also with minimal 

sample preparation that can detect any molecule containing hydrogen nuclei (protons). Other 

advantages of this technique are that it is robust, reproducible, fast and operates in a high 
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dynamic range of concentrations. On the other hand, NMR-based metabolomics requires higher 

amounts of sample and its intrinsic sensitivity is lower than that of MS. 

NMR spectroscopy is based in the principle that some nuclei possess magnetic moment that can 

be measured when they are exposed to a magnetic field. The experiment contains information 

about the chemical and physical properties of molecules or atoms in which they are contained. 

In other words, nuclei placed in a magnetic field absorb and re-emit electromagnetic radiation 

(resonance) at a specific frequency depending on the magnetic moment of the nucleus, the 

chemical environment and the magnetic field
114,123

. Isotopes present in biological samples 

sensitive to the NMR phenomenon are 
1
H and 

31
P at natural abundance, while 

13
C and 

15
N often 

need to be isotopically enriched. In this context, some human samples that can be analyzed 

include cerebrospinal fluid (CSF), plasma, serum and urine. Also it is possible to analyze intact 

tissue samples by using solid state NMR; specifically, for the metabolic profiling of tissue 

specimens 
1
H high-resolution magic angle spinning (HR MAS 

1
H NMR) can be used

124
. 

Regarding liquid samples, urine and plasma are abundant in metabolites and 1D proton spectra 

can be recorded fast in a few acquisitions allowing the measurement of high number of 

samples
125

 which makes possible the study of a large number of samples per day.  

MS and NMR are often complementary techniques that, when combined, can help to have a 

better understanding and vision of changes in whole system metabolism of a specific 

organism
126

. These two techniques can be used for targeted and untargeted metabolomics 

analysis. 

1.5.3 Non-targeted metabolomics 

Non-targeted metabolomics is useful for hypothesis generation as it measures as many 

metabolites as possible present in different samples to later compare them. The aim when using 

non-targeted metabolomics approaches is to have a profile of the whole metabolome present in 

cell, tissues or biofluids. Careful preparation of samples and proper analytical instrumentation 

are important to detect the maximum number of metabolites in a reproducible way. The main 

complication when analyzing these datasets is the identification of unknown features
127

 because 

as there are metabolites with various physicochemical properties found from low picomolar to 

millimolar concentrations, it is difficult to observe all the metabolites present in a biological 

sample at once
115

. 

1.5.4 Targeted metabolomics 

Targeted profiling aims to identify and quantify all detectable metabolites in a given spectra 

prior to subsequent data analysis
128

. This metabolic analysis is useful when we want to answer 

specific biological or biochemical hypotheses. This approach gives (semi)quantitative 
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information about a predefined list of metabolites of interest. Metabolites are identified and 

quantified by comparing the LC/MS or NMR spectrum of the sample of interest to a set of 

standards or to a spectral reference library obtained from standards. This approach requires the 

compounds of interest to be known a priori
128

. The information obtained here is more accurate 

than in non-targeted analysis and low-level metabolites which are often bioactive and play 

important roles in biological systems can also be detected
115

. 

It is common practice to carry out both non-targeted and targeted analysis to generate and test a 

hypothesis respectively.  

1.5.5 Data analysis 

One of the most challenging aspects in metabolomics is how to deal with the complexity and 

huge volume of biochemical information obtained from both, MS and NMR. Extraction of 

relevant information from these data is possible due to the advances in statistical and modeling 

methods so, biostatistics and bioinformatics are essential in this field.  

Raw data is first converted into computer-readable formats compatible with software 

packages
114

. Dataset is then pre-processed in a specific way, depending it comes from MS or 

NMR, but it always includes normalization, scaling, outlier removal and imputation of missing 

values between others
114,123

. Subsequently, multivariate and univariate data analysis can be 

performed and in general, a combination of both techniques is advantageous as different and 

complementary information can be extracted. The usual goal of metabolomics is to identify 

differences between experimental groups finding differences in the metabolites present in each 

class. With hundreds of metabolites in each class, it is not practical to visualize changes 

between experimental groups by analyzing metabolites individually so, researchers use tools 

that allow the visualization of changes in the metabolome like: Principal Component Analysis 

(PCA), MetaboAnalyst web server
128

, Human metabolome database, the Madison Metabolomics 

Consortium Database
129

 and Workflow4Metabolomics
130

 among others.  

For example, MetaboAnalyst is an easy-to-use web server for metabolomic data analysis created 

to allow the users implement an accessible metabolomic data analysis. It accepts a variety of 

input data such as NMR peak list, binned spectra, MS peak list, compound/concentration data in 

several formats. The steps for a complete analysis in this source include: data upload, data 

processing and data integrity checking, data normalization, data analysis, data annotation (peak 

search and pathway mapping) and summary report download. Through MetaboAnalyst, 

techniques as t-test, fold change analysis, hierarchical clustering analysis, PCA, PLS-DA and 

more statistical and machine learning methods can be carried out
128

 (Figure 10). It also includes 
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a large library of reference spectra for compound identification originally developed for the 

Human Metabolome Data Base (HMDB) and MetaboMiner
131

. 

 

 

Figure 10. Examples of some graphics generated from MetaboAnalyst. (A) PLS-DA class separation.    

(B) heat map generated from hierarchical clustering. Modified from Xia, J et al. 2009128 

 

Metabolome databases are growing and expanding every year, there are still a lot of metabolites 

unidentified in biological systems. There are some initiatives focus towards the creation of a 

central reporting database to share methodologies and results between laboratories
129,132

.  

1.5.6 Fluxomics 

Fluxomics is a subset of targeted metabolomics that tries to determine metabolic fluxes. It 

allows the quantification of small molecule fluxes through metabolic networks providing access 

to the in vivo activity of pathways and reactions in intact living cells. It integrates in vivo 

measurements of metabolic fluxes with stoichiometric network models for the determination of 

absolute fluxes through large networks of the central carbon metabolism
133

. Fluxomic (as well 

as metabolomic) studies, need the use of NMR, liquid chromatography, mass spectrometry and 

the use of tracer compounds
134

.  

Fluxomic studies can be implemented using labelled precursors of carbon and nitrogen for 

example, labelled compounds that have the same chemical properties as the unlabeled ones but 

an increased mass. This stable labelled isotopes usually are 
13

C, 
15

N 
2
H, 

18
O and 

34
S resulting in 

peaks of grater mass when analyzing them in LC/MS
135

.   
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 EXPERIMENTAL PROCEDURES 2

2.1 Protein extraction and analysis 

2.1.1 Total protein extraction 

Plated cells were washed twice with PBS buffer and homogenized in RIPA lysis buffer (1.6 mM 

NaH2PO4, 8.4 mM Na2HPO4, 0.5% Azide, 0.1 M NaCl, 0.1% SDS, 0.1% Triton X-100, 5 

mg/ml sodium deoxycholate) supplemented with protease and phosphatase inhibitor cocktail 

(Roche, Switzerland). When extracting proteins from frozen liver tissue, about 50mg of tissue 

was homogenized in 1 mL lysis buffer by using Precellys tissue homogenizer (Precellys, 

France). In all cases the lysates were centrifuged at 13000 rpm during 20 min at 4 ºC. 

Supernatants (protein extract) were collected and quantified for total protein content by the 

BioRad protein assay, or by BCA protein assay (Pierce, USA) when measuring samples with 

high fat content.  

2.1.2 Western blotting 

Protein extracts were boiled at 95 °C for 5 min in SDS-PAGE sample buffer (250 mM Tris-HCl 

pH 6.8, 500 mM β-mercaptoethanol, 50% glycerol, 10% SDS and bromophenol blue). An 

appropriate amount of protein (between 5 and 30 μg, depending on protein abundance and 

antibody sensitivity), were separated by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) in 8% to 12% acrylamide gels (as a function of the molecular 

weight of the protein of interest), using a Mini-PROTEAN Electrophoresis System (Bio-Rad). 

Gels were transferred onto nitrocellulose membranes by electroblotting using a Mini Trans-Blot 

cell (Bio-Rad). Membranes were blocked with 5% nonfat milk in TBS pH 8 containing 0.1% 

Tween-20 (Sigma Aldrich) (TBST-0.1%), for 1 hour at room temperature, washed three times 

with TBST-0.1% and incubated overnight at 4°C with commercial primary antibodies. Primary 

antibodies used for western-blot are detailed in Table 2. Membranes were then washed three 

times with TBST-0.1% and incubated for 1 hour at room temperature in blocking solution 

containing secondary antibody conjugated to horseradish-peroxidase (HRP). Immunoreactive 

proteins were detected by using Western Lightning Enhanced Chemiluminescence reagent 

(ECL, PerkinElmer, USA) and exposed to Super Rx-N X-ray films (Fuji, Japan) in a Curix 60 

Developer (AGFA, Belgium). Bands were quantified by densitometry using the free image 

processing software ImageJ (http://rsbweb.nih.gov/ij).   
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Protein 
Antibody 

reference  
Supplier 

ACCα/β 3676S Cell Signaling Technology, Inc. 

Phospho-ACCα/β (S79) 3661S Cell Signaling Technology, Inc. 

β-actin A5441 Sigma-Aldrich 

AMPKα 07-350 Millipore 

Phospho-AMPKα (T172) 2531S Cell Signaling Technology, Inc. 

CPT1A/B SC-393070 Santa Cruz Biotechnology 

S6 2317S Cell Signaling Technology, Inc. 

Phospho-S6 (S235/236) 4857S Cell Signaling Technology, Inc. 

SCD1 2794S Cell Signaling Technology, Inc. 

p70S6K 2708S Cell Signaling Technology, Inc. 

Phospho-p70S6K (T389) 9234S Cell Signaling Technology, Inc. 

Table 2. Primary antibodies used in the western blots. 

 

2.2 RNA isolation and real-time polymerase chain reaction 

Total RNA was isolated with Trizol (Invitrogen, Carlsbad, CA). An aliquot of 1 μg of total 

RNA was treated with DNAse (Invitrogen) and reverse transcribed into complementary DNA 

using M-MLV Reverse Transcriptase (Invitrogen). Quantitative real-time polymerase chain 

reaction (RT-PCR) was performed using SYBR Select Master Mix (Applied Biosystems, Foster 

City, CA) and the Viia 7 Real-Time PCR System (Applied Biosystems). PCR was executed 

with the following primers: Collagen, type I, alpha 1F (COL1A1F), 5’- 

TTGACCAACCGAACATGACC -3’; COL1A1R, 5’- GCAGAAAGGGACTTACCCCC -3’; 

peroxisome proliferator-activated receptor gamma F (PPARꝩF), 5’- 

GCTGTGCAGGAGATCACAGA -3’; PPARcR, 5’- GGGCTCCATAAAGTCACCAA -3’; 

GAPDHF, 5’- AATGAAGGGGTCATTGATGG -3’; GAPDHR, 5’- 

AAGGTGAAGGTCGGAGTCA -3’. Expression levels were normalized to the level of GAPDH 

messenger RNA (mRNA) in each sample
136

. 

2.3 Cell isolation, culture and treatments 

2.3.1 Primary mouse hepatocytes isolation and culture 

Primary hepatocytes from wild type (C57BL/6J strain), MAT1A-KO and GNMT-KO mice were 

isolated by perfusion with collagenase Type I (Worthington, USA). Animals were anesthetized 

with isoflurane (1.5% isoflurane in O2); then, the abdomen was opened and a catheter was 

inserted into the inferior vena cava. Liver was perfused with buffer A (Phosphate buffered 

saline (PBS), 5mM EGTA. 37 ºC and oxygenated) and the portal vein was cut. After that, liver 

was perfused with buffer B (PBS, 37 ºC and oxygenated) to remove EGTA, and finally perfused 
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with buffer C (PBS 1mM CaCl2, collagenase type I, 37 ºC and oxygenated). After buffer C 

perfusion, liver was extracted from the body and placed into a petri dish with Minimum 

Essential Medium (MEM) (Gibco, USA). Gall bladder was carefully removed and then, the 

liver was mechanically disaggregated with forceps. The digested liver diluted in MEM was then 

filtered through a sterile gauze, and the filtered liver cells were collected and washed three times 

in MEM (400 rpm 4’, 1x; and 500 rpm, 5’, 2x). After the final wash, pellet containing 

hepatocytes was resuspended in 10% fetal bovine serum (FBS) (Gibco) MEM supplemented 

with 1% penicillin, streptomycin and glutamine (PSG) (Gibco), for subsequently culturing. 

Isolated hepatocytes were seeded over collagen type I-coated culture dishes (5 x 10⁵ cells/dish) 

in 10% FBS MEM supplemented with 1% PSG and maintained in a 5% CO₂-95% air incubator 

at 37 °C. After 2-3 hours of attachment, medium was replaced for fresh 0% or 10% FBS MEM 

depending on the treatments that are going to be carried out. 

2.3.2 Test substances and Vehicle 

The test substance Aramchol was provided by Galmed Pharmaceuticals. It was originally 

produced by WIL Research Europe B.V. as test substance number 204147/Y. The batch number 

was CS11-153Am-1402. All analytes were within the limit of quantifications. In addition, heavy 

metals and ions were also below the upper limits (irons < 10 ppm; arsenites < 1 ppm; heavy 

metals < 10 ppm; sulfate < 1% and chloride < 0.1%). 

Compound was dissolved in DMSO, at a concentration of 100 mM, and stored at -20 °C. 

2.3.3 Aramchol: preparation of stock solutions and treated primary hepatocytes 

A 20 mM stock preparation of Aramchol was prepared by diluting the 100 mM stock for in vitro 

treatments. The Aramchol preparations were stored at -20 °C until each use. 

Primary hepatocytes were isolated as described above and allowed to attach during 3 hours. 

After this, culture medium was removed and replaced by serum-free MEM or serum-free 

methionine and choline deficient medium (MCDM), with or without DMSO (vehicle) and 

Aramchol (20 µM), and cultured for an additional 48 hours. 

2.3.3.1 Proteomic analysis 

Samples were incubated in a buffer containing 7M urea 2M Thiourea 4% CHAPS and 5mM 

DTT for 30 min at RT under agitation and digested following the filter-aided FASP protocol 

described by Wisniewski et al
137

 with minor modifications. Trypsin was added to a 

trypsin:protein ratio of 1:50, and the mixture was incubated overnight at 37 °C, dried out in a 

RVC2 25 Speedvac concentrator (Christ), and resuspended in 0.1% FA. Peptides were desalted 

and resuspended in 0.1% FA using C18 stage tips (Millipore). 
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Samples were analyzed in a novel hybrid trapped ion mobility spectrometry – quadrupole time 

of flight mass spectrometer (timsTOF Pro with PASEF, Bruker Daltonics) coupled online to a 

nanoElute liquid chromatograph (Bruker). This mass spectrometer takes advantage of a novel 

scan mode termed parallel accumulation – serial fragmentation (PASEF), which multiplies the 

sequencing speed without any loss in sensitivity
138

 and has been proven to provide outstanding 

analytical speed and sensibility for proteomics analyses
139

.  Sample (200 ng) was directly loaded 

in a 15 cm Bruker nanoelute FIFTEEN C18 analytical column (Bruker) and resolved at 400 

nL/min with a 100 min gradient. Column was heated to 50 °C using an oven. 

Protein identification and quantification was carried out using PEAKS software (Bioinformatics 

solutions). Searches were carried out against a database consisting of human entries 

(Uniprot/Swissprot), with precursor and fragment tolerances of 20 ppm and 0.05 Da. Only 

proteins identified with at least two peptides at FDR < 1% were considered for further analysis. 

Data was loaded onto Perseus platform
140

 and further processed (log2 transformation, 

imputation). A t-test was applied in order to determine the statistical significance of the 

differences detected and heatmaps and volcano plot were generated. Protein-Protein Interaction 

Networks were analyzed by the tool STRING software
141

. 

2.3.4 Human hepatic stellate cell line LX-2 

The human hepatic stellate cell line LX-2 (Millipore Corporation, Darmstadt, Germany)
142

 was 

cultured in Dulbecco’s modified Eagle’s medium supplemented with 2% FBS for 30 hours, 

after which the medium was replaced by serum-free Dulbecco’s modified Eagle’s medium. 

After 12 hours in culture, LX-2 cells were treated with Aramchol (10 μM) for 24 hours. For cell 

cultures, 100 mM Aramchol solution was prepared by dissolving 70 mg in 1 mL of DMSO. 

This stock solution was then further diluted 10 times in DMSO before treatment of cells at a 

final concentration of 10 μM. The final concentration of DMSO in culture media was 0.1%. 

2.3.5 BODIPY assay 

Primary hepatocytes in rat collagen type I-coated coverslips cultured in methionine/choline 

deficient medium (MDMC) were fixed in 4% paraformaldehyde  for 10 minutes and incubated 

with BODIPY 493/503 (Molecular Probes, Invitrogen) at 1 mg/mL (1h, RT). BODIPY 

immunocytofluorescence images were taken using an Axioimager D1 (Zeiss) microscope. 

Quantification of lipid bodies was performed using Frida Software and represented as mean area 

per total number of cells. 
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2.3.6 Cellular reactive oxygen species (ROS) production 

Cellular reactive oxygen species (ROS) production in primary hepatocytes was assessed using 

CellROX Deep Green Reagent (ThermoFisher, Waltham, MA). The hepatocytes were loaded 

with 1.5 μM CellROX in 10% FBS-MEM for 30 minutes at 378Cina CO2 incubator. The 

hepatocytes were then carefully washed 3 times with PBS, collected, and analyzed by flow 

cytometry. 

2.4 Determination of hepatocyte mitochondrial membrane potential 

Hepatocytes from WT and MAT1A-KO mice were isolate and incubated with 4 mmol/L SAMe 

for 4 hours. To evaluate mitochondrial membrane potential the JC-1 dye (Mitochondrial 

Membrane Potential Probe; Life Technologies) was used according to the manufacturer’s 

instructions. In brief, cells were incubated in 1.5 mL culture medium containing 10 mg/mL JC-1 

for 10 minutes at 37º C in a 5% CO2 atmosphere. Then, cells  were washed twice with cold 

PBS, trypsinized, suspended in 1 mL PBS/1% FBS and immediately analyzed by flow 

cytometry using an  LSRII flow cytometer (BD Biosciences, San Agustin de Guadalix, Madrid, 

Spain) and Flowjo software (FlowJo, Ashlan, OR) . The green fluorescence emission (JC-1 

monomers) was monitored at 520 nm and the red-orange fluorescence emission (J-aggregates) 

was monitored at 590 nm. The aggregate/monomer ratio was calculated as a percentage of the 

maximal potential of wild-type hepatocytes (100%).  

2.5 Fluxomic analysis 

2.5.1 Uniformly 
13

C-labelled glucose 

Following hepatic perfusion, primary mouse hepatocytes were plated in 10% FBS containing 

MEM culture medium at a density of 500 thousand hepatocytes/well in 6-well plates. Once the 

hepatocytes were attached, 3 hours after the seeding, culture medium was replaced with 0% 

FBS containing MEM supplemented with 20 µM Aramchol or DMSO (vehicle). Primary 

hepatocytes were incubated during 48h and after this time, the medium was replaced with 0% 

FBS containing DMEM without glucose, supplemented with 11mM fully 
13

C-labeled glucose. 

Plates were washed with PBS three times and snap frozen with liquid nitrogen after 10, 20, 30, 

45, 60, 120 and 240 minutes. Samples were stored at -80 °C until metabolite extraction. All 

conditions and time points were performed in sextuplicate.  

For the metabolite extraction, cell pellets were collected and lysed in 500 µL of a mixture of 

ice-cold water/methanol (50/50 v/v%) with a tissue homogenizer (Precellys) in a single 30 

seconds cycle at 6000 rpm. Subsequently 400 µL of the homogenate was transferred to a new 

aliquot to which 400 µL of chloroform was added. The resulting solution was shaken at 1400 
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rpm for 1 hour at 4 °C. Next, the aliquots were centrifuged for 30 minutes at 14000 rpm at 4°C 

in order to separate the phases. From the organic phase (chloroform) 200 µL per sample was 

transferred to fresh aliquots and placed at -80 °C for 20 minutes and evaporated with a 

Speedvac. The resulting pellets were resuspended in 150 µL methanol. 

Samples were measured with a UPLC system (Acquity, Waters, Manchester) coupled to a Time 

of Flight mass spectrometer (ToF MS, SYNAPT G2, Waters). A 2.1 x 100 mm, 1.7 µm BEH 

amide column (Waters), thermostated at 40 °C, was used to separate the analytes before 

entering the MS. Solvent A (aqueous phase) consisted of 99.5% water, 0.5% formic acid and 20 

mM ammonium formate while solvent B (organic phase) consisted of 29.5% water, 70% 

MeCN, 0.5% formic acid and 1 mM ammonium formate. 

In order to obtain separation of the analytes, the following gradient was used: from 5% A to 

50% A in 2.4 min in curved gradient (#8, as defined by Waters), from 50% A to 99.9% A in 0.2 

min constant at 99.9% A for 1.2 min, back to 5% A in 0.2 min. The flow rate was 0.250 mL/min 

and the injection volume was 2 µL. All samples were injected randomly. After every 8 

injections a QC low and QC high sample were injected. All the samples were injected per 

duplicate. The MS was operated in negative electrospray ionization mode in full scan (50 Da to 

1200 Da). The sampling cone voltage was 25 V and capillary voltage was 100 V. Source 

temperature was set to 120 °C and capillary temperature to 450 °C. The flow of the cone and 

desolvation gas (both nitrogen) were set to 5 L/h and 600 L/h, respectively. A 2 ng/mL leucine-

enkephalin solution in water/acetonitrile/formic acid (49.9/50/0.1 % v/v/v) was infused at 10 

µL/min and used for a lock mass which was measured each 30 seconds for 0.5 seconds. Spectral 

peaks were automatically corrected for deviations in the lock mass. 

Extracted ion traces of labeled and unlabeled species were obtained for glucose, citric acid and 

malic acid in a 20 mDa window. These traces were subsequently smoothed and integrated with 

QuanLynx software (Waters, Manchester, UK). The signals for the labeled species of a given 

metabolite were corrected for natural signals by the following calculation 

𝑆𝑎𝑑𝑗
𝑛 = 𝑆𝑟𝑎𝑤

𝑛 −  𝑓𝑛 ∗ 𝑆0  

where 𝑆𝑎𝑑𝑗
𝑛  is the adjusted signal of isotope n, 𝑆𝑟𝑎𝑤

𝑛  the raw signal for isotope, 𝑓𝑛  the correction 

factor and 𝑆0 the signal of the first (
13

C0) isotope of the metabolite. 

2.6 Animal experiments 

All the animal experimentation was conducted in accordance with the Spanish Guide for Care 

and use of Laboratory animals, and with the International Care and Use Committee Standards. 
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All procedures were approved by the CIC bioGUNE’s Animal Care and Use Committee and the 

competent authority (Diputación de Bizkaia). Mice were housed in a temperature-controlled 

animal facility (AAALAC-accredited) with 12-hour light/dark cycles and with water ad libitum. 

All experiments with animals were approved by CIC bioGUNE’s Biosafety and Bioethics 

Committee and the Country Council of Bizkaia. 

2.6.1 SAMe treatment 

Eight-month-old MAT1A-KO male mice (in a C57Bl/6 background) with increases in liver 

enzyme levels (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) and 

hepatic lipid accumulation (determined by ultrasound) were given orally by gavage with vehicle 

(water) (n = 12) or SAMe (30 mg/kg/day, n = 12; Abbott, Chicago, IL) for 8 weeks before 

death. Age-matched WT male sibling littermates showing normal liver serum enzyme levels and 

ultrasound also were treated with vehicle for the same duration (n = 11). Animals were bred and 

housed in the CIC bioGUNE animal unit, accredited by the Association for Assessment and 

Accreditation of Laboratory Animal Care International. The mice were housed in groups using 

high-quality wood pellet hygienic litter bedding (Lignocel HBK 1500-3000; Rettenmaier & 

Sönne, Rosenberg, Germany) and in the presence of enrichment materials. Animals were fed 

with standard commercial chow animal diet (ref. 2914; Envigo, Barcelona, Spain). 

Submandibular and retroorbital blood samples were collected at the beginning and at the end of 

the experiment. Blood samples were deposited in serum-separator gel tubes (Microtainer; 

Becton-Dickinson, Franklin Park, NJ) and centrifuged (6000 rpm, 15 min, 4 °C) for serum 

separation. Livers were removed and snap frozen in liquid nitrogen, optimal cutting temperature 

cryo-compound embedded, or formalin-fixed. All procedures were performed during the light 

cycle and were approved by the Diputación de Bizkaia upon a favorable assessment by the 

Institutional Animal Care and Use Committee at CIC bioGUNE
143

. 

2.6.2 Methionine and Choline Deficient (MCD) Diet and Aramchol treatment 

We got C57BL/6 male mice (Charles River, St Germain sur l’Arbresle, France) at 8 weeks of 

age and allowed them to acclimate for a period of 1 week. The mice were placed in groups of 10 

on a diet lacking choline and with 0.1% methionine (0.1MCD diet) for a period of 4 weeks. A 

control group was maintained on a regular diet with 1,030 mg/kg choline and 0.3% methionine 

(Teklad Global 14% Protein Rodent Maintenance diet; Envigo RMS Spain, Sant Feliu de 

Codines, Spain). After 2 weeks of feeding on the 0.1MCD diet, mice were divided into groups 

of 10 and treated by intragastric gavage with a formulation of 5 mg/kg/day of Aramchol in 

vehicle (1.7% carboxymethyl cellulose; BUFA, IJsselstein, the Netherlands) and 0.2% sodium 

lauryl sulfate (Sigma Aldrich, Steinheim, Germany) or vehicle alone. Animals kept on the 

normal diet were also provided the vehicle preparation. The mice were analyzed for 
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transaminases in blood at 0, 2, and 4 weeks of exposure to the 0.1MCD diet. All mice were 

sacrificed at 4 weeks. Livers were then removed and snap frozen in liquid nitrogen, optical 

coherence tomography cryocompound embedded, or formalin fixed.  

2.7 Immunostaining assays 

2.7.1 Histologic staining 

Sudan III: Ornithine carbamyl transferase–embedded frozen samples were sectioned, cleared 

with 60% isopropanol, and stained with Sudan III solution (0.5% in isopropanol Sudan III 

Panreac ref: 251731.1606) for 1 hour and finally cleared with 60% isopropanol. Sections were 

counterstained with Mayer hematoxylin (MHS32-1L; Sigma) and mounted in aqueous 

mounting medium for lipid quantification. 

Hematoxylin & Eosin and Sirius Red: Paraffin-embedded liver samples were sectioned, 

dewaxed with a Xylene substitute (HS-202, Histoclear; National Diagnostics, Atlanta, GA), and 

hydrated. Sections were stained for 5 min with Harry's hematoxylin (HHS128-4L; Sigma) and 

for 15 min with aqueous eosin (HT110232-1L; Sigma) for H&E staining or with 0.01% Fast 

green FCF in saturated picric acid for 15 min and 0.04% Fast green For Coloring Food/0.1% 

Sirius red in saturated picric acid for 15 min for Sirius red staining. Samples were dehydrated 

and cleared with Histoclear. Finally, sections were mounted in DPX mounting media (06522, 

500 mL; Sigma). 

F4/80: In addition, liver sections were immunostained for detecting F4/80. F4/80 samples were 

unmasked with proteinase K during 15 min at room temperature. Endogenous peroxidase 

activity was blocked for 10 min with 3% hydrogen peroxide, then sections were blocked with 

5% normal goat serum for 30 min and incubated with F4/80 (1:50, 1 hour at 37 °C, 

MCA497BB; Bio-Rad, Hercules, CA) followed by 30 min with anti-Rat Immpress reagent 

(MP-7404; Vector, Burlingame, CA). Colorimetric detection was completed with Vector Vip 

purple substrate (sk-4600; Vector). Slides were counterstained with Mayer Hematoxylin 

(MHS32-1L; Sigma), and finally samples were dehydrated, cleared, and mounted in DPX 

mounting media (06522-500 mL; Sigma). Smooth muscle actin samples were counterstained 

with 4′, 6-diamidino-2-phenylindole and mounted with Dako fluorescence mounting media 

(S3023; Dako, Carpinteria, CA). 

For the analysis, 5 images per sample were taken with a 10× (H&E and Sirius Red), 20× 

(F4/80), or 40× (Sudan III) objective from an upright light microscope (Carl Zeiss AG, 

Oberkochen, Germany). Quantification of staining areas was performed using FRIDA software 

(http://bui3.win.ad.jhu.edu/frida/; Johns Hopkins University) and expressed as the percentage of 

stained area. 

http://bui3.win.ad.jhu.edu/frida/
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2.8 Metabolomic analysis 

To determine metabolite measurements in serum, we used a LC-single-quadrupole-MS amino 

acid analysis system in combination with 2 separate LC-time of flight-MS-based platforms that 

analyzed methanol/chloroform or methanol extracts for lipid analysis. For liver samples, the 

previous LC/MS platforms were completed with a methanol/water extract analysis, covering 

polar metabolites. Metabolomics data were preprocessed using the TargetLynx application 

manager for MassLynx 4.1 (Waters Corp, Milford, MA).  

2.8.1 Serum and liver samples 

Targeted serum metabolic profiles were semiquantified as previously describe
144

. Ultra-high 

performance LC–single-quadrupole–MS amino acid analysis system was combined with 2 

separate ultra-high performance LC–time of flight–MS – based platforms analyzing methanol 

and chloroform/ methanol serum extracts. Identified ion features in the methanol extract 

platform included FAs, oxidized FAs, acyl carnitines, N-acyl ethanolamines, bile acids, steroids, 

and lyso-phospholipids. The chloroform/methanol extract platform covered glycerolipids, 

cholesteryl esters, sphingolipids, diacyl-phospholipids, acyl-ether-phospholipids, and primary 

fatty acid amides. Lipid nomenclature and classification follows the LIPID MAPS convention 

(www.lipidmaps.org). 

Liver metabolic profiles were analyzed as described
144,145

. The 3 ultra-high performance LC/MS 

platforms previously mentioned in serum analysis were completed with a methanol/water 

extract platform
145

. This platform covered polar metabolites, such as vitamins, nucleosides, 

nucleotides, carboxylic acids, coenzyme-A derivatives, carbohydrate precursors/derivatives, and 

redox-electron-carriers. Metabolomics data were preprocessed using the TargetLynx application 

manager for MassLynx 4.1 (Waters Corp, Milford, MA). Intrabatch normalization followed the 

procedure described
146

. 

2.8.2 Quantification of total lipids in liver  

Lipids were extracted as described in
147

 from homogenized livers of approximately 300mg. TGs 

were quantified using a kit (A. Menarini Diagnostics, Florence, Italy) and PE, PC, and DG were 

separated by thin-layer chromatography and quantified as described
148

.  

2.8.3 One central carbon metabolism measurement in liver samples 

Extraction of the main metabolites belonging to the methionine pathway were performed as 

described
149

. To give a brief summary, livers (50 mg) were disrupted and metabolites were 

extracted in ice-cold methanol/water (50/50 % v/v) containing 10 mmol/L acetic acid in a tissue 

homogenizer (Precellys, Montigny-le-Bretonneux, France) using 2 x 20” cycles at 6000 rpm. 

http://www.lipidmaps.org/
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After centrifugation and evaporation, pellets were resuspended in water/MeCN/formic acid 

(40/60/0.1 %v/v/v) for injection on the ultra-high-performance LC/MS system. For the analysis 

of serum samples, 40 mL aliquots of serum were diluted with 40 mL water containing 0.2% 

formic acid (%v/v) and proteins were precipitated by addition of 120 mL of acetonitrile. Then, 

samples were sonicated for 10 min at 4 ºC and centrifuged at 14,000 rpm for 30 min at 4 ºC. 

The supernatant was injected directly onto the ultra-high-performance LC/MS system. Samples 

were analyzed with an ultra-high-performance LC system (Acquity; Waters, Manchester, UK) 

coupled to a time-of-flight–mass spectrometer (SYNAPT G2; Waters). A 2.1 x 100 mm, 1.7-

mm BEH amide column (Waters), thermostated at 40 ºC, was used to separate the analytes 

before entering the MS. Solvent A (aqueous phase) consisted of 99.5% water, 0.5% formic acid, 

and 20 mmol/L ammonium formate, whereas solvent B (organic phase) consisted of 29.5% 

water, 70% MeCN, 0.5% formic acid, and 1 mmol/L ammonium formate.  

To obtain a good separation of the analytes the following gradient was used: from 5% A to 50% 

A in 2.4 min in curved gradient (#8, as defined by Waters), from 50% A to 99.9% A in 0.2 min 

constant at 99.9% A for 1.2 min, back to 5% A in 0.2 min. The flow rate was 0.250 mL/min and 

the injection volume was 2 mL. All samples were injected randomly. After every 8 injections a 

high and a low-quality control sample was injected. If necessary, signals were corrected for 

signal drift during the run and all samples were injected in duplicate.  

The MS was operated in positive electrospray ionization mode in full scan (50–1200 daltons) 

with a capillary voltage of 250 V, a sampling cone voltage of 20 V, and an extraction cone 

voltage of 5 V. Source and desolvation temperatures were 120 ºC and 450 ºC, respectively. 

Cone and desolvation gas flows were 5 and 600 L/h, respectively. The MS was tuned to a mass 

resolution of 20,000 full width at half maximum. Scan time was 0.2 seconds. A lock mass was 

used to correct for instrument fluctuations during the run. Therefore, leucine–enkephalin (2 

mg/mL) was infused at 10 mL/min and its signal was measured every 40 seconds for 0.2 

seconds. Extracted ion traces were obtained for methionine (m/z, 150.0589), SAMe (m/z, 

399.1451), SAMe (m/z, 385.1294), MTA (m/z, 298.097), decarboxylated SAMe (m/z, 

355.1552), spermine (m/z, 203.2236), spermidine (m/z, 146.1657), GSH (m/z, 308.0916), and 

choline (m/z, 104.1070) in a 20 millidalton window and subsequently smoothed (2 points, 2 

iterations) and integrated with QuanLynx software (Waters). Peak areas were obtained from the 

extracted ion chromatograms and normalized to milligram of tissue or milliliter of serum. 

2.9 Global DNA methylation profiles 

Reduced representation bisulfite sequencing (RRBS) was used to analyze global DNA 

methylation. Sequencing libraries were prepared with a modification of the method described by 

Varela-Rey et al,
150

 digesting DNA with TaqI and MspI and using the NEXTflex Bisulfite-Seq 
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Kit, Illumina Compatible (Bioo Scientific, Austin, TX), and Single-Read sequenced on a 

HiScanSQ platform (Illumina Inc, San Diego, CA) for 50 nucleotides. Resulting multiplexed 

FASTQ files for each sample were merged into a single FASTQ before the quality control and 

filtering steps. Quality control and adapter trimming were performed via FASTQC (http:// 

www.bioinformatics.babraham.ac.uk/projects/fastqc/) and Trim Galore 

(http://www.bioinformatics.babraham.ac.uk/ projects/trim_galore/), and only those with a 

minimum of 20 phred quality score were retained. Bisulfite reads were mapped to mm10 (Mus 

musculus) reference genome. Reads were mapped using Bismark, which is developed 

specifically to map bisulfate-treated reads
151

. In this analysis, 2 alignment mismatches (n = 2) 

were allowed. Resulting alignment files, in SAM format, were sorted before being used as input 

for the methylKit (R-package) to call DMRs, compute methylation ratios, and perform a DMR 

analysis
152

. 

2.10 Proteomics 

Liver samples were prepared and analyzed by LC/MS/MS in the following way: frozen livers (n 

= 5) were ground while frozen in a liquid N₂ cooled cryohomogenizer (Retsch, Haan, Germany) 

and prepared for digestion. 750 µg of protein were denatured in a solution of 100 mmol/L TRIS-

HCL, pH 8, and 8 mol/L urea. Samples then were ultrasonicated for 10 min in 10-second 

repeating on/off intervals of 10 seconds on and 10 seconds off (QSonica, Newtown, CT), and 

centrifuged at 16,000 x g for 10 min at 4ºC to remove insoluble pellets. The soluble fraction 

then was reduced with dithiothreitol (15 mM) for 1 hour at room temperature and alkylated with 

iodoacetamide (15 mmol/L) for 30 min at room temperature in the dark. Then, 75 mg protein 

was diluted to a final concentration of 2 mol/L urea with 100 mmol/L TRIS-HCL, pH 8, and 

digested overnight on a shaker at 37 ºC in 3 mg of trypsin/Lys-C mix (Promega, Madison, WI). 

Samples were de-salted and cleaned using HLB plates (Oasis HLB 30 mm, 5 mg sorbent; 

Waters).  

LC/MS/MS was performed on a Dionex Ultimate 3000 NanoLC connected to an Orbitrap Elite 

(Thermo Fisher) equipped with an EasySpray ion source. The mobile phase A comprised 0.1% 

aqueous formic acid and mobile phase B comprised 0.1% formic acid in acetonitrile. Peptides 

were loaded onto the analytical column (PepMap RSLC C18 2 mm, 100 Å, 50 mm i.d. x 15 cm) 

at a flow rate of 300 nL/min using a linear AB gradient composed of 2%–25% A for 185 

minutes, 25%–90% B for 5 minutes, then an isocratic hold at 90% for 5 minutes with re-

equilibrating at 2% A for 10 minutes. The temperature was set to 40 ºC for both columns. Nano-

source capillary temperature was set to 275 ºC and spray voltage was set to 2 kV. MS1 scans 

were acquired in the Orbitrap Elite at a resolution of 60,000 full width at half maximum with an 

automated gain control target of 1 x 106 ions over a maximum of 500 ms. MS2 spectra were 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)%20and
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acquired for the top 15 ions from each MS1 scan in normal scan mode in the ion trap with a 

target setting of 1 x 104 ions, an accumulation time of 100 ms, and an isolation width of 2 

daltons. Normalized collision energy was set to 35% and 1 microscan was acquired for each 

spectrum. 

For preparative data analysis and peptide identification search, the raw MS files were converted 

to mzXML using MSConvert and searched against the Swiss-Prot–reviewed mouse FASTA 

database (33,330 proteins and decoys) using the COMET, X! Tandem native, and X! Tandem k-

score search algorithms
153,154

. Target-decoy modeling of peptide spectral matches was 

performed with peptide prophet
155

 and peptides with a probability score of > 95% from the 

entire experimental data set were imported into Skyline software
156

 to establish a library for 

quantification of precursor extracted ion intensities. Precursor extracted ion intensities from 

each experimental file were extracted against the Skyline library, and peptide extracted ion 

intensities with isotope dot product scores greater than 0.8 and a minimum of 2 peptides per 

protein were filtered for final statistical analysis of proteomic differences
157

. Normalization of 

raw peptide intensities and protein level abundance inference were calculated using the linear 

mixed-effects model built into the open sources MSSTATs (v3.2.2) software suite
158

. 

2.11 Human samples 

All the studies were performed in agreement with the Declaration of Helsinki and with local 

national laws. The Human Ethics Committee of each hospital approved the study procedures 

and written informed consent was obtained from all patients before inclusion in the study. 

2.11.1 Biopsy-proven NAFLD patients 

  Our study included a total of 535 patients who underwent liver biopsy analysis (353 diagnosed 

of simple steatosis and 182 with a diagnosis of NASH), seen at 11 participating hospitals. 

Between them, 377 patients were described previously by Barr et al
144

 and 158 additional 

patients were recruited since 2013 for this study by 3 hospitals that also participated in the first 

study (Hospital Universitario Marqués de Valdecilla, Hospital Universitario Príncipe de 

Asturias, and Hospital Virgen de Valme). PCA of the metabolomics data showed that patients 

cluster together independently of the hospital of origin as shown in Figure 11. All patients were 

recruited using the following inclusion criteria: (1) age 18-75 years; (2) not known acute or 

chronic disease except for obesity or T2D based on medical history, physical examination, and 

standard laboratory tests; and (3) alcohol consumption was less than 20 g/day for women and 30 

g/day for men. Exclusion criteria included viral, autoimmune, hemochromatosis, and drug-

induced causes of liver disease. All of the subjects were of Caucasian origin. For all subjects, 

blood was drawn under fasting conditions on the morning the diagnostic liver biopsy was 
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performed. Serum was separated and stored at -80 ºC until analysis. Clinical data were collected 

retrospectively using patient records and laboratory values obtained at the time of biopsy and it 

is summarized in Table 3. Diagnoses were established histologically in liver biopsy specimens. 

The histologic diagnosis of NAFLD was established by a single liver pathologist in each 

participating hospital using the scoring system defined by Kleiner et al
159

. After assessment, 

patients were classified by the pathologists into 2 histologic groups: (1) simple steatosis (hepatic 

steatosis alone), and (2) NASH (presence as determined by the pathologist). There are no 

patients with cirrhosis. 

 

 

Table 3. Clinicopathologic characteristics of the NAFLD patients included in the study. All diagnoses were 

established histologically in liver biopsy specimens. Additional classification as M subtype, non-M subtype, or 

indeterminate was based on results detailed in the “Subclassification of NAFLD patients” section. Values are 

given as percentages or means ± SD of the mean. Results that were significantly different (p < 0.05) among the 

M subtype, non-M subtype, or indeterminate groups are indicated. BMI = body mass index; HDL = high-

density lipoprotein; LDL = low-density lipoprotein. a = significant at p < 0.05, between M subtype and non-M 

subtype patients with simple steatosis. b = significant at p < 0.05, between M subtype and non-M subtype 

patients with NASH. c = significant at p < 0.05, between M subtype and indeterminate patients with NASH. d 

= significant at p < 0.05, between non-M subtype and indeterminate patients with simple steatosis. e = 

significant at p < 0.05, between M subtype and indeterminate patients with simple steatosis. f = significant 

at p < 0.05, between non-M subtype and indeterminate patients with NASH. 

 

 

 

Simple 

steatosis
NASH

 Simple 

steatosis
NASH

 Simple 

steatosis
NASH

 Simple 

steatosis
NASH

N (%) 535 353 (66) 182 (34) 174 (66)a 88 (34)b,c 103 (61)d 68 (39) 76 (75) 26 (25)

Female 69% 70% 68% 72%a 77%b,c 62% d 57% 77% 65%

Age

44.77 ± 

11.35

44.04 ± 

11.54

46.07 ± 

10.94

40.31 ± 

10.77a,e

43.64 ± 

9.68e

48.35 ± 

11.29

49.30 ± 

11.44

46.77 ± 

10.89

45.36 ± 

11.81

BMI. Kg/m²

44.76 ± 

10.78

44.50 ± 

10.65

45.21 ± 

11.02

48.19 ± 

9.71a,e

49.72 ± 

8.67b,c

40.54 ± 

10.34

40.66 ± 

11.18f

41.12 ± 

10.30

42.01 ± 

12.02

Fasting glucose level, 

mg/dL

113.59 ± 

41.26

111.39 ± 

35.86

117.31 ± 

48.96

112.21 ± 

35.97

119.21 ± 

51.93c

106.32 ± 

27.47

119.89 ± 

50.82f

117.10 ± 

45.01

101.05 ± 

21.03

Total fasting cholesterol 

level,  mg/dL

188.71 ± 

41.08

187.84 ± 

41.88

190.66 ± 

39.45

176.88 ± 

35.29a

175.01 ± 

27.60c

196.59 ± 

47.31

192.11 ± 

43.89

191.69 ± 

39.20

213.67 ± 

23.56

Fasting HDL 

cholesterol level, mg/dL

47.02 ± 

13.70

48.90 ± 

14.26

41.83 ± 

10.51

45.67 ± 

10.96

42.85 ± 

11.80

50.06 ± 

14.77

40.66 ± 

10.07

52.50 ± 

17.37

48.50 ± 

9.47

Fasting LDL cholesterol 

level, mg/dL

109.81 ± 

33.14

109.14 ± 

33.39

111.35 ± 

32.87

109.17 ± 

32.89

104.17 ± 

23.98

107.78 ± 

34.34

113.13 ± 

37.22

112.29 ± 

34.36

119.50 ± 

19.33

Fasting triglyceride 

level, mg/dL

150.33 ± 

100.19

150.57 ± 

106.95

149.78 ± 

83.33

124.88 ± 

47.39a

134.38 ± 

96.15

164.48 ± 

92.57

156.71 ± 

79.30

170.99 ± 

177.11

145.62 ± 

83.08

ALT level, U/L

39.70 ± 

33.09

35.38 ± 

28.39

44.62 ± 

37.23

29.93 ± 

20.54a

34.01 ± 

19.45b

39.11 ± 

32.68

55.56 ± 

45.07

38.22 ± 

30.97

52.76 ± 

51.28

Total M subtype non-M subtype Indeterminate

https://www.gastrojournal.org/action/showFullTableImage?isHtml=true&tableId=tbl1&pii=S0016508517300720#back-tbl1fna
https://www.gastrojournal.org/action/showFullTableImage?isHtml=true&tableId=tbl1&pii=S0016508517300720#back-tbl1fnb
https://www.gastrojournal.org/action/showFullTableImage?isHtml=true&tableId=tbl1&pii=S0016508517300720#back-tbl1fnc
https://www.gastrojournal.org/action/showFullTableImage?isHtml=true&tableId=tbl1&pii=S0016508517300720#back-tbl1fnd
https://www.gastrojournal.org/action/showFullTableImage?isHtml=true&tableId=tbl1&pii=S0016508517300720#back-tbl1fne
https://www.gastrojournal.org/action/showFullTableImage?isHtml=true&tableId=tbl1&pii=S0016508517300720#back-tbl1fnf
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Figure 11. PCA of the 535 samples from 

the 11 participating hospitals showing 

that all patients cluster together 

independently of the hospital they 

belong. Every hospital is represented by 

a color and each dot represents a 

sample.  (1) Hospital Universitario “12 

de Octubre”, Madrid, Spain; (2) Hospital 

Clínic, Barcelona, Spain; (3) Hospital del 

Tajo, Aranjuez, Spain; (4) Hospital 

General Universitario Gregorio Marañón, 

Madrid, Spain; (5) Pitié-Salpêtrière Hospital, Paris, France; (6) Hospital Universitario Marqués de 

Valdecilla, Santander, Spain; (7) Hospital Universitario Príncipe de Asturias, Madrid, Spain; (8) Hospital 

Universitario Reina Sofía, Córdoba, Spain; (9) Hospital Universitario Santa Cristina, Madrid, Spain; (10) 

Hospital Nuestra Señora de Valme and Hospital Universitario Virgen Macarena y Virgen del Rocío, 

Sevilla, Spain; and (11) Hospital Clínico Virgen de la Victoria, Málaga, Spain. 

 

2.11.2 MetS and general population urine samples  

Urine samples from general population of Valencia and Euskadi were obtained from University 

of Valencia and the company Osarten respectively for this project. Moreover, metadata from 

each patient including lifestyle habits, biochemical and anthropometric parameters were sent to 

CIC bioGUNE. These individuals belong to two projects: OBENUTIC and PreMedEus that will 

be explained in next section.  

The metadata from people participating in OBENUTIC and PreMedEus projects were correlated 

with the ¹H spectra obtained from measuring these urine samples in a 600MHz spectrometer 

(600MHz AVANCE IIIHD IVDr spectrometer of BRUKER) to look for the parameters that 

best could define MetS. These two cohorts of patients are described further below. 

2.11.2.1 OBENUTIC cohort 

Obesidad, Nutrición y Tecnologías de la Información y Comunicación (OBENUTIC) is a study 

carried out in the Preventive and Public Health department of the Faculty of medicine of 

Valencia. OBENUTIC is a study of obesity (with controls and cases) originally designed to 

improve and automatize data collection in epidemiologic nutritional studies. The total sample 

size of this study was constituted for 1668 individuals (general population) between 18 and 80 

years old from the Community of Valencia (Spain) and female and male were included. 633 

participants were recruited between 2012 and 2017 by Rocío Barragan, a PhD student from this 

department of the University of Valencia where urine samples were collected at the Department 

of Preventive Medicine and Public Health. The period of inclusion of patients was from 

February to October 2011 following the following inclusion and exclusion criteria:  
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Inclusion criteria: 

o Any gender 

o Age between 18 - 60 years old 

o Residents of the Community of Valencia 

o Body mass index (BMI) between 20-35 kg/m² 

o Agreed to participate in the study 

Exclusion criteria: 

o To suffer from any infectious-contagious disease, physical or mental incapacitating 

illness. 

o Pregnancy or lactation. 

o Diagnosis of cancer, thyroid disorders and/or type I diabetes 

o Cushing’s disease 

o Use of medication that alter the concentration of blood chemistry or lipid profile. 

The variables analyzed in OBENUTIC included sociodemographic data (age, gender, level of 

studies, birth place), family and personal medical history (anthropometric measures, tobacco 

and alcohol consumption, physical activity, food consumption, mediterranean diet adherence, 

etc) and biochemical (fasting glycemia, TGs, creatinine, cHDL, etc).  

CIC bioGUNE received 511 urine samples from the project OBENUTIC (together with 

correlated biochemical data for each patient). Urine samples were measured by NMR (600MHz 

AVANCE IIIHD IVDr spectrometer of BRUKER) to study MetS by obtaining and analyzing 

the bins and metabolites present in the urine of this subgroup of OBENUTIC cohort. ¹H 

monodimensional spectrum was obtained for each sample and the information obtained by the 

NMR spectrometer was correlated with the biochemical and anthropometric data. Metadata of 

these patients was provided by Dr. Dolores Corella (Universidad de Valencia) in a database 

made in SPSS including personal history (pathological and no pathological) biochemical and 

behavioural data of this general population.   

Metadata included: 

o Anthropometric data (BMI, high, weight)  

o Biochemical data (fasting blood glucose,  TGs blood levels, cHDL) 

o Blood pressure 

o Medicine consumption 

o Lifestyle behavior (regular exercise, smoking) 

To sum up, urine samples previously collected and transported to the NMR-metabolomics 

platform of CIC bioGUNE were processed and analyzed as described in section 2.11.2.3 and 
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analyzed by NMR in the 600MHz AVANCE IIIHD (IVDr) BRUKER spectrometer used only 

for metabolic screening.  

2.11.2.2 PreMedEus cohort 

Osarten is a company which aggregates other companies and offers them a service of prevention 

looking for the security and healthcare of the workers belonging to the associated companies. 

Osarten and CIC bioGUNE collaborate in a project called “Metabotipo de la población 

laboral activa de la CAPV a través del análisis metabolómico de suero y orina por RMN” 

which, has as main objective, improve the diagnosis of diseases like MetS and check its 

progression along the time. The project includes 10.000 urine samples and other 10.000 serum 

samples for the study of metabolomic features in general population from Basque Country. 

People participating in this study are between 18 and 70 years old, with equal proportion of 

males and females. There is only one exclusion criteria: people participating should not had 

suffered a serious illness like cancer or ictus in the 3 months preceding the sample collection.  

From this huge cohort, 75 urine samples were selected (according to the criteria we have been 

working with) to feed OBENUTIC cohort, as there was not enough representation of MetS 

condition in the 511 OBENUTIC urine samples. In this work, these 75 samples were renamed 

as “Precision Medicine Euskadi” (PreMEdEus), as it is coming from the project 

aforementioned, tightly related with precision medicine research in Basque Country.  

As we show in the results section (Figure 42), PCA were carried out to confirm that samples 

coming from the two selected cohorts, OBENUTIC and PreMedEus, were a heterogeneous 

group with no substantial differences that could difficult the analysis of this samples when 

considering them as a unique group. 

2.11.2.3 Urine sample preparation 

Urine samples were prepared as follows: urine samples (which have been stored at -80 ºC) were 

carefully thawed at room temperature (30 min for ≤ 1mL volume sample). Samples were 

centrifuged for 5 min at room temperature and 5000 rcf and 540 µL of urine were taken into 

Eppendorf tubes of 1.5 mL volume). 60 µL of BRUKER’s urine buffer (pH 7.4) containing 

1.5M KH₂PO₄ phosphate buffer and 2 mM NaN₃ in D₂O + 0.1% TSP was added, and samples 

were shaken strongly for mixing. All the volume was introduced into the NMR tubes (5 mm). 

These samples were analyzed in a 600 MHz AVANCE IIIHD (IVDr) provided with a BBI 

probe-head, automatic sample charger (Sample-jet) and 3 channels: 
1
H, 

2
H and X. 

1
H mono-

dimensional spectra and J-resolved 2D were obtained for sample and binning at 0.03 ppm were 

generated and normalized by the total area. Taking together bins and metadata, treatment of data 

and statistical analysis was carried out as we will see in section 2.11.3.  
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2.11.2.4 WHO metabolic syndrome definition 

We work with the definition of MetS provided by the WHO: diabetes or impaired glucose 

tolerance; fasting blood glucose > 110 mg/dL plus 2 or more of the following factors:  

o Obesity: BMI > 30 kg / m² 

o Dyslipidemia: TGs >>> 150 mg/dL or cHDL < 34.79 mg/dL in men and < 38.66 

mg/dL in women. 

o Hypertension ≥ 140/90 mmHg or drug treatment 

o Albuminuria: albumin excretion 20 µg/min 

2.11.3 Treatment of data and statistical analysis 

From OBENUTIC project 500 samples were analyzed at the end as some samples were 

excluded due to a wrong water suppression in NMR spectra (TSP > 1.3), or because metadata 

from Valencia was missing for some patients. 75 MetS samples more from PreMedEus cohort 

were included to balance the samples size of each class. 

2.11.3.1 Outlier elimination 

Besides, outliers were detected using the multivariant detection algorithm DBSCAN 

(https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.9220): bins are scaled by Pareto 

method and samples which (according to the algorithm) have no accessible other 4 samples at a 

minimal distance of 10 are selected as outliers.   

2.11.3.2 Metadata unification 

Regarding to metadata, it was unified renaming the variables for both datasets to match. Units 

and format were also matched.  

2.11.3.3 Adopted criteria for metabolic syndrome 

As said before, the criteria adopted for selecting samples as MetS was carried out following the 

WHO criteria (section 2.11.2.4).  

In our case a little modification of this definition was made because the data for “albuminuria” 

was not available in the data sheet that we received from Valencia. On the other hand, it is 

considered that there is a problem of diabetes/glucose when fasting glucose ≥ 110 mg/dL or 

there is evidence of diabetes medication consumption. So, a sample is considered “MetS” when 

is “diabetic” and have at least other 2 factors (obesity, dyslipidemia and hypertension). If the 

sample does not meet the diabetic criteria and either have the other factors is it classified as 

“asymptomatic”. 

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.9220
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2.11.3.4 Untargeted analysis data (bins) 

Each spectrum was read from 0.5 ppm to 9.5 ppm. Water region comprising between 4.7-5.0 

ppm was eliminated. The result was divided in 290 bins of 0.03 ppm. The result was normalized 

by the total intensity of the spectrum after water region elimination.  

2.11.3.5 Targeted analysis data (metabolites) 

Identification and quantification of metabolites were carried out automatically using the 

software B.I.QUANT-UR-b de BRUKER. 50 different metabolites could be quantified. In the 

cases when metabolites could not be identified, because they were below the limit detection, 

they adopted a value of 0. These cases were modified to have half the detection limit as value. 

The results were presented normalized by creatinine in mmol/mmol creatinine (with the 

exception of creatinine which was expressed in its absolute unit in mmol). 

2.11.3.6 Final metadata 

The final metadata is summarized in Table 4. This analysis was generated with the R library 

compareGroups, version 1.4.0. 

  Female n = 319 Male n = 219 

age 46.87 ± 12.77 47.72 ± 13.71 

MetS 30 (9.40%) 72 (32.88%) 

Other 124 (38.87%) 97 (44.29%) 

Asymptomatic 165 (51.72%) 50 (22.83%) 

whoms_diabetes 43 (13.48%) 83 (37.90%) 

whoms_obesity 99 (31.03%) 107 (48.86%) 

whoms_dyslipidemia 57 (17.87%) 84 (38.36%) 

whoms_hypertension 87 (27.27%) 122 (55.71%) 

BMI 27.57 ± 5.62 29.86 ± 4.84 

glucose_mg_dL 94.44 ± 18.09 108.70 ± 30.40 

triglycerides_mg_dL 106.21 ± 55.56 146.54 ± 87.86 

cholesterol_HDL_mg_dL 63.52 ± 13.76 49.54 ± 11.49 

syst_bp_mmHg 120.84 ± 16.61 132.64 ± 15.85 

diast_bp_mmHg 76. 96 ± 9.70 82.02 ± 11.84 

diabetes  13 (4.53%) 8 (5.48%) 

med_for_diabetes 8 (2.62%) 29 (14.95%) 

hypertension  86 (27.48%) 122 (55.96%) 

med_for_hypertension 37 (12.05%) 43 (22.05%) 

Table 4. Metadata for final MetS cohort. 
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 RESULTS 3

The main aim of this work has been the search for metabolomic biomarkers of NASH and 

MetS. As NASH is considered by many the hepatic manifestation of MetS, its study may be 

also useful to understand NASH development and progression. 

3.1 Overall effect of SAMe administration in MAT1A-KO mice 

3.1.1 DNA methylation is altered as a function of SAMe concentration   

As we explained above in section 1.2, SAMe is the main biological methyl donor of the cell and 

alterations in its homeostatic levels lead to hepatic disorders. Yet, SAMe half-life is 

approximately 5 minutes
160

 and orally administered SAMe is barely bioavailable due to the 

rapid hepatic metabolism
161

. Previous work in the laboratory showed that liver SAMe content 

increased rapidly after SAMe intraperitoneal injection, reaching a peak at 15 minutes and 

decaying to basal levels 4 hours after injection
162

. Consistently, in our study we found that 

MAT1A-KO mice receiving SAMe or vehicle (water) during two months before sacrifice had no 

significant differences in the concentration of SAMe in serum and liver, when sacrificed 24 

hours after the last administration of SAMe. 

As reported in previous studies
76

, in MAT1A-KO mice, deletion of MAT1A lead to a reduction of 

hepatic SAMe and, as a consequence of that, lower levels of DNA methylation were found. 

DNA hypomethylation in the liver is related with human NASH and NAFLD progression
163

. 

Thus, we analyzed differentially methylated DNA regions (DMRs) in MAT1A-KO mice given 

SAMe compared to MAT1A-KO mice given vehicle (Figure 12). SAMe administration 

increases DNA methylation: regions that are hypomethylated in MAT1A-KO mice partially 

restore methylation levels when given SAMe while additional regions appear to be also 

hypermethylated in SAMe-treated mice.  
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DMR* 
MAT1A-KO + vehicle 

vs. WT + vehicle 

MAT1A-KO + SAMe    

vs. WT + vehicle 

MAT1A-KO + SAMe    

vs. MAT1A-KO + 

vehicle 

Hypermethylated 43 53 161 

Hypomethylated 6678 5330 69 

Total 6721 5383 230 

  Figure 12. Effect of SAMe treatment on global DNA methylation in MAT1A-KO mice. Circos plots of the 

DMRs between MAT1A-KO + vehicle and WT + vehicle (left) and MAT1A-KO + SAMe and MAT1A-KO + 

vehicle (right). Red spots and blue spots represent hypermethylated and hypomethylated regions, 

respectively. The table shows the number of hypermethylated, hypomethylated and total DMRs in each 

comparative performed (MAT1A-KO + vehicle vs WT + vehicle; MAT1A-KO + SAMe vs WT + vehicle, 

and MAT1A-KO + SAMe vs MAT1A-KO + vehicle). *Filtering parameters: Q-value < 0.05, methylation 

difference > 20%. 

 

3.1.2 SAMe administration improves liver histology and liver function in MAT1A-KO 

mice 

SAMe homeostasis is central to a normal liver function, as illustrated by MAT1A-KO mice, 

which show increased susceptibility to develop fatty liver, steatohepatitis and HCC
164,165

. 

Previous work have shown that methionine derived metabolites have hepatoprotective 

properties in rodents
166

 so here we checked if MAT1A-KO mice given SAMe showed an 

improvement in liver function and histology. At the end of eight weeks of administration of 

SAMe and vehicle to MAT1A-KO mice, animals were sacrificed and liver histology performed 

to determine if SAMe produced histological differences between these two groups of animals. 
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Our results indicated that MAT1A-KO mice receiving SAMe showed a marked reduction (11-

fold) in liver lipid accumulation as compared to MAT1A-KO mice that received vehicle (p = 2e-

04) as shown by Sudan III red-stained area quantification (Figure 13).  

 

  

Sudan III (a.u ± 

SD) 
Sirius Red (a.u ± SD) F4/80 (a.u ± SD) 

WT + vehicle 1.1 ± 1* 1.4 ± 0.8* 0.7 ± 0.9 

MAT1A-KO + vehicle 
21.5 ± 14.7 3.4 ± 2.8 1.3 ± 0.9 

MAT1A-KO + SAMe 2.0 ± 2.9* 1.3 ± 0.7* 0.4 ± 0.3* 

         

   Figure 13. Effect of SAMe administration on histology of MAT1A-KO mice liver. Here we show images 

of H&E, Sudan III red, Sirius red and F4/80 immunofluorescence staining of liver tissues after eight 

weeks of SAMe (30 mg/kg/day) or vehicle administration. Sizing bars correspond to 100 mm for H&E 

and Sirius Red, and 50 mm for Sudan III and F4/80. Quantitative analyses are shown in the table. Results 

that were significantly different (* p < 0.05) from vehicle-given MAT1A-KO mice are indicated. Data 

shown represent the mean of 12 vehicle-given MAT1A-KO, 12 SAMe-given MAT1A-KO, and 11 vehicle-

given WT animals. 

 

Mice given SAMe also showed a reduction in liver fibrosis and inflammation as showed by the 

quantification of Sirius red-stained areas (3-fold compared with MAT1A-KO given vehicle; p = 

2.6e-02) and F4/80 (3-fold compared with MAT1A-KO given vehicle; p = 3e-03) respectively 

(Figure 13). 

To determine if liver function was improved by SAMe administration, we measured serum 

transaminases levels before and after treatment. SAMe treatment in MAT1A-KO mice reduces 

the liver enzyme activity of alanine aminotransferase (ALT) and aspartate aminotransferase 
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(AST) as compared with those receiving only the vehicle (Table 5). Cholesterol and TGs levels 

also decreased in SAMe-treated mice (Table 5).  

  

ALT (UL ± 

SD) 

AST (UL ± 

SD) 

Cholesterol 

(mg/dL ± 

SD) 

TGs      

(mg/dL ± 

SD) 

WT + vehicle (before) 31 ± 5 88 ±  21 147 ± 17 136 ± 27 

WT + vehicle (after) 20 ± 11* 43 ± 16* 110 ± 25* 105 ± 25 

MAT1A-KO + vehicle (before) 103 ± 49 72 ± 20 100 ± 22 150 ± 41 

MAT1A-KO + vehicle (after) 137 ± 105 107 ± 46* 107 ± 27 121 ± 38* 

MAT1A-KO + SAMe (before) 220 ± 255 128 ± 94 106 ± 29 170 ±  55 

MAT1A-KO + SAMe (after) 41 ± 23* 64 ± 35* 94 ± 37 114 ± 42* 

Table 5. Effect of SAMe administration on serum parameters: ALT, AST, cholesterol and TGs. For each 

group of animals (WT + vehicle, MAT1A-KO + vehicle and MAT1A-KO + SAMe), results that were 

significantly different before and after administration are indicated (* p < 0.05). 12 SAMe-treated 

MAT1A-KO, 12 vehicle-given MAT1A-KO and 11 vehicle-given WT mice were analyzed. 

 

3.2 SAMe depletion alters 1-carbon metabolism 

In section 1.2 we introduced the relationship between methionine and SAMe metabolism with 

1-carbon metabolism (1CM). 1CM circulates one carbon unit from different nutrients like 

choline or folate and amino acids such as glycine, methionine, threonine and serine to generate a 

large variety of outputs including, DNA methylation, synthesis of polyamines, NADPH, GSH 

and nucleotides and methylation of PE rich in polyunsaturated FA (PUFA) to generate PC rich 

in PUFA (Figure 14)
167

.   

 

Figure 14. SAMe depletion alters 1CM. Schematic representation of 1CM which circulates one carbon 

unit from different inputs (methionine, choline, serine, threonine, and glycine), via SAMe and MTHF, 

into a large variety of outputs, such as DNA and phospholipid methylation, GSH, polyamines, NADPH, 

and nucleotide synthesis.  
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MAT1A deletion leads to the hepatic accumulation of methionine upstream metabolites, like 

serine (Ser) and threonine (Thr), PE molecules containing docosahexaenoic acid [(PE (22:6)], 

and MTHF, also showing abnormal content of enzymes related to 1CM such as AHCY, 

aldehyde dehydrogenase 1a1 (ALDH1A1), BHMT, CBS, cysteine sulfinic acid decarboxylase 

(CSAD), cystathionine g-lyase (CTH), dimethylglycine dehydrogenase (DMGDH), MAT2A 

and serine dehydratase (SDS) (Figure 15 A, B). Besides, MAT1A deletion causes a reduction in 

downstream metabolites such as MTA, a biomarker of polyamine synthesis, hypotaurine 

(HTAU), TAU, and GSH, key biomarkers of the transsulfuration pathway; PC containing 

docosahexaenoic acid [PC(22:6)] and NADPH levels (Figure 15 A, B). 

 

Figure 15. (A) Relative fold-change (log2) in the hepatic content of the main metabolites involved in 

1CM in MAT1A-KO as compared with WT mice. MAT1A deletion induced a reduction in hepatic SAMe 

content and downstream metabolites, such as PC(22:6), MTA, GSH, HTAU and TAU, NADPH, and 

nucleotides. MAT1A ablation also resulted in the accumulation of methionine and upstream metabolites, 

such as Ser, Thr, MTHF, and PE (22:6). (B) Relative fold-change (log2) in the protein content of enzymes 

involved in hepatic 1CM in MAT1A-KO as compared with WT mice. MAT1A deletion led to abnormal 

protein content of numerous enzymes involved in 1CM. AHCY, ALDH1A1, BHMT, CBS, CSAD, CTH, 

DMGDH, MAT2A, SDS, * p < 0.05. 
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3.3 SAMe depletion activates processes as FA uptake, FA desaturation and 

esterification, impairing FA oxidation and VLDL secretion  

Our results showed that SAMe depletion is associated with hepatic accumulation of FAs, DG 

and TGs (Figure 16 and 17A) so we examined for proteins involved in lipid metabolism that 

could be differentially expressed in MAT1A-KO and WT mice. Through proteomic data 

analysis, we found that some of these proteins are differentially expressed in MAT1A-KO. For 

example, the content of SCD1 (the rate limiting enzyme in the synthesis of MUFAs) 

significantly augments in MAT1A-KO mice. This is a relevant result since MUFAs make the 

majority of TGs and membrane phospholipids. Other enzymes involved in TGs biosynthesis 

such as 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) and diacylglycerol 

acyltransferase 2 (DGAT2) also augment in the liver of MAT1A-KO mice (Figure 17B). 

Similarly, the content in the FA transporter CD36 which overexpression correlates with TGs 

accumulation in human NAFLD
168

, again significantly increase (Figure 17B). 

 

Figure 16. Schematic representation of hepatic lipid metabolism. Hepatic FAs originate from serum and 

through de novo lipogenesis (DNL). FA can be either oxidized in the mitochondria (Mit) or esterified to 

form TGs, which can follow different pathways. Px: peroxisomes; ER: endoplasmic reticulum; Mit: 

mitochondria; ACOX: acyl-CoA oxidase 1; cytochrome (CYP); oxFA: oxidized fatty acids, carnitine 

palmitoyltransferase 1a (CPT1A); palmitoylcarnitine (AC16:0). 

 

As already mentioned in section 1.1.2, TGs are the mechanism by which the liver stores FAs 

and can have different fates: they can be stored in LD, used to form other lipids (ceramides, 

phospholipids and cholesteryl esters) or be exported into blood as VLDLs. PEMT has been 

demonstrated to be a key enzyme necessary for proper VLDL assembly and export as its 

deficiency rises the probability of develop fatty liver in mice
169

. Other studies showed that 

MAT1A-KO mice have impaired VLDL assembly and reduced VLDL secretion
170

. Here we 

found that SAMe depletion causes a reduction of PC (22:6)/PC and PC (20:4)/ PE (20:4) ratios, 

which are indicators of reduced PEMT activity (Figure 17A). 



RESULTS 

 

59 

 

 

 

Figure 17. SAMe depletion activates FA uptake and esterification, whereas FA oxidation and VLDL 

secretion are impaired. (A) Relative fold-change (log2) in the hepatic content of the main metabolites 

involved in lipid metabolism in MAT1A-KO as compared with WT mice. AC (16:0): palmitoylcarnitine; 

oxFA: oxidized FA; oxLA: linoleic acid (18:2) derived oxidized FA; lyso-PC: lyso-phosphatidylcholine; 

lyso-PE: lyso-phosphatidylethanolamine; PC(22:6)/PC: ratio PC with docosahexaenoic acid/total PC; 

PC(20:4)/PE(20:4) and ratio PC/PE with arachidonic acid. (B) Relative fold-change (log2) in the content 

of proteins involved in liver lipid metabolism in MAT1A-KO as compared with WT mice. DNL enzymes: 

ACLY: citrate lyase; ACC1: acetyl-CoA carboxylase 1; FAS: fatty acid synthase. FA transport: CD36, 

fatty acid translocase. FA esterification: SCD1, stearoyl-CoA desaturase 1; AGPAT2: 1-acylglycerol-3-

phosphate O-acyltransferase 2; and DGAT2: diacylglycerol acyltransferase 2. Mitochondrial FA b-

oxidation: CPT1A, carnitine palmitoyltransferase 1a; ACSM5: acyl-CoA synthetase medium chain family 

member 5; ACAD8: acyl-CoA dehydrogenase family member 8; ALDH1B1: aldehyde dehydrogenase 1 

family member B1. Peroxisomal FA β-oxidation: ACOX1, acyl-CoA oxidase 1; ACAA1B: acyl-CoA 

acetyltransferase. Endoplasmic reticulum FA ω-oxidation: CYP2E1 and CYP4A10. * p < 0.05. 
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Our results also show that while having a normal content of carnitine palmitoyltransferase 

(CPT1A), its product palmitoylcarnitine (AC 16:0, the rate limiting substrate in mitochondrial 

FA oxidation), is accumulated (Figure 17 A, B) suggesting an impairment of FA oxidation in 

MAT1A-KO mice. In line, several enzymes involved in catalyzing the oxidation of FAs in the 

mitochondria such as acyl-CoA synthetase medium chain family member 5 (ACSM5) and acyl-

CoA dehydrogenase family member 8 (ACAD8) decrease content in MAT1A-KO mice livers. In 

contrast, levels of acyl-CoA oxidase 1 (ACOX1) and acyl-CoA acetyltransferase (ACAA1B) are 

higher. These enzymes are key for peroxisomal FA oxidation. We also found higher levels on 

enzymes involved in endoplasmic reticulum FA oxidation such as cytochrome P450 enzyme 

2E1 (CYP2E1) and cytochrome P450 enzyme A10 (CYP4A10) (Figure 17 B). Moreover, the 

rise in oxidized FAs correlates with the increased protein content of aldehyde dehydrogenase 1 

family member B1 (ALDH1B1), a key mitochondrial enzyme related with lipid peroxidation 

(Figure 17 A, B). 

Finally, when considering the central enzymes involved in DNL, we found that the content of 

acetyl-CoA carboxylase 1 (ACC1) does not change while citrate lyase (ACLY) and FA synthase 

(FAS) levels decrease (Figure 17 B).  
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3.3.1 SAMe depletion alters mitochondrial polarization in MAT1A-KO mice 

As we observed many alterations in FA oxidation, we wanted to know if mitochondrial integrity 

was affected by SAMe depletion in MAT1A-KO. We used flow cytometry to look for 

differences in murine hepatocytes (MAT1A-KO vs WT), after incubated for 4 hours with SAMe 

(4 mmol/L) or vehicle. As shown in Figure 18, membrane polarization is impaired in MAT1A-

KO hepatocytes and SAMe treatment restores it. 

 

Figure 18. Mitochondrial membrane polarization was restored in MAT1A-KO mice upon incubation with 

SAMe. (A) Representative flow cytometric analysis of WT and MAT1A-KO hepatocytes treated with 

SAMe or vehicle. The percentage of JC-1red high/JC-1green high and JC-1red low/JC-1green high 

populations is presented. The data are representative of 2 independent experiments performed in 

triplicate. (B) WT and MAT1A-KO hepatocytes were incubated for 4 hours with 4 mmol/L SAMe or 

vehicle. The cells then were stained with 10 mg/mL of the dye JC-1, and assessed for red and green 

fluorescence by flow cytometry. The data represent the variation of the ratio between red and green 

fluorescence intensity relative to WT control hepatocytes (100%) performed in triplicate and are 

representative of 2 independent experiments. *Student t-test, * p < 0.05.  
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3.4 MAT1A-KO mice metabolomic analysis reveals a fingerprint also 

present in 50% of NAFLD patients. 

3.4.1 Serum metabolomic profiling compares well with differences observed in the 

hepatic metabolism of MAT1A-KO mice 

As mentioned, MAT1A-KO mice spontaneously develop NASH due to their reduced levels of 

SAMe. It is extremely educational to understand whether NAFLD patients will present 

metabolic hepatic alterations that are similar to the MAT1A-KO mice ones. To answer this 

question, we first investigated if the metabolomic serum and liver profiles in MAT1A-KO mice 

correlate or not.    

Using LC/MS we measured the metabolites present in the liver and in the serum of MAT1A-KO 

and WT mice and compared them. We first created independent lists of significant metabolites, 

with the variation (fold-change) and p-value for each one of them (Supplementary Table 1). 

Subsequent comparison of both datasets revealed the common metabolites, and we conclude 

that serum metabolomic profile largely reflects the metabolism in the liver in MAT1A-KO mice 

(Figure 19). This correlation is statistically significant (p = 1e-04). 

                     
Figure 19. Serum metabolomic profile reflects hepatic metabolism. Comparison of liver and serum 

metabolomic profiles of MAT1A-KO mice. Each point represents the log2(fold-change) of individual 

metabolites of MAT1A-KO compared with WT mice in serum and liver. A list with the log2 (fold-change) 

and p-value for each metabolite in serum and liver is given in Supplementary Table 1. R2 = 0.45; p = 1e-

04. AA; amino acid; AC: acyl carnitine; BA: bile acid; Cer: ceramide; CMH: monohexosylceramide; 

Cho: cholesterol; ChoE: cholesteryl ester; FAA: fatty acyl amide; lyso-PC: lyso-phosphatidylcholine; 

lyso-PE: lyso-phosphatidylethanolamine; lyso-PI: lyso-phosphatidylinositol; MG: monoglyceride; 

MUFA: monounsaturated fatty acid; NAE: N-acylethanolamines; PI: phosphatidylinositol; PUFA: 

polyunsaturated fatty acid; SFA: saturated fatty acid; SM: sphingomyelin; ST: steroid. 
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3.4.2 Sub-classification of NAFLD patients 

From the pool of significant metabolites in Figure 19, we selected the top 50 serum metabolites 

differing significantly between MAT1A-KO and WT mice (Figure 20 A). In this set, some 

metabolites increase/decrease in MAT1A-KO as compared to WT mice, as shown in the figure. 

We used this metabolic profile to analyze the serum metabolome of a cohort of 535 biopsy-

proven NAFLD patients (section 2.11.1) in order to determine whether there are similitudes 

between MAT1A-KO mice and these patients. By Silhouette cluster analysis
171

, we found that 

NAFLD patients were subclassified in 2 main clusters: the first one shows a serum metabolomic 

profile similar to that found in MAT1A-KO mice (we denominate it M-subtype) while the 

second one shows an alternative serum metabolomic profile (called non-M subtype) (Figure 20 

B). 

3.4.3 Validation of the two NAFLD patient’s profiles associated with MAT1A-KO 

3.4.3.1 Validation for randomize partition and comparison of estimation and validation 

cohorts 

To validate these results, we observed the following procedure (Figure 21): first we randomly 

partitioned the human sample dataset into 2 cohorts (50/50), named estimation and validation 

cohorts. Since 353/182 patients were diagnosed with steatosis/NASH, the estimation and 

validation cohorts were generated abiding the same proportional representation also using the 

same protocol for gender. Next, we performed a clustering analysis (based on the selected top 

50 metabolites differing between MAT1A-KO and WT mice, Figure 21) and patients were 

classified into two subtypes: M-subtype and non-M subtype.  

Based on the entire metabolic profile of the human serum samples (328 metabolites) and using 

univariate analysis we identified and validated the metabolites that were significantly different 

between NASH and simple steatosis, named biomarkers. Estimation and validation cohorts 

assisted in the validation of the biomarkers that were further stressed to a 1000-fold repetition of 

the random partition, each time with a proportional representation of steatosis/NASH and 

males/females. This iterative process allowed determining the frequency distribution of 

metabolites that significantly discriminate between steatosis and NASH in both subtypes: M and 

non-M, (Figure 21). Metabolites showing a reproducibility of ≥ 70% (at least 700 times in 1000 

repetitions) in the test were selected and sorted out according to the NASH subtype 

reproducibility and p-value (Supplementary Table 2). 
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Figure 20. Identification of a subset of NAFLD patients showing a MAT1A-KO serum metabolomic 

profile. (A) Volcano plot representation indicating the -log10(p-value) and log2(fold-change) of individual 

serum metabolic ion features of MAT1A-KO compared with WT mice. AA, amino acid; AC, acyl 

carnitine; BA, bile acid; Cer, ceramide; CMH, monohexosylceramide; Cho, cholesterol; ChoE, 

cholesteryl ester; FAA, fatty acyl amide; lyso-PC, lyso-phosphatidylcholine; lyso-PE, lyso-

phosphatidylethanolamine; lyso-PI, lyso-phosphatidylinositol; MG, monoglyceride; MUFA, 

monounsaturated fatty acid; NAE, N-acylethanolamine; PI, phosphatidylinositol; PUFA, polyunsaturated 

fatty acid; SFA, saturated fatty acid; SM, sphingomyelin; ST, steroid. (B) Heatmap representation of the 

serum metabolomic profile from 535 patients with biopsy-confirmed NAFLD. Each data point 

corresponds to the relative ion abundance of a given metabolite (vertical axis) in an individual patient’s 

serum. Metabolite selection is based on the top 50 serum metabolites that differentiated more significantly 

between MAT1A-KO and WT mice. The hierarchical clustering is based on the optimum average 

silhouette width, dividing the classification of the samples into 2 groups: the first cluster resembles the 

serum metabolomic profile observed in the MAT1A-KO mice (M subtype), and the second cluster shows a 

different metabolomic profile (non-M subtype). 
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Figure 21. Scheme for the identification and validation of NAFLD subtypes and NASH biomarkers. 

Lyso-PC, lyso-phosphatidylcholine; lyso-PE, lyso-phosphatidylethanolamine; PI, phosphatidylinositol. 
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NASH biomarkers for the M-subtype include 54 metabolites: 8 fatty acids (6 FA and 2 oxFA), 

37 phospholipids (4 PC, 7 PE, 15 lyso-PC, 10 lyso-PE and 1 phosphatidylinositol), 3 TGs and 5 

aminoacids (Figure 21 and Supplementary table 2a). A subset of 29 of these metabolites have 

a reproducibility of ≥ 90%. Interestingly, 25 out of the 54 biomarkers are lyso-phospholipids. 

On the other hand, for non-M subtype we found 6 NASH biomarkers including 1 amino acid, 1 

FA, 1 bile acid, and 3 TGs (Figure 21 and Supplementary table 2b). 

Following the criteria based on ≥ 70% reproducibility we calculated the frequency distribution 

of the NAFLD patients into both subtypes M and non-M. 262 patients out of 535 were classified 

as M subtype (49%), 171 as non-subtype (32%) and the remaining 102 (19%) could not be 

classified in neither of subtypes because their reproducibility was less than 70%, so we called 

them “indeterminate group”. Supplementary table 3 summarizes the serum metabolites that 

are associated with the MAT1A-KO serum metabolomic profile in the human subtype. The 

percentage of NASH patients in the M-subtype group and in the total cohort is the same (34%), 

lower that the percentage of NASH patients with non-M subtype (39%) and higher that the 

indeterminate group (25%) (Table 3). 

There were more women than men in the steatosis and NASH groups of M-subtype when 

compared with the non-M subtype but this introduced no bias in the information that can be 

obtained from the serum metabolome, as deduced from the PCA analysis by gender (Figure 

22). 

 

 

Figure 22. PCA plot of human serum samples classified according to gender. PCA analysis showed that 

males (30%) and females (70%) clustered together. Each individual is represented by 1 dot and the color 

corresponds to females (red) and males (blue). 
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3.4.3.2 Validation with methionine choline deficient (MCD) fed-mice NASH model  

To further validate the classification of patients between the two groups (M and non-M type) we 

repeated the analysis with the patient’s cohort but, this time, comparing their metabolomes with 

the metabolome of the MCD deficient mice (a dietary model of NASH), which also shows a 

deficiency in SAMe.  

To avoid body weight loss caused by the canonical MCD diet
172

, we supplemented the diet with 

0.1% methionine. The resulting 0.1MCD diet also induces steatosis, inflammation and fibrosis 

(Figure 23 A,B).  Body weight is lower as compared to control group but it gets stable after the 

first 2-3 days (Figure 23 C). The increase of ALT and AST enzymes in serum is similar to the 

levels found in the canonical MCD diet-fed mice (Figure 23 D). 0.1MCD diet fed-mice showed 

a reduction in hepatic SAMe and an increase in SAH (Figure 24 A, B) which means a reduction 

in SAMe/SAH ratio, known to cause inhibition of PEMT. As mentioned in section 1.1.2, PEMT 

is the enzyme that generates PC by the N-methylation of PE and converts PE rich PUFAs to 

PUFA-rich PCs, ultimately required to synthetize VLDLs. Consistently, mice fed with 0.1MCD 

show an increase in hepatic PE (22:6) and decrease PC (22:6) levels (Figure 24 A, B), the main 

phospholipid in the outer coat of VLDLs. VLDL impaired formation and export results in a TGs 

accumulation in the liver. Finally, 0.1MCD diet also causes reduction in serum TGs levels, PC 

(22:6) serum levels (as compared to those fed a normal diet) and reduce levels of hepatic GSH 

and cystathionine (Figure 24 A, B). GSSG levels are increased in 0.1MCD mice; being the 

reduced GSH/GSSG ratio a biomarker of oxidative stress
173

.  

At the protein expression level, several GSH-consuming enzymes such as GSH peroxidase 1 

(GPX1), GSH S-transferases 1-3 (GSTM 1-3) and thioredoxin reductase 1 (TXNRD1) increase 

content in 0.1MCD diet-fed animals as compared to chow diet and the content of GSH synthase 

(GS) also increases (Figure 24 A, C). The first enzyme connecting SAMe metabolism with the 

transsulfuration pathway is CBS, which is reduced in 0.1MCD mice. In turn, in 0.1MCD mice, 

glutamate-cysteine ligase (GCL) catalytic subunit levels increase but not the amount of the 

corresponding modifier subunit (the regulatory subunit of GCL, Figure 24 A, C). These results 

suggest that the fall in GSH and the reduction in GSH/GSSG ratio are due to increased 

oxidative stress and impaired oxidative response. 
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Figure 23. (A) Histology of livers from WT mice fed with normal diet (ND), canonical MCD diet (MCD) 

and MCD diet with 0.1% of methionine (0.1MCD). H&E, Sudan III red, Sirius red and F4/80 

immunofluorescence staining of livers are shown. (B) Sudan III red, Sirius red and F4/80 quantification. 

(C) Body weight loss in MCD and 0.1MCD-fed mice along 30 days. (D) Serum levels of ALT and AST 

enzymes in mice fed the 0.1MCD diet and the canonical MCD diet. 
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Figure 24. Hepatic SAMe metabolism in mice fed a 0.1MCD diet and treated with vehicle or with 

Aramchol. (A) Schematic representation of hepatic SAMe metabolism. (B) Relative fold change (log2) in 

the hepatic content of the main metabolites involved in hepatic SAMe metabolism in mice fed a 0.1MCD 

diet compared to mice fed a normal diet. (C) Relative fold change (log2) in the protein content of enzymes 

involved in hepatic SAMe metabolism in 0.1MCD-fed mice treated with vehicle or with Aramchol 

compared to mice fed a normal diet. Data were represented as mean ± SEM. * p < 0.05. 
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We next investigated if the cohort of 535 NAFLD-biopsy-proven patients showed alterations in 

liver metabolism similar to that found in 0.1MCD mice. To that end, we compared the liver and 

serum metabolome of 0.1MCD mice and those fed a control diet and generated two lists of 

metabolites (for the liver and serum metabolomes) showing the fold changes and p-values for 

each metabolite (Supplementary Table 4). Then, we analyzed if the serum metabolic profile of 

0.1MCD mice reflected their liver metabolism by comparing both sets of data and we found that 

this system is defined by a bi-linear regression plots, one made by the pool of TGs (R = 0.865, 

p-value = 2.5e-12) and the second one made by all lipids but TGs (R = 0.576, p-value = 2.2e-

16) (Figure 25).  

 

Figure 25. Serum metabolomic profile reflects hepatic metabolism in 0.1MCD diet fed-mice. 

Comparison of liver and serum metabolomic profiles of 0.1MCD diet fed-mice. Each point represents the 

log2(fold-change) of individual metabolites of 0.1MCD diet fed-mice compared with normal diet-fed 

mice in serum and liver. AA; amino acid; AC: acyl carnitine; BA: bile acid; Cer: ceramide; CMH: 

monohexosylceramide; DG: diglyceride; LPC: lyso-phosphatidylcholine; LPE: lyso-

phosphatidylethanolamine; LPI: lyso-phosphatidylinositol; MUFA: monounsaturated fatty acid; NAE: N-

acylethanolamines; oxFA: oxidized fatty acid; PC: phosphatidylcholine; PE: phosphatidylethanolamine; 

PI: phosphatidylinositol; PUFA: polyunsaturated fatty acid; SFA: saturated fatty acid; SM: 

sphingomyelin; TG: triglycerides. 

 

Afterwards, we selected the top 50 serum metabolites in discriminating between 0.1MCD and 

normal diet-fed mice (Figure 26 A) and used this metabolic signature to classify the 535 

biopsy-proven NAFLD patients. Again by Silhouette cluster analysis, patients were 

subclassified into two main clusters: one cluster with a metabolic profile similar to the one 

found in 0.1MCD mice and the other showing a different profile (Figure 26 B).  
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Figure 26. Identification of a subset of patients with NAFLD showing a serum metabolomic profile 

similar to that of the 0.1MCD mouse model. (A) Volcano plot representation indicating the –log10(p-

value) and log2(fold change) of individual serum metabolic ion features of mice fed a 0.1MCD diet 

compared to mice fed a normal diet. (B) Heatmap representation of the serum metabolomic profile from 

535 patients with biopsy-confirmed NAFLD. The scale indicates (vertical axis) the relative ion abundance 

of each metabolite in the serum extract of a given subject with respect to that found in the rest of the study 

population, 0 being the mean value. The hierarchical clustering is based on optimum average silhouette 

width obtaining two main clusters; the first (left-hand cluster) resembles the serum metabolomic profile 

observed in mice fed a 0.1MCD diet (0.1MCD subtype), while the second cluster (right-hand cluster) 

shows a different metabolomic profile (non-0.1MCD subtype).  
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For validation of this classification we followed, once more, the procedure developed and 

explained in section 3.4.3.1, that consists in carry out random partition of samples, 50/50, in 

two cohorts (estimation and validation) and perform the Silhouette cluster analysis 

aforementioned to see which patients have a serum metabolic profile similar to the 0.1MCD diet 

fed-mice profile. Then, we repeated this random partition 1000 times and patients showing a 

metabolic profile resembling the 0.1MCD mice model ≥ 700 times were selected.  

Out of this analysis, 250 patients (out of 535, 47%) had a metabolic phenotype similar to the 

one found in 0.1MCD diet fed-mice and we name it 0.1MCD subtype. On the other hand, 147 

patients (27%) had a different profile so we call them non-0.1MCD subtype and the remaining 

138 patients (26%) were indeterminate as they were classified < 700 times as 0.1MCD-subtype 

and non-0.1MCD subtype indistinctly (Figure 27 A). Remarkably, 90% (n = 225) of the 

patients classified here as 0.1MCD subtype were also classified as M-subtype when compared 

with MAT1A-KO mice metabolic profile and we call this group M
+
 subtype (Figure 27 A). On 

the other hand, 73% (n = 107) patients classified as non-0.1MCD subtype were also classified as 

non-M subtype when comparing them with MAT1A-KO mice model, so we call this group non-

M
+
 subtype (Figure 27 A). A third miscellanea group, called I

+
 subtype, encloses the remaining 

203 patients that do not belong to any of the two subtypes (Figure 27 A). 

These results support the hypothesis that low levels and impaired synthesis of SAMe in the liver 

may be common feature in NAFLD patients. 

Finally, we compared the serum metabolomic profiles of the M
+
 and non-M

+
 subtypes (already 

validated) and found that 93.6% of all the analyzed amino acids and lipids were significantly 

reduced in the M
+
 subtype (Figure 27 B). The analyzed lipids included saturated FAs, MUFAs, 

PUFAs, DGs, TGs, ethanolamine and choline glycerophospholipids (diacyl, plasmalogens, and 

lyso phospholipids), bile acids, cholesteryl esters and sphingolipids (ceramides and 

sphingomyelins). The serum levels of glycine, methionine, serine and threonine (the amino 

acids that feed 1CM to form SAMe) and the levels of taurine (the main output of SAMe 

catabolism) are reduced in serum of M
+
 subtype patients as compared to non-M

+
 subtype 

patients. The I
+
 subtype showed higher levels of serum amino acids and lipids than M

+
 subtype 

but lower than the non-M
+
 subtype (Figure 27 B). 

These results suggest that M
+
 subtype NAFLD patients (as well as the MAT1A-KO and 0.1MCD 

mice models) may have impaired VLDL formation and export. The secretion of other lipid 

vesicles (as exosomes) may be affected too in M
+
 subtype patients compared to the non-M

+
 

subtype. 
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Figure 27. Scheme for the identification and validation of NAFLD subtypes M+ and non-M+ subtype. (A) 

Schematic representation summarizing the results obtained from the metabocentric analysis. (B) Heatmap 

representing the comparisons of the serum metabolic profiles of validated M+, non‐M+, and I+ groups, 

displaying the log2(fold change) and unpaired student t-test. Abbreviations: AA, amino acids; AC, acyl 

carnitines; BA, bile acids; CE, cholesteryl esters; Cer, ceramides; CMH, monohexosylceramides; oxFA, 

oxidized fatty acids; MG, monoglycerides; NAE, N‐acylethanolamines; SFA, saturated fatty acids; SM, 

sphingomyelins. 
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3.4.4 Hepatic lipid and protein content alterations in 0.1MCD diet fed-mice 

We analyzed the lipid composition that was altered in mice fed 0.1MCD diet to find a hepatic 

lipid accumulation of TGs, DGs, cholesteryl esters and FAs as well as oxidized FAs. 

Noteworthy, one of these metabolites are oxidized derivatives of linoleic acid (oxLA), that have 

been proven to be a human NASH biomarker
174

 (Figure 28 A, B). 

On the other hand, we also wanted to investigate which proteins related to hepatic lipid 

metabolism may be altered in 0.1MCD mice. Proteomics data analysis showed that 0.1MCD 

mice had increased levels for a set of proteins as compared to controls. Such set included the 

CD36 FA transporter, AGPAT3, CPT1A, HADH A and B, UCP2 (mitochondrial uncoupling 

protein 2), and CYP4A14 (microsomal cytochrome P450 family 4, subfamily a, polypeptide 14) 

(Figure 28 C), which agrees with previous findings
175,176

.  On the other hand, other proteins like 

SCD1, ACC1, ACC2, ACLY and FAS showed decreased concentration. 

HADHA and HADHB are subunits of mitochondrial trifunctional protein which catalyzes the 

last three steps of mitochondrial β-oxidation of long chain FAs. In turn, AGPAT3 is a key 

enzyme involved in TG synthesis since it is involved in phospholipid metabolism converting 

lysophosphatidic acid (LPA) into phosphatidic acid (PA). Otherwise, the protein content of 

other enzymes involved in DNL such as ACLY, ACC1, ACC2 and FAS were slightly 

diminished (Figure 28 C). Finally, ACC2 is the enzyme that synthetizes mitochondrial 

malonyl-CoA (an inhibitor of CPT1A) and as its protein content was reduced, it indicates that 

MCD-mediated reduction of SCD1 stimulates FA oxidation through the β-oxidation pathway, 

which agrees with previous studies
175

. 
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Figure 28. Hepatic lipid metabolism in 0.1MCD mice treated with vehicle or with Aramchol. (A) 

Schematic representation of hepatic lipid metabolism. (B) Relative fold change (log2) in the hepatic 

content of the main metabolites involved in lipid metabolism in mice fed a 0.1MCD diet and treated with 

vehicle or with Aramchol compared to mice fed a normal diet. (C) Relative fold change (log2) in the 

content of proteins involved in liver lipid metabolism in mice fed a 0.1MCD diet and treated with vehicle 

or with Aramchol compared to mice fed a normal diet. 
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3.5 Aramchol administration reduces NASH features in 0.1MCD diet fed-

mice. 

As mentioned previously (section 1.1.7.1), Aramchol is a lipidic molecule resulting from the 

synthetic conjugation of a bile acid and a saturated FA. It was proven that Aramchol inhibits 

SCD1 activity promoting FA β-oxidation and decreasing FA synthesis
49

. To see if Aramchol 

treatment reduces steatohepatitis, we tested the compound (5mg/kg/day vs vehicle) during 2 

weeks in a murine model of NASH (0.1MCD mice, already fed during 2 weeks). 

As depicted in Figure 29, mice treated with Aramchol showed improved liver histology when 

compared to mice given vehicle, as indicated by hematoxylin and eosin histology and confirmed 

by Sudan III, Sirius Red (showing less lipid accumulation in liver), F4/80 and CD64 (reporting 

less liver inflammation). COL1A1 western-blotting staining and quantification (Figure 30 A) 

showed that 0.1MCD mice treated with Aramchol had reduced levels of COL1A1 and that these 

levels were comparable to those in mice fed with a normal diet (Figure 30 A). 

      

Figure 29. Aramchol ameliorates liver histology in 0.1MCD-fed mice. Hematoxylin and eosin staining, 

Sirius Red, and Sudan III staining and quantification of positive areas; F4/80 and CD64 immunostaining 

and quantification of positive areas. 
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Measurements of the serum liver enzymes AST and ALT showed that feeding 0.1MCD diet to 

mice for 4 weeks caused a significant increase of these enzymes when compared with normal-

diet mice. Such increase is also found in mice treated with Aramchol, but it is not statistically 

significant (Figure 30 B). 0.1MCD mice also showed a reduction in serum TGs levels, 

unrecovered upon Aramchol treatment (Figure 30 B).  

 

Figure 30. Aramchol treatment reduces COL1A1 protein content but did not affect serum enzymes or 

TGs in 0.1MCD diet fed-mice. (A) Collagen type I protein content in the liver of mice was assessed by 

immunoblotting using GAPDH as the loading control. (B) Serum levels of ALT, AST, and TGs. * p < 

0.05 versus control; # p < 0.05 versus MCD. Data were represented as mean 6 SEM. Abbreviations: ND, 

normal diet; a.u., arbitrary units. 

 

In agreement with the decrease in fibrosis and inflammation we found that Aramchol treated 

0.1MCD mice, showed a recovery to normal levels in some metabolites such as FAs, oxFAs 

(Figure 28 B), cystathionine and GSH as well as in the GSH/GSSG ratio (Figure 24 B). 

Administration of Aramchol to 0.1MCD mice did not caused significant effects in protein 

content of enzymes involved in GSH synthesis and redox regulation (CBS, GCL catalytic 

subunit, GCL modifier subunit, GS, GSR, GPX1, GSTM1-3, and TXNRD1) (Figure 24 C). 

Yet, aminobutyric acid (a biomarker of the flux through transsulfuration pathway)
177

 was 

markedly increased in animals treated with Aramchol (Figure 24 B). 
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The levels of enzymes involved in DNL, FA uptake, TG synthesis and FA β-oxidation were 

similar in 0.1MCD mice treated with Aramchol or vehicle with the exception of SCD1, whose 

reduced levels were further validated by measuring the FA (16:1)/(16:0) ratio and the content of 

MUFAs (Figure  28 B, C). 

3.6 Identification of serum biomarkers associated with Aramchol 

treatment 

As we mentioned in previous sections, there is a need to identify reliable biomarkers that differ 

between several kind of NAFLD patients and healthy people but also check their progression 

under treatment.  

To that end, a volcano plot analysis that compared serum metabolome of mice treated with 

Aramchol versus vehicle (Supplementary Table 5) uncovered up to 91 metabolites able to 

discriminate between both mice (Figure 31 A, Supplementary Table 5). Alternatively, when 

comparing the liver metabolome of these two groups of mice, 30 metabolites differ significantly 

between the 2 groups (Figure 31 B). These metabolites include: 2-aminobutiric acid (that 

increases after treatment with Aramchol), 3 MUFAs, 10 PUFAs, 4 lyso-PE, 9 lyso-PC and 3 

lyso-PI, whose levels decrease in mice treated with Aramchol (Figure 31 B). 

To evaluate the effect of dose-response on the potential biomarkers, we tested two doses of 

Aramchol (1 mg/kg/day and 5 mg/kg/day) in serum and liver. The 1 mg/kg/day dose did not 

ameliorate liver histology (data not shown) and, as shown in Figure 31 B, it only results in a 

modification in 2 lyso-PCs in serum and 3 lyso-PCs and 2 lyso-PI in the liver. 
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Figure 31. Identification of serum biomarkers associated with Aramchol treatment. (A) Volcano plot 

representation indicating the –log10(p value) and log2(fold change) of individual serum metabolic features 

of mice fed a 0.1MCD diet and treated with Aramchol (5 mg/kg/day) compared to untreated mice fed a 

0.1MCD diet. (B) Heatmap of the 30 serum metabolites found to reflect the effect of Aramchol in the 

liver. This graph shows the log2(fold change) together with the unpaired student t-test of each metabolite. 

For the comparisons, log-transformed ion abundance ratios are depicted as represented by the scale. 

Darker green and red colors indicate higher drops and elevations of the metabolite levels, respectively, in 

every comparison. Gray lines correspond to significant fold changes of individual metabolites; darker 

gray colors have been used to highlight higher significances (p < 0.05, p < 0.01, p < 0.001). Metabolites 

have been ordered in the heatmap according to their carbon number and unsaturation degree of their acyl 

chains. Abbreviations: AA, amino acids; AC, acyl carnitines; BA, bile acids; CE, cholesteryl esters; Cer, 

ceramides; CMH, monohexosylceramides; LPE, lyso-PE; LPC, lyso-PC; LPI, lyso-PI; oxFA, oxidized 

fatty acids; MG, monoglycerides; NAE, N-acylethanolamines; SFA, saturated fatty acids; SM, 

sphingomyelins. 
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3.7 Aramchol improves steatosis and oxidative stress in MCD medium-

exposed-hepatocytes and reduced COL1A1 mRNA in human stellate 

cells 

Regarding to lipid accumulation and cellular oxidative stress, we analyzed the effect of 

Aramchol in mouse hepatocytes cultured in MCD medium. Hepatocytes were cultured during 

48 hours in serum-free MEM or MCD medium, with or without Aramchol (10 μM extracellular 

concentration). We found that hepatocytes incubated with MCD medium increase neutral lipid 

accumulation (as determined by BODIPY staining) and that this accumulation is prevented by 

Aramchol treatment (Figure 32 A). Total cell ROS in hepatocytes exposed to MCD medium 

increases 4.5-fold and this effect is significantly reduced under treatment with Aramchol 

(Figure 32 B).  

On the other hand, we incubated LX-2 human stellate cells in absence or presence of Aramchol 

(10 μM extracellular concentration) for 24 hours to find that COL1A1 mRNA content decreases 

while PPARꝩ transcript increases (Figure 32 C), which is interesting since PPARꝩ is a negative 

regulator of type I collagen expression
178

. Besides, PPARꝩ expression in hepatocytes positively 

correlates with fat accumulation induced by diabetes or obesity
179

.  

 

Figure 32. Aramchol attenuated lipid accumulation and ROS production in hepatocytes and collagen 

production in LX-2 cells. (A) BODIPY staining and quantification of the intensity of lipid bodies per cell. 

(B) CellROX Deep Green Reagent loading and total ROS levels quantification by FACS. (C) LX-2 

mRNA expression of COL1A1 and PPARꝩ was assessed by quantitative PCR. ** p < 0.01 versus control; 

***p < 0.001 versus control; ##p < 0.01 versus MCD; ###p < 0.001 versus MCD. Data were represented 

as mean 6 SEM. Abbreviation: FACS, fluorescence-activated cell sorting. 
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3.8 Effect of Aramchol in the regulation of liver glucose metabolism 

As mentioned in previous sections, our experiments show that Aramchol treatment causes 

down-regulation of SCD1 in 0.1 MCD diet-fed mice, leading to a decrease in FAs and TGs in 

the liver, reverting fibrosis, ameliorating inflammation, and improving FA β-oxidation by 

increasing the flux through transsulfuration pathway. 

On the other hand, in a one-year study involving 247 NASH patients enrolled in the ARamchol 

for the REsolution of STeatohepatitis (ARREST) clinical trial (NCT 02279524) (Figure 33), 

Aramchol significantly reduced liver fat, improved histology and hepatic biochemistry. At week 

52, placebo-treated patients exhibited an increase in glycated hemoglobin (HbA1c), while those 

treated with Aramchol (400 and 600 mg/day) showed a reduction in HbA1c (Figure 34). The 

differences from placebo were statistically significant, suggesting that Aramchol also targets 

glucose metabolism. 

 

Figure 33. ARREST design. A phase IIb, double-blind, multinational, multicenter randomized, controlled 

clinical trial to evaluate the efficacy and safety of two Aramchol doses versus placebo in patients with 

NASH. 
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Figure 34. Analysis of HbA1c at week 52 of ARREST clinical trial revealed an increase in the placebo 

(pbo) group and a significant reduction in patients treated with Aramchol (400 or 600 mg/day). Aramchol 

400mg vs pbo: p = 0.006. 600mg vs pbo: p = 0.001. 

 

The promising results obtained with Aramchol in 0.1MCD mice model and LX-2 human stellate 

cells
136

 combined with putative mechanism of Aramchol targeting SCD1 and glucose 

metabolism, made us focused in testing the effect of Aramchol in glucose metabolism in vitro. 

In addition, the metabolomic dataset obtained in the previous study conducted with 0.1MCD 

NASH preclinical model, was re-evaluated in terms of the glycolysis and gluconeogenesis-

related metabolites. 

3.8.1 Effect of Aramchol in catabolic and anabolic pathways 

We treated primary WT hepatocytes cultured in MCD or control medium with Aramchol or 

DMSO (20 μM extracellular concentration) for 48h. Western blot analysis showed the pathways 

targeted by Aramchol (Figure 35).  

As abovementioned, Aramchol targets SCD1
180

, the enzyme that accomplish the first rate-

limiting step in TGs synthesis, also improving the metabolic alterations that characterize NASH 

(accumulation of lipids, lipotoxicity and oxidative stress) and reverting fibrosis (collagen 

production). As expected, SCD1 level lower in control medium with Aramchol and the same 

behavior is observed in MCD medium with Aramchol (Figure 35). Besides, we found that 

Aramchol increases the levels of the phosphorylated (activated) form of 5’ adenosine 

monophosphate-activated protein kinase (AMPK) in both culture media (Figure 35). AMPK is 

a key enzyme associated to energy homeostasis in the cell. Carnitine palmitoyltransferase I 

(CPT1A/B) is a mitochondrial enzyme that mediates the transport of long chain FAs across the 

mitochondrial membrane. Our results show that CPT1A/B protein levels increase in control 
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medium with Aramchol, while the increase in MCD medium with Aramchol is less pronounced 

(Figure 35).  

We also analyzed the levels of acetyl-CoA carboxylase (ACC), an enzyme involved in the 

biosynthesis of FAs, in presence or absence of Aramchol and found that its inactive form (p-

ACC) slightly but significantly increases in both culture mediums with Aramchol (Figure 35).  

On the other hand, we also analyzed the levels of p70S6k and S6. p70S6k is a serine/threonine 

kinase and S6 ribosomal protein is its substrate target
181

. Phosphorylation of S6 ribosomal 

protein induces protein synthesis at the ribosome and importantly it is inhibitory for autophagy. 

Total S6 protein level decreases in control medium with Aramchol and the same behavior is 

observed in MCD medium with Aramchol (Figure 35). In addition, P-S6/S6K ratio level 

significantly decreases in hepatocytes in control medium with Aramchol and in hepatocytes in 

MCD medium with Aramchol (Figure 36). Also, P-p70S6K/p70S6K ratio level significantly 

decreases in hepatocytes cultured in control medium with Aramchol, otherwise in MCD 

medium with Aramchol the P-p70S6K/p70S6K ratio seems not to be altered (Figure 35), 

(Figure 36). 

These results indicate stimulation of catabolic pathways and reduction of anabolism. 

 

Figure 35. Aramchol targets metabolic pathways. Western blot analysis performed in hepatocytes treated 

48h with Aramchol (20µM) cultured with control or MCD medium. 

https://en.wikipedia.org/wiki/Protein_synthesis
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Figure 36. Densitometry analysis of the western blots performed in hepatocytes treated 48h with 

Aramchol (20µM) cultured with control or MCD medium. * p < 0.05. 
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3.8.2 Effect of Aramchol in key metabolic and signaling pathways 

Protein extracts from murine hepatocytes isolated from three-month old male WT mice and 

cultured 48h in control medium (DMSO) or Aramchol (20 μM extracellular concentration), 

were analyzed by LC/MS. More than 3000 proteins were identified, from which 220 were 

differentially expressed between the two experimental groups. In the volcano shown in Figure 

37, differentially expressed proteins according to the up or down regulation are classified by 

colors depending on their function. Differentially expressed selected proteins were analyzed 

with STRING software and classified in key biological functions showing a reduction of 

translation and fibrosis; and activation of lipid droplet clearance, fatty acid oxidation, oxidative 

phosphorylation, antioxidant response and the tricarboxylic acid cycle (TCA cycle). 

 

Figure 37. Volcano plot elaborated with the proteins identified by proteomics analysis and differentially 

expressed between hepatocytes treated 48h with Aramchol (20µM) or DMSO in control medium. Proteins 

are classified in different colors corresponding with their functions. 
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Figure 38. STRING analysis elaborated with selected proteins identified by proteomics analysis and 

differentially expressed between hepatocytes treated 48h with Aramchol (20µM) or DMSO in control 

medium. Proteins were classified corresponding with key biological processes. 

 

3.8.3 Effect of Aramchol in TCA cycle activity 

Based on the results of the proteomic analysis, we evaluated the effect of Aramchol in the TCA 

cycle by culturing primary mouse hepatocytes in control medium (DMSO) or medium with 

Aramchol (20 μM extracellular concentration) for 48h. Subsequently, we incubated these cells 

with 
13

C uniformly labeled glucose for 2h or 4h. All samples were analyzed by LC/MS and 

extracted ion traces of labelled and unlabeled glucose, citric acid (not shown) and malic acid 

(Figure 39) were obtained for both experimental groups. 

The results reflect an increase in the number of rounds that malate remains in the TCA cycle, 

indicating a reduction in cataplerosis
182

, which may be linked to reduced gluconeogenesis 

(Figure 39). 
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Figure 39. Aramchol reduces cataplerosis. Proportion of 13C-labeled species of malate in hepatocytes 

treated or not with Aramchol (20µM) for 48h and incubated with fully labeled glucose for 2h. 

 

3.8.4 Aramchol treatment improves glucose homeostasis in 0.1MCD diet fed-mice 

As previously shown (section 3.6), 0.1 MCD mice liver metabolomics analysis was performed 

to investigate the potential benefit of Aramchol on fibrosis. The doses of Aramchol given to 

mice were 1mg/kg/day and 5mg/kg/day. 

Therapeutic use of Aramchol in 0.1MCD mice produced a reduction in liver steatosis, fibrosis 

and inflammation.  

The metabolic analysis of the 0.1MCD mice liver samples also revealed a reduction of liver 

glucose, glucose 6-phosphate (G6P), fructose 6-phosphate (F6P), UDP-glucose (UDPG), 

ribulose 5-phosphate (Ru5P) fructose 1, 6-bisphosphate (FBP) and pyruvate (PYR) as compared 

to mice fed with a normal diet. Under Aramchol treatment the levels of these metabolites 

increase (with a stronger effect when using 5mg/kg/day) although without getting the levels 

found in mice fed with normal diet. These results indicate that Aramchol administration 

improves glycolysis/gluconeogenesis in a NASH mice model, in a dose-dependent manner 

(Figure 40). 
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Figure 40. Aramchol improves liver glucose pathway metabolites in mice fed 0.1MCD diet. * p < 0.05, * 

p < 0.01. * p < 0.001. 
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3.9 Aramchol inhibits glycerophosphocholine (GPC) and 

lysophosphatidylcholine (LPC) formation in hepatocytes 

We also wanted to check if Aramchol had an effect in VLDL synthesis and secretion so we 

treated WT hepatocytes cultured in MCD medium, with Aramchol (20 μM extracellular 

concentration) or vehicle during 48h. After this time, we replaced the media by 
13

C-labeled-

glucose at 0’, 60’, 120’ and 240’. Aramchol blocks the formation of glycerophosphocholine 

(GPC) and lysophosphatidylcholine (LPC) in both experimental groups (Figure 41).  

 

Figure 41. Aramchol 20 μM inhibits the formation of GPC and LPC in hepatocytes cultured in MCD 

medium. 13C-labeled glucose was added at 0’, 60’, 120’ and 240’. 
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3.10 Searching for biomarkers of MetS in human urine samples 

MetS is a complex disorder caused by several altered factors, tightly related with NAFLD 

(which in some cases is considered its hepatic manifestation). There are several similar (yet not 

identical) definitions for MetS. These definitions are mostly based on symptomatology and not 

based in a metabolic fingerprint so we aimed to identify a biochemical fingerprint for this 

disease analyzing which are the metabolites present in urine samples from healthy people (here 

called “asymptomatic”) and MetS patients. The final goal is to provide a rigorous and universal 

definition of this syndrome. 

Using NMR spectroscopy, we measured urine samples from 511 people participating in the 

OBENUTIC study in the University of Valencia (Spain) and correlated the 
1
H monodimensional 

NMR spectra with the metadata containing biochemical and anthropometric parameters of each 

patient. We classified patients, using the definition given by the WHO, in MetS, asymptomatic 

(no parameters altered) and intermediate (people with some altered parameters but not suffering 

MetS). 

In a preliminary treatment of data, we found that from the OBENUTIC cohort only 43 patients 

had MetS so the cohort required to be supplemented in the number of MetS patients to balance 

the presence of each condition in the analysis. To do so, we selected 75 MetS patients from the 

cohort PreMedEus provided by the company Osarten and included the information from their 

urine samples measurements for this study. The first step was to check whether it is feasible to 

analyze simultaneously the OBENUTIC and PreMedEus cohorts. PCA of spectral bins shows 

no differences between samples coming from either project (Figure 42), validating this 

procedure. 

                         

Figure 42. PCA of samples taken from OBENUTIC and PreMedEus participating patients 
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3.10.1 New classification of profiles based in 4 bit and WHO criteria 

We performed a new classification of samples from people participating in those projects based 

in the definition given by the WHO and also based in 4 bits codified as binary (0 = no, 1 = yes) 

(Figure 43, and Table 6). We made this new classification renaming the variables to make both 

data sets match. The parameters for this new definition are high fasting glucose ( > 110 mg/dL) 

as the mandatory requirement for MetS, obesity (BMI > 30 kg/m
2
), dyslipidemia (if TGs > 150 

mg/dL or cHDL < 34.75 mg/dL in men or < 38.61 mg/dL in women) and hypertension (systolic 

pressure ≥ 140 mmHg or diastolic pressure ≥ 90 mmHg or medication). We do not have data for 

microalbuminuria. 

In bit 1 appears “1” if the patient has fasting glucose > 110 mg/dL and “0” if not (Figure 43). 

This is similar for all bits (bit 2 for obesity, bit 3 for dyslipidemia, bit 4 for hypertension) 

(Figure 43) and finally, all the combinations gave us 16 profiles, 4 of them classified as MetS 

according to the WHO (Table 6). 

 

 

Figure 43. Bit position system schematic explanation. The new classification is based in 4 bits position 

and the MetS definition given by the WHO.  

 

 

 

Table 6. Classification of samples based in 4 bit and WHO definition. From all combinations 16 different 

profiles were obtained including asymptomatic people (0000), 4 MetS profiles (in red) and 11 

intermediate phenotypes. The sample size (n) of each condition is shown. 
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3.10.2 Identification of urine metabolomic biomarkers of the MetS by NMR 

Starting from the spectra dataset of human urine samples, we first checked whether bins and 

metabolites provided different solutions to discriminate between MetS and the asymptomatic 

group so, using the R library “EnhancedVolcano” (version 1.2.0), we generated two volcano 

plots: one using the spectral bins (Figure 44 A) (untargeted analysis) and the other one using the 

metabolites identified (targeted analysis) (Figure 44 B).  

In the untargeted analysis, we found that the bins differing most in MetS patients compared to 

asymptomatic people were: 3.41, 3.44, 3.47, 3.50, 3.53, 3.71, 3.83, 3.89, 4.64, 4.67, 5.24, 7.13, 

9.17, 9.50 and 0.74 (Figure 44 A). 

For the targeted analysis we only took the 23 metabolites that were quantified at least in 10% of 

the samples. These metabolites were: acetic acid, acetoacetic acid, acetone, alanine, allantoin, 

betaine, citric acid, creatine, creatinine, D-glucose, dimethylamine, formic acid, glycine, 

guanidinoacetic acid, hippuric acid, N,N-dimethylglycine, oxaloacetic acid, proline betaine, 

succinic acid, tartaric acid, taurine, trigonelline, valine. The metabolites differing significantly 

between both conditions were: D-glucose, betaine, alanine, dimethylglycine, tartaric acid 

(increased in MetS) and glycine (decreased in MetS) (Figure 44 B). 

The p-values were calculated using the Wilcoxon or Mann-Whitney test
183

, which are non-

parametric test used as alternative to the parametric t-test. The latter assumes that the data has a 

normal distribution and it could not be the case. The p-values obtained were adjusted for 

multiple comparisons using the FDR method
184

. It was considered statistically significant the 

cases where the adjusted p-value was < 0.05. Regarding the fold change, a limit of abs(log2fold 

change) ≥ 0.4 was established to generate the vertical discontinued lines (Figure 44). 
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Figure 44. Volcano plot (univariate analysis) for MetS vs asymptomatic group. (A) Untargeted analysis 

showing the Log2 fold change and p-values of the bins differing between both groups. (B) Targeted 

analysis showing the Log2 fold change and p-values of the metabolites differing between two groups. p-

values are calculated from Wilcoxon test and adjusted with FDR method. In red appear the metabolites 

that change significantly in MetS patients. Significance level = 0.05.  

 

With libraries of R ade4 (version 1.7-13) we generated a PCA analysis using the spectral bins 

(standard centering and scaling) obtained from measuring the human urine samples by NMR. 

Here we show the PCA by group (MetS vs asymptomatic) with the first and second component 

(Figure 45). It seems that the MetS group is positioned along the horizontal component while 

the asymptomatic group is positioned along the vertical component. In any case, this plot does 

not provide much information as we could not see a clear separation between both groups. 
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Figure 45. PCA by group (Mets vs asymptomatic, in red and blue respectively) showing the first and 

second component. No differences were found between these two groups with this unsupervised analysis. 

 

As we did not obtain a separation between MetS patients and asymptomatic individuals by PCA 

(Figure 45), we performed an Orthogonal Partial Least-Squares Discriminative Analysis 

(OPLS-DA) (Figure 46) which, unlike PCA, is a supervised analysis that forces separation 

between experimental groups based in their intrinsic features. To generate this OPLS-DA we 

used the R ropls (version 1.16.0) package. 

In this case we can see a clear separation between MetS patients and asymptomatic individuals 

(Figure 46). We obtained a R
2 

= 0.651 and a Q
2
 = 0.398. According to Chin (1998)

185
 and 

Henseler et al. (2009)
186

, the range of R
2
 is in between 0 and 1, and the higher level, the higher 

predictive accuracy of the model. A value of 0.651 indicates a medium-high predictive 

accuracy. 

 

Figure 46. OPLS-DA of MetS patients and asymptomatic individuals. There is a clear separation between 

MetS and asymptomatic groups. The R2 = 0.651 indicates a high predictive accuracy of the model and the 

Q2 = 0.398 indicates if there is overfitting.  
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Q
2 

is another important factor to consider, that helps to detect model overfitting
187

. A Q
2
 value 

much lower than R
2
 means that the model works properly with the training data but it will not 

work with new data, because the model is overfitted and it does not generalize well. In our case, 

Q
2
 and R

2
 are largely equivalent. These results indicated that this model explains the 65.1% of 

the variability and it is not too much overfitted. 

To test whether the obtained results were not due to random, we made permutation of classes 

(Figure 47). The Q
2 

values obtained in these permutations (black dots in bottom left) were 

always lower than the real Q
2
 value obtained in the model when the correct classes were 

assigned properly (black dot which marks the value in Similarity = 1) (Figure 47). This was 

similar for the R
2
 values generated in the permutations (grey dots in the left): they appear below 

the real R
2
 value (grey point which marks the value in Similarity = 1, Figure 47). In summary, 

the R
2
 and Q

2
 values obtained in the OPLS-DA are not due to random but to the intrinsic 

metabolomic differences between MetS patients and asymptomatic individuals. 

 

Figure 47. Permutation test for OPLS-DA. The simulations showed that the Q2 values obtained are 

always below the value obtained in the model for the correct classes (black line). 

 

In Figure 48, we can see the loading plot showing the bins that most contribute to the separation 

of MetS patients and asymptomatic people in the OPLS-DA (Figure 46).  
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Figure 48. Loading plot representing the bins contributing to differences between MetS and 

asymptomatic spectra. The most contributing bins are in black: 3.41, 3.53, 3.71, 3.83, 4.67, 5.24, 6.35, 

6.14, 4.25, 5.36 and 5.33. 

 

Finally, we tested if our model was optimum using a ROC curve. We used the R package pROC 

(version 1.15.0) that allowed us to generate a ROC curve for this training model (Figure 49). 

The best point for the balance between sensitivity and specificity is maximum is 0.404. 

 

Figure 49. ROC curve for our training model. The graph shows the ROC curve and also the best 

sensitivity-specificity point (4.04).  

 

The Area Under the Curve value of this ROC curve (AUC = 0.980) indicates that our training 

model is explicative and can distinguish between the different parts of the NMR spectrum that 

differs between the MetS and asymptomatic cohorts, bypassing the intermediate conditions. It 

also tells us that our model fits well with the data from the cohort of patients we have been 

working with. 
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Taken together, these results suggest that increasing the number of samples we may be able to 

create an algorithm to discriminate each condition of MetS when measuring urine samples by 

NMR.
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 DISCUSSION 4

The current doctoral thesis is framed in the context of the development of precision medicine 

tools to improve diagnosis, treatment and prognosis of patients suffering NASH and MetS.  

NAFLD is the most common liver disorder in western countries and it is a global health 

problem with a current prevalence of about 25%, rising during last decades. Tightly associated 

with NAFLD and NASH is the rise in obesity and MetS, which are also to be considered current 

worldwide epidemics
101

. NAFLD is associated with MetS risk factors (IR, obesity, hypertension 

and dyslipidemia) and comprise a spectrum of alterations ranging from steatosis to NASH, 

accompanied in some cases with fibrosis
2
. However, the precise molecular bases of these 

associations are poorly understood. 

In this work we focused our attention in NASH and MetS, both, complex diseases with a 

multifactorial etiology that develop and progress due to the interaction of behavioral, cellular 

and metabolic factors. This is why NASH is a syndrome rather than a disease. Currently there 

are no treatments available for these disorders, with the only management for NASH consisting 

in healthy lifestyle habits acquisition. However, regarding NASH treatment, there are more than 

40 molecules
47

 in clinical trials, some of them in phase III stage like Aramchol
®
. The results 

obtained in the present work shed light about Aramchol effect and mechanism of action.  

When investigating the molecular basis of NASH, we focused on the effect of SAMe depletion 

in MAT1A-KO mice. SAMe has a central role in many biological reactions acting as the main 

biological methyl donor in the cell. The liver is the principal responsible of its homeostasis and 

when there is an excess or defect in hepatic SAMe levels, liver disease triggers
70

. Our results 

validated previous studies showing that MAT1A deletion leads to a reduction in hepatic SAMe 

levels
76

, as we found that hepatic DNA methylation levels were diminished by SAMe depletion 

in MAT1A-KO mice. This is remarkable, since liver DNA hypomethylation has been correlated 

with human NASH
163

. SAMe deficiency upon MAT1A deletion alters hepatic metabolism 

downstream to SAMe, 1CM, FAs metabolism, VLDL secretion and mitochondrial function
143

. 

In here, we found that SAMe deficiency set the stage to NASH development and progression in 

MAT1A-KO mice by inducing hypomethylation of DNA, altering a set of biological processes 

that leads to disease. In this context, we can conclude that MAT1A accomplishes a key role in 

maintaining cellular homeostasis in the liver.  

Hepatic methylation levels recover in MAT1A-KO mice after eight-month SAMe 

administration. This is accompanied by an improvement in liver histology and function, 

probably by ameliorating VLDLs formation, export and GSH synthesis, which coincide with 
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studies showing that SAMe administration in animal models have hepatoprotective effects
56

 and 

that patients with alcoholic liver cirrhosis treated with SAMe increased GSH levels and 

survival
59,63

. 

A low amount of methionine (0.1%) is sufficient to prevent body weight lose but without 

affecting the development of NASH. Our results using 0.1MCD diet models show reduced 

levels of SAMe accompanied by an accumulation of TGs in the liver, caused by the reduced 

secretion of hepatic TGs as VLDLs (due to the impaired synthesis of PC-PUFAs through the 

PEMT pathway), and also, due to the increased levels of proteins involved in lipid synthesis 

(AGPAT3) and uptake (CD36). In addition, the increase in FAs oxidized species like oxLA, a 

proven human NASH biomarker
174

, goes together with a reduction in the GSH/GSSG content 

likely due to the active utilization of GSH since GSH consuming enzymes content are also 

increased. This agrees with previous studies showing that this mice model present elevated 

oxidative stress and has low plasma TGs levels due to impaired VLDLs export
172

. Taken 

together, we conclude that these are the causes contributing to hepatic FAs accumulation, 

lipotoxicity and increased FAs oxidation in these mice, as suggested by the abnormal protein 

content of CPT1A, ACC2 and UCP2. 

We could also identify the existence of at least 2 metabolic subtypes of NAFLD patients: M
+
 

subtype and non-M
+
 subtype. The M

+
 subtype shows a serum metabolomic profile similar to 

that found in MAT1A-KO and 0.1MCD mice. The metabolomic profile of MAT1A-KO mice 

reflecting their hepatic metabolism supports the idea that patients with a M
+ 

phenotype have 

lower MAT1A activity. 

M
+
 subtype patients are not more prone to develop NASH than non-M

+
 subtype patients as both 

phenotypes were found in simple steatosis and NASH in approximately the same proportions. 

This suggests that impaired SAMe occurs early in the development of NAFLD. Regarding the 

M
+
 subtype, our results validate the existence of this phenotype based on its similarities with the 

serum metabolomic profile of MAT1A-KO and 0.1MCD mouse models. Both mice, although 

have some metabolic and molecular differences (as for example, the low levels of SCD1 in 

0.1MCD compared to the increased content of this enzyme found in MAT1A-KO), they show 

many similarities and are characterized by impaired export of VLDLs, low content of GSH and 

reduced synthesis of SAMe, all these facts, leading to NASH development and progression. 

These findings agree with the observation that impaired synthesis of SAMe and lower rate of 

transmethylation is a frequent feature in human NAFLD
188,189

. So, we can conclude that SAMe 

deficiency must be a common feature in NASH patients and also a key factor in NASH 

development. Besides, since SAMe treatment improved NASH in MAT1A-KO mice, it seems 
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reasonable that NASH patients belonging to M
+
 subtype may benefit from this treatment or 

others that will be develop in the future.  

Our analysis also revealed a second metabolic signature based on metabolites of 1CM like 

methionine, PC, PE and their lyso forms, that allows the separation of NAFLD patients (from 

M
+
 subtype) into simple steatosis and NASH. As some of these metabolites are biomarkers of 

impaired 1CM, these results support the idea that altered SAMe levels trigger the switch from 

benign steatosis to NASH, which also agrees with NASH patients in advanced stage usually 

showing reduced expression of MAT1A
188

. 

The non-M
+
 subtype, has a different metabolomic profile. According to Morrison et al. 2018

48
, 

this subtype shows a serum metabolome that resembles the profile of HFD-fed Ldlr-KO mice, a 

model for atherosclerosis that under this diet, develops NASH. 

The importance of these findings is that, if we characterize subgroups of patients according to 

its metabolomic profile, we can identify the mechanisms underlying the disease in each case 

and, thus, find specific drugs and treatments to effectively suit each of these subtypes in an 

independent manner.  

In vivo studies in this work, showed how 0.1MCD mice treated with Aramchol during two 

weeks (5mg/kg/day), improved features of NASH and recovered normal levels of some 

metabolites such as GSH, FAs, oxFAs and aminobutyric acid, which is a biomarker of 

transsulfuration pathway
190

.  SCD1 expression and activity is lower after Aramchol treatment, in 

agreement with previous findings where Aramchol inhibits SCD1 activity promoting FA β-

oxidation and decreases FA synthesis
49

. In agreement with a reduction in fibrosis, COL1A1 

western blot analysis showed the reduced levels of this protein in the livers of 0.1MCD mice 

treated with Aramchol, supporting its role in improving NASH.  

In connection with steatosis and oxidative stress induced by 0.1MCD diet, in cellulo 

experiments recapitulate the in vivo findings, since, Aramchol reduces cellular lipid 

accumulation and cellular ROS in hepatocytes incubated in MCD medium. Moreover, we found 

that Aramchol negatively regulates collagen production in LX-2 human stellate cells. At this 

point and taking these results together, we found that Aramchol performs its antisteatotic, anti-

inflammatory and antifibrotic effects by targeting SCD1, COL1A and increasing the flux 

through transsulfuration pathway. 

On the other hand, we identified a set of serum and lipid biomarkers associated with Aramchol 

treatment in 0.1MCD mice that are dose dependent (5 mg/kg/day). These biomarkers include 

lipids such as several MUFAs, PUFAs and lyso forms of PE, PC and PI. Lysophospholipid 

species are associated with lipotoxicity and NASH progression
191,192

, and a reduction induced by 
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Aramchol enhances the idea of its therapeutic effect in NASH treatment. Importantly, the 

reduction of MUFAs agrees with the mechanism of action for Aramchol (targeting SCD1). 

On the other hand, as ARREST study results suggest that Aramchol also targets the glucose 

metabolism, we performed a set of in vitro experiments to go further in the study of the 

mechanism of action of Aramchol. We found that this drug is a regulator of liver glucose 

metabolism and homeostasis as well. 

First of all, western blot analysis revealed that Aramchol treatment stimulates catabolic 

pathways and reduces anabolism in hepatocytes. LC/MS results obtained from Aramchol treated 

hepatocytes, support and complement these results as they underline the reduction in the 

concentration of proteins associated to processes such as fibrosis, protein translation and 

glucose metabolism, while proteins involved in lipid metabolism, antioxidant response, 

oxidative phosphorylation and TCA cycle were increased. TCA cycle is the central pathway for 

the metabolism of amino acids, fatty acids and carbohydrates in order to generate cellular 

energy and, studies in humans and mice, indicate that alterations in its activity may play a 

central role in NAFLD pathogenesis
193

. We showed how Aramchol treatment reduced 

cataplerosis since malate remained more rounds in the cycle (as compared to untreated 

hepatocytes), which is linked to reduced gluconeogenesis, being part of Aramchol therapeutic 

effect. Accordingly, in vivo experiments showed that Aramchol treatment improves glucose 

homeostasis (in a dose dependent manner, being greater at 5mg/kg/day), because glucose 

pathway metabolites are reduced as reflected by the liver metabolic analysis of 0.1MCD mice. 

Finally, it is known that, one of the mechanisms causing NASH in 0.1MCD mice is the 

impaired VLDL-TG synthesis and secretion due to the reduction synthesis of PC-PUFAs 

through PEMT pathway
13

, so we performed in cellulo experiments in hepatocytes incubated in 

MCD medium, where Aramchol treatment blocks the formation of GPC and LPC, which would 

improve VLDL synthesis and secretion due to the higher content of PC available for the 

synthesis of these molecules. This also, could be part of Aramchol therapeutic effect.  

Thus, all these results point out that Aramchol administration, down-regulates SCD1 enzyme 

leading to a decrease in FAs and TGs content in the liver, reverting fibrosis, improving 

inflammation and enhancing FA β-oxidation by increasing flux through transsulfuration 

pathway. Moreover, Aramchol improves glycolysis/gluconeogenesis homeostasis in the liver by 

reducing cataplerosis in TCA cycle and consequently reduces gluconeogenesis. All these 

findings together with the fact that this drug also improves VLDL synthesis and export 

summarize the mechanism of action of Aramchol. The results obtained in this work together 

with previous promising results obtained in mouse models and in clinical trials, convert 

Aramchol into a potential and reliable drug for NASH treatment. However, it remains to be 
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determined whether patients that improve under Aramchol treatment belong to M
+
 subtype, non-

M
+
 subtype or both. 

Lastly, in this work we also aimed to identify urine biomarkers of MetS using NMR 

spectroscopy that would allow the diagnoses of this syndrome in a quantitative and precise 

manner. Urine is a very handy biofluid to work with since the preparation of urine samples for 

analysis is easy as compared to other biofluids and it can be collected non-invasively in large 

amounts and by repeated sampling
194

. Urine reflects many biochemical changes occurring in the 

body as is the primary way in which the body eliminates water-soluble waste compounds, so, it 

is a good tool for looking for new biomarkers using metabolomic approaches
195,196

. Urine 

metabolomics is a widely used tool for biomarker research in medicine and currently, there are 

studies characterizing the variations of urine metabolome under basal conditions to avoid 

confounding effects in cohort studies
194

. This is important to stablish which variations in the 

metabolome are due to normal physiological reasons, which are due to disease and then, 

differentiate rigorously cohorts of patients according to it. 

Here, we carried out a preliminary study (that is part of a much more ambitious project 

including 10.000 urine and 10.000 serum samples) to set up an analytical workflow that allowed 

us to discriminate asymptomatic people and MetS patients according to their urine metabolomic 

profile, although intermediate phenotypes remained undetectable.  

The univariate analysis of spectral bins, showed a signal present around 3 ppm that, according 

to information available in HMDB, is very likely D-glucose (although it will be confirmed in a 

near future by spiking analysis, a common strategy used to identify metabolites in NMR-based 

metabolomics
197

). This suggests that D-glucose is higher in MetS patients, and this fact, 

highlights the role of glucose and diabetes in MetS. This result is supported by the volcano plot 

of metabolites, where we can see clearly that glucose is higher in MetS patients, and validates 

the WHO definition for this disorder. Moreover, the volcano plot for metabolites revealed 

augmented levels of betaine and N,N-dimethylglycine and lower levels of glycine in MetS 

patients. These are metabolites of 1CM and, although it should be further analyzed, it suggest 

that deranged 1CM could be one of the causes linking MetS and NAFLD, as impaired 1CM is 

also found in this disease
198

. This finding would support the hypothesis of that NAFLD is part of 

the spectrum of MetS, an idea sustained by many researchers
199,200

.  

OPLS-DA clearly discriminates between MetS patients and asymptomatic people bypassing 

intermediate conditions. The R
2 

value, tells us the percentage of variability that our model can 

explain with the training data and Q
2
 explains how our model generalize with data different to 

training dataset. If Q
2
 were much lower than R

2
, it would mean that the model is overfitted. In 

our case, Q
2
 = 0.398 is not much lower than R

2
 = 0.651, which means that our model is not 
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overfitted but however, it could generalize better. On the other hand, the loading plot showing 

which bins contribute to the separation of these two conditions, supports the results obtained in 

the volcano plot, as bins around 3 ppm are probably D-glucose, which is a key factor in the 

development of MetS. 

A ROC curve is a fundamental evaluation tool in clinical medicine and research that gives 

information about the accuracy of the classification of patients in correct groups
201

 when using 

diagnostic test with binary outcome (positive or negative test result)
202

. Sensitivity and 

specificity of the model is plotted and this curve discriminate the true state of subjects finding 

also an optimal cut-point value. The AUC value is a measure of accuracy that gives the 

probability of correctly classify information
203

.We obtained an AUC = 0.980 which indicates 

that our training model classify patients accurately into MetS and asymptomatic group. 

The aim of a model is to use it for: explication and/or prediction. In this first stage of our study, 

the importance of our model is its explicative capacity. In other words, in this point, our model 

can see which metabolic features are important to distinguish between MetS and asymptomatic 

people. Once the metabolic bases of MetS are better understood, we could go one step forward 

and focus on the predictive capacity of the model, to be able of blindly detect MetS from urine 

samples. So, the future work would be: 1) to validate the model in a new cohort of patients to 

see if AUC value changes and thus, ultimately to obtain a realistic estimation of the model 

performance, and 2) to increase the number of samples analyzed to see if intermediate 

phenotypes can be discriminated. 

Taking these results together, we implemented an analytical method that allowed the 

discrimination between MetS patients and asymptomatic group according to their urine 

metabolomic fingerprint. Although we were looking for a method that allowed us to 

differentiate also the intermediate phenotypes, with this sample size it was not possible. These 

results suggest that, analyzing a bigger cohort, we could develop an algorithm to diagnose, in a 

continuous way, all the intermediate conditions between asymptomatic people and MetS 

patients. 

In summary, our results unveiled the existence of 2 subtypes of NAFLD patients and highlight 

the importance of MAT1A and SAMe in the pathogenesis of this syndrome. In the context of 

NASH, we uncovered the mechanism of action of Aramchol and showed that, this drug, 

improved liver histology and function in animal models and improved glucose homeostasis in 

0.1MCD mice and human patients. Its efficacy in murine models coupled to its efficacy in 

previous phases of clinical trial makes Aramchol a great candidate for NASH treatment in 

humans. On the other hand, we implemented an analytical workflow that, strongly supported by 

bioinformatics, allowed the discrimination of MetS patients and asymptomatic people through 
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the analysis of human urine samples by NMR spectroscopy. In this regard, future research will 

be directed toward the implementation of an algorithm that may allow the diagnosis of MetS 

using this procedure. Moreover, we will intend to provide a new definition of MetS based in the 

urine metabolic fingerprint.  Finally, our results clearly demonstrated the capability that LC/MS 

and NMR spectroscopy have as metabolomic tools, to characterize biofluids and categorize 

patients into different subgroups, which is useful in terms of diagnosis and treatment. 
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 CONCLUSIONS 5

 MAT1A protein is an integrator of cellular metabolic homeostasis and its deletion 

affects hepatic metabolism upstream and downstream of SAMe altering processes like 

biosynthesis of lipids, proteins and mitochondrial function. 

 In MAT1A-KO mice, SAMe depletion causes DNA hypomethylation which agrees 

with that found in advanced stage NAFLD patients.  

 Our results reveal the existence of 2 human NAFLD metabolic phenotypes: M
+
 and 

non-M
+
. M

+
 subtype shows a serum metabolic profile similar to that found in 

MATA1A-KO and 0.1MCD mice. 

 SAMe deficiency may be a common feature in NASH patients and an important factor 

in NASH development. 

 SAMe administration to MAT1A-KO mice improves NASH but if NAFLD patients 

with an M
+
 subtype could benefit from SAMe treatment should be clinically proven. 

 0.1MCD mice treated with Aramchol reduced steatohepatitis and fibrosis which 

supports the potential use of Aramchol in NASH treatment for the M
+
 subtype of 

patients. Moreover, a metabolic serum profile for Aramchol treatment was identified 

in 0.1MCD mice receiving this drug.  

 Aramchol decreases SCD1 content, increases the flux through transulfuration pathway 

improving the antioxidant response, activates TCA cycle and stimulates catabolic 

pathways while reduces anabolism. 

 Aramchol also activates LD clearance and improves hepatic glucose metabolism in a 

dose dependent manner and reduces cataplerosis and consequently gluconeogenesis. 

 Our results unveiled the potential capacity of Aramchol to be a NASH treatment in 

humans for suppressing steatohepatitis development and progression. 

 We implemented a procedure to analyze human urine samples by NMR spectroscopy 

that allows discriminating MetS patients from an asymptomatic cohort, although 

intermediate phenotypes for this condition remain undetectable, probably because a 

higher number of samples are needed. 

 Our results support the concept that metabolomics is a useful tool to detect biomarkers 

associated to diseases, detect metabolites associated to a specific treatment and 

definitely has a huge potential as method to develop non-invasive diagnostic and 

monitoring tools.  
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 SUMMARY  6

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in 

western countries, and currently is one of the most common causes of liver disease. NAFLD 

global prevalence is about 25% and it increases in patients with T2D and obesity, which are 

other two common epidemics spreading in our societies tightly related with NAFLD. NAFLD is 

the term used to refer to several related disorders that include steatosis, non-alcoholic 

steatohepatitis (NASH), fibrosis, cirrhosis and HCC. Steatosis is the earliest stage of the disease 

and it happens when more of the 5% of the liver is fat. Hepatic steatosis starts when processes 

like DNL and the uptake of FAs from circulation saturate the capacity of the liver to eliminate 

them by forming and exporting VLDL and to oxidize them in the mitochondria. NASH is the 

advanced form of NAFLD and it is characterized by the presence of steatosis together with 

inflammation, ballooning with or without liver fibrosis. The mechanism for the progression of 

NASH involves multiple parallel hits and processes including inflammation, mitochondrial 

dysfunction and oxidative stress, which make the liver prone to suffer further damage. Thus, 

having a better understanding of the consequences of these processes and handling the 

functioning of these pathways may be and effective approach to prevent the development and 

progression of NASH.  

So, NAFLD is a consequence of defects in diverse metabolic pathways that lead to hepatic 

accumulation of TGs and the features of these aberrations may determine if NAFLD progresses 

or not to NASH. Moreover, as different causes can lead towards NASH development, we 

hypothesized that different NAFLD subtypes should exists and that each subtype would be 

characterized by a specific liver and serum metabolome.  

Regarding NAFLD diagnosis, the diagnosis is heterogeneous and relies mostly in blood test of 

liver enzymes and liver biopsy been this one, the most reliable way to diagnose it. However 

liver biopsy presents some disadvantages because it is a very invasive technique that may 

compromise the welfare of patients and also the fact that, the final result depends on the liver 

portion taken in the biopsy, which could no reflect the status of the entire organ. That is why 

new diagnostic tools should be developed. 

With regard to NASH current therapies, there is no treatment approved by the Food and Drug 

Administration or the European Medicine Agency. The current recommendations are based in 

weight loss and a healthy lifestyle because they are the only known factors that can stop the 

progression of the disease. However, although there is no approved therapy for NASH, 

currently there are over 40 molecules in clinical development, some of them in phase III of 

study like Aramchol. 
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Aramchol is a synthetic lipid molecule resulting from conjugate a bile acid and a saturated fatty 

acid and in this work we aimed to investigate its mechanism of action as well as its effect in 

NASH. 

Here we worked with two different NASH animal models, a genetic NASH model (MAT1A-KO 

mice) and a dietary NASH model (0.1MCD diet-fed mice). In the case of MAT1A-KO mice, the 

lack of Mat1a caused a deficiency in SAMe and metabolites upstream and downstream this 

point were dysregulated, affecting processes such as DNA and phospholipid methylation, 

biosynthesis of lipids, proteins, mitochondrial polarization and function, as well as polyamine 

and GSH synthesis, which is the main cellular antioxidant. On the other hand, we worked with 

0.1MCD diet-fed mice. These mice were fed a diet lacking choline and containing 0.1% of 

methionine avoiding the weight loss that occurs with the canonical MCD diet without affecting 

NASH development. As well as MAT1A-KO mice, this model is characterized by reduced 

synthesis of SAMe, low levels of GSH content and impaired formation and export of VLDL. 

Both mice models spontaneously develop NASH, although 0.1MCD mice develop the disease 

much sooner than MAT1A-KO mice. 

In these work we examined the liver and serum metabolic and proteomic features of these two 

murine models of NASH. First of all, we compared the serum and liver metabolic profiles of 

MAT1A-KO mice and found that serum metabolome reflected their hepatic metabolism. 

Afterwards, we selected the top 50 metabolites changing more significantly between MAT1A-

KO and WT mice and made a list. Then, we compared the serum metabolome of a cohort of 535 

NAFLD patients (353 with simple steatosis and 182 with NASH) with the serum metabolome of 

MAT1A-KO mice and identified a serum metabolic signature associated with these mice that 

also was present in 49% of NAFLD patients. We validate these results by random partition and 

comparison of estimation and validation cohorts obtained from the 535 samples we worked 

with, but also, we validated these results by carrying out the same procedure explained above 

but this time by comparing the serum metabolome of 0.1MCD diet-fed mice with the serum 

metabolome of the 535 NAFLD patients. Our results revealed the existence of 2 NAFLD human 

subtypes: M
+
 subtype and non-M

+
 subtype.  

Patients with an M
+
 subtype have a serum metabolic profile similar to that found in MAT1A-KO 

mice and 0.1MCD mice, which suggest that these patients may benefit from the treatments that 

ameliorate NASH features in these mice models, such as SAMe and Aramchol (or other 

treatments that may develop in the future). In relation to this, we found that MAT1A-KO mice 

treated with SAMe, ameliorated liver function and histology and recovered the methylation of 

specific DNA regions that were hypomethylated in mice given vehicle alone. If humans with an 

M
+
 subtype could benefit from SAMe treatment should be determine.  
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On the other hand, we tested the effect of Aramchol in 0.1MCD mice, observing an 

improvement in liver function and histology in mice treated with this molecule. Serum and liver 

biomarkers associated with Aramchol treatment in 0.1MCD mice were also identified by 

LC/MS.  

Aramchol is in phase III of clinical trial and is a very promising molecule with a big potential 

use for NASH treatment. In phase IIb of study Aramchol showed to improve fibrosis and 

hepatic biochemistry with no signal of toxicity in humans. It also reduced the glycated 

hemoglobin (HbA1C) content, observed in patients receiving placebo, in a dose dependent 

manner, suggesting that glucose metabolism in targeted by Aramchol. Analyzing metabolites 

such as glucose, glucose-6-P and fructose-6-P, present in the livers of mice fed a control diet or 

0.1MCD diet treated with Aramchol or vehicle, we confirmed that Aramchol treatment 

improved hepatic glucose homeostasis in 0.1MCD mice. 

Aramchol was known to target and reduce the activity of SCD1, which is a key enzyme that 

catalyzes the first reaction that leads to TG synthesis. In this work, we confirmed this in many 

ways, and also by western blot analysis of protein extracts obtained from murine primary 

hepatocytes incubated in control and MCD medium treated with Aramchol or vehicle (DMSO). 

Thus, we found that this molecule reduces the protein content of SCD1, but also, affects other 

proteins including: 5’ adenosine monophosphate-activated protein kinase (AMPK), carnitine 

palmitoyltransferase I (CPT1A/B), acetyl-CoA carboxylase (ACC), P70-S6 kinase and S6 (a 

ribosomal protein component of the 40S ribosomal subunit). Aramchol treatment in hepatocytes 

increased the levels of CPT1A/B, the activated form of AMPK (p-AMPK) and the inactivated 

form of ACC (p-ACC). Conversely, Aramchol decreased total protein content of S6, and p-P70-

S6K/ P70-S6K ratio levels. These suggest that Aramchol would stimulate catabolic pathways 

reducing anabolic processes. 

Again, in primary hepatocytes cultured with control or MCD media and treated with Aramchol 

or vehicle, more than 3000 proteins were quantified and we selected those that were 

differentially expressed between both conditions. These results showed that Aramchol affects 

key biological functions reducing translation and fibrosis while activating FA β-oxidation, LD 

clearance, oxidative phosphorylation, antioxidant response and the TCA cycle.  

We also evaluated specifically the effect of Aramchol in the TCA cycle by fluxomics analysis 

using uniformly 
13

C-labeled glucose. We found that under Aramchol treatment, the 
13

C-labeled 

species of malate present in hepatocytes treated with Aramchol were higher compared to 

controls. The increase in the number of rounds malate remains in TCA cycle indicates a 

reduction in cataplerosis and, consequently, a reduction in gluconeogenesis. Moreover, we 

found that Aramchol blocked the formation of LPC and GPC which suggest an increase in the 

https://en.wikipedia.org/wiki/40S
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content of PC favoring hepatic VLDL-TG synthesis and secretion. All the aforementioned 

results provide a better understanding of Aramchol`s therapeutic effect. 

On the other hand, in this work we also searched for biomarkers of the MetS which is a complex 

disorder defined by a cluster of related risk factors that increase the probability of suffering 

other related diseases like T2D and cardiovascular disease. MetS is tightly associated with 

NAFLD and has elevated socioeconomic cost, being considered a worldwide epidemic together 

with obesity. There is not a consensus to define MetS and many organizations give similar but 

different definitions for this condition. We validated the definition given by the WHO that 

considers that a patient has MetS when the levels of fasting glucose are above 110 mg/dl as 

mandatory requirement, together with the alteration of 2 or more of the following parameters: 

obesity (body mass index BMI > 30 kg/m²), dyslipidemia (TGs >> 150 mg/dL or low cHDL < 

34,79 mg/dL in men and < 38,66 mg/dL in women), high arterial blood pressure (≥ 140/90 

mmHg or medical treatment) and microalbuminuria (albumin excretion of 20µg/min).  

All the current definitions for MetS are based in a conjunction of biochemical and 

anthropometric data. In this work, we aimed to find a metabolic fingerprint for MetS to provide 

a universal definition for this disorder based in quantitative metabolic patterns.  

To do so, we worked with 575 human urine samples coming from two different studies and 

belonging to the general population from Valencia and Euskadi. Together with urine samples, 

we had correlated metadata containing biochemical information for each person in the cohorts. 

So, we focused in the development of a method that, strongly supported by bioinformatics tools, 

allowed us to differentiate metabolically between asymptomatic individuals, MetS patients and 

the intermediate phenotypes between both conditions using the metabolites present in the urine 

of these people. 

We created a new classification based in 4 bits codified as binary (0 = condition not present, 1 = 

condition present) and considering the MetS factors given by the definition of the WHO with 

the exception of microalbuminuria. We obtained 16 profiles in total, 4 of them for MetS patients 

(1011, 1101, 1110 and 1111), 1 for asymptomatic individuals (0000) and the rest for the 

intermediate phenotypes. 

On the other hand, urine samples were measured in a 600 MHz AVANCE IIIHD (IVDr) Bruker 

Spectrometer and 
1
H monodimensional spectra were obtained for each sample. Every sprectrum 

was fragmented in bins of 0.03 ppm and normalized by the total area.  

With these data, we performed univariate analysis (targeted and untargeted) and found which 

metabolites and bins differed most between MetS and asymptomatic individuals, highlighting 

the role of the glucose in this syndrome. 
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Besides, multivariate analysis was carried out and OPLS-DA revealed that there is a clear 

separation between asymptomatic people and MetS patients although with this number of 

samples we could not differentiate intermediate phenotypes.  

On the other hand, we tested the predictive accuracy of our model and checked if there was 

overfitting. Our present results show that our training model is explicative, can distinguish 

between different parts of the NMR spectra and can separate the two extreme conditions based 

in the metabolic fingerprint obtained by measuring human urine samples by NMR. 

Although preliminary, these results are promising and suggest that increasing the number of 

samples, it would be possible to differentiate the intermediate phenotypes and create a diagnosis 

algorithm that would allow diagnosing MetS in a continuous way. 

To develop a diagnosis strategy using metabolomics, we have been working with LC/MS and 

NMR to perform metabolomic analysis of big cohorts of patients to first, characterize their 

metabolic profile in different biological samples with a specific metabolic fingerprint and 

secondly, carry out the statistical analysis of the data generated to classify people into different 

profiles. 

Due to the multifactorial etiology of NAFLD and MetS, metabolomics is a very useful tool to 

study and characterized big populations of patients suffering these disorders. Metabolomics 

allow us to obtain the all the metabolites present in a biological sample, so, analyzing samples 

coming from people suffering metabolic disease, it is possible to identify specific biomarkers 

for these diseases. Besides, it is possible to check the effect of specific treatments and also the 

progression of disease during lifetime. 

Metabolomics and precision medicine are two synergistic approaches because through 

metabolomics we can identify different subtypes of patients and by the understanding the 

mechanisms inherent to their disease, we could find and provide personalized and effective 

treatments. 
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 RESUMEN 7

La enfermedad del hígado graso no alcohólica (EHGNA) es una de las mayores causas de 

enfermedad hepática crónica en los países desarrollados y actualmente, una de las principales 

causas de mortalidad. La prevalencia a nivel mundial de esta enfermedad está alrededor de un 

25% aunque aumenta en pacientes con diabetes tipo 2 y obesidad, dos enfermedades 

estrechamente relacionadas con EHGNA que son consideradas a su vez epidemias de nuestra 

sociedad moderna. La enfermedad del hígado graso no alcohólica es un término que engloba 

diferentes desordenes hepáticos, entre los que se encuentran la esteatosis hepática, la 

esteatohepatitis no alcohólica (EHNA), la fibrosis, la cirrosis y el carcinoma hepatocelular 

(CHC). Se considera que un hígado tiene esteatosis cuando más del 5% del órgano es grasa. La 

esteatosis hepática es la fase más temprana de EHGNA y comienza cuando los procesos de 

síntesis y captación de ácidos grasos por parte del hígado superan la capacidad de éste para 

oxidarlos en la mitocondria o enviarlos a la circulación en forma de lipoproteínas de muy baja 

densidad (VLDLs). La EHNA, es la fase avanzada de la enfermedad del hígado graso no 

alcohólica y se caracteriza, además de por la presencia de esteatosis, por la presencia de 

inflamación con o sin fibrosis. Los mecanismos por los cuales la EHNA progresa incluyen 

múltiples procesos entre los que se encuentran la inflamación, la disfunción mitocondrial y el 

estrés oxidativo, procesos que hacen que el hígado sea más propenso a sufrir un daño hepático 

mayor. Por lo tanto, entender mejor estos mecanismos y las consecuencias de estos procesos así 

como manipular su funcionamiento, puede ser una forma efectiva de prevenir el desarrollo y la 

progresión de esta enfermedad. 

EHGNA surge como consecuencia de fallos en diferentes rutas metabólicas que conllevan a la 

acumulación de triglicéridos en el hígado.  Las características de estos fallos podrían determinar 

si EHGNA progresa a EHNA o no. Además, como diferentes causas puede conducir al 

desarrollo de EHNA, nuestra hipótesis es que existen diferentes subtipos de pacientes de 

EHGNA y que cada subtipo debe estar caracterizado por un perfil metabólico concreto. 

Por otra parte, el diagnóstico de EHGNA es heterogéneo y en la actualidad se lleva a cabo 

midiendo las enzimas hepáticas en sangre y mediante biopsia, que actualmente es el método 

más fidedigno. La biopsia presenta inconvenientes ya que es un método invasivo que 

compromete el bienestar del paciente y además, el resultado final depende de la porción de 

hígado tomada, que puede no reflejar el estado del hígado en su totalidad. Por ello, el desarrollo 

de nuevas técnicas de diagnóstico no invasivas es necesario. 

En cuanto a su tratamiento, actualmente no existe ningún medicamento aprobado por la agencia 

estadounidense de administración de medicamentos y alimentos (FDA) ni por la agencia 
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europea de medicamentos (EMA). A los pacientes se les recomienda que bajen de peso y lleven 

un estilo de vida saludable, ya son los únicos factores que detienen la progresión de EHNA en la 

actualidad. A pesar de que aún no hay un tratamiento aprobado hay más de 40 moléculas que 

están en ensayo clínico en la actualidad, algunas de ellas en fase III como el Aramchol. Esta 

molécula, es un lípido formado al conjugar un ácido biliar y un ácido graso saturado y en este 

trabajo nos hemos centrado en investigar su mecanismo de acción y su efecto en EHNA. 

También hemos trabajado con dos modelos animales de EHNA, un modelo genético (ratones 

MAT1A-KO) y un modelo nutricional (ratones 0.1MCD). Los ratones MAT1A-KO tienen una 

mutación en el gen Mat1a que les causa deficiencia crónica en S-adenosilmetionina (SAMe) y 

esta deficiencia, hace que se desregulen procesos como la metilación del ADN, la biosíntesis de 

lípidos y proteínas y la respuesta antioxidante de la célula. Por otra parte, los ratones 0.1MCD 

son alimentados con una dieta deficiente en colina que contiene un 0.1% de metionina para 

evitar la pérdida de peso que ocurre con la dieta deficiente en colina y metionina canónica. Al 

igual que los ratones MAT1A-KO, los ratones 0.1MCD tienen bajos niveles de SAMe, de GSH y 

deficiencias en la formación y transporte de moléculas VLDL. Ambos modelos desarrollan 

EHNA de forma espontánea, aunque los ratones 0.1MCD lo hacen mucho más rápido. 

En este trabajo, hemos analizado el perfil metabolómico de estos dos modelos de EHNA y los 

hemos comparado con el perfil metabolómico de pacientes con EHGNA. Primero vimos que en 

los ratones MAT1A-KO, el perfil metabólico sérico refleja el metabolismo hepático. Entonces, 

seleccionamos los 50 metabolitos de suero que diferían más entre los ratones MAT1A-KO y los 

controles y generamos una lista. Después comparamos el perfil metabólico de estos ratones con 

el perfil metabólico de pacientes con EHNA y vimos que un 49% de los pacientes presentaba un 

perfil muy similar a estos ratones. Validamos estos resultados mediante un método de 

aleatorización de muestras, pero además lo validamos realizando el mismo análisis que 

acabamos de describir, en ratones 0.1MCD donde obtuvimos un resultado muy similar. Estos 

resultados revelaron la existencia de 2 subtipos diferentes de EHGNA: subtipo M
+
 y subtipo no 

M
+
. 

Los pacientes pertenecientes al subtipo M
+
 tienen un perfil metabólico sérico similar al de los 

ratones MAT1A-KO y 0.1MCD por lo que podrían beneficiarse de los tratamientos que mejoren 

la enfermedad en estos modelos animales. En relación a esto, tratamos ratones MAT1A-KO con 

SAMe y vimos una mejora en la histología de hígado, así como una mejora de la función 

hepática y una recuperación en los niveles de metilación de determinadas regiones del ADN. Si 

un tratamiento con SAMe podría ser efectivo en los pacientes del subtipo M
+
,
 
es algo que aún 

está por determinar. 
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Por otra parte, analizamos el efecto del Aramchol en ratones 0.1MCD y vimos que también 

mejoraba la histología y la función del hígado en los ratones tratados con esta molécula. 

Además, también identificamos en estos ratones, biomarcadores asociados al tratamiento con 

Aramchol.  

El Aramchol está actualmente en fase III de estudio clínico y es una molécula con muchas 

posibilidades para el tratamiento de EHNA en humanos. En la fase IIb el Aramchol mejoró la 

fibrosis y la bioquímica demostrando no ser tóxico en humanos. Además, reduce la cantidad de 

hemoglobina glicosilada (HbA1C) en sangre, molécula que se observa en valores altos en los 

pacientes de EHGNA que reciben el placebo. Este resultado sugiere que el Aramchol afecta al 

metabolismo de la glucosa. Cuando analizamos los hígados de ratones 0.1MCD en comparación 

a los controles y observamos metabolitos como la glucosa, glucosa-6-P y fructosa-6-P (entre 

otros), vemos que el Aramchol mejora el metabolismo hepático de la glucosa. 

Gracias a estudios anteriores, sabíamos que el Aramchol reducía la actividad de la enzima 

Stearoyl-CoA desaturasa I (SCD1), la primera enzima de la ruta de síntesis de triglicéridos 

(TGs). En este trabajo hemos confirmado esto de diferentes formas, y también por el análisis, 

mediante western blot, de extractos proteicos obtenidos de hepatocitos primarios de ratón 

incubados con medio control o medio MCD tratados con Aramchol o vehículo. De esta forma 

vimos que Aramchol reduce la cantidad de SCD1 pero también afecta a otras proteínas como la 

AMPK, CPT1A/B, ACC, quinasa P70-60 y la proteína ribosoma S6. En hepatocitos, el 

tratamiento con Aramchol aumenta los niveles de CPT1A/B, de la forma activa de AMPK (p-

AMPK) y de  la forma inactiva de ACC (p-ACC). Al contrario, el tratamiento con Aramchol 

reduce los niveles los ratios pS6/S6, y pP70-S6K/ pP70-S6K. Esto indica que el Aramchol 

estimula las vías catabólicas y reduce las anabólicas. 

De nuevo, en experimentos con hepatocitos primarios de ratón incubados con medio control o 

medio MCD tratados con Aramchol o vehículo, identificamos más de 3000 proteínas diferentes 

y seleccionamos las que se expresaban de forma más diferencial entre ambas condiciones. 

Nuestros resultados muestran que el Aramchol afecta a procesos biológicos clave de forma 

diferente ya que reduce las proteínas relacionadas con procesos de traducción y fibrosis, y activa 

procesos como la oxidación de ácidos grasos, eliminación de gotas lipídicas, fosforilación 

oxidativa y el ciclo de los ácidos tricarboxílicos (TCA por sus siglas en inglés). 

Como vimos que el Aramchol aumentaba la actividad del ciclo de los ácidos tricarboxílicos, 

evaluamos más en detalle el efecto de esta molécula en este ciclo. Mediante experimentos de 

fluxómica y utilizando glucosa uniformemente marcada con el isotopo 
13

C vimos que cuando 

los hepatocitos son tratados con Aramchol, las especies de malato marcadas con 
13

C se quedan 

durante mas rondas dentro del ciclo tricarboxílico en comparación con los controles no tratados. 
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El hecho de que el malato se mantenga durante mas rondas en el ciclo indica que no sale de él 

para formar parte de otros procesos biológicos, o lo que es lo mismo, esto indica que hay una 

reducción de la cataplerosis y en consecuencia, una reducción en la gluconeogénesis.  

Siguiendo el mismo diseño experimental, vimos que el Aramchol bloquea la formación de lyso-

phosphatidylcholina y glycerophosphocholina. Esto podría suponer que los niveles de 

phosphatidylcholina aumentan y por lo tanto hubiese una mejora en la formación de moléculas 

de VLDL así como en su transporte. Todos estos resultados han aportado luz sobre el 

mecanismo de acción del Aramchol. 

Por otra parte, en este trabajo también hemos investigado sobre biomarcadores de Síndrome 

Metabólico (SM), que es un desorden complejo definido por un conjunto de factores 

relacionados que aumentan el riesgo de sufrir otras enfermedades relacionadas como diabetes 

tipo 2 o enfermedad cardiovascular. El SM está muy asociado con la EHGNA y también tiene 

un coste socioeconómico muy elevado, además de ser considerado una epidemia a nivel 

mundial. Actualmente no existe una única definición para el SM y diferentes organizaciones 

aportan definiciones similares (aunque diferentes). Nosotros trabajamos con la definición que da 

la Organización Mundial de la Salud (OMS) que considera que un paciente sufre SM cuando los 

niveles de glucosa en ayunas están por encima de 110 mg/dL, como requisito obligatorio, y 

además tiene alterados dos o más de los siguientes parámetros: obesidad (IMC > 30 kg/m²), 

dislipidemia (TGs >> 150 mg/dL o cHDL < 34,79 mg/dL en hombres y < 38,66 mg/dL en 

mujeres), presión arterial alta (≥ 140/90 mmHg o tratamiento) y microalbuminuria (excreción de 

albumina de 20µg/min). 

Todas las definiciones actuales de SM están basadas en una mezcla de valores bioquímicos y 

antropométricos. En este trabajo, nuestro objetivo es encontrar una huella metabólica asociada a 

este síndrome para aportar una definición universal basada en patrones metabólicos. 

Para realizar esta tarea, trabajamos con 575 muestras de orina humana procedentes de población 

general de Valencia y Euskadi. Junto con las muestras de orina, nos facilitaron datos médicos y 

bioquímicos de cada paciente. Así, contando con esta información, nuestro objetivo fue 

desarrollar un método que, apoyado fuertemente en la bioinformática, nos permitiese diferenciar 

entre personas asintomáticas (para SM), pacientes de SM y los casos intermedios entre estas dos 

condiciones usando las diferencias metabólicas presentes en las muestras de orina. Generamos 

un método para clasificar a los pacientes en clases. Este método binario se basa en definir en 4 

bits (o posiciones) los parámetros del SM tomando como referencia la definición de la OMS. 0 

significa condición no presente y 1, condición presente.  Así obtuvimos 16 perfiles en total, 4 

para SM (1011, 1101, 1110 and 1111), 1 para las personas asintomáticas (0000) y el resto para 

los fenotipos intermedios. 
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Por otra parte, las muestras de orina de cada paciente fueron medias en un espectrómetro de 600 

MHz de Bruker se obtuvieron espectros monodimensionales de protón para cada muestra. Cada 

espectro se fragmentó en bins de 0.03 ppm y se normalizó por el área total.  

Con esta información realizamos análisis univariantes (dirigidos y no dirigidos) donde vimos 

qué metabolitos y bins diferían más entre los pacientes con SM y las personas asintomáticas. 

Estos resultados, resaltaron la importancia de la glucosa en este desorden metabólico.  

Además, realizamos análisis multivariantes como el Orthogonal Partial Least Squares 

Discriminant Analysis, donde vimos que hay una separación clara entre personas asintomáticas 

y pacientes con SM. Sin embargo, no pudimos diferenciar a las personas con fenotipos 

intermedios. 

Por otra parte, comprobamos cual era la capacidad predictiva de nuestro modelo. También 

comprobamos que no hubiese overfiting. Los resultados que tenemos en este momento nos 

indican que nuestro modelo de entrenamiento tiene una buena capacidad explicativa y que 

además, puede distinguir entre diferentes partes del espectro de orina obtenido por RMN, siendo 

capaz de diferenciar a los pacientes de síndrome metabólico y a las personas asintomáticas para 

esta condición.   

Aunque preliminares, estos resultados son muy prometedores ya que sugieren que si 

aumentamos el número de muestras analizadas, podremos distinguir de forma continua los 

fenotipos intermedios y crear un algoritmo que en el futuro, ayude a determinar el estatus 

metabólico de los pacientes.  

Para desarrollar una estrategia de diagnóstico mediante el uso de la metabolómica, hemos 

trabajado con cromatografía líquida-espectrometría de masas y con resonancia magnética 

nuclear. Hemos realizado un análisis metabolómico de grandes cohortes de pacientes para 

primero, caracterizar su perfil metabólico en diferentes tipos de muestras biológicas y después 

analizar estadísticamente esas diferencias para clasificar a estos pacientes en diferentes grupos 

según su perfil. Debido a la etiología multifactorial de la EHGNA y del SM, la metabolómica es 

una herramienta muy útil para estudiar y caracterizar grandes poblaciones de pacientes que 

padecen estos trastornos. Debido a que estas herramientas nos permiten obtener huellas 

metabólicas de condiciones biológicas concretas, es posible identificar biomarcadores 

específicos de una enfermedad y además, nos permiten realizar su seguimiento a lo largo del 

tiempo o bajo tratamiento. La metabolómica y la medicina de precisión son muy compatibles ya 

que mediante la metabolómica podemos detectar subtipos de pacientes y mediante la 

comprensión de los mecanismos que subyacen a su enfermedad, podremos generar tratamientos 

personalizados y efectivos.  
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