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Preface 

 

The thesis is submitted to the Faculty of Economic and Business, Department of Public Policies 

and Economic History at the University of the Basque Country (UPV-EHU). The work was 

mainly carried out at the Tecnalia Research & Innovation center, under the supervision of Prof. 

Ikerne del Valle (UPV-EHU) and co-supervision of Dr. Carlos Garcia Tapia (TECNALIA & 

NORDREGIO). The thesis benefited in part from the ESPON project Circular Economy and 

Territorial Consequences (CIRCTER), within which the first research concept was initially 

conceived. 

  



 
 

 

 

 



 
 

 

Abstract 

 

Searching for sustainable modes of consumption and production represents nowadays the only 

way to meet an ever-increasing demand of goods without incurring in further environmental 

deterioration. The growing awareness that “business as usual” is both, unwise and unsustainable, 

has placed the role of the environment and the efficient use of natural resources at the centre of 

political and economic strategies. At the same time, mitigation strategies and monitoring 

frameworks geared to sustainability are generally implemented at national or supranational levels, 

failing short in providing significant guidance for local policy makers. The need of granular data 

and, therefore, the adoption of a territorial perspective in the analysis of resource consumption 

patterns has been the main motivation for this thesis. The dearth of studies at subnational level 

constitutes a critical research gap not only to recognise the needs and opportunities reflecting the 

unique features of regions, but also because the regional scale is often considered as the optimal 

level of governance for planning, coordinating and assessing actions towards sustainable 

developments. 

This thesis provides a methodology for scaling national environmental indicators to lower levels 

considering territorial heterogeneity, going far beyond the simplistic approaches that provide 

granular data based on, for example, per capita values. At the same time, the methodology remains 

sufficiently systematized to be applied to large datasets and different indicators. Specifically, our 

methodology is applied (and validated) to downscale the Domestic Material Consumption (DMC) 

indicator. DMC, which measures the direct consumption of material by an economy, is a prime 

example of an environmental indicator only delivered at national level, but strictly tied to specific 

territorial configurations. One of the outcomes of this thesis is to provide DMC figures for more 

than 280 European regions from 2006 to 2015. This database represents a critical input to expand 

the understanding on the complex relationship between resource consumption, territorial contexts 

and socioeconomic drivers. The analysis highlights the existence of a significant technological 
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gap between urban and rural regions, the latter struggling the most to recover from economic 

crises and to retain human capital. Going further, a closer inspection on the impacts of 

socioeconomic drivers on resource efficiency across different regional economic structures, 

reveals that increased access to capital would generate higher resource efficiency returns in 

material-intensive economies, compared with service-based economies. Differently, increased 

agglomeration levels represent the best resource efficiency leverage across urban, service-based, 

territories.  

Overall, the thesis brings into discussion a renewed interest for the consideration of territorial 

aspects for a better understanding of the dialectics between the underlying forces driving regional 

resource efficiency and the different opportunities and challenges that regions might face 

according to their specific endowments. 
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Introduction 

 

 

The concept of Sustainable Development, i.e. “meeting society’s needs without compromising 

the needs of future generations”, has become an important item on the global political agenda. 

The remarkable socioeconomic changes witnessed during the second half of 20th century – the 

so-called “Great Acceleration” – raised concerns about the long-term sustainability of our 

economy, and more in general, our global society (Brown and Ulgiati, 2011; Steffen et al., 2015). 

World population increased from 2.5 billion at the middle of the 20th century to 7 billion by the 

end of the first decade of the new millennium. Meanwhile, global real gross national product 

expanded roughly eightfold. On average, humans have been enjoying improved medical 

conditions, prolonged expected lifespans, rising living standards, and more diverse services 

provided by numerous technology innovations and modern infrastructures (Zhang et al., 2018). 

However, these extraordinary socioeconomic advances have not come without a profound 

deterioration in natural capital, as ever-accelerating exploitation of natural resources has 

accompanied many of these achievements (Krausmann et al., 2009; Sverdrup et al., 2013). 

In 1990, 37.2 billion metric tons of minerals, fossil fuels, and biomass were extracted and 

subsequently consumed or used in production processes. This number rose to 69.7 billion tons in
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 2008, an increase of 87.4% (Pothen and Welsch, 2019), and projected to more than double 

between 2015 and 2050 (European Commission, 2018a). Similarly, global greenhouse gas 

emissions continue to rise at an alarming rate, with energy use but also overconsumption of 

resources and destruction of ecosystems as main key drivers (UNEP, 2016). The extraction, 

processing, and utilization of raw materials are responsible for diverse consequent environmental 

impacts in the form of, among others, natural resources depletion, waste and toxic emissions, 

biodiversity reduction and pollution. The more natural resources that move through our economy, 

the more impact – including waste, emissions and hazardous pollutants – we can expect on our 

environment and, in turn, our well-being. Human interference with global biogeochemical cycles 

has grown to a level that is triggering epochal changes, including climatic change and state shifts 

in the Earth’s biosphere (Barnosky et al., 2012; Pauliuk and Hertwich, 2015a).  

These trends are having substantial impact on humanity; not only they are forcing humans to 

adapt and mitigate environmental strain, but they also influence geopolitical equilibria, 

exacerbating conflicts over critical raw materials control and reducing the possibilities of future 

well-being and economic growth (Fernández-Herrero and Duro, 2019; Flachenecker and 

Rentschler, 2018). If left unaddressed, the consequences of climate change and degradation of 

natural capital will seriously impact the economy, reducing the quality of life all over the planet 

and increase the intensity and frequency of natural disasters, putting more lives in jeopardy. While 

turning these negative trends around comes at a cost and requires strong collective effort, the cost 

of inaction and the associated social fallout might be much higher (European Commission, 

2019a). 

The growing environmental concerns have led politicians around the world to implement several 

international and multilateral initiatives, among which the 2030 Agenda for Sustainable 

Development and the Paris Agreement on climate change are, perhaps, the most important 

examples of these efforts. Similarly, in Europe, the overarching vision and strategy for moving 

towards a sustainable economy can be resumed in several key policy strategy documents: (1) the 
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Europe 2020 strategy for smart, sustainable and inclusive growth (European Commission, 2010); 

(2) the flagship initiative on resource efficiency (European Commission, 2011) and (3) the 

Circular Economy Action Plan (European Commision, 2015; European Commission, 2020). All 

these initiatives complemented areas of traditional focus of EU environmental policy (Domenech 

and Bahn-Walkowiak, 2019). For example, the flagship initiative on resource efficiency was 

made operational through several roadmaps and communications ranging from the energy and 

low-carbon economy transitions to the optimisation of the transport system.  

More recently, the European Green Deal (GD) initiative raised the bar by providing a new growth 

strategy that sets the basis for the necessary departure from the linear economy and existing 

economic structures towards a resource-efficient and carbon-neutral economy and where 

economic growth is decoupled from resource use (European Commission, 2019b). Compared to 

previous action plans, what stands out in the GD is the explicit reference to the territorial 

dimension of future implementations of socioeconomic systems. Indeed, the recent experience 

with the Circular Economy package made clear that the effective implementation of circular 

solutions depends, to great extent, on the specific assets available at local and regional level. In 

this sense, it is essential that sustainable strategies, and the economic sectors involved in them, 

are defined and rely on a detailed analysis of the territorial contexts, i.e. socioeconomic needs to 

be addressed, potential endowments to be exploited, challenges to be tackled and, when feasible, 

smart specialisation priorities. Hence, the main motivation of this Thesis is to introduce a 

territorial perspective in the analysis of material consumption patterns. Territorial-based 

approaches generally rely on the analysis of subnational spatial units, such as regions and/or cities, 

which better reflect the available local endowments. In this Thesis, we consider the regional level 

(NUTS -21) as unit of analysis. This classification comprises 330 European regions. Thanks to 

 
1 The NUTS system was established by EC Regulation 1059/2003 that defined a common classification of 
territorial units for statistics (NUTS), based on the administrative divisions applied in the Member States. 
The 2nd level in the classification (NUTS 2) groups regions with population between 80,000 and 3 
million. 
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the reduced geographical extension, regional units better reflect the uneven distribution of natural, 

economic and social assets that characterise territories and, unsurprisingly, they are also often 

considered the optimal level of governance for planning, coordinating and assessing actions 

towards sustainable development (Mascarenhas et al., 2010; Mickwitz et al., 2006). We believe 

that the analysis of material efficiency and its socioeconomic drivers through a territorial lens 

constitutes an important contribution to the fields of Industrial Ecology and Ecological 

Economics, which, so far, have concentrated their efforts more on the investigation of nationwide 

material flows. 

In general terms, material efficiency can be defined as the ability of firms, industries, regions or 

economies to produce more goods and services – understood in a functional sense – with fewer 

impacts on the environment and less consumption of natural resources (Allwood et al., 2011; 

Söderholm and Tilton, 2012). For example, the objective of the roadmap to a resource efficient 

Europe is “improving economic performance while reducing pressure on natural resources” 

(European Commission, 2011, p. 4). Similarly, the United Nations (2010) defined material 

efficiency as “producing more wellbeing with less material consumption (…) while respecting 

the ecological carrying capacity of the earth”. Material efficiency can be expressed either in an 

intensity or a productivity form. The former is the ratio between a physical indicator (numerator) 

and an economic indicator (denominator) and it reflects the amount of material input per unit of 

economic output. Contrarywise, the productivity perspective corresponds to the reciprocal form 

of the intensity indicator, and it measures the amount of economic output generated per unit of 

material input. 

Today, material efficiency indicators represent the operational means to measures society’s 

progress towards more sustainable production/consumption configurations. During the last 

decade, three relevant concepts emerged as strategic goals of European initiatives: 
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“dematerialization”, “decoupling” and “circularity” 2. Dematerialization refers to the absolute or 

relative reduction in the quantity of materials used and/or the quantity of waste generated in the 

production of a unit of economic output (Cleveland and Ruth, 1998). Decoupling emphasizes a 

break in the link between an environmental pressure and its economic driving force (OECD, 2002; 

Schandl et al., 2016), for example when the rate of economic output is higher than the rate of 

respective natural resources consumption. Circularity advocates instead for “an economy where 

the value of products, materials and resources is maintained in the economy for as long as 

possible, and the generation of waste minimised” (European Commision, 2015; Korhonen et al., 

2018). 

Despite the central position that strategies aimed at sustainable development occupy today in the 

policy debate, concerns about material efficiency and, more generally, the depletion of natural 

resources are not new. Early in the 1860s, the British economist William S. Jevons expressed the 

worry that Britain could not sustain its economic development when its coal resources are being 

exhausted (Polimeni et al., 2012). He pointed out that efficiency improvements would not be able 

to alleviate the problem because economic growth and increased consumption occurred at higher 

rates than efficiency gains, a phenomenon known as “rebound effect” (Alcott, 2005). Since then, 

the debates regarding resource scarcity continued to evolve. The “Oil peak” curve proposed by 

M. King Hubbert in the 1950s (Bardi, 2009), the sobering prospects modelled in The Limits to 

Growth by experts from the Club of Rome in the 1970s (Meadows et al., 1972), and a 1980s bet 

on the future prices of five basic metals between Julian Simon, a resource optimist, and Paul 

Ehrlich, an ecologist concerned about environmental degradation (Sabin, 2013) were among the 

most famous events, all igniting long-lasting discussions and arguments. 

Thanks to a higher human environmental literacy than ever (Scholz et al., 2011), the 21st century 

witnessed a shift of the focal point of the material efficiency debate from questions whether 

 
2 Zhang et al. (2018) only refer to decoupling and dematerialization concepts. However, considering the recent 
evolution of scientific and policy discussion, we believe that “circularity” concept must also be considered. 
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natural resources are abundant enough for human use to issues surrounding the disutility that 

comes from adverse environmental and social impacts of accelerating resource extraction and 

mass production (Brown and Ulgiati, 2011). Facilitated by improved data collection and deeper 

understanding of the functioning and resilience of the earth system, the notion of planetary 

boundaries was established as a metaphor for the safe operating space for human societies to 

thrive (Rockstrom et al., 2009; Steffen et al., 2015). Empirical findings showed that at least six 

out of the nine planetary boundaries have already been approached or overshot by human 

interventions, including climate stability, biosphere integrity, land-system change, 

biogeochemical flows, ocean acidification and freshwater use (Jaramillo and Destouni, 2015; 

Steffen et al., 2015). These emerging crises are to a large extent caused by the expansion of 

material throughput to meet human needs. Based on the mass balance principle, all materials 

entering a socioeconomic system will ultimately exit as wastes into the natural environment. 

Larger gross material throughput leads to a larger potential of environmental pressures 

(Krausmann et al., 2017; Mayer et al., 2017; Schaffartzik et al., 2014). 

The realization that natural resource depletion, emissions and the like are, of course, a 

consequence of human action, inspired in the early to mid- 1990s the specialty of socioeconomic 

metabolism (SEM), in which material input, processing, energy use, and loss are quantified and 

analysed from a socio-technical perspective (Clift and Druckman, 2015; Fischer-Kowalski and 

Hüttler, 1998; Pauliuk and Hertwich, 2015b). The ultimate task of this discipline is to relate 

resource transitions to societal change and to prospects for and measurement of sustainability. A 

principal manifestation of this approach is constituted by the studies of economy-wide material 

flows (EW-MFA) at the level of various societal units, generally on a national level.  

The EW-MFA framework classifies materials into four groups – biomass, fossil energy carriers, 

metal ores, and industrial and construction minerals. The headline indicator Domestic Material 

Consumption (DMC) is calculated as the mass of all domestically extracted raw materials and 

harvested biomass plus the mass of imports (including raw materials, semi-products and finished 



Introduction 7 

 

 
 

products) minus the mass of exports. Other EW-MFA indicators include Domestic Material Input 

(DMI), which only covers domestic extraction and imports, and Total Material Requirement 

(TMR), which also accounts for unused hidden flows associated with raw material extraction 

(Wiedmann et al., 2015). Enormous efforts have been devoted to quantifying economy-wide 

material flows during the last decades. From early ones covering a small number of countries or 

snapshots of single years (Matthews et al., 2000; Schandl and Eisenmenger, 2006), to recent 

studies providing more comprehensive multinational datasets with long time series (Fischer-

Kowalski et al., 2011; Giljum et al., 2014). The latest advances include the first global 

authoritative data set on material extraction and trade of materials covering four decades (1970–

2010) brought together by the International Resource Panel hosted by United Nations 

Environment Program (Schandl et al., 2018; UNEP, 2016). 

A generally agreed-upon conclusion from EW-MFA studies is that material productivity 

measured by GDP/DMC is higher in developed countries characterised by very advanced 

economies and lower in developing countries featuring urbanization and industrialization 

processes (Zhang et al., 2018). For example, G8 countries have successfully kept their aggregate 

DMC at a relatively stable level during the period of 1980–2008, while they doubled their total 

GDP over the same period (OECD, 2011). Some developed countries, such as Japan, Canada, and 

Germany, have even achieved absolute decoupling of material consumption from economic 

growth. In contrast, GDP per unit DMC in the Asia Pacific region roughly kept unchanged from 

1970 to 1990, and then sink from 1990 to 2005, due to China’s soaring material consumption for 

its urbanization (Schandl and West, 2010). The historical evolution of the composition of 

countries’ material flows and levels of aggregated material consumption has often been referred 

to as the sociometabolic transition (Fischer-Kowalski and Haberl, 2007; Krausmann et al., 2008; 

Schaffartzik et al., 2014). In a nutshell, the sociometabolic transition concept suggests a shift in 

countries’ prevailing economic structure that reflects the state of underlying economic 

development. In this sense, Krausmann et al. (2008) describe a structural shift from an agrarian 
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to an industrial regime. Whereas the former relies more on renewable resources, the latter depends 

more on non-renewable resources (fossil fuels and minerals) to build up and operate large 

amounts of human-made capitals. In general, the transition from an agrarian to industrial phase 

translates into an expansion of both, material consumption base and GDP, with an uncertain 

prevailing effect among the two forces. Although recognized as a general global trend, 

industrialized countries have almost finished this process and are now entering a new phase 

characterised by the so-called knowledge economy (Popkova, 2019; Powell and Snellman, 2004). 

This additional structural shift begins to be commonly indicated in most recent SEM studies as 

the natural stage following industrialisation. The rapid expansion of service sectors and similar 

knowledge-intensive activities, which is the characterizing factor of knowledge economies, 

stimulates productivity growth and, in turn, strengthens the decoupling of economic growth from 

the steady consumption of natural resources (Fernández-Herrero and Duro, 2019; Gan et al., 

2013). 

The analysis of development stages of an economy largely contributed to understanding material 

consumption patterns. However, economic development is far from being the only factor 

explaining the differences between countries. In one of the earlier EW-MFA contributions, Weisz 

et al. (2006) found that DMC per capita can be quite different even among mature economies 

such as EU-15 countries. The authors argue in fact that the level of use of biomass, industrial 

minerals, ores, and fossil fuels is largely determined by the structure of the economy rather than 

by national income or economic development. Similar findings were also presented by Bringezu 

et al. (2004), which examined dematerialisation for European and worldwide countries, including 

the USA, Japan and Australia, and Dittrich et al. (2011), which examined material use and 

material efficiency in emerging economies over the years 1985-2005. 

The uneven evolution of material flow patterns observed among countries led scholars to examine 

more closely the relationship between resource consumption and its socioeconomic drivers 

(Steger and Bleischwitz, 2011; Steinberger et al., 2010; West and Schandl, 2018). The basic 
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conceptual model employed in the literature for studying the impact of socioeconomic variables 

on the environment is constituted by the so called IPAT equation (Dietz and Rosa, 1997; York et 

al., 2003): 

𝐼 = 𝑃 ×  𝐴 ×  𝑇 

where I represent the impact of human activities on the environment, P is the human population, 

A is a measure of affluence (usually interpreted as average per capita GDP), and T is a measure 

of technological efficiency of consumption (Dietz et al., 2007; Dietz and Rosa, 1994). The IPAT 

approach has been extensively used in econometric studies in the form of STIRPAT – Stochastic 

Impacts by Regression on Population, Affluence, and Technology (York et al., 2003), which, 

thanks to its logarithm specification, allows to interpret results in the form of elasticities. Over 

time, extended STIRPAT models have been proposed by scholars. These include a broader range 

of explanatory variables, from geo-physical ones, e.g. latitude or climate, to structural ones, e.g. 

shares of economic activities over total GDP (West and Schandl, 2018). Among the most recent 

examples, Robaina et al. (2020) analysed the determinant factors of material productivity 

measured as GDP/DMC including novel explanatory variables such as the expenditure on R&D, 

value added by service and industry sectors or environmental tax revenues. Similarly, Fernández-

Herrero and Duro (2019) explored the impacts of socioeconomic drivers in explaining 

international inequalities in material productivity levels considering openness to trade and value 

added by agriculture sector along with the other long-established explanatory variables. 

As emerges from the literature examined, current material efficiency discourse, both in academia 

and policymaking, predominantly revolves around national and sectoral (or industry level) 

analysis. From international comparisons, we know a great deal about the aggregate drivers of 

material efficiency, but we know relatively little about the role played by places and regions in 

defining their own productivity performance. In spite of globalisation, territories (nations, regions 

and cities) still exhibit notorious differences in economic specialisation, competitiveness, 

institutions, cultures and overall historical heritages (Charron, 2016; Crescenzi and Iammarino, 
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2017). Such differences – often referred to as territorial capital (Castelnovo et al., 2020; Morretta 

et al., 2020) – all contribute to development strategies, and necessarily shape regional economies 

(Frenken et al., 2007; Gräbner et al., 2019; Hassink and Klaerding, 2015).  

Regional science has a long experience in investigating the multitude of socioeconomic 

dynamisms which endogenously characterise economic growth and/or productivity (Camagni, 

1991; Capello et al., 2007). Likewise, the neoclassical economic narrative recognises that ‘factor 

conditions’ exert great influence on local economies since Potter et al. seminal work, 

“Competitive Advantage of Nations” (1990). Factors of production are formed over historical 

periods through dynamic interactions between firms and institutions. Such long-term processes 

ultimately determine the availability of local infrastructures, resources and skills, hence shaping 

the capacity of certain regions to attract specific types of economic activity more than others 

(Porter, 1998). As a result, regional economies are influenced by a multiplicity of structural 

conditions and contextual circumstances, whose contribution toward national and global systems 

and networks is highly asymmetric (Crescenzi, 2020). 

Material consumption patterns, and therefore material efficiency, are not an exception to this rule. 

If anything, the link between material efficiency and the territorial dimension is even stronger 

compared to its pure economic counterpart. In fact, the physical component of material efficiency, 

i.e. the consumption and/or production of goods, necessarily responds to the physical limits of 

territories. As an example, urban agglomerations and scarcely populated areas will behave very 

differently in terms of material consumption due to their underlying productive structures. 

Similarly, rural regions will present very different challenges to boost material efficiency 

compared to agglomerated areas, as they lack, for instance, the critical mass to enable waste 

sorting schemes and/or service-based business models. In this context, it can be claimed that it is 

not entirely possible to understand and interpret the relevance of the spatial distribution of 

material efficiency unless such territorial assets and related structural conditions are considered. 
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It becomes clear that existing national and supranational monitoring schemes tracking material 

efficiency performance do not live up to local policymakers as these latter generally face very 

different contexts compared to the national framework (Flachenecker and Rentschler, 2018; 

Rentschler et al., 2018). As has also been highlighted in recent contributions (see e.g. Bannò et 

al. (2015) and Crescenzi and Iammarino (2017)), region-specific factors and, thereby, territorial-

based policy measures capable of stimulating regional competitiveness, are still poorly 

appreciated. Partly, this is due to the general scope of current national policies. Being mainly 

based on aggregated and international comparison research, these are unlikely to effectively 

stimulate regional material efficiency. Hence, an explicit focus on a subnational dimension must 

be an integral part of the material efficiency discourse, as it can provide a unifying lens to connect 

national policies to local contexts and, therefore, support local policymakers with tailored 

perspectives on the needs and potential opportunities of the respective jurisdictions. 

However, comprehensive comparative research in the field of EW-MFA at European regional 

level is virtually absent. The main obstacle that prevented academic research from exploring the 

territorial dimension of material efficiency is the lack of data at subnational levels. Although some 

literature exploring material flows at regional or city level existed prior to this thesis (Kovanda et 

al., 2009; Rosado et al., 2014; Sastre et al., 2015), the very large spectrum of methodological 

approaches to measure EW–MFA indicators ultimately limited comparative analyses between 

areas (Kovanda et al., 2009; Rosado et al., 2014). To a large extent, this diversity of approaches 

is explained and driven by data availability in each setting. The high costs associated with data 

collection, alongside the limited capacity of intervention and incentives offered to regional and 

local governments to monitor and minimize material consumption in their own jurisdictions, 

make official statistics on material flows at subnational scales rather uncommon (Hammer et al., 

2003; Sastre et al., 2015; Voskamp et al., 2017). This represents an important research gap for the 

characterisation of the metabolic profiles of territories, potentially hindering the design of place-

based policies targeting material efficiency and/or sustainable consumption (Bachtler et al., 2017; 
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Binder et al., 2009; Kennedy et al., 2015). This research gap led to the formulation of the 

following research question, addressed by the first chapter in this Thesis: 

Q1. How to deliver harmonised subnational material consumption indicators that recognise 

territorial heterogeneity? 

• How to consistently scale down to subnational level material consumption indicators 

generally compiled at national level? How to elicit the multiple correlations existing 

between material consumption and its determinants? How to account for different 

national regimes in material consumption? 

• What is the distribution of DMC across regions in EU countries? 

The Thesis addresses this research gap by presenting a novel econometric approach to infer 

harmonised regional estimates from broadly available socioeconomic data. The method builds on 

the widely applied STIRPAT framework and expands it by integrating the different 

sociometabolic profiles characterising territories. The main novelty of the method is that, instead 

of adopting average elasticities for extrapolating lower-level estimates (Horta and Keirstead, 

2017), we introduce an optimization algorithm that calibrates the elasticities of parameters to each 

national sociometabolic regime. In fact, to a large extent, it can be argued that regions tend to 

reflect the sociometabolic regimes of their respective nations. Modes and levels of production and 

consumption, as well as the economic momentum of subnational territories, necessarily follow 

macroeconomic trajectories observed at the national level. Therefore, national sociometabolic 

regimes can be a suitable predictor for subnational sociometabolic patterns. The method was 

applied to estimate DMC across more than 280 European regions. The comparison of our figures 

with previous studies confirms that, taking into account the due considerations, our estimates are 

consistent with those obtained by earlier studies making use of more data-intensive approaches 

(Kovanda et al., 2009; Rosado et al., 2014; Sastre et al., 2015). As a result, the proposed method 
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represents a powerful tool to generate granular information that would otherwise be unavailable 

for empirical analyses. 

The Thesis also delivers the first harmonised subnational DMC database for European – NUTS-

2 – regions covering the decade 2006-2015 (Bianchi, 2020). We are convinced that the availability 

of granular data represents a critical input to advance the general understanding of sociometabolic 

systems as it permits to introduce the territorial dimension in cross-regional empirical analyses. 

As explained above, the consideration of territorial factors such as economic structures, 

demographic configurations, institutions, cultures etc. is critical to correctly interpret the 

relationship between material consumption and socioeconomic drivers, and ultimately, to better 

support resource management strategies. Hence, taking stock of the regional database developed 

in Chapter 2, the second part of this Thesis focuses on the analysis of the territorial implications 

of DMC patterns. Specifically, we address the following research questions: 

Q2. What is the role played by territorial contexts in shaping the interdependencies between 

material efficiency and socioeconomic drivers? 

• How the rural-urban regional dichotomy affects material efficiency of European regions? 

• Do structural factors shape the relationship between material efficiency and its 

socioeconomic drivers?  

• What are the implications for place-based material-efficiency strategies? 

At first, we introduced the territorial perspective through the conventional rural-urban dichotomy. 

This ad-hoc territorial typology classifies regions according to the share of population living in 

rural or urban grid cells (Eurostat, 2018). At this stage, our main objective was to determine 

whether the comparison of material efficiency performance between urban and rural regions was 

consistent, or conversely, if such different territorial contexts were instead the main cause of the 

difference in efficiency. Therefore, a metafrontier Data Envelopment Analysis (DEA) framework 

(Battese et al., 2004; O’Donnell et al., 2008) was employed to compute regional efficiency with 
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respect to (1) a common metafrontier – i.e. the whole regional sample, and (2)  group frontiers – 

i.e. urban and rural groups. The underlying assumption of the metafrontier framework is that 

regions exhibit different technology sets depending on the availability of physical, human and 

financial assets, economic infrastructure, resource endowments and any other characteristics of 

the physical, social and economic environment in which production takes place. Such differences 

justify the estimation of separate production frontiers, which, in our case were determined 

according to the territorial typologies.  

One of the main advantages of this approach is the possibility to disentangle the actual regional 

inefficiency in terms of technological efficiency gap and conditional efficiency gap. 

Technological efficiency gap is mainly driven by exogenous factors such as lack of economic 

infrastructures, human capital and/or other characteristics of the production environment. These 

technical constraints ultimately limit the access to higher production frontiers, independently from 

the region’s overall ability to optimise resources. By contrast, the conditional efficiency gap 

measures the amount of inefficiency due to a non-optimal resources’ management. While this 

approach has been extensively employed in empirical studies focusing on labour productivity 

(Battese et al., 2004; Kounetas and Napolitano, 2018; Walheer, 2018), its application to material 

efficiency, and alike environmental indicators, was so far missing in European regional studies. 

Hence our results provide a first evidence of the very polarised picture in terms of material 

efficiency between the better-off centric capital regions and the worse-off peripherical ones. 

Partly, this is explained by the fact that peripheral regions typically act as suppliers of materials 

for urban consumption. Agriculture and traditional manufacturing activities (e.g. footwear, 

leather, apparel, textiles, pulp and wood by-products etc.) are mainly located in intermediate and 

rural areas, which then export processed materials to urban agglomerations for final consumption 

and/or further refining. Therefore, the lower levels of material efficiency in rural and intermediate 

regions actually reflect an environmental burden that should be attributed to urban areas. 

However, the analysis also unveils that technological catching-up and underperformance 
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processes are not necessarily associated with urban or rural characteristics as underlying 

socioeconomic patterns also influence material efficiency levels. 

Once established that material efficiency levels depend, to a greater extent, on the regional 

territorial contexts, and therefore, on the underlying productive structures, we went a step further 

by paying a special attention to the effects that territorial contexts could have, in turn, on 

socioeconomic drivers of material efficiency. In other words, we analysed whether the elasticities 

of affluence, population density and technology differ across regions or whether they are stable. 

To this aim, we rely on a panel-data analysis covering the period 2006-2015, in which we 

employed material productivity (i.e. GDP over DMC) as a proxy for material efficiency and 

regional economic structures as a proxy for territorial contexts. To the authors' knowledge, this 

specific aspect was not yet been addressed by previous studies. Consequently, we believe that one 

of the main contributions of this work consists in the way in which we addressed economic 

structures. Unlike previous works that take account of structural factors as standard explanatory 

variables in regression models (Fernández-Herrero and Duro, 2019; Gan et al., 2013; West and 

Schandl, 2018), we considered the economic structures as interaction terms with socioeconomic 

drivers. This approach allowed to characterise the influence of heterogeneous economic structures 

on the relationships between material productivity and its socioeconomic determinants. 

One of the most outstanding findings of this research was that affluence and population density 

impact the material productivity in considerably different ways based on the prevailing economic 

specialization of regional economies. Areas relying on primary and secondary sectors present 

higher returns in material productivity from increased levels of affluence, compared to service-

based economies. By contrary, service-based economies tend to capitalise material productivity 

gains through physical densification. These patterns might be explained by the intrinsic nature of 

economies. In fact, material-intensive regions are mainly producers and exporters of raw material 

and manufactured goods, so that an increase in affluence would have direct repercussion on their 

productive means. Production would be enhanced by a greater access to financial resources, and 
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therefore to technological improvements. By contrary, a GDP increase in tertiary economies 

would have a smaller impact on material productivity, as these economies present a rather weak 

presence of manufacturing and/or raw material extraction activities. Conversely, population 

density presents a higher leverage effect in urban regions, where space constraints limit the 

deployment of material-intensive activities and favour instead the development of strong service-

oriented economies. 

Overall, this Thesis provide compelling evidence that the underlying qualitative nature of 

economic development, e.g. in terms of the variety of sectors and technologies, or the different 

urban configurations of territories is critical for a complete understanding of socioeconomic 

metabolic systems. Material consumption and, therefore, material efficiency performances, not 

only behave differently according to territorial contexts, but also present different leverage 

mechanisms depending on local resources. We believe that a deeper understanding of the 

territorial dimension of material consumption is critical to support the design of effective place-

based policies towards material efficiency goals. 

After this Introduction, the manuscript is organised in 3 autonomous chapters. Each of them 

addresses a specific aspect of material consumption at lower territorial levels. A final section, 

named Overall Conclusions, is then presented summarising main findings and limitations of the 

whole research. Each chapter is organised as an independent “piece of research”. This means that 

Chapters 1, 2, 3 feature own introduction, material, methods and results. Besides facilitating the 

readability of the overall work, the decision of structuring the manuscript in autonomous chapters 

was also dictated by the fact that we relied on different literature and methods according to the 

specific research gaps addressed. In this sense, in Chapter 1 we develop a novel three-stage – 

specification, optimization, extrapolation (SOE) – econometric approach to infer harmonized 

regional level estimates from broadly available socioeconomic data. The approach is tested by 

estimating DMC in more than 280 European regions (at NUTS 2 level) for the years 2006 and 

2014. Having established that our DMC estimates were consistent with previous studies, we 



Introduction 17 

 

 
 

applied the SOE methodology iteratively to build a regional DMC database for the period 2006-

2015. 

Taking advantage of the new dataset, in Chapter 2 and 3 we explore the territorial implications of 

material consumption patterns through two different perspectives. In Chapter 2 we propose an 

eco-efficiency indicator based on the frontier-approach to investigate material efficiency between 

urban and rural regions. First, Data Envelopment Analysis (DEA) is used to combine different 

types of indicators with the aim to generate a more inclusive measure of material efficiency 

compared to material productivity. In this respect, we included employment rates next to DMC 

and GDP measures as a proxy for the social dimension. Second, we introduce the metafrontier 

framework to evaluate the regional eco-efficiency performance according to the different 

operating environments of urban and rural contexts. 

In Chapter 3, we offer a complementary perspective of the implications of territorial contexts by 

considering underlying regional economic structures. Differently from the urban-rural typology 

employed in Chapter 2, which is based on the distribution of urban population, in Chapter 3 we 

develop a taxonomy of economic structures based on the prevailing economic specialisation of 

regions. This is based on four overarching groups: agriculture-, industry-, intermediate- and 

service-based economies. In the following stage, we investigate the effects that these regional 

economic structures exert on the socioeconomic determinants of material productivity through a 

panel-data analysis in the period 2006-2015. 

In Overall Conclusions section we summarise the main findings of our analysis. In addition, we 

reflect on possible lines of research that could be opened as a result of our analysis or as a 

complement to it. 

At the end of the manuscript we also include a technical appendix with a detailed description of 

the Economic-Wide Material Flow Accounting (EW-MFA) framework. This should help any 
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reader unfamiliar with EW-MFA indicators, facilitating the correct interpretation of DMC-based 

material efficiency indicators 

  



 

 
 

 

 

 

 

Chapter 1 

 

1. Monitoring Domestic Material Consumption at lower 

territorial levels 

A novel data downscaling method 

 

  This chapter is based on the following published papers: 

1. Bianchi M, Tapia C, del Valle I. Monitoring domestic material consumption at 
lower territorial levels: A novel data downscaling method. J Ind Ecol. 2020;1–
14. https://doi.org/10.1111/jiec.13000 

2. Bianchi M, Tapia C. Producing regional data for circular economy monitoring in 
Europe, ESPON Scientific Report - Building the next generation of research on 
territorial development, section: New data sources. ISBN: 978-99959-55-90-8. 

 

1.1. Introduction 

The increasing environmental pressure and resource scarcity resulting from human activities have 

led governments and international organizations to promote systemic changes towards new and 

more sustainable modes of production and consumption. As an example, circular and green 

economy transitions are among the leading strategies implemented at international level 

(European Commision, 2015; UNEP, 2011). Understanding how these systemic transformations 

impact regional economies and how different areas will evolve towards more sustainable

https://doi.org/10.1111/jiec.13000
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trajectories are two among the major challenges that policy-makers dealing with territorial 

policies are currently faced with (Bachtler et al., 2017; Fratini et al., 2019). Against this 

background, monitoring and assessing material consumption and material productivity is critical, 

both from a macroeconomic perspective – to assess whether sufficient action has been taken –, as 

well as from a local perspective – to support local decision-makers in setting new priorities 

towards long-term objectives (Corvellec et al., 2013; Mayer et al., 2019; van Buren et al., 2016). 

However, although well-developed statistical infrastructures and monitoring schemes already 

exist worldwide, data availability on material consumption is still very limited, particularly at 

subnational levels. Hence, additional efforts are needed to characterise material consumption and 

material intensity indicators at more granular levels. 

This chapter aims to fill this gap, first, by developing a methodology to provide harmonised 

regional level data, then, by applying the method to Domestic Material Consumption (DMC), by 

far the most relevant and used indicator informing on material use by a given economy (Bengtsson 

et al., 2018; Bringezu, 2017; European Commission, 2018b; PBL, 2018).  DMC, defined as the 

sum of domestic material extraction and imports, minus exports (EUROSTAT, 2018), is often 

used to conduct quantitative analyses on the circularity and material efficiency of the economies 

(see e.g. Haas et al., 2015; Mayer et al., 2019) . Moreover, when combined with key variables 

such as population, surface area and/or Gross Domestic Product (GDP), it also allows to 

characterize the so-called sociometabolic profiles of territories (Fischer-Kowalski & Haberl, 

1998; Krausmann, Fischer-Kowalski, Schandl, & Eisenmenger, 2008; Pauliuk & Hertwich, 

2015). These inform on the complex systems of society-nature interaction characterizing a 

country and necessarily need to be taken in account when inferring respective subnational data. 

DMC is calculated according to the Economic-Wide Material Flow Accounting (EW-MFA), the 

standard methodology to account for material flows on a national or global scale (see Appendix 

for further details on EW-MFA). 
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Despite DMC provides valuable information to better understand present and future trajectories 

of regional or local economies (Baynes and Musango, 2018; Dong et al., 2017; Krausmann et al., 

2009; Steinberger et al., 2013), it also has its shortcomings. On the one hand, DMC does not 

account for all those upstream raw materials related to imports and exports originated from 

outside the focal economy (Giljum et al., 2014; Wiedmann et al., 2015). This truncation might 

mislead assessments of national resource productivity – as countries might apparently reduce their 

DMC by outsourcing material-intensive extraction and processing abroad – and it must be 

considered when evaluating DMC results across countries (Talmon-Gros, 2014). On the other, 

given that the EW-MFA has been primarily developed to assess material flows of national and/or 

global economies (Schandl and West, 2010; Steinberger et al., 2010; Weisz et al., 2006), 

harmonised data on material flows are only available at highly aggregated level (EUROSTAT, 

2018; Gierlinger and Krausmann, 2012; Krausmann et al., 2011). 

Recent regional studies in Europe focusing on – among others – Paris and Île de France (Barles, 

2009), Czech regions (Kovanda et al., 2009), Lisbon and its metropolitan area (Niza et al., 2009; 

Rosado et al., 2014), Amsterdam (Voskamp et al., 2017) and various Spanish regions (Sastre et 

al., 2015) favoured the development of a solid knowledge-base on the regional and urban 

metabolism across the European continent. However the large spectrum of methodological 

approaches applied  – see e.g. Duarte (2016) and Niza et al. (2009) for a review on urban-based 

metabolism studies – undermines comparative analyses between areas (Kovanda et al., 2009; 

Rosado et al., 2014). To a large extent, this diversity of approaches is explained and driven by 

data availability in each setting. The high costs associated with data collection, alongside the 

limited capacity of intervention and incentives offered to regional and local governments to 

monitor and minimize material consumption in their own jurisdictions, make official statistics on 

material flows at subnational scales rather uncommon (Hammer et al., 2003; Sastre et al., 2015; 

Voskamp et al., 2017). This represents an important limitation for the characterisation of the 

metabolic profiles of territories, potentially hindering the design of place-based policies targeting 
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material efficiency and/or sustainable consumption (Bachtler et al., 2017; Binder et al., 2009; 

Kennedy et al., 2015).  

This chapter presents a three-stage – specification, optimisation, extrapolation (SOE) – 

econometric method to estimate harmonised and comparable DMC data at subnational level. The 

method builds on the widely applied STIRPAT framework that seeks to explain resource 

consumption as a function of population, affluence and technology and expands it by integrating 

the different socio-metabolic profiles characterising territories. We apply the SOE method to 

estimate DMC figures for most European NUTS-2 regions3 for years 2006 and 20144. The main 

advantages of the SOE method are that: (1) it uses a consistent approach that recognises territorial 

heterogeneity but at the same time allows comparability across different areas and over time, (2) 

it elicits the multiple correlations existing between materials consumption and its key explanatory 

factors, and (3) it is systematically applied, allowing to estimate larger datasets at once. Moreover 

(4), the methodology can be easily adapted to other fields and/or indicators, paving the way for 

further comparative analyses at subnational levels in face of data scarcity.  

The main contribution of this chapter is twofold: First, unlike previous studies aiming to produce 

subnational level estimates for material flows, it introduces an optimization algorithm to account 

for the specific socio-metabolic profiles of territories. This allows not only to efficiently deal with 

data scarcity at subnational levels, but also to successfully deliver granular data that reflect 

territorial heterogeneity. Second, it provides a novel harmonised material consumption dataset at 

European regional level that potentially open the way for further comparative research in the field 

of regional resource use. The method and the new data are expected to advance the general 

understanding of metabolic systems and their influencing factors at regional levels (Fernández-

 
3 The Nomenclature of Territorial Units for Statistics (NUTS) is a geocode standard for referencing the subdivisions 

of countries for statistical purposes. The standard is developed and regulated by the European Union, and thus only 
covers the member states of the EU in detail. The analysis covers all the EU and most European Free Trade Area 
(EFTA). Hereafter the terms “regions” and/or “regional level” will refer specifically to the NUTS-2 level.  
4 Note that after the publication of the article a whole dataset from 2006 to 2015 was generated by iteratively 
applying the SOE method. The whole dataset can be found in Bianchi (2020). 
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Herrero and Duro, 2019; Kennedy et al., 2015; Rosado et al., 2014), providing decision-makers 

with valuable information on the effects of measures and policies adopted across different regions. 

The chapter is structured as follows: after this Introduction, we present a brief overview of the 

socio-metabolic concept. In Section 1.3 and 1.4 we discuss the data sources and thoroughly 

describe the SOE method, respectively. Section 1.5 presents our DMC regional estimates for 280 

European regions, including a comparison with DMC figures provided by other peer-reviewed 

studies. Finally, Section 1.6 summarises the main conclusions and presents some ideas for future 

research. 

 

1.2. The socio-metabolic regimes of territories 

The proposed SOE method takes special advantage of the notion of socio-metabolic regimes 

firstly introduced by Sieferle (1997) and Fischer-Kowalski and Haberl (1998) and further 

elaborated by several other authors including, inter alia, Krausmann et al. (2008), and Pauliuk and 

Hertwich (2015). In general terms, socio-metabolic regimes refer to the structural coupling of a 

socioeconomic system with a certain compartment of the natural environment from which it draws 

its resources (Krausmann et al., 2008). This latter dimension can be related to material and/or 

energy throughputs, depending on the framework analysis. The main underlying hypothesis is 

that the amount of materials or energy consumed by a society is largely determined by the size of 

its population, along with its production-modes and consumption patterns (Fischer-Kowalski & 

Haberl, 1998). These socioeconomic characteristics are typically described in terms of population 

density and GDP per capita (Steinberger et al., 2013), two key synthetic indicators that can also 

be used in empirical modelling strategies (like ours) to indirectly infer environmental impacts 

(Dietz et al., 2007; West and Schandl, 2018; York et al., 2003). 

High population density is often the result of extended periods of intensive agricultural 

colonization (Krausmann et al., 2008). By contrast, a low population density might be explained 
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by either historical reasons (i.e., no long, uninterrupted history of agrarian colonization), or 

geophysical reasons, such as hostile natural conditions, e.g., aridity, cold climate, or adverse 

terrain (Krausmann et al., 2008). However, population density not only reflects geophysical 

conditions and agricultural history, but it also allows to systematically differentiate between areas 

of high and low per capita availability of natural resources (Weisz et al., 2006). In general, the 

per capita endowment of natural resources, being these mineral resources, biomass, or even 

livestock, is higher in sparsely populated regions than in densely populated areas. These patterns 

are further enhanced by the historical argument outlined above. Countries with a high population 

density usually have a longer history of resource exploitation and hence have often exhausted 

their domestic resource base (Krausmann et al., 2008). Finally, sparsely populated regions require 

a higher input of energy and materials for the same level of supply of services per person 

compared to densely populated areas. Therefore, population density can be expected to have a 

significant impact on metabolic profiles of regions (Weisz et al., 2006). 

GDP per capita, on the other hand, is generally used to discern between different levels of average 

consumption of economies (Dietz et al., 2007; York et al., 2003). Moreover, this indicator is also 

a good proxy informing on the productive structure of a region. In general, economic activities 

belonging to the tertiary sector are the most productive ones. These can generate up to 86% of the 

total gross value added of metropolitan areas (Duarte, 2016). This suggests that regions with 

above-average income levels in general have strong service-driven economies, while lower 

income levels reflect economies that rely more on material-intensive activities such as agricultural 

and/or industrial activities (Bithas and Kalimeris, 2018). Roughly speaking, it could be expected 

that richer regions might directly consume less materials on per-capita basis, since it is likely that 

these areas import finalised products and/or semi-elaborated products instead of producing them 

locally. In fact, there is solid evidence that highly developed economies outsource material-

intensive products to other areas (Giljum et al., 2014; Wiedmann et al., 2015).  
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Identifying specific socio-metabolic regimes is essential when explaining territorial diversity and 

development patterns (Krausmann et al., 2008). For instance Dong et al. (2017) distinguished 

between developing, primary developed and mature industrialized countries, while Steinberger et 

al. (2013) highlighted the difference between the metabolic regimes of China and Germany. 

Figure 1 shows a scatterplot of DMC per capita and GDP per capita for a sample of European 

countries over the 2000-2015 period. Similarly to these examples, our data depicts distinctive 

socio-metabolic regimes for individual countries. These can nonetheless be grouped in clusters of 

countries with similar behaviour. Economies like Germany and Switzerland are characterised by 

a rather stable DMC per capita despite a growing GDP per capita, whereas French and British 

economies show a declining pattern on DMC per capita vs GDP per capita (i.e. declining material 

consumption per capita and increasing GDP per capita), which could be an indication of economic 

tertiarization. In contrast, expanding economies such as Poland and Romania show a DMC per 

capita that grows at similar pace as the GDP per capita. 

Figure 1: Examples of socio-metabolic patterns at country level (2000-2015) 

 

Note: figures are in logarithmic forms. Fitted lines are generate by OLS regressions for each country. DMC/Pop: DMC 

per capita, GDP/Pop: GDP per capita. Data source: EUROSTAT. 
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The discussion outlined above becomes fundamental when it comes to the estimation of material 

consumption at subnational scales. To a large extent, regions necessarily reflect the 

socioeconomic regimes of their respective Nations because their modes and levels of production 

and consumption, as well as the economic momentum of subnational territories, present similar 

trajectories as those observed at the national level. In this respect, national socio-metabolic 

regimes can be a suitable predictor for subnational socio-metabolic patterns. This aspect has been 

specifically taken-up by our quantitative model, as described in section 1.4 below. 

 

1.3. Data 

We built a dataset that includes DMC measured in thousand tonnes, GDP measured in purchasing 

power standard units (PPS), population measured in number of inhabitants (Pop), and surface area 

measured in square kilometres (Area) at both, national (NUTS 0) and regional (NUTS 2) levels. 

From these variables we computed the GDP per capita (GDP/Pop), population density 

(Pop/Area), DMC per capita (DMC/Pop) and DMC intensity (DMC/GDP) for 2006 and 2014. 

These years were selected as reference time-cuts for two reasons: Firstly, because they cover a 

significant time-span, allowing to capture potential structural changes in socio-metabolic regimes. 

Secondly, because data availability was acceptable: 2006 and 2014 are the oldest and the most 

recent year for which almost complete data sets were available5. Data were downloaded from the 

Eurostat “nama_10r_2gdp”, “demo_r_d3dens”, and “env_ac_mfa” datasets on March 2019. The 

download was performed by making use of the R package “Eurostat” v.3.3.5 (Lahti et al., 2019). 

Data gaps were filled by making use of OECD and/or national statistical databases. 

Countries exhibit great heterogeneity in terms of socioeconomic and physical factors. The biggest 

EU economy, Germany, shows GDP and population values that are respectively 265 and 188 

 
5 2006 is the first year in which Norway reports on DMC, while the years after 2014 present many estimated DMC 
figures. 
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times bigger than those recorded for the smallest European country in our dataset, Malta. On the 

other hand, Malta shows the highest population density in Europe (1.375 persons/km2). This is a 

clear example of how territorial assets might be unevenly distributed across geographies – and 

also explains why scholars often suggest the use of per capita variables  (e.g. income per capita 

and population density) instead of absolute variables (e.g. area, population and GDP) when 

describing territorial patterns of material use (Steinberger et al., 2010; Weisz et al., 2006). The 

heterogeneity observed at the national level increases when we move down to the regional scale. 

Figure 2 illustrates the Lorenz curve of GDP, population and surface observed at regional level 

in Europe. Absolute surface area is the variable more unevenly distributed, with only four regions 

(Nordic regions of Scandinavia plus Castilla y Leon in Spain) representing around 10% of total 

European surface. GDP and population also show very skewed distributions. Around 20% of EU 

regions produce almost 50% of total GDP. Similar percentages hold for population data. 

Figure 2: Lorenz curves of GDP, population, and surface (2014). 

 

Data source Eurostat. 

 

Table 1 offers an alternative perspective on the very assorted configuration of European territories 

by summarising the variation of GDP per capita and population density – two socioeconomic 
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drivers of material consumption – across regions and countries.  Regions with the highest GDP 

per capita, such as Inner London-West (UK), show values that are 21 times greater than those of 

the regions situated in the lower rank (e.g. Bulgarian and Romanian regions). In terms of 

population density, greater agglomerations such as Inner London and Brussels regions, with more 

than 7000 inhabitants per square kilometres, contrast with very low-density regions, such as 

Upper Norrland (SE) and Nord-Norge (NO), with only 3 and 5 inhabitants per square kilometres, 

respectively. It should be noted that the coefficient of variation (CV) and the variation factor (VF) 

increase dramatically at the subnational scale, above all for physical factors such as population 

density. For example, nationally, the most concentrated country has a population density of 81 

times that of the most sparsely populated country. At regional level, this ratio is equal to 3593, 

i.e. the most populated region (Inner London - East (UK)) is 3593 times the least populated one 

(Upper Norrland (SE)).  

 

Table 1: Comparative statistics for EU regions (2014). 

Concept Level of analysis GDP/Pop Pop/Area DMC/Pop DMC/GDP 

Mean 
Countries 27949 168 16.32 0.67 

Regions 27462 452 n.a. n.a. 

CV 
Countries 0.46 1.47 0.38 0.50 

Regions 0.48 2.68 n.a. n.a. 

VF 
Countries 8 81 3.98 5.61 

Regions 21 3593 n.a. n.a. 

Variables 
Selected outliers 

Maximum Minimum 

GDP/Pop 

Inner London - West (UK) 173032 North-western (BG) 8214 

Luxembourg (LU) 75571 Southern Central (BG) 8802 

Hamburg (DE) 57608 Nord-Est (RO) 9290 

Pop/Area 

Inner London - East (UK) 10780 Upper Norrland (SE) 3 

Inner London - West (UK) 10283 Nord-Norge (NO) 5 

Brussels (BE) 7393 Middle Norrland (SE) 5 

Data source: Eurostat. Note: GDP/Pop is measured in GDP PPS per capita; Pop/Area is measured in inhabitants per 

square kilometres; DMC/Pop is measured in tonnes per capita; DMC/GDP is measured in tonnes per 1000 GDP PPS. 

The mean refers to the mathematical average of the sample; The coefficient of variation (CV) = standard 

deviation/mean. The variation factor (VF) = Max/Min. 
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1.4. SOE Method 

The methodology is based on a three-steps econometric model (Figure 3), including: (1) global 

model specification, (2) optimization of parameters, and (3) regional extrapolation. Step (1) 

focuses on the identification of the best regression model describing DMC patterns across 

European countries. The main output of this first task is the estimation of the global parameters 

(𝛽𝑔) (i.e. the regression coefficients observed between DMC and its explanatory variables at 

European level). Step (2) calibrates the model in order to reflect the specific socio-metabolic 

regimes of the different countries. This calibration is implemented by an optimization algorithm 

that automatically adjusts the estimated parameters based on the specific characteristics of each 

country. This generates a set of country-specific parameters (𝛽𝑐𝑠) . Finally, in Step (3) we 

extrapolate the regional figures for DMC by applying 𝛽𝑐𝑠 on the selected explicative variables, 

which are now measured at the regional level. 

Figure 3: Methodological approach to estimate regional figures. 

 

Note: bold terms refer to the output of each phase; upper case letters (Y-X) refer to variables measured at national 

level (NUTS 0); lower case letters (y-x) refer to variables measured at regional level (NUTS 2). 

 

Even though the method relies on the assumption of same model specification across scales – 

similarly to other top-down approaches (Horta and Keirstead, 2017) –, it offers an important 

advantage on how territorial heterogeneity is considered in the model. While previous studies 
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often deal with the variability of territorial regimes by using a switching regression approach (see 

e.g. Chasco (2003)), we apply an algorithm that automatically adjusts the global parameters to 

the socio-metabolic profile of each country. In doing so, our approach does not only overcome 

the issue of limited data availability that often impedes the application of EW-MFA approach at 

subnational levels, but it also addresses two aspects that most MFA studies have so far ignored, 

namely: (a) the issue of national regimes dependency and (b) the multiple correlation accounting 

problem. 

When it comes to item (a), it should be considered that correlations between drivers and response 

variables might not only vary across scales, but also across observations belonging to different 

“territorial regimes”. When considering the nations-to-regions extrapolation, it is very likely that 

regional drivers are not only influenced by highly aggregated supra-national structures, but also 

and foremost by their own national regimes. For instance, any combination of territorial factors 

operating in Nation A, being these hard (as those in our model) or soft (e.g. governance and 

administrative traditions, milieus, etc.) could impact the respective regions in the country in a 

different way from how these same factors could affect regions in Nation B. In practice, this 

means that similar underlying drivers can affect regions in different and diverse ways, depending 

on the specific socio-metabolic conditions defined by the upper territorial structures. 

Regarding item (b), most local metabolism studies use a single proxy factor (or driver) to estimate 

missing data by assuming bold hypothesis such as “consumption is almost proportional to 

population” (Barles, 2009; Courtonne et al., 2015). However, different correlation studies 

established important findings regarding material consumption and its potential drivers 

(Courtonne et al., 2015; Steger and Bleischwitz, 2011; Steinberger et al., 2010), which go well 

beyond the simplified consumption-population relationship. For instance, geophysical 

characteristics of regions, along with economic structures and standard of living, do affect the 

level of material consumption (Baynes and Musango, 2018; Weisz et al., 2006) and therefore 

must be somehow accounted when estimating DMC. 
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1.4.1. Step 1: Global Model specification 

The global model specification concerns the definition of a regression model at the upper 

(national) level, where the indicator of interest is available. Variable selection is arguably the 

most difficult task in regression modelling exercises and several time-saving algorithms are often 

applied to support the analyst choice (e.g. forward selection, backward elimination, stepwise 

regression and “all possible regressions”) (Neter et al., 1996). In general, these build on selection 

criteria such as: (1) statistical tests (e.g. F-statistic, chi-square, and t-test), (2) statistical criteria 

(R-squared, adjusted R-squared), (3) statistical stopping rule (e.g. P-values thresholds for variable 

entry/deletion in a model) (Ratner, 2010). Notwithstanding, relying entirely on ad-hoc selection 

algorithms might (1) introduce some undetected bias and (2) result in including some drivers that 

have nothing in common with our response variable, but that apparently result to be correlated 

(Smaranda, 2013). Consequently, the suggested approach in drivers’ selection should be mainly 

driven by the analyst’s knowledge of the area under study and of each of the variables, leaving 

the use of selection algorithms to explorative and/or validating purposes. 

Figure 4 shows a decisional flow-chart that resumes the steps needed to identify the best 

downscaling model across different time-periods. The selected model should satisfy a set of 

requirements. These are: 

1. Goodness-of-fit: in regression, the R2 coefficient is a statistical measure of how well the 

regression line approximates the real data points. R2 close to 1 indicate that parameters 

explain well cross-country differences, therefore the first requisite is to find the best 

fitting model. 

2. Model complexity: one drawback of R2 coefficient is that it does not take in account the 

complexity of the model. In other word, it increases as the number of variables increase 

in the model (R2 is monotone increasing with the number of variables included, i.e. it will 

never decrease). Using the AIC criterion, we account for the risk of model overfitting 
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since it deals with the trade-off between the goodness-of-fit of the model and the 

simplicity of the model. 

3. Coefficients’ significance: selected drivers are used in the following steps to downscale 

national figures. Consequently, in order to reduce prediction variance, drivers with 

reduced standard error are highly recommended. 

In addition, whenever the SOE method is applied to generate a time series, it is important that 

the model remains unchanged across years. This translates into a fourth requirement: 

4. Comparability: if the final aim is to conduct comparative analysis across different time 

periods, the model should be equal across the years (i.e. same number and typology of 

drivers). The selection of different drivers across time, for a same dependant variable, 

would likely generate results biased from the type of drivers used, worsening in the end 

the comparison. 

Figure 4:  Decision flow-chart for model selection 

 

Source. Own elaboration 
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Concerning the DMC indicator, the starting point of our empirical model is based on the 

STIRPAT framework (STochastic Impacts by Regression on Population, Affluence and 

Technology) firstly introduced by Dietz and Rosa (1997, 1994) and adopted later by, inter alia, 

Steinberger et al. (2010) to understand and quantify the relations between material consumption 

flows, socioeconomic drivers and geophysical factors, and Baynes and Musango (2018) to predict 

global material consumption by 2050 (see also Dietz et al. (2007)). The STIRPAT approach seeks 

to explain environmental impact (I) of a given socioeconomic system in terms of population (P), 

affluence (A) and available technology (T). Affluence stands for the level of consumption and it 

is generally approximated by GDP/pop. Technology, can be interpreted as the particular means 

by which affluence is generated (Baynes and Musango, 2018; Fischer-Kowalski et al., 2011) and 

it is often approximated by measures of economic structure (e.g. manufacturing or industrial share 

of GDP) (Cole and Neumayer, 2004; Shi, 2003). Given the limited set of covariates considered, 

the STIRPAT framework might be criticised as a reductionist approach in a context where it is 

plausible to assume that other factors would causally influence the response variable (i.e. DMC) 

(Hummel et al., 2013). However, recent studies show that, beside the long-established 

explanatory variables of Pop and GDP per capita, additional variables do not contribute 

significantly to explain the remaining variation between territories (West and Schandl, 2018). 

Therefore, considering that our goal in providing a robust, transparent, systematic and easy-to-

apply approach to infer regional estimates, the development of a more complex and sensitive 

model was excluded. 

The STIRPAT model has been applied so far using both total DMC or its intensive expressions, 

i.e. DMC/Pop and DMC/GDP (Baynes and Musango, 2018; Dietz et al., 2007). We will focus 

here on the intensive form DMC/GDP. This not only allows to better capture the relationships 

between DMC and its drivers, but it also constitutes the most important indicator informing on 

the decoupling of economic growth from environmental degradation (Bringezu, 2017; UNEP, 

2016; Wiedmann et al., 2015). 
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Our STIRPAT equation is expressed as: 

 𝐿𝑜𝑔 (
𝐷𝑀𝐶

𝐺𝐷𝑃
) = 𝑐𝑜𝑛𝑠𝑡 + 𝛽𝑔1𝐿𝑜𝑔 (

𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
) + 𝛽𝑔2𝐿𝑜𝑔 (

𝐺𝐷𝑃

𝑃𝑜𝑝
) + 𝑒                    

Eq. 1.4-1 

 

where 𝛽𝑔1,𝑔2 are the parameters to be estimated respectively for population density (Pop/Area) 

and GDP per capita (GDP/Pop), while e is the error term. Logarithmic forms were used to reduce 

skewness and approximate linear relationships between variables. Note also that the logarithmic 

form also allows to interpret the parameters’ coefficients (𝛽) as “ecological elasticities” (York et 

al., 2003). When |𝛽| >1 the relationship is elastic, meaning that Y increases as the predictor X 

increases, but it does so at a faster rate than X. When |𝛽| <1, the relation is inelastic, i.e. as X 

increases, the response Y increases as well, but at a slower rate than X. When |𝛽| =1, the relation 

between the explanatory variables (X) and the response (Y) is proportional. 

Table 2 shows the regression results for years 2006 and 2014. Overall, the STIRPAT approach is 

quite successful at explaining cross-country differences in material consumption, and our results 

are in line with past studies (Dietz et al., 2007; Steinberger et al., 2010). According to our fitted 

model, Pop/Area is inversely correlated with material consumption. As outlined above, this can 

be explained by assuming that denser areas are able to optimize material consumption (think for 

example on how the construction of transport infrastructures may have a greater impact on per 

capita values when deployed in low-density regions). Besides, denser regions are typically areas 

where material intensive activities such as primary and secondary transformations of raw 

materials are rarely conducted (Weisz et al., 2006). However, the fact that the coefficient is almost 

inelastic suggests that the mitigation effect of agglomeration economies on DMC remains limited 

in any case (Fernández-Herrero and Duro, 2019). According to the fitted model, the second 

explanatory variable, namely GDP/Pop, which reflects income elasticity, is inversely correlated 

with the DMC/GDP. This is consistent with the previous claim that higher levels of GDP per 

capita reflect economic structures that are based on the most productive sectors, therefore limiting 
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direct material consumption. Furthermore, the negative sign is justified by the decrease in material 

intensity observed in recent decades which is largely explained by the steady growth of GDP, as 

the DMC has decreased at a much slower pace. 

 

Table 2: OLS regressions results 

Ind. variable DMC/GDP 

Year 2006 2014 

Constant 7.73*** (1.052) 7.374*** (1.289) 

Pop/Area -0.225*** (0.051) -0.251*** (0.057) 

GDP/Pop -0.688*** (0.105) -0.663*** (0.129) 

N 30 31 

R2 0.721 0.664 

F-statistic 34.9 27.62 

JB X-squared 0.585 0.539 

SW  0.953 0.987 

B-P Koenker 6.763* 2.904 

RESET 0.900 1.126 

Chow-test 2.991** 

Note: ‘***’ significant at 1%;  ‘**’ significant at 5%;  ‘*’ significant at 10%; Standard errors in parenthesis; JB: Jarque 

Bera; SW: Shapiro-Wilk; BP: Breusch-Pagan test using Koenker’s studentized version; RESET test applied for quadratic 

and cubic powers; In 2006 figures for North Macedonia were not available. 

 

Although we initially considered pooling the two, 2006 and 2014, cross-sections in a single 

sample, the Chow test suggested that a structural change between the two periods under analysis 

had actually occurred. We hence decided to keep the two cross-sections on separate analytical 

strands. While verifying the model robustness for each cross-section, we detected that albeit 

residuals exhibit normal behaviours, the 2006 model seemed to suffer from residual 

heteroskedasticity. This was reflected by the Koenker’s version of the Breusch-Pagan statistic, 

which was significant for the 2006 cross-section (but not for the 2014 dataset). One frequently 

used approach to deal with the heteroskedasticity issue is to apply robust errors. However, this 

option was excluded to avoid undermining the following step in our methodology, namely model 

optimization. Since this phase depends on the confidence intervals of estimated parameters, it is 

only reliable in presence of tied intervals. The use of robust errors would have widened the 



36 Monitoring Domestic Material Consumption at lower territorial levels 

 

 
 

intervals used as a boundary during optimization, and hence we opted to work with the 

heteroskedastic 2006 model. We also tested for non-linear combinations of drivers by performing 

the RESET test, which suggests that the two models for 2006 and 2014 data are correctly 

specified. Based on all the tests performed, we conclude that the model is sufficiently reliable to 

be applied in the optimization phase as a basis to estimate country-specific parameters. 

 

1.4.2. Step 2: Parameters optimization 

The parameters 𝛽𝑔 for Pop/Area and GDP/Pop estimated in step 1 are global, that is to say, they 

apply indifferently to all countries, without taking into account country-specific socio-metabolic 

regimes. Hence, the use of global parameters computed at European scale would likely produce 

unrealistic regional estimates. 

We propose an optimization procedure that automatically adjusts global parameters to account 

for country-specific socio-metabolic regimes. This systematisation is a pragmatic way to reflect 

country regimes and overcome the poor data context that would otherwise limit the application 

of more complex methods, like switching regressions (Chasco, 2003; Quandt, 1958). The 

optimization algorithm, which is based on the general nonlinear programming problem (Ye, 

1988), has been implemented in R through the “Rsolnp” Package (Ghalanos and Stefan, 2015) 

and can be defined as: 

Min 𝑓(𝑥)𝑖 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑜𝑢𝑛𝑡𝑟𝑦: 𝑖 = 1,2,4 … 31 

such that: 

𝑙𝛽𝑔
≤ 𝛽𝑔 ≤  𝑢𝛽𝑔

 

𝑓(𝑥)𝑖 = 𝑌𝑖 
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Where  𝑓(𝑥)  is the result of the regression model (i.e. 𝑐𝑜𝑛𝑠𝑡 + 𝛽𝑔1𝐿𝑜𝑔 (
𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
) +

𝛽𝑔2𝐿𝑜𝑔 (
𝐺𝐷𝑃

𝑃𝑜𝑝
)); 𝛽𝑔 are the estimated global parameters for Pop/Area and GDP/Pop; [𝑙𝛽𝑔

, 𝑢𝛽𝑔
] 

are the respective confidence intervals based on the standard errors; and 𝑌𝑖  the DMC/GDP 

observed at country level. Essentially, through this approach we are allowing the parameters for 

𝛽𝑔 to vary within their confidence intervals such that for each country the estimated DMC/GDP 

matches the observed DMC/GDP. In this way, the  𝛽𝑔 coefficients are calibrated to better capture 

the country-specific socio-metabolic regimes. Table 3 shows the estimated elasticities for all 

countries on years 2006 and 2014. 

 

1.4.3. Step 3: Data extrapolation and reconciliation 

The next step in our procedure consists on the direct application of the country-specific 

parameters for Pop/Area and GDP/Pop to the exogenous variables measured now at the regional 

(NUTS 2) level, generating regional DMC estimates (i.e. from Eq. 1.4-1 to Eq. 1.4-2): 

 

𝐿𝑜𝑔 (
𝐷𝑀𝐶

𝐺𝐷𝑃
)

̂

𝑗
= 𝑐𝑜𝑛𝑠𝑡 + (𝛽𝑐𝑠)𝑖 𝐿𝑜𝑔 (

𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
)

𝑗
+ (𝛽𝑐𝑠)𝑖 𝐿𝑜𝑔 (

𝐺𝐷𝑃

𝑃𝑜𝑝
)

𝑗

+ 𝑒 ;           

Eq. 1.4-2 

𝑟𝑒𝑔𝑖𝑜𝑛 𝑗 = 1,2, … 280; 

𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑖 = 1,2, … 31; 

 

Where Eq. 1.4-1 represents the regression model estimated at EU level, and Eq. 1.4-2 represents 

the country-specific regression models applied to each country in order to extrapolate the regional 

(
𝐷𝑀𝐶

𝐺𝐷𝑃
)

̂
. As it can be seen in Eq. 1.4-2, we substitute 𝛽𝑔 with 𝛽𝑐𝑠, and the variables Pop/Area and 

GDP/Pop with their equivalents measured at regional level.  
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Table 3: Country-specific parameters generated by the optimization algorithm. 

 
Global parameters (βG)  

2006 2014  
GDP/Pop Pop/Area GDP/Pop Pop/Area 

Coefficients -0.689 -0.225 -0.663 -0.251 

Confidence interval 

(5%) 
-0.903 -0.474 -0.329 -0.122 -0.923 -0.400 -0.367 -0.134 

 
Country-specific parameters (βcs) 

GEO code GDP/Pop Pop/Area GDP/Pop Pop/Area 

AT -0.670 -0.223 -0.646 -0.249 

BE -0.678 -0.224 -0.655 -0.250 

BG -0.670 -0.223 -0.630 -0.248 

CH -0.723 -0.229 -0.685 -0.253 

CY -0.668 -0.223 -0.670 -0.251 

CZ -0.675 -0.224 -0.654 -0.250 

DE -0.689 -0.225 -0.645 -0.249 

DK -0.649 -0.221 -0.634 -0.248 

EE -0.678 -0.224 -0.626 -0.248 

EL -0.706 -0.227 -0.678 -0.252 

ES -0.684 -0.225 -0.721 -0.256 

FI -0.663 -0.224 -0.643 -0.250 

FR -0.720 -0.229 -0.691 -0.253 

HR -0.711 -0.228 -0.707 -0.255 

HU -0.694 -0.226 -0.669 -0.251 

IE -0.637 -0.221 -0.656 -0.250 

IT -0.697 -0.226 -0.711 -0.256 

LT -0.726 -0.229 -0.678 -0.252 

LU -0.669 -0.223 -0.649 -0.249 

LV -0.683 -0.225 -0.649 -0.250 

MK n.a. n.a. -0.687 -0.253 

MT -0.681 -0.224 -0.624 -0.245 

NL -0.712 -0.229 -0.672 -0.252 

NO -0.716 -0.227 -0.666 -0.251 

PL -0.687 -0.225 -0.637 -0.248 

PT -0.672 -0.223 -0.657 -0.250 

RO -0.672 -0.223 -0.611 -0.246 

SE -0.720 -0.227 -0.668 -0.251 

SI -0.672 -0.223 -0.674 -0.252 

SK -0.703 -0.227 -0.674 -0.252 

UK -0.716 -0.229 -0.693 -0.254 

Source. Own estimation 

To check consistency between the two different levels (i.e. national vs regional) we can examine 

whether the sum of regional estimates for each country reflects the real national value. Even if 

this approach does not ensure that regional figures are correctly distributed within a country, it 

can provide some insights on the goodness of the approach applied. In Figure 5 we provide an 
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overview of the deviation of results generated by (1) our approach and (2) the results that would 

have been generated by global parameters (𝛽𝑔) (i.e. without optimization procedure). According 

to the figures, the use of optimized parameters improves significantly the goodness of regional 

estimates, as these deviates significantly less from the real values. The perfect matching for 

countries having just one region (i.e. Republic of Macedonia, Lithuania, Latvia, Luxemburg, 

Estonia and Malta) simply indicates that the optimization algorithm adjusted the parameters to fit 

exactly the national value. 

Figure 5: Deviations of estimates from real values in the case of global- and country-specific approach (year 2014). 

 

(𝛽𝑐𝑠) (𝛽𝑔) 

Note: Deviation for each country has been computed as (
𝐷𝑀𝐶̂−𝐷𝑀𝐶

𝐷𝑀𝐶
). 

 

Once the consistency of our regional estimates was confirmed, we performed a reconciliation of 

these values with the national figures. Reconciliation is a procedure that seeks to ensure coherence 

of results between different scales of analysis (Courtonne et al., 2015). In this specific study, 
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reconciliation consisted on a rescaling the regional estimates to fit exactly the respective national 

values. Mathematically,  𝑦̃ =
𝑦̂𝑖∗ 𝑌

∑ 𝑦̂𝑖 𝑛
𝑖=0

 where 𝑦̃  is the final rescaled regional estimate (i.e. 

DMC/GDP), ∑ 𝑦̂𝑖
𝑛
𝑖=0  is the sum of regional estimated values 𝑦𝑖̂  of a country 𝑌. Final results are 

presented in the following section, along with a discussion and a comparison of a set of estimated 

and real DMC values produced by previous studies for a sample of selected regions. 

 

1.5. Results  

1.5.1. Empirical results 

Figure 6 provides the regional DMC per capita across Europe in 20146. Regions with large urban 

agglomerations and strong tertiary economies are those characterised by lower material 

consumption per capita (i.e. Ile de France, Madrid, greater London etc.). As mentioned before, 

this could be a natural consequence of the economic specialization in these areas, in contrast to 

the less densely populated regions. In fact, rural, peripheral regions feature greater availability of 

land for the cultivation of biotic resources and extraction activities. Natural resources are pre-

processed or pre-transformed locally as a strategy so as to minimise transportation costs, which 

could increase the DMC intensity of these economies in comparison to other regions that 

exclusively import or consume finished products. 

 

 
6 The reader can refer to Bianchi (2020) for the open access to the whole regional dataset of DMC (2006-2015). 
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Figure 6: Quantile map of DMC per capita (t/CAP) in 2014 

 

Note: the four tonalities of green refer to sample quantiles corresponding to the four probability intervals [0% – 

25%], [25% – 50%], [50% – 75%] and [75% – 100%]. The numbered scale reflects the DMC per capita measured in 

t/CAP. White regions indicates no data availability. 

 

To better understand the connection between regional material consumption and sectoral 

specialisations, in Table 4 we present the average figures for DMC/Pop intervals, as displayed in 

Figure 6, along with the average figures for selected socioeconomic variables and sectoral 

specialisations. Sectoral specialisations were computed by means of location quotient (LQ), 

which makes reference to the proportion of gross value added generated in a particular sector in 

a given region compared with the European proportion of gross value added for the same sector 

(see also section 3.2.2 for further details on LQ). Focusing on the first DMC/Pop interval (0%-

25%), it exhibits the lowest LQ across most of material intensive sectors (i.e. agriculture, industry 

and manufacturing), while having the highest score in services. Therefore, on average, regions 
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presenting lower consumption of resources are also those less specialised in material intensive 

sectors in the European economy (LQ<1).  

Notwithstanding, there is an interesting exception within the construction sector, as a result of 

there not being a significant difference in this sectoral specialisation between the DMC/Pop 

quantile intervals (1.00-1.30). This might be explained by the underlying regional urban 

structures. In fact, unlike the sparsely populated regions, the very high level of urban 

agglomeration that characterizes the first group (1,264 hab / Km2) is an advantage for economies 

of scale and therefore streamlines the consumption of material per capita. 

 

Table 4: Mean values by DMC/Pop quantiles for selected socioeconomic variables and sectoral specialisation. 

Quantile 

intervals 

DMC/Pop 

(t/cap) 

Pop/Area 

(hab/km2) 

GDP/Pop 

(PPS/hab) 

Sectoral specialisation 

Agric. Industry Manuf. Constr. Services 

0%-25% 8.17 1264 29496 1.12 0.82 0.77 1.16 1.09 

25%-50% 12.25 274 27084 1.93 1.12 1.09 1.18 0.89 

50-75% 16.04 180 24881 2.23 1.27 1.26 1.00 0.84 

75%-100% 24.01 84 28394 2.07 1.33 1.26 1.30 0.80 

Europe 15.12 451 27464      

Note: sectoral specialisations have been calculated by means of location quotients. 

 

On the contrary, the third and fourth samples quantiles – which largely coincide with the Eastern 

regions, Southern Portugal, Ireland, Scotland and Scandinavia peninsula – tend to concentrate on 

material intensive sectors. A prime example of this could be the finding that most of Romanian 

regions exhibit among the highest LQ scores among intensive sectors (i.e. agriculture, 

manufacturing, industry and construction). The same goes for the Scandinavian peninsula and 

Irish regions, which are specialised in material-intensive sectors like timber and livestock, 

respectively.  

Again, regional economic specialisation has a strong impact on DMC per capita and it largely 

explains the unbalanced distribution of environmental burden within European regions. 

Nevertheless, it should be pointed out that there also exist diverging cases where regions 
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specialised in material intensive sectors present low material consumption per capita (e.g. 

Andalusia in Spain or Continental Croatia), or likewise, regions presenting diverging 

socioeconomic structures but similar material consumption rates (e.g. Dusseldorf region in 

Germany vs Northern Hungary). These aspects will be deepened in Chapter 2 and Chapter 3, 

which will provide specific analyses of DMC patterns along with their underlying socioeconomic 

structures across European regions. 

 

1.5.2.  Comparison of results with existing subnational metabolism 

studies 

In general, the only reliable way to assess the validity of the estimates is to compare these with 

direct statistics for those same administrative areas (e.g. NUTS 2). However, mainly as a 

consequence of the existing material-flow studies being so diverse in terms of data sources, 

timeframes and applied methodologies to calculate DMC, a consistent validation across the full 

range of existing studies cannot be carried out. Still, a comparison of these studies with our results 

allows to assess the overall consistency of our estimates, as well as to understand and recognise 

some methodological limitations. Table 5 compares our results with DMC figures estimated by 

other material-flow analyses for a sample of selected regions.  

Focusing on the results for Ile de France (10.69 t/cap in 2006 and 8.97 t/cap in 2014), we can see 

that our estimates are similar to the most recent studies based on Input-Output analysis (11.85 

t/cap in 2011) (Duarte, 2016). Moreover, similarly to these studies our estimates also suggest a 

decreasing trend of DMC in this region. The major discrepancy is with Barles’ results. This can 

be justified by the different assumptions made by this author when characterising waste flows. 

Indeed, Barles considers waste as an exported material, which is consequently subtracted from 

the calculation of the DMC indicator. In turn, the EW-MFA framework considers waste material 
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flowing to landfill as a material flow within the economy and thus includes it in the calculation 

of the DMC indicator. 

Table 5: DMC results for selected regions and comparison with other studies. 

Geo 

code 
Region name 

Our results 

DMC (t/cap) 

Other studies 
Method. 

Approach 
Sources 

2006 2014 DMC (t/cap) Year 

FR10 Ile de France 10.69 8.97 

7.10 2003 MFA Barles (2009) 

11.85 2011 IO Duarte (2016) 

14.72 2000 IO Duarte (2016) 

15.50 2000 IO Pina et al. (2015) 

DE30 Berlin 8.91 8.73 17.86 2011 IO Duarte (2016) 

DE60 Hamburg 12.44 12.06 

20.90 2011 IO Duarte (2016) 

12.10 2001 MFA 
Hammer and Giljum 

(2006) 

PT17 Lisbon 16.23 10.91 

10.40 2005 UMAn Rosado et al. (2013) 

18.97 2011 IO Duarte (2016) 

17.10 2000 IO Pina et al. (2016) 

ES30 
Comunidad de 

Madrid 
15.55 5.90 

5.90 2010 EW-MFA Sastre et al. (2015) 

12.91 2011 IO Duarte (2016) 

UKD7 
Merseyside 

(Liverpool) 
7.93 5.87 8.32 2011 IO Duarte (2016) 

UKD3 
Greater 

Manchester 
8.26 6.06 9.05 2011 IO Duarte (2016) 

UKE2 

North 

Yorkshire 
(York) 

16.91 13.32 11.94 2000 MFA Barret et al. (2002) 

NL32 
Noord-Holland 

(Amsterdam) 
10.69 9.80 16.00 2012 MFA Voskamp et al. (2016) 

SE11 Stockholm 14.77 16.08 

19.19 2011 IO Duarte (2016) 

10.34 2011 UMAn Rosado et al. (2016) 

10.10 2011 UMAn Kalmykova et al. (2015) 

AT13 Wien 13.19 9.64 9.20 2003 MFA 
Hammer and Giljum 

(2006) 

Mean 12.32 9.76 12.09    

Note: MFA refers to ad-hoc bottom-up material flow analysis, IO refers to Input-Output table, EW-MFA refers to 

Economy Wide-Material Flow analysis and UMAn refers to Urban Metabolism Analysis. 

 

With respect to Hamburg, Berlin, Stockholm and Amsterdam, we also noted some divergences 

with previous studies. The difference for Hamburg might be explained by the so-called 

“Rotterdam Effect” (EUROSTAT, 2019). In commercial harbour areas, material flows tend to be 

overestimated due to trade exchanges and the difficult statistical allocation of transit goods. Still, 

our estimates for Hamburg are in line with those provided by Hammer and Giljum (Hammer et 

al., 2003).  In the case of Amsterdam, the difference between the predicted values and those from 
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previous studies can be explained by the inclusion of water flows in the analysis conducted by 

Voskamp et al. (2017). Water flows are normally excluded from standard EW-MFA. The order 

of magnitude of water flows dominate the material accounts to a point that these 'dilute' the flows 

of other materials (EUROSTAT, 2018, p. 18). Finally, for the regions of Lisbon, Madrid, 

Liverpool and Manchester, all the estimated values are close to previous studies. 

Our conclusion from this comparison exercise confirms the hypothesis that the divergence 

between the various assessments strongly depends on the specific methods and underlying 

assumptions that are made. We found that Input-Output approaches (e.g. Duarte (2016) and Pina 

et al. (2016)) tend to generate higher estimates in comparison to bottom-up material-flow studies. 

This might be due to the way in which trade statistics might inflate material-flows, therefore 

producing higher figures in regional trade-hubs (e.g. Berlin and Hamburg). This issue can also be 

detected in the Madrid case, where the Input-Output approach produced results that are more than 

twice as large as the EW-MFA approach. On the other side, bottom-up approaches rely on 

different sets of assumptions that ultimately hamper the comparison between regions. 

 

1.6. Discussions and Conclusions 

This chapter presents a novel econometric modelling approach to derive regional estimates. The 

method was applied to estimate DMC across more than 280 EU and EFTA regions (NUTS-2 

level) in two periods (2006 and 2014). The approach provided reliable estimates for the DMC 

indicator. The comparison of the estimated figures with previous studies on regional metabolism 

confirms that our results are consistent with those obtained by earlier studies making use of more 

data-intensive methods. Hence, our results provide granular information on material consumption 

that would otherwise be unavailable for policy formulation. In particular, this input is critical in 

term of the design of place-based policies and strategies in support of sustainable resource use at 

subnational levels. 
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The approach addresses several methodological limitations concerning previous studies. First, by 

applying a consistent and systematic approach, we provide a harmonised material consumption 

dataset at European regional level, which is not only exhaustive (all EU and most EFTA regions 

are covered), but also comparable over time and across regions. This paves the way for 

comparative research that advances the general understanding of metabolic systems and their 

influencing factors (Kennedy et al., 2015; Rosado et al., 2014). Potentially, this provides decision-

makers with valuable information regarding the effects of measures and policies adopted across 

different regions (Voskamp et al., 2017). Secondly, by accounting for multiple correlations 

between material consumption and its potential drivers, we provide regional estimates that not 

only capture the magnitude of the relationship between drivers and material consumption, but 

also account for their evolution over time. Thirdly, yet of utmost importance, we overcome major 

data constraints at subnational levels. The lack of regional and local data is arguably the most 

important barrier to conduct local metabolism studies (Hammer et al., 2003; Sastre et al., 2015). 

This issue affects many other policy domains as well. By taking advantage of general statistical 

information available and reflecting territorial heterogeneity through the optimization algorithm, 

we propose a method that can be sufficiently automated to allow the estimation of larger datasets 

at once. Furthermore, its systematisation makes it suitable for application to other territorial 

contexts, geographical scales, thematic domains and indicators. 

The method could be further improved in various ways. For example, in this study only static 

indicators and annual explanatory variables (e.g. GDP and/or population in a specific year) were 

considered in order to build the models. While these static variables are the best alternative to 

regionalise a given indicator at a certain point in time, such variables say very little about the 

dynamics of change of the regionalised indicators. Further analyses might focus on the selection 

of progress variables such as population and/or income growth for a selected period as opposed 

to static time-cuts. This dynamic approach would allow to e.g. gauge the impact of specific drivers 

on material efficiency and better understand the impact of policies on material consumption. 
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Similarly, it would be useful to compare our regional estimates with freight transport data to 

determine whether regions are genuinely decreasing their material footprint or simply “shifting 

the burden” on other areas. 

  



 

 
 

 

  



 

 

 

 

 

 

Chapter 2 

 

2. Eco-efficiency in European regions: a territorial 

perspective 

 

  This chapter is based on the following published paper: 

1. Bianchi M, del Valle I, Tapia C, Measuring Eco-efficiency in European regions: 
evidence from a territorial perspective, Journal of Cleaner Production, 
https://doi.org/10.1016/j.jclepro.2020.123246 

 

2.1. Introduction 

Today, environmental policies represent a critical lever for sustainable development. 

Policymakers are increasingly faced with the challenge of finding the right balance between 

pursuing economic growth and protecting the environment (Apergis and Garćıa, 2019; Sarkhosh-

Sara et al., 2019). As Steinberger et al. (2013) illustrated, economic growth generally entails the 

use of natural resources and results in increasing environmental harms at all stages of product life 

cycle. However, the intensity and scale of environmental degradation ultimately depend not only 

on the structure and technical efficiency of economic productive structures, but also on the 

https://doi.org/10.1016/j.jclepro.2020.123246
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regulatory policies and quality governance in place (Apergis and Garćıa, 2019; Fabrizi et al., 

2018; Schandl et al., 2016). In response to this challenge, the Europe 2020 Strategy identifies 

smart, sustainable and inclusive growth as a key instrument to achieve a resource efficient, 

greener and more competitive economy, while delivering high levels of employment, productivity 

and social cohesion (European Commission, 2010). Systemic shifts towards new and more 

sustainable businesses and patterns of production are therefore increasingly encouraged by 

governmental bodies (European Commision, 2015). However, such a systemic transformation 

requires a closer inspection on the challenges that these structural changes might suppose in 

providing EU citizens with secure and well-paid employment (Bachtler et al., 2017). 

Eco-efficiency – or environmental productivity – is a well-known concept that encourages 

environmental improvements that yield parallel economic and social benefits (OECD, 2002; 

WBCSD, 2006). In general terms, it can be defined as the ability of firms, industries, regions or 

economies to produce more goods and services – understood in a functional sense – with fewer 

impacts on the environment and less consumption of natural resources (Camarero et al., 2013; 

Wursthorn et al., 2011). Along these lines, the roadmap to a resource-efficient Europe sets out a 

framework for the design and implementation of future actions in which resource productivity7 

constitutes the lead indicator to measure its principal objective, namely “improving economic 

performance while reducing pressure on natural resources” (European Commission, 2011, p. 4). 

Conventional indicators of eco-efficiency involve comparing a measure of desirable economic 

output with a measure of environmental input. Two approaches – the ratio approach and the 

frontier approach– are mainly used to estimate such indicators. The main advantage of ratio 

approach indicators such as resource productivity is their straightforwardness. They can be easily 

understood by policymakers as well as by the general public (Camarero et al., 2013). However, 

ratio-based indicators neglect the combination of socioeconomic forces that might cause or drive 

 
7 Note that eco-efficiency, environmental productivity and resource productivity are often used interchangeably to 
indicate the same indicator. See Huppes and Ishikawa (2005) for a terminology review. 
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environmental impacts. As an example, it is well known that economy dematerialization occurs 

almost exclusively during periods of economic recession. Obviously, recessions do not look like 

an attractive strategy to curb environmental harms (Shao et al., 2017). For this reason, social 

indicators such as employment rates are also commonly included in monitoring frameworks. This 

ensures proper measurement of simultaneous progress towards environmentally sustainable and 

inclusive economic growth (see e.g. SDGs goals (Eurostat, 2019a) and Europe 2020 Strategy 

(Eurostat, 2019b)). Therefore, eco-efficiency indicators should be assessed by combining 

indicators from two or more dimensions (Mickwitz et al., 2006), including, when necessary, an 

appropriate weighing scheme (Kuosmanen and Kortelainen, 2005).  

The frontier approach is one of the most used techniques to address this challenge, since not only 

it generates objective weights from the data – thus avoiding the subjectivity implicit in weighting 

decisions (Dyckhoff and Allen, 2001), but it also combines efficiently different types of indicators 

(e.g. economic- social- or environmental) in an aggregated eco-efficiency score (Masternak-Janus 

and Rybaczewska-Błażejowska, 2017). Frontier-based indicators are widely applied to estimate 

eco-efficiency in cross-country analyses (see e.g. Camarero et al., 2013; Halkos, Tzeremes, & 

Kourtzidis, 2016; Moutinho, Madaleno, & Robaina, 2017). However, only a few studies focus on 

the meso-economic, or regional economies, perspective. This dearth of studies at subnational level 

constitutes a critical research gap not only because more granular analyses would help local policy 

formulation processes by recognising the specific needs and opportunities defined by the unique 

features within each jurisdiction (Corvellec et al., 2013), but also because the regional scale is 

often considered as the optimal level of governance for planning, coordinating and assessing 

actions towards sustainable development (Mascarenhas et al., 2010; Mickwitz et al., 2006). 

Therefore, the delivery of indicators at subnational scale is key for the design of policy tools, 

including the European Regional Development Fund, the Common Agricultural Policy, the 

Circular Economy Package (European Commision, 2015) and the Bioeconomy Strategy 

(European Commission, 2017). 
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One critical aspect to bear in mind when estimating eco-efficiency at the lower meso-level is the 

presence of territorial heterogeneity within the sample. In fact, regions – especially in Europe – 

are characterized by different operating environments that necessarily shape their production 

structures (Bianchi et al., 2020a). While some regions host primarily service industries, others 

undergo more rural or manufacturing industries. From an eco-efficiency point of view, it is 

straightforward that the non-discrimination between different sectoral patterns of production 

might lead to an unequal distribution of environmental burdens (Camarero et al., 2013; Zhou et 

al., 2018). In fact, the outsourcing of primary commodities associated with little added value and 

large environmental impacts – carried out mainly in rural and/or peripherical regions – is at odds 

with the “cleaner” processing and services activities at the end of the value-added chain – mostly 

carried out in urbanized regions. Accordingly, if these different economic structures are not 

considered, the estimated eco-efficiency values may be biased by the heterogeneity of regional 

economies rather than being the result of efficient combination of inputs and outputs (Battese et 

al., 2004; Walheer, 2018; Zhang et al., 2015). 

In this context, the metafrontier framework introduced by O’Donnell et al. (2008) represents an 

appealing approach to compare frontier-based efficiency measures of regions that can be 

classified into different groups. Essentially, the approach distinguishes between efficiencies 

measured with respect to a common metafrontier, defined as the boundary of an unrestricted 

technology, and efficiencies measured with respect to a group frontier, defined as boundaries of 

restricted technology sets, where the restrictions derive from exogenous factors such as economic 

infrastructures, human capital and/or other characteristics of the production environment (Battese 

et al., 2004; O’Donnell et al., 2008). The distance between the group-specific frontiers and the 

metafrontier provides a measure of the gap between the technology available to all regions and 

the technology available to a specific regional group. Consequently, this approach permits to 

disentangle the actual inefficiency (i.e. the one with respect to the metafrontier) in terms of the 

technological gap, i.e. the inefficiency due to diverse operating environments (exogenous factors), 
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and conditional efficiency gap, i.e. the inefficiency resulting from a non-optimal resources 

allocation (endogenous factors). Recent examples of metafrontier-based applications in 

macroeconomic contexts include, among others, measurement of eco-efficiency (Han et al., 2019) 

and energy efficiency (Li et al., 2019; Zhang et al., 2015) in China regions, and labour 

productivity in Europe (Filippetti and Peyrache, 2015; Kounetas and Napolitano, 2018) (see 

Walheer (2018) for an exhaustive metafrontier applications review). 

In this chapter our goal is to measure and analyse the eco-efficiency of European regions (NUTS 

level 2 8 ) in 2006 and 2014 by considering both their territorial heterogeneity and the 

socioeconomic patterns associated with domestic material consumption. This study represents the 

first comprehensive research assessing eco-efficiency among European regions and it expands 

the existing research in 2 areas. Firstly, it proposes an eco-efficiency index that goes beyond 

common resource efficiency indicators by considering simultaneously material consumption, 

gross domestic product and employment rates of regional economies. The combination of these 

three indicators in a single score fills a policy demand in relation to the evaluation of trade-offs 

between the three sustainability domains. Secondly, it captures the heterogeneous territorial 

settlements of European regions through an ad-hoc urban-rural typology. This allows to better 

understand the dialectics between the underlying forces driving regional eco-efficiency (i.e. 

technological or conditional efficiency gaps), and, therefore, to distinguish the different 

opportunities and challenges that regions face according to their specific endowments. 

The chapter is organised as follows: Section 2.2 presents the literature review and the underlying 

hypothesis of our approach. Section 2.3 introduces the data and the methods used to conduct the 

empirical analysis, namely, the data envelopment approach (DEA) and the metafrontier 

framework – these data are used to decompose the eco-efficiency index into the technology gap 

 
8 The NUTS system was established by  EC Regulation 1059/2003 that defined a common classification of territorial 

units for statistics (NUTS), based on the administrative divisions applied in the Member States. The 2nd level in the 
classification (NUTS 2) groups regions with population between 80,000 and 3 million. Readers are referred to 
Appendix A for additional information on this topic. 
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and the conditional efficiency gap; Section 2.4 presents the empirical results for European regions 

in 2006 and 2014; Section 2.5 discusses our main findings; the conclusions and limitations are 

presented in Section 2.6, along with suggested avenues for further research. 

 

2.2. Literature review and hypotheses 

Although originally formulated as a tool for evaluating companies performance, DEA is now 

extensively used in empirical analyses for assessing eco-efficiency at macroeconomic levels, and 

therefore, for supporting sustainable development policies (Wursthorn et al., 2011; Zhou et al., 

2018). Differently from microeconomics studies concerning firms’ productivity, economic policy 

commonly focuses on certain economic-wide indicators, such as gross domestic product (GDP) 

and employment, for quantifying economic prosperity (Eurostat, 2019a). Similarly, 

environmental impact indicators regularly used within national monitoring frameworks usually 

refer to material flows (European Commission, 2011; EUROSTAT, 2013) and greenhouse gases 

(GHG emissions) inventories (European Commission, 2014). While the former measures the 

consumption of raw materials and energy consumed domestically by an economy, the latter 

measures the GHG emissions generated by economic activities (Huppes and Ishikawa, 2005; 

Seppälä et al., 2005). 

The selection of inputs and outputs, as well as the underlying assumptions relating to the type of 

technology, are conditioned by the specific goal and scope in which the DEA is conducted 

(Wursthorn et al., 2011; Zhou et al., 2008a). In general, the starting point is the free disposability 

of inputs and outputs, which means that inputs and outputs can freely be disposed-off. This 

implies that fewer outputs can always be produced with more inputs. If convexity is also assumed, 

then any weighted average of feasible production plans is feasible as well (Bogetoft and Otto, 

2011). However, this conjecture does not always hold, especially when a reduction in waste or 

emissions forces a lower production of desirable output (Podinovski and Kuosmanen, 2011; 
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Seiford and Zhu, 2002). In this situation, directional efficiency measures are often employed to 

reflect the weak disposability assumption (Färe et al., 1989). This implies an inverse relationship 

between desirable and undesirable outputs (Färe and Grosskopf, 2004; Zhou et al., 2008b). An 

alternative approach might be also the treatment of undesirable outputs as inputs (Korhonen and 

Luptacik, 2004; Kuosmanen and Kortelainen, 2005). However, this method is not recommended 

when the true production configuration is infringed (Seiford and Zhu, 2002). 

Most of the existing macroeconomic studies focusing on eco-efficiency are generally conducted 

at the country-level. As an example, Moutinho et al. (2017) employed a DEA output-oriented 

model to estimate the eco-efficiency of 26 different EU countries. They combined input factors 

such as labour, capital productivity, and the share of renewable and fossil energy, with GPD per 

GHG as output. Their main conclusion was that the type of energy sources is critical in explaining 

differences in emissions.  A composite sustainability efficiency index has been proposed by 

Halkos et al., (2016), which distinguished between a first-stage efficiency (production 

maximization oriented) and a second-stage efficiency (environmental pressure minimization). 

Interestingly, they reported that a high production efficiency not always translates in higher eco-

efficiency performance. Several studies also analysed eco-efficiency from a longitudinal 

convergence perspective. Camarero et al. (2013) assessed eco-efficiency convergence for a group 

of 22 OECD countries over the period 1980–2008, employing three air pollutants as 

environmental impacts from economic activities. They found the existence of clubs of 

convergence for the (most eco-efficient) Scandinavian economies and the (worst eco-efficient) 

Southern European countries. Additional examples can be found in Gómez-Calvet et al. (2016), 

Camarero et al. (2014) and Yu et al., (2018). 

Eco-effiency studies at subnational levels are rather sparse and most of them focus on Chinese 

provinces. Yang et al. (2015), measured eco-efficiency for 30 Chinese provinces considering as 

inputs energy consumption, fixed capital and sulfourus emission, while taking the GDP as output. 

They found distinct eco-efficiency patterns between the different spatially-located areas of China, 
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resulting the eastern areas more eco-efficient. Similar results were found in Yang and Zhang 

(2018) and Zhang et al. (2015), notwithstanding the use of a different set of environamental 

indicators such as construction land area, water and energy consumption, next to those commonly 

employed. Concerning the European area, only two studies address eco-efficiency at regional 

level, both of them constrained to the regions of a single country. Masternak-Janus and 

Rybaczewska-Błażejowska (2017) assessed eco-efficiency for Poland regions employing as 

environmental indicators the consumption of natural resources. They found that, among others, 

consumption of cement and electricity were the most correlated with GDP. Eco-efficiency of UK 

regions was assessed instead by Halkos and Tzeremes (2013), which found a “U” shape 

relationship between environmental inefficiency and economic growth. Most likely, the scarcity 

of subnational studies in Europe is related to the lack of harmonized environmental data for all 

European regions, as these are generally only provided at national level (Bianchi et al., 2020a; 

Halkos and Tzeremes, 2013). Therefore, taking advantage of the regional DMC figures estimated 

in Chapter 2, this research represents the first attempt in providing a comprehensive analysis of 

eco-efficiency for European regions. However, due to the exclusion of GHG emissions from the 

analysis, the proposed eco-efficiency indicator should be interpreted as the environmental 

productivity variant of eco-efficiency (Huppes and Ishikawa, 2005). This is also in line with the 

macro-indicators used by the EU in support of its circular economy policy agenda (European 

Commission, 2018b, 2011; Eurostat, 2019a). 

 

2.3. Material and Methods 

This section describes the dataset and the empirical strategy employed. As a first step, a DEA 

model, combining socioeconomic variables (employment and GDP per capita) and domestic 

material consumption, is defined based on the best available approaches. Next, the metafrontier 

framework is employed in order to compare eco-efficiency across groups of regions. The 
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metafrontier approach integrates the territorial heterogeneity characterizing European regions and 

allows to decompose eco-efficiency in two components: the conditional efficiency gap (i.e. the 

distance of a given region to its group frontier) and the technology gap (i.e. the distance between 

a group frontier and the metafrontier). The data download was performed by making use of the R 

package “Eurostat” v.3.3.5 (Lahti et al., 2019), DEA analysis was conducted with R package 

“Benchmarking” v. 0.28 (Bogetoft and Otto, 2019), while data plotting was performed with R 

packages “sp” v. 1.3-2 (Pebesma, 2019) and “ggplot2” v. 3.3.0 (Wickham, 2020). The following 

sections will present in detail each of these steps, starting with a description of the dataset used 

and the definition of the urban-rural territorial typology. 

 

2.3.1. Data and variables 

The dataset employed in this study comprises annual observations for the periods 2006 and 2014 

and cover 282 European regions out of 3319 at NUTS-2 level. The DEA model was estimated 

using two input and one output. For the latter, Gross Domestic Product (GDP) per capita was 

considered, measured in purchasing power standard (PPS). On the input side, employment rate 

(EMP) and Domestic Material Consumption per capita (DMC) were taken into account. The 

employment rate is measured as the ratio between the number of active employees and the total 

workforce that is potentially employable. The DMC, which measures the total amount of materials 

directly used by an economy, is defined as the annual quantity of raw material extracted from the 

domestic territory, plus all physical import minus all physical export, and it is expressed in tonnes 

per capita. The socioeconomic variables – GDP and EMP – were retrieved from Eurostat 

databases “nama_10r_2gdp” and “lfst_r_lfe2emp10” respectively. In general, data on DMC is only 

 
9 Regions of Albania, Bosnia and Herzegovina, Iceland, Lichtenstein, Montenegro, Serbia, Turkey, Republic of Kosovo 
and French outermost regions were excluded from this study because of missing data. Inner London West (UK) was 
also excluded from the study because it represents an outlier, being its GDP per capita more than 6 times the 
European average. 
10 Employment rate for Denmark and Croatia refers to 2007, while Slovenia and UKI3 to UKI4 refers to 2010. 
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available on national basis from material flow accounts collected under the regulation (EU) 

691/2011 on European environmental economic accounts. Hence, the DMC database developed 

in chapter 1 was used instead. 

These indicators were selected in order to reflect the main priorities of European strategies for 

sustainable growth, namely resource productivity, economic growth and job creation (European 

Commission, 2019b). These are also considered headline indicators in existing monitoring 

frameworks (European Commission, 2018b, 2011; Eurostat, 2019a). The use of ratio variables 

instead of absolute values is intentional, as the former reflect regional economic performance in 

a more appropriate way than the latter (Bithas and Kalimeris, 2018; Dzemydaitė and Galinienė, 

2013; LeSage and Fischer, 2008). 

 

2.3.2. Urban rural typology 

In order to conduct the metafrontier analysis, European regions were classified according to a 

urban-rural classification of regions inspired by the "Tercet" classification (European 

Commission, 2016). The Tercet initiative integrates the urban-rural taxonomy across 

administrative units. The urban-rural typology distinguishes between (1) predominantly rural 

regions, (2) intermediate regions and (3) predominantly urban regions, depending on the share of 

population living in rural or urban grid cells. Predominantly urban regions are those regions where 

more than 80 % of the population live in urban clusters. Intermediate regions are those regions 

where more than 50 % and up to 80 % of the population live in urban clusters. Predominantly 

rural regions are those regions where at least 50 % of the population live in rural grid cells. This 

taxonomy is often used by EU policymakers’ in the context of cohesion and territorial 

development policies to account for territorial diversity across European areas.  

Given that the urban-rural taxonomy is only available at a NUTS-3 level, the classification was 

upscaled to the NUTS 2 level. To this aim, the prevalence of territorial typologies observed at the 
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lower scale, along with the population density as an additional criterion11, were considered to 

classify regions in any of the three categories. Comparable approaches have also been applied by 

previous studies with similar results (see e.g. Bachtler et al., 2017; ESPON, 2019b; Smit, Van 

Leeuwen, Florax, & De Groot, 2015). A detailed description of the criteria used to classify 

European region according to the urban-rural taxonomy is provided in Table 6, while Figure 7 

shows the resulting typology distribution in Europe. 

 
Table 6: criteria employed to classify urban-rural regions at NUTS 2 level 

Region 

classification 

NUTS 2 

Criteria applied at NUTS 3 level Logic formula  

U Presence of only one category12 ∑ u

n

i=0

> 0 ∧ ∑ i

n

i=0

= 0 ∧ ∑ r

n

i=0

= 0  

I Presence of only one category ∑ u

n

i=0

= 0 ∧ ∑ i

n

i=0

> 0 ∧ ∑ r

n

i=0

= 0 

R Presence of only one category ∑ u

n

i=0

= 0 ∧ ∑ i

n

i=0

= 0 ∧ ∑ r

n

i=0

> 0 

I 

Presence of all categories or 

presence of urban and rural 

categories 

∑ u

n

i=0

> 0 ∧ ∑ i

n

i=0

≥ 0 ∧ ∑ r

n

i=0

> 0 

I 
Presence of urban and intermediate 

category scarcely populated 
∑ u

n

i=0

> 0 ∧ ∑ i

n

i=0

> 0 ∧ ∑ r

n

i=0

= 0 ∧ D < Q3 

U 
Presence of urban and intermediate 

category densely populated 
∑ u

n

i=0

> 0 ∧ ∑ i

n

i=0

> 0 ∧ ∑ r

n

i=0

= 0 ∧ D > Q3 

R 
Presence of rural and intermediate 

category scarcely populated 
∑ u

n

i=0

= 0 ∧ ∑ i

n

i=0

> 0 ∧ ∑ r

n

i=0

> 0 ∧ D < Q2 

I 
Presence of rural and intermediate 

category densely populated 
∑ u

n

i=0

= 0 ∧ ∑ i

n

i=0

> 0 ∧ ∑ r

n

i=0

> 0 ∧ D > Q2 

Note: U=predominantly urban NUTS 2;  u=urban NUTS; I= intermediate NUTS 2; i=intermediate NUTS 3; R=rural NUTS 
2; r=rural NUTS 3; D=population density NUTS 2; Qn= n quartile population density of EU NUTS 2 regions; ∑n=sum of 

n regions within a country; 
 

 

 

 
11 This further criterion is introduced to overcome potential biases due to the very different geographical dimensions 

of NUTS 2 administrative regions. 
12 The only exceptions to this criterion are constituted by Luxemburg and Hovedstaden (DK) regions, which 

according to the Tercet taxonomy are classified as intermediate regions. However, considering that they are capital 

regions and present an underlying socioeconomic structure much more similar to urban typology, it was decided to 

classify them as predominantly urban region. 
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Figure 7: The geographic distribution of urban-rural regional typologies in Europe 

 

Source: own elaboration 

 

The predominantly rural, predominantly urban and intermediate groups are respectively 

composed by 100, 69 and 113 regions. The intermediate group accounts for approximately one 

third of European’s population and GDP, and it largely reflects European averages across all 

variables considered. The urban group, despite being the smaller group in numeric terms (69 

regions), accounts for almost half of European’s population and more than half of its GDP. This 

is not surprising, given that urban regions cover most of European capital regions. On average, 

capital regions account for more than 26% of national GDP, and as centres of entrepreneurship 

and innovation, they show enterprise and employment creation more than 60% higher with respect 

to other areas (OECD, 2018). The rural group, which covers 42% of Europe’s territory, is the least 

developed compared to urban and intermediate categories. In general, regions in this class have 
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population densities, as well as an income per capita and labour productivities, well below 

European averages. Table 7 reports the summary statistics for our sample data. 

 

Table 7: Descriptive statistics of variables by territorial typology, (2014). 

 Inputs variables Output variable 

 DMC per capita (t/cap) Employment rate (percentage) GDP per capita (PPS/cap) 

Group Mean Max Min CV Mean Max Min CV Mean Max Min CV 

Europe 15.26 44.11 4.80 0.44 66.14 83.10 39.00 0.13 27192 75571 8214 0.37 

U 10.69 22.24 4.80 0.35 69.09 81.20 50.00 0.09 34030 75571 19591 0.34 

I 14.69 30.08 5.88 0.34 66.96 83.10 39.00 0.13 24559 49767 10977 0.33 

R 19.06 44.11 8.89 0.40 63.17 81.80 46.10 0.14 22058 42325 8214 0.37 

Note: U= predominantly urban, I= intermediate, R= predominantly rural, CV=coefficient of variation (standard 

deviation divided by the mean); t = tonnes; cap=capita; PPS = purchasing power standard units. 

 

 

2.3.3. DEA model 

To measure the eco-efficiency of European regions, a variable return to scale (VRS) DEA model 

(Cooper, William W.Seiford, Lawrence M. Tone et al., 2007) was applied based on a directional 

efficiency measure, namely the graph hyperbolic direction (Bogetoft and Otto, 2011; Zhou et al., 

2008a) 13 . This DEA specification presents an important advantage respect to alternative 

evaluations of regional eco-efficiency. In fact, differently from most DEA models, which focus 

on input or output orientation, the graph efficiency approach allows to simultaneously reduce 

inputs and expand outputs. This avoids incurring on a ‘reductive fallacy’ due to 

oversimplification, i.e. efficiency measures based on a single perspective (Huang et al., 2014). 

Even more importantly, our approach considers potential trade-offs between multiple goals or 

policy priorities, i.e. simultaneous environmental impact minimization and economic output 

 
13 Relative to the type of efficiency, directional distance functions can also be used to reflect the weak disposability 

assumption, i.e. situations in which an increase in desirable outputs is coupled by a simultaneous decrease in 

undesirable outputs, based on a predetermined direction vector (Halkos and Tzeremes, 2013; Picazo-Tadeo et al., 

2005; Picazo-Tadeo and Prior, 2009).  



62 Eco-efficiency in European regions: a territorial perspective 

 
 

 
 

maximization. Likewise, given the diversity of production structures that characterise European 

regions, assuming a VRS represents a more realistic assumption than its counterpart constant 

return to scale (CSR), since VRS better captures the multifaceted productive structures of regions 

(Moutinho et al., 2017). In addition, the VRS represents a smaller technology set respect to the 

CVS, which according to the minimal extrapolation principle is a preferable setting. In fact, the 

choice of the smallest set implies a cautious or conservative estimate of the technology set, and 

therefore also a cautious or conservative estimate of the eco-efficiency scores and the potential 

loss due to inefficiency (Bogetoft and Otto, 2011)14. 

Assuming that there are n=1,2…, N regions in Europe, and each region uses input vector 𝑥 ∈ ℝ+
𝑚 

to produce outputs vector 𝑦 ∈ ℝ+
𝑟 , the technology set or production possibilities set can be 

expressed as 𝑇 = {(𝑥, 𝑦): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦} wherein free disposability of input (i.e. if a certain 

quantity of outputs can be produced with a given quantity of input, then the same quantity of 

outputs can also be produced with more inputs) and 𝑇 being convex (i.e. for any two points in the 

technology set 𝑇, the planes on the line between them are also in 𝑇) are assumed. Therefore, 𝑇 

for 𝑁 regions exhibiting VRS can be expressed as follows: 

𝑇 = {(𝑥, 𝑦):  𝑥𝑚 ≥  ∑ 𝜆𝑛𝑥𝑚𝑛, 𝑚 = 1, … , 𝑀,

𝑁

𝑛=1

 

𝑦𝑟 ≤  ∑ 𝜆𝑛𝑦𝑟𝑛, 𝑟 = 1, … , 𝑅,

𝑁

𝑛=1

 

λ𝑛 ≥ 0, 𝑛 = 1, … , 𝑁}. 

Eq. 2.3-1 

 

 
14 For completeness, input- and output- oriented DEA models were also tested. Findings reveals that regions lying on 

the frontier do not change across the different orientations. However, while the difference in eco-efficiency scores 

between input and graph efficiency is minimal, it was found that output-orientation produced a biased ranking towards 

high-income regions. 
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Where λ is a nonnegative multiplier vector for constructing the production technology through a 

convex combination. In the case of VRS it is assumed that ∑ 𝜆𝑛
𝑁
𝑛=1 = 1  (Cooper, William 

W.Seiford, Lawrence M. Tone et al., 2007). Using the hyperbolic distance function approach, 

improvements on the input and output side are considered simultaneously by basically combining 

the Farrell input and output efficiency measures into one measure: 

 

𝐺 = min{𝐺 > 0|𝐺𝑥, 𝑦 𝐺⁄ )  ∈ 𝑇}. 

Eq. 2.3-2 

 

In G, the goal is to simultaneously reduce inputs and expand outputs, when input side G are 

reduced, , the output side, 1/G, is expanded. Inserting the DEA technology (Eq. 2.3-1) in Eq. 2.3-2, 

the eco-efficiency index can be obtain as: 

 

min        𝐺                                                                                       

𝐺, 𝜆1 … 𝜆𝑛 

Eq. 2.3-3 

𝑠. 𝑡.  𝐺𝑥𝑚 ≥  ∑ 𝜆𝑛𝑥𝑚𝑛

𝑁

𝑛=1

, 𝑚 = 1, … , 𝑀, 

𝑦𝑟

𝐺
≤  ∑ 𝜆𝑛𝑦𝑟𝑛, 𝑟 = 1, … , 𝑅,

𝑁

𝑛=1

 

λ𝑛 ≥ 0 ∧ ∑ 𝜆𝑛

𝑁

𝑛=1

= 1, 𝑛 = 1, … , 𝑁}. 

 

The solution value of 𝐺 is the value of the eco-efficiency index for a region n. The weights are 

determined as the best when the resulting output-to-input ratio is maximised for each European 

region. DEA efficiency score is between 0 and 1, where 1 indicates that a region shows the best 

performance localized in the production frontier and reveals no potential reduction. Any result 
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lower than 1 suggests that the region is not using the inputs efficiently. The objective function 

maximises the outputs ratio weighted by input as well as by the region analysed, under the 

condition that there are similar relations for all the regions in presenting efficiency scores equal 

to, or lower than 1.  

Furthermore, it should be noted that employment was considered as a desirable input15. This 

means that reference aspects on input side for efficiency measurement should not be those defined 

by observed activities that consume smaller amount of material along with lower levels of 

employment, but smaller amount of material and higher levels of employment. In order to 

correctly introduce employment factor as a desirable input and, at the same time, preserving 

convexity relations, it was proxied by means of unemployment rate. This represents a linear 

monotone transformation as suggested in Hua and Bian (2007) and in Seiford and Zhu (2002). 

 

2.3.4. Metafrontier DEA model 

In this section, the concept of the metafrontier DEA approach is combined with the DEA model 

previously described to consider the existence of sub-technologies representing the production 

possibilities of specific groups of regions, namely the urban, intermediate and rural group 

introduced in section 2.3.2. The metafrontier framework was firstly introduced by Battese et al. 

(2004) and O’Donnell et al. (2008) to compare technical efficiencies of firms that might be 

classified into different groups. Similarly to Kumar and Russell (2002), they decompose technical 

efficiency into two components attributable to (1) technological gap (i.e. shifts in the production 

frontier) and (2) conditional efficiency gap (i.e. movements towards or away from the frontier)16. 

The underlying assumption of the metafrontier framework is that regions exhibit different 

 
15 Depending on the framework analysis, employment factor can be treated in different ways. In general, it is minimized 

(or held constant) when focusing on cost optimization at firm level. On the contrary, it is maximized when considering 

policy and cohesion goals. Since in this case the decision-making units are regions, the DEA model will pursue 

employment maximisation (more jobs in regional economies). 
16 Kumar and Russell further decomposed conditional efficiency into technological catch-up and capital accumulation. 
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technology sets depending on the availability of physical, human and financial assets, economic 

infrastructure, resource endowments and any other characteristics of the physical, social and 

economic environment in which production takes place (O’Donnell et al., 2008). Such differences 

justify the estimation of separate production frontiers for different groups of regions sharing 

similar characteristics. 

Figure 8 presents a graphical view of the metafrontier framework in which two different frontiers 

are defined: (1) a single metafrontier 𝑇 that considers the full range of technologically feasible 

input-output combinations (i.e. considering all European regions); and (2) a group frontier 𝑇𝑠 that 

considers only a specific set of regions presenting similar operating environments (i.e. regions 

included in the same category). The area comprised between the two frontiers represents a 

technological constraint, i.e. a technological opportunity set which is not available to regions 

belonging to the group (e.g. lack of highly skilled human resources in rural regions). The gap 

between the two frontiers is what is defined here as the technology gap (TG). In turn, the 

conditional efficiency gap (CG) depends on the region’s ability to optimize available resources. 

In other words, the CG is a proxy capturing regional ability to efficiently manage the available 

resources with respect to its regional peers, i.e. those regions facing the same range of 

technological opportunities. 

Figure 8: Graphic overview of metafrontier approach 

 

Own elaboration based on Bogetoft & Otto (2011) and O’Donnell et al. (2008). 
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Following O’Donnell notations, 𝑇(𝑥, 𝑦)  is defined as the metafrontier or the unrestricted 

technology set containing all input-output combinations (i.e. the whole regional sample) (Eq. 

2.3-1), while 𝑇𝑠(𝑥, 𝑦) ∈ 𝑇 represents a sub-group frontier, or the technology set of a regional 

typology 𝑆 whose regions present similar operating environments. Then, it is assumed that 𝑇 and 

𝑇𝑠 display the same DEA specifications described above. Therefore, for a given region 𝐴 ∈ 𝑆 ∈

𝑁  it can be easily calculated, by solving an analogous LP problem as in Eq. 2.3-3, the 

metafrontier eco-efficiency (𝑀𝐹𝐴) respect to 𝑇, for which N= 282, and the group eco-efficiency 

(𝐺𝐹𝐴) respect to 𝑇𝑠, for which, in the case of rural regions, would be equal to N=100. In this 

context, 𝑇 constitutes the overall frontier that envelops all the European regions such that no point 

of group frontiers can lie above 𝑇 (Battese et al., 2004). Therefore, the metatechnology ratio can 

be defined as the closeness between 𝑇𝑠 and 𝑇, and it measures how close a group-s frontier is to 

the metafrontier17 (O’Donnell et al., 2008): 

 

𝑀𝑇𝑅(𝑥, 𝑦) =
𝑀𝐹(𝑥, 𝑦)

𝐺𝐹(𝑥, 𝑦)
 

Eq. 2.3-4 

 

Given that 0 < 𝑀𝑇𝑅 ≤ 1  and 𝑀𝑇𝑅 = 1 implies no difference between MF and GF, the distance 

of each region to the MF (dMF) can be decomposed into the technology gap (TG) and conditional 

efficiency gap (CG) (Han et al., 2019; Kounetas and Napolitano, 2018; Zhang et al., 2015) as: 

 

𝑑𝑀𝐹 = 1 − 𝑀𝐹 = 𝑇𝐺 + 𝐶𝐺 

Eq. 2.3-5 

 
17 Considering figure 2, the group eco-efficiency (GF) is calculated as OB/OC, while the corresponding distance with 
respect to the metafrontier (MF) is defined as OB/OD. 
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𝑇𝐺 = 1 − 𝑀𝑇𝑅 

Eq. 2.3-6 

𝐶𝐺 = (1 − 𝑀𝐹) − 𝑇𝐺 

Eq. 2.3-7 

 

The calculation of the 𝑇𝐺  and 𝐶𝐺  is determinant to distinguish between two sources of 

inefficiency, namely (1) the differences between the production technology levels in regional 

groups and the European potential optimal production techniques (e.g. lack or availability of 

exogenous assets such as infrastructures, natural resources, etc); and (2) the loss in efficiency due 

to the low levels of production management (i.e. endogenous assets such as the ability of regions 

to maximise welfare gains given a limited set of resources). 

In order to calculate the GF eco-efficiency, the urban-rural typology described in the previous 

section is used. It goes without saying that this classification cannot reflect all the potential 

differences among European regions. Hence, in order to establish whether the defined taxonomy 

effectively capture the different territorial configuration, it was tested the presence of significant 

differences between the efficiencies of the three territorial groups following Bogetoft and Otto  

work (2011). Namely, letting the density of the distributions of the efficiencies in the different 

groups be 𝑔1, 𝑔2 and 𝑔3, it is tested 𝐻0: 𝑔1 =  𝑔2 against 𝐻1: 𝑔1 ≠  𝑔2. The same applies to 𝑔1 

vs 𝑔3  and 𝑔2  vs 𝑔3 . Since there are no priori assumption about the distribution of frontier 

efficiency outputs, the non-parametric Kolmogorov–Smirnov test statistic 𝑇𝑘𝑠 =

 max
𝑘=1,….,𝐾

{|𝐺1(𝐹𝑘) − 𝐺2(𝐹𝐾)|}  was employed. Where 𝐺1  and 𝐺2  are the empirical cumulative 

distributions in the two subsets such that 𝑇𝑘𝑠  is the largest vertical distance between the 

cumulative distributions. Large values of 𝑇𝑘𝑠 indicate that 𝐻0 is false. Note that this test depends 

on the rank (i.e. the order) of 𝐹𝐾  only, and not on the individual values of 𝐹𝐾 . It follows 

Kolmogorov–Smirnov test statistic results: 
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Table 8: Kolmogorov–Smirnov test statistic results 

Hypothesis Test statistics Interpretation 

𝐻0: 𝑔1 =  𝑔2 D = 0.44, p-value = 0 𝑔1 ≠ 𝑔2 

𝐻0: 𝑔1 =  𝑔3 D = 0.67, p-value = 0 𝑔1 ≠ 𝑔3 

𝐻0: 𝑔2 =  𝑔3 D = 0.46, p-value = 0 𝑔2 ≠ 𝑔3 

Note: g1, g2 and g2 refer to the distribution density of eco-efficiency levels for Rural, Intermediate and Urban group, 

respectively. 

 

Tests results lead to the rejection of the null hypothesis of identical groups, therefore confirming 

that regions present different technology assets based on the urban/rural category where they are 

included and, as such, hold different pre-conditions to achieve eco-efficiency. 

 

 

2.4. Results 

2.4.1. Metafrontier (MF) eco-efficiency  

MF eco-efficiency is calculated under the assumption of equal operating environment across the 

whole sample of European regions. MF eco-efficiency varied from 0.41 (Central Region of 

Romania) to 1, which is the technological metafrontier defined by the regions of Luxembourg, 

Brussels, Zurich, London and Central Switzerland. This latter region joined the technology 

metafrontier in 2014, while the other regions did not change their respective rankings between 

the two years. Figure 9 shows the estimated MF eco-efficiency for European regions in 2006 (left 

side) and 2014 (right side), while Table 9 compare respectively some summary statistics for MF 

eco-efficiency, technological gap and conditional efficiency gap between 2006 and 2014. 
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Figure 9:  Metafrontier (MF) Eco-efficiency in 2006 (left map) and 2014 (right map) 

 

 

 

Table 9: Eco-efficiency: summary statistics 

 MF06 MF14 TG06 TG14 CG06 CG14 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Europe 0.66 0.13 0.66 0.13 0.17 0.13 0.16 0.13 0.17 0.18 0.18 0.11 

Territorial 

typologies 
            

Pred. rural 0.60 0.10 0.57 0.11 0.26 0.11 0.26 0.10 0.15 0.09 0.16 0.09 

Intermediate 0.64 0.09 0.66 0.10 0.20 0.09 0.16 0.08 0.16 0.10 0.18 0.11 

Pred. urban 0.78 0.13 0.78 0.12 0.00 0.00 0.00 0.00 0.22 0.13 0.22 0.12 

Note: MF: metafrontier eco-efficiency, TG: technological gap, CG: conditional efficiency gap, SD: standard deviation 

 

As expected, results show a clear distinction between the most urbanised areas of Europe, which 

often coincide with capital cities (e.g. Greater London, Madrid, Ile de France, Brussel etc), and 

the remaining regions. The most urbanised regions present, on average, eco-efficiency scores 

ranging between 1 and 0.8. Interestingly, many of these areas, e.g. Oberbayern and Stuttgart (DE), 

Ile de France (FR) and Greater London (UK), consume among the highest amount of material in 

absolute terms. Some of them, like Luxembourg and Oberbayern also have high per-capita rates 

of material consumption. In general, most of these regions have economic structures based on 

financial sectors (e.g. Greater London and Luxembourg), or manufacturing process enabled by 

best available technologies and highly skilled human capital (especially in German regions). As 
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a consequence, these regional economies are able to produce goods and services with very high 

added value. In addition, urban agglomerations are more accessible and attract more investments 

than peripherical regions. All these factors translate into high levels of economic development 

and high eco-efficiency scores (Masternak-Janus and Rybaczewska-Błażejowska, 2017). By 

contrast, the lower eco-efficiency scores of Eastern but also some Southern regions of Europe are 

responsive to their dominant industries, which exhibit production processes mostly connected 

with high consumption of energy and materials, and lower labour productivity. 

The European eco-efficiency average is equal to 0.66, indicating that the theoretical aggregated 

eco-efficiency improvement might be 34 %. Comparing the kernel density distributions of the 

MF eco-efficiency scores across European regions in 2006 and 2014 (Figure 10), it can be 

observed a slight shift in the probability mass towards 1.0 between the two periods (the vertical 

lines on the plot represent the medians for 2006 and 2014, respectively). This suggests a progress 

of regional economies towards the MF eco-efficiency, in line with previous works that have 

described an improvement on material productivity over the last decades (Giljum et al., 2014; 

Steinberger et al., 2013). 

 

Figure 10: Density distribution of MF Eco-efficiency index in 2006 and 2014. 

 

Note: shifts of density distribution to the right implies a progress towards the metafrontier, as more regions exhibit 

efficiency figures closer to 1. 
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However, this evidence does not necessarily imply that regions are converging equally to higher 

eco-efficiency levels. In fact, considering the evolution of MF densities by territorial typology 

(Figure 11), clear patterns can be discerned. First and foremost, urban regions present the highest 

MF eco-efficiency levels, with a mass density closer to 0.8. On the other hand, intermediate and 

rural regions exhibit distributions centred around lower eco-efficient levels (0.64 and 0.56 in 

2014, respectively), with the rural group having the lowest average. As outlined above, this is 

mostly motivated by the economic specialization of the different groups of regions. 

Predominantly rural regions concentrate virtually all agricultural, forest- and mining-related 

activities, which are highly intensive sectors in terms of material consumption. The opposite holds 

true for urban regions and service-oriented segments of the economy (Bachtler et al., 2017; 

Walheer, 2018). Figure 11 also shows that regional typologies behaved differently between 2006 

and 2014. While, intermediate group moved toward higher eco-efficiency levels (distribution’s 

shift toward 1), the rural regions slightly deteriorated their performance (distribution’s shift 

toward the left). Finally, predominantly urban regions did not show significant changes between 

the two periods. 

Figure 11: Density’s distributions of MF eco-efficiency by territorial typologies in 2006 and 2014. 

 

Note: shifts of density distribution to the right implies a progress towards the metafrontier, as more regions exhibit 

eco-efficiency figures closer to 1. 
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One of the main reasons explaining the diverging trends between rural areas and other regions 

lays on the labour migration patterns that European rural regions have experienced (ESPON, 

2019b). In fact, the migration of highly qualified human resources is mainly channelled towards 

the most urbanised regions, which present more advantageous labour market conditions. Rural 

regions recorded highly negative net migration rates (e.g. Central Greece -20%, Calabria (IT) and 

Extremadura (SP) -13%), which ultimately affected their economic and eco-efficiency 

performances. In addition, peripheral regions were also among the most affected by the financial 

and economic crisis of 2008, which exacerbated outward migration towards agglomeration areas 

and eventually deteriorated the economic and eco-efficiency balances of remote, peripheral and 

rural areas. 

 

2.4.2. Technological and Conditional efficiency gap 

Figure 12 shows the evolution of TG – with respect to the metafrontier – in 2006 and 2014. On 

average, European technological gap slightly improved from 0.17 to 0.16 between the periods 

considered. The largest technological gaps are recorded across rural regions – Molise (IT), 

Sardegna (IT) and Adriatic Croatia (HR) display the highest TG figures equal to 0.42. Conversely, 

smaller TG (~0) are observed in most of urban regions and those intermediate regions featuring 

advanced manufacturing industries (e.g. Freiburg (DE) and Oberfranken (DE)). Focusing on the 

temporal patterns, it can be observed that most of Eastern European regions, especially Polish and 

Romanian regions, narrowed their technological gap. The improvement of the operating 

environment of Eastern regions can be largely explained by the process of integration and 

convergence advocated by the EU Cohesion Policy. In fact, as these areas joined the EU 

throughout the 2000s, they also gained access to Structural and Cohesion Funds. These funds are 

financial resources mostly directed towards structural investments and the construction of basic 

infrastructures (Filippetti and Peyrache, 2015). In contrast, a stagnating, even worsening, trend 



2.4 Results 73 

 
 

 

can be observed in the Western and Southernmost regions of Europe. In the specific case of Italian 

Mezzogiorno (i.e. Abruzzo, Basilicata, Calabria, Molise, Puglia, Sardinia and Sicily), our analysis 

reflects the so-called Italian divide, i.e. the systemic divergence between the southern and 

northern Italian regions in terms of macroeconomic variables such as unemployment, income 

growth, public finance and productivity. Consistently with Kounetas and Napolitano’s study on 

regional productivity over the period 2000-2011 (2018), it was found that regions in the 

Mezzogiorno not only were laggards within Italy, but were also those experiencing among the 

largest technological gaps at European level in 2006 (e.g. Campania scored a TG equal to 0.39, 

while Puglia and Sicilia scored a TG equal to 0.37 in 2006). Nonetheless, it should be noted that 

most of Mezzogiorno regions reduced the TG over the period analysed. 

 

Figure 12: Technology Gap (TG) in 2006 (left map) and 2014 (right map) 

 

Source: own elaboration 

 

In contrast, most Portuguese and Spanish regions widened their technological gap with respect to 

the European metafrontier. Although these areas have not reached the highest peaks of the regions 

of southern Italy recorded in 2006, they portray a similar pattern in which the territorial dualism, 

urban vs rural, has further deteriorated. In fact, urbanised Spanish regions such as Madrid, 
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Valencia, Murcia and the Basque Country presented equal or improved technological gap over 

the period between 2006 and 2014. Conversely, rural regions such as Extremadura, Castilla la 

Mancha and Castilla Leon showed signs of worsening. 

Overall, intermediate regions exhibited an improvement in the technological gap between 2006 

and 2014, while the same cannot be said for the rural regions. Here the situation did not change 

significantly over the period (Figure 13). 

Figure 13 Comparison of TG between 2006 and 2014 by territorial typology. 

 

Note: shifts of density distribution towards the left (0 value) implies a reduction in the TG. Reversely, shifts towards 

the right (higher values) implies an increase in the TG. Plots of predominantly urban regions are not included, as 

these regions present a distribution highly skewed to the left. These regions in fact lie close to the metafrontier, and 

therefore exhibit very small technological gaps. 

 

However, it is interesting to note that the rural distribution presents an evident bimodal structure 

in 2006, which then disappears in 2014. A more detailed analysis of the data reveals that in 2006 

up to 19 rural regions recorded a technological gap lower than 0.1. However, due to a subsequent 

reduction in employment, many of these regions have significantly increased their technological 

gaps. The southern regions of Castilla la Mancha (ES), Centro (PT) and Alentejo (PT) are extreme 

cases of this situation. These regions suffered human capital losses of 18%, 9% and 7% 
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respectively. Similar illustrative patterns can be found in rural Scandinavian regions (Vestlandet 

(NO), Sjælland (DK) and Midtjylland (DK)). This result is an excellent example of the limited 

capacity of rural regions to maintain their employment levels, especially during periods of 

economic recession, and confirms the critical role played by the accumulation of human capital 

to keep pace with technological progress (Bachtler et al., 2017; Ballatore and Mariani, 2019). 

When it comes to the conditional efficiency gap (CG, Figure 14), a different and somehow 

contrasting territorial pattern emerges. In fact, while Eastern regions significantly improved the 

operating environment of their economies, they appeared to be worsening in the area of optimal 

allocation of resources. The rural and intermediate regions of Romania and Poland experienced 

the highest deterioration in terms of their conditional efficiency gap, particularly in the 

Southeastern region in Romania, which went from 0.12 to 0.34. The macro-economic figures 

behind the eco-efficiency index largely explains this pattern towards exacerbation of intra-group 

differences. The Romanian region shows low rates of employment and GDP per capita in 2014 

(54.4% and 13.600 PPS/hab respectively), with very high levels of DMC per capita (23.86 t/hab). 

Their peers (e.g. other rural regions in Romania and/or Poland) have not been penalised so much 

in terms of conditional efficiency because despite presenting similar pattern for GDP and DMC 

per capita throughout 2006 and 2014, they also improved employment rates, therefore largely 

explaining the increase in material consumption. Indeed, higher employment rates positively 

affects economic growth and material consumption by increased disposable income for 

purchasing material-intensive goods (Flachenecker, 2018). 

Similar patterns and driving forces can also be found across intermediate regions. For example, 

Estonia and Latvia regions scored among the highest levels in conditional efficiency gap (above 

0.38) as these areas exhibit a strong increase in material consumption per capita between 2006 

and 2014, despite keeping similar levels of employment. For what concerns predominantly urban 

regions, the highest scores in conditional efficiency in 2014 were recorded in Athens (EL) and 

Śląskie (PL) regions, with 0.41 and 0.46 respectively. These regions represent a prime example 
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of how similar levels of eco-efficiency performance can be explained and driven by differentiated 

socioeconomic patterns. Athens reduced its material consumption from 11.4 to 8.6 t/hab, which 

from an ecological point of view implies less environmental harms. However, this was achieved 

to the detriment of social welfare, as GDP per capita and employment collapsed by -17% and -

23%, respectively. By contrary, Śląskie region experienced a strong increase in both GDP per 

capita and employment (0.32% and 0.13%) but did not manage to reduce its environmental 

footprint as DMC per capita increased by 0.12% over the same period. 

Figure 14: Conditional efficiency gap (CG) in 2006 (left map) and 2014 (right map). 

 

Source: own elaboration 

 

As shown in Figure 15, it is also interesting to note that CG scores are, on average, much higher 

within urban (0.22) and intermediate regions (0.22) than among rural regions (0.17). Recalling 

that CG is a measure of the efficiency loss due to low levels of resource management, the 

difference in CG recorded between rural and intermediate/urban regions might reflect the very 

different labour markets between the three typologies. In fact, it may be the case that technical 

differences in material intensive sectors (which are the base economy of rural regions) are not as 

significant/critical as those existing within the highly developed tertiary sector. In other words, 

regions specialised in material intensive sectors might benefit from similar levels of know-how 
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and equipment in comparison to those regions operating mostly in knowledge-intensive sectors. 

In addition, the higher dispersion observed in the CG distribution density of the urban group 

reflects the more diverse economy structures characterizing these regions, wherein knowledge-

intensive activities cohabit with lower-skilled sectors. Notwithstanding, the significant rightward 

shift in CG observed between 2006 and 2014 within intermediate and rural regions might suggest 

an increasing complexity of local economies also in those areas. 

Figure 15: Comparison of conditional efficiency gap (CG) between 2006 and 2014 by territorial typology. 

 

Note: shifts of density distribution to the left implies reduction of conditional efficiency gap, as more regions exhibit 

CG figures closer to 0. 

 

 

2.5. Discussion  

The metafrontier analysis reveals that territorial heterogeneity has direct implications on eco-

efficiency and environmental productivity indicators. In fact, given the different sectoral 

specialisation patterns of regions, the analysis provides a polarised picture between the better-off 
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centric capital regions and the worse-off peripherical ones. This mode is well reflected in Figure 

16, which plots “within countries” MF eco-efficiency levels specifying the territorial typology.  

Figure 16: Regional MF Eco-efficiency levels in 2014. 

 

Source: Own elaboration 

 

However, this specialization cannot be considered as the sole and key discriminating criterion 

between highly eco-efficient urban regions and less eco-efficient rural regions. The motivation is 

twofold: First, it should be bear in mind that productive structures of regional economies are a 

by-product of the historical heritage and territorial capital of regions (Castelnovo et al., 2020; 

Morretta et al., 2020), which often lead to competitive advantages and structurally higher levels 

of sectoral efficiency (Behrens et al., 2007). For this reason, it cannot be expected, nor pursued, 

that all regions adopt similar productive structures and specializations, so that these comparable 

structures level-out the effect of economic specialization on eco-efficiency scores. Second, and 

perhaps more importantly, it should be stressed that peripheral regions typically act as suppliers 

of materials for urban consumption. Agriculture and traditional manufacturing activities (e.g. 

footwear, leather, apparel, textiles, pulp and wood by-products etc.) are mainly located in 

intermediate and rural areas, which then export processed materials to urban agglomerations for 
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final consumption and/or further refining. Therefore, the lower levels of material eco-efficiency 

in rural and intermediate regions actually reflect an environmental burden that should be attributed 

to urban areas. 

The distinction between territorial typologies also unveil the specific sources of inefficiency, 

being these technological bottlenecks or low management levels, and the driving socioeconomic 

forces across rural, intermediate and urban areas. As expected, rural regions are those discounting 

larger technological gaps, –as most of them present economic structures that rely on primary and 

secondary sectors that show low technology intensities. However, two diverging patterns emerge 

during the period under analysis. On the one hand, most rural Eastern regions have been able to 

reduce their technological gap mostly thanks to an increased access to financial capital (Filippetti 

and Peyrache, 2015), which boosted local economies (e.g. the GDP per capita in many regions of 

Romania almost doubled over the study period). On the other hand, shrinking economies of rural 

Southern regions (e.g. Spain, Portugal and Greece) widened their technological gaps even further. 

These regions were much more directly hit by the financial and economic crisis of 2008 as, 

differently from urban agglomerations, have a limited capacity for shock adjustment (Bachtler et 

al., 2017). These trends prove that technological catching-up and underperformance processes are 

not necessarily associated with urban or rural characteristics, as internal socioeconomic 

conditions within each regional category may also differ. This evidence is further strengthened 

when focusing on the source of inefficiency related with low levels of management. The example 

of the Athens (EL) and Śląskie (PL) regions show that similar conditional efficiency gaps can be 

actually driven by opposite underlying socioeconomic forces.  

Finally, the breakdown of inefficiency into an exogenous technological component and an 

endogenous component associated with the correct management of available resources shows 

that, although the contribution of both types of inefficiency was similar in 2006 (both CG and TG 

present an average equals to 0.17), the gains in technology efficiency are much more relevant 

than those achieved in management efficiency in 2014 (average for CG and TG is 0.18 and 0.16, 
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respectively). A prime example of this phenomenon can be observed in the evolution of the 

composition of inefficiency between the regions of Romania. Even though these regions managed 

to halve the TG, they worsened in the management of resources compared to their peers.  

From the above it follows that territorial policies aimed at eco-efficiency should go beyond a mere 

urban-rural differentiation, to focus on the complex linkages between the physical, social and 

economic environments. In particular, it cannot be expected, nor advocated, that a peripheral, 

rural and scarcely populated area improves its eco-efficiency level by suddenly shifting towards 

a service-, knowledge-based economy because, most likely, the region will lack the critical mass 

that this transition requires, including access to human, technology and financial capitals. These 

results reveal that future efforts to improve regional eco-efficiency levels should be aimed at 

encouraging an efficient use of productive factors within each regional ecosystem, rather than at 

reallocating resources among regions through –for example– financial transfer schemes. This 

requires a systemic, long-term and dynamic policy mix that not only consider regional strengths 

but that is also perfectly integrated and coordinated with supranational policies. As shown by 

Wostner (2017), a series of conditions need to be simultaneously in place, ranging from RTDI 

and human resource development to infrastructure provision, which need to be provided in line 

with the longer-term sustainable development priorities. Hence, renewed policies, administrative 

and monitoring systems of environmental protection are important catalysts for achieving eco-

efficiency targets (Wang et al., 2019). Last but not least, the conditional efficiency gap should be 

further narrowed down. Despite an overall technology progress has been achieved by Europe as 

a whole, some regions are clearly lagging behind in terms of management levels. The less eco-

efficient regions should take advantage of proximity with more advanced economies to further 

catch up with the most efficient economies in terms of global technological frontier. Interregional 

and intra-industrial spillover effects should therefore be favoured by technical roadmaps, 

facilitating the generation and transfer of knowledge to boost breakthroughs of environmental 

field techniques (Bachtler et al., 2017). 
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2.6. Conclusion 

This study represents the first comprehensive research assessing eco-efficiency among European 

regions that explicitly considers territorial heterogeneity. An overall upward trend in eco-

efficiency levels was found across European regions between 2006 and 2014. However, there is 

not enough evidence to conclude that regions are equally converging towards similar levels of 

eco-efficiency. Rather a complex core-periphery pattern seems to emerge from the data.  

Firstly, the analysis seems to suggest that, from an eco-efficiency perspective, predominantly 

urban regions seem to be better placed to drive regional economies towards more sustainable 

pathways. The diversified composition of regional economies, with higher prevalence of 

knowledge-intensive sectors such as finance, technology, and business services, along with higher 

levels of employment and population density, allow these regions to make an optimal use of 

material resources on per capita level. By contrast, predominantly rural regions are penalized by 

sectoral specializations with high prevalence of material-intensive and low-skilled sectors. 

However, the lower eco-efficiency levels observed in rural and intermediate regions are, to a large 

extent, explained by burden shifting processes that are usually observed between the 

industrialized and developing countries (Behrens et al., 2007; Giljum and Eisenmenger, 2004). In 

fact, many urban agglomerations have been successful in maintaining or even increasing their 

regional eco-efficiency by outsourcing material intensive activities to other areas. These 

phenomena can be only understood by looking at material efficiency from the lenses of final 

consumption through a footprint approach (Wiedmann et al., 2015). 

Secondly, in terms of technological gap, our results unveil a significant divide between Western 

Europe and New Member States. In the latter – and in particular in the rural and intermediate 

regions of Poland and Romania – the eco-efficiency performance seems to be driven by a process 

of structural and technological catching-up process with the remaining regions of the EU. These 

areas seem to be benefiting from the relatively recent integration into the EU. On the contrary, 
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the southern regions of Spain, Portugal and Greece show little progress on their technology gaps. 

The opposite pattern is observed for the conditional efficiency gap, as Eastern regions scored 

worse in CG in 2014 than in 2006. These figures suggest that although Eastern regions improved 

the operating settings of their economies in technological terms, they have not kept the pace in 

terms of efficient resource management, resulting in similar eco-efficiency levels on the two 

periods. By contrast, intermediate and rural Southern regions further narrowed their conditional 

efficiency gaps. However, this was not enough to counterbalance their shrinking economies. The 

toll paid in these areas as a result of the economic and financial crisis of 2008 was high, and its 

impact was still clearly visible by the end of the period under analysis. 

To conclude, a few limitations should be mentioned regarding the findings presented. First, 

despite the territorial typology represents a good proxy of the underlying productive structures of 

regions, it falls short in capturing the economic momentum of territories. As the results show, 

eco-efficiency drivers are very different depending on the specific socioeconomic profiles of the 

different European regions. Therefore, a more fine-grained analysis would be necessary in order 

to plan future strategies. These analyses should take in account the physical characteristics of 

regions, but also their sectoral structures and development trajectories. Second, by considering 

employment, material consumption and GDP, the DEA model reflected in a pragmatic way the 

main objectives of EU sustainability strategies. However, alternative models might be developed 

considering a broader range of environmental and socioeconomic variables such as carbon 

emissions, educational attainment levels, foreign direct investments etc. These could provide 

regional policymakers with a more detailed and far-reaching outlook on the overlap between eco-

efficiency criteria and broader sustainability goals. 

 



 

 

 

 

 

 

Chapter 3 

 

3. Material productivity, socioeconomic drivers and economic 

structures  

A panel study for European regions 

 

  This chapter is based on the following paper –under review in Ecological 

Economics: 

1. Bianchi M, del Valle I, Tapia C. Material productivity, socioeconomic drivers and 
economic structures: A panel study for European regions 

 

3.1. Introduction 

Searching for sustainable modes of consumption and production represents the only way to meet 

an ever-increasing demand of goods without incurring in further environmental deterioration. The 

growing awareness that “business as usual” is both unwise and unsustainable has placed the role 

of the environment and the efficient use of natural resources at the centre of the political and 

economic debate (Domenech and Bahn-Walkowiak, 2019). Governments and international 

organizations are encouraging the adoption of alternative production systems and more inclusive 
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policy models in order to achieve a win-win outcome – a combined environmental and economic 

benefit (Akenji and Bengtsson, 2014; Steffen et al., 2015). 

One of the headline indicators that is systematically reported in empirical works and monitoring 

frameworks to track the progress towards more efficient and sustainable economies is Material 

Productivity (MP). MP refers to the economic value extracted from each unit of material resource 

consumed and it is calculated as the ratio between Gross Domestic Product (GDP) and an 

indicator of material consumption, generally Domestic Material Consumption (DMC)18. The use 

of DMC as a denominator entails certain limitations that need to be recognised for the correct 

interpretation of the respective MP measure. Indeed, DMC does not consider hidden material 

flows related to the use of raw materials at upstream extraction and processing stages. This 

truncation might lead to wrong interpretations and misleading policy messages, as economies 

could reduce their DMC by relocating or outsourcing material-intensive activities such as 

extraction and manufacturing. In this sense, MP indicator frequently becomes more responsive to 

the structure and sectoral specialisation of a given economy than to its underlying capacity to 

consume materials in a more efficient and/or sustainable way (Fernández-Herrero and Duro, 

2019; Gan et al., 2013; Kovanda and Weinzettel, 2013). This shortcoming has been partly 

addressed by the calculation of Material Footprint indicator (MF), which takes into account the 

material “rucksacks” associated with imports (Wiedmann et al., 2015). However, up to date MF 

data are not provided at the country level. Consequently, the DMC-based MP remains the most 

used indicator not only in empirical studies, but also in  policy discourses: The Sustainable 

Development Goals (SDGs), the G7 Resource Efficiency Alliance, the European Union’s 

Roadmap to a Resource Efficient Europe, the Raw Materials Initiative and the Circular Economy 

Action Plan are some recent prominent examples of policy initiatives. 

 
18 DMC is calculated according to the Economic-Wide Material Flow Accounting (EW-MFA), a standardized 

methodology to quantify material throughput from a direct consumption perspective on a national or global scale 
(EUROSTAT, 2018). DMC indicates the annual quantity of raw material extracted from the domestic territory, plus 

material imports minus exports. 
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Understanding the influential socioeconomic factors driving resource productivity represents the 

first step in establishing and improving resource management policies (Domenech and Bahn-

Walkowiak, 2019; Flachenecker, 2018; West and Schandl, 2018).  Since the 1970s, when the 

study of socioeconomic metabolism of countries emerged as a new research field, there has been 

a bourgeoning literature analysing material consumption patterns and MP (Fischer-Kowalski and 

Haberl, 1998; Fischer-Kowalski and Hüttler, 1998).  Among the many research branches focusing 

on material consumption at the macro-level (see e.g. Zhang et al., 2018 for a literature review), 

standardised Economic-Wide Material Flow Accounting (EW-MFA) has been the most widely 

used approach. 

A generally accepted conclusion from EW-MFA studies is that MP is higher in high income 

developed countries and lower in developing countries (Zhang et al., 2018). According to this line 

of thought, more mature economic structures and minor reliance on material intensive activities, 

would lead to moderate and stable DMC levels and increasing GDP, mostly through the expansion 

of the service-based economy (Krausmann et al., 2008). By contrast, MP would be generally 

lower in developing countries due to the material-intensive processes of urbanization and 

industrialization, which often characterise these areas (Behrens et al., 2007; Krausmann et al., 

2017). This dichotomy reflects the so-called socio-metabolic transition concept (Krausmann et 

al., 2008), which describes the evolution of material-flows patterns from an economic 

development perspective. These authors describe MP patterns at national level as a transition 

process characterised by (1) a shift from an agrarian to industrial phase, where decreased 

agricultural activity and increased industrial activity lead to higher resource productivity, 

followed by (2) a shift from industrial to tertiary sector, where decreasing industrial activity and 

an expanding service sector become the major impetus for resource productivity enhancement 

(Gan et al., 2013; Pothen and Welsch, 2019). An example of the first phase is provided by the 

Asia-Pacific region, which between 1990 and 2005 increased its material consumption intensity 

by nearly 30%, mostly driven by China’s soaring industrial and manufacturing capacity (Schandl 
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and West, 2010). On the other hand, structural change of economies towards service sectors can 

be observed in many advanced economies in Europe, North America and Japan (Giljum et al., 

2014; OECD, 2011). 

Although the development stages of an economy contribute largely to understanding material 

consumption patterns, they are far from being the only factors explaining the differences in MP 

levels observed between regions. As an example, Weisz et al. (2006) found that DMC per capita 

can be quite different, even among mature economies such as EU-15 countries. The authors argue 

that the level of use of biomass, industrial minerals, ores, and fossil fuels is largely determined by 

the structure of the economy rather than by national income or economic development. Similar 

findings were also presented by Bringezu et al. (2004), who examined dematerialisation for 

industrialised economies, and Dittrich et al. (2011), who examined material use and material 

efficiency of emerging economies over the years 1985-2005. 

The uneven evolutions observed in MP levels led scholars to examine more closely the 

relationship between MP and its socioeconomic drivers (Gan et al., 2013; Steger and Bleischwitz, 

2011; Steinberger et al., 2010). The basic conceptual model employed in the EW-MFA literature 

for studying the influence of socioeconomic variables on material consumption is constituted by 

the logarithmic STIRPAT model (Dietz and Rosa, 1997; York et al., 2003). Essentially, this 

approach seeks to explain environmental Impact (I) in terms of the main socioeconomic 

influential variables. These are: population (P), affluence (A) and technology (T) (Dietz et al., 

2007; Dietz and Rosa, 1994). One of the key advantages of STIRPAT approach is its logarithm 

specification, which allows to interpret results in the form of elasticities. Over time, several 

extended STIRPAT models have been proposed. These include a broader range of explanatory 

variables, from geo-physical, e.g. latitude or climate, to structural factors, e.g. shares of economic 

activities over total GDP (West and Schandl, 2018). Focusing on recent examples, Robaina et al. 

(2020) analyse the determinant factors of MP including explanatory variables such as the 

expenditure on R&D, value added by service and industry sectors or environmental tax revenues. 
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Similarly, Fernández-Herrero and Duro (2019) explore the impacts of socioeconomic drivers in 

explaining international inequalities in MP levels considering openness to trade and value added 

by agriculture sector along with the other long-established explanatory variables. 

Regardless of the specificities of different works and the differences in data availability, scholars 

generally recognise (1) economic status (often referred as affluence and proxied by GDP per 

capita), (2) economic structure (i.e. value added of specific economic sectors), and (3) 

demographic structure (i.e. population density) as the most important drivers of MP (Gan et al., 

2013; West and Schandl, 2018). GDP per capita usually exhibits a positive relationship with MP 

as richer economies not only benefit more advanced means for production, but also outsource 

most of material-intensive products to other areas (Giljum et al., 2014; Wiedmann et al., 2015). 

Some studies also employ the quadratic term of GDP per capita in order to capture the decreasing 

marginal utility derived from higher levels of economic status (Fernández-Herrero and Duro, 

2019; Steinberger et al., 2013). Therefore, this latter term generally exhibits negative sign. 

Regarding to the demographic structure, empirical findings suggest that increases in population 

density lead to higher MP, as more concentrated populations enable agglomeration synergies and 

high land prices generally ‘expel’ materially-intensive industries from these areas (Teixidó-

Figueras et al., 2016; Weisz et al., 2006). Concerning the economic structures, the effects on MP 

differ depending on the economic development trajectories mentioned above. It is generally 

accepted that an expansion of agricultural and primary activities leads to lower levels of MP, 

while the opposite holds true for the service sector, i.e. increased relevance of services in the 

economic composition leads to higher levels of MP (Fernández-Herrero and Duro, 2019; Gan et 

al., 2013). 

In general, the narrative on MP and its socioeconomic drivers has been framed within an 

economic development perspective that tends to juxtapose the higher MP performance of mature 

economies with the lower MP performance of developing regions. The underlying qualitative 

nature of economic development has only been marginally addressed by EW-MFA studies despite 
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being widely recognised in neoclassical economic theory at least since Potter et al. seminal work 

“Competitive Advantage of Nations” (1990). According to this rationale, differences in economic 

structures, institutions, cultures and historical heritages – often referred to as territorial capital 

(Castelnovo et al., 2020; Morretta et al., 2020) – all contribute to delineate differential 

development trajectories (Frenken et al., 2007; Gräbner et al., 2019; Hassink and Klaerding, 

2015). These patterns necessarily lead to notable differences in MP patterns but have little to do 

with the level of economic development. On the contrary they depend on the available – 

geographically bounded – stocks of physical and human capital. In general, the relevance of 

territorial assets are more visible at lower territorial levels and often lead to competitive 

advantages and structurally higher levels of sectoral efficiency (Behrens et al., 2007; Bianchi et 

al., 2020b). In this context, it can be claimed that it is not entirely possible to understand and 

interpret the relevance of the spatial distribution of MP unless territorial assets and related 

structural conditions are considered. In this chapter, we argue that the structural differences 

between regional economies are indeed highly relevant for understanding the impacts of 

socioeconomics drivers on material productivity. 

The main contribution of this chapter is twofold: First, we provide an overview of the evolving 

geographical patterns of European regional economic specialisations over the 2006-2015 period; 

Second, we analyse the relationships between MP and its characterising factors considering the 

different economic arrangements. The analysis is organised in two phases. In phase one the 

predominant economic structures are defined for 280 European regions by means of location 

quotients and clustering techniques. In phase two, we investigate the impact of economic 

structures on the relationship between MP and its main drivers using a fixed-effects panel 

analysis. The analysis is performed for the decade 2006-2015, hence a period in which deep 

economic transformations occurred in Europe due to the financial crisis and its second-tier 

impacts. The main novelty of this work focuses on the way in which economic structures are 

considered in the analysis. Unlike previous works that take account of structural factors as 
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standard explanatory variables in regression models (Fernández-Herrero and Duro, 2019; Gan et 

al., 2013; West and Schandl, 2018), we consider the economic structures as interaction terms with 

socioeconomic drivers. This approach allows to characterise the influence of heterogeneous 

economic structures on the relationships between MP and its socioeconomic determinants. 

Our findings support the underlying assumption of this work, namely that the relationship 

between MP and its characterising factors change significantly according to the intrinsic 

economic structures that regions exhibit. In particular, our results suggest the existence of four 

well-defined economic structures across European regions, including agriculture, industry, 

intermediate and service-based economies19. We found that there is a significant difference in the 

elasticities of socioeconomic drivers between the more material-intensive economies, compared 

to the less intensive ones. On the one hand, an increase in affluence seems to favour agricultural 

and industrial economies more than service-based economies. On the other, tertiary economies 

seem to be able to better capitalise an increase in population density. We also observe a positive 

impact of R&D expenditure on MP, but in this case, there is no evidence of significant differences 

of its influence based on the economic structure of regions. Our results strongly suggest that, in 

order to develop informed policies geared at increased resource efficiency, it is essential to 

consider the heterogeneous economic configurations of European regions. 

The remainder of the chapter is organized as follows. Section 3.2 presents data and methodology 

employed, while section 3.3 and 3.4 present and discuss empirical results, respectively. Section 

3.5 gives some concluding thoughts and outlines suggestions for further research. 

 

 
19 The names of economic structures refer to the predominant economic activity observed in a region. The 

intermediate structure refers to those regions that have a rather balanced distribution among the various sectoral 
branches.  
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3.2. Materials and methods 

This section describes the dataset and the empirical strategy employed. First of all, we classified 

European regions into four distinct clusters: agriculture, industry, intermediate and service cluster. 

This classification is assessed by means of specialisation indices (i.e. location quotients) and 

clustering techniques. Second, we employed a fixed-effects panel analysis to analyse the 

behaviour of MP socioeconomic drivers across the economic clusters defined. The analysis was 

performed using R Language and Environment for Statistical Computing (R Core Team, 2020). 

The data were collected using the R package “Eurostat” v.3.3.5 (Lahti et al., 2019). The cluster 

analysis was conducted using the R libraries “kmeans” and “hclust” from the “stats” package (R 

Core Team, 2020). Cluster validation was implemented through “clValide” package (Brock et al., 

2008). The econometric analyses were conducted using the R package “plm” described in 

Croissant and Millo (2008). 

 

3.2.1. Data 

The dataset employed in this study comprises a panel data for 280 European regions out of 33120 

at NUTS-2 level21 over the period 2006-2015. Data were collected from Eurostat database (access 

date 1/12/2019). The dependant variable, MP, is defined as the ratio of GDP to domestic material 

consumption (DMC). MP reflects the GDP generated per unit of resources used by an economy, 

expressed in €/kg. DMC accounts for the total amount of materials directly used by an economy, 

and it is defined as the annual mass of raw materials extracted from the domestic territory, plus 

 
20 Regions of Albania, Bosnia and Herzegovina, Iceland, Lichtenstein, Montenegro, Serbia, Turkey, Republic of Kosovo 

and French outermost regions were excluded from this study because of missing data. Inner London West (UK) was 
also excluded from the study because it represents an outlier, being its GDP per capita more than 6 times the 
European average. 
21 The NUTS system was established by EC Regulation 1059/2003 that defined a common classification of territorial 
units for statistics (NUTS), based on the administrative divisions applied in the Member States. The 2nd level in the 
classification (NUTS 2) groups regions with population between 80,000 and 3 million. In this chapter we refer to the 
nomenclature NUTS 2, year 2013. Recently a new NUTS 2 classification has been issued, however we preferred to 
employ the older one as data for year 2006 are not available according to the new nomenclature for certain countries. 
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all physical import minus all physical export. Data on DMC is only available on national level 

from material flow accounts collected under the regulation (EU) 691/2011 on European 

environmental economic accounts. Hence, the regionalised version of DMC developed in Chapter 

1 was used to measure MP at regional level. 

The following explanatory variables were selected as the MP driving factors to be analysed: GDP 

per capita (GDP), Population density (POP) and gross domestic expenditure on R&D measured 

in percentage of the country GDP (R&D). These variables were selected following the literature 

(see e.g. Fernández-Herrero and Duro, 2019; Gan et al., 2013; West and Schandl, 2018), and 

considering data availability at the regional level. GDP is expected to have a positive but 

decreasing effect on MP. The higher the affluence of an economy, the better the means for 

consuming natural resources and for using them in a more efficient way in production. GDP is 

included in its linear and quadratic forms. In order to avoid perfect multicollinearity between the 

two forms, the quadratic term was transformed following the method by Steinberger et al. (2013), 

as (log(𝐺𝐷𝑃) − 𝑚𝑒𝑎𝑛(log(GDP))2. POP is expressed as the number of inhabitants per square 

kilometres. This variable is expected to be positively correlated with resource productivity, as 

very concentrated populations tend to induce an increase in resource efficiency. On the one hand, 

agglomeration economies maximise the utility derived from material consumption and built stock 

(Krausmann et al., 2008; Weisz et al., 2006). On the other hand, higher costs of land in densely 

populated areas discourage the establishment of material-intensive industries, like forestry and 

agriculture. R&D is widely used to assess whether the productivity of a region is sensitive to 

investments in innovation activities. While empirical findings generally agree on the positive 

effects that R&D exert on economic measures of productivity, i.e. GDP over employment or hours 

worked (Bravo-Ortega and García Marín, 2011), the relationship between R&D and MP is not so 

straightforward. For example, recent studies found that R&D has different impacts depending on 

the speed of growth of the economies considered (Robaina et al., 2020). Therefore, less developed 

economies having larger margin for improvements seem to benefit more from R&D investments. 
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Similarly Kancs and Siliverstovs (2016) found that the relationship between R&D expenditure 

and productivity growth might be non-linear as there exist important inter-sectoral differences 

with respect to R&D investment and firm productivity. Accordingly, we also included the 

quadratic term of R&D, computed as (log(R&D) − 𝑚𝑒𝑎𝑛(log(R&D))2. 

Next to MP and the explanatory variables, the gross value added by economic sectors (GVA) was 

also included to characterise regional economic specialisation (See following Section 3.2.2). 

 

3.2.2.  Regional cluster identification 

The main goal of this phase is to define a taxonomy for the different underlying structures of the 

280 regional economies in the 2006-2015 period. In order to capture and characterise the 

underlying productive structure of each region we first computed the Location Quotients (LQs). 

Differently from the GVA share, which simply indicates the relationship between an industry and 

the whole economy, the LQs reveals which industries make the regional economy unique, or in 

other words, what is the sectoral specialisation of a region in comparison to a National or 

international benchmark. We computed LQs for selected economic activities (NACE rev.2), 

namely: agriculture (A), industry (B-E) and services (G-J + K-N)22, using the GVA generated by 

each of the economic branches.  We also considered the inclusion of building and construction as 

a fourth economic segmentation. However, since this latter branch is rather homogenous across 

the sample and did not contribute significantly to distinguish regional economies, we decided to 

drop it. 

As said, LQs are computed as a ratio that compares a region to a larger reference region according 

to some characteristic or asset (e.g. employment shares or GVA shares based on industrial 

activities). Hence, if for example, 𝑥 is the GVA generated by sector 𝑘 in a region 𝑖, 𝑦 is the GVA 

 
22 The acronyms refer to the NACE rev. 2 taxonomy (European Commission, 2013). Service category includes 

financial and insurance activities; information and communication activities, real estate activities; professional, 
scientific and technical activities; administrative and support service activities.  
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generated by the whole economy in a region 𝑖, and 𝑋 and 𝑌 are similar data points representative 

of European average, then the LQ or relative concentration of asset 𝑘 in the region 𝑖 compared to 

Europe is: 

𝐿𝑄𝑖,𝑘 =  
𝑥𝑖,𝑘 𝑦𝑖⁄

𝑋𝐸𝑈,𝑘 𝑌𝐸𝑈⁄
 

Eq. 3.2-1 

The use of LQs not only translates into very defined regional groups, but is also conductive to the 

economic phases that are usually referred in evolutionary studies that consider the different 

development stages of territories (Fernández-Herrero and Duro, 2019; Gan et al., 2013; 

Krausmann et al., 2008). High LQs in primary or secondary activities typically reflect export-

oriented economies. The economic relevance of export activities is largely discussed in the 

literature (see e.g. Lee (2011) for a literature review). Studies using aggregated metrics of 

specialisation acknowledge that exporters are, on average, more productive than non-exporting 

areas. However, scholars also emphasise that productivity levels depend on the specific 

production structure of economies and, therefore, on the types of exports (Feenstra and Kee, 

2008). In general, industries exporting relatively “low-tech” products show inferior levels of 

material productivity as they carry out most of the material-intensive activities related to 

extraction and/or primary processing of raw materials in situ. 

In a second step, we proceeded to the definition of a taxonomy of regional economic structures. 

Identifying the predominant economic activity is straightforward for many regions. This is for 

example the case of most capital regions, which virtually in all cases are highly urbanised areas 

with service-based economies. However, intermediate regions exhibit a rather complex 

combination of economic activities, which ultimately prevents a transparent classification without 

incurring in subjective judgement and knowledge bias. In addition, we were also interested in 

capturing the regional structural changes occurred during the decade covered in our study (from 

e.g. prevalent industrial configurations to service economies, or vice-versa). This increased the 
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complexity of performing a regional classification, as we could not infer regional structures to the 

entire panel based on a one-year analysis, nor we could treat each year separately, as fundamental 

changes at European level might change the classification of a region independently from its intra-

regional patterns. 

For these reasons, we pooled our data and applied alternative clustering techniques to identify a 

number of quantitatively robust groups of regions. This approach allowed to significantly reduce 

the complexity of the analysis focused on more than 2600 observations. Following Gräbner et al. 

(2019) and Steinberger et al. (2013), we relied on two conventional cluster techniques, 

hierarchical clustering (HCA) and k-means analysis. The general idea behind HCA is to separate 

a set of objects into disjunctive groups, where members of the same groups are similar to each 

other, but distinct to members of other groups. K-means procedures assign objects into clusters 

based on the average linkage between all pairs of objects in any two clusters, and standardized 

Euclidean distances. In addition, we also considered the PAM clustering algorithm (Kaufman and 

Rousseeuw, 2008), which, by using medoids23 as cluster centres, is less sensitive to noise and 

outliers. 

The final clustering approach and resulting number of regional clusters was established based on 

standard internal cluster validation procedures, such as the Connectivity (Handl et al., 2005), the 

Silhouette Width (Rousseeuw, 1987) and the Dunn Index (Dunn, 1974). In addition, since 

clustering techniques are purely inductive ways of analysing data that do not exploit theoretical 

insights other than those involved in variable selection, we validated our cluster results by 

comparing clusters features with theoretical assumptions and other classifications used in the 

literature. 

 

 
23 The medoid refers to an object within a cluster for which the average distance between it and all the other 
members of the cluster are minimal. In corresponds to the most centrally located point of the cluster. 
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3.2.3.  Panel data modelling approach 

Once identified the underlying economic structure for each region, we proceed to test the impact 

of these latter on the relationship between MP and its socioeconomic drivers. To the authors' 

knowledge, this specific aspect has not yet been addressed by previous studies. Therefore, for the 

sake of completeness, we present in Table 10 the summary of the functional forms employed. 

These considers the economic structures as (1) indexes (IND), (2) exogenous variables 

independent from other socioeconomic drivers (EXO) and interaction terms (INT). To note that 

all specification models are in logarithmic form. This allows to reduce skewness and approximate 

linear relationships between variables. In addition, the log-log form also allows to interpret the 

parameters’ coefficients (β) as “ecological elasticities” (York et al., 2003). 

Table 10: Summary of functional form employed 

IND – Economic structures as INDexes (Pooled) 

𝐿𝑜𝑔(𝑀𝑃𝑖𝑡𝑗) =  𝛼𝑖 + 𝛽1log (𝐺𝐷𝑃𝑖𝑡) + 𝛽2log (𝐺𝐷𝑃𝑖𝑡)2 + 𝛽3log (𝑃𝑜𝑝𝑖𝑡) +  𝛽4 log(R&D𝑖𝑡) + 𝛽5𝑗 log(R&D𝑖𝑡)2

+  𝜀𝑖𝑡, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 1, … 𝑁 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

Separate model fitted to the data for each economic structures (j). Each model parameter is sample-specific. 

Comparison of parameters between different economic structures is not consistent. 

EXO–Economic structures as EXOgenous variables (Fixed-effects) 

𝐿𝑜𝑔(𝑀𝑃𝑖𝑡) =  𝛼𝑖 + 𝛽1log (𝐺𝐷𝑃𝑖𝑡) + 𝛽2log (𝐺𝐷𝑃𝑖𝑡)2 + 𝛽3log (𝑃𝑜𝑝𝑖𝑡) +  𝛽4 log(R&D𝑖𝑡) + 𝛽5 log(R&D𝑖𝑡)2    

+ 𝛽𝑗𝑗𝑖𝑡 +  𝜀𝑖𝑡 

The effects of economic structures are absorbed into the exogenous factors ( 𝛽𝑗𝑗𝑖𝑡 ). The indirect impact on 

socioeconomic drivers is disregarded. 

INT–Economic structures as INTeraction terms (Fixed-effects) 

𝐿𝑜𝑔(𝑀𝑃𝑖𝑡) =  𝛼𝑖 + 𝛽1log (𝐺𝐷𝑃𝑖𝑡) × 𝑗𝑖𝑡 + 𝛽2log (𝐺𝐷𝑃𝑖𝑡)2 + 𝛽3log (𝑃𝑜𝑝𝑖𝑡) × 𝑗𝑖𝑡 + 𝛽4 log(R&D𝑖𝑡) × 𝑗𝑖𝑡

+ 𝛽5 log(R&D𝑖𝑡)2    +  𝜀𝑖𝑡 

The effect of economic structures directly influences the socioeconomic drivers. Comparison of socioeconomic 

drivers across different economic structure can be done consistently. 

Note: 𝑖 = 1, … 𝑛 is the individual (region) index; 𝑡 = 1, … 𝑧 is the time index; 𝛼  is the intercept and 𝛽  is the 

parameter/elasticity; 𝜀 is the error term; 
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The IND approach consists in considering separate models fitted to the data for each regional 

cluster 𝑗 . In this way specific elasticities are estimated for each cluster. However, since this 

process is carried out separately for each group of regions, the comparison of parameters between 

different clusters is not straightforward. In addition, IND can only be estimated through a pooled 

model, as we lose the panel structure. In fact, the regional sample for each economic cluster 

changes for each year, following variations in the economic specialisation of the regions. The 

EXO approach estimates the average impact of regional economic structures on MP. This is the 

approach that is generally found in existing literature (Fernández-Herrero and Duro, 2019; 

Robaina et al., 2020). In this case, economic structures are included in the model as an additional 

independent explanatory variable, but the extent to which economic structures influence other 

socioeconomic drivers is disregarded. Finally, our approach INT introduces the economic 

structures through the interaction term 𝑥𝑖𝑡 𝑗𝑖𝑡𝛽𝑖𝑡, which measure the impact 𝛽 of a socioeconomic 

driver 𝑥 according to the regional economic structure 𝑗. 

Differently from the alternative models, the INT approach allows to consistently compare the 

effects of socioeconomic drivers on MP across the different economic structures. In other words, 

the INT approach allows to assess whether socioeconomic parameters differ significantly from 

each other as regional economic structures change. A statistic based on the 𝑡 distribution is used 

to test the two-sided hypothesis that a slope 𝛽𝑗1 of a cluster 𝑗1 , equals a slope 𝛽𝑗2 of a cluster 𝑗2. 

The statements for the hypothesis test are expressed as: 

𝐻0: 𝛽𝑗1 = 𝛽𝑗2 

𝐻1: 𝛽𝑗1 ≠ 𝛽𝑗2 

The test statistic used is 𝑇0 =
𝛽̂𝑗1−𝛽̂𝑗2

𝑠𝑒(𝛽̂𝑗1)
, where 𝛽̂𝑗1 is the least square estimate of 𝛽𝑗1, and 𝑠𝑒(𝛽̂𝑗1) 

is the standard error. The test statistics, 𝑇0 , follows a 𝑡  distribution with (𝑛 − 2) degrees of 

freedom, where 𝑛 is the total number of observations. The null hypothesis is accepted if the 
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calculated value of the test statistic is such that −𝑡𝛼

2
,𝑛−2 < 𝑇0 < 𝑡𝛼

2
,𝑛−2 , where 𝑡𝛼

2
,𝑛−2  is the 

percentile distribution of the 𝑡  distribution corresponding to a cumulative probability of 

(1 − 𝛼/2), 𝛼 is the significance level, and  −𝑡𝛼

2
,𝑛−2 and  𝑡𝛼

2
,𝑛−2 are the critical values for the two-

sided hypothesis. 

The econometric specifications –pooled, fixed effects and random effects– were iteratively 

applied to EXO and INT24. The choice of the most appropriate estimator for each approach was 

established based on statistical tests on parameters and error terms, according to the decision flow 

chart showed in Figure 17. 

Figure 17: Decisional flow chart for the data and model combinations tested 

 

Own elaboration based on Croissant and Millo  (2008) and West and Schandl (2018) 

 

Similarly to previous studies performing panel analyses on equivalent socioeconomic datasets 

(e.g. West and Schandl (2018)), we found that the pooled model and the random effects model 

were unlikely to provide valid results for EXO and INT approaches. Not surprisingly, the most 

 
24 The IND approach can only be computed through pooled model as it does not have a panel structure. 
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meaningful results from panel analyses were those obtained using the fixed-effects model. In 

addition, given that serial-correlation and cross-sectional dependence was detected across all 

fixed-effects models, sandwich estimators based on “arellano” method were computed by default, 

as it allowed for a fully general structure w.r.t. heteroskedasticity and serial correlation (Croissant 

and Millo, 2008). 

 

 

3.3. Results  

3.3.1. The taxonomy of regional economic structures 

Table 11 shows the results of cluster validation procedures. As a rule of thumb, we tested up to 

six clusters, since a greater number would undermine the relevance of this procedure and would 

likely lead to overfitting issues in the following regression analysis. The hierarchical technique 

(Ward’s method) is the best approach according to Connectivity and Dunn Index measures, while 

the Silhouette measure suggests the use of  K-means approach. On the contrary, the tests showed 

no evidence in favour of the PAM approach, so it was excluded from further analysis. Concerning 

the optimal number of clusters, results were not conclusive. This is mainly due to the evaluation 

approaches of the tests (see Handl et al. (2005) for a throughout overview of internal validation 

measures). In order to select the cluster configuration that best fit the heterogeneous economic 

structures of European regions, we analysed and compared the two solutions suggested by the 

validation metrics, i.e. the HCA with 3 clusters and the K-means with 4 clusters. 

  



3.3 Results 99 

 
 

 

Table 11: Validation test for the definition of clustering approach and number of clusters 

Cluster 

Technique 

Cluster internal 

validation measures 

Number of clusters 

3 4 5 6 

HCA 

Connectivity 99.726* 160.740 199.579 99.726 

Dunn 0.011* 0.011 0.011 0.011 

Silhouette 0.309 0.295 0.221 0.309 

K-means 

Connectivity 230.937 263.699 317.357 230.937 

Dunn 0.003 0.004 0.004 0.003 

Silhouette 0.339 0.354* 0.349 0.339 

PAM 

Connectivity 162.522 274.522 336.190 162.522 

Dunn 0.006 0.007 0.004 0.006 

Silhouette 0.337 0.346 0.299 0.337 

 

Note: * optimal approach and cluster choice. The connectivity indicates the degree of connectedness of the clusters 

and has a value between 0 and infinity and should be minimized. The Silhouette and the Dunn Index combine 

measures of compactness and separation of the clusters. The Silhouette value measures the degree of confidence in 

a particular clustering assignment and lies in the interval [-1,1], with well-clustered observations having values near 1 

and poorly clustered observations having values near -1. The Dunn Index is the ratio between the smallest distance 

between observations not in the same cluster to the largest intra-cluster distance. It has a value between 0 and 

infinity and should be maximized. 

 

It follows a visual representation (Figure 18) and the summary statistics (Table 12 & Table 13) 

of clustering results based on the HCA and k-means methods. 

 

Figure 18: Visual representation of HCA-based dendrogram (left) and k-means based scatterplot (right). 

  

Note: given that there are more than two dimensions (variables), the axes of k-means plot rely on principal 

component analysis (PCA), i.e. data points are plotted according to the first two principal components that explain 

most of the variance. 
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Table 12: HCA clustering summary statistics 

HCA clusters 
LQ 

Agriculture 

LQ 

Industry 

LQ 

Services 

Nr. (Obs.) 2006 2015 2006 2015 2006 2015 

1: (160) 1.56 1.60 1.13 1.13 0.89 0.89 

2: (63) 0.69 0.67 0.62 0.58 1.15 1.16 

3: (45) 3.96 3.68 1.61 1.65 0.70 0.71 

Note: bold terms represent the highest values for each variable. The number of regions in each cluster (i.e. column 1) 

refers to year 2015. LQ Agriculture refers to NACE label “A” activities, LQ industry refers to NACE label “B-E” 

activities, LQ service refers to NACE label “G-J” + “K-N” activities 

 

Table 13: K-means clustering summary statistics 

K-clusters 
LQ 

Agriculture 

LQ 

Industry 

LQ 

Services 

Nr. (Obs.) 2006 2015 2006 2015 2006 2015 

1: (58) 1.48 1.53 1.65 1.70 0.75 0.74 

2: (58) 0.69 0.67 0.60 0.57 1.17 1.18 

3: (109) 1.26 1.23 1.04 1.03 0.93 0.93 

4: (43) 5.16 4.72 1.13 1.12 0.78 0.80 

Note: bold terms represent the highest values for each variable. The number of regions in each cluster (i.e. column 1) 

refers to year 2015. LQ Agriculture refers to NACE label “A” activities, LQ industry refers to NACE label “B-E” 

activities, LQ service refers to NACE label “G-J” + “K-N” activities 

 

According to the summary statistics, the four groups defined by the k-means approach better 

define the prevailing economic structures characterising European regions, compared to the three 

HCA groups. In fact, the HCA approach does not distinguish effectively between industrial- and 

agricultural- based economies, as the third group presents the highest LQs among both, 

agricultural and industrial sector. In addition, the HCA presents a skewed distribution towards 

group 1 (which we might term as “intermediate”). This is almost three times larger than the other 

groups. Conversely, the k-means approach translates into well-defined regional clusters, where 

each group show a specific economic specialisation (except the group 3 “intermediate”, which 

presents values close to European averages). The number of clusters defined in the k-means 

approach is also supported by common visualisation tool generally employed in similar exercises, 

such as the elbow method showed in Figure 19.  
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Figure 19: Optimal numbers of k-means clusters according to the Elbow method. 

 

Source: own elaboration 

 

Table 14 provides the summary statistics for the economic specialisations and socioeconomic 

variables according to the regional taxonomy based on k-means clustering. Cluster (1) 

encompasses the economies strongly specialised in agricultural sectors and presents an average 

agriculture’s LQ greater than 4. This means that, in regions belonging to this cluster, agriculture 

is four times more concentrated than the European average. It should be noted that this cluster 

also features the lowest population density (roughly 70 hab/km2) and the lowest GDP per capita 

(~18.000PPS/cap in 2015). Cluster (2) comprises the regions with the highest specialisation in 

industrial sectors (LQ industry ~ 1.7). These regions are also specialised in material intensive 

activities and are characterised by lower levels of population density and GDP per capita with 

respect to European average. Cluster (3) groups intermediate economies, i.e. those presenting 

similar LQs across all sectors, falling close to the European average. Finally, economies 



102 Material productivity, socioeconomic drivers and economic structures 

 
 

 
 

specialised in the service sector are gathered in cluster (4). Service-based economies usually 

develop in very densely populated areas, where the lack of available land impedes the 

proliferation of material-intensive activities. All in all, cluster (4) presents the highest scores for 

population density, GDP per capita and MP. 

 

Table 14: Summary statistics of LQs, population density (POP), GDP per capita (GDP) and material productivity (MP) 

by regional clusters 

 

LQ 

Agriculture 

LQ 

Industry 

LQ 

Service 

POP 

(hab/Km2) 

GDP 

(PPS/hab) 

MP 

(PPS/Kg) 

Cluster 2006 2015 2006 2015 2006 2015 2006 2015 2006 2015 2006 2015 

1 Agriculture 5.16 4.72 1.13 1.12 0.78 0.80 68 65 14494 18376 0.79 1.33 

2 Industrial 1.48 1.53 1.65 1.70 0.75 0.74 149 144 22766 27174 1.21 1.63 

3 Intermediate 1.26 1.23 1.04 1.03 0.93 0.93 245 260 24155 27852 1.49 2.29 

4 Service 0.69 0.67 0.60 0.57 1.17 1.18 1067 1167 30301 34308 2.22 3.23 

Note: LQ Agriculture refers to NACE label “A” activities, LQ industry refers to NACE label “B-E” activities, LQ service 

refers to NACE label “G-J” + “K-N” activities. 

 

Figure 20 provides a geographical distribution of regional economic structures at the beginning 

(2006) and at the end (2015) of our study-period, while, in Figure 21, we show the respective 

regional patterns for MP. In line with previous studies (Fernández-Herrero and Duro, 2019), a 

significant improvement in MP can be observed across most of European regions between the 

two periods. As shown in Table 14, this progress was generalised, even if it occurred at different 

pace depending on the structural features of regions. Interestingly, the clusters also capture 

outstanding demographic patterns of regions, particularly out-migration in rural and industrial 

areas (ESPON, 2019b). In fact, regions in agriculture and industrial clusters show decreasing 

population density between 2006 and 2015. 
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Figure 20: The geography of regional economic specialisations in 2006 (left map) and in 2015 (right map). 

Note: White regions indicate no data availability. 

 

Figure 21: Regional patterns of MP in 2006 (left map) and in 2015 (right map) 

 

Note: colours reflect the quantile breaks. White regions indicate no data availability. MP measured in PPS/Kg. 

 

Comparing the evolution of economic structures (Figure 20) and MP (Figure 21), we see that a 

structural change toward material intensive sectors not necessarily translates into lower MP levels 

if such transformations are coupled and/or based on more efficient technologies. Ireland is an 

outstanding example of such structural change, as it went from an intermediate economic structure 

in 2006 to a very industrialised one in 2015, being its industrial LQ among the highest in Europe 
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(2.08). In fact, the manufacturing share of GVA of Southern and Eastern Irish regions increased 

threefold over the period considered. Nonetheless, these regions also improved their MP rates 

(0.98 in 2006 and 2.88 in 2015). The same can be said for the southern Spanish regions Andalucía 

and Murcia, which exhibited among the highest MP increase between 2006 and 2015 (roughly 

10%) despite a structural shift towards agricultural specialisation (agriculture LQ for Andalucía 

and Murcia equal to 4.16 and 3.44 in 2015 respectively). Conversely, many European eastern 

regions showed reversed trajectories, i.e. from primary agricultural-based economies to industrial, 

intermediate and service-based economies. As an example, Southwestern region of Bulgaria, 

where the capital Sofia is located, is clearly evolving towards a service-based economy 

comparable to most European capitals. A similar situation can be observed in Bucharest, while 

other Romanian areas such as Northwest, Central and West region transitioned towards 

predominant industrial structures. 

The taxonomy defined also illustrates very well the spatial agglomeration patterns of 

manufacturing activities towards the so-called “Central European Manufacturing Core” (Stehrer 

and Stöllinger, 2015). This area is led by German regions and includes large portions of Austria, 

the Czech Republic, Slovakia, Hungary and Poland. In all these regions the concentration of 

manufacturing activities increased significantly since the 2000s, probably as a response to 

expanding market shares in manufacturing industries (Cutrini, 2019). Stehrer and Stöllinger also 

reported a significant decline in manufacturing for most other European countries (in particular 

high-income countries, such as the Nordics and Benelux area, alongside France and United 

Kingdom). This trend is also reflected in Table 14 and Figure 20. 
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3.3.2. Material productivity, socioeconomic drivers and economic 

structures 

For the sake of comprehensiveness, we present the results for the three approaches IND, EXO 

and INT. However, it should be borne in mind that the parameters estimated by the IND approach 

cannot be consistently compared each other as the data samples are very different between the 

groups of economic structures. 

Table 15 presents the result of IND approach. All OLS models exhibit good performance in terms 

of explanatory power, being the Intermediate group, the cluster with lowest R-square (0.56). This 

is likely because the intermediate structure constitutes the largest group in terms of the number of 

regions (i.e. 1147 observations), and consequently is characterized by a wider regional 

heterogeneity, which is more difficult to capture by the selected parameters. Most of explanatory 

variables are statistically significant (at p < 0.05) for the four clusters (except R&D expenditure, 

which does not show clear patterns). This indicates, in general, the good specification of the 

model. As expected, the sign (and magnitude) of some variables differ across the regional groups, 

suggesting that economic structures might play a key-role in defining MP patterns. In particular, 

the weight of GDP per capita shows a stark difference between material-intensive economies (i.e. 

agriculture and industry cluster) and more diversified economies (i.e. intermediate and service 

clusters). Interestingly, the GDP quadratic term changed sign between the material-intensive and 

less-intensive groups (even if it is only significant for the intermediate cluster). The reason for 

this might reside in the fact that the decreasing utility of income per capita only materialise at the 

higher income levels of service and intermediate clusters. By contrast, given the lower GDP per 

capita levels of agricultural and industrial regions, there is no evidence of decreasing marginal 

utility. Population density is also statistically significant (at p < 0.05) across all clusters 

considered, but its weight varies less, compared to GDP per capita. Industrial cluster recorded the 

lowest weight for population density (0.22), while agriculture the highest (0.29). According to the 

results of the IND approach, we could already argue that the selected socioeconomic parameters 
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behave considerably differently according to the economic structure characterising the region. 

Affluence, for instance, shows a higher leverage effect across agricultural and industrial regions 

rather than service and/or intermediate areas. These relationships will be further analysed within 

the following approaches EXO and INT. 

Table 15: IND approach - Pooled regression results 

Coefficients 
Model IND J=1 

Agriculture 

Model IND J=2 

Industry 

Model IND J=3 

Intermediate 

Model IND J=4 

Service 

(Intercept) -9.616*** (1.57) -8.787*** (0.77) -7.000*** (0.88) -4.669*** (1.66) 

GDP 0.877*** (0.15) 0.799*** (0.07) 0.635*** (0.09) 0.392** (0.17) 

GDP^2 0.007 (0.14) 0.163 (0.15) -0.405*** (0.15) -0.034 (0.18) 

Pop 0.292*** (0.05) 0.223*** (0.02) 0.233*** (0.02) 0.256*** (0.02) 

R&D 0.078 (0.11) -0.042 (0.03) -0.056* (0.03) 0.012 (0.04) 

R&D^2 -0.039 (0.04) -0.040** (0.01) -0.015 (0.03) -0.046 (0.03) 

R 0.730 0.786 0.563 0.730 

R^2 0.726 0.784 0.561 0.728 

DF 334 528 1152 526 

Note: values in brackets refer to heteroskedastic robust standard error.  * p < 0.1; ** p < 0.05; *** p < 0.01. DF: 

Degrees of freedom. 

Table 16 shows the results obtained from approaches EXO and INT. Similarly to previous studies 

(Fernández-Herrero and Duro, 2019; Gan et al., 2013; Robaina et al., 2020), in EXO we treat the 

economic structures as exogenous variables, estimating their direct impact on material 

productivity. In this case, the use of the taxonomy of regional economic structures developed in 

section 3.3.1 is not suggested, as reliable fixed-effects estimation requires sufficient variability 

over time in the predictor variables (Hill et al., 2019)25. To overcome this limitation, we estimated 

EXO by directly applying the LQs. Being continuous variables, LQs can be effectively employed 

in fixed-effects models. Finally, in approach INT we applied the economic structures (as 

categorical variables) to the explanatory variables, generating four interaction terms for each 

socioeconomic driver. These interaction terms measure the influence of socioeconomic drivers 

on material productivity, according to the economic structures. 

 
25 It should be considered that the cluster taxonomy is based on four categorical variables that are nearly constant. 
Therefore, they would not contribute much information to the analysis within a fixed-effects approach.  
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The two models present similar explanatory power (R-adjusted ~0.2) and all explanatory variables 

are significant and show the expected sign. The quadratic forms of GDP and R&D behave in a 

consistent and similar fashion across the two models. A decreasing marginal utility is observed 

for GDP per capita (~-0.14) and an increasing marginal utility is noted for R&D (~0.04). 

Population density has the largest explanatory power (> 2.5) in all models. This means that, ceteris 

paribus, a 1% increase in population density would at least produce a 2.5% improvement in 

material productivity. This is in line with previous fixed-effect models that have promoted 

population density as the sole elastic socioeconomic driver for material consumption (West and 

Schandl, 2018). The second most relevant variable is GDP per capita, which shown an average 

coefficient value of 0.6. This is fully consistent with the 0.56 and 0.60 scores proposed in Pothen 

and Welsch (2019) and Wiedmann et al. (2015), respectively. 

Looking at the coefficients of LQs it emerges that specialisation in material-intensive economies 

can be considered an inelastic driver. In other words, further specialisation in agriculture or 

industrial economy leads to an improvement of MP of inferior magnitude. On the contrary, the 

relationship between service specialisation and material productivity is almost proportional, i.e. 

an 1% increase in service specialisation would produce roughly a 1.11% improvement in MP. As 

this is presumably the first study in which LQs are used as proxies for economic structure, we do 

not have a valid reference to compare the parameters. However, the estimated elasticities are 

consistent with the theoretical argumentation introduced by similar studies (Fernández-Herrero 

and Duro, 2019; Gan et al., 2013; Robaina et al., 2020), namely that service-based economies are 

structurally advantaged when it comes to MP performance. However, differently from Fernández-

Herrero and Duro and Gan et al., which found a negative relationship between MP and material-

intensive structures, our LQ elasticities are all positive. Our interpretation is that higher degrees 

of economic specialisation may translate into productivity gains, thanks to advancements in 

technological capacity and know-how in the concerned market segments. In fact, the use of GVA 

shares as explanatory variable for MP – instead of LQs – ‘penalises’ the regions with higher 
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concentrations of economic activity on material intensive sectors, ignoring that such regions are 

most likely those that show higher levels of competitivity and productivity in those same 

economic activities. In turn, the use of LQs allows to simultaneously characterise regional 

economic structures alongside their degree of specialisation, which is an important advantage of 

this approach over alternative options. 

Table 16: EXO and INT approaches - Fixed-effects regression results 

Coefficients EXO INT 

GDP 0.713*** (0.06)   

GDP^2 -0.144** (0.07) -0.133** (0.07) 

Pop 2.991*** (0.34)   

R&D 0.175*** (0.03)   

R&D^2 0.041*** (0.01) 0.038*** (0.01) 

LQ Agriculture 0.110*** (0.03)   

LQ Industry 0.396*** (0.13)   

LQ Service 1.111*** (0.23)   

GDP: CL Agriculture   0.630*** (0.07) 

GDP: CL Industry    0.615*** (0.06) 

GDP: CL Intermediate   0.546*** (0.06) 

GDP: CL Service   0.554*** (0.06) 

Pop: CL Agriculture   2.623*** (0.34) 

Pop: CL Industry    2.673*** (0.34) 

Pop: CL Intermediate   2.808*** (0.34) 

Pop: CL Service   2.787*** (0.35) 

R&D: CL Agriculture   0.151*** (0.05) 

R&D: CL Industry   0.181*** (0.04) 

R&D: CL Intermediate   0.181*** (0.04) 

R&D: CL Service   0.135*** (0.05) 

R 0.311 0.278 

R2 0.228 0.189 

F-statistic 128.99 62.79 

DF 2288 2282 

Poolability test (F test) 21.70*** 20.29*** 

Hausman test (chisq) 523.38*** 478.03*** 

Wooldridge’s SC test (F test) 1452*** 1366*** 

Pesaran’s CD test (z test) 174.48*** 197.33*** 

Note: values in brackets refers to heteroskedasticity and serial (cross–sectional) robust standard errors (Arellano). * p 

< 0.1; ** p < 0.05; *** p < 0.01. Poolability test computes F tests of effects based on the comparison of the within 

and the pooling models. Wooldridge’s SC test refers to the general serial correlation test in “short” panels. Pesaran’s 

CD test refers to the global cross-sectional dependence test in “short” panels (see Croissant and Millo (2008) for test 

statistic description). 
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While EXO estimated the exogenous impact of economic specialisation on material productivity, 

INT allows to model the co-evolution of socioeconomic drivers and economic structures. Several 

conclusions can be drawn by looking at model INT parameters. First of all, we observe a relevant 

difference in GDP per capita between material-intensive clusters (0.63 for agriculture and 0.62 

industry) and intermediate and service regions (both 0.55). This seems to suggest that the more 

‘material-intensive regions’ could be better placed to boost material productivity through 

increased levels of affluence. An opposite pattern is observed for population density. In this case, 

an increase in this indicator has a greater leverage effect on intermediate and service-based 

economies compared to the same increase happening in agriculture and/or industrial regions  (2.81 

for intermediate and 2.62 for agriculture). This suggests that the concentration of population 

favours greater levels of MP in urban economies, but not so much in rural and sparsely populated 

regions. In other words, there seems to be a synergetic effect between changes in population 

density (which increases material efficiency) and regional economic specialisation (i.e. increased 

service-orientation of regional economies leading to economic de-materialisation). Concerning 

the effect of R&D expenditure on MP, we found a positive relationship. This seems reasonable 

as more investment in R&D can deliver goods and services more efficiently, and produce goods 

which have an increased knowledge component in their value added. However, R&D impact is 

very marginal and present little variation across the economic structures considered (0.14-0.18). 

Results in Table 16 suggest that the impact of socioeconomic drivers on MP are likely to change 

according to the economic structures of regions. However, to understand the bearing of such 

differences we need to establish if they are statistically significant. Table 17 presents the 𝑇0 

statistic results computed by linear hypothesis testing with heteroskedasticity and serial (cross–

sectional) robust standard errors. 
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Table 17: Linear hypothesis testing results 

Socioeconomic driver: GDP    

 CL Agric CL Industry CL Interm. CL Service 

CL Agric.  0.509 4.538** 2.978* 

CL Industry 0.509  5.013** 2.798* 

CL Interm. 4.538** 5.013**  0.165 

CL Service 2.978* 2.798* 0.165  

Socioeconomic driver: POP   

 CL Agric CL Industry CL Interm. CL Service 

CL Agric.  1.045 4.463** 2.848* 

CL Industry 1.045  4.698** 2.320 

CL Interm. 4.463** 4.698**  0.226 

CL Service 2.848* 2.320 0.226  

Socioeconomic driver: R&D   

 CL Agric CL Industry CL Interm. CL Service 

CL Agric.  0.675 0.528 0.085 

CL Industry 0.675  0 1.070 

CL Interm. 0.528 0  1.239 

CL Service 0.085 1.070 1.239  

Note: Values refer to 𝑇0 statistics computed  considering heteroskedasticity and serial (cross–sectional) robust 

standard errors. * p < 0.1; ** p < 0.05; *** p < 0.01 

 

According to Table 17, we can say that: 

• The effect of GDP and POP on MP is significatively different between material intensive 

economies (i.e. agriculture and industry cluster) and the less material intensive economies 

(i.e. intermediate and service economies); 

• The impact of R&D on MP does not change significantly between the economic 

structures considered. 

 

3.3.3. Robustness checks 

We conducted a number of checks to scrutinize whether our results are robust to potential 

endogeneity issues. Some authors caution that current MP levels might be affected by past levels 

of MP (Flachenecker, 2018; Robaina et al., 2020). The hypothesis that past values of technological 

levels influence present technological performance is plausible, as the technological trajectory of 
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a given territory is the result of a long historical process (Porter, 1990). In fact, MP has been often 

used as proxy indicator for technological level at country level (Dong et al., 2017; Schandl and 

West, 2010; Steinberger and Krausmann, 2011). Even if the use of lagged MP values has not been 

considered in recent EW-MFA STIRPAT applications (Fernández-Herrero and Duro, 2019; Gan 

et al., 2013; West and Schandl, 2018), we took into account potential issues of endogeneity by 

applying the difference-generalized method of moments (GMM) developed by Arellano and 

Bond (1991). Differently from the traditional “fixed-effect” econometric method, the difference-

GMM is able to produce empirical output considering the dynamic relationship between variables 

and it also eliminates the problem of endogeneity and autocorrelation thanks to the use of the 

lagged values of explanatory variables as instrumental variables.  

Table 18 shows the comparison of empirical results obtained for EXO and INT models calculated 

by the traditional fixed-effect and GMM method. As expected, MP(t-1) is significant in both 

models with a similar magnitude (~0.4). Concerning the other explanatory variables, we can 

clearly observe a change in magnitudes, especially for those variables constructed by GDP, since 

part of their explanatory power is now captured by MP(t-1). However, we can observe that, first, 

the GMM-based Location Quotients (LQ) acknowledge the findings of the fixed effect model. In 

fact, specialisation in service sector produces the higher gain in MP, followed by industry and 

agriculture (although this latter is not significant according to the GMM model). Second, within 

the INT model, material-intensive regions (agricultural and industrial based economies) present 

higher affluence elasticities (GDP per capita) compared to less material intensive regions 

(intermediate and service-based economies). By contrary, population density presents higher 

leverage effects across services and intermediate regions compared to material intensive regions. 

Finally, concerning R&D driver, we could say that the elasticities remain generally stable across 

the fixed-effect and GMM method. 
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Table 18: Comparison of fixed effects and GMM results for EXO and INT models.   

Coefficients EXO EXO.GMM INT INT.GMM 

MP(t-1)   0.478*** (0.08)   0.412*** (0.08) 

GDP 0.713*** (0.06) 0.257*** (0.08)     

GDP^2 -0.144** (0.07) 0.417*** (0.08) -0.133** (0.07) 0.360*** (0.09) 

Pop 2.991*** (0.34) 1.670*** (0.49)     

R&D 0.175*** (0.03) 0.107*** (0.03)     

R&D^2 0.041*** (0.01) 0.039** (0.02) 0.038*** (0.01) 0.039** (0.02) 

LQ Agriculture 0.110*** (0.03) 0.024 (0.02)     

LQ Industry 0.396*** (0.13) 0.262*** (0.09)     

LQ Service 1.111*** (0.23) 0.595*** (0.15)     

GDP: CL Agriculture     0.630*** (0.07) 0.242*** (0.08) 

GDP: CL Industry      0.615*** (0.06) 0.233*** (0.07) 

GDP: CL Intermediate     0.546*** (0.06) 0.215*** (0.07) 

GDP: CL Service     0.554*** (0.06) 0.208*** (0.07) 

Pop: CL Agriculture     2.623*** (0.34) 1.776*** (0.55) 

Pop: CL Industry      2.673*** (0.34) 1.796*** (0.55) 

Pop: CL Intermediate     2.808*** (0.34) 1.833*** (0.56) 

Pop: CL Service     2.787*** (0.35) 1.845*** (0.55) 

R&D: CL Agriculture     0.151*** (0.05) 0.116** (0.05) 

R&D: CL Industry     0.181*** (0.04) 0.125*** (0.03) 

R&D: CL Intermediate     0.181*** (0.04) 0.110*** (0.03) 

R&D: CL Service     0.135*** (0.05) 0.077* (0.04) 

R 0.311  0.28  

R2 0.228  0.19  

F-statistic 128.99  62.79  

DF 2288  2282  

Poolability test (F 
test) 

21.70***  20.29***  

Hausman test (chisq) 523.38***  478.03***  

Wooldridge’s SC test 
(F test) 

1452***  1366***  

Pesaran’s CD test (z 
test) 

174.48***  197.33***  

Sargan test (chisq)  72.46***  138.90*** 

AR (1) test  -5.200***  -4.481*** 

AR (2) test  1.623  1.213 

Wald test (chisq)  629.881***  528.967*** 

Note: values in brackets refers to heteroskedasticity and serial (cross–sectional) robust standard errors (Arellano). * p 

< 0.1; ** p < 0.05; *** p < 0.01. Poolability test computes F tests of effects based on the comparison of the within 

and the pooling models. Wooldridge’s SC test refers to the general serial correlation test in “short” panels. Pesaran’s 

CD test refers to the global cross-sectional dependence test in “short” panels. Sargan test refers to overidentification 

test. AR (1) and AR(2) refer to first and second order Arellano-Bond’s test of serial correlation. (see Croissant and 

Millo (2008) for test statistic description). 
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The GMM results did not reject our underlying hypothesis, as the type of economic structures 

still seem to exert a significant impact on socioeconomic drivers. In addition, it should be noted 

that according to the Sargan test, the GMM-model does not satisfy the overidentification requisite 

(p < 0.05). Despite the use of different combinations of instrumental variables, we have not been 

able to identify a satisfactory output. This might be due to the presence of heteroskedasticity in 

our sample. In fact, as also explained in Croissant and Millo (2008, p. 33), the assumption of strict 

exogeneity of regressors, which is essential for consistency of the Maximum Likelihood models, 

is often inappropriate in economic settings. Therefore, as a result, we preferred to stick to our 

simpler and more interpretable fixed-effect INT model. 

Similarly to previous works (Flachenecker, 2018; Pothen and Welsch, 2019), we also tested the 

robustness of our empirical models (EXO & INT) to potential exclusion of countries and/or 

periods of time. First, we dropped the period 2008-2010 as this was characterised by a significant 

decline in economic output and material consumption levels. Second, we conducted the analysis 

for EU-15, to see whether the results might change considering only most advanced EU 

economies26. This check also confirmed that our results are generally robust. The exclusion of the 

period 2008-2010 from the analysis seemed to only affect the magnitude of elasticities, but it did 

not affect the relationship among them, nor their significance. The major change produced  by the 

exclusion of non-EU-15 from the sample was the loss of significance for the quadratic term of 

GDP. This change might be due to the reduced variation of GDP levels within the sample. In fact, 

as EU-15 present similar GDP levels, the explanatory power of this parameter could be affected. 

Table 19 shows the results of robustness checks. 

  

 
26 We also considered the exclusion of single years characterised by significant “jumps” in linear trends, such as 

2008 and 2011, and the exclusion of the five regions having the highest GDP per capita and the 5 regions having the 
lowest GDP per capita. 
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Table 19: Robustness check by excluding the financial crisis (2008-2010) and the new member states 

Coefficients 
EXO 

Excl. 2008-2010 
EXO 

EU-15 
INT 

Excl. 2008-2010 
INT 

EU-15 

GDP 0.742*** (0.05) 0.639*** (0.07)     

GDP^2 -0.199*** (0.05) 0.153 (0.10) -0.199*** (0.05) 0.187* (0.10) 

Pop 3.265*** (0.17) 3.823*** (0.17)     

R&D 0.203*** (0.02) 0.182*** (0.02)     

R&D^2 0.051*** (0.01) 0.033*** (0.01) 0.047*** (0.01) 0.017 (0.01) 

LQ Agriculture 0.116*** (0.02) 0.139*** (0.02)     

LQ Industry 0.368*** (0.06) 0.282*** (0.06)     

LQ Service 1.145*** (0.12) 1.300*** (0.13)     

GDP: CL Agriculture     0.639*** (0.05) 0.410*** (0.06) 

GDP: CL Industry      0.632*** (0.06) 0.403*** (0.07) 

GDP: CL Intermediate     0.558*** (0.06) 0.372*** (0.07) 

GDP: CL Service     0.565*** (0.06) 0.350*** (0.07) 

Pop: CL Agriculture     2.934*** (0.18) 3.776*** (0.18) 

Pop: CL Industry      2.961*** (0.18) 3.796*** (0.18) 

Pop: CL Intermediate     3.111*** (0.17) 3.838*** (0.18) 

Pop: CL Service     3.097*** (0.17) 3.889*** (0.18) 

R&D: CL Agriculture     0.186*** (0.03) 0.087* (0.04) 

R&D: CL Industry     0.222*** (0.03) 0.142*** (0.03) 

R&D: CL Intermediate     0.219*** (0.03) 0.215*** (0.02) 

R&D: CL Service     0.140*** (0.04) 0.070** (0.03) 

R 0.375 0.352 0.341 0.324 

R2 0.264 0.273 0.221 0.239 

F-statistic 116.473 121.042 57.181 60.854 

DF 1553 1782 1547 1776 

Note: values in brackets refers to heteroskedasticity and serial (cross–sectional) robust standard errors (Arellano). * p 

< 0.1; ** p < 0.05; *** p < 0.01. 

 

3.4. Discussion 

Our findings provide compelling evidence that the use of economic structures as simple 

exogenous factors explaining MP falls short in providing a comprehensive picture of the 

relationship between material productivity and its determinants. In particular, the analysis showed 

that different structural economic configurations are likely to change the effect of GDP and POP 

on material productivity. To give an idea of the scale of such differences across regional clusters, 

we present in Figure 22 the prediction of MP calculated by applying the values of interaction 
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terms obtained in model INT. Each scatterplot represents the trends of MP calculated by using, 

respectively, the four elasticities obtained across economic structures for each socioeconomic 

driver (i.e. GDP, POP, and R&D), while keeping the remaining parameters constant. 

 

Figure 22: Material productivity trends according to economic structures elasticities 

 

Note: figures for GDP (PPS/hab), POP (hab/Km2) and R&D (%) refer to 2015. 

 

The influence of GDP and POP on MP varies considerably depending on the socioeconomic 

structures of regions. Concerning GDP elasticity and assuming other conditions being equal 

between economic structures, at a GDP per capita level equal to €20.000, material intensive 

economies would be about twice as resource productive than intermediate and service-based 

economies. Conversely, the different elasticity of POP across regional groupings implies that, at 

a population density of 200 hab/Km2, this factor would be associated with MP levels being 2.5 

times higher in intermediate and service economies compared to material-intensive regions. 

Obviously, these predictions are only hypothetical, as the ceteris paribus assumption is not 

realistic. Furthermore, it should be borne in mind that the divergent effects observed between 

socioeconomic factors would largely offset each other, with a likely predominance of population 

density – as this variable presents greater elasticities in all types of regions. This also explains 

why very conglomerated areas such as metropolitan cities usually exhibit the highest MP scores 

(e.g. Brussels, Madrid or Ile de France). 
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The higher elasticity of GDP for agricultural and industrial regions might appear counterintuitive, 

considering that in general these regions show lower levels of MP. However, this is explained by 

the intrinsic physical nature of their economies. In fact, these regions are mainly producers and 

exporters of raw material and manufactured goods, so that an increase in affluence would have 

direct repercussion on their productive means. Production would be enhanced by a greater access 

to financial resources, and therefore to technological improvements. By contrary, a GDP increase 

in tertiary economies would have a smaller impact on material productivity, as these economies 

present a rather weak presence of manufacturing and/or raw material extraction activities. 

Conversely, population density presents a higher leverage effect in urban regions, where space 

constraints limit the deployment of material-intensive activities and favour instead the 

development of strong service-oriented economies. In addition, the significant difference of POP 

elasticity between denser (service-based regions) and less dense (agricultural and industrial 

regions) areas is consistent with previous findings confirming that firms and workers are, on 

average, more productive in agglomerated economies (Combes, Pierre-Philippe Duranton et al., 

2012; Duranton and Puga, 2014).  

Interestingly, R&D elasticities present a significant but marginal effect on MP, which does not 

change significantly across different types of regions. This could be explained by a combination 

of factors. On the one hand, investments in R&D do not necessarily occur in areas addressing 

material efficiency. In fact, as described by Domenech and Bahn-Walkowiak (2019), green 

technologies only attract a small share of R&D budgets. For instance, in Finland, which is the 

country that invests more resources on green innovation, green technologies attract only 12.5% 

of the total budget for R&D. On the other hand, it should be noted that the impact of R&D 

investment does not necessarily translate into local impacts. Technological innovations often 

generate impacts in locations that are distant from the place where such innovations were 

designed. For example, technologies to increase material efficiency of industrial processes are 

seldom developed in the same areas where industrial plants are based. 
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A number of relevant policy messages emerge from our findings. Our models confirm that 

agricultural and industrial areas show greater potential for improving material productivity thanks 

to the concentration of material-intensive activities in those areas. This calls for investments on 

technologies and innovations aiming at material efficiency, particularly in material-intensive 

sectors and regions. However, we have seen how investments on green technologies still attract a 

small share of R&D investments. At the same time, agricultural and industrial regions often 

experience underinvestment (Flachenecker and Rentschler, 2018), mostly due to their less 

dynamic markets (Bachtler et al., 2017). Hence, better access to finance in those areas would not 

only support resource productivity goals, but also mitigate the growing polarization between core 

and peripheral regions in Europe (Bassi and Durand, 2018; Lee and Luca, 2019). Another 

conclusion from our models is that the economies of scale in consumption clearly benefit MP.  

From this it can be inferred that spatial planning policies should promote urban densification, 

even in sparsely populated areas. In peripheral and shrinking regions, scale-appropriate systems 

will need to be re-formulated to support smaller population while land take should be minimised 

through compact urbanisation (Williams, 2019). Regions with urban and service-oriented 

economies, which are typically those with a greater concentration of population, should focus on 

the adoption of innovations geared at the organisation and optimisation of urban life. In particular, 

changing consumption habits of those living in cities will be critical to decouple economic growth 

from resource consumption (Zaman and Lehmann, 2011). In this sense, urban agglomerations 

present the right conditions for the development of business models that are based on product 

sharing, pooling and other forms of collaborative consumption that may contribute to curb 

demand for raw materials at the source (Cohen and Muñoz, 2016). 

 

3.5. Conclusion 

Research on the effects that economic structures exert on the relationship between material 

productivity and socioeconomic factors has been historically neglected by EW-MFA studies. This 
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work argues that the idiosyncratic features of the individual regions, and therefore, the diverse 

economic configurations that the regions show, necessarily influence MP. Understanding the 

complex relationship between MP and its socioeconomic drivers under different structural 

economic configurations is essential for managing the current societal challenges and, hence, for 

providing policymakers with context-sensitive recommendations. 

Our results provide evidence that the impact of socioeconomic drivers on material productivity 

changes according to the intrinsic socioeconomic structure of regions. In particular, affluence and 

population density impact the material productivity in considerably different ways based on the 

prevailing economic specialization of regional economies. Areas relying on primary and 

secondary sectors present higher returns in MP from increased levels of affluence, compared to 

intermediate and service-based economies. By contrary, intermediate and service-based 

economies tend to increase material productivity through physical densification. Overall, 

population density has a greater influence on MP levels than affluence. Not surprisingly, regions 

with higher population density have higher material productivity levels. 

From a methodological perspective, this work provides two novelties in relation to traditional 

STIRPAT approaches: (1) the use of LQs instead of the share of gross values added as parameter 

capturing the structure of regional economies; (2) the consideration of these structures as 

endogenous factors shaping the relationship between MP and socioeconomic drivers. LQs provide 

superior information on the economy of a region, as they also recognise the level of specialisation, 

which to some extent is related to material efficiency. Similarly, examining the socioeconomic 

drivers of MP considering the underlying economic structures offers critical insights into the 

leading MP leverages of territories. In general, our method increases the explanatory power of 

socioeconomic drivers on MP, enabling more detailed and place-specific interpretations of 

regression coefficients.  

Our approach also opens-up several research avenues for the future, as it encourages the 

exploration of alternative endogenous structures of socioeconomic drivers. In this analysis, we 
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considered economic structures resulting from regional economic specialisation, but other 

configurations might be considered. As an example, Liddle and Lung employed a STIRPAT 

approach to investigate the consumption-related environmental impacts by population age-

structure (Liddle and Lung, 2010). Similarly, considering the aforementioned MP limits, other 

resource productivity measures could be employed to further expand the understanding of 

regions’ productivity levels. In this sense, Malmquist Productivity Index (MPI) could represent a 

promising approach since it not only allows to integrate several factors related to productivity, 

but also to decompose productivity into technical and efficiency components (Kumar, 2006; 

Mahlberg et al., 2011; Zhang et al., 2011). Likewise, access to improved regional data could open 

a number of additional channels of analysis, such as adding further explanatory variables better 

describing regional modes of consumption (e.g. import/export shares, transport statistics, type of 

energy consumption etc.). 

Ideally, the analysis presented here should be complemented by adopting a consumption 

perspective. In particular, the use of alternative material indicators such as Material Footprint 

(MF) could shed light on the extent to which final consumption drives MP differently from 

production-based indicators like DMC. As showed in Wiedmann et al. (2015), assessments 

frequently differ depending on which modelling approach and indicators are used. In general, 

since MF indicators focus on final consumption, regional economic structures become less 

prominent drivers of MP. The production perspective adopted in this research seems more 

appropriate for identifying the role of territorial features on MP. Our main conclusion is that MP 

gains should be sought aiming at efficiency improvements rather than at structural economic 

transformations. Even if a shift towards increased service economies would automatically lead to 

increased DMC-based levels of MP, in most European regions this would be neither feasible nor 

desirable. First, most areas lack the critical mass required by such transformations, including 

access to human, technological and financial capitals. Similarly, the extent to which material-

intensive activities such as mining and forestry can be localised in a given territory is also 
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conditioned by its intrinsic characteristics, among which resource availability is the most obvious 

expression of those. Moreover, material-intensive activities, such as manufacturing, contribute to 

increase regional and national economic resilience. These activities make a very significant 

contribution to regional economies and, by localising and visualising the positive and negative 

externalities of massive resource use, they indirectly increase demand for new technologies and 

innovations that may further reinforce economic resilience and the overall economic dynamism 

of regions. 
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The overall objective of this dissertation has been to expand the general understanding of material 

consumption patterns and its related socioeconomic drivers by introducing a territorial 

perspective. To achieve this aim, the Specification-Optimisation-Extrapolation (SOE) 

methodology was firstly developed as a systematic tool to quantifying subnational Domestic 

Material Consumption (DMC) in a comprehensive framework across the European Union. The 

development of a new harmonised regional inventory constituted a first research milestone, as the 

lack of cross-regional studies has so far prevented analysts from drawing broader policy 

conclusions that hold beyond national and regional borders. Cross-country analyses conceal wide 

territorial heterogeneity within countries, which may potentially obstruct the effect of resource 

mitigation policies. Results confirmed that the combination at the regional level of environmental 

indicators such as DMC and socioeconomic data represents a key element for delivering 

comprehensive insights into the complex mechanisms that shape sociometabolic models. We 

showed that several territorial features such as urban configurations and/or underlying economic 

structures play a pivotal role in determining resource consumption patterns. Hence, granular 

analyses, which better reflect the highly heterogenous territorial domains faced by policymakers, 

are essential to provide effective guidance, especially for resource management strategies very 

tied with regions’ territorial capital such as the Circular Economy. 
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One of the main contributions of this Thesis is the quantification of DMC at the regional level. 

The provision of a harmonised and comprehensive dataset covering most of European regions is 

critical, not only because industrial policies and economic development strategies are increasingly 

recognising the role played by territories in guaranteeing successful transition to more inclusive 

and sustainable modes of development, but also because environmental accounting is 

comparatively less developed than social and economic perspectives within the policy and 

academic debate at the regional levels. In the European Union, the analysis of the key barriers 

hindering an efficient management of resource at the local level has been generally addressed by 

firm surveys (European Commission, 2018c). Such information has been critical in informing and 

driving resource efficiency roadmaps and related investments by both, firms and governments 

(European Commission, 2011). However, it only represents a limited perspective of the broader 

socioeconomic configurations driving material consumption patterns across regions. On the other 

hand, established EU monitoring frameworks mostly provide data at the very aggregate national 

level. But are these aggregated data really a guide for local policy makers? According to our 

results the answer is most probably no. Or, at least, they provide very limited guidance. 

Going further, the European Green Deal calls explicitly for “systemic solutions for the territorial 

deployment of the circular economy”, which should “increase resilience and provide concrete 

solutions for the socioeconomic recovery and sustainable and inclusive growth of a specific 

territory”. Such territorial dimension will be unlikely constituted by a whole country. The 

distribution of general socioeconomic factors, such as population density, income, R&D 

expenditure, technological and educational levels, elderly population and employment, is very 

uneven across subnational territorial contexts. Agricultural economies are regularly those regions 

undergoing the lowest levels of human capital . Conversely, they exhibit the largest share of 

elderly population. An opposite situation is constituted by service-based regions, as these present 

extremely high levels of population density, high level of employment and the lowest share of 
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elderly population. On the other hand, industrial regions benefit from very high levels of 

investments in R&D and, therefore, technological levels (measured by patent emissions). 

Ultimately, this heterogenous distribution of territorial factors translates into very different 

challenges at the local levels. Challenges that politicians are often ill-equipped to deal with, given 

the general scope of current national policies. To design effective subnational and place-based 

policies, a deeper understanding of the territorial dimension of material consumption is needed. 

Hence, the provision and analysis of more refined data becomes critical to inform policy makers 

on the leveraging mechanisms, regional and local assets supporting resource efficiency goals. 

The provision of an environmental regional dataset also contributes to fill a gap within the 

empirical body of regional studies, where environmental metrics are still far behind their 

socioeconomic counterpart. The lack of comprehensive regional environmental databases risks 

biasing the academic and policy debate towards the socioeconomic sphere, neglecting the 

environmental perspective. This is a crucial gap if we really aim to reconcile our economies and 

human activities with the planetary boundaries and to respond to citizen concerns and needs in 

the wake of systemic crisis such as climate change, biodiversity loss and adverse socioeconomic 

and environment impacts. Our regional DMC database represents a modest step in this direction.  

Concerning the methodological development, the SOE method represents a pragmatic but 

efficient approach to generate information at the subnational level and it addresses several 

methodological limitations concerning previous studies. First of all, as shown with the DMC 

example, it is able to generate harmonised and comprehensive datasets that can potentially pave 

the way for further comparative research. The very wide range of methodological approaches 

employed in similar analyses usually prevented a consistent comparison among different regions. 

The empirical study conducted on DMC represents a prime example of the potential applications 

of the SOE method and its consequent functionality in providing granular information tailored to 

local contexts. This directly links to the second key advantage of the proposed approach, that is 
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the capacity to account for territorial heterogeneity. The use of (1) explanatory factors measured 

at the regional level and (2) the optimisation algorithm reflecting the national regimes, positions 

the SOE method well beyond simpler extrapolation methods based on bold hypothesis such as 

“consumption is almost proportional to population”. Ultimately, these simplistic approaches fail 

in capturing territorial specificities, as disregard the specific relationships between regional 

factors and the response variable. By eliciting the multiple correlations existing between materials 

consumption and its key explanatory factors and calibrating these to the varying national regimes, 

the SOE method is able to reflect (at least partially) the various territorial settings, and therefore 

provide place-sensitive information. 

The systematisation of the SOE method makes it suitable for application to other geographical 

scales (e.g. from regions to cities), thematic domains and indicators. In this sense, a simplified 

version of the SOE method has been applied within the CIRCTER project (ESPON, 2019a) to 

provide a comprehensive set of Circular Economy indicators at the regional level. The method 

was applied to downscale nine indicators for two time-periods (2006 and 2014). Five indicators 

focusing on material flows, namely: Domestic Material Consumption (DMC), Domestic 

Extraction, Biomass Consumption, Metal-ores Consumption and Non-metallic Mineral 

Consumption. Four indicators informing on waste generation: Total Waste Generation excluding 

major mineral waste, Waste generation by household, Food Waste, and Electric and Electronic 

Equipment Waste (WEEE). Despite the application showed decreased performance for very 

specific indicators (e.g. metal-ores consumption), it proved to be a reliable solution to deal with 

data scarcity at subnational levels, contributing to the identification of regional patterns of 

resource use that would have been otherwise remained unknown (ESPON, 2019c). 

Lastly, but perhaps most important, this Thesis expanded the theoretical framework of Ecological 

Economics and Industrial Ecology by introducing the territorial perspective into the academic 

debate. We demonstrate that neglecting the territorial dimension prevents a proper understanding 

of the sociometabolic systems of regions, as material efficiency originates  – to a varying degree 
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– in the local and regional realities. In Chapter 2 we showed that efficiency performance within-

country can be very different from what national statistics say. While agglomerated areas are 

lowering their relative resource consumption thanks to ever-increasing economies of scale, 

peripherical areas show little, if nothing, progress. This trend not only reflects the growing 

socioeconomic polarity observed between urban and rural regions, but it could also result into a 

zero-sum game. Indeed, as long as the gains in resource productivity are achieved primarily by 

increasing levels of wealth and population (i.e. the engines of urban agglomeration), rather than 

a significant reduction in the overall amount of resource consumed, we will only see an apparent 

shift in environmental burdens from urban to rural areas. We underline “apparent” shift because 

agriculture and traditional manufacturing activities (e.g. footwear, leather, apparel, textiles, pulp 

and wood by-products etc.) are mainly located in intermediate and rural areas, but the throughput 

produced is mainly directed to satisfy the demand of goods of central urban areas. Anyhow, going 

beyond the exact allocation of environmental- burden/responsibility, this dichotomy suggests that 

effective resource mitigation strategies should be place-based. Just as it is more efficient for a city 

to derive most of its agricultural and manufacturing products from the hinterland, a region can 

have a much greater impact in reducing material consumption by influencing consumption 

behaviours rather than improving production processes. This evidence is further strengthened in 

Chapter 3, where we show that the elasticities of socioeconomic drivers actually differ according 

to the regional economic structures. 

Regions relying on material-intensive production processes exhibited affluence’s elasticity 

significantly higher than economies based on service structures. This means that industrial 

policies aimed at improving the efficiency of resource management should ensure access to 

financial resources for these peripheral regions, which often have difficulty in obtaining funding. 

Financial constraints are not the only barriers preventing peripheral areas from boosting their 

resource productivity. Chapter 2 showed that these areas are also characterised by a rather 

stationary market, which not only is less resilient to economic shocks, but it also struggles to 



126 Overall Conclusions 

 
  

 
 

retain human capital. As a result, many peripheral regions run the risk to fall in a downward spiral 

where these interlinked constraints reinforce each other, draining local resources. 

Moreover, as demonstrated by the experience of the eastern regions, channelling financial 

resources to lagging regions is not in itself sufficient to ensure the transition to more sustainable 

production models. In fact, following the entry into the European Union, eastern regions have 

increasingly improved their technological assets, but have missed significant gains in resource 

productivity. This means that in order to guarantee the replication of successful solutions for 

sustainable growth, financial transfers should also be complemented by technical roadmaps that 

facilitate the transfer of knowledge between the economies lying on the technological frontier and 

those less material efficient. Not surprisingly, the European Green Deal emphasizes the need to 

demonstrate and replicate territorial strategies across many areas within and outside Europe if the 

goals set in the various policy areas are to be achieved. 

It goes without saying that winning solution not necessarily can be replicated equally anywhere. 

The two territorial taxonomies proposed in Chapter 2 and 3 well exemplify how regions should 

be considered as a sort of well-defined ecosystems, rather than homogenous entities. In Chapter 

2, we showed that urban-rural configurations translate into very different operating environments, 

which make doubtful the direct comparison between regions belonging to different categories. 

Similarly, in Chapter 3, we showed that economic structures cannot be simply considered as 

exogenous factors impacting resource productivity, as they are likely to influence other 

socioeconomic determinants as well. It should be emphasized that such differences in territorial 

capital do not necessarily translate into better-off and worse-off regions. Instead, they should be 

interpreted as different opportunities and challenges that politicians need to understand first in 

order to later reap their potentials. It is along these lines that the Smart Specialisation Strategies 

and the Territorial Agenda advocate for a place-based approach where the identification of 

strategic areas for intervention should build on the assets and resources available to the regions 
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and on their specific socioeconomic challenges in order to identify unique opportunities for 

development and growth. 

Empirical results in Chapter 2 provide direct evidence that gains in resource productivity can also 

be achieved by material-intensive economies if regions focus on their competitive strengths and 

growth potentials. The cases of the Southern and Eastern Irish regions and the southern Spanish 

regions Andalucía and Murcia, which increased their levels of resource productivity despite 

shifting their economies toward material-intensive structures, constitute a successful example. 

This evidence is further supported by the coefficient obtained for the location quotients. 

Increasing levels of economic specialisations translate, to varying degree, in higher material 

productivity, which is different from saying that agriculture structures have a negative impact on 

resource productivity. Obviously, dematerialised economies are better positioned to boost 

material productivity, but repeatedly presenting primary sectors as hindrances to material 

productivity could send the wrong message to policymakers of expanding an economy's service 

base as the only way forward when it comes to increasing material productivity. This is not true, 

nor feasible.  

Perhaps, part of the solution lies in using more inclusive indicators. In fact, material efficiency 

narrative should consider implications that go well beyond the simplistic objective of using the 

least possible amount of materials to produce an economic output. An efficient use of materials 

should guarantee an optimum combination of production inputs (labour, capital, material), while 

producing the maximum yield in terms of social welfare. In this context, the indicators used to 

measure social welfare assume a critical importance. So far, gross domestic product (GDP) is the 

most widely used economic indicator. However, it is well known that GDP is not an ideal 

measurement of social prosperity for several reasons (Costanza et al., 2014). First of all, GDP 

does not distinguish between economic activities, i.e. it “sums-up” also those activities actually 

carried out to remedy adverse environmental and social effects. Second, it does not account for 

the cost of natural costs of natural capital depletion. Third, it does not reflect social equality 
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aspects of economic development. Despite many efforts have been made to developing more 

inclusive metrics (Kubiszewski et al., 2013; UNDP, 2016), constructing material efficiency 

indicators based on GDP remains the custom for setting policy goals of resource conservation and 

environmental protection. Therefore, an interesting avenue of research would be the analysis of 

socioeconomic metabolic systems considering the use of more inclusive indicators. This would 

help, for instance, to better distinguish between those areas that have managed to decouple their 

economy from material consumption thanks to a pure progress of the society and those that have 

reduced material consumption mainly due to an economic recession. 

Similarly, we are aware that DMC is far from being a perfect indicator of material consumption, 

and, as showed in our work, it has to be considered in combination with other environmental and 

socioeconomic figures for cautious and accurate interpretation. Ideally, this analysis should be 

replicated by using a raw material consumption-based indicator of resource use such as the 

material footprint (MF). As showed in Wiedmann et al. (2015), results often diverge depending 

on the material indicator selection. The use of MF might reveal that agricultural and industrial 

regions are not that far from agglomerated service-based regions in term of material efficiency. 

In fact, the higher GDP per capita of advanced economies would be, to some extent, compensated 

by the higher levels of consumption of these regions and, therefore, the amount of hidden material 

flows related to upstream activities. This analysis would be very interesting for e.g. assessing 

interregional environmental responsibilities linked to behavioural consumption. 

Some remarks should also be mentioned concerning the SOE methodology and, thereby, the 

regional DMC dataset. This tool was developed under the premise of staying within the confines 

of existing data sets, harvesting information from these instead of developing entirely new data 

flows. However, we should point out that further improvement of resource efficiency monitoring 

may be gained by also using alternative data streams to those included in currently existing official 

statistics. There is a wide recognition that alternative data sources such as open source APIs, big 

data providers, earth observation data, free-of-charge and commercial data sources, etc. might 
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offer additional insights on the uptake of e.g. Circular Economy policies and their effect in the 

material cycle and energy flow in Europe’s economy. Likewise, our downscaling methodology 

can be further improved in several ways. First, the optimisation algorithm might be enhanced by 

integrating the reconciliation step as an additional constraint of the overall model. This would 

permit to better calibrate parameter elasticities to regional contexts. Second, future analyses might 

focus on the selection of progress variables such as population and/or income growth for a 

selected period as opposed to static time-cuts. This dynamic approach would allow to e.g. gauge 

the impact of specific drivers on material efficiency and better understand the impact of policies 

on material consumption. 

Summarising, this work represents a first attempt to connect the field of socioeconomic 

metabolism with that of regional studies. The territorial dimension of sustainable strategies is 

increasingly gaining importance within the policy discourse. Nonetheless, the physical – 

environmental – perspective of regional economies has so far been lacking in the current academic 

debate, mostly focused on socioeconomic aspects. However, sustainable development is not only 

about inclusive economic growth, but it also concerns the natural capital that we constantly 

withdrawn from the environment and its consequent effects. If these aspects are only monitored 

and analysed at national level, they will remain of limited guidance for local policy makers. 

Therefore, regional studies should promote the inclusion of a range of ecological indicators to 

better understand the dialectics between the socioeconomic and environmental systems. 

Conversely, Ecological Economics and Industrial Ecology studies should expand the analysis of 

sociometabolic systems by focusing on subnational levels in order to better reflect the 

multifaceted realms existing at lower geographical levels. 

 



 

 
 

 

 

 

 



 

 

 

 

 

 

Appendix  

 

Economic-Wide Material Flow Accounting 
 

 

Material flow analysis (MFA) is a systematic assessment of the flows and stocks of material 

within a system defined in space and time (Brunner and Rechberger, 2010). Figure 23 presents a 

simplified overview of the anthropogenic materials cycle. Raw materials are extracted from the 

environment, and then processed into intermediate and final products through production and 

manufacturing activities. Final products or services enter the use stage to fulfil human needs. 

While durable goods (e.g. houses) and infrastructures accumulate in the anthroposphere, short-

lived good will be collected and disposed-off according to waste management practices, and 

eventually recycled or reused as secondary materials. Each transformation from one stage to 

another will produce different "loss streams", i.e. material flows that return to the natural reservoir 

in the form of environmental charges, such as pollutants, solid waste and wastewater.
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Figure 23: The anthropogenic material cycle. 

 

Own elaboration based on Zhang et al. (2018) 

 

Depending on the context and purpose, MFA can be implemented according to different 

approaches. The OECD distinguishes between six different tools of MFA (OECD, 2008). 

Substance flow analysis, material system analysis and life cycle assessment are associated with 

the measurement of certain substances, materials and manufactured goods, and in general are 

concerned with their environmental impact, supply security, and technology development. In 

contrast, business level MFA, input-output analysis and economy-wide material flow analysis 

(EW-MFA) consider the environmental and economic concerns of material flows at the level of 

specific business, economic activity sectors, countries or regions. EW-MFA approach is focused 

upon in this dissertation and will therefore be described in more detail. A comprehensive literature 

review on MFA tools can be found in Huang et al (2012). 

EW-MFA is a standardized methodology to quantify material throughput from a direct 

consumption perspective (EUROSTAT, 2018). Its headline indicator, Domestic Material 

Consumption (DMC), is calculated as the mass of all domestically extracted raw materials and 

harvested biomass plus the mass of imports minus the mass of exports. The cut-off criteria 

adopted to define system boundaries for EW-MFA have been defined in order to reflect national 

administrative borders (i.e. countries) and in this sense are unambiguous. However, it should be 

recognised that the direct consumption perspective adopted by EW-MFA translates in an 
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inconsistent accounting boundary for what concern the raw materials and finished products 

measurement. In other words, DMC adds up the weight of raw material extracted domestically 

with the weight of traded goods along the administrative boundaries. Clearly, traded goods are at 

different stages of processing compared to raw material extraction, and those resources used in 

the upstream life cycle stages to produce the imported goods are not explicitly captured in DMC 

indicators. As an example, Dittrich and Bringezu (2010) estimated that the mass of hidden 

upstream flows related with traded goods amounted to 41 billion tonnes in 2005, roughly 4 times 

as much as the weight of traded goods. 

The accounting limitation of standardized EW-MFA drove academic efforts towards the 

definition of a more holistic measure of material consumption called material footprint (MF) 

(Wiedmann et al., 2015). MF indicators quantify both, direct and indirect flows of material 

consumption by combining the weight of traded goods with input-output tables containing 

detailed information of respective supply chains. Even if footprint indicators better connect 

environmental pressures to final consumption activities and, therefore, support a correct re-

interpretation of material efficiency, they are not exempt from uncertainties. In fact, the lack of a 

standardised approach to estimate indirect flows coupled with the higher methodological 

complexity often result in a wide spectrum of estimates even for a single product, groups of 

products or economy. For instance, a comparative study conducted by Eisenmenger et al. (2016) 

found that Austria’s MF ranged from 21 t/cap  to 30 t/cap according to six different datasets 

employed. Analogously, MF indicators also inherit shortcomings related to input-output 

accounting, such as the aggregation bias and price fluctuation. The first refers to the uncertainty 

caused by the aggregation of sectors with very different material intensity (Piñero et al., 2015); 

the second relates to the variations in physical flows due to price fluctuation rather than real 

physical changes27 (Weisz and Duchin, 2006). 

 
27 Physical flows in input-output table are represented or derived from monetary flows. 
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All in all, notwithstanding the incomplete interpretation of the real material dependence, EW-

MFA indicators are by far the most consolidated and worldwide used metrics informing on 

material use by a given economy. In Europe, EW-MFA indicators are an integral part of 

environmental reporting systems (EUROSTAT, 2018) and, more recently, also included within 

the Circular Economy monitoring framework. By describing the material throughput of an 

economy, EW-MFA permits to delineate socio-metabolic profiles of territories, providing 

important information and statistical indicators on material use. That is why EW-MFA indicators 

are generally used as reference by EU’s policies to monitor progress on, among others, circular 

economy, green growth, and resource productivity (EUROSTAT, 2018).  

EW-MFA records the material flows at two points: (i) flows from the environment to the 

(national) economy, denominated domestic extraction, and (ii) the flows from the (national) 

economy to the environment called domestic processed output. Domestic extraction refers to the 

material input derived from the environment and used within the economy 28  (e.g. mineral 

extraction, fossil fuel extraction etc). Domestic processed output refers to the residual materials 

resulting from a production or consumption process released back to the environment (e.g. 

emissions to air and water). EW-MFA presents some recording conventions that must be kept in 

mind when interpreting the indicators, these are: 

• Bulk material flows of water and air are excluded; 

• In the case of minerals, in order to infer from product to domestic extraction in a 

standardised way, the so-called “run-of-mine” concept (ROM) is applied. The ROM is 

the amount of extracted material containing the wanted metal or mineral that is submitted 

to the first processing step. It excludes any overburden (hidden flow) which does not 

contain the wanted mineral or metal; 

 
28 A distinction can be made between “used” and “unused” material: used refers to an input for use in any economy, 
i.e. whether a material acquires the status of product; unused flows are material that are extracted from the 
environment without the intention of using them (also termed as “hidden flow” in some early publication). EW-MFA 
record only extractions of material used, therefore the term “domestic extraction” always refer to “used” extraction 
(EUROSTAT, 2018, para. 66ff) 
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• In the case of biomass, the “harvest approach” is applied. It implies that cultivated forests 

and agricultural plants are treated as if they were part of the environment, therefore 

domestic extraction occur at the point of harvest and it is equal to the amount of material 

harvested. 

• Controlled landfills are produced assets and hence part of the economy. Material flows 

to controlled landfills are material flows within the economy and hence excluded from 

domestic processed outputs. 

Alongside the material flows between environment and economy, EW-MFA record the material 

flows between the reporting economy and the rest of the world economy. Trade between 

economies is accounted according to the residence principle and to the change-in-ownership 

principle. EW-MFA record a physical trade flow when the ownership of a good changes from a 

resident unit to a non-resident unit (physical export) and vice versa (physical import). Hereby a 

resident unit is defined as an institutional unit that has its centre of economic interest on the 

economic territory of that country. Therefore, any economic activity is attributed based on the 

residence of economic units rather than on the location of the economic units at the time of their 

production, consumption or accumulation. In other words, some activities by resident units (e.g. 

international air and sea transport) may actually happen beyond the economic territory of the 

national economy concerned, and vice versa. Figure 24 gives a simplified overview of the EW-

MFA framework and respective indicators. 

While domestic extraction measures the weight (tonnes) of amounts of virgin materials as 

extracted from the environment, the physical trade indicators (IMP and EXP) measure the weight 

of products as crossing borders. This asymmetry is often considered as a shortcoming, especially 

when we consider derived indicators such as DMI and DMC. Indeed, the weight of a traded 

product does not reflect the extraction of materials that was necessary to produce the traded 

product. Also, almost all products go through different stages of manufacturing through which 

they become relatively lighter in terms of actual weight compared to the material extractions 
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needed to produce that product. Due to this measurement asymmetry, a country that reduces 

domestic extraction and favours the imports of products in order to meet the same demand, would 

significantly reduce its DMI and/or DMC, even though the worldwide demand for material 

resource associated with its production and consumption does not change. 

Figure 24: EW-MFA accounts and respective indicators 

 

 

Own elaboration based on Eurostat (2018) 

 

The conceptually different measurement of domestic extraction and physical trade also hampers 

comparability of DMI and DMC across countries. Some countries are endowed with natural 

resources which tend to result in comparably higher domestic material consumption. Good 

examples in Europe are Estonia, which exploits large oil shale fields for electricity generation, or 
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several regions in Finland and Sweden that, thanks to the vast reserve of woodland, are the main 

EU producers of roundwood. Other countries do not have exploitable material deposits and need 

to import raw products or (semi-) manufactured and finished products, which are relatively lighter 

(e.g. Luxembourg, Malta, Cyprus etc.). Resource-rich countries tend to have a higher DMI and/or 

DMC compared to resource-poor countries, which have to rely on imports to meet the demand 

for material resources (EUROSTAT, 2018). 

In order to overcome the different measurement of DMI and DMC components, traded products 

can be converted into equivalents of domestic extraction – called raw material equivalents (see 

Figure 24, green boxes). Raw materials equivalent (RME) capture the amount of extracted 

material needed to produce a certain product. Extraction of raw material throughout the product’s 

entire production chain is taken into account, irrespective of whether the material extraction took 

place domestically or in the rest of the world. As such MFA-RME provide a consumption-based 

view of material requirement. However, to date, MFA-RME are not covered in Regulation (EU) 

691/2011 and are collected only on a voluntary basis. As a result, EUROSTAT disseminates EW-

MFA results measured in RME only for the aggregated EU economy. 
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