
The Resemblance Structure
of Natural Kinds

A Formal Model for Resemblance Nominalism

Javier Belastegui Lazcano

Supervisors: Dr. Thomas Mormann
Dr. Jon Pérez Laraudogoitia

A thesis presented for the degree of
Doctor of Philosophy

University of the Basque Country
November 2020

(cc)2021 JAVIER BELASTEGUI LAZCANO(cc by-nc-sa 4.0) 



Declaration of Authorship

I hereby declare that this dissertation, entitled “The Resemblance Structure
of Natural Kinds: A Formal Model for Resemblance Nominalism” and written
under the supervision of Thomas Mormann and Jon Pérez Laraudogoitia, is the
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Abstract

The aim of this thesis is to better understand the ways natural kinds are re-
lated to each other by species-genus relations and the ways in which the members
of the kind are related to each other by resemblance relations, by making use of
formal models of kinds. This is done by first analysing a Minimal Conception
of Natural Kinds and then reconstructing it from the ontological assumptions
of Resemblance Nominalism. The questions addressed are:

1. What is the external structure of kinds? In what ways are kinds related
to each other by species-genus relations?

2. What is the internal structure of kinds? In what sense are the instances
of a kind similar enough to each other?

According to the Minimal Conception of Natural Kinds, kinds have two
components, a set of members of the kind (the extension) and a set of natural
attributes common to these objects (the intension). Several interesting features
of this conception are discussed by making use of the mathematical theory
of concept lattices. First, such structures provide a model for contemporary
formulations of syllogistic logic. Second, kinds are ordered forming a complete
lattice that follows Kant’s Law of the duality between extension and intension,
according to which the extension of a kind is inversely related to its intension.
Finally, kinds are shown to have Aristotelian definitions in terms of genera
and specific differences. Overall this results in a description of the specificity
relations of kinds as an algebraic calculus.

According to Resemblance Nominalism, attributes or properties are classes
of similar objects. Such an approach faces Goodman’s companionship and im-
perfect community problems. In order to deal with these a specific nominalism,
namely Aristocratic Resemblance Nominalism, is chosen. According to it, at-
tributes are classes of objects resembling a given paradigm. A model for it is
introduced by making use of the mathematical theory of similarity structures
and of some results on the topic of quasianalysis. Two other models (the polar
model and an order-theoretic model) are considered and shown to be equivalent
to the previous one.

The main result is that the class of lattices of kinds that a nominalist
can recover uniquely by starting from these assumptions is that of complete
coatomistic lattices. Several other related results are obtained, including a
generalization of the similarity model that allows for paradigms with several
properties and properties with several paradigms. The conclusion is that, under
nominalist assumptions, the internal structure of kinds is fixed by paradigmatic
objects and the external structure of kinds is that of a coatomistic lattice that
satisfies the Minimal Conception of Kinds.
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ayuda en el ámbito administrativo, y en segundo lugar, a sus estudiantes y
seniors, entre otros a Caterina y Nasim, Maite Arraiza, Ekai, Iñaki y Hannot.
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SOCRATES: The first consists in
seeing together things that are
scattered about everywhere and
collecting them into one kind, so
that by defining each thing we
can make clear the subject of any
instruction we wish to give.

Phaedrus
Plato

1.1 The Problem of Natural Kinds

Natural kinds are objective kinds or sorts of things. They are ways things are
supposed to be arranged, organized or sorted ’out there in the world’. These
ways things are sorted into impose a minimally stable structure in the world.
The initial metaphor is that of a giant dovecote or a big wardrobe where every
object in the world has its place. When we classify objects, some of these ways of
sorting them seem to be more appropriate than others. Examples of kinds could
be pinguins, tulips or water. In contrast, garbage, grue things, all those liquids
that do not taste bitter to a human being who is 35 years old or the things that
were on my desk this morning, are not natural kinds. There is something odd
about these latter groupings. Although they might have been chosen according
to some pragmatic criteria and even if they may support successful inferences
in some restricted contexts, they are arbitrary collections of individuals that
strongly depend on our interests and conventions. Or at least, this is how the
realist sees the problem1.

A famous fragment of Borges’ tale ”El Idioma Anaĺıtico de John Wilkins”
helps to illustrate this point2:

”Esas ambigüedades, redundancias y deficiencias recuerdan las que
el doctor Franz Kuhn atribuye a cierta enciclopedia china que se
titula Emporio celestial de conocimientos benévolos. En sus remotas
páginas está escrito que los animales se dividen en a) pertenecientes
al Emperador b) embalsamados c) amaestrados d) lechones e) sirenas
f) fabulosos g) perros sueltos h) incluidos en esta clasificación i)
que se agitan como locos j) innumerables k)dibujados con un pincel
fińısimo de pelo de camello l) etcétera m) que acaban de romper el
jarrón n) que de lejos parecen moscas.”

There is something clearly wrong in this classification. It has several struc-
tural deficiencies. For instance, some animals do not belong to any of the classes

1Kinds have also been called ’types’, ’sorts’, ’secondary substances’, ’species and genera’,
and so on.

2A rough translation would be: ”These ambiguities, redundancies and deficiencies remind
us to the ones that doctor Franz Kuhn attributes to some Chinese encyclopedia entitled
Emporio celestial de conocimientos benévolos. In its remote pages it is written that animals
are divided into a) owned by the Emperor b) embalmed c) trained d) piglets e) mermaids f)
mythical g) loose dogs h) included in this classification i) which move crazily j) countless k)
drawn with a very thin paint brush made of camel hair l) etcetera m) which have just broken
the vase n) which look like flies when seen from far away.”
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mentioned (unless they go under ”etcétera” (i)). Classes (j) and (l) have been
given vague boundaries on purpose. It is not clear how literal the description
of class (j) is. Class (e) appears to be a proper species of (f), but the latter one
has no other proper species apart from (e). This is strange, are there no other
fantastic animals apart from mermaids? Some classes, such as (m), appear to
be empty, whereas others such as (h) and (n) are coextensional. In fact, some
classes seem to have nothing to do with the fact that their members are animals,
such as (b), (k) or (i). Some of these cases might be acceptable, nevertheless
their combination suggests that this classification is purely arbitrary: there does
not seem to be any rational criterion that has been used to divide animals into
classes and the classification seems to serve no clear purposes. This example
shows that not every classification of a given domain of objects is equally ac-
ceptable. Moreover, one could construct many other pseudo-classifications of
the same domain such as this one. The question is, why is this one unaccept-
able?

It seems that, given what we know about the nature of the entities to be
studied, some ways of classifying those objects are plausible and some of them
are not. It is as if the world itself put some constrains regarding which ways
of classifying those objects are adequate. Again, this is how the realist sees the
problem. The pressing philosophical question is whether there is some criterion
that allows us to distinguish between natural and non-natural kinds, or between
more or less natural kinds. It should come as no surprise that philosophers
strongly disagree about what natural kinds are, just as they disagree about the
nature of causation, identity, modality or existence. These conceptions can be
thought of as different proposals for an adequate description of the structure
of natural kinds. Kinds could be essentialist [34], causal [12], promiscuous [32],
conventional or conceptualistic [52], interactive (as Hacking has suggested for
social kinds), qualitative, functional [37], historical [36], and so on.

There are some assumptions regarding what kinds look like that seem to be
common to almost all theories. For instance, given some kinds, it is usually
some other entities, let us call them ’objects’, the ones that are classified into
kinds. One says that this or that object is of this or that kind or sort of thing.
Moreover, objects are clasified into kinds according to some criteria. Usually,
these criteria are based on how similar the members of a given kind are to each
other, on the features that these objects seem to share, on the relations in which
they stand to each other or on the roles they fulfil. It is also acknowledged that
some of these kinds are more specific than others. These relations between
kinds lead to ’universal claims’ about all the members of a given kind. For
instance, one can say that the kind of hammers is a species of the kind of tools,
the converse being false (given that other tools, such as screwdrivers, are not
hammers). A fortiori, whenever we consider a specific hammer a, we can safely
say that a is also a tool. There are other more theoretical roles that kinds are
supposed to fulfil, as will be seen in the next Chapter.

However, once we move beyond these platitudes, most theories of kinds
disagree. As suggested, the main division is that between natural kind realists
and natural kind anti-realists [11]. This classical debate is linked to the more
specific problem of scientific realism. It is not easy to give a clear formulation of
these views. For example, both [10] and [134] distinguish the following position
from other stronger commitments:

12



Natural Kind Realism There are natural kinds that reflect mind-independent
natural divisions in reality.

The strongest of these realist views is essentialism. Most essentialists hold
that objects belong to a kind in virtue of sharing some properties that are es-
sential to them and that are therefore exemplified by all the members of the
kind. A fortiori, each kind has a general essence consisting in those properties
whose exemplification by an object is a necessary and sufficient condition for its
membership to the kind. This view is quite strong because it has many conse-
quences regarding the modal features of the members of a kind. For instance,
it is thought to imply that an object could not have not belong to the kinds
it actually belongs to. Some essentialists even argue that these essences make
natural laws metaphysically necessary. In contrast, according to causal theo-
ries, kinds are bundles of properties that co-occur in virtue of some underlying
causal mechanism (geological processes, natural selection processes, and so on).
These theorists think that not all the members need to share exactly the same
properties, and thus they would qualify the previous analysis as ”most of the
members of a given kind tend to have such and such properties in common”.
According to these theorists, there may not be a specific set of properties which
are jointly sufficient and individually necessary to belong to the natural kind.

Why do realists think that the world is already divided into kinds? Plausibly,
one of the reasons is a variant of the popular No-Miracles Argument for scientific
realism. Suppose that you wake up in an exotic jungle. It is full of bizarre beings
that you have never seen, but that look roughly like the plants and animals
that you are familiar with. After some time wandering, you have started to
conceptually categorize the ’living beings’ in the jungle. The red insect-like
plants make a soft noise before dropping what seem to be edible seeds. The fox-
like creatures exhibit aggressive behaviour when you get close enough to them.
By trial and error and by carefully observing your environment, you learn which
plant-like things you can eat and which animal-like creatures are dangerous.
Some days later, you finally get out of the jungle. The simplest explanation for
your success through the jungle is that you have been roughly tracking kinds of
things that you did not know about. You are probably wrong regarding many
things. After all, you are developing a non-theoretical classification. You may
have wrongly thought that the red insect-like plants and the orange insect-like
plants were closely related to each other, that they are species of a common
kind. Or you may have wrongly thought that all the exemplars of the fox-like
creatures you found belong to the same kind. Maybe you were only tracking
similar behaviours or some similarities in superficial observable features and only
some of the exemplars you met happened to be members of a common biological
kind. But now suppose that there was no objective fact regarding similarities
between the entities in the jungle. There are no real differences or commonalities
between them, not even in their behaviours. Whatever similarities you think you
are finding are just imposed by your cognitive system over the inhabitants of the
jungle. How likely is it that you would survive the trip? Given that the plants
you ate or the animals you avoided had nothing in common, all the patterns
that you followed to get out of the jungle had no objective basis whatsoever.
How likely is it that all the seeds you ate were edible and had similar effects
on your organism if the plants they originate from had nothing in common?
Your successful trip would be no more than a very lucky coincidence. Realism
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is a plausible explanation to how we can manage to make roughly successful
predictions regarding the behaviour of the entities that surround us (see [133]
for a similar argument based on predictive power).

Nevertheless, some philosophers cast doubts on the very notions of natural-
ness and objectivity that realists appeal to (e.g. see [11] for some constructivist
positions). The term ’natural’ prompts many misunderstandings. If ’natural’
were understood as opposed to psychological, social, cultural (and also abstract)
or human made, then this would exclude by definition all the kinds of entities
studied by social sciences. But as said, philosophers understand by ’natural’
something closer to an objective difference. In this restricted sense, it may be
argued that even artefact kinds, like kinds of hammers or kinds of buildings, are
also natural kinds of some sort (e.g. archaeologists need to classify artifacts, but
they will only accept some of these classifications). Classifying individual arte-
facts by their function may be more natural than classifying them by the number
of scratches they have. Being natural does not imply being actual either3. I will
not purse these matters at length, but it is useful to remind ourselves of this to
prevent misunderstandings4.

In any case, the notion of naturalness is usually explained in terms of that
of ’objectivity’. But what does it even mean to say that ”there are objective
differences or divisions in the world”? Traditionally objectivity has been under-
stood as existential independence (in the sense of [77]). The basic idea is that
kinds would exist independently of the existence of minds or rational agents
capable of thinking about them. There are possible worlds where our familiar
kinds exist but where no minds exist. But this criterion faces well known dif-
ficulties [11]. For instance, it seems to exclude the possibility that there are
natural kinds of psychological states or processes, kinds of psychiatric disorders
or kinds of social processes. In other words, the kinds of objects studied by
economics, psychology, sociology and other social sciences would be considered
as non-natural. Although these kinds of entities are non-natural in the sense of
belonging to the ’social world’, there are reasons to consider the classifications
made in the social sciences to be more or less objective (e.g. see [23] for the case
of psychiatric disorders). Another notion (again in [77]), that of ontological in-
dependence with respect to identity, is also problematic. For example, it sounds
plausible to say that identity conditions for kinds (or even tokens) of mental
states and psychiatric disorders refer to the subjects in which they occur. In
that case psychological entities would depend for their identity on minds. But
surely differences between kinds of psychological processes like episodic memory,
deductive reasonings or attention are objective. One could argue analogously for

3For instance, one can easily distinguish between mythological or fictitious objects, like
Polyphemus or Elrond, and mythological or fictitious kinds, like the kinds Cyclops or Elf .
Of course, there are no such things in our world. Mythologists will probably recognize only
some of them as mythological kinds.

4For example, [119] has argued that species of minerals recognized by the International
Mineralogical Association (IMA) are not traditional natural kinds. Some of the reasons he
gives are based on an understanding of ’natural’ as opposed to ’artificial’ or ’human made’,
which is the notion of ’natural’ that the IMA uses. A crystal formed by SiO2 ’found in nature’
and one formed by technicians in Bell Labs would belong to the same kind quartz. That is
allegedly wrong since only the former one is natural. But the same could be said concerning
any instance of a new chemical element that was synthesized in a laboratory. This is not the
notion of naturalness that will be assumed in this thesis. If the two particular entities have
the same chemical composition and crystalline structure, then they plausibly belong to the
same natural kind, regardless of whether the instances have been created in a laboratory.
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the case of social entities or facts. For instance, E. Durkheim proposed suicide
as an example of a social fact, the paradigmatic kind of event that sociologists
should study. The kinds of structures of kinship and of exchange of goods stud-
ied by anthropologists may also be considered to be objective. It seems simply
wrong to say that there is no objective difference between a nuclear family and
an extended one, or between a religious ceremony and a penal institution. One
could think that what is objective, in the sense of being independent of the ex-
istence of minds, are the membership conditions of the natural kind. Often the
criterion according to which some objects belong to a kind instead of another
one is the result of an explanation that makes use of theoretical principles. But
once more, whether something is a mental token of a given kind surely depends
either for its existence or for its identity on some minds.

Some philosophers also question the idea that nature is ’carved at its joints’.
According to them, there are no joints at all5. It is us who put them in the
first place. The world (if it makes sense to talk about such a thing) is a non-
structured collection of things. The similarities and differences that we allegedly
observe (or theorise about) among objects depend much more on our attention,
interests, prejudices, conventions or cognitive capacities than on the structure
of the world itself. The belief that this is not so is just the result of habits
and a psychological tendency to expect that objects come already hierarchically
organized into kinds. The classificatory structure of the world is at most a
psychological projection6. A beautiful metaphor for conventionalism can be
found in [138]:

”(. . . ) we are facing questions of realism at the metaphysical level,
in the sense I have just explained: realism about the structure of
the world, not about its content. And in this connection the oppo-
sition is not between Quine and Meinong—between the desert and
the jungle. It is between Quine and Aristotle, between the desert
and the garden, so to speak—and I mean a natural garden, like the
Garden of Eden, with its tidily organized varieties of flora and fauna
neatly governed by natural laws that reflect the essence of things
and the way they can be, or the way they must be. To the extent
that you believe that the world is like a garden in this sense—that
it comes structured into entities of various kinds and at various lev-
els and that it is the task of philosophy, if not of science generally,
to ”bring to light” that structure—to that extent you are a realist.
But if you think that the Edenic tree of the knowledge of good and
evil is a fiction and that a great deal of the structure we are used
to attribute to the world out there lies, on closer inspection, in our
head, in our organizing practices, in the complex system of concepts

5Other philosophers, like Dupré [32], think that there are too many joints in the world.
6The strongest anti-realist thesis would hold that the world is a giant blob in which there

are no real distinctions among objects. That is to say, it is ontologically indeterminate whether
”two” given objects are identical or not. This may be due to the fact that whether something
is a particular or not is also indeterminate. In this extreme case, even the distinctions among
objects would be the products of our cognitive system, linguistic conventions or cultural
upbringing. This thesis seems to require some sort of indeterminacy of identity, but there are
several strong arguments against it, e.g. [38]
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and categories that underlie our representation of experience and
our need to represent it that way—then, to that extent you are not
a realist.” [138]

In that paper Varzi7 makes use of the concept of boundary to argue by
analogy that there are no real divisions in nature. From a plane, the coast of
Great Britain can seem to be a line that clearly separates what is inside the
island from what is outside of it. But as the plane approaches the coast this
boundary gets fuzzier and fuzzier, until it disappears leaving behind a confusing
mass of rocks, animals and plants. It is the limitations of our cognitive system
what make us believe that there is a determinate boundary that clearly separates
the two sides. Something analogous would happen in the case of natural kinds.

However, a world without natural kinds is odd, more than it may seem at
first sight. Suppose that all the resemblances we observe between objects are
the result of choices made by our cognitive system. Consider the following
disturbing scenario:

”When Smith wakes up in the morning he sees many familiar ob-
jects in his kitchen: his two mugs of coffee, his cactus, his cat Pipo,
and so on. A couple of hours later, Smith is lucky to perceive the
world as it really is. It is difficult to convey what he discovers. He
notices something odd in his kitchen. Everything has stopped being
familiar. The objects are so detailed that Smith wonders how he
has possibly considered them to be of the same kind. He compares
his two mugs of coffee. Obviously the mugs are completely differ-
ent objects, as shown by the hue and saturation of their colour, the
enormous difference in millimetres of their height, the differences
in the shapes of the printed images, the way coffee is poured and
splashes from the coffee pot in each of them, and so on. In fact, it
is unclear why someone would group them under the same name.
Smith looks fascinated at his kitchen: each of the tiles, and each of
the parts of a tile, is radically different from the rest. ”One would
have to arbitrarily ignore important properties of objects in order
for him to come up with the strange idea that they have something
in common” he thinks. Smith calls his cat ”Pipo”, twice. But he
doubts that he has actually used the same word. He, like Funes the
Memorious, remembers having made two clearly different sounds. In
his mind the two words have clearly different spellings. ”Why are
the first and the second sounds the same word, and how are they
different from ”house”?” he asks. Smith, as a good reader of Locke,
realizes that he should have named each object with a different name
to avoid misunderstandings.”

In Smith’s world, the world as it really is, objects do have properties. Al-
though there are differences, given that every object is radically different from

7Varzi does think that the world is minimally structured, namely, mereologically.
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the rest, objects have no common properties and the properties they have are
too different from each other. To put it differently, there are only trivial kinds.
There is a unique kind for each object. Before having this experience and due
to his cognitive limitations, Smith could not discover what the world is like. For
instance, it may be that his limited visual perception forced him to ignore or
identify real differences. However, during the experience Smith has cognitive
capacities which are vastly superior to the ones that any known measurement
instrument could afford him. He just needs to carefully look at any region in
the space to see with unlimited precision everything that happens in each of the
parts of that region. A dual but more monotonous scenario could be devised
where all the objects in the world are equally similar to each other. Imagine
a world where all objects are perfect duplicates. Notice that it will not do to
imagine a world full of people that are all clones. After all, each of their parts
should also be a duplicate of the rest. The closest picture one can get at is an
abstract one of atomic entities that are all copies of each other, or of a world
of points that are spatially indistinguishable. Objects are numerically distinct
from each other, but that is all. All objects are of the same kind, one cannot
find any differences among them. In that world there is at most one kind of
object. These two extreme scenarios suggest that if it is our cognitive systems
what force us to group objects together and if the resemblances noted are not
really grounded in the world, the resulting pictures are disturbingly odd.

Of course, not all sorts of anti-realism make the same claims made by Varzi.
A different sort of conventionalism is found in Hacking [52], which is a direct
sceptical attack to the notion of natural kind (based on a previous histori-
cal analysis of different conceptions of natural kinds in [51]). Hacking reviews
most of the contemporary theories of kinds, and from this plural mess of po-
sitions and notions he extracts pessimistic conclusions regarding our contem-
porary state of ”scholastic twilight”. Hacking’s main argument seems to be
some sort of pessimistic induction: there are several different notions of natural
kind (Whewell’s, Mill’s, Venn’s, Russell’s, Putnam’s, and so on) and theories
of natural kinds which are incompatible with each other (scientific essentialism,
causal theories, and so on). Each of these relates the notion of a natural kind
with some philosophical concepts instead of others (causation, induction, laws,
and so on) and none of them seems to have given us any real understanding of
how science works. Hacking’s conclusion is that it is highly probable that there
are no such things as natural kinds. At least there are relevant kinds or sorts
of objects. At most, kinds are just, as Whewell put it, ”classes denoted by a
common name about which there is the possibility of general, intelligible and
consistent, and probably true assertions”, in other words, extensions of general
terms. According to Hacking, the notion of natural kind should be exorcised:

Take any discussion that helps advance our understanding of nature
or any sicence. Delete every mention of natural kinds. I conjecture
that as a result the work will be simplified, clarified, and be a greater
contribution to understanding or knowledge. Try it. [52]

But Hacking’s argument is a non-sequitur: from the plurality of conceptions
and theories of natural kinds it does not follow that the concept is sterile. The
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same could be said of many other fundamental philosophical concepts, such as
causation or knowledge. For the time being, there is no much that we can say
to counter Hacking’s challenge. Nevertheless, this thesis is written with the
aim of showing that kinds are not simply ”classes denoted by a common name
about which there is the possibility of general, intelligible and consistent, and
probably true assertions”. I hope that something more informative can be said
about them.

1.2 Aim, Methodology and Results

1.2.1 Aim of the Thesis

There are already many theories of natural kinds. There are also many discus-
sions concerning whether a given sort or kind of object is natural or whether
the sorts or kinds described by classifications in science (such as the biological
species) are indeed natural kinds. In contrast, the aim of this thesis is not to
defend a specific theory of kinds nor to debate whether a specific sort or kind is
natural. The aim is rather to assume a Minimal Conception of Kinds in order to
explore two structural features of kinds by making use of mathematical models,
in order to further our understanding of several specific principles about kinds8.
These are:

i The external structure of natural kinds, that is to say, the different ways
in which kinds are ordered by species-genus specificity relations.

ii The internal structure of natural kinds, that is to say, the fact that the
members of a given kind have several common properties or are sufficiently
similar to each other.

This Minimal Conception of Kinds will be introduced in Chapter III. It can
be formulated as follows:

Minimal Conception of Kinds Every kind has as members some objects
(the extension) sharing certain sparse attributes (the intension). More
strongly, all the objects share all these attributes, and these attributes are
all those sparse attributes shared by these objects.

Any model involves some ontological assumptions regarding the primitive
or fundamental entities to be described. The formal model used to explore the
Minimal Conception in Chapter III is based on the theory of concept lattices
and appeals both to objects and attributes in order to explain what kinds are.
Since these attributes behave like universal entities, the question arises whether
one could give a nominalist model of kinds that satisfies the Minimal Concep-
tion and does not posit these attributes as primitive entities. In order to explore
this issue, I choose an ontological position known as ”resemblance nominalism”.
The nominalist only assumes that objects are in categorical resemblance re-
lations to each other. Properties are constructed as derived entities, they are
usually considered to be classes of similar objects. Despite the fact that I favour

8Since I will be only concerned with the structure of kinds I will make use of both scientific
and vernacular examples as needed.
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resemblance nominalism, I want to highlight that the aim of this thesis is not to
defend resemblance nominalism as the best account of the nature of properties
or something like that. The aim is philosophically more modest, since for the
most part (except when it comes to the formal objections to it) I will assume
that such an account is at least defensible. Instead, the more specific aim of
this thesis is:

Aim of the Thesis To develop a formal model for kinds that satisfies the
Minimal Conception and is based on the ontological assumptions of re-
semblance nominalism.

Resemblance nominalists do not posit universal attributes and they offer
as surrogates classes of similar objects. The nominalistic kinds are defined in
terms of these properties. A fortiori, the nominalist reconstruction is done in
two steps:

1. First, the natural attributes are reconstructed as collections of similar
objects.

2. Second, the natural kinds are reconstructed as pairs consisting of a set
of objects and a set of attributes (where these attributes are the ones
obtained in the first step).

The first step will lead us from a model based on similarity relations to a
structure representing objects and properties in exemplification relations (what
is called a ’formal context’). The second step leads us from this structure to the
lattice of nominalistic kinds. More specifically, the whole process can be divided
into three stages, as follows:

i I select a class of mathematical structures that provide a model for the
Minimal Conception of Kinds, with the aim of giving an explanation of
the external structure of kinds. This model is very rich: it provides a
semantics for syllogistic logic, it implies the Kantian Law of the duality
between extension and intension, it has as special cases the hierarchical
tree-like models of kinds and it allows for the definitions of kinds in terms
of specific differences. We can call such a model a realist model. This is
done in Chapter III.

ii I select a class of mathematical structures that provide a model for a spe-
cific conception of resemblance nominalism, namely aristocratic resem-
blance nominalism, with the aim of explaining the internal structure of
kinds. This model respects the basic formal properties of categorical simi-
larity and will be shown to have several equivalent formulations. Moreover,
this model sheds some light on the controversial notion of a paradigmatic
object. We can call such a model a nominalist model. This is done in
Chapter IV.

iii I show which subclasses of realist models can be reconstructed from the
nominalist ones. The properties of the corresponding lattice of kinds are
studied in detail. In other words, the models used by the realist are
’translated’ to models used by the nominalist. This is done in Chapter V.
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At this stage, one could object that such a ’reconstruction’ is an idle formal
exercise. At best, it would be a convoluted and esoteric way of rephrasing some-
thing that we already know. At worst, it would give an obscure reformulation
of the problem that misses its crucial relevant features, or a replacement of the
original problem by something completely different (as Strawson argued time
ago). I think that such a view is misleading. By making formally explicit those
assumptions that connect some concepts to others we are lead to general prin-
ciples that, despite being evident or trivial once formulated, could have gone
unnoticed. As an example, in order to give the nominalistic reconstruction of
kinds a Minimal Conception of Kinds and the corresponding realist model for
kinds were chosen in Chapter III. A closer look at this model lead me to focus
on a principle about the external structure of kinds that is no longer discussed
in the literature on kinds, namely Kant’s Law of the duality between extension
and intension. Furthermore, in the chapter it is also shown that definitions of
kinds in terms of specific differences can be given in the model. However, al-
though Kant’s Law and the form of Aristotelian definitions have been known
for centuries, one could have hardly guessed just by looking at their informal
formulations that they followed directly from the algebraic structure induced by
the order relations among kinds (as defined by the Minimal Conception).

Moreover, the ’translation’ given is made systematically rather than just
giving simple paraphrasing templates (as are usually found in the metaphysics
literature, at least on the topics related to this thesis). A fortiori, this results
in a detailed explicit analysis of the conditions needed for such a reconstruction
to succeed. This is not to say, of course, that the proposal in this thesis is
free of problems. In fact, the results are limited, as it will be argued later on.
But again, these limitations could have hardly been found just by looking at
the informal formulations of the problem. Nevertheless, and independently of
whether these results turn out to be of any philosophical relevance, the point I
want to make is that such an attempt of reconstruction can lead to more insight
into the topic just by forcing us to make explicit all the assumptions involved.
In any case, since a formal approach to kinds is uncommon, it is convenient to
consider in more detail the methodology that is used in this thesis.

1.2.2 Methodological Remarks

Regarding the methodology to be used, as was said, in Chapters III-V I will ap-
proach the problem of natural kinds using formal models. This is not to say that
all there is to this thesis are the mathematical models. Philosophy proceeds by
arguments, and there are many kinds of non-deductive inferential relations. One
argues by analogy and by considering the explanatoriness of whole philosophical
theories, introduces informal thought experiments and counterexamples, com-
pares the obtained results to those found in other academic disciplines, and so
on. Moreover, the plausibility of the assumptions introduced in the models has
to be argued somehow and one cannot be expected to do so deductively.

That being said, this is a PhD thesis on mathematical philosophy. I am
firmly convinced of the usefulness of mathematical models to make us better
understand philosophically interesting phenomena and I am sure that the prob-
lem of natural kinds will not be an exception in this regard. Given that a formal
approach to natural kinds is uncommon, it will be useful to consider some gen-
eral features of this methodology. Formal models have already been fruitfully
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applied to philosophically interesting phenomena such as truth, modality, vague-
ness, confirmation and induction, and so on. Although formal methods are more
popular in philosophy of science (see for instance [71] for an overview), semantics
and epistemology, there are now standard formal treatments of metaphysically
fundamental topics like modality, mereology or causation. Application of these
formal methods has allowed us to shed light on specific principles and inferential
relations between these principles that may have passed unnoticed to the un-
aided thinking. For instance, think about de re/de dicto and scope distinctions,
the many applications of possible world semantics or the Bayesian approaches to
the paradoxes of confirmation (and other epistemological problems). By anal-
ogy, one can expect that formal models will be useful for the problem of natural
kinds too. As for the benefits of model-building, [145] has a more elaborate
discussion on the role of models in philosophy. As the author contends, models
can be used to keep the philosophical theory consistent, make qualitative pre-
dictions (e.g. some logical principles may not hold in the domain at issue), build
counterexamples, make crucial distinctions, allow for computational simplicity,
and so on.

Not everyone is optimistic regarding the development of an informative and
strong formal framework for natural properties and natural kinds though. Take
as an example the following quote by Williamson himself [144]:

”Metaphysically universal generalizations of logic are the structural
core of metaphysics. We need the best logic we can get. Logic
restricted to natural properties and relations is pathetically weak.
Imagine such a restricted version of Leibniz’s Law for identity: it
says that identicals have all their natural properties in common.
Someone claims to be Nicolas Sarkozy. We point out that Sarkozy
speaks French and he does not. He agrees, but objects that since we
have not shown speaking French to be a natural property, we have
not refuted the identity. Metaphysics based on weak logic wastes its
time taking crank theories seriously. It needs a strong logic with laws
of unrestricted generality. For example, a better version of Leibniz’s
Law says that identicals have all their properties (however unnat-
ural) in common. If all natural properties and relations satisfied
strong structural generalizations, expressible as laws of higher-order
modal logic not satisfied by all unnatural properties and relations,
that might be some reason to formulate higher-modal logic with
correspondingly restricted quantifiers. But the extensive literature
on natural properties and relations has produced no such strong
characteristic logic of natural universals. Rather, some of the most
informative principles of higher-order modal logic depend on the ab-
sence of any naturalness restriction. The most obvious example of
a logical principle of higher-order logic that depends on unnatural
properties and relations is the comprehension schema (. . . )” [144]

I think that Williamson’s pessimistic attitude regarding the possibility of
a successful formal framework for natural kinds is premature. Hopefully the
proposals made in this thesis will have shed some light on this vexed topic.
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Regarding the methodology of modelling, some general comments are in
order. First, every model has some limits to its representational power. As
philosophers of science have repeatedly pointed out, models usually introduce
representational artefacts. They include features that do not correspond to
anything in the world. From the point of view of metaphysics this may be
particularly dangerous, after all, we want to have a clear view on which compo-
nents in the representation correspond to something in the world and how, and
which ones do not. But sacrificing a bit of adequacy may be worthy enough if it
fosters simplicity and fruitfulness. Besides, the lost adequacy may be recovered
in the future when we have better models at our disposal. Sometimes models
are not fine-grained enough and do not allow to make some distinctions we can
pretheoretically identify. Moreover, models systematically ignore features of the
domain that are selected by the researcher as irrelevant for the purposes of in-
quiry. Although we should always try to look for models which are closer to
the features of the phenomenon we are studying, we have to keep in mind that
a complete match will never be obtained. Nevertheless, it is this same feature
of models what allows them to be fruitful. We only need to remind ourselves
of Borges’ tale ”On Exactitude in Science” about the perfect map of the world.
If one wants a perfect model of the world, he should take the world itself as a
model. But the world is clearly useless if it is to be used as a tool to understand
the world. That is the whole point of using models. The choice of a good model
involves balancing all these aspects, especially the tension between adequacy,
simplicity and fruitfulness. So it is, as Williamson himself puts it, more an art
than a science.

Second, whenever a formal model for some philosophically interesting phe-
nomenon is introduced (part-whole, possibility, causation . . . ), philosophical
disagreement about some of the basic principles embodied by the model tends
to lead to the development of weaker or alternative models of that same phe-
nomenon. A plurality of alternative models quickly emerges. New questions
arise regarding the differences and similarities between the conceptions embod-
ied in these models, about their fruitfulness for tackling the original problem or
about the possibility of finding translations or correspondences between them.
Although this plurality can lead to some skepticism regarding how unified the
original phenomenon was, it can show us how naive and coarse our original
conceptions were and can also span richer discussions concerning the specific
conditions and principles that have to hold for some of the interesting philo-
sophical theses about the phenomenon to be true. This plurality of models
allows us to carve more carefully the different species of the original phenomena
or to consider what happens when additional parameters are introduced. Such
a plurality is usually a sign of theoretical maturity and is to be welcomed.

Lastly, when I refer to ’formal’ models I do not intend to limit myself to
different logical systems or to theories falling under the subject of ’mathematical
logic’. For instance, formal epistemology uses probability theory and related
mathematical theories like decision theory or game theory besides epistemic
logic. Once we have accepted the use of other mathematical theories than logic
to model philosophically interesting phenomena (like degrees of confirmation or
utilities), it does not seem reasonable to restrict our formal repertoire in advance.
Of course, one has to argue for the appropriateness of the mathematical tool
that is being proposed by showing that it is philosophically fruitful regarding the
problem at hand. In particular, this thesis will use concepts from order theory
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and the theory of similarity structures to develop models for natural kinds. The
reader will judge whether these tools were adequate for these purposes.

1.2.3 Main Results

The main results of this thesis have already been mentioned. Broadly speaking,
they are:

i An appropriate model for a Minimal Conception of Kinds based on the
theory of concept lattices is selected and is used to analyse the external
structure of kinds. (Chapter III)

ii An appropriate model for Aristocratic Resemblance Nominalism based
on the theory of similarity structures is given and is used to analyse the
internal structure of kinds. (Chapter IV)

iii Several specific results concerning the nominalist reconstruction of a cer-
tain class of realist models are given. (Chapter V)

Let us break down each of these results into further pieces. Regarding the
first result in Chapter III, it contains the following:

1. Kant’s Law of the duality between extension and intension, according to
which the extension of a kind is inversely related to its intension, is shown
to hold in the concept-lattice model of kinds. In contrast, the hierarchy
condition is shown to be a special case of the model. The relations be-
tween this model and others present in the literature, such as Thomason’s
algebraic model of kinds and Corcoran and Martin’s syllogistic logic are
highlighted.

2. Two new operations of specific difference are introduced into the model
and shown to be defined in any such concept lattice. The properties of
these operations are studied. This allows for definitions of kinds in terms of
genera and specific difference. Moreover, each specific difference is shown
to induce a non-classical internal negation of kinds, whose properties are
also studied. A comparison between the picture given by the model and
the classical Aristotelian one is made.

3. A brief sketch of a modal expansion of the model is given, in order to
allow for changes in the extension of a given kind across different possible
worlds.

These results give more insight into the species-genus specificity relations
according to which kinds are ordered and provide a realist model of kinds to be
reconstructed by nominalist means in the following chapters.

About the second one in Chapter IV, it is further subdivided as follows:

1. The basic formal properties of similarity structures are introduced in dif-
ferent but mathematically equivalent ways, including two axiom systems
for similarity in terms of already known similarity operators. Fundamen-
tal results (by Brockhaus, Mormann and so on) concerning similarities are
reviewed (including Brockhaus Theorem).
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2. The basic properties of categorical similarity are defended against some
objections. More specifically, Tversky’s criticism of symmetry is consid-
ered at length.

3. A new subclass of similarity structures, namely the pure similarities of
order 1, is introduced and suggested as a plausible model for aristocratic
resemblance nominalism. Several properties of this class of structures
are proven. More specifically, it is shown to be a subclass of the class of
similarity structures to which Brockhaus Theorem of quasianalysis applies.
Two alternative models, the topological polar model by Mormann and
Rumffitt, and a new order-theoretic model, are introduced.

Concerning the third one in Chapter V, it can be further subdivided as
follows:

1. It is proven that the three resemblance nominalist models introduced in
Chapter IV, namely the polar model, the order-theoretic model and the
similarity model, are mathematically equivalent. The corresponding set-
theoretic realist structures to which they are equivalent (the polar con-
texts) are also introduced. Under the assumption that each of them is
independently plausible as a model of the nominalist ontology, the fact
that they are equivalent suggests that the choice was appropriate. This
result clearly delimits the class of realist structures that can be recon-
structed (in a unique way), and therefore the class of realist models that
the nominalist can reconstruct.

2. It is proven that the concept lattice that can be obtained starting from a
pure similarity of order 1 is (co)atomistic. This means that every natural
kind can be obtained by combining its infimae species (or its maximal
general). Moreover, it is also proven that every such complete lattice can
be obtained uniquely in that way starting from a similarity, for it is shown
that each such similarity (that satisfies a stronger indiscernibility axiom)
uniquely corresponds to a specific kind of ’(co)atomistic’ order. This gives
us a description of the class of specificity orders between kinds that the
nominalist can mimick and allows for finding more specific kinds of or-
ders that can be reconstructed just by adding the corresponding axioms
to the similarity structures. Furthermore, the quasianalysis is shown to
give several equivalent representations of objects: the same object can be
represented as the set of its paradigms or as the set of its attributes (which
are classes of similar objects). A fortiori, the nominalistic kinds also have
different equivalent representations.

3. Several concepts and results concerning similarities of order 1 are general-
ized to similarity structures (called ’simple’ similarities) where there is an
arbitrary number of paradigms for each property and each paradigm can
have an arbitrary number of properties. Although this results (in a sense)
in a loss of uniqueness regarding some corresponding realist contexts, it
leads to a more plausible model (for aristocratic resemblance nominalism)
than the one given by pure similarities of order 1.

The combination of these three results gives a picture of what the natural
kinds look like for the nominalist. The first result shows that different intuitions
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on how to model the nominalist assumptions about properties (understood as
classes of similar objects) lead to mathematically equivalent models. The nom-
inalist reconstructs each realist property as a maximal set of similar objects
that is determined by a special object, called a ’paradigm’. The corresponding
realist structures are described by making use of the correspondence with the
polar model.

The second result gives more details regarding the external structure of nom-
inalistic kinds. It turns out that positing paradigms is some sort of qualitative
atomism. This means that each kind can be obtained as the overlapping of
its maximal genera (or as the sum of its infimae species). This includes as
particular cases, atomic complete boolean algebras and atomic trees, but also
other kinds of structures. The quasianalysis provides several equivalent ways to
present a given object as a bundle of paradigms or as a bundle of properties.
This representation extends to the kinds themselves.

The third result allows for weakening the original assumptions about the
nature of paradigmatic objects. Paradigms as posited in Chapter IV, are strange
creatures. They are objects that are in one-one correspondences with properties.
This means that each such paradigm has a unique property, and each property
has a unique paradigmatic instance. It is instructive to think of paradigms
as duals to haecceities. Whereas an haecceity is a property had by a unique
object, a paradigm is an object that has a unique property. In any case, these
qualitatively point-like or atomic entities look suspicious. Ordinary objects have
usually several properties, and if properties have paradigmatic instances then
it is highly likely that they have several of them. The third result shows that
there are more general models in which each paradigmatic object has several
properties and each property has several paradigmatic instances. This allows
for the formulation of a more plausible aristocratic nominalism.

These results allow for a limited answer to the questions that motivated this
thesis in the first place, namely a search for a better understanding of both the
external and internal structure of kinds: under nominalist ontological assump-
tions regarding the nature of objects and resemblance relations, the internal
structure of kinds is determined by the similarities among these objects and
their paradigms, whereas the external structure of kinds is that of a complete
(co)atomistic lattice that satisfies the requirements of the Minimal Conception
of Kinds. The limits of the approach taken in this thesis and the problems that
remain open will be briefly discussed later on.

1.3 Summary of the Chapters

The structure of the thesis is the following one:

i Chapter I: Introduction.

ii Chapter II: Theories of Natural Kinds.

iii Chapter III: The Hierarchical Structure of Natural Kinds.

iv Chapter IV: The Resemblance Structure of Natural Attributes.

v Chapter V: The Resemblance Structure of Natural Kinds.
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vi Chapter VI: Conclusion.

vii References.

The aim of Chapter II is to introduce the problem of natural kinds. First, I
present a state of the art to show why the topic of kinds is philosophically rele-
vant. Kinds have been posited in order to deal with several philosophical prob-
lems, such as the epistemological problem of induction, the metaphysical problem
of universals, the semantic problem of the reference of natural kind terms and
the methodological problems related to the role of classifications. Second, I
expand on this state of the art by reviewing the main theories of kinds, namely
Scientific Essentialism and Cluster Theories. I argue that, despite the fact that
these approaches make substantive assumptions about the nature of kinds, they
leave several questions regarding their structure unanswered. For instance, they
are silent on the specific principles that the specificity relations between kinds
satisfy, between these and the fact that the members of a kind are supposed to
share some natural properties, and so on. I also consider Conceptualism briefly.
Despite the fact that conceptualist approaches to kinds (which take kinds to be
concepts) are not very popular today, theories like that of conceptual spaces do
suggest specific principles about the structure of kinds and formal models for
them that provide a starting point for such a discussion. In contrast, I suggest
to follow an alternative path of studying the external and internal structure
of natural kinds by exploring a minimal conception through a formal model.
The external structure of kinds concerns the ways kinds are ordered by species-
genus specificity relations, whereas the internal structure of kinds concerns the
ways the members of a kind are related to each other by similarity relations (or
by sharing natural attributes). This Minimal Conception of Natural Kinds is
introduced in the next chapter.

The aim of Chapter III is to discuss the possible external structure of nat-
ural kinds by making use of a formal model. Traditionally, kinds have been
thought to be ordered according to species-genus relations. The chapter starts
by analysing a condition (which goes back to Porphyry) found in the litera-
ture that requires kinds to be hierarchically ordered in a tree-like fashion. This
condition will turn out to be too strong, but it will pave the way for a more
nuanced analysis of the possible order relations that may hold between kinds.
In this chapter the first serious use of modelling techniques is made. First, the
lattice-theoretic model of kinds developed by Thomason is considered. As an
argument for its plausibility, it is shown that it provides a semantics for the
syllogistic logic of Corcoran and Martin. Under the assumption that kinds are
at least related to each other as described by the classical Square of Opposition,
this provides a reason for taking the lattice-theoretic model to be a plausible
model for kinds. Second, a Minimal Conception of Kinds based on some fea-
tures traditionally assigned to kinds is described and assumed throughout the
whole chapter. According to this conception, kinds are bi-dimensional entities
constituted by an extension (the objects that are members of the kind) and an
intension (a set of natural properties exemplified by the members of the exten-
sion). Furthermore, a detailed formal model for it (by making use of formal
concept lattices) is introduced. This model is shown to be a special case of
Thomason’s and therefore provides a semantics for syllogistic logic. Moreover,
in contrast with the other two, this one does give some information regarding
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the ways kinds are related to each other. In particular, the traditional Kan-
tian Law of the duality between extension and intension is shown to hold in
the model. Thirdly, several novel aspects of the model are discussed, including
Aristotelian definitions in terms of specific differences and internal negations.
Finally, a comparison between the model and the Aristotelian conception of
kinds is drawn and a sketch of a modal approach is also given. Roughly put,
this results in a model of an ’Aristotelian world’, whose fundamental ontology
consists of particular objects related to universal attributes by exemplification
relations.

Chapters IV and V work in tandem. Their aim is to explore the internal
structure of natural kinds. According to the model introduced in the previous
chapter, what makes several objects members of a kind is the fact that they
share some natural attributes, which are plausibly understood to be universals.
Therefore, the question arises whether a nominalist could give an alternative
account of kinds that still satisfies the basic constraints of the Minimal Con-
ception. First, I start by discussing some features of resemblance relations. I
briefly introduce the theory of similarity structures and I reply to some standard
objections to the notion of categorical similarity. The most important objec-
tions come from the empirical work by A. Tversky in psychology, that seems
to show that similarity is neither a reflexive nor a symmetric relation. Then
the basic forms of resemblance nominalism are introduced, namely egalitar-
ian, aristocratic and collectivist resemblance nominalisms. After a discussion of
Pereyra’s egalitarian approach, aristocratic resemblance nominalism is chosen.
According to this conception, properties are represented as maximal classes of
similar objects. However, not all the objects in the class fulfill the same roles,
some of them are more typical instances of the property and therefore play a
more fundamental role in structuring the class. These special objects are the
paradigms. This version of nominalism is the metaphysical analog of the pro-
totype view of concepts. However, since this version of nominalism is usually
considered to be underdeveloped and technically defective (some objections by
Pereyra are reviewed), a discussion on the nature of these paradigmatic objects
is given. Finally, three different models for aristocratic resemblance nominal-
ism are introduced. The first one is a topological model called the polar model
taken from contemporary research by Rumfitt and Mormann on vagueness and
conceptual spaces. According to this model, objects are represented as points in
a space and each object is thought of as being arbitrarily close to its paradigms.
The second one is based on Mormann’s suggestion that the specialization order
of weakly-scattered spaces is a good model for the prototypicality order among
objects. I extended this model by (putting it upside-down and) adding an ax-
iom to it and I made a proposal regarding what the attributes would be (fixed
ultrafilters). The third one is based on a special class of similarity structures,
the pure similarities of order 1, which is introduced in this thesis for the first
time (although it is based on previous work on quasianalysis by Brockhaus and
Mormann). According to this model, paradigms are objects that have a special
role as building blocks of the resemblance relations that hold among all objects.
I briefly argue for the material adequacy of these models with respect to aris-
tocratic resemblance nominalism. Although the models make use of apparently
different structures, in the next chapter it will be shown that they are actually
equivalent.

In Chapter V I reformulate the nominalistic challenge to universals as the
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quest for constructing a surrogate for a realist structure of universals from a
purely nominalistic ontology, by devising a structural mapping from the former
one into the latter one. In other words, the aim of the nominalist is to find a
’translation’ from the model of the realist (that appeals to universal entities) to
a structure constructed from its own model (that only appeals to resemblances
between objects). The idea is that if such a mapping can be constructed, then
the model of the nominalist will have at least as much explanatory power as
that of the realist. From the point of view of the resemblance nominalist, this
requires us to deal with Goodman’s objections to Carnap’s quasianalysis by
putting to work the model introduced in Chapter IV. For these purposes, a
reductive result is proven for a limited class of realist structures that shows
how the nominalist can reconstruct the structures the realist starts from just
by assuming the similarity model (including surrogates for the latter’s entities,
formal relations and basic ontological principles). This result shows that the
previous three models for aristocratic nominalism are all of them equivalent
to each other. Once this surrogate structure is in place, it is shown how the
corresponding nominalistic lattice of natural kinds is built (by following Chapter
III) and which properties this lattice has. In other words, the results in this
section give a description of the class of external structures of kinds that the
aristocratic nominalist can recover. More specifically, it is shown that the class of
lattices that can be so reconstructed is that of (co)atomistic lattices. Moreover,
several equivalent representations of nominalistic kinds can be given by making
use of quasianalysis. This lattice of kinds will be the surrogate for the small
Aristotelian world introduced in Chapter III. In this way we get a nominalistic
model that satisfies the requirements of the Minimal Conception of natural
kinds. Moreover, in the meantime several possible external structures for kinds
will be explored, which will be used to show that some features of the traditional
picture of kinds still have some serious work to do. The similarity model given
in the previous chapter makes some strong assumptions about the paradigmatic
entities. In particular, it requires that paradigms are entities having just one
property. This is implausible. Accordingly, a generalization of some of the
previous notions and results is given for a broader class of similarity structures
(the simple similarities). This class of structures gives a generalized aristocratic
model where each paradigmatic entity can have several properties and each
property can be exemplified by several paradigms.
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Chapter 2

Theories of Natural Kinds
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The species in which the things
primarily called substances are,
are called secondary substances,
as also are the genera of these
species.

Categories, 2a13-2a18
Aristotle

The aim of Chapter II is that of giving a state of the art for the problem
of natural kinds by reviewing the main competing theories, namely Scientific
Essentialism and Cluster Theories (in particular, causal theories). I will also
consider the Conceptualist approach, for it will be relevant in the following
chapters. The essentialist programme is presented and some reasons for rejecting
it are advanced. The cluster theories of kinds are briefly considered and some
objections reviewed. The upshot of this chapter is that, despite the fact that
they make very strong metaphysical assumptions about kinds, the discussions
generated by these theories are still too general. They have not lead to consider
more specific principles about kinds. For instance, these theories are silent on
the ways kinds are related to each other by specificity relations, on how these
order relations are related to the fact that the members of a kind share some
attributes, or on how having some common attributes makes the members of a
kind similar to each other.

I think that taking into account such structural principles would improve our
understanding of kinds. For this purpose, I will propose to study the structural
features of kinds through a Minimal Conception of Kinds which makes very
few assumptions about the external and internal structure of kinds. The main
features of this conception will be explored in the remaining chapters of the
thesis.

2.1 Arguments for Natural Kind Realism

This section considers the problem of natural kinds from four different sides:
the epistemological, metaphysical or semantic one. It serves two purposes. On
the one hand, the problems that helped to introduce the notion of natural kind
in the contemporary discussion allow us to formulate some arguments in favour
of natural kind realism, or at least in favour of adopting the notion of a natural
kind (whatever these kinds turn out to be). On the other hand, they can be
used to highlight the philosophical relevance of the problem of natural kinds by
revealing its connections to other philosophically fundamental problems such as
the nature of induction, causation, natural laws, universals, essences, and so
on1.

1Of course, the roots of the problem of natural kinds can be traced back to Aristotle’s
treatment of species and genera or even to Plato’s Theory of Forms. It reappears under differ-
ent guises through the history of philosophy say, in the medieval discussions about universals
or in the empiricist epistemological theories of general ideas.
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2.1.1 Epistemological Argument: The New Riddle of In-
duction

Since the devastating criticism by Hume, the problem of induction was consid-
ered to be concerned with a non-circular and non-mysterious justification of our
inductive inferential practices. Goodman [47] replaced this problem by that of
explaining what makes possible for some predicates (the projectable predicates)
to be useful in making successful inductive inferences. Goodman’s argument is
known as the grue paradox. Let us suppose that we are examining emeralds
and that we want to induce a proposition concerning the colour of all those
emeralds based on the observations made before a given instant of time t. Let
us suppose that all the emeralds examined before t are green. Therefore, we can
induce that ”all emeralds are green”. Now let us define a new predicate ’grue’
as follows: ”x is grue iff (x has been examined before t and x is green) or (x has
not been examined before t and x is blue)”. The problem is that each of the
observations made before the instant t of the form ”a is a green emerald” goes
along with an observation of the form ”a is a grue emerald”. As a consequence,
the hypothesis h = ”all emeralds are green” has in time t the same degree of
confirmation as the hypothesis h′ = ”all emeralds are grue”. But this is clearly
problematic. Let t′ be a time instant after t and let b be an emerald we find in t′.
From h we deduce that b will be green. From h′ we deduce that b will be blue,
for b has not been examined before t. These two predictions contradict each
other (assuming every emerald is coloured and no emerald can be bicoloured),
but both are equally justified, because they have the same degree of confirma-
tion [22]. Furthermore, if we observe a green emerald in t′ this will confirm the
hypothesis h and refute the hypothesis h′, whereas observing a blue emerald
in t′ will confirm h′ and refute h. If we distinguish kinds from properties, we
can still easily devise predicates that designated, respectively, natural and no-
natural kinds instead of properties (e.g. ’tulipose’ as ”x is a tulipose iff (x has
been examined before t and x is a tulip) or (x has not been examined before t
and x is a rose)”. The point is the same.

Intuitively, the hypothesis we thought we were confirming was h and not h′,
the prediction we wanted to make was that the next emerald would be green
and not blue and the reason why the predicate ’grue’ is unacceptable is that
there are no grue objects in the world. What seems to be happening is that
’grue’ is not a natural predicate, it does not correspond to an objective kind of
thing but is a term whose extension has been artificially selected with the sole
purpose of making up the philosophical sceptical challenge. But Hempel’s syn-
tactic confirmation theory puts no reasonable constriction to which predicates
we should accept or reject. Besides, mentioning a specific time instant t or the
fact that the object is being observed by someone are irrelevant to make the
point. The thing is that there are no grue objects in the world. The question
this paradox leads us to is this: what distinguishes the predicate ’grue’ from
the predicate ’green’? Why does the latter one allow us to make successful
inductive inferences, in contrast to the former one? What do we want to say
when we say that whereas the former one is an artificial predicate the latter
one does correspond to a real or natural property or kind of thing in the world?
Moreover, if we suppose that the propositions express natural laws of the form
”all P -s are Q-s” and that these are confirmed by their instances of the form
Pa ∧Qa, the problem of distinguishing projectable and non-projectable predi-
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cates has consequences for the problem of the confirmation of laws. Hempel’s
classical raven paradox is tightly linked to Goodman’s paradox, both having
examples of predicates (e.g. negations of predicates, such as ’non-raven’) which
do not allow for the propositions expressed by the sentences in which they occur
to be confirmed.

The problem seems to be related to the absence of cohesion among the mem-
bers of the extension of ’grue’, which is reflected in the suspicious disjunctive
definition of the term. That is why Quine [107] proposed that projectable pred-
icates would be those whose extension is a natural kind or class, in such a way
that the extension of the term would have to include sufficiently similar objects,
thus excluding the adoption of ’grue’. He appealed to some ideas from Carnap
[17] according to which a natural kind is a set of individuals which are all of
them more similar to each other than to any non-member of the set. However,
he rejected this solution as defective. He concluded that the distinct scientific
disciplines would substitute the pre-theoretical notion of similarity by other
theoretical notions, and as a consequence the natural types or kinds would be
revised too. Thus, the vernacular or ’manifest’ natural kinds would be more
and more different from the corresponding scientific natural kinds.

However, alongside his pessimistic conclusions, Quine also suggested that we
have innate standards of similarity, which would explain why we tend to classify
objects according to their similarities. The corresponding ’quality spaces’ would
be studied by psychologists. Although Quine’s remarks were very sketchy, cog-
nitive psychologists have indeed developed models of conceptual categorization
based on similarity relations among the items. These models represent this cat-
egorization function of the mind mathematically as a high-dimensional space in
which the items are represented as points, their dissimilarities get represented
as distances, the dimensions of the space correspond to respects of comparison
and the concepts are represented as certain regions of the space having specific
geometric features. As a specific example, philosophers like Peter Gärdenfors
[42], [43] have followed this conceptualist route and developed a whole frame-
work according to which natural properties are in fact regions in a conceptual
space. According to Gärdenfors, natural properties would correspond to convex
regions in a given domain. Despite the fact that there are also psychological
models of categorization that take similarity relations to be derived, such as the
attribute model by Tversky [137], the conceptual spaces approach is developing
fast as an alternative research programme (see [27] for a comparison between
the two approaches).

The epistemological questions related to kinds are: what makes natural kinds
(or their predicates) projectable? What is the relation between natural kinds
and natural laws? Our first argument is therefore epistemological. We can
reconstruct it as an argument for the best explanation:

Epistemological Argument from Induction and Confirmation

1. We can make successful inductive inferences about the properties and be-
haviour of the members of the extension of some general terms. Some of
the observations we make about these objects confirm or refute general-
izations about their general terms. [Pr]

2. We cannot perform successful inductive inferences about the properties
and behaviour of the members of the extension of artificially made gen-
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eral terms (e.g. ’grue’, ’non-raven’), nor confirm or refute successfully
generalizations that involve them. [Grue and Raven Paradoxes]

3. The best explanation for (2) is that some of our general terms correspond
to natural kinds. That is to say, they correspond to kinds of objects which
have similar properties and behaviour independently of our conventional
choices. [C]

What Goodman’s and Hempel’s paradoxes seem to show is that only some
of our general terms are fruitful for the formulation of laws and the prediction
of phenomena, but syntactic considerations are not enough to determine which
terms these are. The most plausible explanation of this fact is that the world
constraints significantly the extension of these terms. The world seems to be
minimally structured into kinds of things.

2.1.2 Metaphysical Argument: Universals and Sparse Prop-
erties

The Problem of Universals is plausibly the most ancient metaphysical puzzle.
Nevertheless, an adequate description of the problem itself is still in dispute.
Some have introduced it as the quest for an answer to the ”One over Many
Problem” [2], that is, to the question ”how is it possible for several particulars
to have the same property?”. We seem to have some pre-theoretical intuitions
regarding facts that involve objects ”having the same nature” or ”sharing the
same property”. We are used to say that two objects are of the same colour
or have the same size. Furthermore, we think that some of these claims are
objectively true, but what in the world makes them true? The main task is to
answer the following question: how is it possible for several objects to have the
same property?

In [2] Armstrong criticized nominalist and Platonist answers to the prob-
lem of universals in order to develop his own Aristotelian theory. According to
him, universals are repeatable entities that are wholly (not partially) present
in the particular objects that instantiate them. As a consequence, since several
distinct particulars may instantiate the same universal, universals may have
different spatial locations in the same time instant. So, in contrast with par-
ticulars, universals can be (and usually are) multiply located. In contrast with
nominalistic theories, universals are sui generis entities and neither collections
of primitively similar particulars, nor mereological sums, nor predicates or con-
cepts. In contrast with Platonist theories, Armstrong’s universals are necessarily
instantiated (Instantiation Principle). Besides, necessarily, every particular in-
stantiates at least one universal (No Bare Particulars). Armstrong’s theory was
intended to be compatible with scientific naturalism, that is why it is taken to
be an a posteriori scientific realism of universals. That is to say, universals
are discovered empirically by scientific research and not by an a priori analysis
of the meaning of predicates or general terms. The similarity among partic-
ulars would consist simply in their instantiating a common universal (well, in
their instantiating similar universals). Armstrong made use of universals to give
philosophical explanations of other phenomena, such as natural laws or possible
worlds.

The most general division that is drawn here is:
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Particularism/Nominalism (necessarily) there are no universals.

Universalism/Realism (necessarily) there are universals.

Traditionally, particularists have been called nominalists and universalists
realists. We will make use of these terms indistinctly.

At first sight it may seem that natural kinds would be universals for Arm-
strong. This is not the case. Armstrong’s universals are the determinate mag-
nitudes and relations of fundamental physics (whatever these turn out to be).
In [3] he expressed some doubts regarding kinds as substantial universals, he
thought that they at most supervene over particulars and universal attributes:

But it is not clear that we require an independent and irreducible
category of universal to accommodate the kinds. (. . . ) Given all
the states of affairs, where these are conceived as involving nothing
but particulars (’thin’ particulars, mere individuators), properties
and relations, then, it may be hypothesized, all the kinds of things
that there are, supervene. And if they supervene, they are not an
ontological addition to their base”. [3], pp. 65-68

However, not everyone agrees with the way Armstrong formulated the prob-
lem of universals. In particular, David Lewis did not like it much. But he
did think that the entities posited by Armstrong might be useful to deal with
many traditional philosophical problems, such as similarity, causality, natural
laws, induction and so on. So what he did in [73] was to characterize properties
functionally. He distinguished two different conceptions of properties associated
with very different theoretical roles. Under the sparse or natural conception,
there are few properties, just enough for them to fulfil the following tasks:

� Natural properties carve nature at its joints. That is to say, their predi-
cates adequately correspond to or reflect the objective structure of reality.

� Natural properties ground or explain the similarities among objects.

� Natural properties provide their bearers with causal powers.

� Natural properties occur in natural laws.

� Natural properties are expressed (or referred to) by projectable predicates,
and therefore can be used to make sucessful inductive inferences about
their bearers.

� Natural properties form a minimal ontological base over which the rest of
the properties supervene.

In contrast, under the abundant conception there is an enormous amount of
properties. These properties can be distinguished from each other in such a fine-
grained way that they may be used as semantic values to give a compositional
account of the meaning of linguistic expressions. In fact, given the Compre-
hension Schema there are as many abundant properties as would be needed for
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such semantic purposes. Examples of abundant properties which are clearly
non-natural [73] are not golden, golden or wooden, self-identical, owned by Fred,
grue, and so on. Lewis himself proposed sets of possibilia as abundant proper-
ties and suggested several candidates for natural properties (primitively natural
sets, sets of similar objects, and so on), including Armstrong’s universals.

The point that Lewis wanted to make is that while these two conceptions
require different entities, Armstrong’s universals seem to satisfy only the sparse
conception. To put it briefly, for Lewis positing universals is one way to ground
the distinction between natural or sparse properties and non-natural or abun-
dant properties. Universals would be one of the candidates for sparse proper-
ties, but they are not the only ones. Instead of universals, tropes (particular
properties) or classes of similar objects could be used as candidates for natural
properties. Although Lewis himself says that he will take ’property’ to mean
a class or set of possibilia, the use that he makes of the concept of a property
looks that of a functional concept, characterized by the theoretical roles it fulfils.
Under this conception, every position regarding the problem of universals ac-
cepts the existence of properties in some (albeit possibly weak) sense. A sparse
property would be whatever fulfils the theoretical roles he lists. The problem
of universals becomes one of arguing for the entities to be considered as best
candidates to fulfill that role.

Other philosophers, such as Pereyra [109], have chosen the inverse problem,
the ”Many over One Problem”, as the main concern for the dispute. The ques-
tion for him is then ”how is it possible for the same particular to have different
properties?”. That he reformulates the problem of universals in that way is
no surprise, given that he defends a position known as resemblance nominal-
ism. According to resemblance nominalism, there are no universals. The role
of natural or sparse properties is best fulfilled by classes of similar objects. For
an object to have a property is for it to belong to a certain resemblance class,
no further entities are needed. Therefore, the emphasis is put not on how it
is possible that the same property is had by different objects, given that this
is explained by the fact that properties are just collections of objects, but on
how it is possible that the same object has several properties, given that this
requires appealing to resemblance facts involving objects.2

In contrast, Lowe [77] seems to think that the problem of universals is just a
part of the more general puzzle concerning the categorial structure of the world.
In order to explain several metaphysical phenomena, such as qualitative change
and the persistence conditions of entities, their identity conditions, their natures
or essences, their modal features, the status of natural laws, and so on, Lowe
argues for a theory that requires the existence of both particular and universal
entities. He favours an Aristotelian 4-category ontology obtained by crossing the
two dichotomies particular-universal and substantial-non substantial, defined as
follows:

� x E-depends ontologically on y iff necessarily (if x exists then y exists).

2In an attempt to get a clear formulation of the problem, Oliver [97] considers three possible
treatments of it consisting in giving some explanation to the sentences of the forms ”a and b
are of the same type/have a property in common”, ”a and b are both F”, ”a has a property”
and so on. We may be trying to find out the ontological commitment of these sentences, or
to give a conceptual analysis of them or to find their truthmakers (the entities that ground
their being true). Oliver argues that the problem of universals is this latter one. I will not
consider the topic of truthmakers in this thesis though.

35



� x I-depends ontologically on y iff identity conditions for x involve y.

� x is a particular iff x can instantiate some y and x cannot be instantiated
by any z.

� x is a universal iff x can instantiate some y and x can be instantiated by
some z.

� x is a substance iff there is no y such that x I-depends ontologically on y.

� x is non-substantial iff x is not a substance.

The four categories are related by the two formal ontological relations of
instantiation and characterization. Substantial particulars are objects, which
on the one hand instantiate substantial universals or kinds, and on the other
hand are characterized by non-substantial particulars or modes. Non-substantial
universals or attributes are instantiated by modes and characterize kinds. An
object exemplifies an attribute iff it is characterized by a mode that instantiates
that attribute. As an example, Pelusa is an object which instantiates the kind
Cat and which exemplifies the attribute of Fluffy by being characterized by
the trope FluffyPelusa. In sum, for Lowe the problem of universals becomes
one of choosing the best theory of ontological categories. In particular, Lowe
thinks that kinds (natural or not) are substantial universals, or as Aristotle
called them, ’secondary substances’.

In this thesis I will adopt the basic distinctions from Lowe’s 4-category on-
tology, the reason being that is the most clear and comprehensive system of
ontological categories that I know of. Note that what I will accept is merely
Lowe’s conceptual distinctions, since they allow me to chart finely the different
positions. That does not imply, of course, that I will accept his strong real-
ism. But it does imply that I will assume his distinction between attributes and
kinds. More reasons for making this distinction will be given in Chapter III.

Whatever the most adequate formulation of the problem really is, we have
our second argument, which is metaphysical:

Metaphysical Argument from Universals and Sparse Properties

1. There are some metaphysically relevant facts that require explanation:
that some objects are more similar to each other than to other objects, that
similar objects produce similar effects in other objects, that truthmakers
for certain sentences seem to require the existence of entities that are not
objects, that there are entities of different ontological categories, and so
on. [Pr]

2. To explain the facts mentioned in (1), we appeal to some entities shared
by these objects, namely, the properties. But only some of these fulfill the
role of sparse properties, others seem to be too gerrymandered for these
purposes. [Theoretical Role of Sparse Properties]

3. The best explanation for (1)-(2) is that only some of the properties shared
by objects can explain some of the facts mentioned in (1). These properties
are the natural properties. [C]
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Of course, the main metaphysical discussion concerns the nature of these
natural properties, whether they are particulars or universals. This is one of
the ways to introduce the problem of universals, to be considered in the next
chapters. Contemporary essentialists usually accept some sort of realism of
universals for natural properties, and some of them also for natural kinds. Thus,
the metaphysical side of the debate goes further than the issue of whether there
are real or genuine natural ’divisions’ among the objects in the world. The
additional question is [10]: what kind of entities are these kinds or sorts of
objects?

2.1.3 Semantic Argument: Reference of Natural Kind Terms

In the 70-s Saul Kripke and Hilary Putnam formulated some powerful objec-
tions to the descriptivist theories of reference and meaning of proper names and
natural kind terms. Descriptivist theories assumed that the reference of proper
names and natural kind terms was mediated by some descriptions (or disjunc-
tions of descriptions, senses or modes of presentation) that the speaker knew a
priori, that expressed that the referents had some (bundles of) properties nec-
essarily and that constituted the meaning of the term. Kripke [67] pointed out
several counterexamples and problems for each of these theses. He proposed
an alternative picture according to which those terms refer directly by being
introduced first by an initial baptism. Then their use is socially extended from
this baptism by historical-causal chains of speakers that transmit the term to
each other. In this proposal, the reference of the term completely exhausts its
meaning.

However, the semantic theses defended by Kripke [66], [67] seemed to have
major epistemological and metaphysical consequences. One of Kripke’s argu-
ments against descriptivist theories starts by showing that the notions of a
priority and necessity (respectively, a posteriority and contingency) are not co-
extensional. The paradigmatic examples of a posteriori necessarily true propo-
sitions would be some empirically discovered identities expressed by statements
of theoretical identity, such as heat = kinetic energy of molecules or gold =
the chemical element of atomic number 79. Before [66], it was largely assumed
that some propositions could express contingent identities among entities. For
instance, the First Postmaster General of the United States = the inventor of
bifocals would express a contingent identity, since the First Postmaster Gen-
eral of the United States, i.e. Benjamin Franklin, could have not invented the
bifocals. This statement was in conflict with the principle of the necessity of
identity x = y → 2(x = y), that could be proven in a modal logic assuming as
a premiss the necessity of self-identity 2(x = x) (the rest of the steps in that
deduction not being very questionable). What Kripke argued was that strictly
speaking every identity holds necessarily. The key was to refer to the objects
in a specific way. The theoretical notion that does the trick is that of a rigid
designator, a term that refers to the same entity in all the possible worlds (in
which that entity exists). Proper names would be clear examples of rigid des-
ignators. In that way, if the descriptions ’the First Postmaster General of the
United States’ and ’the inventor of bifocals’ were replaced by proper names (or
were rigidified) like ’Benjamin Franklin’ and ’B. F.’, we would have a necessary
identity. Being rigid, these names would refer to the same individual object
(that person we call ’Benjamin Franklin’) in every possible world (in which he
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exists). Kripke’s arguments are grounded on some metaphysical intuitions of
the speaker: Benjamin Franklin = B. F. would simply imply that that object
(the person) is identical to itself, and there is no possible situation in which
we would say that that object would not have been itself. In some sense there
is a conceivable scenario, which is epistemologically indiscernible from the ac-
tual one, in which we discover that the object that we had been referring to as
’Benjamin Franklin’ and the one that we had been referring to as ’B. F.’ were
not the same object. A speaker may not know that they are names for the
same person. But this situation would not be a world in which, supposing that
’Benjamin Franklin’ and ’B. F.’ refer to some individual object a, this object
is distinct from itself. That situation seems to be unintelligible. The notion of
rigid designator fulfilled the role of explaining what is going on when we directly
refer to an object, thus explaining the deictic character of proper names.

Alongside the principle of the necessity of identity, Kripke discussed the
following essentialist theses, where the box is the operator for metaphysical
modality:

1. If x originates in y, then 2(x originates in y). [Origin Essentialism]

2. If x is constituted by y, then 2(x is constituted by y). [Constitution
Essentialism]

3. If x is a K, then 2 (x is a K). [Natural Kind Essentialism]

For instance, (1) if Jaime is son of Elvira and Jacinto, it is not possible that
Jaime would not have been son of Elvira and Jacinto. (2) If x is constituted
by some carbon molecules y1, . . . , yn, then x could not have been constituted
by other molecules. (3) If Jaime is a homo sapiens, then Jaime could not have
belonged to a different biological species. Each of these conditionals would be
a priori justified. Since the antecedents can only be justified a posteriori, their
truth could only be established by empirical research, then that would make
the conclusion a necessarily true a posteriori proposition (since at least one of
the premisses requires a posteriori justification). The consequents express the
attribution of some property or relation to some objects necessarily, that is to
say, they are cases of de re modality. For instance, if x is a member of natural
kind K, then in every possible world in which x exists, x is a member of nat-
ural kind K. Apparently, the assignment of some necessary (de re) properties
to individual objects would be equivalent to attributing essential properties to
them. From that it follows that (1)-(3) would express that the origin, consti-
tution or membership to a natural kind by an individual object a would be
essential properties of that object a. Although ’being identical to itself’ may
not seem a very interesting essential property, theses (1)-(3) would point at a
stronger essentialism.

Kripke used two different kinds of arguments to defend his theses. First,
these theses would be justified a priori, on the basis of our metaphysical intu-
itions. For instance, supposing that this table is made of wood, this same table
could not have been made of ice. We could discover that we were wrong to think
that this table is made of wood (e.g. it is made of ice but a clever guy painted
it in such a way that it tricked us). But supposing that it is in fact made of
wood, it seems inconceivable that it would have been made of ice. If this table
(that I am pointing at right now) is made of wood, to suppose that it may have
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been made of ice is just to imagine a different table. Second, essentialist theses
could be deduced in some way from the semantic theory of direct reference. We
will deal with these arguments later on.

Although these theses concern individual objects (they attribute individual
essences to objects), (3) establishes a strong link between an individual object
and the natural kinds to which it belongs. (3) says that belonging to a natural
kind would be an essential property of every member of that kind. But (3)
says nothing about whether the natural kind itself is (really) defined by some
properties that are essential to its members. It could be that the natural kind
itself has an essence (a general essence) consisting in some properties that are
such that their being exemplified by some object is a necessary and sufficient
condition for it to belong to the natural kind. That would explain why the object
essentially belongs to the natural kind. But this goes further than (3). However,
Kripke extended his semantic theses to the case of the natural kind terms. As
a consequence, the essentialist theses also applied to natural kinds. Kripke did
not say much about natural kinds, but he held that natural kind terms would
be rigid designators, just as proper names are. Therefore, Kripke’s arguments
could be applied to cases of theoretical identity between natural kinds such as
Water = H2O.

On the other hand, Putnam [103] made several objections to the descriptivist
theories of the meaning of general terms. His aim was to introduce a new theory
of the meaning of general terms (specifically, of natural kind terms) which did
not involve ’mentalistic’ theses according to which the intension or meaning of
a general term is determined by the mental states of the speakers. Putnam’s
arguments are the widely known Twin-Earth thought experiments. These start
by assuming an internalist semantic position according to which the meaning
of a general term is determined by the mental states of the speaker. Supposing
that the intension of the term determines its extension, Putnam presents a
counterexample (the Twin-Earth scenario) in which a speaker that is in the
same psychological states as the actual speaker uses the same term (’water’) to
refer to a liquid substance which is macrostructurally indiscernible (e.g. same
taste, same colour, and so on) but microstructurally distinct (e.g. XY Z 6=
H2O) from our actual water. That is to say, the term has a different extension
in that world (XY Z molecules). So two speakers in the same psychological
states may use the same term with different extensions. Under the intuitive
assumption that the substance in Twin-Earth would not be water, Putnam
argues (among other theses) that the intension of the term is neither determined
by the psychological states of the speakers nor mediated by the descriptions that
these speakers associate with the term. To the contrary, the intension is fixed
by the environment and some social mechanisms (e.g. sample baptisms and
the division of linguistic labour) guarantee that the correct use of the term is
transmitted and that the kind of thing is directly referred to. The thought
experiment is as follows.

In the actual world, we have a substance that we call ’Water’ (at least
whenever we find it in its liquid state). Chemists have found that this substance
is constituted by H2O molecules, or that it has a molecular microstructure that
we call ’H2O’. Let us imagine a possible world, we call it ’Twin-Earth’, in
which there is a liquid which is superficially indistinguishable in its observable
properties and behaviour from our liquid. The inhabitants in Twin-Earth call
it ’Water’ too. Let us imagine also an individual called ’Oscar’ in our world and
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an exact duplicate of Oscar in Twin Earth named ’Twin Oscar’. In particular,
Twin Oscar is in the same psychological states as Oscar is. Before the discovery
of the molecular structure of water the psychological states of Oscar and Twin
Oscar related to water are equal. Now, let us suppose that the extension of
’Water’ in Twin Earth is the set of all the XY Z molecules or the set of all the
macroscopic samples of a liquid which has molecular structure XY Z (where
’XYZ’ is a molecular formula different from ’H2O’). Since the term ’Water’
has different extensions in Earth and in Twin Earth, and assuming that the
extension of a term is determined by its intension or meaning, we conclude that
the intension of the term cannot be determined by the psychological states of
the speakers (because these are in the same psychological states).

An important part of the argument consists in the intuition that a substance
which is macroscopically indiscernible from our water but which has a different
molecular structure (say XY Z) would not be water. According to Putnam,
the reason is that natural kind terms have an indexical component, they are
rigid terms just as proper names are. We introduce a term like ’water’ with
an ostensive definition: we take a sample of the liquid and we say ”this liquid
is water”. When we talk about water, we either talk about this sample or
about any other liquid sample which is sufficiently similar (in some relevant
respects) to this liquid. So when we ask whether the liquid XY Z in Twin-
Earth is water, what we are asking is whether that would be the same kind of
liquid as this liquid we have in our world (x is water iff x =L a, where a is
this liquid in our world). What necessary and sufficient conditions that liquid
should satisfy to be the same kind of liquid as this one is something discovered
by that part of our linguistic community devoted to make research about its
properties (the chemists). That is why the ordinary speaker does not need to
know these conditions. He makes a deferential use of the term and he trusts
that the corresponding specialists will know the theoretically relevant properties
that something needs to have to be of the same kind. A fundamental part of
Putnam’s proposal is that the (transworld) relation is the same kind of liquid
as is a theoretical relation. That is to say, the choice of the relevant physical
properties is made according to what the actual scientific theory about that
natural kind says. In sum, what Putnam’s argument seems to show is that:

∀x 2(x is water→ x isH2O)

In every possible world we consider, if something is a macroscopic sample
of water or a molecule of water, then it also has molecular structure H2O or
is a molecule of H2O. Plausibly, the converse is necessarily true too, but here
there are some problems since ’water’ seems to exclusively refer to the liquid
state of that substance, and not to that substance in a solid or gas state [11]. In
any case, Putnam’s argument rests on an intuition: we would not say that that
liquid in Twin Earth is the same kind of thing as this liquid here, since that
would require them to have the same microstructure. We believe that every
possible world in which we found water would be a possible world in which
there is a liquid with the same microstructure as this liquid. In other words, we
believe that having a specific microstructure is a necessary condition for being
this kind of liquid, and therefore that is an essential property of this liquid.

Kripke’s and Putnam’s arguments hint at a strong connection between the
meaning and reference of natural kind terms and natural kind essentialism.
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Nevertheless, and ignoring essentialism for now, the semantic theses put forward
give us another argument in favour of natural kind realism:

Semantic Argument from Natural Kind Terms

1. The reference of our natural kind terms is not mediated by descriptions
determined by the psychological states of the speakers. [Antidescriptivism,
Twin Earth Scenarios]

2. The best alternative explanation to (1) is that our natural kind terms di-
rectly refer to kinds or types of things in the world, that (at least partially)
fix their meanings. The use of these terms is grounded on social linguis-
tic mechanisms such as the baptism of samples, the division of linguistic
labour and the social transmission of the uses of some terms from some
speakers to others. [Direct Reference Theory]

3. There are natural kinds, they are the references of our natural kind terms.
[C]

Kripke’s and Putnam’s theses and arguments have been used by contempo-
rary essentialist theories of natural kinds, in particular by scientific essentialism.

2.1.4 Naturalist Argument: Scientific Classifications

It is usually acknowledged (at least among scientific realists) that it is the task
of scientific disciplines to find out what kinds of things there are and to dis-
cover that in virtue of which several objects belong to the same kind. The
way scientists describe kinds is by developing classifications for the entities in
the domains they study. These classifications are supposed to modify some
of our pre-theoretical beliefs about these kinds of things (e.g. many general
names for plants do not refer to species but to entire genera). Prima facie, one
could distinguish between vernacular natural kinds like water and tulips and
scientific or theoretical natural kinds like the molecular compound H2O and the
genus Tulipa. Examples of scientific kinds are described by the most successful
scientific classifications, such as cladistic biological taxonomy or the periodic
system of chemical elements. There seems to be no one-one correspondence
between each vernacular kind and each scientific kind3. Scientific classifications
often show that vernacular classifications are coarser than theoretical ones. For
instance, the extension of a vernacular kind may in fact include members of
several overlapping theoretical kinds. Or they may show that a vernacular kind
approximately corresponds to a scientific kind which happens to have many dif-
ferent species (e.g. Tulipa). It can also happen that there is no scientific kind
corresponding to a given vernacular kind (e.g. jade)4.

Moreover, fruitful classifications are made using sorting criteria (see [36])
that are usually based on more fundamental theoretical principles. For instance,

3Philosophers often start discussing vernacular natural kinds and try to obtain knowledge
about scientific kinds, or they accept that both vernacular and theoretical kinds are in some
sense genuine natural kinds. But if Putnam’s semantic hypotheses are correct, then to each
vernacular kind term there will correspond a scientific kind term which has the same meaning,
and therefore there will be no real distinction between vernacular kinds and scientific kinds.

4These interactions between folk and theoretical classifications are further discussed by
Dupré [32].
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historical classifications sort entities in virtue of the historical relations among
them, e.g. phylogenetic classifications of species and historical classifications of
languages by descent. Qualitative classifications sort entities by their shared
qualitative features, e.g. the periodic system of elements or the phenetic classi-
fications. Functional classifications sort entities in functional kinds, that is to
say, they group together entities that fulfil a similar role, e.g. a classification of
artefacts like weapons or tools or an ecological classification.

But there are features common to every classification. When we classify a
domain of entities we represent it with a smaller structure, consisting of the
classes (or the general terms or nouns) into which we map each of the elements
of the domain. The qualitative parsimony achieved by a classification makes
salient the most basic structure of the domain, that of similarities and differences
among entities. Furthermore, this grouping seems to be an indispensable step
towards understanding. By locating each entity into its corresponding class,
we obtain a simpler picture of the domain and the relations among the former
ones are more easily tracked. The quantitative parsimony obtained can be quite
remarkable, given that we can reduce a domain of an infinite amount of entities
to a domain of finite cardinality. If several classifications of the same domain are
combined, they give us even more clues regarding the ways in which the distinct
classes of entities are interrelated. For instance, some classes are more specific
than others, some classes are the overlapping of several others, one classification
as a whole may make finer distinctions than another one, and so on.

When one classifies a domain of entities one maps each object into a class.
This map preserves the similarities among the elements as distinctions between
the classes, allowing us to move ’one layer of abstraction up’. In the trivial
case, we start from a domain of entities whose only structure consists in the
identities and distinctions among some entities and we map them to the finest
classification possible. This is the procedure we follow when we assign proper
names, labels, postal codes, telephone numbers, passwords, and so on. However,
more fruitful classifications make use of coarser differences. This involves a
trade-off. The more coarse-grained the differences are, the more general our
classification becomes and the smaller the resulting number of classes is. In
exchange, we will lose information by ignoring certain differences. Conversely,
the more fine-grained the differences are, the more specific and informative our
classification becomes. In exchange, the number of classes will be higher and
the resulting classification will be more unmanageable.

Assuming a minimal realism, one expects these distinctions and order rela-
tions among the classes in the classifications to correspond to distinctions and
order relations among kinds in nature. This being so, it is reasonable to sup-
pose that we should be able to make some reliable (although admittedly simple
and mostly categorical) surrogative inferences [129] about the domain of entities
from our classifications, which may further imply even more specific inferences.
As a consequence, these propositions render scientific classifications empirically
testable. For example, the simplest propositions are syllogistic, they have the
forms ”All K-s are K ′-s” or ”some K-s are not K ′-s. One may think that
such propositions are easily testable. This is far from being true. For instance,
cladists have developed a whole arsenal of techniques to infer the phylogenetic
relationships among species from the homologue traits shared by their members
[140]. If classifications can be testable, then they should be revisable in the
light of new empirical evidence. That is indeed the case. We may discover that
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some of our hypotheses were wrong. Biological taxonomies are in constant re-
vision. For example, when a fossil taxon is discovered, some of the phylogenetic
relationships between already known taxa as depicted in the trees have to be
changed.

Thus, a classification has at least two main theoretical aims, as several au-
thors such as Hempel [59], Ereshefsky [36] and Mayr [83] have highlighted. One
is to organize all the entities in a systematic way that shows the relationships
between the kinds to which they belong. As a consequence of this systematic
organization, we obtain a quantitatively more parsimonious domain of entities
and our understanding of the relationships among them is improved. The sec-
ond one is to allow us to make surrogative inferences in the form of empirically
testable (categorical) propositions. This allows us to formulate empirical hy-
potheses concerning the domain of entities. As a consequence of the empirical
testability of these propositions, classifications may be revised in the light of
further evidence.

It was once assumed that classifying is just a step towards proper theorising,
which would start with measurement and continue up to the formulation of sci-
entific laws in the form of (differential) equations. After all, familiar arithmetical
operations with real numbers cannot be meaningfully applied to classifications.
Of course one can use numerals to represent kinds, in fact, many nomenclature
codes use numerals for their classifications. But these are just like ZIP codes
or proper names. One cannot meaningfully perform arithmetically basic op-
erations over them5. It is true that not many traditional statistical concepts
of measures of central tendency apply to ’categorical properties’, and therefore
that the kind of inductive inferences that one can make from such information is
rather limited. Stevens [127] famously argued that the only adequate statistical
measure of central tendency for categorical variables was the mode. Arguably,
counting the number of times that a specific item appears in a sample does
give some information concerning the population studied, but this is far away
from the whole apparatus of statistical techniques that scientists generally want
to use to infer interesting (causal) correlations between properties. Being so
close to a task made in ordinary life, and devoid of the alleged rigour, stability
and precision given by the numerical structures traditionally associated with
measurement, disciplines like biology that invest too much time in systematic
”stamp collecting” (to use Rutherford’s unfortunate phrase) have been at times
considered not to be proper sciences.

Fortunately, this is not the case now. Philosophers of science are putting
more and more attention to how classifications are made. This has lead to the
development of several realist theories of kinds. In fact, contemporary scientific
realist positions regarding natural kinds take these classifications to be tracking
natural kinds. They can be divided into three big camps6. The first group
is formed by essentialist theories, such as the Scientific Essentialism by Ellis
[34]. The second group is formed by causal theories that stem from Boyd’s
Homeostatic Property Clusters Kind Theory (HPC) [12]. The third group is
more varied but it contains Promiscuous Theories like the one by Dupré [32] and

5For instance, it makes no sense to add a class with itself to obtain bigger classes, there is no
natural ’zero’ class which behaves as the zero does for real number addition and multiplication
, it is unclear what difference could be found between ’positive’ and ’negative’ classes, classes
need not be necessarily linearly ordered, and so on.

6See [1] for a similar classification.
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pragmatist theories of different sorts, that are closer to conventionalism in some
respects. What these three theories have in common is a minimal naturalistic
concern. That is to say, according to these authors, we should look for natural
kinds in the classifications of our most successful scientific theories, such as the
standard model of particles in physics, the periodic system of chemical elements,
the mineralogical classification and the biological classifications made by the
cladistic school of taxonomy. Our fourth argument starts from the premiss of
scientific realism to conclude that plausibly there are natural kinds:

Argument from Scientific Classifications

1. The most successful scientific theories are closer than the previous ones
to a true description of the structure of the world. [Scientific Realism,
Ontological Thesis]

2. Some of these theories ground (more or less accepted) classifications of
particular objects into general kinds or types. [Pr.]

3. There are natural kinds, they are those entities represented by the classes
that occur in the classifications grounded by the most successful scientific
theories. [C]

These are only some of the arguments that several authors have used to
appeal to natural kinds. They are not the only ones. Moreover, this does
not mean that there are no alternative explanations (like conventionalist or
conceptualist explanations) for each of these problems. But what they do show
is that these other explanations will have to give a coherent answer to each of
these problems and that is a minimal constraint to be satisfied by any adequate
account of natural kinds. In what follows, I will assume that a (minimal) Natural
Kind Realism constitutes a good answer to the four challenges mentioned so far.
The problem now is to get some more information regarding what these kinds
are supposed to be. In order to get a clearer view on what kinds are supposed to
be, let us consider now some of the main theories of kinds, namely essentialism,
causal theories and conceptualism7.

2.2 Scientific Essentialism

The purpose of this section is to introduce a popular version of natural kind
essentialism, namely, scientific essentialism. Natural kind essentialism started
with the semantic arguments put forward by Kripke [67] and Putnam [103].
Contemporary authors who have defended such theories of kinds are Ellis [34],
Bird [10] and Tahko [134]. There are other sorts of essentialism, such as the sor-
tal essentialism that comes from Wiggins [139]8, a version of which is defended
by Lowe [77]. Generally speaking, essentialist theorists tend to emphasize the
semantic and metaphysical sides of the problem of natural kinds.

7It should be clear that a brief chapter such as this one cannot make justice to the full
variety and richness of these accounts. A sufficiently informed analysis of these theories would
require at least one chapter for each and preferably a whole PhD thesis. This is a task I
cannot accomplish here without sacrificing what I consider to be a fruitful research proposal
that will be developed in the next chapters. Nevertheless, the chapter is written with the aim
of conveying the reader why I decided to leave these theories out of the rest of the thesis.

8Wiggin’s essentialism is in fact conceptualistic.
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2.2.1 Theoretical Roles of the Concept of Essence

The distinction between essential and non-essential or accidental properties was
introduced by Aristotle. In Aristotelian metaphysics, this distinction fulfils
several theoretical roles, such as explaining the nature of objects, the possibility
of change and the possibility of our knowledge of necessary truths. The problem
of change consists in that the same object x can have a property P in instant
t, and another property P ′ incompatible with P in t′, where t < t′. By the
Indiscernibility of Identicals it would follow that x in t 6= x in t′. But what we
want to say is that there is an object x which exists both in t and in t′, even
though it has suffered qualitative change. If this were not so, change would
be impossible. The Aristotelian answer to the problem consists in making the
distinction between essential and non-essential properties, and then restricting
the Indiscernibility of Identicals to essential properties. That is to say, if x = y,
then x and y have the same essential properties. The same object can exist in
different time instants with different properties if these are accidental to it. The
problem of the possibility of knowledge consists, for Aristotle, in explaining how
it is that we have knowledge of necessarily true universal propositions. These
propositions involve definitions of those objects of which they give us knowledge.
Since giving a definition of a kind of object is giving the necessary and sufficient
conditions under which the object is the kind of object that it is, by giving
the definition we are giving the essence of the object. Knowledge is therefore
knowledge of essences of objects. The third problem refers to the nature of
objects. Aristotle’s hylemorphic explanation of what substantial particulars
(primary substances) are appeals to the matter-form distinction. A substance
is composed of matter and form. Matter is pure potentiality, whereas form is
that which determines matter as certain thing instead of another one. The form
of an object is its essence, it is what makes objects distinct from each other.
Thus, the form is supposed to fix the identity conditions for the object.

The theoretical roles of the Aristotelian distinction are still present in the
contemporary literature in some way or another. The problem of change has to
do with the general persistence conditions of objects [77]. The problem of our
knowledge of universal necessarily true propositions has to do with the knowl-
edge of de re modal propositions, and more specifically, with our knowledge of
natural laws [34]. Contemporary essentialists, like [39], also hold that giving a
real definition of an entity consists in giving its essence. The problem of the
nature of objects is thus linked to the identity conditions for objects [77]. The
distinction between essential and non-essential properties is so central that it
is linked with the rest of metaphysically fundamental problems, like those of
reality, identity, existence, modality, change and the distinction between partic-
ulars and universals. So it is reasonable that the following ones should be the
theoretical roles most frequently attributed to the concept of essence:

i. The essence determines the conditions under which the entity is that entity
and no other thing. The essence distinguishes one entity from another one.
In other words, the essence determines the identity conditions of the entity.

ii. The essence determines the conditions under which the entity persists or
continues to be the same thing, without getting extinct or being trans-
formed into a distinct entity. It determines what is a substantial change
and what is a mere accidental change. In other words, the essence de-
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termines the persistence conditions of the entity and it is invariant under
accidental changes.

iii. The essence determines the properties that the entity could or could not
have had. It determines how the entity could have been like. In other
words, the essence determines the de re necessary properties of the entity.

iv. The essence determines the conditions under which the entity exists or
could have (not) existed. In other words, the essence determines the exis-
tence conditions of the entity.

v. The essence determines on which other entities it depends ontologically. In
other words, the essence determines the relations of ontological dependence
of the entity with respect to other entities.

vi. The essence is the real or fundamental nature of the entity. The essence
is what the entity really is.

Through the history of philosophy empiricist and nominalist authors have
shown a sceptical attitude towards the distinction between essential and non-
essential properties. Usually these authors have proposed to use classes, general
concepts or general terms as surrogates for kinds or types and definitions as
surrogates for essences. According to them, one defines a term or a concept, not
a kind of thing. For instance, Locke introduced the distinction between nominal
essence and real essence to argue that what philosophers propose as definitions
of the essence of an object are only necessary and sufficient conditions that ob-
jects should satisfy to be appropriately represented by the corresponding general
ideas. Not any definition will do of course, since there are psychological con-
straints on how these general ideas are formed. But in any case, our definitions
are of those general ideas. Since these are obtained as the result of a process
of abstraction from qualities or observable properties of objects, they cannot
adequately correspond to the fundamental structure or properties that make
the objects have the observable properties that indeed have. The real essences
of objects, if there are such things, are unknowable. This sort of objections
among others (say, about the explanatory uselessness and ad-hocness of appeal-
ing to essences) directed the attention of philosophers towards the definitions of
concepts and general terms and favoured a conceptualist approach to essence.
Thus, conventionalism and conceptualism became the standard positions.

Some authors seem to still identify the general essence of a kind with the
necessary and sufficient conditions that objects have to satisfy to belong to
it. In other words, they identify the essence with the membership conditions
of the kind. But this latter view, if it is not further developed, has some well
known problems. One can give necessary and sufficient conditions for something
to belong to a class of objects without these conditions having to express the
essence or common nature of its members, simply because these conditions could
be stipulated or conventionally chosen. For instance, the Comprehension Axiom
Schema guarantees that given a set S and a predicate P , there is a subset A of
S consisting in exactly those elements x in S which satisfy P . Therefore, for the
members of S, satisfying P is a necessary and sufficient condition for belonging
to A. But P does not have to express any essence or general nature common to
the members of A. Moreover, P could be just the result of a stipulation. For
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example, suppose that S is the set of all blue or green things and P is the general
term ’grue’. Then P does not express any essence common to the members of the
extension of ’grue’ and the term does not give objective membership conditions,
but still the definition of ’grue’ states necessary and sufficient conditions for
membership to the extension of the term. Therefore, assuming that there are
necessary and sufficient conditions for belonging to a kind does not commit us
to essences. In particular, a definition does not need to express the general
essence of objects.

However, the discussions on the feasibility of modal predicate logic lead
to the re-emergence of a modal approach to essentialism, which is known as
the modal conception of essence. According to this conception, a property is
essential to an object iff the object has that property necessarily, in other words,
in every possible world (in which the object exists). This is the conception of
essence that comes from Kripke [67]: essences are exactly the de re necessary
properties of objects. Thus we had that9:

a is essentially P ⇔ 2Pa

a is accidentally P ⇔ ¬2Pa

Alongside the development of first-order modal logics and Kripke’s argu-
ments for necessary a posteriori true propositions, this conception of essence
combined with naturalism and scientific realism, resulting in a theory of kinds
known as scientific essentialism. The idea is that it is not enough for the nec-
essary and sufficient conditions to hold contingently, they must hold metaphys-
ically necessarily. An object belongs to the kind iff there are some properties
which are essentially had by that object. Equivalently, the object belongs to
the kind iff there are some properties which are such that the object has them
in every possible world (in which the object exists).

However, Kit Fine rejected in [39] the equivalence between essential proper-
ties and de re necessarily exemplified properties. He famously objected to this
identification by arguing that it is essence what grounds de re necessity and
not vice versa. He attacked the right-left direction of the previous equivalences.
His arguments start by choosing some properties that objects exemplify nec-
essarily (in every world in which they exist) and then showing that intuitively
they have nothing to do with the nature of the objects chosen. For instance,
in every possible world in which Socrates exists, the singleton {Socrates} also
exists and Socrates is a member of that singleton. This is because if Socrates
exists, then the singleton {Socrates} necessarily exists and he is necessarily a
member of this set. But it is not essential in any sense to Socrates that he is
a member of {Socrates}. Nothing in the nature of Socrates makes him be a
member of some specific set. In contrast, it is in the nature of the singleton
{Socrates} that Socrates is its only member. The problem is that the modal
conception of essence is indifferent towards the difference in the sources of these
two necessities. According to another example, and accepting the necessity of
distinctness, if Socrates is distinct from the Eiffel Tower (and we think so) then
he is so necessarily. But it is not essential to Socrates that he is distinct from
the Eiffel Tower. Therefore, not every property necessarily exemplified by an
object is an essential property of the object.

9As it is well-known, to allow for contingently existing objects we have to weaken the
formulation to the following one: a is essentially P ⇔ 2(∃xx = a→ Pa).
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Based on these counterexamples Fine argued for taking the notion of essence
as fundamental and modality as derived from it. According to him, we should
favour the definitional conception of essence over the modal conception. The
essence of an entity, its nature, is given by its real definition and not by those
properties that it happens to exemplify necessarily. According to this concep-
tion, we should take the last description from the previous list as being the basis
for the rest: the concept of essence is primitive. That being so, metaphysics can
be thought of as the science of essence10. However, in order to discuss scientific
essentialism, I will mostly stick to the modal conception according to which the
general essence of a kind is exhausted by the modally de re necessarily exem-
plified properties that fix the membership conditions of the kind. The reason
is simply that this is the usual way in which the discussions are framed in the
literature on kinds.

2.2.2 The Scientific Essentialism Programme

The minimal thesis that all essentialists seem to be committed to is the following,
proposed by Tahko [134]:

Natural Kind Essentialism There are genuine and mind-independent natu-
ral kinds which are defined by their essential properties.

Of course, essentialism does not imply that we already know all the essential
properties of a natural kind. This is a ’minimal’ thesis because it does not hold
that every genuine natural kind is defined by some essential properties shared
by all and only its members. The reason is that essentialist theses seem to be at
odds with the current conception about what biological species are. That being
so, essentialists usually restrict their theses to chemical kinds, such as chemical
elements or compounds. Some authors like Ellis [34] bite the bullet and hold a
restricted version of essentialism. For Ellis the real natural kinds are just the
fixed kinds (elementary particles or chemical isotopes), whose members share
only some intrinsic essential properties. This excludes biological species and
possibly also minerals. This minimal claim will be further developed.

Essentialist theses are usually divided into two kinds, depending on whether
they are concerned with individual essences or with general essences of objects.
The individual essence of an object is its individual nature, it is what makes
that object be the specific object that it is instead of another. As explained, the
individual essence of an object is traditionally understood to be the collection
of all those properties, the essential properties, that make that individual be
that individual instead of another one. As a consequence, these properties are
necessarily (de re) exemplified by the object in every (metaphysically) possible
world in which the object exists11. Typical candidates for individual essential

10Note that according to Lowe [77], since every entity has an essence, essences are not
entities, on pain of infinite regress. Instead, according to Lowe, essences are the conditions
under which the objects ’defined’ by them exist or are distinct from one another.

11The notion of metaphysical necessity (or ”logical necessity in its broad sense”) I am
referring to is the one that appears in the literature. It is a necessity between the logico-
mathematical necessity and the nomological necessity. These are necessarily true propositions
that are neither tautologies nor analytic propositions, but which are weaker than nomologi-
cally necessary propositions. Nevertheless, some scientific essentialists collapse the distinction
between nomological and metaphysical necessity.
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properties of an object would be its origin, its constitution and its membership
to a certain natural kind (the ones suggested by Kripke [67])12.

In contrast, the general essence of an object is a nature that this object
shares with others. It is what makes that object be the sort or kind of object
that it actually is. Traditionally, it is the collection of all those properties that
make the object be the kind of object that it is. Therefore, these properties are
shared by all the instances of that kind of object and having them is a necessary
and sufficient condition for belonging to the kind in question. In fact, it is by
exemplifying those properties essentially that the object necessarily belongs to
the kind that indeed belongs to. Keeping this distinction in mind, scientific
essentialism holds at least the following theses, possibly restricted to specific
domains of entities:

Individual Kind Essentialism If x is a K, then x is essentially a K.

General Kind Essentialism For every natural kind K, there are some nat-
ural properties P1,. . . ,Pm which are such that x is a K iff x essentially
exemplifies P1,. . . ,Pm.

General Kind Essentialism says that kinds have general essences. The gen-
eral essence of a kind are those properties that determine its membership con-
ditions and are essentially exemplified exactly by the members of the extension
of the kind. All these essential properties are part of the individual essence of
each of these objects. In contrast, Individual Kind Essentialism says that being
a member of the kinds to which the object belongs is also an essential property
of the object, and therefore part of its individual essence. In particular, Indi-
vidual Kind Essentialism forces the extension of the kind to be invariant across
possible worlds (up to restrictions of the extension to the corresponding domain
of the world)13.

In a different sense, the thesis is a minimal essentialism because it is not com-
mitted to any specific relation between natural kinds, natural laws, the (non)
intrinsicness of properties, the categorical or dispositional nature of properties,
and so on. In contrast, consider Ellis’s scientific essentialism [34]. Ellis’s theory
is a very strict Aristotelian metaphysical picture of reality. First, every uni-
versal is a natural kind. Some of them are substantial natural universals (e.g.
electron), others are natural properties (e.g. electric charge z) and still others
are natural processes (e.g. precipitation reaction). Each of the universals is
instantiated by a particular of certain kind: instances of substantial universals
are individual objects (e.g. this electron a), instances of natural properties are
tropes (e.g. the electric charge c of this electron a) and instances of natural pro-
cesses are particular events and processes (e.g. this particular chemical reaction
f). Individual objects instantiate some natural substance iff they essentially
exemplify some causally intrinsic properties. As a consequence, they necessarily

12By the necessity of identity, every object is necessarily identical to itself. It can be
discussed whether being identical to itself is an essential property or not. In any case, if it is
essential to the object then it is generally considered to be so trivially.

13There is some ambiguity regarding the talk about general essential properties. We are
talking about whether some individual objects exemplify some properties essentially, not about
whether the kinds themselves exemplify these properties. But if one holds that kinds are enti-
ties that can have attributes, e.g. as Lowe does [77], then this distinction becomes important.
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instantiate the substance. Second, many of these intrinsic properties are dispo-
sitional (e.g. inertial mass is the resistance to being accelerated) and therefore
manifest themselves only under specific circumstances. These conditions are the
causal processes in which the objects get involved. Third, natural laws are sim-
ply the expression of those causal processes (e.g. a force gets applied to a mass).
Since natural laws are just those causal processes and objects are involved in
those processes by virtue of their dispositional essential properties, natural laws
are metaphysically necessary. Laws could not be otherwise, since they are fixed
by the essential nature of the objects they involve. This conveys a very different
conception of nature. The world of the dispositional essentialist is dynamic. Ob-
jects behave necessarily as they do due to their natures, and not because their
behaviour is determined by some laws that extrinsically impose some contingent
properties over them. As a consequence, a world where negatively charged par-
ticles attract each other is metaphysically impossible, for essentially negatively
charged objects necessarily repel each other. Science discovers these essentially
exemplified intrinsic properties by discovering first the natural kinds to which
the corresponding objects belong. These objects show their nature in the causal
processes in which they take part and scientists express these processes in the
form of laws.

But it would be wrong to assume that every scientific essentialist agrees with
all the theses that Ellis defends, although some seem to share most of them (e.g.
Bird seems to agree on many [10]). Nevertheless, it is convenient to consider
in more detail condition (3). It contains the basic core properties of kinds that
most essentialists would accept [34]:

i. Natural kinds are objective. They do not depend on our interests, lan-
guage, practices, perceptual apparatus, choices, and so on. Whether a
particular object belongs or does not belong to a natural kind is neither
chosen arbitrarily nor by convention. [Objectivity]

ii. Natural kinds are categorically distinct from each other. There cannot
be a gradual merge or fusion of one kind into another in such a way that
it is indeterminate to which of these kinds a particular object belongs.
[Categoricity]

iii. The identity of natural kinds ontologically depends on the intrinsic prop-
erties of its members, not on the extrinsic relations among them. [Intrin-
sicness]

iv. If two particulars x, y which are members of a kind K have different
intrinsic properties and these properties cannot be acquired nor lost by
members of kind K, then they belong to some proper species K ′, K ′′ of
K. [Speciation]

v. If a particular belongs to several natural kinds K, K ′, then these two are
proper species of a common genus K ′′. [Hierarchy II]

vi. Natural kinds have real essences and essential properties. [Essentialism]

The Objectivity and Categoricity conditions have been briefly discussed and
we cannot go deeper into that. Hierarchy (and in some sense Speciation too)
will be treated in Chapter III. The remaining conditions are Intrinsicness and
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Essentiality. Although Ellis does not make the following reasoning explicit (as
far as I have been able to check), these two conditions give the essentialist
identity conditions for natural kinds. We will denote by K the natural kinds
and by P the properties. Ellis holds that:

If K 6= K ′, then there is a property P such that it does not hold that (P
is an essential property of K iff P is an essential property of K ′).

Where it says ”it is an essential property of K” we will interpret it as ”is an
essential property of each and every particular instance x of K”. Since for Ellis
all essential properties are intrinsic and assuming contraposition, we have:

If for every intrinsic property P it holds that (P is an essential property
of every member of K iff P is an essential property of every member of
K ′), then K = K ′.

If two natural kinds are identical then they are coextensional. And if they
are coextensional then their instances have exactly the same essential intrinsic
properties. Therefore the converse also holds. The identity conditions for kinds
are:

Essentialist Identity Conditions for Natural Kinds For every (intrinsic)
property P it holds that (P is an essential property of every member of
K iff P is an essential property of every member of K ′) iff K = K ′.

So two natural kinds whose members have exactly the same essential in-
trinsic properties are identical. What makes kinds distinct are the essentially
exemplified properties of their members, whatever the latter ones are (i.e. even
if the extension differs from some world to another, the properties are invari-
ant). The general essence of a natural kind is formed by those properties that
the members of the kind essentially exemplify in virtue of their belonging to
the kind. Not every essentialist holds that the essential properties are intrinsic
to their members though. For instance, some philosophers (see [11]) have tried
to make essentialism compatible with current biological taxonomy by defending
that the ancestry of a species is essential to it. Nevertheless, they still share
something like the conditions just mentioned. After all, if the essence of a kind
is its real definition and this is the set of necessary and sufficient properties that
objects have to exemplify to belong to the kind, then what distinguishes one
kind from another is precisely this general essence.

Which existence conditions essentialists will give for natural kinds will de-
pend on their attitude towards the problem of universals. Ante rem realists will
hold that the kind exists even if it is not instantiated by any actual particular
object, whereas in rebus realists of kinds will ask for the kind to be necessarily
instantiated. But since most (all?) scientific essentialists are naturalists, they
will probably hold the latter. In sum, this allows us to give a neat summary of
the essentialist programme:

Core of the Essentialist Programme

1. There are natural kinds that ground or are grounded on objective differ-
ences in reality. [NKR]
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2. For every natural kind K, there are some natural properties P1,. . . ,Pm

which are such that x is aK iff x esentially exemplifies P1,. . . ,Pm. [Natural
Kind General Essentialism]

3. Two natural kinds K, K ′ are identical iff for every property P it holds
that (every member of K essentially exemplifies P iff every member of K ′

essentially exemplifies P ). [Identity Conditions]

4. If an object essentially exemplifies a property, then it necessarily exempli-
fies that property. [Essentiality implies De Re Necessity]

5. If an object instantiates a natural kind, then it necessarily/essentially
instantiates that kind. [Natural Kind Individual Essentialism]

Some common additional commitments are that kinds are universals, that
necessarily every kind is instantiated by some particular, that necessarily every
particular instantiates a kind, that there are a posteriori necessarily true propo-
sitions, that laws are metaphysically necessary and so on. But the previous
ones are enough to tackle the arguments for and against scientific essentialism,
given that they form the minimal core of scientific essentialism. In the following
sections I will briefly cover some of these arguments.

2.2.3 Cost-Benefit Arguments

According to Mumford [93], the best argument for scientific essentialism would
be a costs-benefits argument: essentialism is to be adopted because among
the best explanations for several phenomena it is the one with less ontological
costs14. I take it as an argument for the best explanation.

The main problem with this argument is that natural kinds from special
sciences, in particular those described by biology, do not seem to be essentialist.
Any theory of natural kinds that excludes such paradigmatic classifications is
so revisionist that it makes the ontological costs too high. Among scientific
classifications those made by biological systematics are the most fruitful ones,
so much that biological classification has been taken as a paradigm by the rest
of scientific classifications. Most philosophers of biology think that essentialism
is simply incompatible with evolutionary theory (see [36]). Some authors tried
to avoid this problem by appealing to some sort of origin essentialism. In these
accounts, what would be essential to biological species are their phylogenetic
descendant relations to other species. At first sight, this seems to suit the
most popular taxonomic approach to species, the cladistic one. Nevertheless,
it is still a controversial thesis. A similar point is usually made regarding the
classifications made by other special sciences (psychological states and processes,
diseases, and so on). Although there is still a debate about whether they track
natural kinds at all, an essentialist position risks excluding them from start.
Essentialists can solve these issues by taking relations or extrinsic properties as
fixing the membership conditions of kinds. To be in certain relations to other
entities would be part of the nature of the instances of the kind. However, this
manoeuvre requires more work and will definitely make the ontological costs
of essentialism higher. In contrast, a minimal scientific essentialism (as the
one introduced by Tahko [134]) does not require taking all natural kinds to be

14To be clear, Mumford [93] does not accept essentialism.
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essentialist. So long as the existence of kinds in other disciplines is accepted,
such an approach will have to be combined with non-essentialist theories of
kinds. This pluralism may be more plausible but it makes the costs-benefits
argument weak from the other point of view, by keeping the costs that come
with essentialism while reducing the benefits that a general theory of kinds is
supposed to provide.

Ellis also argues that, given that scientific essentialism implies scientific real-
ism, this is a good reason to accept the former one. But there are other weaker
theses that also imply scientific realism. Natural kind realism already implies
scientific realism without any commitment to essences. Furthermore, other non-
essentialist theories of kinds, such as causal theories, also imply some sort of
restricted scientific realism. Therefore, implying a restricted realism is not in
any form a virtue exclusive to essentialism. One could argue that the strong
necessitarian conception of natural laws, according to which natural laws are
metaphysically necessary, is the best theory of natural laws. One may assume
essentialism and argue that the natural laws are grounded on the essences of
the objects, as Ellis [34] does. But one could also appeal to strong necessitar-
ianism as the best account of natural laws, and argue that as a consequence
essentialism must be true. This strategy does not seem very appealing to many,
since in general philosophers find the claim that natural laws are metaphysi-
cally necessary to be too strong. The idea that there could not have been other
natural laws than the ones that actually hold sounds implausible. Since Hume’s
criticism of the notion of natural necessity, natural laws have been considered to
be contingent. Even necessitarians like Armstrong who think that natural laws
involve some sort of genuine necessity (among universal attributes) still defend
that natural laws themselves are contingent. Such an argument relies on the
plausibility of necessitarian theses as independent from essentialism, but there
are currently strong alternatives to necessitarian views (for instance [69]).

In any case, the costs-benefits argument does not seem to be a very powerful
move for essentialism. So let us consider now other more interesting argu-
ments15.

2.2.4 Semantic Arguments

The next package of arguments comes from the Kripke-Putnam discussions on
the semantics of natural kind terms. Kripke’s first argument in [66] consists in
arguing that we know the following conditional a priori, where K is a natural
kind:

if x is a K, then 2(x is a K)

This conditional is simply the thesis of Kripkean Natural Kind Individual Es-
sentialism. One may argue that it is not just an intuition what grounds these
principles. At least in the case of the Necessity of Identity, Kripke gave a modal
proof of it from uncontroversial premisses16. However, the necessity of identity
is acceptable even to anti-essentialists, given that it is considered to be at most

15Moreover, one could wonder whether we should not include in this costs-benefits analysis
the epistemological costs of essentialism. After all, there is still no satisfactory story regarding
how we come to know the natures of things.

16Some philosophers like [76] have objected to the argument.
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a trivial essentialist principle. But Kripke did give an argument for the indi-
vidual essentialism. It is a ’proof’ that the author suggests in [67] for origin
essentialism. This argument would only appeal to the theory of direct reference
(names are rigid designators), the Necessity of Distinction and the Indiscerni-
bility of Identicals (and some additional uncontroversial premisses). Moreover,
the argument could be adapted for other kinds of essentialism, such as natural
kind essentialism. It can be schematically put as follows:

Kripke’s Argument for Origin Essentialism

1. Let a be a table and let m be some piece of wood (directly referred to).
[Pr.]

2. In world w, a is made of m. [Pr.]

3. Suppose that there is a world w′ in which a is made of a different piece of
wood m′. [Pr.]

4. Suppose that m and m′ do not depend on each other, e.g. they do not
overlap. [Pr.]

5. There is a world w′′ 6= w in which a is made of m, and a table b is made
of m′. [Pr.]

6. ∀x, y (x 6= y)→ 2(x 6= y). [Necessity of Distinctness]

7. In world w′′, m 6= m′. [3,6]

8. ∀x, y (x = y)→ (Px→ Py). [Leibniz Law]

9. In world w′′, a 6= b. [5,8]

10. In world w′, a 6= b. [9,6]

11. If x is made of wood m′ in w′, then x 6= a.

12. In world w′, a is not made of wood m′, this contradicts (3).

This argument was criticized by Salmon [117]. Thus formulated17, it is clear
that (11) does not follow from the rest of the premisses. The argument shows
at most (10), that tables a and b are necessarily distinct. But this is not enough
to guarantee that if something is made of m′ then it must be distinct from a.
The crucial issue is, as Salmon says, that an additional essentialist premise is
required, such as ”if it is possible that a table x is made of a piece of wood y,
then necessarily every table made of y is the table x and no other” or ”if it is
possible that a table x be made of wood according to a plan P, then necessarily
every table that is made of y according to plan P is table x and no other” (see
examples P2 and P2’ in [117]). But clearly, to infer origin essentialism from
these premisses is to beg the question.

Another argument consists in applying the theses of rigid designators and
the necessity of identity to the case of natural kind terms. A reconstruction can

17Premisses 4 and 5 introduce some additional difficulties, but they can be ignored [117].
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be found in Soames [126], who introduces the kind water by lambda abstraction
as:

[λx.∀y(instances of y are composed by two hydrogen atoms

and a oxygen atom)↔ y = x](water)

What the previous identity statement establishes is that certain natural sub-
stance that we refer to by ’water’ is identical to an entity that we rigidly refer
to by the definite description ’the entity whose molecules are composed by two
hydrogen atoms and one oxygen atom’. By the Necessity of Identity we deduce
that this identity is necessary. We are then allegedly lead to conclude that in
every possible world, water or every molecule or sample of water has the same
molecular structure.

The problem is that it is not so clear what this identity statement means.
It does not seem to be such a simple case as that of Hespherus = Phosphorus
or Tully = Cicero. Now we are establishing an identity between natural kinds
themselves, and we do not know what these are. If the reference of ’water’ is the
set of all macroscopic samples of certain liquid and H2O is the set of all sums
or combinations of particular molecular compounds consisting in two hydrogen
atoms bonded in a certain way with an oxygen atom, then the statement seems
to establish and identity between these two sets. But if this identity holds
necessarily by rigidity, then these two sets are identical in every possible world.
This seems to be false since there could have been less or more water molecules or
samples than the ones that actually exist [11]. Of course, the statement cannot
be establishing an identity between entities of different ontological categories
(e.g. ’water’ refers to a particular but H2O is a universal), that would be a
category mistake.

Soames says that ’water’ is a rigid designator that refers to an abstract en-
tity. But if the entity is abstract, then it is implausible to hold with naturalism
(as scientific essentialists do) that it is discovered by empirical investigation.
After all, in what sense could one discover a posteriori that two abstract enti-
ties are identical? It seems more plausible to interpret what Soames wants to
convey as the suggestion that the reference is an instantiated concrete universal
(like Armstrong’s), or at most reducible to a complex of concrete universals.
Therefore, according to direct reference theory, the reference of water is the
concrete universal water. But now the proposition expressed by the statement
is water = H2O, and therefore what it says is that some concrete universal is
identical to itself, which is an innocuous tautology (this point is made by Lowe
[78]). One needs something stronger to get an essentialist conclusion. It seems
more plausible to say that the statement should be interpreted as establishing
the reduction of the universal water to some complex of universals (e.g. being
composed of hydrogen, being composed of oxygen, . . . ). Some philosophers, like
Hawley and Bird [57], defend that natural kinds are reducible to such complex
universals. But this still does not get us to essentialism unless we add the pre-
miss that the instances of these universals (e.g. samples of water, molecules)
essentially exemplify these latter universals or are essentially composed or con-
stituted by exemplars of these universals. However, that requires Natural Kind
Individual Essentialism and/or Constitution Essentialism, and therefore it is
hardly an advance.

The moral of the story is that under the direct reference theory an identity
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statement is just that: the trivial statement that says that certain entity is
(necessarily) identical to itself. One cannot obtain stronger conclusions from
this. If a = b holds, then we cannot conclude that a is essentially P unless
we already know that b (i.e. a) is essentially P . To sum up, there is no proof
from allegedly uncontroversial premises such as the Necessity of Identity and
the Indiscernibility of Identicals for the condition and it does not follow from
direct reference theory by taking natural kind terms as rigid designators either.
Similarly, one cannot obtain General Essentialism from these arguments either.

Let us consider now Putnam’s arguments. The Twin Earth thought ex-
periment by Putnam [103] is considered to be one of the most ingenuous and
influential arguments from the XX-th century. Although the aim of the argu-
ment was to refute the internalist descriptivist theory of the meaning of natural
kind terms, it also seemed to show that the reference of those terms were de-
termined by some microstructural properties which would be essential to the
members of the corresponding kinds. What the argument seems to conclude is
that in every possible world we consider, if something is a macroscopic sample
of water, then it has molecular structure H2O. Plausibly the converse is true
too18.

Let us assume an S5 modal logic with constant domain. Let =L denote
a binary equivalence relation defined over the domain of possible individuals
=L⊆ D × D. It represents the theoretical relation of being the same kind of
liquid as. Let ’W’, ’H2O’ be predicates denoting the properties of being water
and having a H2O molecular composition. Let the individual constant a denote
the actual sample of water referred to by ostension in a given world w. Then
the following is the simplest version of the argument as presented by Salmon
[118]:

Putnam’s Argument (Salmon’s Version)

1. 2∀x (Wx↔ x =L a). [Transworld Baptism of Sample a]

2. H2Oa. [Empirical Discovery]

3. ∀x, y (x =L y → (H2Ox↔ H2Oy)).

4. 2∀x(Wx→ H2Ox). [Essentialist Conclusion]

Salmon argues that, as it stands, the third premiss is too weak to deliver
the essentialist conclusion. It has to be modally augmented somehow and
de dicto necessities will not suffice. For instance, it is not enough to require
2∀x, y(x =L y → (H2Ox↔ H2Oy)), since the premisses are compatible with a
counterexample consisting of the world w where H2Oa, H2Ob, Wa, Wb, a =L b
and world w′ where ¬H2Oa, ¬H2Ob, Wa, Wb, a =L b, and wRw′. In other
words, a and b could be the same kind of liquid in both worlds, namely water,
while having both a XY Z chemical composition. Appealing to the Kripkean
strategy of making =L transworldly (∀x, y x =L y → 2x =L y) is not enough
either. Even if its extension is invariant across possible worlds it may happen
that both a and b are XY Z in a world w′ so long as they are both water in
w′. To get the conclusion one needs something stronger that will appeal to de

18There are some additional problems here. It seems that ’water’ refers exclusively to the
liquid state of the substance [11]. If so, then ’water’ is a phase sortal.
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re necessities sooner or later19. However, such a move will be tantamount to
making assumptions that are not free of essentialist content. For instance, if
one replaces (3) by something like the following:

∀x, y (x =L y → (H2Ox→ 2H2Oy))(3∗)

then the inference can be shown to be valid. For suppose that 2∀x(Wx →
H2Ox) is false in a world w, where H2Oa holds. Then there is a world w′, wRw′

such that ∀x(Wx → H2Ox) is false in w′. That means that Wb ∧ ¬H2Ob is
true in w′. By the first premiss, ∀x(Wx↔ x =L a) is true in w′ and therefore
b =L a holds in w′ too. By symmetry and (3*), (H2Oa→ 2H2Ob) is true in w′.
But 2H2Ob is false in w′ given that w′Rw′, therefore H2Oa is false in w′ too.
Since =L is reflexive and H2Oa holds in w, by (3*) 2H2Oa is true in w and
therefore H2Oa holds in w′, which implies a contradiction. But a premiss like
(3*) clearly begs the question concerning essentialism. It says that if we have to
samples of the same liquid and one of them has a actually a specific molecular
composition then the other one will have that same molecular composition in
every possible world. Since the theoretical relation of being the same liquid as
is reflexive, this is basically individual essentialism in disguise.

Note that, if one wants to get an essentialist conclusion, is the sameL as must
be a transworld relation (thus relating entities from different possible worlds)
and the worlds must be all of the metaphysically possible worlds. According to
Putnam is the sameL as is a theoretical relation. Putnam later [104] tried to ex-
plain that he had only considered nomological possibility and that he disagreed
on extending the conclusion to a more general metaphysical possibility. But if
so, unless one collapses metaphysical possibility to nomological possibility, one
cannot get the desired essentialist conclusion. Scientific essentialists identify
nomological and metaphysical possibility, but this is far from being accepted.

Notice also that there is an apparently simpler version of the argument
that makes use of Leibniz Law as follows. In world w, liquid b has at least
one property that a does not have, namely having microstructure XY Z. By
Leibniz Law, b 6= a and by the Necessity of Distinctness 2(b 6= a). Therefore,
the liquid in w is necessarily distinct from this one. But since w is an arbitrary
world, any liquid with a different microstructure from this one is a different
liquid. Therefore, this liquid has the same microstructure in every possible
world. Putnam sometimes writes as if this was the intended argument, for
instance when he says that ”supposing that water in the actual world is H2O,
a substance in a world which was not H2O would not be water”. But there
are obvious problems with this argument. It implies that every property of a
is necessarily exemplified by a. For if b had a property that a lacked, then by
Leibniz Law b would be distinct from a. But obviously, the essentialist is looking
for a distinction between essential and non-essential properties, he does not want
to take every property as essential. He could restrict Leibniz Law to essential
properties, but if he did so, then he could not use the principle in the argument,
because that would require him first to determine that having that chemical
composition is essential to water (which is what he was supposed to infer).
By contrast, relativizing Leibniz Law to worlds as x = y → (x is P inw →
y is P inw) blocks the original argument precisely because it loses its transworld

19I may be providing a reconstruction which is somewhat different from Salmon’s original
analysis, but in any case I think that it adequately captures his main point.
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force. Suppose that XY Zb and ¬XY Za in w. Then it follows that a 6= b is
true in w and by the Necessity of Distinctness a 6= b in every possible world.
But we can still have ¬XY Zb and XY Za in w′, for some possible world w′.

Of course, the argument could be cast in different forms by adopting ad-
ditional premises. The crucial point is that it will make use sooner or later
of a disguised version of the intuitive premiss that two liquids with different
composition in (possibly) distinct possible worlds are ipso facto liquids of dif-
ferent kinds. The premiss says that the persistence conditions for a involve its
microstructure. If these are thought to be grounded on the essence of things,
then this suggests that the hidden intuitive premiss is essentialist. This is not
a proof by cases, there are plenty of other versions left. Nevertheless, we can
see a pattern in the previous arguments. It seems that all these arguments rest
on essentialist intuitions. Therefore, one could argue, as Bird [10] does, that we
should forget about Kripke and Putnam’s arguments and consider the intuition
itself instead.

2.2.5 Metaphysical Arguments

Intuitions about De Re Impossibilities

Thus, the argument is that the intuitions are sufficiently compelling for us to
take essentialism to be true. The essentialist will insist on some well chosen
intuitions. Socrates could not have been a stomp, a sense data, the Spanish
civil war, the musical note C, the redness of your T-shirt, the number π, the
surface of my desk, the Nazi ideology, Kubrick’s A Clockwork Orange, and so
on. That is to say, even though Russell could have been a poached egg, it may
be that Socrates could not have been an action, an event, an abstract entity,
and so on20.

Certainly, essentialism implies these theses, but that is because it holds
the stronger thesis that implies that an object could not have not belonged to
whatever kinds it belongs to. However, this has a suspicious consequence: the
essentialist has to hold also that an object could not have belonged to some
natural kinds that are very similar or close to the ones that it belongs to. For
instance, Socrates could not have been a Homo Neanderthal. At least in my
case, my intuitions regarding this scenario are far less clear. Or consider origin
essentialism. Suppose that a person S was born from gametes a and b. By
origin essentialism, this is so necessarily. But let us suppose that we could have
made a clone b′ of b in vitro. Could not S have been born from a and b′? How
inconceivable is this situation? Or let us suppose that in the possible world
w′, the legend of the stone golem from Prague is true. A rabbi in Prague has
created a humanoid creature from a piece of clay by a spell in order to defend
his city from the outsiders. Given that he used a spell, could he not have made
the same golem from a piece of copper or play dough instead of using clay?

Essentialism has often been accused of being too strong for this reason. A
universe where an object has a minimally different property from a property it
essentially exemplifies seems to be conceivable. But according to standard modal
essentialism, called rigid essentialism by Roca-Royes [108], this is metaphysically

20Surely some of these intuitions are stronger than others, because they concern ontological
categories. One can reject natural kind essentialism and accept a more general essentialism
restricted to ontological categories, see Mackie [79].
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impossible. The reason is that an object essentially exemplifies a property P
iff it exemplifies P in every possible world. One way to put it is to say that
the feature of being an essential property is unstable: a slight difference in
the property makes it non-essential. Some essentialists have weakened their
theses to allow for some stability, these are called flexible essentialism by [108].
According to these positions, an object essentially exemplifies a property P iff it
exemplifies in each possible world a property P ′ which is sufficiently similar to
P . But these weaker positions fall prey to Chisholm’s paradox. This argument
starts by assuming the intuitive premiss that a given object could have had
a slightly different origin or be constituted or composed by exactly the same
constituents except for one of them (all its constituents except one of them are
the same). The argument applies this intuition once and again to finally arrive
at a possible world where that very same object lacks all the properties that were
supposed to be essential to it or to one where it has properties that are radically
different from the ones it started with. By the transitivity of accessibility that
last world will be accessible to the original one, thus accepting the possibility
that an object may have lacked all those properties that are allegedly essential to
it or the possibility that the object may have had radically different properties
to those that it actually has (in fact, this sort of arguments were considered by
Salmon to refute the claim that modal necessity is not even S4).

One can formulate instances of Chisholm’s paradox for kind essentialism
based on intuitions that are in conflict with essentialist ones. Consider the
following one. An object may have had slightly different determinates of the
same determinable, even when this property is supposed to be essential to the
object:

i. For every natural kind K, there are some natural properties P1,. . . ,Pm

which are such that x is a K iff x essentially exemplifies P1,. . . ,Pm. [Nat-
ural Kind General Essentialism]

ii. It is possible that for some natural kind K at least one of the properties
P1,. . . ,Pm is a determinate property Pj of a determinable property P .
[Pr.]

iii. Let x be a member of K. Then by (i) and (ii), x has the property Pj

essentially.

iv. But x may have had a determinate property Pk of determinable P and
which is approximately similar to Pj , while still being an instance of K.

v. Therefore, property Pj of x is not essential to x, (i) is false.

For instance, let x be a member of the kind electron. The essentialist must
say that it is essential to x to have certain electric charge e(x) = −1.602176565∗
10−19. The electric charge −1.602176565 ∗ 10−19 is a determinate property of
the determinable property electric charge. But x may have had an electric
charge that was slightly different from that, say e′(x) = −1, 602176566 ∗ 10−19.
Therefore, the property e(x) is not essential to x. We can obtain a big difference
between the determinates Pk and Pj by introducing intermediate steps that
involve determinate properties that are more similar to each other, as in the
Chisholm cases.
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Premiss (i) is general essentialism, it is not in dispute. (iii) and (v) just
follow from previous premisses. The essentialist must attack (ii) and/or (iv).
Rejecting (ii) is too revisionary for an essentialist. It would mean that no essen-
tial property can be a determinate property. But many theoretically interesting
properties posited by scientific theories are magnitudes and therefore deter-
minable properties. So we are left to analyse in more detail condition (iv). The
essentialist cannot say that it is essential to members of K that they exemplify
both a determinate Pi and another different determinate Pk of the same deter-
minable property P , since these exclude each other 21. The essentialist could
answer that the essential property is having some determinate property of the
determinable property P . If P were a ratio magnitude, we would be saying that
it is essential to x that it has a property with some value in the real line R.
There are at least two ways to interpret this. On the one hand, the essential
property is that of having at least one determinate of P , but it is indeterminate
which one it is. On the other hand, the essential property is having a determi-
nate of P , but which one it happens to exemplify may change form one world
to another. Regarding the former, if the property is essential to the object, it
seems clear that it has to be a specific property P . How could be essential for
an object to have some determinate property while this one being of an inde-
terminate value? Regarding the latter, the problem is that one has to restrict
the possible values that the magnitude could have. If not, any value from the
real line R, as big or as small as we wished, could be exemplified by the object.
But this is surely incompatible with natural laws. Say, the value of Pi could be

1010
...10

10...

, thus plausibly contradicting the necessity of some natural law. So
a more plausible answer for the essentialist would be to say that the essential
property is that of having a determinate property with value in some specific
interval [a, b] of the real line R. Now we refine the previous argument:

Let x be a member of K∗ and let Pi be the determinate property exem-
plified by x. Then Pi has a value in [a, b] ⊆ R, for some a, b ∈ R. Let
0 < ε ∈ R be as small as we wish. Then x could have had a property Pk

approximately similar to Pi, i.e. with value in (a − ε, b + ε)–[a, b]. Even
so, x would still belong to K∗.

So we could ask whether an object with a determinate property with a value
slightly outside the inverval, i.e. a−ε or b+ε, for a quantity ε > 0 as small as we
wished, would still belong to the natural kind. If the difference ε was sufficiently
small, we would say that the object would still belong to the kind even if its
property Pi had no value inside the interval [a, b]. To reply, the essentialist
should have to enlarge the interval of possible values to [a − δ, b + δ], for some
big enough δ > 0. But how do we know which value of δ we have to choose as
a limit for the values of all the determinate properties that the member of the
kind K∗ could exemplify? Without essentialist constraints the value δ could
simply be an approximation and we could say that members of the kind just
tend to have properties with values in (a − δ, b + δ). But we are looking for
essential properties. If δ is not big enough, we can reformulate the argument.
But δ could also be too big, so big that it forced some non-members of K∗ to
be members of it. To sum up, there are versions of Chisholm’s paradox that

21That no object can have two determinate properties of the same determinable in a given
instant is usually accepted.
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are problems for a flexible version of natural kind scientific essentialism, since
the intuitions on which these scenarios are based are in conflict with essentialist
intuitions.

There is another problem in appealing to modal intuitions, as Bealer [5]
clearly saw. This problem is specific to scientific essentialism. Scientific es-
sentialists accept Kripke’s main conclusion, that conceivability does not imply
possibility. Given the Necessity of Identity, there are a posteriori true proposi-
tions whose negation is conceivable but metaphysically impossible. For instance,
take any proposition expressed by an identity statement which is discovered a
posteriori. The main moral of the story is that we should not put too much
weight on our ability to conceive certain scenarios. Essentialists usually argue
that although it may appear conceivable that natural laws could have been dif-
ferent or that objects could have had different properties, this does not imply
that these facts are metaphysically possible. If we want to discover what is or
is not possible, we should make empirical research. Now consider the converse,
whether inconceivability implies impossibility. Assuming contraposition, this is
equivalent to asking whether possibility implies conceivability. Kripke does not
deny this, but why would we be justified in inferring from the fact that some-
thing is metaphysically possible that we must be able to conceive it? One could
ask, if our intuitions regarding what is metaphysically possible are unreliable
(given that metaphysical possibility is far more restricted than what we can
conceive as possible), why should our inability to conceive an scenario be a reli-
able source of knowledge of metaphysical impossibilities? How could one justify
such an asimmetry between our ability to know better metaphysical impossi-
bilities than possibilities? If this is so, we cannot reliably appeal to our modal
intuitions to argue for Individual Essentialism, since we could be equally suspi-
cious about arguing from unconceivability to metaphysical impossibility, which
is what is required for establishing that thesis. But the conditional is justified
by appealing to modal intuitions that support the inconceivability of certain
scenarios (say Twin Earth), so there seems to be a problem in the scientific
essentialist programme. It takes as evidence the very same kind of intuitions
whose epistemic value undermines [5]22.

Substantial Change

As Bird [10] says, even if we assumed Kripke-Putnam essentialist theses, one
would still face a further problem. Some essentialists accept the criticism by Fine
[39] regarding the equivalence between essential properties and de re necessarily
exemplified properties. Recall that, if one accepts Fine’s criticism, then Kripke’s
and Putnam’s essentialist theses do not assign essential properties to objects,
but only necessarily de re exemplified properties. In particular, they would
not show that a certain object essentially belongs to a natural kind or that a
macroscopic sample of some liquid has some microstructure essentially. One
needs an additional step to secure that these properties are so exemplified in
virtue of the nature of their bearers23.

22One could add that there are anti-essentialist views, such as Lewis’s ’contextualism’, which
try to explain away the essentialist intuitions as being the effect of context. According to these
theories, these possibilities are excluded in a given context because they are ’too remote’ or
’irrelevant’. Thus, there are at least alternative explanations for the essentialist intuitions.

23After noticing this Bird argues that according to Fine what we need is that the essentialist
claim be true in virtue of the identity of the objects in question. But according to Bird, one
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There seems to be a close connection between general and individual essen-
tialism of natural kinds. Suppose that there is a general essence or nature shared
by all the instances of a given kind, in other words, that general essentialism
is true. This essence fixes or determines those properties that are modally de
re exemplified by all the instances of the kind. These latter properties seem
to determine the membership conditions for the latter one. So if these prop-
erties are necessarily exemplified by any given instance of the kind, it would
seem that any such an instance could not cease to belong to the kind without
going extinct. It seems then that general essentialism of kinds implies Kripkean
individual essentialism of kinds. But if general essentialism of kinds implies
individual essentialism, then if the latter one is false the former is in serious
trouble. A classical objection to individual essentialism consists in arguing that
it is too strong. It seems conceivable that objects could transform in such a
way as to change the kind of things they are (see Lowe [?]). Let us call this the
Metamorphosis Objection:

Metamorphosis Objection

1. If General Essentialism of Natural Kinds is true, then Individual (Krip-
kean) Essentialism of Natural Kinds is true.

2. Objects could stop instantiating those kinds they are actually instances
of. In other words, Individual Essentialism is false.

3. Therefore, General Essentialism of Natural Kinds is false.

Second premiss says that the very same object x can belong to a kind K
in time t and then cease to belong to K in time t′, where t < t′. The object
survives the change of kind. Literature, fairy tales and myths are full of stories
where objects transmute or get transformed in such a way that they change
their kinds: frogs that become human princes (or the other way around, un-
lucky people like Gregory Samsa that become big ugly insects), alchemists that
transmute substances into gold, beasts that become statues during the day, wiz-
ards that transform themselves into animals at will, and so on. Of course, given
what we know about the world, some of these events seem to be nomologically
impossible. But without additional argument, nomological possibility is con-
siderably restricted compared to metaphysical possibility. In these tales we are
considering worlds were most of the known natural laws fail. Thus, according
to individual essentialism it is metaphysically impossible that during the odd
days of January my cat gets continuously transformed into a geranium through
the day and reverts this transformation by the next morning. But this is clearly
conceivable, as examples from literature suggest.

Now, the previous objection considered conceivable scenarios in which ob-
jects changed their properties and moved from one kind to another. But it seems
that there are actual cases in which this occurs, as Bird argues in [10]. Some

can argue that this is indeed the case for the examples of the sort ’necessarily water is H2O’,
given that these are ’identity statements’. However, this looks like an equivocy fallacy. By
’identity’ Fine refers to the nature or essential properties of the object. By ’identity’ Bird
refers to the relation of identity that necessarily holds between an object and itself. This
is a problem since even the most anti-essentialist can accept the necessity of identity while
rejecting every substantive essentialist thesis.
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objects seem to change or transmute from one kind to another while still being
the same objects. But if an object essentially belongs to a natural kind, then it
does so necessarily and therefore these cases are metaphysically impossible. It
is of no help to relativize the kind membership to a time instant t (as it is done
with PII), because if this property is essential to the object then the object will
have it in every instant in which it exists. Let us consider one of his examples:

”In this example a heavy atomic nucleus changes its kind when
it undergoes alpha or beta decay. A nucleus contains 92 protons
and 146 neutrons; it emits an alpha particle, and as a result the nu-
cleus now contains 90 protons and 144 neutrons. Or a nucleus with
55 protons and 82 neutrons emits a beta particle (an electron) and
becomes a nucleus with 56 protons and 81 neutrons. In such cases
the kind of the nucleus is governed by the number of its protons (al-
though the isotopes, governed also by the number of neutrons, are
also kinds, subkinds of the elemental kinds). In both cases the decay
processes described lead to new kinds (a uranium nucleus yields a
thorium nucleus, and a caesium nucleus yields a barium nucleus).
And it is natural in each case to regard the nucleus as having re-
tained its identity in the process (... . . )” [10]

In this example, an atomic nucleus changes its natural kind, say from being
an instance of Uranium to being an instance of Thorium by ceasing to have
some properties (the number of its protons changes). Let us grant that such is
indeed the case. Nevertheless, Bird says, one could explain these cases away by
rejecting natural kind individual essentialism:

If x is a K, then x is essentially a K.

While at the same time keeping natural kind general essentialism:

For every natural kind K, there are some natural properties P1, . . . , Pm

which are such that x is a K iff x essentially exemplifies P1, . . . , Pm.

It may be a contingent property of these objects that they belong to K while
it being essential to them that they have these properties once they belong to
K. In other words, one could accept that kinds have general essences while at
the same time allowing for the possibility that some objects change their kinds.
Apparently, individual and general essentialism do not imply each other. It is
convenient to highlight that it is not enough to reject Individual Essentialism
to avoid cases of transmutation, one has to reject its modal version. If x can
change its kind, then there is a possible world in which x does not belong to the
kind. This is what the previous examples seem to imply.

However, I think that there is a conflict between holding General Essen-
tialism and rejecting the principle that the objects should necessarily belong
to the natural kind. The most obvious way of formalizing these two theses in
S5 leads to inconsistency. To keep matters simple, let us formulate the claim
using first-order modal logic. Let K,P1 . . . Pn be monadic predicate symbols.
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We assume that the logic is first-order modal logic S5 with constant domain.
We will formulate Individual Essentialism as:

∀x (Kx→ 2Kx)[IE]

For General Essentialism, some attempts could be:

∀x [Kx↔ (P1x ∧ · · · ∧ Pnx)]

∀x2[Kx↔ (P1x ∧ · · · ∧ Pnx)]

∀x [Kx↔ 2P1x ∧ · · · ∧2Pnx]

∀x2[Kx↔ 2P1x ∧ · · · ∧2Pnx][GE]

The first one is a non-starter. It is not enough for the objects to contingently
exemplify those properties in some world. The second attempt is the de dicto
reading, but is clearly not enough. It just says that in each possible world, the
K-s are exactly the ones that exemplify P1 . . . Pn. So an object x is a K iff it
exemplifies all these properties in the actual world, and whenever it exemplifies
these properties it will be a K. But x could fail to exemplify some of these
properties in some worlds. Now, if it is part of the nature or essence of x to be
a P1 . . . Pn, then if x lacked some of these properties in some worlds it would
not be that very same x, for what it is to be such an x involves having those
properties. As it is traditionally put, these properties would be just accidental
to the object. So the de dicto reading does not seem to be appropriate to
capture the essentialist commitment. If those properties are part of the essence
of the kind, then the object should exemplify them in every possible world in
which it exists. Therefore, something like the third formula is required, which
gives a de re reading of the thesis. This may still not be close enough, since the
biconditional should hold necessarily. Why? Because if having such and such
properties is having the essence of the kind, then this correspondence between a
kind and its essence should hold in every possible world. It cannot be the case
that the essence of the kind changes from one world to another, so we must have
something like the last formula. In logical terms, the predicate K is defined in
terms of other predicates P1 . . . Pn. For something to be a K it is necessary and
sufficient that it is also necessarily a P1, and necessarily a P2 and necessarily
. . . and necessarily a Pn. These latter predicates denote the properties that
are determined by the essence of the kind, and therefore fix its membership
conditions.

It can be proven that (GE) implies (IE) in first-order modal predicate logic
S4 with constant domain24. Let (W,D, I) be a S4 model and g a variable
assignment. We informally abbreviate as usual I(φ,w) = 1 as ”φ is true in w”
and I(φ,w) = 0 as ”φ is false in w”. Suppose that ∀x, 2[Kx ↔ 2P1x ∧ · · · ∧
2Pnx] is true in world w but ∀x (Kx→ 2Kx) is false in w. Then Kx→ 2Kx
is false in w under a variable assignment gxa identical to g except that it replaces
x by a, for some individual constant a. In other words, Ka is true in w, whereas
2Ka is false in w. But then there is a possible world v ∈ W which is accesible

24The model will assume the modal conception of essence. Fine has convincingly argued
against it, but since the properties we will be considering can be taken to be those necessarily
exemplified by the instances of natural kinds in virtue of the kind’s essences, we can still use
it without any problem. We will use a constant domain semantics, an extension to a variable
domain semantics should not be too difficult by making the appropriate auxiliary assumptions.
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to w, i.e. wRv, and in which Ka is false. But 2[Ka ↔ 2P1a ∧ · · · ∧ 2Pna] is
true in world w by instantiation. By axiom T, w is accesible to itself, i.e. wRw,
therefore Ka↔ 2P1a∧· · ·∧2Pna is true in w too. Therefore 2P1a∧· · ·∧2Pna
is true in w. So 2Pia is true in w, for each i ∈ 1, . . . , n . But since v is accessible
to w, Ka↔ 2P1a ∧ · · · ∧2Pna is true in v too. Therefore, 2P1a ∧ · · · ∧2Pna
is false in v. And so 2Pka is false in v, for at least one k ∈ 1, . . . , n . If so, then
there is a possible world uk ∈W such that uk is accesible to v and Pka is false
in uk. By S4 it follows that wRuk and therefore Pia is true in uk, for each i. So
in particular Pka is true in uk, which is a contradiction. Thus (GE) S4-implies
(IE). As were formulated here, rejecting Individual Essentialism while keeping
General Essentialism leads to inconsistency. Therefore, if there are actual cases
of transubstantiation, General Essentialism is false.

Nevertheless, this may be thought to be unfair to Bird, for he may propose
his thesis as a revision of General Essentialism. He says that the Aristotelian
need only be committed to the weaker thesis that objects will have the essence
of a kind just during that time in which they belong to the kind. When an
object changes from one kind to another, it will change its essence accordingly.
Somewhat before that he makes the following remark:

”More importantly, the claim that all members of a kind have
some property, the essence of that kind, is consistent with the anti-
Aristotelian claim that some entities can change their kind. An anti-
Aristotelian kind essentialism requires only that when they change
kind they lose or acquire the relevant kind essence.” [10]

I am not completely sure that I understand how Bird’s thesis would go.
The idea seems to be that necessarily, for each natural kind K there are some
properties P1, . . . , Pn which are such that an object x instantiates K during T
iff x is P1 during T and . . . and x is Pn during T , where T is some time interval.
We exchange the modal operators that force the object to have those properties
in every possible world by temporal operators that say that the object has these
properties during some given time interval. So if an object ceases to have some
of the Pk properties during time interval T , then it will cease to be a K.

However, a version of (GE) according to which objects can change their
essence by changing from one kind to another is at odds with the theoretical
roles that essences are supposed to play. The whole point of appealing to gen-
eral essences is to explain the possibility of qualitative change and fix the modal
facts that involve those objects, alongside their identity and persistence condi-
tions [77]. Consider identity and persistence conditions. If objects can change
their kind then they will change their identity and persistence conditions and,
a fortiori, they will not be the same objects. For if x is K in t, and then x
is K ′ in t′, the conditions under which x in t is identical to x in t′ are dif-
ferent from those under which x in t is identical to itself in t. How then are
they supposed to be the very same object? Or consider the classical problem
of qualitative change. An object x may be P in t and Q in t′, while P and Q
being incompatible properties. Therefore, by the Indiscernibility of Identicals,
x in t is distinct from x in t′. Aristotle’s solution to the puzzle was precisely
to invoke the distinction between essential and accidental properties in order to
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restrict the Indiscernibility of Identicals. The object x in t has some accidental
properties, like being P , that get lost in t′. Nevertheless, x in t is identical to
x in t′ because it has some properties that are invariant under the qualitative
change, namely its essential properties. The phenomenon of qualitative change
is explained by assuming that only some of the properties of the object retain
its identity through time, while others may change without affecting it. These
essential properties are the ones that determine the persistence conditions of
the object. So they are the ones the object has in virtue of belonging to a given
kind. But if x in t has different essential properties that x in t′, x in t is not the
same object as x in t′. In such a case not even this version of the Indiscernibil-
ity of Identicals is preserved and the phenomenon of qualitative change is left
unexplained. In sum, one cannot appeal to the essence-accident distinction to
solve the puzzles related to qualitative change and identity and persistence con-
ditions, precisely because which are the essential properties of objects changes
through time. If these objections to Bird’s proposal are sound, then Bird’s orig-
inal metamorphosis or transubstantiation counterexamples are still a threat to
General Essentialism of Natural Kinds. An essentialist that finds these coun-
terexamples convincing enough has to take a different route. The essentialist
can reinterpret these counterexamples as cases in which an object gets extinct
and a new one appears. The new problem is how to determine whether the
entity is the same one or not. I am unsure whether some general arguments can
be given here. Unfortunately, we cannot deal with this topic too.

In any case, we considered several arguments against scientific essentialism.
The cost-benefits arguments face the fact that essentialism is at odds with the
kinds of special sciences. The semantic arguments seem to assume only the se-
mantic theses of direct reference theory, but all of them smuggle in essentialist
assumptions. The metaphysical arguments appeal to intuitions that certain sce-
narios are impossible. However, they conflict with either instances of Chisholm’s
paradox or either possible or actual cases of substantial change. Now it is time
to take a look at other theories of kinds.

2.3 Cluster Theories

Essentialism is not the only game in town. A popular alternative today is given
by the various Cluster Theories of natural kinds. Many of these theories appeal
to causality or counterfactuals as the ground for the co-occurrence of the prop-
erties shared by the members of the kind. Some current examples are Boyd’s
Homeostatic Property Clusters Theory of Natural Kinds [12], the Simple Causal
Theory of Kinds by Khalidi [64], [65] and the Theory of Stable Clusters by
Slater [123]. Weaker proposals are Dupré’s Promiscuous Realism [32]. Gener-
ally speaking, cluster theorists tend to emphasize both the epistemological side
of the problem of kinds and the naturalistic approach to kinds that pays a close
attention to how scientific classifications are made.

2.3.1 Homeostatic Property Clusters

Cluster theories of kinds are weaker than essentialism. Kinds are still considered
to be related to a cluster of properties, a set of properties shared by the members
of the kind. However, it is not generally assumed by cluster theories that all of
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the members of the kind share all the properties in the cluster. Plausibly, the
first one to propose such an approach to kinds was Bertrand Russell in [116]:

”If a ”natural kind” is defined by means of a number of properties
A1, A2, . . . , An (not known to be interdependent), we may, for some
purposes, consider that an individual which has all these qualities
except one is still to be considered a member of the kind -for exam-
ple, Manx cats are cats in spite of having no tail. Moreover a great
many distinctive characters are capable of continuous modification,
so that there are borderline cases where we cannot say definitely
whether a given character is present or absent. A natural kind is
like what in topology is called a neighbourhood, but an intensional,
not an extensional, neighbourhood. Cats, for example, are like a
star cluster: they are not all in one intensional place, but most of
them are crowded together close to an intensional centre. Assuming
evolution, there must have been outlying members so aberrant that
we should hardly know whether to regard them as part of the cluster
or not. This view of natural kinds has the advantage that it needs
no modification before incorporation in advanced science.” [116]

Russell proposes to consider kinds as clusters of properties that not all the
members of the kind need to share. This allows for ’outlying aberrant members’
that belong to the boundary of the kind, so to speak. It is interesting to note
that Russell makes use here of a spatial metaphor that presents kinds as certain
regions in a space whose points are properties. This spatial conception of kinds
will reappear again in the following section on Conceptualism.

More recently, in several works such as [12], Richard Boyd has proposed
a Homeostatic Property Clusters Theory of Natural Kinds (HPC). The idea is
that the members of a natural kind share some (similar) properties because
there are some causal mechanisms that make those properties cluster together
(the properties co-occur). These property clusters are maintained by some sort
of ’homeostatic equilibrium’. Thus Boyd’s theory is a causal cluster theory: it
explains the co-occurrence of some properties by appealing to causal relations.

Boyd’s theory has several interesting consequences. First, natural kinds have
a stronger dependence on our inferential practices than it is usually acknowl-
edged. This thesis is called accommodation by Boyd, and allows him to introduce
certain conventional elements in the HPC theory of kinds without eliminating
the objective basis of kinds, which rests on the causal mechanisms. The basic
idea is that we in some sense select the application conditions of natural kind
terms so that they fit the causal structure of the world. In other words, in order
to give some explanations about the objects of a certain domain, we appeal to
causal relations among them. These causal relations connect certain properties
of objects together. Natural kind terms are chosen to refer to those properties
and therefore to allow for making inferences that are grounded on those causal
relations. This allows for a partial explanation of the projectability of natural
kind terms: the inferences involving these terms are projectable because they
are supported by causal relations between the properties clustered. The pro-
jectable terms are the ones that track the causal structure of the world, so that
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the latter ones guarantee the fruitfulness of the inferences made by using the
former.

Second, the coherence or unity of the kind is grounded on the causal mecha-
nisms that make the members of the kind similar to each other. In other words,
similarity rests on causality, not vice versa. Moreover, these causal mechanisms
fulfill an explanatory role. Instead of appealing to the general essence shared
by the members of the kind, HPC theorists appeal to the causal mechanisms
that cluster the properties together. This is supposed to make HPC closer to
naturalism, given that whereas scientists appeal to causal relations to explain
why a given object belongs to a certain kind, they do not seem to appeal to
essences for such purposes.

Third, the members of a natural kind do not need to share the same or
exactly similar properties. The cluster of properties is kept ’in equilibrium’
or in ’homeostasis’ by the causal mechanisms. This means that the causal
mechanisms tend to make the properties in the cluster occur. However, it usually
happens that not all of the properties in the cluster occur. A fortiori, natural
kinds have ’vague boundaries’. The reason is that, if there are no necessary
and sufficient conditions that objects have to satisfy in order to belong to the
kind, there will be some objects for which it will be indeterminate whether they
belong or not to the kind in question, because they will have many (though
not all) of the properties in the cluster. This is in contrast to the clear-cut
membership conditions assumed by essentialists.

Finally, the causal mechanisms associated with a kind can change over time.
Thus, the properties common to the members of the kind can change over time
too. This last feature makes the causal approach very different from essential-
ism, that would not allow a change in the general essence of the kind.

2.3.2 Objections to the Role of Causality

Cluster theories are a very recent approach to natural kinds, thus their advan-
tages and disadvantages are still to be considered. A prima facie advantage
of Cluster Theories over Scientific Essentialism consists in their being able to
handle the kinds of special sciences. Given that they make weaker commit-
ments than essentialist accounts, causal theories have been invoked as a first
approximation to molecular compounds, biological species, mental states, dis-
eases, psychiatric disorders, and so on. Moreover, at first sight it seems that the
special sciences ground their explanations on some causal mechanisms (or just
causal relations) posited as explanations of several phenomena. If we consider
that the choice of the relevant properties strongly depends on the theoretical
principles that ground the classification, we get a very tight connection between
classifications, the theoretical principles chosen as criteria for making them, the
theories in which the classifications occur and the causal mechanisms posited to
explain why the principles chosen are the most adequate ones.

Generally speaking, cluster theories attempt to avoid the strong conclusions
of essentialism by generalizing the notion of kind and weakening their com-
mitments. This allows them to account for several features found in scientific
classifications, such as the vagueness in the membership conditions for kinds or
the fact that sometimes there is no set of properties shared by all the members
of the kind. However, some of these theories such as (HPC) do so by appealing
to causality, which makes them the target of the first sort of objections. It is not
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clear that causality can be used to explain all cases of classification it purports
to. In some scientific domains, demanding the existence of causal mechanisms
is too much to ask for. For instance, in the case of physics, it does not seem
to be any sort of causal mechanism that makes all the electrons have the same
properties [21]. In the context of biology, it has also been argued that successful
biological classifications do not necessarily appeal to causal mechanisms. For
instance, Ereshefsky and Reydon [37] have argued that the following kinds are
not explained by (HPC):

1. Non-Causal Kinds: the members of some kinds belong to them in virtue
of being similar without there being any causal mechanisms behind (e.g.
kinds of microbes and kinds of stars).

2. Functional Kinds: the membership conditions of some kinds are given in
terms of the functions fulfilled by their members (e.g. the kinds Predator
and Gene).

3. Heterostatic Kinds: some kinds have estable differences among their mem-
bers, which are appealed to in order to classify those members (e.g. the
differences between males and females of a common species).

It is not clear that even cladistic taxonomies, which are the most success-
ful ones in biology, fit the HPC picture at all. According to these authors,
Boyd’s homeostatic theory is still too close to traditional theories of natural
kinds in giving some role to similarity relations that do not hold for histori-
cal classifications in biology. This feature of contemporary theories of kinds is
called ’similarity fetishism’ by Magnus [80]. In other cases, such as psychiatric
kinds [23], homeostatic causal mechanisms seem to be absent too. According to
Cooper, natural kinds are just clusters of co-occurrent properties.

Some authors, like Magnus [80], answer these objections by making fur-
ther distinctions. For instance, he distinguishes between HPC-types and HPC-
tokens. Members of a HPC-token kind share the same causal mechanism,
whereas members of a HPC-type kind only have similar causal mechanisms.
For example, members of a biological species would form a token kind, since
they share the same lineage. But a Martian tiger and an earthly tiger would
belong at most to a type kind, since the causal mechanisms that made them
appear are at most similar. According to Magnus, chemical compounds are
HPC-type kinds. But such a strategy introduces kinds of causal mechanisms
based on similarity relations. However, these kinds of mechanisms should them-
selves be individuated by appealing to causal relations. This leads to a different
problem for causal theories put forward by Craver [25]. If kinds are individuated
in causal terms, then how are kinds of causal mechanisms themselves individ-
uated? We can say that two causal mechanisms are approximately similar or
even duplicates from each other. But is there a further ’higher order’ causal
mechanism that clusters together these causal mechanisms into one kind? The
account seems to face a dangerous infinite regress25.

25There may be other pressing objections. For instance, if there are abstract entities, then
there are kinds of abstract entities. If mathematical entities, meanings, possibilia, values
and so on turn out to be abstract (or if mental entities turned out to be causally unrelated
to physical entities), then the causal accounts will not have a story to tell about how it is
that these entities belong to their corresponding kinds. Abstract entities are non-causal by
definition. With respect to these entities, similarity scores better.
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The second sort of objections come from the lack of details of the proposals.
There are many aspects of these theories that remain unexplained. For instance,
what does the vagueness of kinds consist in? What is the notion of causality at
work? What are the causal mechanisms and how do they specifically relate to
the co-occurrence of the properties in the cluster? How is the notion of equilib-
rium or homeostasis to be understood? Due to some of these problems, several
descendants to Boyd’s original theory have appeared. Some recent examples of
very different theories are the simple causal theory of kinds by Khalidi [65] or
the theory of stable clusters by Slater [123]. These theories differ on whether
they put more emphasis on causality than on properties or on whether they do
without causality completely.

For instance, consider vagueness. Membership conditions of kinds are sup-
posed to be vague. It is enough for some objects to have some properties for
them to belong to the kind, but there may not be a fact regarding which of
these properties is enough to have. A fortiori, whether some object belongs or
not to a given kind may be indeterminate. But what is this vagueness supposed
to be? If the vagueness is purely semantic or epistemic, then this only concerns
the representational limits of our terms or concepts, such a thesis is still com-
patible with kinds having clear-cut membership conditions. In contrast, Cluster
Theories may be thought to be committed to some sort of ontological indeter-
minacy in the world. However, the thesis that the world is itself vague is a very
controversial position that is still hard to make sense of, as the discussions on
the indeterminacy of identity show. Causal theorists have not said much in this
regard.

Moreover, it is not always clear what notion of causality these theories are
making use of. What theory of causality are based on? What basic principles
about causality are accepted? Khalidi [65] makes a more specific suggestion
and chooses a conception of causality based on the model of acyclic directed
graphs, as the one proposed by the Structural Equations Modelling approach.
Kinds are collections of properties (core or derivative properties) that form a
network of causal relations. However, he gives no detailed account about how
the approach is supposed to work, or about how the usual features of kinds such
as their specificity relations or the entities they sort are represented in such a
model. Although this is an interesting and plausible proposal for the causal
approach, it is still very sketchy.

Moreover, it is not clear how appealing to causality implies that kinds will
have vague membership conditions. One can conjecture that this may have
something to do with the fact that if the occurrence of some set of properties
causes the occurrence of another set of properties, then the former one will in-
crease the probability of the latter. Is the vagueness then represented by this
probability? Then the previous doubts re-emerge. What conception of prob-
ability is at work? Does the probability represent frequencies or propensities
based on these causal relations or does it represent our epistemic uncertainties
about these causal relations? In both cases, how is this to be understood as a
case of ontological indeterminacy? Furthermore, note that, if kinds are clusters
of properties, it is not easy to avoid making use of sets in order to represent
these clusters. But sets have their identity conditions fixed by Extensionality
(two sets are identical iff they have exactly the same members). How can then
the membership conditions of such clusters be vague if the identity conditions of
the representing sets are clear-cut? One may propose other fancy structures like

70



fuzzy sets to avoid this problem, but then how are these fuzzy sets to be made
compatible with the formal framework for causality? In short, several crucial
features of these approaches are still very sketchy.

2.3.3 Promiscuous Realism and Practice-Oriented Theo-
ries

There are weaker theories than the ones just considered. The most famous
proposal is Promiscuous Realism by Dupré [32]. According to Dupré, there are
many objective similarity relations among objects, and these induce overlapping
classifications. In fact, there are so many similarity relations that the choice
of the relevant ones is always strongly dependent on our interests. The main
objection that is usually made to Dupré’s thesis is that he imposes no theoretical
constraint on the choice of the relevant similarities. As a consequence, folk or
pre-theoretic classifications are on a par with scientific ones (so long as they are
fruitful for the purposes for which they were devised). But scientific realism is
committed to the thesis that scientific theories are successfully revising our pre-
theoretic beliefs about (and in particular our pretheoretic classifications of) the
world. If that is the case, then some of our folk classifications do not adequately
represent the structure of the world.

Criticisms of the previous approaches to the problem of kinds have lead many
philosophers to adopt a more ’practice-oriented’ view. These philosophers insist
on paying a closer attention to how classifications are made in science. Such a
case-by-case analysis reveals important differences between classifications made
in distinct disciplines and for different purposes. This leads to what we could call
a natural kind pluralism. Thus, some of these theories should not be considered
’Cluster Theories’ any more. An important example is given by Ereshefsky
and Reydon’s approach to kinds based on the notion of a Taxonomic Research
Programme [37], which is based on previous work by Ereshefsky on biological
taxonomies [36]. The core idea is that instead of discussing what natural kinds
are, we should consider whole classificatory programmes. Every classificatory
or taxonomic programme has at least three components:

1. Sorting Principles: these are rules that determine how to sort things into
kinds. For example, sort according to similarities induced by common
causal mechanisms, sort according to most recent common ancestor, and
so on.

2. Motivating Principles: these describe the aims of the programme. For
instance, making inferences, giving clear-cut identity conditions for kinds,
producing stable kinds, and so on.

3. Classifications: these are the result of applying the sorting principles to
a specific domain. For example, a cladistic classification, a morphological
classification, and so on.

Besides these descriptive features, they propose the following normative cri-
teria for comparing the different research programmes:

1. Internal Coherence: the sorting principles should promote the motivating
principles of the programme.
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2. Empirical Testability: the motivating and sorting principles should be
empirically testable.

3. Progressiveness: compared to rival programmes, the programme should
allow us to make new empirically successful classifications and extend the
ones we already had.

These normative constraints can be illustrated, as the authors do, by ap-
pealing to the disputes between taxonomic schools in biology26. The three main
taxonomic schools are evolutionism, pheneticism and cladism. Every taxonomic
school accepts the modern synthetic theory of evolution. What distinguishes
them is the choice of the species concept that they take as sorting principle
and the kind of properties or similarities they consider to be relevant or good
evidence for the claim that some entities belong to a common taxon. We will
focus only on pheneticism and cladism.

Prima facie, higher taxa are collections of species that are nested in suc-
cessively more general taxa. Monophyletic taxa, also called ’clades’, contain an
ancestor species and all its descendants. Thus a clade contains all those species
that have a species K as their most recent common ancestor (most recent in
comparison with the rest of species). As an example, Reptilia is not a clade
for despite it contains the most recent common ancestor of birds and crocodiles
(compared to lizards), it does not contain birds. In contrast, polyphyletic taxa
contain only some species independently of whether they have a most recent
common ancestor or not. From an epistemological point of view, there are sev-
eral kinds of features, properties or similarities that can be taken as evidence for
the corresponding taxa. Homoplasies are common features that appeared in-
dependently due to natural selection instead of being inherited from a common
ancestor. Therefore, if one considers homoplasies as evidence for classification,
the resulting taxa will be polyphyletic. In contrast, homologies are shared fea-
tures that are inherited from a common ancestor species. Homologies result
from cladogenetic speciation processes, in other words, speciation processes due
to geographical isolation where an ancestor species is splitted into (at least) two
distinct species.

The cladistic school of taxonomy only accepts homologies as evidence for
monophyletic taxa, those taxa being produced only by cladogenetic processes.
The only criterion they accept is that based on the phylogenetic relations among
the species. Accordingly, cladists give very clear necessary and sufficient con-
ditions for belonging to a common monophyletic taxon or clade. Two species
belong to the same clade iff they share a most recent common ancestor. This
definition allows the same species to belong to several nested clades, which can
then be represented in the form of a tree called a ’cladogram’.

In contrast, pheneticists are suspicious towards the appeals other schools
make to theoretical principles in taxonomy. They think that the choice of the
relevant similaries or properties used to classify biological entities should not be
guided by theory, and therefore that taxonomy should be theoretically neutral
for several reasons. For instance, making taxonomic principles and methods in-
dependent of theories guarantees that the resulting classifications will be more
stable and useful for distinct subdisciplines in biology. Moreover, in practice
taxonomists do not have access to the genealogical history of the entities they

26I follow the terminology in [36] and [140].
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classify and therefore cannot know which of the features they use as evidence
are homologies and which ones are not. According to them, evolutionists and
cladists commit some sort of circular reasoning. Although they lack knowledge
about the phylogenetic relations among the entities, they take some features and
reject others as evidence of common ancestry, and then they appeal to common
ancestry to explain and justify why they took such features as evidence. This
being so, pheneticists put no constraints over the choice of relevant features or
over the taxa to be considered as valid. As a result, some of the phenetic taxa
are polyphyletic and some of the chosen features are homoplasies. The crucial
contribution of the phenetic school was the introduction of a rigorous method-
ology that consisted in selecting some exemplars, recording the chosen relevant
features and plotting them in a multi-dimensional space where the points rep-
resented the biological entities (organisms, taxa, and so on) to be classified,
the distances represented the degrees of dissimilarity and the dimensiones cor-
responded to the features27. Classifications were the result of applying different
statistical techniques over the space that consisted in partitioning the space by
clustering the biological entities that were sufficiently similar.

The three schools appeal to some similarities or shared features as evidence
for the adequate classification of organisms and species. But this is just the
epistemological side of the classification. Ontologically speaking, they make
very different claims. Pheneticists are ontologically agnostic, they assume that
overall similarity should be enough for most taxonomic purposes regardless of
the theoretical principles that explain why those features are there in the first
place. Cladists explain the sharing of features as a consequence of the phyloge-
netic relations among the species. As a consequence, the identity conditions for
species (and higher taxa) are given only in terms of phylogenetic relations.

Ereshefsky and Reydon consider the Phenetic Research Programme to be
a non-progressive programme in biology. Whereas its motivating principles in-
volve developing stable and theoretically neutral classifications that may be used
by the distinct biological disciplines, its sorting principles require sorting organ-
isms and species according to overall (morphological, ecological, behavioural,
genetic, . . . ) similarity. According to the authors, this programme is non-
progressive because it is not internally coherent. Whereas the programme pur-
ports to develop theoretically neutral classifications, the choice of the relevant
properties used to sort organisms and species must in the end follow theoretical
considerations (namely, those of evolutionary theory). In contrast, the Cladis-
tic Research Programme is considered to be a progressive research programme,
because it satisfies all the previous desiderata. Its motivating principles are to
develop classifications reflecting the phylogenetic relations between the species
and the processes of cladogenesis that caused their splitting (i.e. to reconstruct
the tree of life). Its sorting principles sort organisms according to the cladistic
species concept28 and species according to their sharing a most recent com-
mon ancestor. Since only the use homologous traits (and parsimony principles)
as evidence for inferring the phylogenetic relations is allowed, the motivating

27In fact, these spatial models were later on transferred to psychology, we will take a look
at them in the following section on Conceptualism.

28The cladistic concept was introduced by Hennig. Roughly speaking, two organisms belong
to the same phylogenetic species iff they belong to a minimal clade that has been formed and
maintained by some causal processes (e.g. interbreeding, ecological or developmental forces,
. . . ).
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principles and the sorting principles are consistent with each other.
The proposal of Taxonomic Programmes is not committed to a specific the-

ory of natural kinds and it is closer to how science actually works than other
approaches. Moreover, it is compatible with a modest taxonomic pluralism,
since several taxonomic programmes may satisfy all the previous criteria. While
still being compatible to some sort of realism, it imposes enough normative con-
straints over the adequacy of classifications to rule out too weak approaches,
such as promiscuous realism. Nevertheless, I think that the approach is limited
in at least two ways. On the one hand, by replacing kinds for whole taxonomic
programmes, it sweeps the problem of what natural kinds are under the rug.
The only information that we get about kinds is that their membership condi-
tions are described by some programme-specific sorting principles. On the other
hand, by focusing on a very coarse conception of taxonomy, it ignores the struc-
ture of classifications. But this structure is plausibly the part of the programme
that represents the specificity relations that hold among the kinds being de-
scribed, so in the end we get no information concerning these either. Consider
the analogy with scientific theories. There is a difference between discussing
the theoretical criteria needed to choose between two theories and discussing
the structure of the scientific theories themselves. The former may inform us
about how theoretical virtues such as simplicity and fruitfulness motivate the
choice of a certain theory, but it leaves many components of the theory unex-
plained. For example, it does not explain whether a theory is to be conceived of
as an axiomatic system or as a class of intended models, or how the terms and
sentences of such a system relate to the entities and laws being represented by
them. Furthermore, it does not explain what the structure of the magnitudes
represented by these terms is, or what structure causal relations have.

To sum up, some cluster theories appeal to causal mechanisms or relations
to ground the fact that members of a kind have some properties in common.
But there are kinds whose members do not fit this pattern. Furthermore, these
accounts leave many crucial aspects of the proposal (the notions of vagueness
and causality at work) unexplained. One can retreat from causal to weaker
theories that only require as a necessary condition that the members of the
kind exemplify some similar properties that tend to co-occur. Moreover, it may
be that any other additional structure that kinds may have varies according to
the ’kind of natural kind’ considered. More recent practice-oriented approaches
seem to point at some sort of natural kind pluralism by focusing on whole
taxonomic programmes, but in exchange, they also leave several features of
kinds unaddressed.

2.4 Conceptualism

There is a long tradition in philosophy (going back to the medieval nominal-
ists and to Locke) that identifies kinds, or species and genera, with concepts.
For convenience, I will subsume any such position under the label Concep-
tualism. Conceptualism is compatible with some of the views just reviewed.
For instance, some conceptualists such as Wiggins [139], are also essentialists.
Moreover, there are big differences between what concepts are supposed to be
according to these authors. For some (e.g. Frege), concepts are abstract enti-
ties. For others (say Gärdenfors [42]), concepts are mental entities. This has
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implications concerning which discipline is the one studying concepts (say logic
or psychology). Generally speaking, conceptualists of the latter sort tend to
emphasize the epistemological side of the problem of natural kinds.

I will focus mainly on the latter views. The reason is that the psychological
theories of concepts appeal to similarity relations between objects to explain
concept formation, and the approach I will propose later on appeals to similarity
relations as a fundamental component of the structure of kinds. Moreover, such
theories make use of formal models of conceptual categorization. This will give
us a very different picture of kinds from the ones just discussed and will be an
introduction both to the properties of similarity and to the formal models of
kinds, which will prove useful in the next chapters.

2.4.1 Conceptual Categorisation

In this section I want to briefly consider the role that similarity plays in con-
ceptual categorization according to psychological theories. There are several
reasons for this. First, it counter’s Quine’s famous view that overall similar-
ity is scientifically useless. Second, it gives a useful background to considering
Tversky’s objections to the main properties of categorical similarity in Chap-
ter IV. Third, some popular spatial models of attributes, namely Gärdenfors’
conceptual spaces approach and Carnap’s attribute spaces, are inspired by the
spatial models of conceptual categorization given in psychology. These models
have a lot in common with the one I will propose later on in Chapters IV and
V and can be interpreted as conceptualist formal models of kinds. Finally, one
of the approaches to be examined in this thesis formally, namely aristocratic re-
semblance nominalism, can be interpreted as being a philosophical analogue to
the psychological accounts of categorization based on exemplars or prototypes.
Therefore, looking at the latter can give us some clues about the former one.

Quine famously objected to the concept of similarity, which he considered
to be equivalent to that of kind, by suggesting that it is scientifically useless:

”We cannot easily imagine a more familiar or fundamental notion
than this, or a notion more ubiquitous in its applications. On this
score it is like the notions of logic: like identity, negation, alterna-
tion and the rest. And yet, strangely, there is something logically
repugnant about it. For we are baffled when we try to relate the
general notion of similarity significantly to logical terms. (. . . ) It is
a mark of maturity of a branch of science that the notion of similar-
ity or kind finally dissolves, so far as it is relevant to that branch of
science.” [107]

Despite Quine’s remarks, similarity is still a fundamental theoretical notion
in cognitive psychology. In the case of psychology, it has to be emphasized that
similarity has not been replaced by some ’theoretically more acceptable’ notion.
The reason is that similarity plays a major empirical role in those theories.
First, similarity is an indispensable part of the process of concept formation
and categorisation that happens while learning [54]. According to most theo-
ries of concepts, concept formation works by first detecting similarities among

75



items, then developing concepts (usually around some exemplars or prototypical
instances) and finally categorizing new instances by comparing them in terms
of their similarity to either previously seen exemplars or idealized prototypical
instances of the concept. Once we have developed the appropriate concepts,
the relations that hold among them allow us to make inferences about their
instances.

Second, similarity relations ground the analogical inferences by which we
transfer our knowledge about the properties and behaviour of some objects to
others. The simplest analogical inferences have, generally speaking, the follow-
ing form:

1. a is P .

2. a is similar to b.

3. Therefore, b is P .

These inferences allow us, under suitable circumstances, to transfer what
we know about certain objects to others. Analogies can be found in ordinary,
literary and scientific discourse. A famous example is the analogical reasoning
from premises such as ”the fact that the sun attracts the planets causes the
planets to revolve around the sun” and ”the nucleus of a hydrogen atom is
similar to the sun of the solar system”, to the conclusion ”the fact that the
nucleus attracts the electron causes the electron to revolve around the nucleus”.
As the example shows, analogical inferences can be based on similarities between
relational structures, which allows for inferences involving complex entities. The
most known account is Gentner’s structure mapping theory [44], which was
developed for the purposes of explaining how these structural similarities allow
for analogical inferences.

Third, psychologists have developed rich formal models of similarity, such as
spatial models [96], feature-based models [137], structural models [44], transfor-
mational models [55], and so on29. These models have been successfully applied
to empirical data gathered in experiments to explain many different psycholog-
ical phenomena30. For example, apart from being used to explain conceptual
categorisation, these models have been adjusted to deal successfully with some
tricky features of similarity, such as its context-dependency.

There are several competing theories of concepts in psychology (see [54]).
According to the classical theory of concepts, also called the definitional theory
of concepts, concepts are particular mental entities with definitional structure.
Concepts have (or can be identified with) some necessary and sufficient condi-
tions that objects have to satisfy to fall under them. These conditions are stated
by an adequate definition of the concept. The extension of the concept is the
set of all the objects that fall under the concept, in other words, the set of all
the objects that satisfy the definition. Plausibly, these necessary and sufficient
conditions can be understood to be intensionally simpler concepts of which the

29See [54] for a comparison between these models from the point of view of psychology, and
[27] for a comparison between Tversky’s and Gärdenfors’ approaches, from the point of view
of philosophy. We will pay some attention to Tversky’s model in Chapter IV.

30In fact, based on these spatial models, the psychologist Roger Shepard even proposed that
there is a fundamental law, the Universal Law of Generalization for learning, that structures
the process of conceptual categorization [122].
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other ones are composed. In other words, most concepts are complex concepts,
composed by simpler ones. This latter fact helps to explain the compositionality
of the meaning of concepts and the analytic inferences that can be made with
them. For instance, the concept PET can be thought of as being composed of
the concepts ANIMAL and DOMESTIC. From this it follows that every pet is
also an animal. Conceptual categorisation consists in checking whether a given
new object satisfies the necessary and sufficient conditions for it to fall under the
concept. Such a conception makes relatively easy to check whether a concept
has been misapplied, namely when the object thus categorised does not satisfy
the definition of the concept, and therefore helps explaining the normative di-
mension of our use of concepts. The classical theory of concepts is basically the
one inherited from the traditional philosophical conceptions of kinds and con-
cepts and is also the account of concepts that has proven most useful in analytic
philosophy31. This should not be surprising, after all, this theory is based on
the traditional philosophical conception of a concept, and as suggested, many
philosophers have identified concepts with kinds. For example, when Kant talks
in his Logic Lectures about Aristotelian species and genera, he treats them as
concepts (whether Kantian concepts are indeed psychological entities or abstract
meanings is a different story that we do not need to deal with).

The limitations of the classical theory of concepts are well-known [54]: there
are not many sucessful definitions of concepts, inferences among concepts are
supposed to be analytic (and the analytic-synthetic distinction was questioned
by Quine), some concepts seem to have vague conditions for application, and
so on. In fact, as empirical evidence on conceptual categorisation started to ac-
cumulate against the classical theory, psychologists suggested different theories
for the structure of our concepts. Particularly important are the experiments
by E. Rosch [113], which point at certain ’typicality effects’. It seems that we
have a tendency to think about some objects of the extension of a concept as
being more typical instances of the concept than others. Thus, a particular chair
is a more typical instance of the concept FURNITURE than a stove is and a
particular robin is a more typical instance of the concept BIRD than a penguin
is. These typicality effects are correlated with other psychological phenomena.
For instance, subjects can recall more quickly more typical instances of a con-
cept than less typical ones. These discoveries prompted the emergence of two
new theories of concepts. According to prototype theories of concepts, we store
in our memory a list of features (the prototype) typically found among some
similar objects. Prototypes are some sort of idealized mental summaries of the
properties typically had by the objects falling under the concept (prototypes
are usually explained in terms of probability). According to exemplar theories
of concepts, what we store are copies of some particular items (exemplars) that
we have previously encountered during our concept learning process. In fact,
the two main psychological models of similarity, namely the attribute model
by Tversky [137] and the spatial model by Nosofsky [96], were developed as an
attempt to give an explanation of these typicality effects.

According to these theories, conceptual categorisation consists in mapping
each newly encountered item to the corresponding category, by comparing how
similar the item is either to the prototype or to the stored ’exemplars’ of the

31In fact, one can think of the concept lattice of a context to be introduced in Chapter III
as giving a model of the classical view of concepts. This seems to be what Wille was thinking
when he introduced them.
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kind in question. That is to say, concepts are structured around a prototypical
description or a collection of typical exemplars, and new items fall under the
concept depending on the degree to which they satisfy the description or their
degree of similarity with respect to the exemplars. Despite being empirically
more plausible, these theories have their problems too. For instance, some con-
cepts (such as mathematical or logical concepts) which clearly have definitional
structure appear to have typicality effects too. Moreover, these theories are
allegedly unable to explain how it is that some of our concepts have definitional
structure and they cannot explain compositionality. Paradigms, exemplars or
prototypes are supposed to be ill-suited for this tasks. This is because the
paradigm of a given concept does not seem to be a function of the paradigms
of the concepts from which it is composed32.

Despite being historically influential as an approach to the problem of natu-
ral kinds, the conceptualist position is not very popular nowadays. Nevertheless,
the approach has its advantages. If properly developed, it could be used to deal
with the epistemological side of the problem of natural kinds, namely the prob-
lem of induction. Despite being more popular in psychology than in philosophy,
spatial formal models of concepts such as the ones just mentioned have been
recently applied to semantics and formal epistemology. An important example
is the theory of conceptual spaces by Gärdenfors [42] and [43], which was orig-
inally proposed as a way to distinguish natural from non-natural concepts in
order to deal with Goodman’s infamous grue puzzle.

2.4.2 Conceptual Spaces

As was said, the conceptualist approach is rich in formal models and some of
them can be found in the philosophical literature. One is Carnap’s attribute
spaces, introduced in his last system of inductive logic [19]. Another one is
Gärdenfors more popular account of conceptual spaces [42], [43]. The conceptual
spaces approach is starting to attract more attention among philosophers. Re-
cently, they have been applied to several philosophical problems, such as giving
a foundation for cognitive semantics [43], vagueness or the structure of scientific
theories (see [146]). A detailed comparison between these two approaches can
be found in Sznajder’s work [131] and [132]. We follow her in order to briefly
compare the two.

Carnap’s attribute spaces were spatial models introduced to give a semantics
for the language of his last system of inductive logic. Given a classical language
consisting of several families of monadic predicates, these were to be interpreted
by regions of a space whose points would be maximally specific attributes. Each
family of predicates would partition a previously given domain of individuals,
in such a way that each individual would be assigned a point in the space each
of whose coordinates would be a specific attribute falling under the predicate
of one family. One can think about the points of the dimension of a space (e.g.
the colour space) as (universal) determinate attributes (e.g. a specific hue of
red), about the regions as determinable attributes (e.g. redness), about the di-
mensions of space as more general determinable attributes that are independent
from each other (e.g. colour or size) and about the distances between points

32There are other theories of concepts like the theory-theory, weaker versions of the classical
theory or hybrid views, but we need not consider them here (see [54] for an overview).
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as degrees of dissimilarity between the specific attributes. Moreover, Carnap
also considered the sizes of the regions as an additional parameter. Although
he was clearly inspired by the corresponding psychological models, the aim of
introducing the spaces was normative, it was part of the project of explicating
the notion of confirmation in his logic of induction.

By contrast, Gärdenfors introduced in [42] his conceptual spaces with the
descriptive aim of providing a representation of a level of cognition between the
symbolic and the connectionist ones. The spaces introduced by Gärdenfors are
structurally similar to Carnap’s. They are called ’domains’. Domains can be
perceptual, as for example the domains of colour, size, shape, taste, . . . , but
they may also be theoretical, as the domains of length, mass, temperature, and
so on. The most studied example of such a domain is the domain of colour.
It can be represented as a 3-dimensional solid (a spindle) whose dimensions
represent the hue, saturation and luminance (or brightness) of colours, and
whose distance represents the degrees of dissimilarity among colours. Whereas
luminance increases with the vertical axis of the space (the white colour being
at the top and the black colour being at the bottom), saturation decreases the
closer the points of the space are to the vertical axis. Hues can be roughly
identified by looking at the colour circle formed by the points in the surface of
the spindle that are at exactly the same distance from the middle.

Due to the descriptive aim of the project, the choice of the dimensions for
these domains are informed by empirical psychological research (e.g. hue or
saturation for the colour domain). Generally speaking, a property (e.g. red) is
represented as a region in (one of the dimensions of) the space. A concept (e.g.
apple) can be represented as a collection of regions from possibly different spaces.
The distinction between properties and concepts here roughly corresponds to
our distinction between attributes and kinds. Thus, one may take Gärdenfors’
conceptual spaces approach as a conceptualist model of kinds.

One of the first aims of conceptual spaces was to suggest as an empirical hy-
pothesis that natural properties were convex regions in a conceptual space. This
was the P criterion, which was coupled with a different hypothesis regarding
more general natural concepts:

P Criterion A natural property is a convex region in a conceptual space.

C Criterion A natural concept is represented as a set of regions in a number
of domains alongside an assignment of salience weights to the domains,
and information regarding how the regions from different domains are
correlated to each other.

A convex region is a region that contains every point that is between any
two points already in the region. In the case of Euclidean space, convex regions
have the nice shapes we usually associated with the notion of convexity (say
round-like shapes). Thus, a natural attribute such as Green would be a convex
region, whereas a natural concept (i.e. a natural kind) such as Apple would be a
collection of convex regions from different domains (e.g. Green, Sweet, Round,
and so on).

Gärdenfors proposed the convexity requirement as an empirical hypothesis
to be tested. Although the empirical evidence suggests that the requirement is
necessary, it is not sufficient[30], since there are still many convex regions that do
not correspond to natural properties in a given space (e.g. in the colour space).
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However, the choice of such regions is made easier by the fact that Gärdenfors
combines the spatial model with the Roschian approach to prototypes. Each
natural property is structured around a prototypical instance, following the pro-
totype and exemplar models of categorization. To explain conceptual catego-
rization, first several points of the space are chosen as representing paradigmatic
objects. Then the space is divided into regions induced by the distances from
the points of the space to each of the paradigms (what is known as a ’Voronoi
tessellation’). The resulting division represents a classification induced by the
prototypical objects and can be taken to be a first approximation to the natu-
ral attributes, since with a suitably chosen metric (say the Euclidean one) the
resulting Voronoi cells are convex.

Gärdenfors [42] does not seem to select a specific mathematical framework for
explaining the notion of a conceptual space. The reason is that the appropriate
similarity relation may have different formal properties from one domain to
another, depending of the respects of comparison (i.e. the dimensions) involved.
Some parts of his work suggest that it must be at least a space induced by a
basic ’betweenness’ relation, so that convexity can be formulated for it. When
quantitative domains are considered, it seems that there is also a metric distance
at play. Other more recent works like [43] seem to appeal to either vector or
normed spaces. Moreover, the author makes heavy use of different coordinate
systems (like the polar one) for different purposes (e.g. explaining prepositions).
The best guess would be that he is proposing a generalization of the Euclidean
vector space Rn (possibly an Lp space). Formally the model is similar to those
of other spatial approaches in psychology, so for most purposes, a conceptual
space must satisfy at least the following requirements of a metric space:

Definition 1. Let S be a set and d : S2 → R a real valued function. Then (S, d)
is a metric space iff ∀x, y, z ∈ S:

i d(x, y) ≥ 0. [Positiveness]

ii d(x, y) = 0⇔ x = y. [Indiscernibility]

iii d(x, y) = d(y, x). [Symmetry]

iv d(x, z) ≤ d(x, y) + d(y, z). [Triangle Inequality]

A metric allows for the definition of comparative similarities, such as:

T (x, y, z) := d(y, z) ≤ d(x, z)

By interpreting the distance as dissimilarity, the condition says that y is
more similar to z than x is iff y and z are closer to each other than x and
z. Thus the distance function induces a comparative triadic similarity relation
between points. Furthermore, the distance function provides a richer notion of
similarity, since the similarities themselves can be added to each other. Since
the similarity or dissimilarity between two objects x and y is represented by the
distance function d(x, y), we can understand the distance between two objects
as their degree of dissimilarity. Thus, (ii) and (iii) are requirements analogous
to reflexivity and symmetry. For instance, (ii) says that two objects are max-
imally similar iff they are identical, which is again a version of the Identity of
Indiscernibles. In contrast, (iii) says that the dissimilarity of x to y equals the
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dissimilarity of y to x. Since the metric distance is a function and by (i)-(ii),
any two different objects will be dissimilar to each other up to some degree of
dissimilarity. In other words, any two objects are comparable by dissimilarity
if one chooses a coarse enough degree of dissimilarity33.

By taking products of spaces one can get spaces with several ’dimensions’,
which represent the respects of comparison. A point of each space can be
thought to represent a specific determinate attribute and an object is repre-
sented as an n-tuple of points (each from one coordinate), in other words, as a
bundle of attributes. That is most clear when the dimensions are ’unrelated’ to
each other, as when a dimension corresponds to size while the other corresponds
to colour. An object a corresponds to a pair (x, y) where x is its specific size
and y is its specific colour.

In order to introduce the notion of convexity, one needs to assume a be-
tweenness relation among points. If one already has a metric, a betweenness
relation can be defined as follows:

B(x, y, z) := d(x, z) = d(x, y) + d(y, z)

In words, point y is between points x and z iff the distance from x to z is
the sum of the distances between x and y and y and z. In terms of similarity,
an object y is between objects x and z iff the degree of (di)similarity between
x and z can be obtained by adding the degree of (dis)similarity between x and
y to the degree of (di)similarity between y and z.

The previous notion of betweenness is standardly known as the geodesic
betweenness. This is not the only one, there are others. For example, in the
euclidean space we also have the affine betweenness, which is the one usually
considered:

B(x, y, z) := ∃t ∈ [0, 1] y = (1− t)x+ tz

In any case, from a betweenness relation one can define the notion of con-
vexity standardly as follows:

Definition 2. Let (S, d,B) be a metric space with a betweenness relation B(x, y, z)
and A ⊆ S. Then A is convex iff for all x, y ∈ A, for all z ∈ S, if B(x, z, y)
then z ∈ A.

It is easy to see that ∅ and S are convex, that arbitrary intersections of
convex sets are convex, and that the union of a chain of (upwards nested)
convex sets is convex. However, the union of two (non comparable) convex
sets need not be convex, and the complement of a convex sets need not be
convex either. For counterexamples, one can think about the usual convexity
in the Euclidean plane (for the union, take two disjoint convex sets). Usually
the singletons {x}, which represent the points, are also convex. By excluding
certain collections as non-properties by making use of the betweenness relation
based on the (dis)similarity, the geometric structure has a way to distinguish
natural from non-natural properties.

Moreover, the spatial representation allows for interpreting several opera-
tions among concepts as spatial relations. For instance, two concepts can be

33We will consider some of these properties in more detail in Chapter IV, where we deal
with the properties in similarity.
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said to be coinstantiated by a common object iff the corresponding regions over-
lap in the point representing that object. One concept is said to imply another
concept iff the region corresponding to the former one is included into the region
representing the latter. This allows for representing basic syllogistic inferences.
In principle, similar inferences can also work for complex concepts. If concept
K is a subconcept of concept K ′, it is plausible to say that whatever concept K ′

implies is also implied by concept K. Moreover, the more geometric structure
the space has, the richer the relations between concepts can be.

Conceptual spaces are smoothly combined with the prototype or exemplar
models of categorization. In order to do this, one selects a certain subset of the
space, to be thought of as the set of all exemplars or prototypical instances.
Then one defines the Voronoi tessellation induced by this set as follows:

Definition 3. Let (S, d) be a metric space and A ⊆ S. Then the Voronoi
tessellation induced by A is defined as the family of the sets of the form Vp :=
{x ∈ S | ∀q ∈ A− p d(x, p) ≤ d(x, q)}, for each p ∈ A.

The Voronoi tessellation is a covering of the space by regions obtained by
measuring the distance from the different points in the space to the prototypical
ones. Each class is fixed by a prototypical item and contains all those items
that are more (or equally) similar to it than to the other prototypes. Since an
item can be at equal distance to several prototypes, it can belong to several
such classes. The set of all the points that are at equal distance from several
prototypes is the boundary of the tessellation. In other words, the tessellation
represents the categorization process: each object x is compared by similarity
to each exemplar p, if it is sufficiently similar to p it is included under the
corresponding concept. Under additional constraints, these classes turn out to
be convex for some of the distance functions.

Apart from the convexity requirement, Douven and Gärdenfors [30] have ar-
gued for several ’design principles’ that a system of natural concepts should sat-
isfy. Such principles are chosen by analogy with an optimal conceptual scheme
that would be developed to allow for a system to make correct, sufficiently
fine-grained and successful classifications under limited constraints (e.g. limited
memory or perceptual capacities), we quote:

1. Parsimony: The conceptual structure should not overload the
system’s memory.

2. Informativeness: The concepts should be informative, meaning
that they should jointly offer good and roughly equal coverage
of the domain of classification cases.

3. Representation: The conceptual structure should be such that
it allows the system to choose for each concept a prototype that
is a good representative of all items falling under the concept.

4. Contrast: The conceptual structure should be such that proto-
types of different concepts can be so chosen that they are easy
to tell apart.

5. Learnability: The conceptual structure should be learnable,
ideally from a small number of instances.
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Parsimony requires that the overall system of concepts does not have too
many concepts, in order not to overload the memory. However, it needs to have
enough concepts for it to allow for informative inferences involving them. More-
over, prototypical instances are chosen in such a way that objects falling under a
given concept (and thus similar to the corresponding prototypes) are maximally
similar to each other, whereas prototypes from different concepts are maximally
dissimilar to each other. By linking concepts to prototypes, the concept learn-
ing process is easier, since one can develop the concepts from those prototypical
instances and then recall the concepts again by just remembering the prototyp-
ical instances. In other words, an optimal system of concepts involves a small
amount of informative concepts that correspond to a few prototypical instances
for each, in such a way that similarities among the instances of a common con-
cept and disimilarities among prototypes of different concepts are maximized.
Such a system makes much easier the tasks of remembering concepts (through
their prototypes), making inferences, categorising each new instance under the
corresponding concept, choosing the appropriate prototype and learning the
corresponding concepts. The aforementioned conditions have empirical support
too (see Douven [31] for some of these empirical results concerning the repre-
sentativeness and contrastness of prototypes in the colour space).

These models hint at how a conceptualist theory of natural kinds could
make use of them to explain what kinds are. According to such a theory, a kind
is a concept. Thus, a kind is composed of other simpler concepts, which are
represented as regions in different conceptual spaces. Inferences among concepts
can be given in terms of inferences among the simpler concepts from which they
are composed, which in turn can be given in terms of spatial relations among
them (inclusion, overlapping and so on). Moreover, concepts are developed from
prototypical instances, and categorisation works by comparing new instances to
the prototypical instances stored in memory. Such an approach can be used
to deal with the epistemological dimension of kinds, by appealing to concept
formation and categorisation.

2.5 Conclusion of Chapter II

It is time to make a diagnosis of the state of the art. There seem to be some
assumptions about kinds that are common to all the previously listed theories,
namely:

i Kinds are related to some entities, the objects, which are members of the
kind.

ii Kinds are related to some entities, the properties or attributes (possibly
relations), which are shared by the members of the kind.

iii Properties shared by the objects make the members of a given kind similar
enough to each other.

iv Kinds have (possibly vague) membership conditions.

v Membership conditions are related to the properties shared by the members
of the kind, although they may be fixed by causal relations, essences or
other processes.
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vi Kinds are related by specificity relations. In other words, some kinds are
more specific than others.

The theories disagree on the rest of the assumptions regarding what kinds are
supposed to be. Whereas essentialists appeal to general essences as the ground
of the membership conditions for kinds, causal theories appeal to causal mech-
anisms for the same purpose. In contrast, conceptualists appeal to epistemic
subjects that select and store in memory certain objects in order to develop the
corresponding concepts.

The suspicion I have is that the discussions that involve essentialism and
causal theories are too general. What I find missing in the literature are specific
principles concerning kinds. It is true that each theory proposes some principles
that hold about kinds. In this sense, the richest account is that of essential-
ism. However, natural kind essentialists have not gone very far in extracting
the specific consequences of their proposals. So far, the most detailed view I
have found is that by Brian Ellis, which was mentioned in the section of essen-
tialism. The most specific principle that Ellis discusses is that of the hierarchy
condition. I think that this a very good example of a principle about kinds that
may prove useful, given that it is informative with respect to the way kinds are
ordered by specificity relations. Consider by analogy a principle that, accord-
ing to many philosophers, holds for determinate and determinable properties:
no object can have, at the same time, two distinct determinates of the same
determinable property. Whether it really holds or not, it does give us some
more information about the determinate-determinable distinction. The debate
about determinate-determinable properties can be structured around such spe-
cific principles by testing them against specific counterexamples. This criticism
extends to cluster theories too. Cluster theories attempt to avoid the strong
conclusions of essentialism by generalizing the notion of kind and weakening
their commitments. This allows them to account, for instance, for the alleged
vagueness to be found in the membership conditions for kinds. In exchange,
however, some of these theories such as (HPC) lack suggestions concerning spe-
cific principles about kinds. Most of them leave the conception of causality at
work unspecified and they do not say much about what this vagueness of kinds
is supposed to be.

In contrast, conceptualist approaches do discuss several specific structural
principles involving concepts, such as the convexity constraint, the more general
assumptions made by the spatial models or the design principles we just men-
tioned. These approaches are very rich in formal models that can be interpreted
as models of kinds. Unfortunately, the connections between the conceptualist
picture of kinds and the topics discussed in the mainstream literature on nat-
ural kinds have not been explored. This may be related to the fact that many
authors dealing with the topic of natural kinds identify themselves as realists
and therefore would not want to take kinds to be ’simply’ concepts, understood
as mental entities. Taking kinds to be concepts seems to put at risk the most
fundamental idea about natural kinds: that kinds are natural, in the sense of
being objective. If kinds are concepts, then they are dependent both for their
identity and for their existence on minds. If that is so then this suggests that
nature is not already carved at its joints. This does not follow though. For in-
stance, if conceptual universalists are right, then our most fundamental natural
concepts are shared by different cultures. If that is the case then, the hypothesis
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that these concepts have been abstracted from natural kinds in the world looks
promising. If that is the case, then kinds and concepts are distinct, and the
former allow for (or even cause) the development of the latter. But if so, why
would we identify kinds with concepts in the first place? Is not it better to just
focus on kinds instead of looking at the mental entities that we use to represent
them? In any case, the question arises whether one could take inspiration from
the conceptualist approach to kinds without committing oneself to the stronger
thesis that kinds are concepts (mental entities).

As I was suggesting, the first two theories reviewed leave some basic questions
regarding the structure of natural kinds, such as the following, unaddressed:

i How are kinds related to each other by specificity relations? What specific
principles do the species-genus relations between kinds satisfy? Do kinds
overlap with each other?

ii Can kinds combine or compose with others resulting into new kinds?

iii How are similarities among the members of the kind related to the prop-
erties shared by them? If similarities are grounded on sharing properties,
how does this work? If it is the other way around, how are properties
obtained from similarities?

iv How are the specificity relations between kinds related to the properties
shared by their members?

v Do any of the principles of the traditional Aristotelian conception of
species and genera, such as the syllogistic relations between species, the
definitions in terms of genera and specific difference, the existence of a
summum genus, and so on hold for kinds?

Many of these basic questions remain unanswered even after choosing one
of the theories discussed (the exception are some of the conceptualist models,
which do put emphasis on the formal principles). In other words, what I think
is missing in the current literature is an account of the formal structure of kinds.
It is useful to compare the situation to that of modality. Philosophers discuss
about the nature of possible worlds. Some philosophers defend modal realism,
others different sorts of ersatzism and still others combinatorialism. However,
these proposals have to be coupled with some sort of theory about the ’struc-
ture of metaphysical modality’, so to speak. The sort of principles these theories
have to preserve are the ones given by predicate modal logics, which are formal
models that describe the consequences that the different properties of accessi-
bility relations have for our valid reasoning about modality. Unless one couples
these metaphysical theories with the formal principles described by these formal
models of modality, talk about possible worlds is severely impoverished. For in-
stance, think about principles such as ”if it is necessary that p, then it is the
case that p”, the de dicto-de re distinction or the more controversial Barcan for-
mulae. The conceptual machinery of possible worlds has proven to be extremely
useful for metaphysical purposes in part because it was based on a previous for-
mal study of the mentioned principles. Some of the metaphysical theories might
seem to be more compatible with a literal interpretation of these principles than
others. The other theories may have to describe additional construction steps
(say, construct possible worlds as maximal consistent sets of propositions) in
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order to satisfy these principles. In any case, our understanding of modality
is enriched by considering these basic structural principles. Something similar
seems to me to be happening in the case of kinds.

Some philosophers, mostly philosophers of science (say [64], [80], [37]) seem
to share this diagnosis: the discussion on kinds is too general. However, as
we saw, they draw a very different conclusion. They think that it is best to
examine in detail first the classifications found in different scientific disciplines
in order to arrive at a more adequate conception of kinds. In fact, this concern
has lead to the development of most cluster theories and more generally to the
practice-oriented approaches. Such a project is in principle compatible with
the formal one I want to pursue in this thesis, and I am sure that it will be
very fruitful for our conceptions of kinds. Nevertheless, the two projects can
be developed independently. Let me reason again by analogy. Although it is
certainly fruitful to consider what principles concerning composition, causality
or modality assume the specific scientific theories, formal models of composition
(e.g. mereologies), causality (e.g. structural equations models) or modality
(e.g. modal logics) can be developed (and have been developed) independently
of these theories. Analogously, although it is it is fruitful to consider what
principles concerning kinds assume the specific scientific classifications, formal
models of classification or of kinds can be developed (and have been suggested)
independently of these.

There is another feature of essentialist theories and causal theories that I
find to be somewhat suspicious. Both theories appeal to philosophically loaded
concepts, such as essence or causality, to explain classification. However, at
least from a cognitive point of view, classifying objects is simpler than detecting
causal relations among events or discovering the real nature of objects. In this
sense, I think that they both put the cart before the horse. It is true that the
fact that classifying is epistemologically prior to discovering essences or causal
relations does not imply anything about the ontological priority of kinds over
essences or causal relations. Moreover, essentialists will complain that a good
classification should necessarily reflect the real natures of the objects to be clas-
sified. But still, there are some features of classifications which are independent
of any talk about essences and that could give us some clues regarding the
structure of kinds. It may be that a substantive and full realist analysis of the
concept of natural kind ultimately requires appealing to essences, causal rela-
tions, counterfactual stability, natural laws, or other loaded concepts. But it
may also be the case that we can get closer to a fruitful explanation of what a
natural kind is that does not require us to answer first all these philosophical
problems. I propose to see how far we can get on our understanding of what
kinds are without appealing to essences or causal relations.

As we saw, according to the minimal conception of natural kinds by Whewell
and Hacking, natural kinds are at most ”classes denoted by a common name
about which there is the possibility of general, intelligible and consistent, and
probably true assertions”. According to Hacking, this is the most informative
and uncontroversial explanation we can give of kinds. I think that this mini-
mal analysis can be greatly improved. The task of the following chapters is to
explore a Minimal Conception of Natural Kinds, which consists of some formal
and structural constraints that have been attributed to kinds, namely the ones
listed above. In this regard, I think that both the quinean approach and the
more traditional conception of natural kinds have been dismissed too quickly.
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They contain many interesting features that are still unexplored. The tradi-
tional conception of kinds highlights two different aspects of them. On the one
hand, kinds are externally structured by being ordered in specificity relations
to each other (species-genus relations). On the other hand, kinds are internally
structured, their members (extension) being sufficiently similar to each other by
having some natural properties in common (intension). This minimal core seems
to be accepted by different theories of kinds, although they may differ regarding
the facts that ground the intensions of the kinds (essences or causal mecha-
nisms), the nature of the elements in the intension (namely, monadic properties
or relations), what the specificity relations are, and so on. This suggests that a
proper minimal analysis of kinds should start by considering these two aspects.
By focusing on these basic features that are shared by different conceptions of
kinds, we may be able to give an informative answer to the question regarding
what natural kinds are. My proposal will not be metaphysically neutral though.
Since I will make use of natural attributes to explain what natural kinds are, I
have to take a stance too on what these natural attributes are. This inevitably
leads us to the problem of universals. Quine’s approach to natural properties
suggests contemporary resemblance nominalism, to which I will commit myself
in Chapter IV. But to properly discuss these issues it is expedient to consider
first the external structure of kinds. Let us turn then to this topic in Chapter
III.
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Chapter 3

Hierarchical Structure of
Natural Kinds
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Intension and extension of a
concept have an inverse relation
to each other. The more a
concept contains under it, the less
it contains in it.

Lectures on Logic
Kant

As we saw in the previous chapter, in the current literature one can find
many different theories that purport to explain what natural kinds are. Some
philosophers like Ian Hacking [52] argue that this embarrassment of riches sup-
ports a sceptical stance towards the very notion of a natural kind. In this
chapter a different strategy is suggested. Instead of defending a particular the-
ory of kinds, the main purpose of this chapter is to use a formal model based on
the mathematical theory known as lattice theory to explore the features of kinds
that result from the order structure of the specificity relations that hold among
them. More specifically, it will be argued that the external structure of kinds
is plausibly that of a complete lattice and that such structure can be seen to
be induced directly by some minimal assumptions concerning the relations that
hold among the members of the kinds and the properties these share. As an
application of this model, it is shown that it is enough to induce an Aristotelian
conception of definitions of kinds in terms of genera and specific differences. Ac-
cording to this minimal conception, kinds are two-dimensional entities ordered
by specificity relations. They are constituted by a collection of objects and a
collection of attributes related to each other according to the duality between
extension and intension (a principle also known as Kant’s Law). This results in
a realist model of kinds.

The structure of the chapter is as follows. In section 3.2, it is considered
whether any non-trivial principles about the specificity relations between kinds
hold. The Hierarchy thesis, which says that kinds are arranged forming a tree,
is reviewed alongside R. Thomason’s model of kinds [135]. Thomason’s model
makes use of complete lattices, but no further reasons are given for this choice.
In order to find out whether there is any reason in favour of using complete lat-
tices as plausible models for kinds, the contemporary approaches to Aristotelian
Syllogistic Logic are considered. It turns out that Martin in [82], extending pre-
vious work by Corcoran [24] and Smiley [125], gave a complete semantics for
syllogistic logic by using the class of bottomed meet-semilattices. Under the
assumption that kinds behave as denotations of terms in syllogistic logic and
are in the relations described by the Square of Opposition, the model using
complete lattices turns out to be a plausible model for kinds. These two ap-
proaches suggest that lattices provide an adequate model for kinds, but they do
not say much more concerning the relation between kinds, their members and
the attributes shared by these. In section 3.3, a formal model for the Minimal
Conception of kinds is provided by making use of the Theory of Concept Lat-
tices of Rudolf Wille [40] (the use of that theory for modelling kind-like entities
was already proposed by Mormann [87]). Concept lattices are complete lattices,
and therefore satisfy the requirements put both by Thomason’s model and Cor-
coran’s Syllogistic Logic. The rest of the section is devoted to arguing for the
material adequacy of the model regarding the Minimal Conception. In other
words, its ontological assumptions will be shown to be those (and only those)
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of the Minimal Conception. In section 3.4 the main application of the chapter
is offered. It is shown that the Minimal Conception commits us to a renewed
version of Aristotelian definitions of kinds in terms of genera and specific dif-
ferences. For this purpose, two new operations of subtraction are introduced,
which correspond to the specific difference of one kind with respect to another.
The operations differ on whether the part being subtracted is the extension or
the intension of the kind. The two principles that relate the specificity relations
between kinds with the aforementioned operations are discussed in detail. Fur-
thermore, each of these operations induces an internal or term negation that
behaves non-classically. The interaction between the negations and the speci-
ficity relations are illustrated by making use of the Hexagon of Inner and Outer
Negations and a comparison is made between the approach in this chapter and
the traditional Aristotelian picture. Finally, in section 3.5 a sketch is given of a
modal extension of the model. The chapter ends with some general remarks.

3.1 A Minimal Conception of Natural Kinds

3.1.1 A Minimal Conception of Kinds and Kant’s Law

Aristotle’s metaphysics of kinds or, as he called them, ’secondary substances’,
was closely mirrored by his syllogistic logic and his theory of definitions. Kinds
are universal substances related to each other as species and genera. When-
ever one kind is more specific than another, we say that the former is a species
of the latter, and that the latter is a genus of the former. The different rela-
tions between these substances can be tracked by looking at the logical relations
between the corresponding terms, which behave according to the principles of
syllogistic logic (summarized in the Square of Opposition). This conception of
kinds as universal substances was linked to essentialism. For Aristotle, knowl-
edge of kinds is knowledge of their general essences. These essences are found
by giving real definitions of the kinds, which state their membership conditions
(some necessary and sufficient conditions to be satisfied in order to belong to
the kind) in terms of the essential attributes shared by the objects of the kind.
The essence of a kind can be defined by giving one of its genus and the specific
difference with respect to it. In other words, in order to define a kind, one gives
first a more general kind of which it is a species and those essential attributes
or properties that distinguish the members of that kind from others. There-
fore, already in the Aristotelian picture we find three ontological ingredients.
We have the objects or primary substances, which are the entities to be classi-
fied into kinds. We have the essential attributes or properties shared by these
objects, which are the ones to be described by the definitions of the correspond-
ing kinds. Finally, we have the kinds themselves, the species and genera, into
which objects are classified according to their properties. The Aristotelian pic-
ture gives a taxonomic methodology: in order to sort a domain of objects into
their corresponding kinds, one has to find first the corresponding definitions of
kinds, which requires finding the closest genera and the corresponding specific
differences.

The metaphysical components of the picture were inherited by medieval
thinkers and were subjected to heavy criticism by modern philosophers, who
rejected most of them. Nevertheless, its formal features remained quite stable
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as part of syllogistic logic, as it can be seen by looking at Kant’s logical works.
Despite the fact that Kant talks in terms of concepts and not of kinds, he
treats the former simply as the Aristotelian species and genera. In fact, for
Kant every concept has two aspects, an extension or sphere, and an intension
or content. Whereas the extension contains all the entities that fall under the
concept (those entities to which the concept adequately applies), the latter
contains those characteristics or features associated with the entities of the
extension. We have here again a correspondence between the objects, their
properties and the kinds (now, the concepts) to which the former belong in
virtue of sharing the latter. For Kant, as for Aristotle, the logical relations that
hold among concepts are described by syllogistic logic.

Among the principles of logic that Kant discusses in his Jäsche Lectures on
Logic [63], there is one that deserves special mention, because it concerns a
fundamental relationship that holds between the extension and intension of a
concept:

Every concept, as a partial concept, is contained in the presen-
tation of things; as a ground of cognition, i.e.as a characteristic, it
has these things contained under it. In the former regard, every
concept has an intension [content]; in the latter, it has an extension.
Intension and extension of a concept have an inverse relation to each
other. The more a concept contains under it, the less it contains in
it. [63]

Accordingly, it is usually stated as follows1:

Kant’s Law of Extension and Intension The extension of a kind is inversely
related to its intension.

The principle says that the more instances a kind has, the smaller the number
of shared attributes will be. Dually, the more attributes these objects share, the
smaller the number of these objects will be. In Kantian terms, it says that the
broader the sphere or range of application of a concept is, the poorer its content
will be, and vice versa. This applies in particular to two kinds K and K ′ such
that one is a proper species of the other. Then it is clear that the species will
have a richer intension than the genus. This difference in intension is precisely
the specific difference of the species with respect to its genus. Here is another
quote by John Stuart Mill’s A System of Logic that summarizes this fact:

From the fact that the genus includes the species, in other words
denotes more than the species, or is predicable of a greater number
of individuals, it follows that the species must connote more than the
genus. It must connote all the attributes which the genus connotes,
or there would be nothing to prevent it from denoting individuals
not included in the genus. And it must connote something besides,
otherwise it would include the whole genus. (. . . ) This surplus of

1This law was explicitly formulated by Leibniz (see [130].

91



connotation - this which the species connotes over and above the
connotation of the genus - is the Differentia, or specific difference;
or, to state the same proposition in other words, the Differentia
is that which must be added to the connotation of the genus, to
complete the connotation of the species.[86]

Kant considered the duality between the extension and intension to be a
fundamental principle of logic. Independently of whether this is true or not,
what it is clear is that this principle does give some information regarding the
external structure of kinds as related to the internal structure.

The aim of this chapter is to explore a Minimal Conception of Kinds that
does not appeal to other loaded notions such as essence or causality, in contrast
to the theories mentioned in the previous chapter. This Minimal Conception
is based on some of the traditional features of kinds just mentioned and will
be shown to establish a connection, through Kant’s law, between the external
structure of kinds and their internal structure. Accordingly, the assumptions to
be made throughout the whole chapter are:

Minimal Conception of Kinds Every kind has as members some objects
(the extension) sharing certain sparse attributes (the intension). More
strongly, all the objects share all these attributes, and these attributes are
all those sparse attributes shared by these objects.

That kinds are ordered by relations of specificity will follow from these as-
sumptions. As an example of a theory satisfying the Minimal Conception we
have Essentialism of Natural Kinds (say [34]) that was discussed in the previous
chapter, the sparse attributes being the properties that form the essence of the
kind. However, the converse does not hold, since the Minimal Conception is
silent regarding the modal features of the sparse attributes.

Apart from its being weaker than essentialism, there is another reason for
considering this Minimal Conception. This conception will turn out to be very
informative about the external structure of kinds, because it implies certain con-
straints on the ways kinds are ordered by specificity or species-genus relations.
In the literature on kinds one can find several such constraints. For instance,
the Hierarchy condition, which states that kinds are ordered forming a tree-like
pattern, has been discussed. This condition can be traced back to the Por-
phyrian tree of categories. However, several philosophers (see [52], [136]) have
argued that this assumption is too strong by presenting counterexamples to it.
The model can be used to explain why this condition is based on a very narrow
view on how kinds can be related to each other.

More interestingly, although the hierarchy condition does not usually hold,
the Minimal Conception will be shown to imply Kant’s Law. We will see how this
duality between extension and intension will force the order structure of kinds
to have a specific ’shape’, namely that of a complete lattice. This will allow
us to compare the approach given here to other formal models of kinds, such
as Thomason’s lattice-theoretic model of kinds and Corcoran’s and Martin’s
syllogistic logic, which also propose such structure to be that of a complete
lattice. Moreover, Kant’s Law is strongly related to the main novel contribution
made in this chapter. Assuming just the Minimal Conception, kinds will be
shown to be defined in terms of their genera and specific differences, as in the
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classical Aristotelian theory of definitions. More interestingly, the discussion
will show that there are two different ways to subtract one kind from another,
by subtracting entities from the extension or from the intension of a kind. These
correspond to two operations, whereas one of them behaves like a conditional,
the other behaves like a difference. The ways these two subtractions relate to
Kant’s Law can be made more clear by considering the following two laws, which
will be shown to hold in the model:

Law of Specific Conditional the specific conditional or intensional differ-
ence between two kinds increases (decreases) as the consequent increases
(decreases) and the antecedent decreases (increases).

Law of Specific Difference the specific difference or extensional difference
between two kinds increases (decreases) as the kind being subtracted from
increases (decreases) and the kind subtracted decreases (increases).

Moreover, the introduction of these two subtraction operations results in
two different non-classical negations of kinds. Overall, this suggests that the
Minimal Conception is already committed to a broadly Aristotelian picture of
definitions, without any need of essentialist assumptions.

3.1.2 Attributes and Kinds

Before we consider the external structure of kinds in more detail, I would like to
say more about the distinction between the concept of a kind and the concept of
an attribute, or more generally, of a property. The idea is that kinds are types or
sorts of things, whereas attributes are ways or modes things are or have. This
distinction is present in [77] and [34]. For instance, the following are examples
of (natural) properties/attributes: having a mass of value x, being old, having
a horn, being spherical, and so on. In contrast, the following are examples of
(natural) kinds: protons, homo sapiens, unicorns, stones, and so on. Until now,
I have assumed that these notions are different without giving any argument for
it. However, there are several features (semantic, epistemological, formal and
metaphysical) that seem to ground the distinction between these two concepts.

In the first place, members of a kind usually have several properties in com-
mon. In contrast, members of the extension of a property usually share only
that property. As a consequence, the properties shared by the members of a kind
have a major epistemological role since they can be used to classify the objects
and also to guarantee successful inductive inferences concerning new future (or
past) specimens and (natural) properties. According to Mill, to know the kind
to which some object belongs allows us to discover a never-ending amount of
properties had by that object. Natural properties do not seem to satisfy these
epistemological roles, it seems that most natural properties are such that the
only thing common to all their instances is simply their having that property in
common [11].

Second, from a semantic point of view, natural kind terms are mostly ei-
ther substance sortal or mass terms, terms that express the ’kinds’ or ’sorts’ of
objects. In contrast, predicates for natural properties are not sortals, they are
mainly adjectival or characterizing terms. Whereas adjectival terms only have
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application conditions (necessary and sufficient conditions for their adequate
application), sortal terms come with identity conditions too for the objects that
satisfy them. Sortal terms are supposed to provide identity and persistence con-
ditions for those objects [139]. Their main theoretical roles are to allow us to
count, individuate and reidentify through time those objects that satisfy them.
The contrast is sometimes put as follows (Lowe,¿?). Whereas ’tree’ is a sortal
term, ’green’ is merely an adjectival term. If while looking at a forest one is
asked how many trees there are, the question can be given a determinate an-
swer (ignoring from the time being the vagueness associated with such ordinary
terms like ’tree’). But if one is asked how many green things there are, the
question seems to be impossible to answer. Each leaf of a tree is green, but so is
each part of the leaf. So how many green things are there? Unless one is given
a further clue regarding what kind or sort of green thing one is looking after,
the question seems to be unanswerable. Whereas adjectival terms are used to
say how things look like, sortal terms are used to say what things are (and a
fortiori how many things there are).

Third, formally and metaphysically, natural kinds are orderly related by
species-genus relations or in general, order relations of specificity. Natural prop-
erties are related mainly by determinable-determinate relations. These two re-
lations seem to be distinct. To be a determinate of some determinable property
is closer to being a member or instance of a kind than to being a more specific
kind of another kind. That is to say, the relation between a determinate prop-
erty and its determinable is more similar to the membership relation than to
the inclusion relation. For instance, consider transitivity. If kind K is a species
(i.e. is more specific than) of kind K ′ and kind K ′ is a species of kind K ′′, then
kind K is a species of kind K ′′. But if P is a determinate of the determinable
P ′, and P ′ is a determinate of determinable P ′′, then it does not follow that P
is a determinate of P ′′. Or consider this other case. An object x may belong to
several species of the same kind, at least this does not seem to be impossible.
But it has been usually accepted (though not everyone agrees) that an object
cannot have two determinate properties of the same determinable at the same
time (e.g. x is entirely red crimson and entirely red wine at t). This seems
to be related to the distinction between objects and tropes. The instance of a
property is a trope. But the instance of a kind is not a kind-trope (e.g. there
is no distinction between my ’homo sapiens-eity’ and your ’homo sapiens-eity’),
it is an object (e.g. me). This has been argued by [77] and [34]. Moreover,
some natural properties such as ratio magnitudes (e.g. mass, length) seem to
have a richer structure than kinds (see [59]). The Representational Theory of
Measurement by [128] assumes, for instance, that ratio magnitudes are linearly
ordered and that they can be combined by some sort of concatenation operation
which is structurally analogous to the sum of the real numbers that we use to
represent them. In contrast, kinds do not seem to be equally structured. An-
other difference seems to be that kinds cannot be relations. There are kinds of
relations, there are relations between kinds and some kinds may be reducible
to collections of related entities. But there are no relational kinds, in contrast
with properties (taken in the most general sense). Tropes and properties may
be dispositional or occasional, qualitative, comparative or magnitudes. But this
does not hold for kinds2.

2In fact, prima facie it seems more plausible to defend a class nominalism for kinds (kinds
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Summarizing:

i. Members of a kind have usually several properties in common, members
of the extension of a property usually share only that property. In the
former case these properties are used as a criterion to classify the objects
and as a basis for sucessful inductive inferences.

ii. Kinds are the reference of natural kind terms, which are sortal or mass
terms. Thus, kind terms seem to be used for counting, identifying and
reidentifying objects. In contrast, properties (either tropes or universals)
are the references of non-sortal or adjectival terms, used to characterize
or say how objects look like.

iii. Kinds are related by specificity relations (species-genus), which are differ-
ent from the determinate-determinable relations in which properties usu-
ally stand. These relations have distinct formal properties. For instance,
it is more plausible to say that an object may belong to two species of the
same kind than to say that it could have two determinates of the same
determinable.

iv. Kinds cannot be relational nor dispositional. Instances of kinds are ob-
jects (not ’particular kinds’), instances of (universal) properties are tropes.
Some properties (e.g. magnitudes) have a richer internal order and alge-
braic structure than kinds have.

For some of these reasons, authors such as Lowe [77] or Ellis [34] think that
kinds and properties form distinct ontological categories. According to Lowe,
kinds are substantial universals instantiated by particular objects, whereas prop-
erties are attribute universals instantiated by particular modes (tropes). How-
ever, all that the previous discussion implies is that the corresponding concepts
of kind and property are different. There may be metaphysical reasons for re-
ducing kinds to (bundles of) properties, or for considering kinds as a particular
(kind?) case of properties (e.g. monadic properties or ’classificatory concepts
or properties’), or for considering kinds as certain combinations of extensions
of properties. Nevertheless, it is important to consider them apart conceptually
for the reasons just stated.

3.2 The Hierarchical Structure of Kinds

3.2.1 The Failure of the Hierarchy Condition

According to the Minimal Conception, kinds are ordered by specificity relations.
Let us call this order simply the species-genus relation. As Hacking [52] notes,
the species-genus relation is a formal binary relation between two kinds. This
only implies that one kind is more specific than another iff the former is a species
of the latter iff the latter is a genus of the former. This is the sense in which the
terms ’species’ and ’genus’ will be used in this thesis3. We will write ”kind K
is a species of kind K ′” as K ≤ K ′, or as K < K ′ when K and K ′ are distinct.

are collections of objects) than for properties (which are more plausibly collections of tropes).
3Note that the use of the term ’species’ in biology is quite different. Whether something

is a biological species or not does not depend on its relation to other more general kinds.
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It is not uncommon for an individual object to belong to various natural
kinds. If the object x is a K and K is a species of K ′, then x is also a K ′.
When we state that x is a K we are selecting from the properties of x that
make it a K ′ those that make it specifically a K. So one may wonder whether
there is any specific condition that the order structure of kinds satisfies. A
popular answer is that this order is hierarchical [52], that is to say, that natural
kinds are arranged forming a tree-like pattern.4 This condition goes back to
the Porphyrian tree of categories, where the root is the most general kind (the
summum genus) and the leaves are the most specific kinds in the domain (the
infimae species)5. The hierarchy condition implies that kinds are nested, which
results in the shape of a tree. The condition says that if two kinds overlap, then
one of them must be a species of the other. By ’overlapping’ we can think of
the extensions of the kinds having a common member. We can also think about
the kinds as having a closest common kind as a species. The condition can be
stated as follows:

Hierarchy If K, K ′ are overlapping natural kinds, then K < K ′ or K ′ < K
or K = K ′.

One may wonder whether this idea is not just a forgotten relic of the past.
After all, scientific classifications, and in particular biological ones, seem to have
moved far away from these Porphyrian trees. Why would someone think that
the world is hierarchically structured? Consider the tree of life, where biological
species are ordered according to phylogenetic descent. Two species overlap iff
there is a species that is the closest phylogenetic descendant of both of them.
But if this last species was different from the other two, this would be a case of
hybridization, and the tree of a life would not be a tree at all6. So given two dif-
ferent overlapping species, one of them is a phylogenetic descendant of the other.
Thus it seems that the biological world is hierarchically structured. Further-
more, this hierarchical structure is inherited by the clades to which the species
belong. This results again in a tree-like pattern of nested clades. To give a sec-
ond example, consider the periodic table of chemical elements as a classification
of particular atoms. The classification of atoms by chemical elements is refined
by the classification by isotopes. There are also classifications, like that by
groups, which are coarser than the classification by elements. Take now all the
kinds of isotopes, elements and groups, and order them by the inclusions of their
extensions. For instance, Lithium-6 ≤ Lithium, since every atom of Lithium-6
will be an atom of Lithium. Suppose that two different chemical kinds K, K ′

overlap. In other words, there is a kind K ′′ whose extension is included in that
of K and that of K ′. Since extensions of isotopes/elements/groups are disjoint,
that does not happen between kinds of the same classification. Suppose that
K is an isotope and K ′ is an element (or viceversa), and that they overlap.
Then at least one K-isotope is also a K ′-element, therefore all K-isotopes are

4The term ’hierarchy’ is misleading. Informally, it only suggests a vague picture according
to which a set of objects is ordered in such a way that some of them are clearly above others.
But this condition is stronger than that. Nevertheless, I will continue using the term for it is
the one that appears in the literature.

5This is not historically accurate. Tree diagrams for representing logical relations appear
for the first time several centuries later, see [53].

6Actually, there are cases of hybridization, as philosophers of biology are well aware of.
This is one of the challenges to the idea that life developed in a tree-like fashion.
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K ′-elements and we have that K ≤ K ′. Analogous arguments can be given for
the other two cases. Once again, the chemical world seems to be hierarchically
structured.

The hierarchy condition was reintroduced in the contemporary scene as part
of the algebraic model of kinds proposed by Thomason [135] (although it was
also considered by (Kuhn, 2000)7), which will be considered in the following
section. However, it has recently come under attack by philosophers of science
like Hacking [52], Tobin [136]8, Ruphy [115], Khalidi [64] and Hendry [61], who
have presented specific counterexamples from biochemistry, nuclear physics and
astrophysics. For instance, Hacking states that:

”It has been repeatedly argued that natural kinds must, as a matter
of logic, be arranged in a tree-like hierarchy. Not so. Bosons, iso-
topes, and elements are commonly regarded as natural kinds. But
since rubidium-47 is a species both of boson and of rubidium, but
rubidium is not a species of boson or vice-versa, you cannot put
these on a branching tree.” [52]

The previous authors argue that if we take a closer look at some examples,
the condition seems to be empirically false. For instance, [136] gathers some
counterexamples from different sciences. One of them, also considered by [61],
comes from chemistry. Tin has two allotropes (atoms of Tin can be found
forming different crystalline structures), White Tin is metallic and Grey Tin
is non-metallic. So the kind Tin overlaps the kinds Metal and Non-Metal,
and therefore is not included in any of them. Another example comes from
biochemistry. Albumin and Renin are proteins, Renin and Hairpin Ribozyme are
enzymes, but Albumin is not an enzyme and Hairpin Ribozyme is not a protein.
[64] gives some counterexamples from nuclear physics, astrophysics and fluid
mechanics. Let us consider only the first two. Isotopes Lithium-6, Lithium-7
and Lithium-8 can be classified as species of the kind Lithium according to their
atomic number, but Lithium-8 and Hellium-8 are also species of the kind Beta-
minus Decay Nuclides. The second example is taken from [115]. Stars can be
classified according to independent properties such as temperature, density and
mass loss. Classifying by temperature is different from classifying by luminosity.
For instance, the star Canopus belongs to the type F due to its temperature
but also to the class of luminosity Ib, Procyon A to type F but to the class IV,
and Antares to type M but to the class Ib.

Tobin’s explanation for these cases rests on a distinction between intratax-
onomic crossings and intertaxonomic crossings. Concerning the former ones,
some individual belongs to different natural kinds in the same taxonomy. With
respect to the latter ones, some individual belongs to natural kinds of different
taxonomies over the same domain of objects. For instance, the same organ-
ism can belong to different biological species depending on the species concept
being used (’biological’, phylogenetic, evolutionist, phenetic, ecological, and so
on). Khalidi’s examples show similar patterns. We have various classifications
of the same objects that obey different criteria (e.g. chemical v.s. nuclear),

7For Kuhn, intertaxonomic crossings among concepts from different ”lexicons” produce
cases of incommensurability; see (Kuhn, 2000).

8Tobin discusses other weaker conditions, such as: If K, K′ overlap, then both are species
of another kind K′′. This condition holds necessarily in Thomason’s model.
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for the classifications are focusing on different properties of the objects. As a
consequence, classifications crosscut each other and the same object belongs to
various incomparable natural kinds. The choice of the relevant properties for
the classification depends on the chosen theoretical criteria. If there are several
theoretical criteria in conflict (e.g. the different species concepts) and there is
no good reason to choose one over the others, then the objects will be classified
in different ways according to the properties considered to be relevant in each
case. In short, taxonomic pluralism leads to the proliferation of intertaxonomic
crossings.

The previous examples belong to scientific classifications. But one could
think that vernacular kinds are hierarchically ordered. After all, in our daily
life we do seem to have a strong preference for tree-like orderings. Presumably
there are psychological and anthropological reasons why we tend to classify
things in this way, or that explain why it is such a familiar way for us to do
so. Ordinary tasks of classification consist in discriminating objects physically
putting them apart into isolated containers such as boxes, folders, and so on.
When we nest these containers, we follow a hierarchical pattern. Given two such
containers, we can put them both into a single bigger container. But we cannot
just place in both of them a container that contains only some of the things
that are in one alongside some of the things that are in the other one. Where
would we put such an intermediate container? There are many other examples,
such as the table of contents of a book or the classification by months, days and
hours in a calendar. Shortly put, our daily classifications seem to be hierarchical.
However, even this observation is misleading. If we take any collection of objects
and classify them we will hardly obtain a tree-like structure. A full example is
given below in section three, where a classification of foods and drinks from a
feast is given.

In fact, one can give a simple formal explanation for how the crossings identi-
fied by Tobin arise. The mathematical explication par excellence of the notion of
classification rests on the concepts of an equivalence relation and the correspond-
ing partition of a domain (e.g. it is the one that [59] tacitly uses). Traditionally,
the notion of equivalence captures the relations of similarity between objects9.
The basic notions are well known:

Definition 4. Let S be a set and ≈⊆ S × S a binary relation over S. Then
(S,≈) is an equivalence relation iff ∀x, y, z ∈ S:

i x ≈ x. [Reflexivity]

ii x ≈ y ⇒ y ≈ x. [Symmetry]

iii x ≈ y & y ≈ z ⇒ x ≈ z. [Transitivity]

Definition 5. Let S be a set. Then Q ⊆ ℘(S)–∅ is a partition of S iff :

i S ⊆
⋃
Q. [Exhaustiveness]

ii ∀K,K ′ ∈ QK 6= K ′ ⇒ K ∩K ′ = ∅. [Exclusiveness]

By definition empty kinds are excluded. Whereas Exhaustiveness demands
that every object belongs to at least one kind, Exclusiveness says that no object

9I will contest this assumption in Chapters IV and V
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belongs to several kinds. It is well known that there is a correspondence between
equivalences and partitions:

Proposition 1. Let (S,≈) be an equivalence structure. Then the set Q :=
{[x] ⊆ S | x ∈ S} of equivalence classes [x] := {y ∈ S | y ≈ x} is a partition
over S. Conversely, if (S,Q) is a partition over S, then the relation x ≈′ y :=
∃K ∈ Q x, y ∈ K is an equivalence relation over S.

Moreover, this correspondence is unique. If we start from an equivalence
relation, get the partition and define a new equivalence relation we will obtain
the original one. Conversely, if we start from a partition, get the equivalence
relation and define a new partition we will obtain the original one. Since we
may have various classifications of the same domain, we may have several equiv-
alence relations on the same domain. An equivalence that is finer than another
distinguishes more accurately among the objects:

Definition 6. Let Q and Q′ be partitions of S. Then Q is finer than Q′,
Q ≤ Q′ := ∀K ∈ Q ∃K ′ ∈ Q′ K ⊆ K ′.

It is easy to see that ≈Q⊆≈′Q⇔ Q ≤ Q′. So Q is finer than Q′ iff every
natural kind K in Q is a species of some kind K ′ in Q′. The refinement order
captures the previously mentioned tension between the informativeness of a
classification and its unification power, so to speak. The finer an equivalence is
(the more distinctions it makes), the more it says and the greater the number of
natural kinds is. The coarser an equivalence is (the less distinctions it makes),
the more it unifies and the greater the amount of members in each kind is.
Accordingly, there are two extreme partitions. Whereas the universal partition
1 = {S} is the coarsest one, for it does not make any distinctions among its
members, the identity partition 0 = {{x} | x ∈ S} is the finest one, since
it distinguishes any element from any other. Between the two, we can find
the optimal partitions that balance the informativeness and unifying power.
Moreover, given two partitions Q and Q′ we can obtain a third partition as
their superposition:

Q ∧Q′ := {K ⊆ S | ∃K ′ ∈ Q∃K ′′ ∈ Q′K = K ′ ∩K ′′ 6= ∅}

The superposition of two partitions is another partition that takes into ac-
count the distinctions made by both of them. For example, a chart or table
of information is the superposition of the partitions COLUMNS and ROWS.
In particular, in the Periodic Table we have ELEMENTS = GROUPS ∧
PERIODS.

Let us consider now chains of partitions, in other words, families of partitions
where any two partitions are comparable to each other. These families can be
depicted as points in a line. Chains of partitions are very common. To give
one example, the Linnaean Hierarchy (that classifies organisms) can be seen
as a chain where each partition corresponds to a different rank. It has the
form SPECIES ≤ GENUS ≤ FAMILY ≤ ORDER ≤ . . . . For a different
example, consider some of the classifications of atoms seen in the Periodic Table,
like those of partitions ISOTOPES ≤ ELEMENTS ≤ GROUPS. Some
authors (e.g. [92]) call these chains taxonomic hierarchies. If Q,Q′ are partitions
(not simply coverings) then the condition of being a taxonomic hierarchy can
also be expressed as [92]:
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Proposition 2. Let Q,Q′ ∈ F ⊆ L(S). Then Q ≤ Q′ iff ∀K ∈ Q ∀K ′ ∈
Q′ K ⊆ K ′ or K ∩K ′ = ∅.

A family of classifications F is hierarchical iff the corresponding kinds are
hierarchically arranged. Hierarchies are chains of classifications whose equiva-
lence classes are the natural kinds 10. With these notions we can explain the
difference from [136] between intrataxonomic and intertaxonomic crossings:

Intrataxonomic crossing Let Q be a classification over S. Then Q contains
an intrataxonomic crossing iff there are two distinct overlapping natural
kinds in Q.

Intertaxonomic crossing Let C be a collection of classifications Q,Q′, . . .
over S. Then C contains an intertaxonomic crossing iff there are two
distinct classifications Q,Q′ in C such that their overlapping Q ∧ Q′ is
distinct from Q and from Q′.

Let C be a chain of partitions Q,Q′, . . . over S. Then the intrataxonomic
crossings in Q are impossible, since the equivalence classes in Q are disjoint
by definition. Intertaxonomic crossings cannot happen either, for any pair of
partitions in C are comparable by refinement and so the superposition Q ∧ Q′
of two classifications Q,Q′ must be one of them. So cases of intrataxonomic
crossings violate the transitivity of the equivalences, whereas cases of intertax-
onomic crossings violate the condition that the family of partitions should be a
chain. Classical classifications preclude both kinds of crossings. This explains
why in both cases the hierarchy condition fails11.

To sum up, both in the case of scientific and vernacular classifications the
hierarchy condition fails. This is not to say that it never holds. It may hold for
some specific domains but not for others. Many of the previous counterexamples
are the result of what Tobin calls intertaxonomic crossings, that is to say, over-
lappings of different classifications over the same domain of entities. Both kinds
of overlap can be explained in familiar terms by making use of equivalences and
partitions. Since taxonomic pluralism seems to be the rule rather than the ex-
ception, this results in systematic violations of the hierarchy thesis. The upshot
of these criticisms is that the hierarchy thesis is too strong an assumption. The
order structure of kinds, even if restricted to those of a given specific domain,
seems to be more complex than that of a tree.12

10Note that, from a metaphysical point of view, the picture is quite different from that
provided by tree models. Natural kinds are now extensionally depicted as certain sets of
objects and therefore their identity conditions directly refer to their instances. These sets of
objects are maximal collections of pairwise resembling objects. Moreover, the order relations of
specificity are not primitive, they are the inclusion relations that hold between the equivalence
classes of different partitions. This is quite close to Quine’ proposal for an explication of
natural kinds in [107]. This suggests that partition models portray kinds as a resemblance
nominalist would. We will generalize this approach in the next chapter.

11Nevertheless, the distinction between intrataxonomic and intertaxonomic crossings is not
so neat as these authors seem to assume. On the one hand, it is difficult to say what kind
of crossings we are facing in each counterexample. This is something to be established by
checking case by case. On the other hand, crossings of one kind may be suitably transformed
into cases of the other kind. I will not explore these matters now.

12I take this to be the cautious conclusion to draw since a realistic attitude towards kinds
is in principle compatible with taxonomic pluralism. The listed authors discuss this issue at
length.
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3.2.2 Thomason’s Lattice Model of Kinds

Nevertheless, Thomason’s insights do not depend on the hierarchy condition.
In fact, his model would be better off without it. His idea was that the system
of natural kinds (L,≤), where L is the set of natural kinds and ≤ is the partial
order is a species of, forms a complete lattice that in addition might satisfy
the hierarchy condition13. But trees can be seen to be a very special class of
complete lattices. In contrast, the class of complete lattices is huge. For reasons
to be explained in the next section, Thomason’s approach is general enough
to subsume many interesting classifications as special cases. To understand his
proposal we must introduce first some standard concepts from lattice theory.14

Definition 7. Let L be a set, ≤ a binary relation over L and let x, y, z ∈ L.
Then (L,≤) is a partially ordered set or poset iff it satisfies:

1. x ≤ x. [Reflexivity]

2. If x ≤ y and y ≤ x then x = y. [Anti-Simmetry]

3. If x ≤ y and y ≤ z then x ≤ z. [Transitivity]

A chain is an order where any two elements are comparable. Every order
≤ induces a dual or converse order defined as x ≤dual y iff y ≤ x. Some orders
have special elements. For instance, an element 1 is the top iff it is the biggest
element. An element 0 is the bottom iff it is the smallest element. A poset is
bounded iff it has both a top and a bottom.

Definition 8. Let (L,≤) be a partially ordered set, z ∈ L and A ⊆ L. Then
z is an upper bound of A iff ∀x ∈ A x ≤ z. Dually, z is a lower bound of A
iff ∀x ∈ A z ≤ x. An element z is the join, supremum or least upper bound
of A iff z is the smallest upper bound of A. Dually, z is the meet, infimum or
greatest lower bound of A iff z is the biggest lower bound of A.

We denote the join and meet of A by
∨
A and

∧
A, respectively. In partic-

ular, we denote ∨{x, y } as x ∨ y and ∧{x, y } as x ∧ y.

Definition 9. Let (L,≤) be a partially ordered set. Then L is a lattice iff for
all x, y ∈ L the elements x ∨ y and x ∧ y exist.

In other words, a lattice is a poset closed under the binary operations of join
and meet, which satisfy for all x, y, z in L:

z ≤ x ∧ y ⇐⇒ z ≤ x and z ≤ y
x ∨ y ≤ z ⇐⇒ x ≤ z and y ≤ z

If a poset is only closed under meets we call it a meet-semilattice, whereas
if it is closed under joins we call it a join-semilattice. Meets and joins have
very nice algebraic properties, which generalize the familiar logical operations
of conjunction and disjunction:

Proposition 3. Let (L,≤) be a bounded lattice. Then:

13Throughout the chapter, the order ≤ will stand for the is a species of relation between
kinds.

14These notions can be found in any standard introduction to lattice theory, such as [26].
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1. x ∨ y = y ∨ x and x ∧ y = y ∧ x. [Commutativity]

2. x ∨ (y ∨ z) = (x ∨ y) ∨ z and x ∧ (y ∧ z) = (x ∧ y) ∧ z. [Associativity]

3. x ∨ x = x and x ∧ x = x. [Idempotence]

4. x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x. [Absorption]

5. x ∨ 1 = 1 and x ∧ 1 = x. [Top]

6. x ∨ 0 = x and x ∧ 0 = 0. [Bottom]

7. x ≤ y ⇐⇒ x ∧ y = x ⇐⇒ x ∨ y = y. [Connecting Lemma]

The crucial point is that lattices can be introduced both either as ordered
sets or as algebraic structures. It is well-known that these two descriptions are
mathematically equivalent. This means that whether a given set of entities, say
natural kinds, is closed under operations of meet and join is equivalent to these
entities being ordered in a certain fashion. In the case of kinds, for them to
be closed under these conjunction-like and disjunction-like operations is for any
two kinds to have a closest genus and a closest species.

We need some notions to establish when two posets or lattices are struc-
turally similar. As usual, we do this by selecting the mappings that naturally
’copy’ or ’preserve’ the structure from one poset or lattice to another:

Definition 10. Let (L,≤L) and (M,≤M ) be lattices and f : L→M a function.
Then:

1. f is monotone iff x ≤L y ⇒ f(x) ≤M f(y).

2. f is an order isomorphism iff f is bijective and x ≤L y ⇔ f(x) ≤M f(y).

3. f is a lattice isomorphism iff f is bijective, f(x∨Ly) = f(x)∨M f(y) and
f(x ∧L y) = f(x) ∧M f(y).

In the case of lattices, the order isomorphisms are exactly the lattice isomor-
phisms. Sometimes meets and joins are defined for arbitrary subsets of elements
too:

Definition 11. Let (L,≤) be a lattice. Then L is a complete lattice iff for all
A ⊆ L,

∨
A and

∧
A exist.

Let us consider some examples of complete and of non-complete lattices:

i. Every finite lattice is complete.

ii. The natural and real numbers with their usual orderings are non-complete
lattices.

iii. The family of all subsets of a set forms a complete lattice.

iv. Every family of sets closed under arbitrary intersections and with a top
element forms a complete lattice.

v. The set of all the partitions over a domain forms a complete lattice.
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These examples hint at how huge the class of complete lattices is and how
complex the corresponding ordering relations can be. What Thomason proposes
is that natural kinds form a complete lattice.15 This allows him to introduce
the hierarchy condition as:

Definition 12. Let (L,≤) be a complete lattice. Then L is hierarchical iff for
all x, y ∈ L, x ≤ y or y ≤ x or x ∧ y = 0.

Two kinds are either disjoint or one is a species of the other. In other words,
if two distinct kinds overlap then one of them must be a proper species of the
other. Trees with bottoms are complete lattices where for each element x 6= 0
the set ↑ x = { y ∈ L | x ≤ y } is a chain. It is easy to see that hierarchical
lattices are trees with bottom. The most famous example is the Porphyrian tree
(with a bottom attached). However, the order structures we just considered are
much more general than trees and can account for cases where the kinds of a
given domain overlap.

To sum up, Thomason’s proposal gives an answer to the question regard-
ing the order structure of kinds, namely, that kinds form a complete lattice.
Complete lattices need not be trees, and so the previous worries concerning
the hierarchy condition do not apply. However, there does not seem to be any
compelling reason for why we should assume kinds to be ordered as a complete
lattice. So before we introduce the new model it is worth considering a reason
for taking lattices to be a good model of kinds: the class of lattices gives a
semantics for accepted contemporary formulations of syllogistic logic.

3.2.3 Contemporary Syllogistic Logic

Consider again the external structure of kinds. The following relations can hold
between two non-null kinds K,K ′ 6= 0:

i All K-s are K ′-s: K ≤ K ′. [A]

ii No K-s are K ′-s: K ∧K ′ = 0. [E]

iii Some K-s are K ′-s: K ∧K ′ 6= 0. [I]

iv Some K-s are not K ′-s: K � K ′. [O]

Some kinds are species of others and some are not, some kinds overlap and
others are disjoint. These relations give rise to the quantificational Aristotelian
Square of Opposition. This suggests that the logic describing the external struc-
ture of kinds must at least contain syllogistic logic.

Although syllogistic logic is usually studied as a fragment of first order clas-
sical logic (namely, the monadic fragment), there are contemporary accounts of
syllogistic logic that give independent systems for it. In fact, in such systems
many features of monadic first order logic are not even formulated, because the
language is not expressive enough. A fortiori, the class of structures that work
as a complete semantics for the logic is bigger and includes non-boolean lattices.

15This is not strictly speaking true, Thomason did not assume completeness. He also
argued that the lattice is not distributive. Indeed, distributivity does seem to be too strong
an assumption. For instance, bottomed trees are not distributive. But some kinds may be
hierarchically ordered.
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We will now see that such class includes all the complete lattices and is not far
from being just the class of complete lattices.

Two standard references on this topic are Corcoran’s [24] and Smiley’s [125],
who independently gave a reconstruction of Aristotle’s Syllogistic Logic. The
authors provided a complete set-theoretic semantics for the logic by interpreting
the terms extensionally as sets of objects. In [82], Martin gave a more general
semantics by making use of bottomed meet-semilattices. Here I will follow
Martin’s presentation.

The syntax of syllogistic logic is very simple. The language consists of a
denumerable set of common nouns, which form the set of terms Terms =
{t1, . . . , tn, . . . } and a set of four logical symbols {A,E, I,O} which are used
instead of logical connectives. We let individual variables x, y, . . . range over
terms. The set of sentences Sen is obtained by taking each pair of terms and
putting a logical symbol in front of them. Therefore, there are at most four
kinds of sentences:

i Axy, to be interpreted as ”All x-s are y-s”. [A]

ii Exy, to be interpreted as ”No x-s are y-s”. [E]

iii Ixy, to be interpreted as ”Some x-s are y-s”. [I]

iv Oxy, to be interpeted as ”Some x-s are not y-s”. [O]

The negation of each such sentence is defined case by case: ¬Axy := Oxy,
¬Ixy := Exy, ¬Exy := Ixy, ¬Oxy := Axy. A syllogistic syntax is any pair
Syn =< Terms, Sen >. Next we introduce the semantics.

Definition 13. Let Syn be a syllogistic syntax. An order-theoretic model for
Syn is a meet-semilattice with bottom (L,≤,∧, 0). An order-theoretic interpre-
tation for Syn relative to a model L is a function R : Terms∪Sen→ L∪{T, F}
such that:

i If x ∈ Terms, then 0 6= R(x) ∈ L.

ii If A ∈ Sen then:

i If A is some Axy, then R(A) = T iff R(x) ≤ R(y).

ii If A is some Exy, then R(A) = T iff R(x) ∧R(y) = 0.

iii If A is some Ixy, then R(A) = T iff R(x) ∧R(y) 6= 0.

iv If A is some Oxy, then R(A) = T iff it does not hold that R(x) ≤
R(y).

In this way, the basic syllogistic propositions are interpreted as order rela-
tions between kinds. For example, [A] propositions, of the form ”All K-s are
K ′-s” are interpreted as the relation K ≤ K ′.

An order-theoretic model is set-theoretical iff L is a meet-semilattice of sets,
where the order is inclusion, the meet is the intersection and the bottom is the
empty set. Let a syllogistic language be a pair Lan :=< Syn,R >, where R is
the set of all order-theoretic interpretations for Syn. We now define the usual
semantic notions:
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Definition 14. Let Lan =< Syn,R > be a syllogistic language and let R ∈ R,
X ⊆ Sen. Then:

i R satisfies X in Lan iff for all A ∈ X, R(A) = T .

ii X is satisfiable in Lan iff for some interpretation R ∈ R, R satisfies X.

iii X is unassailable iff for any interpretation R ∈ R, there is some A ∈ X
such that R(A) = T .

iv X |=Lan A iff for every interpretation R ∈ R, if R satisfies X then
R(A) = T .

v |=Lan A iff ∅ |=Lan A.

The basic relations of the square of opposition can be check to hold seman-
tically:

Theorem 1. Let Lan be a syllogistic language. Then the following hold:

i Axy |=Lan Ixy and Exy |=Lan Oxy.

ii {Axy,Exy} is not satisfiable and {Ixy,Oxy} is unassailable.

iii Axy |=Lan ¬Oxy, Oxy |=Lan ¬Axy, Exy |=Lan ¬Ixy and Ixy |=Lan

¬Exy.

Martin compares several natural deduction calculus for syllogistic logic in
order to prove the completeness result. We will consider just the formalized
version of Corcoran’s system, which takes the natural deduction rules to be the
usual syllogistic rules of conversion, subalternation and reductio alongside the
basic figures of Barbara and Celarent:

Definition 15. Let SY LC =< BDS ,` C1, C2, Thinning,RAI, PS1, PS2 > be
the following set of natural deduction rules for `, called Corcoran’s Syllogistic
Calculus:

i From X ` Exy infer X ` Eyx. [C1/Conversion]

ii From X ` Axy infer X ` Ixy. [C2/Subalternation]

iii From X ` A infer X,Y ` A. [Thinning]

iv From X,¬B ` A and Y,¬B ` ¬A, infer X,Y ` B. [RAI/Reductio ad
Impossible]

v From X ` Azy and Y ` Axz infer X,Y ` Axy. [PS1/Barbara]

vi From X ` Ezy and Y ` Axz infer X,Y ` Exy. [PS2/Celarent]

Here BDS = {< X,A >|< X,A > is a deduction andA /∈ X}, so is the
set of deductions in which the conclusion is not already included in the set of
premisses. The rest of classical figures such as Darii and Ferio can be defined
as rules in terms of these.

Martin proves the adequacy and completeness of the class of bottomed meet-
semilattices with respect to Corcoran’s logic using standard techniques:
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Theorem 2. X ` A iff X |= A.

To sum up, the class of bottomed meet-semilattice provides a complete se-
mantics for Aristotle’s syllogistic logic. In fact, it is not far-fetched to take the
syllogistic terms to be denoting kinds.

However, complete lattices form a proper species of bottomed meet-semilattices,
since the latter ones need not have a top. The two classes of structures are very
close though, for it is a standard result that:

Proposition 4. Let L be a poset closed under arbitrary non-empty meets and
with a top element. Then L is a complete lattice.

Therefore, there are just two steps from the semantics of syllogistic logic to
Thomason’s model. If the semi-lattice is closed under all all non-empty meets
(instead of just the finite ones) and a top element is added, then we have a
complete lattice. Is there any justification for such a move?

On the one hand, completeness under arbitrary meets is trivially satisfied
in the finite case. So objections are only relevant when we are dealing with
an infinite amount of kinds. Note that, in the finite case, closure under binary
meets implies (by induction) closure under finite meets. Once we accept that
the meet of a large but finite amount of kinds is a kind, it seems plausible to
generalize this to the infinite case. On the other hand, the addition of a top
element corresponds to the existence of a summum genus. It is plausible to
assume that, for every domain of entities being classified, there is a kind to
which all of them belong. In fact, the usual way in which a domain of entities
is selected is by giving something like a summum genus. For example, think
about the classifications of chemical elements, diseases, minerals, and so on.
Classifications themselves acquired their name from this summum genus.

To sum up, we have here a further argument for modelling the external
structure of kinds as a general (complete) lattice, namely, such structures give a
semantics for syllogistic logic, which plausibly describes the species-genus rela-
tions among kinds. Nevertheless, neither Thomason’s approach nor Corcoran-
Martin’s logic mentions objects or attributes, and apart from the algebraic struc-
ture imposed they do not give further information about the order structure of
kinds. The rest of the chapter will make use of a model for natural kinds based
on the Minimal Conception that gives more insight into the order structure
of kinds while still preserves Thomason’s basic ideas and is still a model for
syllogistic logic.

3.3 The Concept Lattice Model of Kinds

3.3.1 A Model for Natural Kinds

In this section a model for the Minimal Conception of kinds is introduced, based
on Wille’s Theory of Formal Concept Lattices [40].16 This model is a more in-
formative special case of the one by Thomason just discussed, as it will be seen
soon.17 One can find some references in the literature making similar proposals.

16Concept lattices, semilattices and trees are heavily used models of classifications, see [100].
17In fact, the relation between concept lattices and complete lattices is far more interesting

than that, since every complete lattice is isomorphic to a concept lattice [40].
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Z = 3 Z = 8 Z = 79 N = 8 N = 9
Atom x X
Atom y X
Atom z X X
Atom p X X
Atom q X

Table 3.1: Example of Context: Atoms

For instance, Mormann [88] already proposes Wille’s theory as a good candi-
date for explicating Armstrong’s realism. There are also slightly more general
proposals available, as the ones concerning syllogistic logic just discussed.18 In
what follows, the names of some concepts from the theory of Concept Lattices
will be replaced by others more suitable to our current purposes.19

Definition 16. Let S and Q be sets and I ⊆ S × Q. Then (S,Q, I) is a
formal context. S is the set of objects, Q is the set of attributes and I is the
exemplification relation.

Each context can be represented by a table. For example, let us take a
collection of atoms as objects, with their atomic number (Z) and the number
of neutrons (N) as attributes. A possible context can be found in Table 3.1.
The most basic operation one can perform on contexts is to permute the role
of objects and attributes just by putting the exemplification relation ’upside
down’:

Definition 17. Let (S,Q, I) be a context and let I−1 = {(R, x) | (x,R) ∈ I} be
the converse of I. Then (Q,S, I−1) is its dual context.

A fundamental reason for choosing contexts is that they provide a definition
of the notions of extension and intension:

Definition 18. Let (S,Q, I) be a formal context, A ⊆ S, B ⊆ Q. Then
i : ℘(S)→ ℘(Q) defined as i(A) := {P ∈ Q | xIP for all x ∈ A} is the intension
function, and e : ℘(Q) → ℘(S) defined as e(B) := {x ∈ S | xIP for all P ∈ B}
is the extension function.

The extension is a function that gives, for each set of attributes B, the set
of all the objects having all the attributes in B. Dually, the intension gives, for
each set of objects A, the set of all the attributes had by all the objects in A.
Clearly, A is an extension for some B iff A = ei(A) and B is the intension for
some A iff B = ie(B).

Definition 19. Let (S,Q, I) and A ⊆ S, B ⊆ Q. Then (A,B) is a natural kind
iff A = e(B) and i(A) = B. Here A is the extension of B and B the intension
of A.

18The basic theses in this chapter were strongly inspired by the claims made by [88]. There
are other examples of similar proposals, see Swoyer’s approach to Leibnizian calculus in [130].

19Although the focus here is on monadic properties, one could have n-ary relations in Q by
putting n-tuples in S.
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Wille calls such a pair (A,B) a formal concept, but we call it a natural
kind. For instance, we have the natural kinds Lithium = ({x, y }, {Z = 3 }),
Oxygen = ({ z, p }, {Z = 8 }), Gold = ({ q }, {Z = 79 }), and the isotopes
Oxygen− 16 = ({ z }, {Z = 8, N = 8 }) and Oxygen− 17 = ({ p }, {Z = 8, N =
9 }). Although formal contexts may look too simple to obtain any interesting
results, this is far from being true:

Proposition 5. Let (S,Q, I) be a context and A,A′ ⊆ S, B,B′ ⊆ Q. Then:

1. A ⊆ e(B) ⇐⇒ B ⊆ i(A). [Galois Connection]

2. A ⊆ A′ ⇒ i(A′) ⊆ i(A). [Antitonicity i]

3. B ⊆ B′ ⇒ e(B′) ⊆ e(B). [Antitonicity e]

4. A ⊆ ei(A) and B ⊆ ie(B). [Extensiveness ei, ie]

5. A ⊆ A′ ⇒ ei(A) ⊆ ei(A′). [Monotonicity ei]

6. B ⊆ B′ ⇒ ie(B) ⊆ ie(B′). [Monotonicity ie]

7. eiei(A) = ei(A) and ieie(B) = ie(B). [Idempotence ei, ie]

8. iei(A) = i(A) and eie(B) = e(B).

9. i(
⋃

i∈I Ai) =
⋂

i∈I i(Ai) and e(
⋃

i∈I Bi) =
⋂

i∈I e(Bi).

From these properties half of the main theorem of the theory follows:

Theorem 3 (Fundamental Theorem of Concept Lattices). Let L∗ be the set of
natural kinds of the context (S,Q, I). If (A,B) and (A′, B′) are natural kinds,
define (A,B) ≤ (A′, B′) := A ⊆ A′. Then (L∗,≤) is a complete lattice, where:

i (A,B) ≤ (A′, B′) ⇐⇒ A ⊆ A′ ⇐⇒ B′ ⊆ B.

ii
∧

i∈I(Ai, Bi) = (
⋂
Ai, ie(

⋃
Bi)).

iii
∨

i∈I(Ai, Bi) = (ei(
⋃
Ai),

⋂
Bi).

iv 1 = (S, i(S)) and 0 = (e(Q), Q).

v xIP ⇐⇒ x ∈ e(P ) ⇐⇒ P ∈ i(x).

Lattices L∗ are usually called concept lattices. We will call them lattices of
natural kinds. Note that the whole lattice structure, and a fortiori the whole
order structure, follows from the definition of kinds. The extensions and the
intensions also form complete lattices. In fact, the lattice of kinds can be seen
as the combination of these two lattices. We will make heavy use of these lattices
in the last chapter:

Proposition 6. Let (S,Q, I) be a context. Then (BS ,⊆) where BS = {A ⊆
S | A = ei(A)} is the lattice of extensions. For {Ai} ⊆ BS we have that:

i
∧
Ai =

⋂
Ai.

ii
∨
Ai = ei(

⋃
Ai).

iii 1S = S.
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iv 0S = ei(∅) = e(Q).

Proposition 7. Let (S,Q, I) be a context. Then (BQ,⊆) where BQ = {B ⊆
Q | B = ie(B)} is the lattice of intensions. For {Bi} ⊆ BQ we have that:

i
∧
Bi =

⋂
Bi.

ii
∨
Bi = ie(

⋃
Bi).

iii 1Q = Q.

iv 0Q = ie(∅) = i(S).

Moreover, the lattice of kinds is isomorphic to the lattice of all the extensions
BS and to the dual of the lattice of intensions BQ. This is again an expression
of the fact that extension and intension are dual to each other, which turns out
to be the explanation for why Kant’s Law holds:

Proposition 8. Let B(S,Q, I) be the lattice of natural kinds of (S,Q, I). Then:

i (BQ,⊆)dual = (BQ,
∨
,
⋂

) is the dual of the lattice of intensions.

ii The extension function e : (BQ,⊆)dual → (BS ,⊆) is an order isomor-
phism.

iii The intension function i : (BS ,⊆) → (BQ,⊆)dual is an order isomor-
phism.

iv The projection function π1 : B(S,Q, I) → (BS ,⊆) is an order isomor-
phism.

As usual, we need a concept to determine whether two contexts are struc-
turally similar:

Definition 20. Let (S,Q, I), (S′, Q′, I ′) be contexts and (f, g) : (S,Q, I) →
(S′, Q′, I ′) a pair of functions f : S → S′, g : Q→ Q′. Then:

i (f, g) is a homomorphism iff (xIR⇒ f(x)I ′g(R)).

ii (f, g) is an isomorphism iff f and g are bijective and (xIR⇔ f(x)I ′g(R)).

In some cases, the fact that the lattices of kinds are isomorphic can be
directly inferred from the fact that their contexts are isomorphic. Two useful
lemmas are:

Lemma 1. The lattice B(S,Q, I) is isomorphic under the mapping f((A,B)) =
(B,A) to the dual of the lattice B(S,Q, I−1).

Lemma 2. If (S,Q, I), (S′, Q′, I ′) are isomorphic contexts under the mapping
(f, g), then their lattices B(S,Q, I), B(S′, Q′, I ′) are isomorphic under the map-
ping h((A,B)) = (f(A), g(B)).

There are some special kinds in the lattice. The extensionally biggest kind
is 1 = (S, i(S)), every object belongs to its extension and it only contains in its
intension attributes shared by all objects of the domain. Usually, it has empty
intension. To honour tradition, we will call it the summum genus. The exten-
sionally smallest kind is 0 = (e(Q), Q), every attribute belongs to its intension
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and it only contains in its extension objects having all the attributes in the
domain. Usually, it has empty extension. It will be called the null kind.

Each object x induces an extensionally minimal kind Kx = (ei(x), i(x)). Its
intension is the intension of the object, whereas its extension contains all the
objects that have all the attributes that the object has (and possible more).
We will call the kinds of the form Kx the infimae species. It is debatable
whether this name is appropriate, after all, usually these infimae species only
contain in their extension an object, whereas traditional infimae species contain
several objects. Socrates is an object that determines a kind whose extension
contains Socrates and every other object in the domain that has all the attributes
that Socrates has. However, the infima species to which Socrates belongs is
traditionally something like the kind human or person, in other words, a kind
with a considerably large extension. So I would not put too much weight on
this naming. Traditionally, the infimae species are supposed to be those kinds
just extensionally above individuals and which are such that no other kind is a
proper species of them. However, if the lattice is infinite then such kinds may
not exist (because some objects may not be covered by any kind), whereas what
we are here calling ’infimae species’ will always exist. Moreover, the traditional
picture does not allow for some of these infimae species to form a chain, since
it pictures infimae species as minimal elements. But this usually happens in
lattices. The appropriate lattice-theoretical notion is instead that of a join-
irreducible element : an element x in a lattice is join-irreducible iff if x = y ∨ z
then x = y or x = z. Join-irreducible elements can be non-trivially ordered,
in contrast with minimal (or atomic) elements. Mathematically this is a very
important fact.

Dually, each attribute P induces an intensionally minimal kind of the form
KP = (e(P ), ie(P )). Its extension is the extension of the attribute, whereas its
intension contains all the attributes shared by all the objects that exemplify that
attribute. In other words, all the attributes ’implied’ by this one will belong
to the intension. We will call the kinds of the form KP the maximal genera.
Remarks concerning maximal genera are dual to the ones given for the infimae
species. Anyways, these special kinds are fundamental in the following sense:
every kind is the join of its infimae species and the meet of its maximal genera.
In lattice-theoretic terms, the infimae species form a join-dense subset, whereas
the maximal general form a meet-dense subset.

Let us give a full example of a lattice of kinds. Let the following context
be given in Figure 3.2. The objects are particular foods or drinks found in a
feast, such as a specific pear A, a specific cookie B, and so on. The attributes
are properties of these foods, such as being sweet or having animal origin. The
resulting lattice can be found in Figure 3.120. Most of the kinds are completely
determined either by an object or by an attribute (and we have given them
names accordingly). In other words, they are infimae species (noted with a
triangle down-side) or maximal genera (noted with a triangle up-side). For
instance, the kind Honey = {{HoneyI}, {Sweet,Animal − Origin,Highly −
Caloric, Artisan, Liquid}} is an infima species. Other kinds are more inter-
esting. For example, K = {{HoneyI, CheeseC}, {Animal − Origin,Highly −
caloric, Artisan}} is something like the kind of ”(non-vegan) desserts”, whereas

20Every Figure in this thesis was made by the author by making use of the free software
GeoGebra.
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Sweet Animal Origin Highly caloric Spice Artisan Smelly Liquid Baked
Pear A X

Cookies B X X X X X
Cheese C X X X X
Oyster D X X
Chicken E X X X

Strawberry F X X
Beer G X X X

Baked Potato H X X X
Honey I X X X X X

Rosemary J X X
Water K X
Sugar L X X

Table 3.2: Example of Context: Food

K ′′ = {{HoneyI, CookieB}, {Artisan, Sweet,Highly − caloric}} which could
be interpreted as the kind of ”sweet desserts”. Honey belongs to both kinds.
This example hints at how complex the relations between kinds could be.

Some relations between kinds hold. For instance, the kind of artisan foods
is a species of that of highly caloric ones. However, some highly caloric foods,
such as baked potatoes, are not artisan. We have Artisan ≤ Highly − caloric
where:

Artisan =({BeerG,HoneyI, CheeseC,CookiesB},
{Highly − caloric, Artisan})

Highly − caloric =({BeerG,HoneyI, CheeseC,CookiesB,
Baked− potatoH, SugarL}, {Highly − caloric})

which obeys Kant’s Law as expected. This example also shows that even
classifications made in ordinary life can be non-hierarchical (for many other
examples the reader can consult [40]).

3.3.2 Arguments for the Adequacy of the Model

In this section the main features of the model are explained and its material
adequacy with respect to the Minimal Conception is argued for. In other words,
the main aim of the section is to show that the ontological commitments of the
model are those and only those of the Minimal Conception.

First, the primitive entities are a set of objects S, a set of attributes Q
and an exemplification relation I that holds from objects to attributes and not
vice versa. A fortiori, entities in S cannot be exemplified, but can exemplify
several attributes. Therefore, they are plausibly interpreted to be particular
objects. Entities in Q can be exemplified by several objects. Thus, they are
plausibly interpreted to be properties. Of course, the model does not prevent
us from choosing elements in Q to be sets, mereological sums, predicates, and
so on. It does not prevent us from choosing the exemplification relation I to
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Figure 3.1: Example of Concept Lattice: Food
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be the membership relation, the parthood relation, the satisfaction relation,
and so on. Although the most straightforward reading of the elements in Q is
as universal attributes, nominalists can use their favourite surrogates instead.
Many philosophers will require additional principles to be satisfied though. For
instance, even though they are not required in the definition of a context, the
following two dual principles are often assumed21:

∀x ∈ S i(x) 6= ∅ ∀P ∈ Q e(P ) 6= ∅

The one on the left is the Principle of No Bare Particulars, it says that
every object has at least one attribute. The one on the right is the Principle
of Exemplification, it says that every attribute is exemplified. Since we are
assuming attributes to be sparse, we will require the latter principle. The model
is also compatible with the following cases:

� Two attributes may be exemplified by exactly the same objects: e(P ) =
e(R).

� Two objects may exemplify exactly the same attributes: i(x) = i(y).

� An attribute may be exemplified by every object in the domain: e(P ) = S.

� An object may exemplify every attribute in the domain: i(x) = Q.

� All objects exemplifying a certain attribute may exemplify another given
attribute: e(P ) ⊆ e(R).

� All attributes exemplified by an object may be exemplified by another
given object: i(x) ⊆ i(y).

In other words, there could be distinct coextensional attributes, distinct
cointensional objects, and so on. Therefore the following principles may not
hold:

� ∀P,R ∈ Q e(P ) = e(R)⇒ P = R. [Coextensionality]

� ∀x, y ∈ S i(x) = i(y)⇒ x = y. [Identity of Indiscernibles]

� i(S) = ∅. [No General Attributes]

� e(Q) = ∅. [No General Objects]

� ∀P,R ∈ Q e(P ) ⊆ e(R)⇒ P = R. [Attribute Independence]

� ∀x, y ∈ S i(x) ⊆ i(y)⇒ x = y. [Object Independence]

For instance, the context in Table 3.3 can be used as a counterexample to
all of them. We have that i(y) ⊂ i(x), i(w) = i(y), e(P ) ⊂ e(R), e(R) = e(M),
i(S) 6= ∅, e(Q) 6= ∅. Of course, whether this counterexample is metaphysically
possible depends on further commitments.

Second, following the distinction introduced by David Lewis [73], the at-
tributes are plausibly natural or sparse, not abundant properties. Several fea-
tures characterize naturalness. Among them, we have similarity, intrinsicness

21Of course, these two principles have different names in the Theory of Concept Lattices.
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P R W M
x X X X X
y X X X
w X X X
z X X

Table 3.3: Context of Counterexamples

and simplicity. Sparse attributes are said to ground or be grounded on resem-
blances or similarities between objects. Lewis argues that intrinsicness can be
defined in terms of duplication or exact similarity, the latter one being defined
as sharing the same natural properties (so that natural properties turn out to
be intrinsic). Under the assumption that one starts with natural attributes, the
following accounts of similarity can be given (as Armstrong himself proposed
many times)22:

x and y are duplicates or exactly similar ⇐⇒ i(x) = i(y).

x and y are approximately similar ⇐⇒ i(x) ∩ i(y) 6= ∅.

The last criterion for sparseness concerns the composition conditions of prop-
erties, and thus whether they are closed under formal operations. Natural prop-
erties, or at least maximally or perfectly natural properties, are usually taken
to be simple. Complex properties obtained by combinations from (perfectly)
natural properties are less natural or even not natural at all. In the model,
attributes need not be closed under any operation over their extensions, al-
though we could force them to be so. In particular, the negation of an attribute
(complement of extension of an attribute), the conjunction of attributes (in-
tersection of extensions of attributes) or the disjunction of attributes (union of
extensions of attributes) are not necessarily attributes. We cannot manufacture
attributes at will. By this I mean that if Red is an attribute with extension
e(R), there may not be an attribute non-Red in the context with extension
e(non-Red) = S − e(R). In contrast, an abundant conception of properties
requires at least some sort of boolean structure over the set of attributes. Nev-
ertheless, natural kinds are closed under joins and meets. This is a crucial
difference. These internal operations flow directly from the very definition of a
natural kind and their order structure without assuming any closure constraints
over the natural attributes. In other words, once kinds are defined as we did, one
is forced to accept the existence of meets and joins of kinds, since these satisfy
the definitions too. The crucial point though, is that the meet and join opera-
tions need not be interpreted simply as classical intersections (or conjunctions)
and unions (or disjunctions). Our operations do not have all the formal proper-
ties of intersections and unions. For instance, joins and meets do not necessarily
distribute over one another. But even if they did, an important difference would
remain. To make it more clear, let us take the case of ’disjunctive’ kinds. Recall
that the intension of a disjunctive kind will be the intersection of the intensions
of its disjuncts and that its extension will be the smallest extension including

22Intrinsicness and similarity should be considered with care. It is not clear that there is
any compelling reason why we should exclude relations from being natural or some similarities
from being abundant.
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the union of the extensions of its disjuncts:

(A,B) ∨ (A′, B′) = (ei(A ∪A′), B ∩B′)

Let us make use of a Goodmanian example based on folk taxonomy. Let
’Tulipose’ be a predicate having in its extension any object that is either a tulip
or a rose. If ’Tulipose’ does not denote a kind (not the null kind, but no kind at
all), then it has no place in our classification. This will happen if, for instance,
there are no attributes common to all the members of the set. If so, tuliposes will
not form the extension of a kind. So this excludes some Goodmanian predicates
from the beginning. Now let us suppose that it denotes a kind. There is indeed
a smallest kind Tulip ∨Rose whose extension includes all the roses and all the
tulips. It is the closest genus of Tulip and Rose. This seems to be a plausible
candidate for the denotation of our term ’Tulipose’. But the extension of such a
kind is usually bigger than the union of these two extensions. More to the point,
if the attributes common to all tulips and all roses are simply those attributes
common to every object in the domain, or if there is no such common attribute,
then Tulip ∨ Rose may happen to be simply the summum genus, say Plant.
And if the kind denoted is not the summum genus, then it will simply be a
bona fide genus of both Tulip and Rose, but presented under a rather unusual
Goodmanian name. This is a crucial point since it blocks some Goodmanian
grue-like objections for kinds. Not every arbitrary collection of objects is the
extension of a kind, and in particular, the unions of extensions of kinds are not
extensions of kinds.23

Third, if required, we could also introduce the hierarchy condition by im-
posing the constraint that the extensions form a set-theoretic hierarchy24:

Definition 21. Let (S,Q, I) be a context. Then it is a hierarchical context iff
∀P,R ∈ Q e(P ) ⊆ e(R) or e(R) ⊆ e(P ) or e(P ) ∩ e(R) = e(Q).

Proposition 9. The context (S,Q, I) is hierarchical ⇐⇒ L∗ is hierarchical.

Therefore, the tree model is a very special case of the more general lattice-
theoretic model. Hierarchy requires the extensions of the attributes to be nested.
The Minimal Conception can avoid the counterexamples related to the hierar-
chy condition, while acknowledging that some specific domains may indeed be
hierarchically structured.

Although lattices of kinds are not generally hierarchical, there is a principle
regarding the specificity relations between kinds that holds in every lattice of
kinds, namely Kant’s Law of Extension and Intension. It follows immediately
K ≤ K ′ ⇐⇒ A ⊆ A′ ⇐⇒ B′ ⊆ B25:

Kant’s Law of Extension and Intension The extension of a kind is inversely
related to its intension.

Notice that Kant’s Law follows directly from the very definition of natural
kinds. The more general the kind is (the greater the amount of its instances is),

23Of course, this strategy only blocks the introduction of Goodmanian kinds, not of Good-
manian attributes. For the latter one has to assume that the attributes are natural.

24Such families of sets are also used as models of classification, see [100].
25The model identifies any two kinds that have empty extension. Thus Unicorn =

Centaur = Fairy. To avoid this problem the model should be expanded to a modal one.
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the less the number of attributes common to all its members will be. Dually,
the more specific the kind is, the greater the number of attributes shared by its
instances will be. The limiting cases nicely illustrate this duality. The summum
genus has the largest extension, that contains every object in the domain, and
the smallest intension, which includes the attributes common to every object
(usually, this set is empty). The null kind has the smallest extension, which
includes only those objects that have all the attributes (usually, this set is
empty) and the biggest intension, that contains all the attributes in the domain.
The less trivial cases are those of the maximal genera and the infimae species.
The intension of a maximal genus is usually fixed by just one attribute, whereas
the extension of an infima species is usually fixed by just one object. Roughly
speaking, attributes correspond to extensionally rich kinds, whereas objects
correspond to intensionally rich kinds.

From a conceptualist point of view, what this law states is that the larger the
range of application of a concept is, the poorer its content will be, and vice versa,
the richer the content of a concept is, the smaller is range of application will be.
Thus, Kant’s Law is a duality that reflects the trade-off present in every concep-
tion of what a classification is supposed to be: the trade-off between parsimony
and informativeness (for more on this, see the next chapter). Consider a family
of kinds (from the lattice) that can be used to cover the domain of objects, in
other words, a family of kinds such that every object in the domain belongs to at
least one of them. The larger the extensions of these kinds are, the fewer kinds
will be needed in order to cover the whole domain. The inferences in which
those kinds appear will involve many objects and therefore will be very general.
However, in exchange, these kinds will have poorer intensions and therefore will
support fewer informative inferences about their members. Dually, the richer
the intensions of these kinds are, the more inferences about the attributes of
their members we will be able to make. However, in exchange, many kinds will
be needed in order to cover the whole domain, which will make inferences very
specific. Consider again the limiting examples. One can classify all the objects
by making use of the infimae species or by making use of the maximal genera.
Whereas the former classification is too specific, the latter one is too general.
The classification by infimae species is extensionally extremely poor, whatever
inferences it will allow us to make will involve very few objects. In contrast, the
classification by maximal genera is intensionally too poor, whatever inferences
it will allow us to make will involve very few attributes. A good classification
balances these two aspects and therefore appeals to kinds that are neither too
general nor too specific, in other words, to kinds that do not correspond to
attributes nor to objects.

Finally, natural kinds are bi-dimensional entities K = (A,B), where A =
e(B) is a set of instances, the set of all the objects that exemplify the attributes
in B, and B = i(A) is a set of attributes, which are exactly those exemplified
by the objects in A. We can split up the definition of a natural kind that has
been given into several theses:

i. A kind K corresponds to a set of objects A, its extension.

ii. A kind K corresponds to a set of attributes B, its intension.

iii. If an object instantiates K, then it exemplifies all the attributes in B.
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iv. If an object exemplifies all the attributes in B, then it instantiates K.

v. If an attribute P is in B, then all the objects of K exemplify P .

vi. If all the objects of K exemplify P , then P is in B.

From these considerations, it follows that A = e(B) and B = i(A). The
objects in the extension are exactly those that exemplify the attributes in the
intension and the attributes in the intension are exactly those that are exempli-
fied by the objects in the extension. Let us see what these theses involve.

Theses (i) and (ii) are assumptions made by most theories of kinds. Here
A is the set of objects that instantiate or belong to the kind and B is a set of
attributes shared by (some) members of the kind.26 In principle, both the set
of objects and the set of attributes corresponding to the kind could be empty.

Theses (iii)-(iv) are equivalent to A = e(B), that the set of objects of the
kind forms its extension. Equivalently put, they require that the set of attributes
B fixes the membership conditions of the kind. That is to say, for an object x
to belong to K it is necessary and sufficient that it exemplifies all the attributes
in B. Theses (v)-(vi) are equivalent to B = i(A), that the set of attributes of
the kind forms its intension. Thesis (v) says that all the objects belonging to
the kind exemplify every attribute in B. Once again, if B fixes the membership
conditions of the kind this is to be expected. In contrast, thesis (vi) is a more
contentious one. It may happen that all the instances of the kind exemplify P ,
although P is not a property that is characteristic of the kind. For example,
P may be accidentally exemplified by all the instances of the kind, or it may
be a necessary consequence of their membership to the kind without being a
property essentially exemplified by all of them, or it may simply be theoretically
irrelevant. We have assumed that the attributes in the intension are sparse,
however that assumption by itself may not be enough.

Another problem is this. It is easy to check that the identity conditions for
natural kinds are completely determined both by their intension and by their
extension. Two kinds are identical iff they are cointensional iff they are coex-
tensional. The explanation is simply that the model does not take into account
the modal features of kinds. These difficulties point at the limitations of both
the Minimal Conception and its model. Under stronger commitments for this
conception or expansions of the model, some of these difficulties disappear. For
instance, essentialists will assume that the attributes in Q are essentially exem-
plified by the objects, or that I is the relation . . . essentially exemplifies . . . . If
the attributes in B form the general essence of the kind, then the exemplification
relation I holds essentially of the objects and the premisses are satisfied. The
model only describes what happens in the actual world. To allow for distinct
but coextensional kinds one has to take into consideration what other extensions
that kind could have had. Although we will give a sketch of a modal expansion
for this model, issues regarding modality are beyond the scope of this chapter.

Nevertheless, not every theory of kinds will accept the Minimal Conception.
It is a common assumption among kind theorists that the membership conditions
are fixed by the sparse properties shared by the objects. Some think that these
sparse properties are essential to their bearers, others hold that they simply

26Causal theorists may object that the collection of members of the kind should not be
represented by a set, given that kinds do not have sharp membership conditions.
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tend to co-occur as a matter of natural necessity. However, not all of them will
accept that the objects share all the sparse properties in the intension. For
instance causal theorists (say Boyd [12]) will reject some of the assumptions of
the Minimal Conception. They will prefer to give identity conditions for kinds
in terms of the causal processes that bundle the attributes together. Moreover,
they will point out that there is no collection of attributes shared by all the
members of the kind and that the collection of objects has ’fuzzy boundaries’.
More specifically, they will object to (iii) and (v) by arguing that an object
can belong to the kind while not exemplifying all the corresponding attributes.
There may not be a set of attributes which is such that all of them are had by
all the members of the kind. This results, in particular, in some objects being
boundary cases of the kind.

In the following section the main application of the model will be given. The
Minimal Conception will be shown to be committed to Aristotelian definitions
of kinds in terms of genera and specific differences.

3.4 Aristotelian Definitions of Kinds

3.4.1 Two Operations of Specific Difference

The main application of the model to be given in this chapter concerns the
classical Aristotelian theory of definitions, which is a rich source of operations
on kinds. The aim of this section is to show that kinds can be given Aristotelian
definitions in terms of genera and specific differences. More precisely, there
are two different ways to subtract one kind from another. One can subtract
intensionally a genus from a species by considering the attributes in the species
that do not belong to the intension of the genus. In contrast, one can subtract
extensionally a species from a genus by considering the objects in the genus that
do not belong to the extension of the species. Correspondingly, there are two
different ways to define a kind using specific differences. On the one hand, one
can get a genus extensionally by taking one of its species and introducing enough
objects in its extension. On the other hand, one can get a species intensionally
by taking one of its genera and introducing enough attributes in the intension.
These operations have a very close relation to Kant’s Law. Furthermore, each
operation induces a negation that behaves non-classically and whose behavior
can be explained by appealing to the Hexagon of Opposition. At the end of
this section some differences between the current model and the traditional
Aristotelian approach will be highlighted.

According to the traditional theory, one can abstract from a species by delet-
ing part of its intension and correspondingly enlarging the extension. Dually,
one can determine or specify a genus by adding attributes to its intension and
correspondingly restricting its extension. To define a species one gives a genus
and a differentia or specific difference. Starting from a species and a specific
difference, the genus can be recovered as the one having in its intension those
attributes of the species that are not in the specific difference. To take the
standard example, the species Human is defined from the genus Animal and
the specific difference Rational.

Generally speaking, one can interpret the meets and joins of kinds as opera-
tions of logical determination and logical abstraction, respectively. For instance,
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suppose that we take a kind K = (A,B) and that we want to divide it into
a species by enriching the intension B. We take a set of attributes B′ which
forms an intension, we add it to B and then we obtain the corresponding closest
natural kind, which has intension ie(B ∪ B′). This is just the meet K ∧ K ′,
where K ′ = (e(B′), B′). Dually, logical abstraction works by starting from a
kind K, selecting only some attributes in B which form an intension by overlap-
ping B with another intension B′, and then taking the corresponding natural
kind. Again, this is just the join K ∨K ′. So the operations of meet and join
of kinds can be understood as logical determination and abstraction operations
that form new kinds from already given ones. Given a kind K we can abstract
or generalize by K ′, AbsK′(K) := K ∨ K ′, and determine or specify by K ′,
SpecK′(K) := K ∧K ′. As an example, by abstracting the isotope Oxygen− 16
from the isotope Oxygen − 17 we get the more general kind Oxygen, since
AbsOxygen−16(Oxygen− 17) = Oxygen.

However, to consider specific differences we have to introduce several new
operations that are well-defined in the lattice. If K is a species of K ′, then we
have B′ ⊆ B and therefore the remainder B−B′ includes those attributes that
make the K-s specifically K-s among the K ′-s. Given a kind K ′ as a genus and
a specific difference B −B′, we can give a definition of a species. But one may
object that the process may not be completely satisfactory, given that we are
not really subtracting one kind from another. What does it mean to combine
B − B′ and K ′ to get the species K? This operation is neither the join nor
the meet, since B − B′ is not necessarily the intension of a kind. So, is there
a natural way to introduce an internal operation corresponding to the specific
difference?

Actually, there are two natural options. We saw that both the closure of
any set of attributes and the closure of any set of objects induce kinds. Suppose
that K is a species of K ′. We can define the specific difference as the kind
K ′ → K := (e(B−B′), ie(B−B′)) or as the kindK ′\K := (ei(A′−A), i(A′−A)).
In other words, we can either take the attributes of the species that are not in the
genus and then obtain the corresponding kind, or we can take the objects in the
genus that are not in the species and then obtain the corresponding kind. The
former is the kind induced by the intensional closure over a difference, whereas
the latter is the kind induced by the extensional closure over a difference. We
can think about the former as the intensional way to subtract a species from a
genus and about the latter as the extensional way to subtract the species from
the genus. To study the properties of these operations it is convenient to follow
a more general strategy. We will first give an abstract characterization and then
we will show that they can be found in any concept lattice:

Definition 22. Let L be a complete lattice. Then → : L× L→ L is a specific
conditional iff it satisfies (1)-(4). Dually, \ : L× L→ L is a specific difference
iff it satisfies (5)-(8):

1. x ∧ y = x ∧ (x→ y). [Modus Ponens]

2. x ≤ y ⇐⇒ x→ y = 1. [Tautology]

3. (x→ y) ∧ (y → z) ≤ x→ z. [Transitivity]

4. (x1 ∨ x2 ∨ . . . )→ y = (x1 → y) ∧ (x2 → y) ∧ . . . .[De Morgan I]
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5. x ∨ y = x ∨ (y \ x). [Dual Modus Ponens]

6. y ≤ x ⇐⇒ y \ x = 0. [Contradiction]

7. (z \ x) ≤ (z \ y) ∨ (y \ x). [Triangular Inequality]

8. y \ (x1 ∧ x2 ∧ . . . ) = (y \ x1) ∨ (y \ x2) ∨ . . . . [De Morgan II]

Plausible alternative names for ’specific conditional’ and ’specific difference’
are intensional difference and extensional difference, respectively. From now
on, we will only focus on the properties of the conditional, since those of the
difference can be obtained by duality. Notice that (2) and (6) can be replaced
by the equations x→ x = 1 and x \ x = 0, respectively:

Corollary 1. Let L be a complete lattice where → : L×L→ L satisfies Modus
Ponens, Transitivity and De Morgan. Then → satisfies Tautology iff it satisfies
x→ x = 1 [Identity].

Proof. Let the conditional satisfy Identity and x ≤ y, then x → y = 1 ∧ (x →
y) = (y → y) ∧ (x → y) = (x ∨ y) → y = y → y = 1, by De Morgan and
Identity. Conversely, let x→ y = 1. Then y = y∧ (x∨y) = (x∨y)∧ (x∨y → y)
and x = x ∧ (x ∨ y) = (x ∨ y) ∧ (x ∨ y → x) by Modus Ponens, from which
(x∨ y)→ x = ((x∨ y)→ x)∧ 1 = [(x∨ y)→ x]∧ (x→ y) ≤ (x∨ y)→ y follows
by Transitivity. Therefore, x = (x∨y)∧ (x∨y → x) ≤ (x∨y)∧ (x∨y → y) = y.
The other direction is trivial.

Proposition 10. Let (L,→) be a complete lattice with specific conditional.
Then:

1. x ≤ y ⇒ z → x ≤ z → y and y → z ≤ x→ z. [MonotonicityI ]

2. x ≤ y, z ≤ w ⇒ w → x ≤ z → y and y → z ≤ x→ w. [MonotonicityII ]

3. x = 1→ x and x→ x = 1. [Identity]

4. x ≤ y → x and y = y ∧ (x→ y). [Weakening]

5. x ≤ y ⇐⇒ x = y ∧ (y → x). [Order]

6. (x→ y)→ z ≤ (x→ y)→ (x→ z). [Auto− distributivityI ]

7. x→ (y → z) ≤ (x→ y)→ (x→ z). [Auto− distributivityII ]

8. x→ (y → z) = y → (x→ z). [Permutation]

9. x ≤ y → z ⇒ x ∧ y ≤ z. [Half-Galois]

Proof. (1) Let x ≤ y, by De Morgan (y → z)∧ (x→ z) = (x∨ y)→ z = y → z.
By Transitivity and Tautology z → x = (z → x) ∧ 1 = (z → x) ∧ (x → y) ≤
(z → y). (2) Let x ≤ y, z ≤ w. By (1), w → x ≤ w → y and z → x ≤ z → y, so
by De Morgan w → x = (w ∨ z) → x = (w → x) ∧ (z → x) ≤ (w → y) ∧ (z →
y) ≤ z → y. We apply this again to obtain the other one. (4) By Identity and
Monotonicity. (5) By Modus Ponens. (6) By Weakening and Monotonicity. (7)
x → (y → z) = (1 → x) → (y → z) ≤ [(1 → x) → y] → [(1 → x) → z] = (x →
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y) → (x → z) by the previous one. (8) x → (y → z) ≤ (x → y) → (x → z) ≤
y → (x → z) by the previous ones, Weakening and Monotonicity. Applying
again the inequality we get x→ (y → z) = y → (x→ z). (9) If x ≤ y → z then
y ∧ x ≤ y ∧ (y → z) = y ∧ z ≤ z.

The conditional does not distribute over meets and does not satisfy the
other half of the last property either27. An explicit counterexample is this.
Let the context be S = {x, y, z }, Q = {P,R, T } where i(P ) = {x, z },
i(R) = { y }, i(T ) = {x }. Then its concept lattice is the pentagon 0 =
(∅, Q), 1 = ({x, y, z },∅), KR = ({ y }, {R }) and ({x }, {T }) = KT ≤ KP =
({x, z }, {P }). Then although 0 = KR ∧ KP ≤ KT , we have KR ≮ KP →
KT = KT .

The last step is to check that the operations in the concept lattices are
indeed specific conditionals and differences. Although this fact could be proven
directly, we are going to give a slightly more general explanation. It turns out
that the two operations can be defined in every complete lattice relative to some
chosen join-dense and a meet-dense subsets:

Definition 23. Let L be a complete lattice, x ∈ L and X ⊆ L. Then x is
join-irreducible iff if x = y∨ z then x = y or x = z. X is join-dense in L iff for
each x ∈ L there is a A ⊆ X such that x =

∨
A.

We obtain by duality the notions of meet-irreducible element and meet-dense
subset. A join (meet)-dense subset allows us to get any element in the lattice
as a join (meet)-combination of elements in the set. Let us recall some basic
properties of dense subsets:

Lemma 3. Let L be a complete lattice, X ⊆ L join-dense and Y ⊆ L meet-
dense. Let x ∈ L and j(x) :=↓ x ∩X and m(x) :=↑ x ∩ Y . Then:

i x ≤ y ⇔ j(x) ⊆ j(y)⇔ m(y) ⊆ m(x).

ii x = 0⇔ j(x) = ∅⇔ m(x) = Y .

iii x = 1⇔ j(x) = X ⇔ m(x) = ∅.

iv j(x1 ∧ x2 ∧ . . . ) = j(x1) ∩ j(x2) ∩ . . .

v m(x1 ∨ x2 ∨ . . . ) = m(x1) ∩m(x2) ∩ . . .

We now show that each join-dense (meet-dense) subset induces its own spe-
cific conditional (difference):

Proposition 11. Let L be a complete lattice, X ⊆ L join-dense and Y ⊆ L
meet-dense. Let x ∈ L and j(x) :=↓ x ∩ X and m(x) :=↑ x ∩ Y . Then
x→ y :=

∧
(m(y)−m(x)) is a specific conditional and x \ y :=

∨
(j(x)− j(y))

is a specific difference.

Proof. Let x → y :=
∧

(m(y) − m(x)). First, x ∧ y =
∧
m(x) ∧

∧
m(y) =∧

[m(x) ∪ m(y)] =
∧

[m(x) ∪ (m(y) − m(x))] =
∧
m(x) ∧

∧
(m(y) − m(x)) =

x∧(x→ y). Second, let x ≤ y then m(y) ⊆ m(x) and therefore m(y)−m(x) = ∅
and

∧
(m(y)−m(x)) =

∧
∅ = 1. If

∧
(m(y)−m(x)) = 1 then m(y)−m(x) = ∅

27The lattice is Heyting (complete) iff satisfies the other half of that last property iff the
conditional distributes over meets iff finite meets distribute over arbitrary joins.
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and therefore m(y) ⊆ m(x), so x =
∧
m(x) ≤

∧
m(y) = y. Third, x→ y ∧ y →

z =
∧

[m(y) − m(x)] ∧
∧

[m(z) − m(y)] =
∧

[m(y) − m(x) ∪ m(z) − m(y)] ≤∧
(m(z) −m(x)) = x → z, since m(z) −m(x) ⊆ m(z) −m(y) ∪m(y) −m(x).

Fourth, (x1 ∨ x2 ∨ . . . )→ y =
∧

(m(y)−m(x1 ∨ x2 ∨ . . . )) =
∧

(m(y)−m(x1)∩
m(x2) ∩ . . . ) =

∧
(m(y) −m(x1) ∪m(y) −m(x2) ∪ . . . ) =

∧
(m(y) −m(x1)) ∧∧

(m(y) − m(x2)) ∧ · · · = x1 → y ∧ x2 → y ∧ . . . . The proof for the specific
difference is dual.

A complete lattice has many join-dense (meet-dense) subsets, including the
lattice itself and any superset of a join-dense subset. However, sometimes a
specific choice is the most natural one. In the case of concept-lattices, the set
of join-irreducible elements (the infimae species) forms a join-dense subset and
the set of meet-irreducible elements (the maximal genera) forms a meet-dense
subset [40]28. One can check that, in fact, these induce the specific conditional
and difference operations in the concept lattice. Our join-irreducibles have the
form (ei(x), i(x)), whereas the meet-irreducibles have the form (e(R), ie(R)):

Corollary 2. Let L be a concept lattice, K → K ′ := (e(B′ − B), ie(B′ − B))
and K \K ′ := (ei(A−A′), i(A−A′)). Then K → K ′ =

∧
(m(K ′)−m(K)) and

K \K ′ =
∨

(j(K)− j(K ′)).

Proof. We prove it for the difference. If A is an extension, then x ∈ A iff
ei(x) ⊆ A. We have

∨
(j(K) − j(K ′)) =

∨
{ (ei(x), i(x)) ∈ L | ei(x) ⊆ A &

ei(x) * A′ }. Therefore, the extension of this kind is ei(
⋃
{ ei(x) | x ∈ A−A′ }).

But A − A′ ⊆
⋃
{ ei(x) | x ∈ A − A′ } therefore ei(A − A′) ⊆ ei(

⋃
{ ei(x) |

x ∈ A − A′ }). Since each x ∈ A − A′ is such that ei(x) ⊆ ei(A − A′), we get⋃
{ ei(x) | x ∈ A − A′ } ⊆ ei(A − A′), therefore ei(

⋃
{ ei(x) | x ∈ A − A′ }) ⊆

eiei(A−A′) = ei(A−A′). So
∨

(j(K)− j(K ′)) = K \K ′.

Let us take a closer look at the properties of these two operations.

3.4.2 Definitions in terms of Genera and Specific Differ-
ences

We can read K ′ → K as ”the intensional difference of K with respect to K ′”
and K ′ \K as ”the extensional difference of K ′ with respect to K”. First of all,
we have those properties related to the definition of a species in terms of the
specific differences and genera that we wanted:

K = K ′ ∧ (K ′ → K) ⇐⇒ K ≤ K ′ ⇐⇒ K ′ = K ∨ (K ′ \K)

The formula corresponds to classical Aristotelian definitions. Take the ex-
tensional difference. A genus K ′ is the sum of its species K with the extensional
difference ofK ′ with respect toK. We have (A′, B′) = (A,B)∨(ei(A′−A), i(A′−
A)) = (ei(A ∪ ei(A′ − A)), B ∩ i(A′ − A)). The genus is obtained by selecting
from the intension of the species those attributes shared by all the objects that
belong to the genus but that do not belong to the species. For instance, the
genus Animal is obtained by restricting the intension of Human to those at-
tributes shared by non-human animals. Now consider the intensional difference.

28This fact is the core of the proof of the converse of the Fundamental Theorem of Concept
Lattices, which says that each complete lattice is isomorphic to a concept lattice, see [40].
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A species K is the overlapping of its genus K ′ with the intensional difference of
K with respect to K ′. We have (A,B) = (A′, B′) ∧ (e(B − B′), ie(B − B′)) =
(A′∩e(B−B′), ie(B′∪ie(B−B′))). The species is obtained by selecting from the
objects in the genus those that have all the attributes ’specific’ to the species,
that is to say, those that are not shared by all the objects in the genus. The
species Human is obtained by restricting the extension of Animal to all of those
that are rational.

It turns out that, just as the requirement that the lattice should be a tree, the
classical picture regarding the specific difference is too simple. When we subtract
one kind from another there are two ways of doing so. We can define a kind
intensionally by overlapping one of its genera with the intensional difference,
or we can define the kind extensionally by adding to one of its species the
extensional difference. These two operations are distinct and dual to each other.
For instance, if K is a species of K ′, we get K = K ′ ∧ (K ′ → K), but generally
K ∨ (K ′ → K) = K ′ → K 6= K. When we get a species by overlapping the
genus with the intensional difference, we cannot recover the genus by joining
the intensional difference to the species. In order to do that we have to make
use of the extensional difference.

In contrast, other classical theses do hold. For instance, there is a sense in
which one can get every species as a ’division’ of the summum genus. Since
K ≤ 1 we have K = 1 ∧ (1 → K) = 1 → K. In other words, if we were given
the summum genus 1 and the intensional specific differences of each kind with
respect to the former, we could obtain each kind by overlapping the summum
genus with the corresponding specific difference.

Notice what happens to the specific differences if the lattice is a tree. Suppose
that K ≤ K ′, then since K = K ′∧(K ′ → K) we have that either K ′ ≤ K ′ → K
or K ′ → K ≤ K ′. In the former case, we have that K ′ = K ′ ∧ K ′ → K =
K ′ ∧K = K, therefore K = K ′. In the latter case, we have that K = K ∧K ′ =
K ′ ∧ K ′ → K = K ′ → K and therefore K = K ′ → K. In other words, if
the lattice is hierarchical and K is a proper species of K ′, then the intensional
difference of K with respect to K ′ is simply K. In a tree we lose information
regarding what makes the species K intensionally different from other species
of the same genus K ′. Something like this need not happen regarding the
extensional difference, so this suggests that trees are in a sense biased towards
extensional differences.

For a different special case, consider what happens when the lattice is a
boolean algebra. There are several conditions under which the lattice of kinds
is boolean, such as:

Corollary 3. Let L be a concept lattice. Then L is a boolean lattice iff x∧ y ≤
z ⇒ x ≤ y → z and (x→ 0)→ 0 = x.

When the lattice is boolean, the intensional difference K → K ′ is the boolean
conditional ¬K ∨K ′, whereas the extensional difference K \K ′ is the boolean
difference K ∧ ¬K ′. In the boolean case, the two De Morgan laws hold for
both operations. For example, (x ∧ y) → z = (x → z) ∨ (y → z). As will be
shown later, these two operations induce negations that collapse into a classical
negation in the boolean case. A fortiori, this implies that this internal negation
satisfies principles which are questionable if the negation is to be understood as
an Aristotelian internal negation.
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3.4.3 Laws of Specific Difference

Besides the one just explained, the most interesting property is monotonicity.
Let K, K ′, J and J ′ be kinds. Assume that K ≤ K ′ and J ≤ J ′, then we have:

J ′ → K ≤ J → K ′ and K ′ → J ≤ K → J ′

K \ J ′ ≤ K ′ \ J and J \K ′ ≤ J ′ \K

These reflect how certain kinds get more general or more specific depending
on others. Let us consider what it means by analogy with the case of magnitudes
and the arithmetical operations of division and difference29. Let us imagine that
K, K ′, J and J ′ were determinate values of some determinable magnitudes
ordered by specificity relations. Suppose that K and K ′ are determinates of
the same determinable (e.g. pressure) and K is a smaller value than K ′, i.e.
K ≤ K ′, whereas J and J ′ are determinates of another determinable (e.g.
volume) and again J ≤ J ′. Let us think of the specific conditional X → Y as
if it were the quotient Y ÷X between the two magnitudes. Monotonicity says
that the quotient J ′ → K between two magnitudes increases to J → K ′ as the
numerator K increases to K ′ and the denominator J ′ decreases to J . And the
quotient K → J ′ decreases to K ′ → J as the numerator J ′ decreases to J and
the denominator K increases to K ′. Now we think of the difference X \ Y as
the subtraction X − Y . Monotonicity says that the difference K \ J ′ between
two magnitudes increases to K ′ \ J as the magnitude being subtracted from
increases from K to K ′ and the magnitude being subtracted decreases from J ′

to J . And the difference J ′ \ K decreases to J \ K ′ as the magnitude being
subtracted from decreases from J ′ to J and the magnitude being subtracted
increases from K to K ′. What we have here in our case is a purely qualitative
picture that mirrors this correspondence.

Sometimes Kant’s Law was formulated as a literal proportion or quotient
between extension and intension. According to one of these formulations, the
quantity of the extension of a concept is inversely proportional to the quantity
of its intension. This formulation is very suspicious. Some kinds might have
either empty extension or empty intension. Even if we restricted our attention
to non-trivial kinds, why would the amount of objects in the extension of an ar-
bitrary kind (or of a concept, for Kant) be proportionally related to the amount
of attributes in the intension? Unless we make additional assumptions, these
cardinalities can be arbitrary. However, the idea that there is a relation between
the extension and the intension that resembles a quotient can be partially pre-
served by following the previous remarks. Let us baptize the following laws as
the:

Law of Specific Conditional the specific conditional or intensional differ-
ence between two kinds increases (decreases) as the consequent increases
(decreases) and the antecedent decreases (increases).

Law of Specific Difference the specific difference or extensional difference
between two kinds increases (decreases) as the kind being subtracted from
increases (decreases) and the kind subtracted decreases (increases).

29Of course, the analogy has its limitations. It is used usually for the special case of Heyting
operations.
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Suppose that K is a species of K ′. In Kantian terms, the intensional dif-
ference K ′ → K, is a concept whose range of application gets enlarged as the
species gets more general and the genus gets more specific, and whose content
gets enriched as the species gets more specific and the genus gets more general.
The extensional difference K ′ \K is a concept whose range of application gets
enlarged as the genus gets more general and the species more specific, and whose
content gets enriched as the genus gets more specific and the species gets more
general. Thus, the extension of the intensional difference between two kinds
gets bigger as the extension (intension) of the consequent gets bigger (smaller)
and the extension (intension) of the antecedent gets smaller (gets bigger), and
dually for the extensional difference. Despite the fact that these are very simple
ordinal laws that hold between every pair of kinds, they give us more insight
into the duality that holds between the extension and intension of kinds.

3.4.4 Negations and the Hexagon of Opposition

In this section it is shown that each of the specific differences induces an internal
negation that behaves non-classically. The interaction between these negations
and the specificity relations between kinds can be illustrated by making use of
an instance of the Hexagon of Opposition [6], namely the Hexagon of Inner and
Outer Negations discussed by [84].

It is well-known that Aristotle distinguished between two kinds of negation,
namely external or propositional negation and internal or term negation. The
proposition that x is not mortal involves a propositional negation, it says that
the term ’mortal’ does not apply to an object x. The proposition that x is non-
mortal (immortal) involves a term negation, for it says that the negative term
’immortal’ applies to the object x. If x is non−mortal (or immortal), then it
follows that x is not mortal. However, the converse does not hold, since there
are entities to which neither the predicate ’immortal’ nor the predicate ’mortal’
apply (e.g. stones or machines). This distinction is present also in Kant’s logic.
Kant classified the forms of judgements according to quantity, quality, relation
and modality. In his Jäsche lectures on logic [63], he says (in what follows the
sphere is the extension):

As to quality, judgements are either affirmative or negative or
infinite. In the affirmative judgement the subject is thought under
the sphere of a predicate, in the negative it is posited outside the
sphere of the latter, and in the infinite it is posited in the sphere of
a concept that lies outside the sphere of another.

Whereas the quantificational hexagon classifies judgments according to their
quantity in universal and particular (singular propositions are a special case),
the internal or term negations allow making distinctions corresponding to qual-
ity (see [84] for a discussion in the context of Kant’s Antinomies). Affirmative
judgements have the form K ≤ K ′, they state that the extension of one kind
is included in the extension of another. Negative judgements have the form
K � K ′, they state that the extension of one kind is not included in the ex-
tension of another. For instance, there may be a K which is not also a K ′.
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Figure 3.2: Hexagon of Opposition

Therefore, negative judgements correspond to propositional negations. Never-
theless, this does not immediately imply that K-s belong to a certain non-trivial
negative kind. Infinite judgements have the form K ≤ ¬K ′, they state that the
extension of one kind is included into the extension of a kind which is oppo-
site or negative to it. These correspond to term negations. Due to contrariety,
infinite judgements imply negative judgements, but the converse does not hold.

The interaction between the two kinds of negation and the specificity re-
lations can be illustrated by making use of the Hexagon of Opposition [6].30

Consider the six kinds of basic general propositions that form the Hexagon,
as shown in Figure 3.2. Here [A]-[O]; [E]-[I]; [U ]-[Y ] are contradictories. [A]-
[E]-[Y ] are contraries, [I]-[O]-[U ] are subcontraries and the rest are relations of
implication (subalternation). We could instantiate the hexagon in its quantifi-
cational form by considering non-null kinds. For instance, we could consider
[E] propositions to be of the form ”No K-s are K ′-s: K ∧K ′ = 0L∗” (see [88]).
However, we will focus instead on the hexagons induced by the interaction be-
tween external and internal negations. Consider the following instance of the
Hexagon of Inner and Outer Negations [84]:

i All K-s are either K ′-s or not-K ′-s: K ≤ K ′ or K ≤ ¬K ′. [U]

ii All K-s are K ′-s: K ≤ K ′. [A]

30The theory behind the traditional Aristotelian Square of Opposition has been generalized
and promoted mainly by J-Y Béziau [6] and it has now many applications (for recent work
see [7]). Here we will only make use of the standard Hexagon of Opposition, which was first
introduced by Blanché.
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iii All K-s are not-K ′-s: K ≤ ¬K ′. [E]

iv Some K-s are not not-K ′-s: K � ¬K ′. [I]

v Some K-s are not K ′-s: K � K ′. [O]

vi Some K-s are neither K ′-s nor not-K ′-s: K � K ′ and K � ¬K ′. [Y]

As McLaughlin and Schlaudt argue, introducing [U] and [Y] propositions
gives more information regarding the behavior of the negations. Here [A] propo-
sitions (affirmative judgements) and [E] propositions (infinite judgements) are
contraries. Although no K can be both a K ′ and a not-K ′, it might happen
that some K-s are neither K ′-s not not-K ′-s, which is what [Y] propositions ex-
press. In other words, the Excluded Middle fails for term negation. In contrast,
[U] propositions say that K-s are objects for which it makes sense to say that
they are either K ′-s or not-K ′-s. In other words, all K-s are included among
the K ′-candidates. That infinite judgements imply negative ones is seen in the
subalternation relation that holds between [E] propositions and [O] propositions.

It will be shown now that the operations of specific difference introduced in
the previous sections induce their own internal negations. In other words, the
Minimal Conception implies the existence of two sorts of negative kinds. The
strategies followed in those sections were inspired by Wille’s attempts in [142]
of finding appropriate negations in a concept lattice. As he argues, there are
two natural negation-like operations:

¬K = (e(Bc), ie(Bc)) ∗K = (ei(Ac), i(Ac))

Whereas the one on the left takes the objects sharing those attributes that
are not in K, the one on the right takes the attributes shared by all the objects
that are not in K. Wille abstracts the properties of these operations to study
the resulting lattices, which he calls:

Definition 24. Let (L,∧,∨,¬, ∗, 0, 1) be a bounded lattice and ¬, ∗ : L→ L two
monadic operators. Then L is a dicomplemented lattice iff:

1. ∗ ∗ x ≤ x. [Intensiveness]

2. x ≤ y ⇒ ∗y ≤ ∗x. [Antitonicity]

3. x = (x ∧ y) ∨ (x ∧ ∗y).

4. x ≤ ¬¬x. [Extensiveness]

5. x ≤ y ⇒ ¬y ≤ ¬x. [Antitonicity]

6. x = (x ∨ y) ∧ (x ∨ ¬y).

He calls ∗ the weak negation and ¬ the weak opposition. We will keep the
names, although a better choice would have been ’extensional negation’ for ∗
and ’intensional negation’ for ¬. Some examples are:

i. Every boolean algebra is dicomplemented, where ¬ = ∗ is the boolean
complement.

ii. The concept lattice of a formal context is dicomplemented, where the
negation operations are ¬K = (e(Bc), ie(Bc)) and ∗K = (ei(Ac), i(Ac)).
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Some basic properties of these negations are:

Proposition 12. Let L be a dicomplemented lattice. Then:

1. ¬¬¬x = ¬x ≤ ∗x = ∗ ∗ ∗x.

2. ¬ ∗ x ≤ ∗ ∗ ∗ ∗ x = ∗ ∗ x ≤ x ≤ ¬¬x = ¬¬¬¬x ≤ ∗¬x.

3. x ∧ ¬x = 0 and x ∨ ∗x = 1.

4. ¬(x ∨ y) = ¬x ∧ ¬y and ∗(x ∧ y) = ∗x ∨ ∗y.

5. ¬0 = 1 = ∗0 and ¬1 = 0 = ∗1.

Now we show that these negations can be obtained from the operations of
specific difference introduced in the previous sections:

Proposition 13. Let (L,→) be a complete lattice with specific conditional.
Then ¬x = x→ 0 satisfies:

1. y ≤ ¬x ⇐⇒ x ≤ ¬y.

2. x ≤ y ⇒ ¬y ≤ ¬x.

3. x ≤ ¬¬x.

4. ¬x ≤ x→ y. [Explosion]

5. ¬x ∨ y ≤ x→ y. [Disjunctive Syllogism]

6. x = (x ∨ y) ∧ (x ∨ ¬y).

7. ¬(x1 ∨ x2 ∨ . . . ) = ¬x1 ∧ ¬x2 ∧ . . . . [De Morgan Opposition]

Proof. (1) y ≤ ¬x = x→ 0 iff y → (x→ 0) = 1 = x→ (y → 0) iff x ≤ y → 0 =
¬y by permuting and Tautology. (2)-(3)-(4) Follow from Monotonicity. (5) By
Explosion and Weakening. (6) We just need to prove half of it. By Disjunctive
Syllogism, De Morgan and Identity (x ∨ ¬y) ≤ y → x = (y → x) ∧ 1 = (y →
x) ∧ (x → x) = (x ∨ y) → x, therefore (x ∨ ¬y) ∧ (x ∨ y) ≤ x. (7) By De
Morgan.

Therefore, if → is a specific conditional, then ¬x = x→ 0 is a weak opposi-
tion. Dually, if \ is a specific difference, ∗x = 1\x is a weak negation. In this way
we obtain Wille’s negations as special cases of the differences. It is easy to check
that, in the case of concept lattices, the weak opposition is ¬K = (e(Bc), ie(Bc))
and the weak negation is ∗K = (ei(Ac), i(Ac)), as expected.

The operations of weak negation and weak opposition behave like term nega-
tions of some sort. Stating that it is not the case that K is K ′, K ≮ K ′, is not
equivalent to stating that K is a not-K ′. The latter corresponds to an infinite
judgement involving a negative kind, the former does not. Whereas the weak
opposition satisfies the principle of non-contradiction K ∧ ¬K = 0, the weak
negation satisfies the excluded middle K ∨ ∗K = 1. But the weak opposition
usually does not satisfy the excluded middle, nor does the weak negation satisfy
the non-contradiction either. Moreover, for each of these negations contraposi-
tion fails. Although if K is a species of K ′ then ¬K ′ is a species of ¬K, the
converse does not hold, because ¬¬K is usually different from K (as in the
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intuitionistic case). This is what one would expect from an internal negation.
All mortals are not-immortals, for no entity can be both mortal and immortal.
But some entities to which neither the term ’mortal’ nor the term ’immortal’
applies could be not-immortal.

For the weak opposition, one considers all the attributes that are not in the
intension of a kind and takes the objects exemplifying all those attributes. The
extensions of both kinds only overlap in those objects that belong to the null
kind (which is usually empty). In the case K ∨ ¬K 6= 1 this means that an
object x may be neither a K nor a ¬K. The reason is that if an object does
not exemplify an attribute in B, it does not follow that it exemplifies all the
attributes that are not in B. Of course, it still holds that either Kx ≤ K or
Kx ≮ K. So either x belongs to the extension of K or it does not. Note that
it is not that it is indeterminate whether x is a K or a ¬K. It is perfectly
determinate that it is neither of them. The point is that x does not have all
those properties needed to be a K nor all those properties needed to be a ¬K.
To use a classical example, a stone is neither mortal nor immortal, because for
something to be either of them it should be alive in the first place.

For the weak negation, one considers all the objects that are not in the
extension of K and takes all the attributes that all these objects exemplify.
The resulting extension may considerably overlap with that of K. In the case
0 6= K ∧ ∗K = (A ∩ ei(Ac), ie(B ∩ i(Ac))) this means that we have an object
that is both a K and ∗K. Object x has all the properties needed to be a K
and all the properties needed to be ∗K, so one could say that x is a boundary
case of K. Now the reason is that if an attribute is not exemplified by all the
objects in A it does not follow that it is exemplified by all the objects not in A.
Consider a folk classification of animals that includes the vernacular kind Fish.
Since the Excluded Middle holds for ∗, every animal is either a Fish or a ∗-Fish.
Some aquatic animals that we would consider to be fishes, but that shared many
other attributes with animals that are not fishes, might be boundary cases of
the kind Fish.

When the lattice is boolean, both negations collapse into the boolean nega-
tion ∗K = ¬K = (e(Bc), i(Ac)). There is still a difference between proposi-
tional and internal negations, since K � K ′ is not equivalent to K ≤ ¬K ′.
Nevertheless, the double negation and contraposition laws hold, so we have that
¬¬K = K and K ≤ K ′ ⇔ ¬K ′ ≤ ¬K.

3.4.5 Differences Between this Approach and the Tradi-
tional Aristotelian Picture

Let us recall the operations and special elements in the lattice of kinds:

i. Logical Determination: (A,B) ∧ (A′, B′) = (A ∩A′, ie(B ∪B′)).

ii. Logical Abstraction: (A,B) ∨ (A′, B′) = (ei(A ∪A′), B ∩B′).

iii. Specific Conditional: (A,B)→ (A′, B′) = (e(B′ −B), ie(B′ −B)).

iv. Specific Difference: (A,B) \ (A′, B′) = (ei(A−A′), i(A−A′)).

v. Weak Opposition: ¬(A,B) = (e(Bc), ie(Bc)).

vi. Weak Negation: ∗(A,B) = (ei(Ac), i(Ac)).
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vii. Summum Genus: 1 = (S, i(S)).

viii. Null Kind: 0 = (e(Q), Q).

ix. Infimae Species: x = (ei(x), i(x)).

x. Maximal Genera: R = (e(R), ie(R))

If one accepts the Minimal Conception as an accurate description of what
kinds are, then one is forced to accept the view of kinds as given by the model
we just saw in this chapter. However, one may object that there are some
crucial differences between the classical Aristotelian picture and the one given
in this chapter. According to this objection, the model would be revisionary. If
some contemporary theories of kinds, such as essentialism, follow the classical
Aristotelian picture, then this would seem to imply that there is a tension
between the model given here and what were supposed to be some clear examples
of it, namely essentialist theories.

First of all, whereas the Aristotelian picture could be thought to be com-
mitted to the hierarchy thesis, hierarchical structures have been shown to be
a very special case of the approach developed in this chapter. However, it is
not clear that the Aristotelian picture of kinds is really committed to the hi-
erarchy thesis, for instance, the syllogistic logic of Corcoran and Martin does
not make any assumptions regarding the hierarchy constraint. Furthermore, we
have seen some reasons for why the hierarchical constraint may be too strong. If
the lattice is hierarchical and finite, the extension of each kind gets partitioned
(not necessarily dichotomously) into the extensions of the kinds that it covers
(the only objects common to them are those that belong to the null kind). So
whenever the extensions of the species of a common genus overlap, as it hap-
pens when kinds are described by several overlapping classifications of the same
domain [136], the hierarchy thesis fails. In fact, for this very same reason some
contemporary essentialists such as Ellis [34] have denied that the thierarchy the-
sis holds for kinds. Thus if the Aristotelian picture is really committed to the
hierarchy condition, the picture given by the Minimal Conception of Kinds is
more general and cautious, while still contains the former one as a special case.

Second, the specific differences of kinds are themselves kinds. Furthermore,
the specific difference between two kinds exists even if one is not a species
of the other, whereas in the classical picture the specific difference is defined
only between a species and the genus that is immediately above it. Since the
existence of the specific differences is guaranteed by the fact that the lattice is
complete, one may object to it by saying that it is an unwelcome consequence of
completeness. However, as we previously saw, every bottomed meet-semilattice
becomes a complete lattice if a top element is attached to it. The assumption
of the existence of a summum genus is not too strong, after all, it is plausible to
say that given a domain to be classified there is a genus to which all the objects
belong. A fortiori, the specific differences are defined in every finite lattice and
the corresponding syllogistic logic is not far from having the resources to express
Aristotelian definitions of terms by making use of the syntactic analogues of
specific differences. Moreover, note that if one accepts the Minimal Conception
of Kinds, then one is forced to accept the existence of these specific difference
kinds. So if the Aristotelian picture rejects the existence of these kinds, it
has to reject the Minimal Conception too. This seems odd considering that
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contemporary essentialists defend theses that are stronger than the Minimal
Conception and which they take to be inspired by Aristotle’s metaphysics of
kinds.

Third, the specific difference (intensional) that gets subtracted from the
genus to obtain the species is usually different from the specific difference (ex-
tensional) added to the species to get the genus back. At first, this may look
strange. However, the special case of boolean algebras can be used to explain
the difference, since the conditional and difference operations have distinct log-
ical properties. Maybe the objection is that, granted that two such operations
exist, only one of them corresponds to Aristotelian specific differences. However,
which one is that?

Fourth, there are two different non-classical internal negations that induce
negative and opposite kinds. Aristotelian internal negations seem to behave like
weak oppositions, or even more strongly than these. However, they do not seem
to be boolean negations. Due to the fact that Aristotle recognized the difference
between internal and external negation, there is a controversy regarding whether
the negation of terms should satisfy classical principles such as contraposition
or double negation. Moreover, if these negations are to behave in the classical
special case of boolean structures as the classical negation, they have to be
induced by the specific differences as it was described in this chapter.

Despite these differences, the model preserves the core of the classical Aris-
totelian approach, which is the one stated in the Minimal Conception. One
could get closer to more familiar pictures by forcing the lattice to be hierarchi-
cal or by requiring it to have such a structure (say, boolean) that the distinctions
between the negations collapsed. However, what would be the point of doing
that? Any attempt to make the lattice closer to such approaches will require
the context to satisfy additional constraints, like the hierarchy condition, which
will force the order structure to have an implausible shape or the attributes
to be closed under conditions that conflict with their being sparse. Moreover,
these two approaches, the tree-approach and the boolean-approach, are in fact
incompatible. If a lattice is both a tree and a boolean algebra then it is either
the boolean algebra of two atoms or that of one atom. For the rest of cases,
we cannot have both. For instance, traditional Porphyrian trees are counterex-
amples to the claim that the lattice of kinds must be boolean. One may reject
booleaness and ask at least for distributivity, in order that the lattice of kinds
behaves like usual logics do. However, trees tend not to be distributive. Take a
bottomed tree L with at least three coatoms x, y, z (elements immediately under
the top element). Since these elements are incomparable, they are disjoint, a
fortiori, the tree contains a copy of the diamond lattice 0 ≤ x, y, z ≤ 1. It is a
standard result that if this is the case then the lattice is not distributive. So
if we want to keep trees as a special case we cannot assume that the lattice is
distributive.

3.5 A Modal Picture

At this point, the reader may be puzzled about the absence of modality in
the previous considerations. The notion of a natural kind is clearly linked to
modality. The extension of a natural kind can change from one possible world
to another. There could have been some natural attributes that do not actually
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obtain. As a consequence, there could have been natural kinds that were differ-
ent from the ones we find in the actual world. Moreover, if the exemplification
relation I is not that of essential exemplification, objects could have exempli-
fied attributes different from those that they actually exemplify. The previous
Chapter was devoted to introduce the basic commitments of essentialist theories
of natural kinds. Every conception of natural kinds should say something about
these issues, so why have I disregarded them?

There are several reasons why I have not considered modality in detail. The
main one is simply that it makes the picture more complex. Chapter V will
show that the connections between the similarity relations that hold between
the objects, their attributes and the species-genus order structure are already
complicated enough without even considering the role of modality. Nevertheless,
the discussions in the previous chapter centred around modal issues and the
answer to the Achilles’ heel of any class nominalism, namely the coextensionality
problem, requires a direct appeal to modality. For these reasons, I should give
some brief remarks regarding the relation between modality and natural kinds.
The way I will frame modality in the concept-lattice model takes some insights
from [88].

Let us go back to our model (S,Q, I). Suppose that (S,Q, I) is the whole
modal space, where S is the set of possible objects, Q is the set of possible natural
attributes and the relation of exemplification I holds xIP iff ”object x could
have exemplified natural attribute P”.

One’s assumptions regarding how narrow or broad the modal space is are
reflected in the exemplification relation I. For instance, under essentialist con-
straints relation I may be a ’small’ subset of S × Q, whereas anti-essentialism
will require I to be very close to S × Q. Possible worlds can be taken to be
represented by subrelations of I (see [88]), the set of possible worlds being some
W ⊆ ℘(I). Nevertheless, since the domain of objects, the domain of attributes
and the exemplification relation may change from one world to another we
should not forget that a possible world w is better represented by the subcon-
text w = (Sw, Qw, Iw) of the modal space induced by such a subrelation. That
is to say, we have that Sw ⊆ S, Qw ⊆ Q and Iw ⊆ I. The domains of objects
and attributes are obtained by projection from Iw, in other words, Sw := {x ∈
S | ∃P ∈ Q (x, P ) ∈ Iw} and Qw := {P ∈ S | ∃x ∈ S (x, P ) ∈ Iw}31. Any
such a world comes with its own extension and intension operators ew and iw,
which give for any set of attributes and any set of objects their corresponding
extension and intension in w, respectively. To distinguish between the extension
(intension) operator of the modal space and the extension (intension) operator
of a given world, we will call the former ones the global extensions (intensions)
and the latter ones the local w-extensions (intensions) at world w. In the case of
an object x in the modal space, its w-intension is the set of attributes iw(x) that
x has in world w. If P is an attribute in the modal space, its w-extension is the
set of exemplars ew(P ) that P has in world w. The extensions and intensions
differ from one world to another. For now on we will just assume that every
possible world is trivially metaphysically accessible from any other (so that the
corresponding logic turns out to be S5).

If w ∈ W ⊆ ℘(I), then since I satisfies the No-Bare Particulars (i.e. i(x) 6=
31This seems to be at odds with some contingentist views on properties, according to which

nonexistent properties may still be instantiated at worlds. I thank Bruno for this remark.
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∅) and Exemplification (i.e. e(P ) 6= ∅) Principles, w satisfies them too. For if
x ∈ Sw, then (x, P ) ∈ w for some P ∈ Qw and if P ∈ Qw, then (x, P ) for some
x ∈ Sw. But if some of the attributes in Q are essentially exemplified by some
objects in S (the notion of essence here might not need the modal one), then
this will induce closure conditions on the possible worlds. For instance, suppose
that x essentially exemplifies P , then any possible world that contains x must
also contain P :

If x essentially exemplifies P , then ∀w ∈W (x ∈ Sw ⇒ P ∈ Qw & xIwP )

Moreover, we may want to exclude ∅ as a possible world too. We may
select one of these possible worlds as the actual one, say @ ⊆ I. We will not
require possible worlds to be maximally specific regarding the actual one, as it
is sometimes done. But if it were so required, we could consider the possible
worlds to be the maximal elements in W − {I}, the worlds (as exemplification
relations) being ordered by inclusion. The rest of the elements would be just
parts of worlds. In that case the possible worlds would be the biggest parts of
the modal space.

As we just said, a possible world w can be represented by the context induced
by Iw ∈ W , namely (Sw, Qw, Iw), where Sw := {x ∈ S | ∃P ∈ Q (x, P ) ∈ Iw}
and Qw := {P ∈ Q | ∃x ∈ S (x, P ) ∈ Iw}. Our possible worlds are ordered
by inclusion, which can simply be understood as the parthood relation. Let us
take a closer look. We can define the following subrelations of I:

2re := {(x, P ) ∈ I | ∀w ∈W xIwP )}
3re := {(x, P ) ∈ I | ∃w ∈W xIwP}

2exre := {(x, P ) ∈ I | ∀w ∈W (x ∈ Sw ⇒ xIwP )}

and simply use prefix notation 2rePx and 3rePx instead of writing x2reP
and x3reP . Our de re contexts are now the binary relations ”x de re necessarily
exemplifies P”, ”x de re possibly exemplifies P” and ”x exemplifies P wherever
it exists”. Of course, if 2rePx holds for some object x then x exists in every
possible world. These subrelations correspond to possible worlds. So long as
each (x, P ) is found in some world, we will have I = 3re and this will be
the modal space. In contrast, 2re is the intersection of all the possible worlds
2re =

⋂
W , which may or may not be empty, depending on our additional

assumptions (the definition of intersection of contexts is straightforward). It will
be empty if we assume there are no necessarily existing entities. The relation
2exre is the usual weakening of de re modality, 2exrePa iff aIP for every world
w at which a exists.

Second, identity is a transworld-relation. The Indiscernibility of Identicals
holds for global intensions:

∀x, y ∈ S (x = y ⇒ i(x) = i(y))

if two objects in the modal space are identical, then they have the same
possible attributes. Its restriction to local intensions of objects belonging to the
same world holds too:

∀x, y ∈ Sw (x = y ⇒ iw(x) = iw(y))
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In words, if two objects in world w are identical then their w-intensions are
identical. But its restriction to local intensions may fail when the same object
is compared in two different worlds. In other words, the following can be false:

∀x ∈ Sw ∀y ∈ Sw′ (x = y ⇒ iw(x) = iw′(y))

the reason is of course that an object x may exemplify different attributes
in different worlds.

Third, since each possible world w has its own extension and intension oper-
ators, it induces a lattice of natural kinds B(w). Thus natural kinds can change
from one possible world to another. We have here a distinction between local
natural kinds and global natural kinds. A global natural kind is simply a kind in
the lattice induced by the modal space (S,Q, I), whereas a local kind is a kind in
the lattice induced by a possible world (Sw, Qw, Iw). A global natural kind has
in its extension all its possible instances and in its intension all the attributes
that are possibly exemplified by all its instances, whereas a local natural kind
has in its extension all its instances in a given possible world w and all the at-
tributes common to these instances in that same world w. For instance, if global
cat is a global natural kind, then its extension includes all the possible cats and
its intension includes those attributes that are common to all and only those
possible cats. In our world @, all the actual cats form the extension of a local
kind of cats. This distinction does the job we need to treat the coextensionality
problem for nominalism in Chapter V. For example, suppose that in the actual
world @, we have the kinds K@ = creature with a heart and K ′@ = creature
with a kidney. In our world they happen to be coextensional, so A@ = A′@ and
therefore K@ = K ′@. But these are just local kinds.

The previous paragraph may give the wrong impression that given a global
kind K = (A,B) and a world w, the corresponding local kind Kw is completely
determined. This is not the case. For instance, given K and w there are at
least two natural candidates for the corresponding local kind, namely Kw =
(ei(A ∩ Sw), i(A ∩ Sw)) and K ′w = (e(B ∩ Qw), ie(B ∩ Qw)), depending on
whether we restrict the extension or the intension of the global kind. These two
local kinds may be distinct in w. We may assume that we made a choice among
these options so that, for each global kind K, there is a function fK : W →⋃

w∈W B(w) that maps each world w to the corresponding local kind Kw of K
in w. If we want to allow for some global kinds lacking a corresponding local
kind in some worlds, we can restrict the domains of these functions accordingly
(i.e. the domain may be some W ′ ⊆W ).

Fourth, consider essentialist theses in the model. Suppose that some of the
natural attributes in Q are not essentially exemplified by any object. Let E ⊆ I
be the relation essentially exemplifies, which we will assume from now on as
primitive. Informally, xEP iff x essentially exemplifies P. Given the essentialist
theses not every subrelation of I can be considered to be a possible world. For
the set W ⊆ ℘(I) the essentialist will require that the following constraint is
satisfied:

xEP ⇒ ∀w ∈W (x ∈ Sw ⇒ xIwP ) [Closure]

or more succintly:

xEP ⇒ 2exrexP [Essentialism−DereModality]
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The converse need not hold given that, as we saw in the previous Chapter,
essentialists of natural kinds follow Kit Fine in this regard. From the condition
it follows that P ∈ Qw. If an object x essentially exemplifies a given attribute
P , then the attribute will be exemplified by that object in each possible world
in which the object exists. By contrast, the same attribute P may exist in a
world w because it is (essentially or accidentally) exemplified by a given object
y in w without the object x having to exist in that world. In Fine’s terms,
if it is in the nature of x that x is P , then if x exists, P will exist too. But
it is not in the nature of P that x is P , although it is in the nature of P ,
due to Exemplification, that some object y exemplifying P exists whenever P
exists. According to essentialism, the global natural kinds are the elements of
B(S,Q∗, E) where Q∗ = {P ∈ Q | (x, P ) ∈ E for some x ∈ S} and not the
elements of B(S,Q, I), since the ’kinds’ of the latter structure contain some
attributes in their intensions that are accidental to their instances.

So we have that E ⊆ 2exre ⊆ 3re = I. Given the definition of a natural
kind, for any essentialistic global natural kind K = (A,B) ∈ B(S,Q∗, E) and
its corresponding w-local natural kinds Kw = (Aw, Bw) we have the two basic
essentialist theses that we discussed in Chapter II:

∃P1, P2, · · · ∈ Q∗ (x ∈ A⇔ xEP1 & xEP2 & . . . ) [GeneralEssentialism]

x ∈ Aw ⇒ ∀w′ ∈W (x ∈ Sw′ ⇔ x ∈ Aw′) [IndividualEssentialism]

General Essentialism trivially follows from the definition of global kinds,
since for an object x to belong to the extension of K it must essentially exemplify
all the attributes in its intension. See that a local version of general essentialism
follows directly, since for an object to belong to a local kind it must exist in
that world and therefore it will exemplify all its essential attributes there too.
Individual Essentialism says that if an object belongs to a local kind Kw in w,
then in every possible world where it exists it also belongs to the local kinds of
the same global kind as Kw. It follows from the fact that if an object x belongs
to a world w′ then it will exemplify in w′ all the attributes that it essentially
exemplifies (which therefore exist in w′ too) and a fortiori will belong to the
corresponding local kind. In this way, the model can deal with the fundamental
principles of Essentialism that were discussed in Chapter II.

3.6 Conclusion of Chapter III

The aim of this chapter was to explore some minimal assumptions about kinds
through a formal model, in order to get a clear picture of the external structure
of kinds. Two assumptions were made. First, that kinds are ordered by speci-
ficity relations. Second, that kinds are two-dimensional entities. They have an
extension, consisting of all the members of the kind, and an intension, consisting
of all the sparse attributes of the kind. Moreover, the objects in the extension
are exactly all of those having all the sparse attributes in the intension.

In order to study the external structure of kinds, we considered the thesis
that kinds are hierarchically arranged in the form of a tree. Some arguments
found in the literature suggest that this is too strong an assumption. In par-
ticular, crossings within a classification and crossings between classifications
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make the hierarchy condition fail systematically. However, Thomason’s alge-
braic model of kinds is more general than that and could in principle be used
to shed some more light on the external structure of kinds. But there are two
problems with Thomason’s model. The first one is that it does not give any
argument for why kinds should be modelled by using complete lattices. In order
to find such an argument, the contemporary approaches to Syllogistic Logic by
Corcoran, Smiley and Martin were considered. It turns out that complete lat-
tices can be used as a semantics for syllogistic logic. The second problem is that
neither Thomason’s model nor Corcoran-Martin’s logic provide much informa-
tion regarding the specificity relations between kinds and they are silent with
regards to the relations between the objects and attributes of a kind. In con-
trast, following a proposal made by Mormann, a model based on Wille’s Theory
of Concept Lattices, which are complete lattices, was suggested. According to
this model, kinds are modelled as pairs (A,B) where A (the extension) is the
set of all the objects having all the attributes in B (the intension), and B is the
set of all the attributes shared by the objects in A. Moreover, we saw that in
this model, the species-genus relations between kinds satisfy Kant’s Law of the
duality between extension and intension and that these minimal assumptions
are enough to induce an Aristotelian conception of definitions of kinds in terms
of their genera and specific difference.

More specifically, the theory of concept lattices provides a good model for
the Minimal Conception, and it gives us more information regarding what such
a conception involves:

1. It matches the ontological assumptions:

(a) The primitive entities assumed by the model are just a set of Ob-
jects, a set of (natural) Attributes and an Object-Attribute relation
of Exemplification.

(b) The primitive principles, namely No-Bare Particulars and Exempli-
fication, hold. Other more controversial principles, like the Identity
of Indiscernibles or Coextensionality, need not hold.

(c) Attributes can be taken to be natural or sparse. In other words,
the set of attributes is not closed under any formal operation and
attributes ground non-trivial similarities between objects.

2. The description of kinds satisfies the assumptions given in the Minimal
Conception:

(a) Kinds are modelled as pairs consisting of a set of objects and a set
of attributes, which correspond to the extension and intension of the
kind.

(b) The order structure of kinds satisfies the Kantian law of extension
and intension.

(c) Object-kind instantiation relations and kind-attribute exemplifica-
tion relations can be explained easily.

3. The model captures the basics of an Aristotelian theory of definition and
syllogistic reasoning:
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(a) The model encodes the basic syllogistic reasoning for kinds, since the
class of structures used forms a semantics for syllogistic logic.

(b) Meets and joins can be interpreted as operations of logical determi-
nation and logical abstraction.

(c) Two new operations of intensional and extensional difference can be
introduced that correspond to the specific difference of one kind with
respect to another. This leads to the explanation of definitions of
species in terms of genera and specific differences.

(d) The specific differences induce two distinct non-classical negations,
interpreted as term or internal negations.

4. Other additional features can be handled by the model. In particular, a
hierarchical ordering for natural kinds turns out to be a very special case
and a sketch of a modal approach can be given by considering subcontexts.

There are several lessons to draw from the previous considerations. First,
there is something like a mathematically well-behaved natural kind calculus at
our disposal. It is true that there are some differences with the classical Aris-
totelian approach. Nevertheless, the mathematical theory preserves many of the
crucial insights of the Aristotelian logical tradition, including not only syllogistic
structure but also the genus-specific difference theory of definition. Second, this
very same model shows why the hierarchy condition over the external structure
of natural kinds turned out to be a very naive constrain. Simply put, there are
too many non-hierarchical ways in which kinds can relate to each other. Indeed,
there are as many as kinds of complete lattices. In exchange, we recovered a
more fundamental and explanatory principle, namely Kant’s Law of extension
and intension (and other related properties) and we also got more insight into
the nature of Aristotelian definitions of kinds. Finally, the model assumes in
its ontology two sorts of primitive entities, objects and attributes, alongside a
primitive formal relation of exemplification that holds between them. These
attributes behave like universal entities. For instance, each object can exem-
plify several attributes and each attribute can be exemplified by several objects.
Moreover, attributes are assumed to be primitive entities whose identity condi-
tions do not depend on the objects that exemplify them. In contrast, Chapters
IV and V suggest how to develop an alternative resemblance nominalistic model
that gives a reduction of this model of kinds under some specific circumstances.
The goal is to get the concept lattice. To achieve that the nominalist will try to
reconstruct a context (S,Q, I) from some primitive particular entities in resem-
blance relations by using moves analogous to the ones displayed by the realist.
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Chapter 4

Resemblance Structure of
Natural Attributes
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When any objects resemble each
other, the resemblance will at
first strike the eye, or rather the
mind, and seldom requires a
second examination . . .
A Treatise of Human Nature, I-3

David Hume

The purpose of Chapter IV is to explore a proposal concerning the internal
structure of natural kinds, that is to say, about the relations that hold among
the members of a kind. According to the Minimal Conception, members of a
kind share some (natural) properties. In the model that was introduced in the
previous chapter, these properties were the natural attributes. Resemblance
nominalists may accept this on the proviso that these properties are conceived
as maximal classes of resembling objects. This chapter works in tandem with
Chapter V, which is in some sense the formal counterpart of this one. The goal
is to reconstruct attributes in a nominalist way 1.

The structure of the chapter is as follows. First, I explain what I will un-
derstand in the following by similarity or resemblance by explaining the main
formal properties of similarity relations. Second, I will consider some objections
to the categorical or binary notion of similarity. In particular, the objections
by Tversky to the symmetry of similarity will be discussed in detail. Third,
I will review the main sorts of resemblance nominalism, namely egalitarian,
aristocratic and collectivist nominalism. In particular, Pereyra’s egalitarian re-
semblance nominalism is discussed in detail and some criticism of his approach
is given. I will suggest here that aristocratic resemblance nominalism can pro-
vide a successful answer concerning the internal structure of kinds by countering
some objections to it. Fourth, I will introduce three different models for aris-
tocratic resemblance nominalism, which form the basis for the discussions in
the next chapter. The first model is the polar model, it is a topological model
that comes from the work by Rumfitt and Mormann on the conceptual spaces
approach to vagueness. The second model is the order-theoretic model, it is
based on a suggestion by Mormann to generalize the polar model to the class
of weakly-scattered spaces. The third model is the similarity model, which is a
new model introduced in this thesis and the main object of study of the next
chapter and is based on the theory of similarity structures. Both models involve
a commitment to certain objects, to be called ’paradigms’, that satisfy some of
the constraints previously discussed in the chapter. I discuss the plausibility of
these assumptions in detail. Finally, since aristocratic resemblance nominalism
posits the existence of paradigmatic objects, I will discuss the merits of two
different views on their nature. According to one of these views, paradigms are
qualitatively thin objects. According to the other view, paradigms are objects
chosen by a subject during his conceptual learning process.

1Nevertheless, the goal of Chapters IV-V will be metaphysically quite modest. I will
just try to deflect some objections without fully arguing for resemblance nominalism. For a
philosophically more developed and full defence of resemblance nominalism (of the egalitarian
sort) the reader can consult the work of Rodriguez Pereyra [109].
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4.1 Similarity from a Formal Point of View

In Chapter III we saw that realist accounts of natural kinds can account for
a Minimal Conception of Kinds. These models give a semantics for syllogistic
logic, explain the composition of kinds in terms of some operations that can be
interpreted as logical division and abstraction (meets and joins) and subsume
the hierarchical models as a special case. Furthermore, the models represent
kinds as pairs of an extension and an intension, their species-genus orders as
the corresponding inclusions (in such a way that the Kantian law is satisfied),
the object-kind instantiation and the kind-attribute exemplification relations
indirectly by the membership relation, and so on. The axioms assumed are
quite minimalistic and the attributes satisfy the basic constraints for them to
be considered natural, since they ground the similarities between objects and
they are not closed under every familiar formal operation.

Nevertheless, according to these theories, objects share certain natural ’at-
tributes’ that behave like universal entities: each object can exemplify several
attributes, each attributes can be exemplified by several objects. Usually, each
attribute is exemplified by at least one object, each object exemplifies at least
one attribute and two attributes can be exemplified by the same objects. More-
over, these entities are assumed as primitive. This prompts the question whether
one could get at the Minimal Conception of Kinds by reducing the realist model
to a nominalistically acceptable one. Instead of assuming these attributes as
primitive entities, one could try to give a nominalistic explanation of them.
I think that this can be done by starting where Quine [107] left, namely by
(roughly speaking) constructing attributes as maximal classes of similar objects
and then obtaining kinds by means analogous to the ones used in the previous
chapter. But first things first, for such an approach to succeed we should grasp
what similarity or resemblance relations are supposed to be. The aim of this
first section is to explain what I will understand by similarity or resemblance
and introduce some of its main properties2.

4.1.1 What is Similarity?

Similarity is everywhere. We make countless qualitative comparisons in every-
day life, both in literal and metaphorical discourse, by using certain expressions
like ”. . . are similar . . . ”, ”. . . and . . . resemble each other”, ”. . . and . . . are alike”
or ”. . . looks like a . . . ” in sentences such as ”he is like his father” or ”the stars
look like distant lighthouses”. Moreover, similarity is the ground for a big group
of inferences made both in ordinary and scientific discourse, namely analogical
inferences. These inferences are of the form ”x is P , y is similar to x, therefore
by analogy y is P” and seem to be at the core of many discoveries. Similarity is
so flexible that seems to be transcategorial. Objects, parts of objects, attributes,
processes, events, modes and so on can be similar to each other. In fact, entities
from different ontological categories can be similar to each other too (or at least,
that seems to be an appropriate way to interpret Plato’s claim that concrete
objects resemble their forms). Similarity comes in degrees. Entities may be
approximately similar or exactly similar (duplicates) to each other. Two black

2Many properties to be surveyed here are very nicely explained and rigorously analyzed
in the wonderful thesis on similarity by [50]. More fine-grained distinctions between kinds of
similarities can be found in that reference.
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shoes are similar up to a finer degree of similarity than are a black shoe and
a black raven. Similarity can be intrinsic, as when we say that the twins Jim
and Tim are very much alike because it is difficult to tell them apart even when
they are wearing very different clothes, or it can be extrinsic, as when we say
that planes fly like birds, that some key-rings can be used as bottle openers or
that Jim and Tim both behave in very childish ways. The relevance of degrees
of similarity easily shifts with the context. In a store full of lamps and beds,
saying that the lamp in the corner is similar to the bed in the middle of the room
because they are both pieces of furniture is, at the very least, to violate a couple
of conversational maxims. If one is told in such a room that the lamp and the
bed are similar, one expects to find some (maybe unexpected or unnoticed) finer
similarity, say in their shape, in their design or in their manufacturer. Having
background information or new evidence (or even a theory), also influences the
choice of the relevant similarity. Once we know that tomatoes are really fruits,
it feels uneasy to see them placed next to apples and bananas in a supermar-
ket. Similarity, in its simplest formulation as a binary and categorical relation,
has some nice formal properties. Necessarily, every entity is similar to itself.
Necessarily, if an entity is similar to another entity, then the latter is similar
to the former. More crucial to our discussion, presence of similarity relations is
correlated with having common properties (what these properties really are is a
different question). In fact, it seems that the following proposition is necessarily
true too:

x and y are similar to each other iff they have a common property.

But as we know, this quickly leads us into trouble. If the degree of similarity
is too coarse, then the previous proposition is trivially true of any pair of objects.
In contrast, if the degree of similarity is too fine, then the proposition is true
only when x and y are the same object. This suggests that similarity cannot
escape from the distinction between naturalness and abundance either. The
interesting, relevant, explanatory and informative degrees of similarity are the
sparse or natural ones. The uninteresting, irrelevant and almost vacuous degrees
of similarity are the abundant ones. Any attempt to ground natural kinds (or
attributes) on similarities must assume that the degrees of similarity at issue
are sparse. The difference between positing primitive natural similarities and
positing primitive natural collections of things starts to blur, as Lewis already
pointed out.

Despite its beautiful formal properties and its many potential applications,
similarity is not a very popular relation among philosophers nowadays. The
explanation for this fact seems to lie on the enormous amount of objections
that have been made to it. Among others, it has been argued that3:

i. Similarity is ’logically repugnant’. [107]

ii. Similarity is scientifically sterile. [107]

iii. Similarity is not a binary categorical relation.

iv. Similarity is not necessarily reflexive. [137]

3Of course, there are other interesting questions regarding the indeterminacy, relativity,
and so on of similarity that we will not discuss here.
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v. Similarity is not necessarily symmetric. [137]

vi. Similarity is heavily context-dependent. [49]

vii. Similarity is a subjective relation.

viii. Similarity is reducible to exemplifying a common universal. [2]

ix. Similarity cannot be used to reduce universal attributes. [2]

The list of objections could go on. This is somewhat surprising considering
that similarity has also been invoked as part of a solution to many philosophical
problems, such as the problem of universals [109], counterfactuals [72], coun-
terparthood [74], causality (by Hume), scientific and artistic representation,
natural kinds and classification [107], and so on. I think that most of these
claims are either false or gross exaggerations. The first two objections were
forcefully put forward by Quine:

”We cannot easily imagine a more familiar or fundamental notion
than this, or a notion more ubiquituous in its applications. On this
score it is like the notions of logic: like identity, negation, alterna-
tion and the rest. And yet, strangely, there is something logically
repugnant about it. For we are baffled when we try to relate the
general notion of similarity significantly to logical terms. (. . . ) It is
a mark of maturity of a branch of science that the notion of similar-
ity or kind finally dissolves, so far as it is relevant to that branch of
science.” [107]

The next two sections will be devoted to objections (i)-(ii). I do not see
(iii) as a real objection. There are different kinds of similarity depending on
their formal features, just as there are different notions of belief (categorical,
comparative and degree-like) depending on their formal features. First, we have
the binary categorical similarity, expressed by statements of the form ”x and y
are similar”. We also have a notion of comparative similarity, either triadic ”x
is (equally or) more similar to y than z is” or tetradic ”x is (equally or) more
similar to y than z is to w”. We also have a notion of collective similarity of
the form ”A-s and B-s are similar to each other” or ”A-s are similar to each
other”. Finally, there is a notion of gradual or degree-like similarity ”x and y are
similar up to a (fixed or not) degree d”4. One can think about the degree-like
similarity as a collection of ordered categorical similarities. From a different
point of view, one could think about categorical similarity as a similarity up to
some fixed degree d (that is usually implicit). This is analogous to how belief is
usually conceived of. Categorical belief can be considered to be a special case of
degree-like belief, where there is a fixed degree of belief which is implicitly given
by the context. One can think about categorical, comparative and degree-like

4Properties of categorical similarity are studied in [87], [89], [121]. Properties of some
comparative similarities can be found in [143], [89] and [128]. A first approximation a notion
of degree-like similarity can be found in in the structures of proximity by [128], which get
represented by the kind of metric spaces used in psychology.
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similarities as analogous to the classificatory, comparative and metric concepts
too [59]. The interest on different notions of similarity seems to have been
developed mainly due to the lack of success of the categorical approach. If the
objection is that the categorical notion is useless and should be replaced by its
comparative or degree-like counterparts, then an appropriate way to reply is to
show that categorical similarity can do most of the work that it was supposed
to do. This is left for later.

The second section will deal with (iv)-(v), which target the formal properties
of categorical similarity. Most of them come from the famous experimental
findings of the psychologist A. Tversky, who claimed that subjects make non-
symmetric similarity judgements (for a different defence of some of these basic
properties of similarity, see [109]). Regarding (vi), as [49] forcefully argued,
similarity seems to be highly contextual. Whether two objects are similar or not
may vary from one context to another depending on the aspects or respects of
comparison being considered as relevant in each case. If we do not want to appeal
to respects of comparison (given that this seems to commit us to the existence
of attributes) we can say that similarity is intrinsically degree-like, and that by
being dependent on context the degree of similarity under consideration changes
from one context to another. (vii) is related to (vi). These two aspects threaten
to make similarity more a contribution of the epistemic subject to the world than
part of the structure of the world itself. I cannot discuss these two objections in
the thesis, they are here mentioned just for completeness. The last two (viii)-
(ix) are heavier and relate to the problem of universals. Although I will not give
a full defence of resemblance nominalism, I will make some commitments to it
and the Chapter V is devoted to give answers to the most pressing objections
to resemblance nominalism.

4.1.2 Invariants of Categorical Similarity

This section could have been called ’the logical form of categorical similarity’.
It has two main aims. The first one is to counter Quine’s claim that categorical
similarity is ’logically repugnant’. The second one is to provide us with the
mathematical notions that we need in order to introduce a model for resem-
blance nominalism. In what follows I will deal mainly with categorical similar-
ity, assuming that it corresponds to a degree of similarity implicitly fixed by the
context. The first thing I want to say is that there is a mathematical theory
of similarity. It goes under several labels: the theory of similarity structures
[89], the theory of tolerance relations [121], the theory of reflexive undirected
graphs, and so on. In what follows I will use the name ’theory of similarity
structures’, since this is closer to the term introduced by Carnap in [16] and
[17]. A categorical similarity is just any reflexive and symmetric relation. This
includes equivalences as a special case. Similarity has been many times thought
about metaphorically in spatial terms. One imagines the objects as points in
a space. The more similar these objects are, the closer they are in the space.
It is no wonder then that the concept of similarity has close connections to
the notions of approximation, closeness, connectedness and other geometric-
topological properties. So although we will usually think of the elements of the
domain as objects and the similarity as resemblance, one can think about these
elements as points, about the subsets as regions and about the similarity as
some sort of closeness or proximity relation between points.
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A first step towards a general characterization of such a theory would be in
a kleinean way. Thus I want to propose that:

Theory of Similarity The theory of similarity structures is the study of sim-
ilarity invariants, the study of those properties that are invariant under
similarity-preserving transformations.

We start with the following axiomatic presentation5:

Definition 25. Let S be a set and ∼⊆ S × S a binary relation. (S,∼) is a
similarity structure iff ∀x, y ∈ S:

i x ∼ x. [Reflexivity]

ii x ∼ y ⇒ y ∼ x. [Symmetry]

The transitive similarities are the equivalence relations. As in the case of
equivalences, we say that the degree of similarity ∼ is finer than ∼′ iff ∼⊆∼′.
We can interpret x ∼ y as ”x is sufficiently similar to y”, ”x is close to y”, ”x
is a neighbour of y”, ”x is directly connected to y”, ”x is analogous to y”, and
so on. I will use the concept of similarity in this restricted sense. Thus, it may
be useful to give some examples of similarity relations:

i Let A, B be sets. Then A ∼∗ B := A ∩B 6= ∅.

ii Let A, B be finite sets. Then A ∼∗ B := |A ∩ B| ≤ n for some fixed
natural number n.

iii Let f : A → B and g : A → B be two functions, then f ∼∗ g := ∃x ∈
A f(x) = g(x).

iv Let (S,E) be a simple graph. Then (S,E∗), where E∗ := E∪{(x, x) | x ∈
S} is a similarity structure.

v Let (S,≤) be a preordered set. Then x ∼∗ y := ∃z ∈ S z ≤ x, y.

vi Let (S,≤) be a lattice. Then x ∼∗ y := x ∧ y 6= 0.

vii Let (S, d) be a metric space. Then x ∼∗ y := d(x, y) ≤ ε for some fixed
real number ε > 0.

viii Let (S, T ) be a topological space. Then A ∼∗ B := cl(A) ∩ cl(B) 6= ∅.

ix Let (S,Q, I) be a formal context. Then x ∼∗ y := i(x) ∩ i(y) 6= ∅.

These examples show that similarities are everywhere. The fourth one is
crucial, for it allows us to depict each finite similarity structure as an undirected
graph. Objects will be pictured as dots and similarities as edges connecting these
dots. The fundamental concepts we will make use of are first the following
similarity operators:

5As far as I know, some of the material on similarity structures presented here and in
Chapter V, like the operator cro with its properties and uses, the axiom systems and the
proofs of the main properties from them or all the results on similarities of order 1 (e.g. gen
quasianalysis and the main theorems) is new. In Chapter V I will try to show that their
introduction is justified by hinting at how fruitful these concepts are.
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Definition 26. Let (S,∼) be a similarity structure and A ⊆ S. Then we define:

i co(A) := {x ∈ S | ∃y ∈ A x ∼ y} = {x ∈ S | co(x) ∩ A 6= ∅} is the
similarity neighbourhood.

ii int(A) := {x ∈ S | ∀y ∈ Ac ¬(x ∼ y)} = {x ∈ S | co(x) ⊆ A} is the
similarity interior.

iii ext(A) := {x ∈ S | ∀y ∈ A ¬(x ∼ y)} = {x ∈ S | co(x) ⊆ Ac} is the
similarity exterior.

iv out(A) := {x ∈ S | ∃y ∈ Ac x ∼ y} is the similarity outside.

v bd(A) := {x ∈ S | ∃y ∈ A x ∼ y & ∃z ∈ Ac x ∼ z} is the similarity
boundary.

vi bdint(A) := bd(A) ∩A is the similarity interior boundary.

vii bdext(A) := bd(A) ∩Ac is the similarity exterior boundary.

viii cro(A) := {x ∈ S | ∀y ∈ A x ∼ y} is the similarity cocore.

Except for the last one cro, which is considered for the first time in this
thesis, properties for the operators can be found in [13]. As usual, we define
co(x) := co({x}), ext(x) := ext({x}), and so on. The operators have very
intuitive interpretations. First, co(A) gives us all the elements that are similar
or close to some elements in A, whereas cro(A) gives us the elements that are
similar or close to all the elements in A. Spatially, co(A) enlarges the region
A by adding nearby points. Second, int(A) gives us all the elements whose
nearby elements are already in A, whereas bd(A) includes those elements that
are close to elements beyond A. The boundary can be split into an internal side
bdint(A) and an external side bdext(A). Spatially, int(A) contracts the region
A by eliminating those elements in A that belong to the (interior) boundary.
Finally, ext(A) and out(A) give us elements that are outside of A in different
ways. Whereas ext(A) includes all those which are not similar to any element in
A, out(A) includes those elements that are not in the interior of A. (Mormann,
REF) shows that co and int form a galois connection. The structures induced
by the resulting closure operators, which involve the operators ext and out,
are further explored in [13]. These operators have many interesting properties
that we cannot deal with right now. An important one relates the similarity
neighbourhood to the similarity interior, i.e. co(A) = int(Ac)c.

We also have the following fundamental kinds of points and sets, which bring
the proto-spatial nature of similarity to the fore:

Definition 27. Let (S,∼) be a similarity structure and A ⊆ S. Then we define:

i A is a clique ⇔ ∀x, y ∈ A x ∼ y.

ii A is maximal ⇔ ∀z ∈ S (∀x ∈ A z ∼ x⇒ z ∈ A).

iii A is a similarity circle ⇔ A is a maximal clique.

iv A is similarity dense ⇔ co(A) = S.

v x is similarity isolated ⇔ co(x) = {x}.
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vi S is similarity connected ⇔ (co(A) = A⇒ A = S or A = ∅).

vii S is totally similarity disconnected ⇔ (x ∼ y ⇒ x = y).

The set of all the similarity circles will be SC(S). As will be shown, similar-
ity circles play a major role in the theory, since they will be our surrogates for
natural attributes. One can introduce a similarity structure by giving directly
the set of all its similarity circles. For example, the similarity x ∼ y ∼ z can be
introduced as SC(S) = {{x, y}, {y, z}}. Although the reasons for this will be
given in Chapter V, we will freely follow this practice to introduce examples.
It is easy to check that the definition of connectedness here given is equivalent
to the graph-theoretical one. In other words, a similarity is connected iff for
any two points x and y there is a path x = x0 ∼ x1 ∼ · · · ∼ xn−1 ∼ xn = y
from one to the other. Connectedness is a fundamental invariant of similarity
and already allows us to distinguish between two extreme cases. If the degree of
similarity d is the coarsest one ∼= S×S then any two objects will be d-similar
and so indiscernible to each other. If the degree of similarity is the finest one
∼= ∆, then it will be coextensional to identity, the similarity will be totally
disconnected and every point will be isolated. Between these two cases we have
non-trivial connected similarities, that is to say, degrees of similarity which are
such that one can reach any object from any other object by ’jumping’ from one
object to another which is sufficiently like it. The coarser the similarity is, the
easier it will be to connect any two such objects. For instance, we could have a
path like a ∼ b ∼ c where a is a black raven, b is a white raven and c is a white
shoe. Note that, in contrast, every equivalence relation is disconnected.

In Chapter V we will need some other properties of the operators, such as 6:

Proposition 14. Let (S,∼) be a similarity structure. Then:

i A ⊆ co(A). [Extensiveness]

ii co(A) ∩B = ∅⇔ A ∩ co(B) = ∅. [Autoconjugation]

iii co(∅) = ∅ & co(S) = S. [Normality]

iv A ⊆ B ⇒ co(A) ⊆ co(B). [Monotonicity]

v co(
⋃
Aj) =

⋃
co(Aj). [Union preserving]

vi x ∈ co(A)⇔ co(x) ∩A 6= ∅. [Neighbourhood point]

vii co(A) =
⋃
{co(x) ⊆ S | x ∈ A}. [Algebraic]

viii co(x) = {z ∈ S | x ∈ co(z)} & x ∈ co(y)⇔ x ∼ y ⇔ y ∈ co(x).

Proof. We only prove (iii)-(v) from (i)-(ii). (iii) Since ∅ ⊆ co(∅) ⊆ co(co(∅))
by (ii) ∅∩ co(co(∅)) = ∅ iff co(∅)∩ co(∅) = co(∅) = ∅ and S ⊆ co(S) ⊆ S by
(i). (iv) Let A ⊆ B and x ∈ co(A), then {x} ∩ co(A) 6= ∅ iff A ∩ co(x) 6= ∅, so
B ∩ co(x) 6= ∅ but then {x} ∩ co(B) 6= ∅, i.e. x ∈ co(B). (v) If co(

⋃
Aj) = ∅,

then by (i)
⋃
Aj = ∅, therefore Aj = ∅ for each j, and by (iii) ∅ = co(

⋃
Aj) =⋃

∅ =
⋃
co(Aj). Now suppose x ∈ co(

⋃
Aj) 6= ∅, then {x} ∩ co(

⋃
Aj) 6= ∅ iff

co(x)∩(
⋃
Aj) 6= ∅ iff

⋃
(co(x)∩Aj) 6= ∅ iff (co(x)∩A1) 6= ∅ or (co(x)∩A2) 6= ∅

or . . . iff {x} ∩ co(A1) 6= ∅ or {x} ∩ co(A2) 6= ∅ or . . . iff x ∈
⋃
co(Aj). The

converse follows from monotonicity.

6That autoconjugation corresponds to symmetry can be found in (Maddux, 2006).
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Although co is extensive, monotone, normal and preserves arbitrary unions,
it is not idempotent. In this it differs from topological closure operators. As a
consequence, the similarity neighbourhood can be iterated, enlarging more and
more the original region. A different more ’algebraic’ axiomatic system can be
given if we start from this similarity neighbourhood operator7:

Definition 28. Let (S, co) be a set S with a monary operator co : ℘(S)→ ℘(S).
Then (S, co) is a similarity structure iff it satisfies:

i A ⊆ co(A). [Extensiveness]

ii co(A) ∩B = ∅⇔ A ∩ co(B) = ∅. [Autoconjugation]

Define co(x) := co({x}). A homomorphism is a function f : (S, co) →
(S′, co′) such that f(co(A)) ⊆ co′(f(A)).

The similarity neighbourhood co has as a companion the cocore operator
cro, which gives us all the elements that are similar to those of a given set:

Proposition 15. Let (S,∼) be a similarity structure and cro(A) := {y ∈ S |
∀x ∈ A y ∼ x}. Then:

i x ∈ cro(x) = co(x) & cro(A) = {x ∈ S | A ⊆ co(x)}.

ii A ⊆ cro(B)⇔ B ⊆ cro(A).

iii A ⊆ B ⇒ cro(B) ⊆ cro(A). [Antitonicity]

iv
⋂
cro(Aj) = cro(

⋃
Aj). [De Morgan]

v cro(∅) = S & cro(S) = ∅⇔ there are no dense elements in S.

vi crocro(A) is a closure operator & cro(A) = crocrocro(A).

vii A 6= ∅⇒ cro(A) ⊆ co(A) & int(A) 6= ∅⇒ cro(A) ⊆ A.

viii x ∼ y ⇔ x, y ∈ cro({x, y})⇔ x ∈ cro(y).

ix A is a clique ⇔ A ⊆ cro(A) & A is maximal ⇔ cro(A) ⊆ A.

x A is a similarity circle ⇔ cro(A) = A.

xi crocro(A) = cro(A)⇔ cro(A) is a similarity circle.

Proof. (i) is trivial. (ii) If A ⊆ cro(B), then if x ∈ Bx ∼ y for all y in A,
i.e. x ∈ cro(A). And if B ⊆ cro(A) then if x ∈ Ax ∼ y for every y ∈ B.
(iii) Suppose that A ⊆ B and x ∈ cro(B). Then {x} ⊆ cro(B) ⇒ A ⊆ B ⊆
cro(x)⇒ {x} ⊆ cro(A)⇒ cro(B) ⊆ cro(A). (iv)-(vi) follow from the fact that
(cro, cro) form the extension-intension galois connection of the context (S, S,∼),
as in Chapter III. (vii) Suppose that int(A) 6= ∅. Then if y ∈ cro(A), y ∼ z for
every z in int(A), therefore y ∈ A. (viii) Follows from (i). (ix) If A is a clique,
every x in A is similar to every y in A, i.e. x is in cro(A). And if A ⊆ cro(A),
then if x and y are in A we have x ∼ y, i.e. A is a clique. A is maximal iff
if x ∼ y for all y ∈ A, then x ∈ A iff cro(A) ⊆ A. (x) Follows from (ix). (xi)
Follows from (x).

7I have not seen this axiom system anywhere, but the autoconjugation property is known
to correspond to symmetry so this was to be expected. The properties of the cro operator are
new.
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A new set of axioms can be given using this operator, from which the previous
properties follow:

Definition 29. Let (S, cro) be a set S with a monary operator cro : ℘(S) →
℘(S). Then (S, cro) is a similarity structure iff it satisfies:

i x ∈ cro(x). [Extensiveness]

ii A ⊆ cro(B)⇔ B ⊆ cro(A). [Autoconjugation]

The concept of an equivalence class splits into several richer notions when
equivalences are generalized to similarities. Three are the most fundamental
ones. We have sets consisting of all the elements that are similar to at least of
element of some set (co(A)), sets consisting of all the elements that are similar to
all the elements of some set (cro(A)) and we have also maximal sets of pairwise
similar elements (elements in SC(S)). We will make heavy use of these notions
in the next Chapter. There is still a very strong link between these concepts:

Proposition 16. Let (S,∼) be a similarity structure and A ⊆ S. Then:

i A ∈ SC(S)⇔ A =
⋂
{co(x) ⊆ S | x ∈ A} ⇔ A = cro(A).

ii A = co(x)⇔ A =
⋃
{T ∈ SC(S) | x ∈ T}.

If we interpret ∼ as an approximate similarity, we can define exact similar-
ity or duplication as an equivalence relation that holds between those entities
that are approximately similar to the same entities [87], [89]. A fortiori, two
duplicates belong to the same similarity circles. Since we will take similarity
circles as surrogates for natural attributes, it will follow too that two entities
are duplicates iff they exemplify exactly the same natural attributes:

x ≈co y ⇔ co(x) = co(y)⇔ i(x) = i(y)

We will consider structures for which this relation coincides with identity, in
other words, those structures that satisfy the following crucial axiom [89]:

Definition 30. Let (S,∼) be a similarity structure. Then S satisfies the Simi-
larity Neighbourhood Indiscernibility Axiom (SNI) iff co(x) = co(y)⇒ x = y.

This axiom is the similarity analogue of the Identity of Indiscernibles. It
says that if two entities are similar to the same entities, then they are identical.
Requiring (SNI) is harmless, after all we can always start from any similarity
and obtain its (SNI)-quotient. Therefore, this simply implies that for the most
part we will be considering equivalences classes of objects, or in other words,
objects up-to-exact similarity.

Now it is time for a different thing. We must introduce the relevant structure-
preserving maps8:

Definition 31. Let (S,∼) and (S′,∼′) be similarity structures and f : S → S′

a function. If x ∼ y ⇒ f(x) ∼′ f(y) then f is a similarity homomorphism.
If f(x) ∼′ f(y) ⇒ x ∼ y, then f is faithful and if it is also bijective then
f is a similarity isomorphism. If S = S′ then f is said to be a similarity
automorphism.

8One can easily check that this gives us a category whose objects are similarity structures
and whose morphisms are similarity homomorphisms. Mormann calls it ’SIM’.
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We can think of an homomorphism f as a similarity transformation or defor-
mation between the elements of the domain S, thus as a process of qualitative
’continuous’ change. Given an object x, f(x) = y is the result of deforming x in
such a way that the (degree of) similarity between x and the objects to which
it is similar is preserved. Some equivalent ways of presenting homomorphisms
are:

Proposition 17. Let (S,∼), (S′,∼′) be similarity structures, x, y ∈ S, A ⊆ S
and f : S → S′ a function. Then the following conditions are equivalent:

1. f is a similarity homomorphism.

2. x ∼ y ⇒ f(x) ∼′ f(y).

3. f(co(A)) ⊆ co′(f(A)).

4. f(cro(A)) ⊆ cro′(f(A)).

5. If A is a ∼-clique, then f(A) is a ∼′-clique.

This already gives us a hint concerning what kind of properties are relevant
from the point of view of the theory of similarity: point-point similarities, ’close-
ness’ of points to sets and classifications by sets all whose elements are similar
to each other. We finally get to:

Definition 32. Let (S,∼) and (S′,∼′) be similarity structures and f : S → S′

a similarity isomorphism. Let P be a property of the similarity structure S.
Then P is a similarity invariant iff S is P ⇒ S′ is P .

In other words, similarity invariants are those properties common to isomor-
phic similarities. Some examples of similarity invariants are (some of these will
be studied later on):

1. Being of cardinality n: the number of entities is n.

2. Being a clique: any two entities in the collection are similar to each other.

3. Being a similarity circle: any two entities in the collection are similar to
each other and any entity which is similar to all of them is already in the
collection.

4. Being the similarity neighbourhood of some set A: every entity is similar
to some element in A.

5. Being an isolated point: an entity which is only similar to itself.

6. Being connected: any two entities are indirectly similar to each other.

7. Being totally disconnected: no two distinct entities are similar to each
other.

8. Being (SNI): no two distinct entities are similar to the same entities.

9. Being of order 1: two similar entities are similar to a paradigmatic entity.

149



Therefore, the theory of similarity structures is the theory of similarity in-
variants. This will give us a way to detect whether a structural property is
acceptable from the point of view of resemblance nominalism. If the property is
not a similarity invariant, then it is not ’objectively out there’ so to speak. By
the time being, I hope these notions are enough to show some of the mathemat-
ical richness hidden in the deceptively simple concept of similarity. Put short,
Quine was wrong.

4.2 Objections to the Properties of Categorical
Similarity

4.2.1 Similarity is not Reflexive

It is a truism that every object resembles itself. But philosophers like to chal-
lenge truisms. The first objection goes as follows:

Similarity is not reflexive

A first argument for the reflexivity of similarity would appeal to the Principle
that Identity implies Similarity :

x = y ⇒ x ∼ y [IS]

The principle seems reasonable. If two objects are identical, then they must
be similar to each other. Why? If these two objects were not similar to each
other, for no degree of similarity, then they would be different to each other
for some degree of similarity. Therefore, they would be distinct objects. There
are two possible explanations. The first one appeals to properties, respects or
aspects of comparison. If two objects are different, then there is a property that
differentiates one from the other, and by the Indiscernibility of Identicals they
must be distinct objects. This is what Armstrong [2] holds. This move is not
available to someone who thinks that similarity is a primitive relation. But such
a philosopher would simply think that the Indiscernibility of Identicals should be
replaced by a different principle. Consider the Principle that Difference implies
Distinction:

∃d ∈ D ¬(x ∼d y)⇒ x 6= y [DD]

If there is a degree of similarity d in which two objects are different, then
they must be distinct objects. This seems obvious. The reason is that (IS)
seems to be satisfied for any degree of similarity, however coarse or fine. There
is therefore a similarity-correlate for the Indiscernibility of Identicals which is
the contrapositional of (DD):

∀d ∈ D (x = y ⇒ x ∼d y) [PII − Similarity]

If two objects are identical, then they are similar up to any degree of sim-
ilarity whatsoever. A philosopher that accepts similarity as primitive should
adopt something like this principle as fundamental. If we now ’hide’ the degrees
of similarity and leave them as something to be given by context, we have that
for any degree of similarity:
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x = y ⇒ x ∼ y [IS]

And therefore the reflexivity of similarity would follow from the reflexivity
of identity:

x ∼ x [Reflexivity]

Thus the following question seems pressing: could there be an object that
was not similar to itself? The nominalist has to assume that there could not be
an x that was not similar to itself. So he assumes from the start that reflexivity
holds. In contrast, the realist explains reflexivity in his framework [2]. It follows
from his Principle of no-Bare Particulars. From the realist point of view, an
object could fail to be similar to itself only if it was a bare particular and
similarity only tracked sparse properties (considering properties like being self-
identical or being identical to x as not sparse). But most universalists would
simply assume the impossibility of bare particulars. So the realist is not in a
better position, for he also has to assume that each object exemplifies at least
one attribute.

Pereyra [109] counters this argument by trying to show that the formal prop-
erties of similarity follow from more basic nominalistic principles. Apart from
the properties of identity, I doubt that there is anything more basic than the
reflexivity or symmetry of similarity. As I said, at most reflexivity would follow
from the properties of identity in conjunction with principles connecting identity
and similarity. But the appropriate answer to Armstrong is, I think, to point
out that the nominalist can also explain the properties that the realist assumes
about the instantiation relation. As we saw in Chapter III, the realist assumes
the Principles of No-Bare Particulars and Exemplification. The former one is
explained in the nominalistic framework by first giving surrogates for attributes
(namely sets of similar objects), then giving a surrogate for the instantiation
relation (namely set-theoretic membership) and finally showing that it follows
from the reflexivity of similarity that each object belongs to one of these col-
lections of similar objects. The nominalist can also explain the Principle of
Exemplification. The reason is that the surrogates for attributes will be maxi-
mal sets of similar objects and therefore the empty set will not be an attribute.
This will be seen in Chapter V9.

Nevertheless, some cognitive psychologists have formulated objections to
reflexivity. The experiments devised by [137] seem to show that sometimes we
judge some entities as being more similar to other entities than to themselves.
This may seem to go against reflexivity. I will deal with this objection alongside
the next one, for reasons that will become clear soon.

4.2.2 Similarity is not Symmetric

Our second truism says that necessarily, if an object is similar to another, then
the latter is similar to the former one. The second objection says:

9There may be other reasons why reflexivity could fail. For instance, if x endures through
time, then x in t may not be similar to x in t′, if t′ is further enough in time from t. Suppose
that x is a caterpillar that undergoes metamorphosis, then x is a butterfly in t′ that may not
be similar to x. Therefore x is not similar to itself. This resembles the corresponding problem
for identity through time.
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Similarity is not symmetric

If one explains similarity as sharing a common attribute, then symme-
try follows trivially (Armstrong, 1978). It follows from the commutativity
of conjunction, if we define similarity as exemplifying a common attribute
x ∼ y := ∃P ∈ Q xIP & yIP .

But cognitive psychologists have also presented objections to symmetry
[137]. The experiments seem to show that an object x could be more simi-
lar to an object y than y would be to x. As a special case, x could be more
similar to y than x is to itself. The root of the problem seems to be that we
may consider different salient properties when comparing the two objects and
uttering a similarity comparison judgment like ’x is similar to y’. In some cases
the experimental subject tends to say things like ”x is more similar to y than
y is to x”. Tversky explained several of these phenomena that were related to
metaphors and to the degree of prototypicality of objects.

I think that Tversky’s criticism against symmetry can be challenged on sev-
eral grounds. I will present three objections. First, theorists of spatial models
of similarity have developed alternative explanations of the alleged violations
of symmetry and have suggested corresponding modifications of their models
to account for these facts. Second, Tversky’s own contrast model makes sub-
stantive questionable assumptions, as I will discuss at length. Third, even if
Tversky’s criticisms are successful they only apply to either a comparative or
a degree-like notion of similarity and not to the categorical version of it. This
is not a cheap reply, for as I will show, a plausible comparative notion of simi-
larity can be defined from the categorical one that explains why the violations
of symmetry occur just under the assumption of the existence of paradigmatic
objects in the similarity structure. The defendant of categorical similarity can
explain the controversial cases without dropping the symmetry axiom.

Since the groundbreaking work of E. Rosch (see e.g. [112] and [113]), as
we said, it is assumed in the cognitive psychology literature that some objects
exhibit a greater degree of prototypicality than others and thus are more repre-
sentative of the kind of objects they belong to. For instance, a robin is a more
prototypical bird than a penguin, an orange is a more prototypical fruit than
a nut and a chair is a more prototypical piece of furniture than a stove. Thus,
given two birds x and y, a subject may utter a similarity comparison judgment
of the form ”x is more similar to y than y is to x”, for example when y (a robin)
is a more prototypical bird than x (a penguin). Metaphors and similes produce
similar cases of directionality and may even involve a change in meaning. The
classical example is the metaphor ”that butcher is a surgeon”, which means
something quite different from ”that surgeon is a butcher”. Or similes like ”her
eyes are like pearls”, which mean something different from ”pearls are like her
eyes”. The directionality present in these cases seems to be related to the prag-
matic purpose of letting our hearer understand that we are attributing to her
eyes some aesthetically pleasant properties typically associated with pearls (e.g.
brightness and so on), and not vice versa.

Spatial models of similarity have troubles accommodating these violations
of symmetry. According to spatial models, objects are represented as points in
a metric space (see [94] or [42]):

Definition 33. Let S be a set and d : S2 → R a real valued function. Then
(S, d) is a metric space iff ∀x, y, z ∈ S:
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i d(x, y) ≥ 0. [Positiveness]

ii d(x, y) = 0⇔ x = y. [Indiscernibility]

iii d(x, y) = d(y, x). [Symmetry]

iv d(x, z) ≤ d(x, y) + d(y, z). [Triangle Inequality]

The similarity or dissimilarity between two objects is represented by the dis-
tance function d(x, y). We can understand the distance between two objects as
their degree of dissimilarity. For instance, the definition says that the degree of
dissimilarity of x and y is d(x, y). Thus, (ii) and (iii) are requirements analo-
gous to reflexivity and symmetry. For instance, (ii) says that two objects are
maximally similar iff they are identical, which is again a version of the Identity
of Indiscernibles. In contrast, (iii) says that the similarity of x to y equals the
similarity of y to x. Since the metric distance is a function and by (i)-(ii), any
two different objects will be similar to each other up to some degree of similar-
ity. In other words, any two objects are comparable by similarity if one chooses
a coarse enough degree of similarity. We will consider the Triangle Inequality
later on, when we discuss transitivity. The crucial issue here is that spatial
models assume something akin to reflexivity and symmetry. A fortiori, we have
that if x 6= y, then 0 = d(x, x) < d(x, y).

What Tversky’s findings showed is that we could have objects such that
d(x, y) < d(x, x) for two different objects x and y and that d(x, y) 6= d(y, x).
The answer from the spatial camp (e.g. [95]) was to conjecture that in Tver-
sky’s controversial cases, the subject that made the similarity comparisons was
introducing certain biases or that he was focusing on objects in such a way that
these psychological processes messed with the basic properties of similarity. The
contribution of the subject would amount to introducing weights in the simi-
larity comparison (in the distance function), or to distorting the dimensions of
the space. Simply put, the violations of reflexivity and symmetry would be due
not to the nature of similarity itself but to the effect of the biases of the subject
that may put more weight on some or other respects of comparison. So this is
my first reply, namely that the spatial models can be modified in such a way
that the violation of symmetry is explained as an effect of the subject making
the comparison, while keeping the axioms intact. Moreover, the proponents of
spatial models have shown that this interpretation coheres with the empirical
data. According to Decock and Douven Decock [27], a different answer from
the spatial camp has been to account for the effects of the context (including
non-symmetry) by appealing to several different relations of similarity. This is
the case of Gärdenfors conceptual spaces approach. In other words, the differ-
ences in context are explained by making use of a different conceptual space
in each context. Since each conceptual space makes use of a similarity relation
(with possibly different formal properties), since the similarity is relative to the
respects of comparison (wich are represented as dimensions of the space) and
since the salience of these respects changes from one context to another, the
spatial camp can provide an answer to Tversky’s objections.

Now to my second point. To explain his findings Tversky introduced his
contrast model10. We are given a context (S,Q, I), where S = {a, b, c, . . . } is

10Another presentation of Tversky’s model, compared to the spatial accounts is to be found
in Decock and Douven’s paper [27].
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a domain of objects to be compared by similarity and Q a set of attributes or
features of the objects in S. We will write i(a) = A, i(b) = B, and so on11. First,
we close the set i[S] = {i(x) ⊆ ℘(Q) | x ∈ S} under intersection and difference.
In other words, if A,B ∈ i[S], then A ∩ B ∈ i[S] and A − B ∈ i[S]. We call
this new set Q∗, it will contain all the interesting combinations of attributes of
objects (the ones that will be used to make comparisons). Now we define:

Definition 34. Let (S,Q, I, s, F ) be a context and let Q∗ be the closure of the set
i[S] = {i(x) ⊆ ℘(Q) | x ∈ S} under intersections and set-theoretic differences.
Let s : S × S → R and F : Q∗ × Q∗ × Q∗ → R be real-valued functions. Then
(S,Q) is a contrast model iff:

1. s(a, b) = F (A ∩B,A−B,B −A). [Matching]

2. s(a, c) ≤ s(a, b)⇔ A∩C ⊆ A∩B & A−B ⊆ A−C & B−A ⊆ C −A.
[Monotonicity]

3. If (a, b) and (c, d), and (a′, b′) and (c′, d′) agree on the same two compo-
nents, while the pairs (a, b) and (a′, b′) and the pairs (c, d) and (c′, d′) agree
on the remaining third component, then s(a′, b′) ≤ s(a, b) ⇔ s(c′, d′) ≤
s(c, d). [Independence]

4. The following hold: [Solvability]

(a) For all pairs (a, b), (c, d), (e, f) there is a pair (p, q) such that A∩B ≈
P ∩Q & C −D ≈ P −Q & F − E ≈ Q− P , i.e. it agrees on the
first, second and third components of the respective pairs.

(b) If s(c, d) < t < s(a, b), then there are e, f ∈ S such that s(e, f) = t
and if (a, b) and (c, d) agree on one or two components then (e, f)
agrees with them on these components too.

(c) There are pairs (a, b), (c, d) that do not agree in any components.

5. Let V, V ′ and W,W ′ belong to φi and φk for i, k = 1, 2, 3. Then (V, V ′) ≈
(W,W ′)i ⇔ (V, V ′) ≈ (W,W ′)k. [Invariance]

For axioms (3)-(5) we need some auxiliary definitions. They will not be
discussed here, I give them just for the sake of completeness. Let V,W ∈ Q∗.
Then Tversky defines V ≈W as follows:

V ≈W := ∃X,Y, Z ∈ Q∗ F (V, Y, Z) = F (W,Y,Z) or

F (X,V, Z) = F (X,W,Z) or F (X,Y, V ) = F (X,Y,W )

We say that (a, b) and (c, d) agree on the first component iff (A ∩ B) ≈
(C ∩D). Analogously with the other two components (arguments) of F . Now
let φ1 = {X ∩ Y | X ∩ Y ∈ Q∗}, φ2 = {X − Y | X − Y ∈ Q∗} = {Y − X |
Y − X ∈ Q∗} = φ3 ⊆ Q∗ be the sets of the corresponding first, second and

11Tversky did not talk about contexts, but I will change some non-essential aspects of hits
formulation so that its relation to the concepts introduced in Chapter III is made clear. The
domain of F is strictly speaking smaller than Q∗×Q∗×Q∗ but is difficult to make this precise
without introducing the rest of auxiliary definitions. I will give all the details of Tversky’s
model just to be fair to his view, but the reader should skip axioms (4)-(5). Tversky himself
leaves (4) and (5) to the Appendix of the paper due to their cumbersome formulation and
purely technical interest.
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third arguments of F, e.g. φ1 is the set of all the intersections of the intensions
of objects in S. Let X,X ′ ∈ φ1 and Y, Y ′ ∈ φ2, then we define:

(X,X ′)1 ≈ (Y, Y ′)2 :=

∃(a, b), (a′, b′) s(a, b) = F (X,Y, Z) = F (X ′, Y ′, Z) = s(a′, b′)

Here (X,X ′)1 = (A ∩ B,C ∩ D) somehow represents the interval between
A ∩ B and C ∩ D and the relation just defined represents the matching of
intervals. Finally he extends this definition as:

(V, V ′)i ≈ (W,W ′)i := ∃(a, b), (a′, b′) (V, V ′)i ≈ (X,X ′)j ≈ (W,W ′)i

for some (X,X ′)j j 6= i and i = 1, 2, 3

The reader is advised to ignore conditions (4)-(5) and the definitions just
given, they are included here just for the sake of introducing Tversky’s full
model. The most easily understandable conditions are the first two. By (Match-
ing) the similarity between two objects a and b is a function of the attributes
shared by them A ∩ B and the attributes that differentiate one from another
A−B and B −A. By (Monotonicity) the similarity between objects a and b is
greater to that between a and c iff they have more common properties or they
have less different properties. Here s(a, b) is an ordinal measure of the similarity
between a and b. To put it simply, the similarity between two objects increases
the more properties they share and the fewer their differences happen to be.
These two constraints are purely ordinal, they only require mapping the degree
of similarity between two objects to a real number by using a similarity scale s
and for this scale to be ordinal, i.e. for its order to be monotonous with respect
to the inclusions of the intersections and differences of the intensions of objects.

Nevertheless, as we see, Tversky introduces three more axioms, namely (In-
dependence), (Solvability) and (Invariance). The axiom of (Independence) was
experimentally questioned by [45]. The latter two are only explained in the Ap-
pendix of his paper [137]. Although they are not usually discussed, these axioms
impose an implausibly rich structure on the domain of objects. For instance,
the second condition of (Solvability) requires that if a and b are more similar to
each other than c and d, then for any real value t that is among the values that
represent these similarities (namely, the values s(a, b) and s(c, d)), there will be
two objects e and f which are such that their degree of similarity is exactly t
(under the ordinal measure s). But of course, between any two real numbers
there is an uncountable amount of real numbers, so this axiom immediately
implies that there is an infinite amount of objects in the domain. And this is
not just a worry about the cardinality of the domain of objects. The degrees of
similarity between any two pairs of objects are just as fine-grained as the real
line. That means that if you detect that cat a is more similar to cat b than dog c
is to dog d, then there are as many degrees of similarity between these two (the
degree of similarity between a and b and the degree of similarity between c and
d) as numbers between the corresponding real numbers representing them, and
as many pairs of objects as needed for these numbers to represent each of these
degrees of similarity. A lucky researcher only needs to find two pairs of objects
that are comparable regarding their degrees of similarity, for in doing that he
can infer that for any real-numbered degree of similarity that is among these two
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there will be two objects in the world (possibly hidden in some remote corner
of the world) that are similar to exactly that degree. It may be a demanding
quest to find these, but with enough time he is guaranteed to succeed. Tversky
then proves the following representation theorem:

Theorem 4 (Representation Theorem, Tversky). Let (S,Q, s, F ) be a contrast
model. Then there exist a similarity scale Sim : S × S → R, a non-negative
scale f : Q∗ → R+ and three positive numbers θ, α, β ≥ 0 such that for all
a, b, c, d ∈ S:

i Sim(a, b) ≥ Sim(c, d)⇔ s(a, b) ≥ s(c, d).

ii Sim(a, b) = θf(A ∩B)− αf(A−B)− βf(B −A).

iii f and Sim are interval scales.

Here f and Sim are representing functions with range R. Note that the ’mi-
nus’ inside the parentheses is the set-theoretic difference and the minus outside
the parentheses is the arithmetic difference. The parameters θ, α, β are used
to give more weight, respectively, to the coincidences or differences in features
between a and b. Whereas s is an ordinal similarity scale that only depends on
the sets of attributes, Sim is the resulting interval similarity scale that depends
on the external parameters θ, α, β. What the representation theorem shows is
that if the ordering of degrees of similarity, as dependent on sets of atributes
(coincidences and differences in attributes), satisfies the axioms of the contrast
model, then there will exist an interval scale that measures the degree of sim-
ilarity between each pair of objects as a linear combination of the measures
of the attributes (not) shared by considering some additional parameters that
represent the focus or attention of the subject.

The proof works by showing that the domain of F , i.e. the product of (the
quotients under ≈ of) φ1, φ2 (i.e. the sets of intersections and differences of
features) ordered under the (quotient) relation ≤, is an additive conjoint struc-
ture. Additive conjoint structures are a basic kind of measurement structure
identified by the Representational Theory of Measurement and are one of the
most interesting examples of measurement structures that is available to the
social sciences. The basic idea is that some magnitudes (say, the degree of sim-
ilarity between two objects) are the result of the combination of two or more
component magnitudes that are independent of each other (there is no law that
makes the value of one dependent on the value of the others). In contrast with
extensive measurement structures like those found in physics, the resulting mag-
nitudes are not simply the concatenation of their component magnitudes. So
roughly speaking, for the proof to work the set Q∗ of all the combinations of
intensions of objects must be such that the ordering of triples of sets of at-
tributes (φ1 × φ2 × φ3,≤) is a conjoint structure. That means that the degree
of similarity can be decomposed into three (or better put, two) components φ1
(the sets of common attributes) and φ2 = φ3 (the sets of differences) which are
independent of each other. The resulting measurement scale Sim is an interval
scale.

The general expression for the similarity between two objects in (ii) weights
the similarity between objects as a contrast between the properties shared and
the differences present. So if the subject pays more attention to the similarities
then the coincidence of features will have greater weight. But if he focuses more
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on the set-theoretic differences A−B than on the differences B − A, then this
will produce cases of non-symmetry. Tversky could then explain violations of
symmetry by appealing to the notion of attention:

Attention Hypothesis The direction of ’asymmetry’ is determined by which
stimuli (objects) are most salient, in such a way that the least salient
stimuli is more similar to the most salient one than vice versa.

This can be seen in the parameters α, β and θ, which represent the degree
of attention by the subject or the salience of the objects. Let us suppose that
given two objects a and b, the object b is more prototypical than a. Then b-s
properties are more salient than a-s. If we now ask the subject ”which object
is similar to which one?”, we will force her to make a directional similarity
judgement. It is highly probable that she will answer ”a is more similar to b
(than vice versa)”. In the contrast model one can show [137]:

Proposition 18 (Non-symmetry). If α > β, then Sim(a, b) > Sim(b, a) ⇔
f(B −A) > f(A−B).

Therefore, the contrast model captures the difference Sim(a, b) > Sim(b, a).
If the subject focuses in the direction a→ b, then saying that a is more similar
to b than vice versa is equivalent to saying that the difference B − A is bigger
than the difference A−B. Thus a is more similar to b than vice versa because
there are less differences in the direction a→ b than in the direction b→ a. The
similarity judgement is symmetric iff the differences of one object with respect
to the other one have the same weight or have exactly the same value:

Sim(a, b) = Sim(b, a)⇔ α = β or f(A−B) = f(B −A)

So there are two causes for the violations of symmetry. It may happen that
the subject focuses more on the differences A−B than on the differences B−A,
or vice versa, i.e. α 6= β. Or it may happen thar there is a bigger number of
A − B than of B − A differences. In other words, symmetric judgements are
just a special case in which either none of the objects receives more attention
than the other one by the subject or the amount of differences is the same. In
Tversky’s contrast model similarity is not necessarily symmetric.

Let us look more closely at Tversky’s answer. The solution that the re-
searchers from the spatial camp gave to the influence of the subject is not very
different from Tversky’s. Since Sim(a, b) and Sim(b, a) are both a function of
A ∩ B,A − B and B − A and there is nothing else to consider (say, no other
sets of attributes), in principle nothing in these sets of features by themselves
points to any difference between the similarities of objects. To account for the
violations of symmetry Tversky uses two strategies. First, he introduces the
external parameters α, β and θ to model the focus of the subject on either the
common attributes or the differences. The parameters are weights that mod-
ify the representing values, they do not affect the represented attributes (not)
shared by the objects. The specific values of the parameters are not invariant
under transformations that would preserve coincidences and differences between
pairs of objects. The properties of the similarity relations themselves stay in-
tact. Moreover, as we said that is something that spatial models can mimic too.
Thus this part of Tversky’s solution can be interpreted as imposing either the
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effects of the attention or biases of the subject or the effects of the context on
the similarity comparisons.

Second, Tversky represents A − B and B − A by different real values. In
the simplest case, say when the sets of features are finite, these numbers may
correspond just to the different cardinalities of the sets. In that case the values
may be distinct say because one of the objects has more features than the other
and thus these features make the number of differences it has with respect to
the other grow. The crucial question now is how much depends the similarity
between two objects on the combination of the amount of the attributes shared
and on the amount of their differences. Tversky is modelling similarity as if it
were an interval magnitude. Thus, degrees of similarity as given by a ’similarity
scale’ are invariant under scalings and translations, analogously to how values
of temperature as measured by a certain scale (Celsius or Fahrenheit) are repre-
sented. According to the contrast model it makes sense to consider differences
between degrees of similarity, because these are grounded on amounts of proper-
ties. To change from one similarity scale to another, one could just scale equally
all the degrees of similarity between pairs of objects as given by some similarity
scale, and then possibly add some additional fixed quantity to each of the result-
ing degrees to get to the corresponding values in the other scale. What interval
scales leave invariant are quotients of differences in degrees of similarity. In other
words, if we have the following degrees of similarity for pairs of objects according
to some similarity scale s(a, b) = 0.5; s(c, d) = 0.4; s(e, f) = 0.3; s(g, h) = 0.2,
so that we have the quotient [s(a, b) − s(c, d)]/[s(e, f) − s(g, h)] = 1, then it
makes sense to compare arithmetic differences between the degrees of similar-
ity. The crucial discussion here is whether overall or approximate degree-like
similarity is in general something more than an ordinal magnitude, whether it
always makes sense to compare (arithmetic) differences in degrees of similarity
between pairs of objects.

I think that one can safely say that the degree of similarity between a and b
is greater than that between c and d. Thus, there does not seem to be any sort
of problem with ordinal comparisons. But what is one to make of the alleged
equalities, orders or ratios between the differences among degrees of similarity?
Does it always make sense to say that the difference between degrees of similarity
s(a, b) and s(c, d) is, say, five times bigger than that between s(e, f) and s(g, h)?
Remember that we are talking here about quotients of arithmetical differences.
There are some contexts in which it does. If the attributes considered are
magnitudes, say lengths, then we can assume that their degrees of similarity
are given by the euclidean distance between the corresponding real numbers
in the real line. Objects can inherit these differences in degrees of similarity.
But magnitudes are highly structured attributes. What are we to say of other
attributes had by objects? Consider objects exemplifying purely categorical
attributes such as being red, being religious, being socialist, and so on. How
many times bigger is the difference between the degrees of similarity of two pairs
of people having the same nationality and the degrees of similarity of two pairs
of people having the same religious beliefs?

But I find it hard to believe that we are talking about the same relation.
What I suspect that is happening in these cases is that we are making simul-
taneous use of several degrees of similarity at the same time. This is the third
point I want to make. Categorical similarity deals only with a fixed degree of
similarity at a time. A proper degree-like similarity deals with several degrees of
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similarity at the same time. I think that it is very important to realize that the
notion of similarity being discussed by these authors seems to be comparative
or even degree-like. In the spatial model, the distance metric gives to each pair
of objects the degree to which they are dissimilar to each other. These degrees
change from one pair of objects to another. The distance is grounded on a simi-
larity scale, which is obtained from an ordinal relation of comparative similarity.
In the contrast model, the representation function gives to each pair of objects
the degree to which they are similar to each other. These degrees change from
one pair of objects to another. Again, these similarity relations are grounded
on an ordinal similarity scale which is also thought to be interval. One way to
explain what happens in the cases of violations of symmetry (and reflexivity) is
to think that the subject focuses on some properties or respects of comparison
instead of others. Another way to put it is to think that the whole assignment
of degrees of similarity assumed for comparison is not fixed, it changes due to
the effect of the focus of the subject. In any case, my point is that whatever
concerns the interaction between different degrees of similarity need not affect
the notion of categorical similarity. This is analogous to the difference between
degrees of belief and categorical or absolute belief (yes-or-no belief). Categori-
cal belief can be understood as belief under a fixed degree d which works as a
threshold and which is possibly given by the context. But categorical beliefs,
comparative beliefs and degrees of beliefs have different properties and there-
fore correspond (at least in principle) to different concepts. When we consider
whether x ∼ y we are taking into account just an absolute or fixed degree of
similarity that works for every pair of objects (there is one for every pair), not a
degree of similarity that changes from one pair to another (for every pair there
is one). So it is not obvious why Tversky’s objections should affect our notion
of similarity.

The previous remarks may at first seem like a cheap solution. We are talking
about different concepts of similarity, but is that all? There is a further point
I want to make. With the model I will introduce later on Tversky’s typicality
effects can be explained if combined with a suitable definition of a paradigmatic
entity and a comparative similarity starting from a purely categorical one. How-
ever, this cannot be done before introducing the relevant formal machinery. The
reader is directed to the last section of this Chapter, where a full explanation
can be found.

Let us sum up what we discussed. First, Tversky presented some experi-
mental findings that showed that similarity did not obey some basic axioms of
metric spaces, namely minimality and symmetry. These results could be inter-
preted as challenges to the reflexivity and symmetry of categorical similarity.
Tversky’s model introduced additional parameters to account for the effect of
the subject in the similarity comparisons. These allowed him to explain the
controversial cases of violation of symmetry. But these can be mimicked by
the spatial models too. Second, Tversky’s model makes unreasonably strong
assumptions. For instance, it makes similarity an interval magnitude and some
of the axioms require imposing on the degrees of similarity a structure almost
as fine-grained as the real line. Third, the notion of similarity discussed both by
the spatial and contrast models is either comparative or degree-like, so it is not
clear that it goes against the properties of categorical similarity. In contrast,
the notion of similarity we are considering is that of categorical similarity, that
works under a fixed degree of similarity for all objects. This similarity relation
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Figure 4.1: Counterexample to Transitivity: Colour Sequence

seems to be necessarily reflexive and symmetric. If this does not seem to be so
a reasonable explanation is that we are changing the topic. In other words, we
are making use of a notion similarity relation that implicitly uses several de-
grees of similarity (or respects of comparison) at the same time and then we are
ignoring the effects of the context. Moreover, a comparative similarity can be
defined from the categorical one that explains the typicality effects, by assuming
the existence of paradigmatic objects. Thus there are strong reasons to think
that Tversky’s objections do not really damage the properties of categorical
similarity.

4.2.3 Similarity is not Transitive

A third objection could be:

Similarity is not transitive

This is hardly a problem if similarity is understood as overall or approximate
similarity and formally explained as it is done in this Chapter. A classical ex-
ample of the non-transitivity of similarity is given by the approximate similarity
between hues of colours (Poincare?). In the sequence of colours of Figure 4.1,
each pair of adjacent colours is similar to each other but the first one is not
similar to the last:

Once more, if one explains approximate similarity as sharing at least one
attribute, violations of transitivity can be explained. Simply put, x ∼ y and
y ∼ z do not imply x ∼ z, since the property shared by x and y could be distinct
from the one shared by y and z [2]. Nevertheless, this definition of similarity will
not explain the counterexample of colours. That is why Armstrong redefined
similarity as having either a common attribute or sufficiently similar attributes.
The task of explaining what is for attributes themselves to be similar without
appealing to a primitive similarity relation is not an easy task, see [33].

Spatial models of similarity, such as the one used by the Conceptual Spaces
approach ([42]), tend to assume that similarity satisfies some sort of property
that is reminiscent of transitivity, namely the triangle inequality. Remember
that:

d(x, z) ≤ d(x, y) + d(y, z)[TriangleInequality]

Therefore, what the triangle inequality says is that the degree of similarity
between x and z is greater than (or equal to) the sum of the degrees of dis-
similarity of x and y and y and z. From a metric similarity we can define a
categorical similarity as follows:

x ∼ y := d(x, y) ≤ ε, for some 0 ≤ ε ∈ R
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Reflexivity and symmetry follow from (ii) and (iii). What this bridge prin-
ciple says is that x and y are ε–similar or ”similar enough” or ”similar under
the degree of similarity ε fixed by the context” iff their degree of dissimilarity
is (equal or) less than ε. Here the fixed value ’ε’ can be thought of as a bound
to the degree of dissimilarity of two objects. So one can think about ε, roughly
speaking, as a degree of similarity that is coarse enough to make x and y similar
to each other. The more the degree of dissimilarity between x and y, the big-
ger this threshold must be (the coarser the degree of similarity between objects
must be selected). Let us take a fixed value ε and the similarity x ∼ y ∼ z.
This could simply be a substructure of the similarity induced by a metric space.
It follows from (iv) that d(x, z) ≤ 2ε. So in the case where we have that x is
similar to y and y to z but x is not similar to z, what (iv) implies is that there
will always be a coarser degree of similarity, namely one less or equal to 2ε,
under which x is similar to z. We simply have to double the degree of similarity
to get to one that is coarse enough to subsume the two dissimilar objects.

For the triangle inequality to make sense it seems that one must take seri-
ously the idea that degrees of similarity can be added to each other (in some
weak sense), and once again, Tversky argued against the triangle inequality via
some experiments. But this is not the case. The empirical structures assumed
by spatial models are the so-called proximity structures and these do not need
to satisfy anything close to the triangle inequality [128]. In other words, the
triangle inequality can be considered to be just an artefact of the metric rep-
resentation. The similarity used by the spatial models is basically an ordinal
magnitude. So long as the proponents of the spatial approach keep this in mind
(and therefore, so long as the principles and theses they propose are invariant
under ordinal transformations), there is no real danger here. In this thesis we
will not assume that similarity satisfies anything close to the triangle inequality
and therefore we can put these worries aside.

The non-transitivity of similarity is fundamental for many of the conse-
quences that will be explored in Chapter V. To put it simply, the fact that
similarity is in general not transitive allows the domain of objects to behave
as if it were a space of some sort. A hint can be given by appealing to classes
of similar entities. If y can be similar both to x and z without x and z being
similar to each other, then y can belong to a class to which x belongs and a class
to which z belongs without x belonging to that same class alongside y and z.
Thus y belongs to several overlapping classes of similar objects. In a sense one
could say that y belongs to the boundaries of these classes. Classes of similar
objects have some sort of proto-spatial structure: some of their members may
belong just to that class, others may belong to several classes at the same time.
This will not happen if similarity is transitive because the resulting classes will
be disjoint.

4.3 Egalitarian Resemblance Nominalism

4.3.1 Naive Egalitarianism

Resemblance nominalists are unsatisfied by the appeal to universal entities as a
solution to the problem of universals. According to them, there are no universal
entities. There is nothing literally common to the particulars being consid-
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ered. For traditional resemblance nominalists these particulars are objects (not
tropes). The nominalist proposes to construct surrogates for the entities posited
by the realist, in such a way that whatever the realist says about the world by
appealing to universals can be mimicked by a corresponding appeal by the nom-
inalist to collections of primitively similar objects. Although one could think
about more versions of resemblance nominalism, I will limit myself to reviewing
the three main contenders: egalitarian, aristocratic and collectivist resemblance
nominalisms. Moreover, whenever I can I will just talk about particulars instead
of restricting myself to objects. The reason is that there are analogous versions
of resemblance nominalism for tropes, and many of the objections to these latter
views are just analogous to the objections to object nominalism12.

Some philosophers seem to find very counterintuitive the idea that attributes
are just collections of similar objects. One of the ways this objection is fur-
ther developed is as the complain that whereas some attributes are intrinsic
to objects, the nominalist explains all of them as extrinsic properties based on
similarities among several objects [4]. I think that this is a misleading way of
thinking about the nominalist view. According to object nominalists there are
no attributes. There are just primitively similar objects (similar in different de-
grees). In principle, their alleged attributes (including relations), aspects, modes
or ways of being are not entities at all. However, different nominalists explain
this in different ways. Some nominalists will defend that these attributes are
just logical fictions, the result of a process of logical abstraction that consists in
comparing those similar objects and doing as if there was something common
to them. That is why the collections of similar objects are proposed as ade-
quate surrogates for the attributes. This view is in principle compatible with
the traditional psychological conception of abstraction. Therefore, attributes
could be conceived of as the result of a psychological process of abstraction that
a subject could make if she detected the relevant similarities. In other words,
attributes would be psychological concepts. Some of the similarities may be just
imposed by her cognitive system (abundant), whereas others may be really ob-
jective or sparse. In that sense attributes would be ontologically dependent for
their existence, but not necessarily for their identity (unless they are abundant),
on minds13. Such a nominalism is a mixture of resemblance and conceptualist
nominalisms. Other nominalists will argue that there are no attributes as de-
scribed by the realist, that there are just primitive facts regarding which objects
are similar to which, and that the psychological processes of categorization have
nothing to do with the issue. Still others may defend that the issue is just that
to make sense of what realists say one can take whatever entities ontologically
dependent on these similarity facts turn out to fulfill the required theoretical
roles. And for these purposes it happens to be the case that taking collections
of similar objects is a very convenient choice.

One of the reasons why I introduced the idea of similarity invariants is due
to what I think is a constraint that resemblance nominalism should meet. Ac-
cording to resemblance nominalism, the internal structure of natural kinds (or
of properties) is based upon relations of similarity. So long as the nominalist

12Comparisons between the merits and difficulties of realist and nominalist approaches can
be found in any introduction to the problem of universals, such as [4]. As the reader will
realize, my focus in this chapter is mainly of structural issues.

13Such a thesis would require treating in depth the psychological literature on concept
formation, so I will not delve into that.
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appeals to a categorical similarity, it seems plausible to ask for the following
constraint to be satisfied:

Invariants The internal structure of a kind should be determined by similarity
invariants.

The resemblance nominalist should propose explications of natural kinds (or
of properties in general) that make use of similarity invariants. Why? If the
fundamental structure of a kind is to be explained in terms of similarity rela-
tions among its members, then being a natural kind should be invariant under
similarity morphisms. If we do not ask for this, then there is a more funda-
mental concept than similarity that explains what the structure of a kind is. In
that case, either a weaker or a stronger property would explain the structure of
kinds. Each nominalistic theory may make a different choice regarding which
similarity invariants finds more explanatory. We will review now the three most
popular kinds of resemblance nominalism, namely egalitarian, aristocratic and
collectivist resemblance nominalism [109], but we will focus mainly on the first
two. I will adopt the aristocratic view.

According to (naive) Egalitarian Resemblance Nominalism, properties are
maximal collections of pairwise similar particulars. All the members in the
class fulfil the same roles as building blocks of the class. Therefore, a particular
belongs to the class iff it is sufficiently similar to all its members. The roots
of this position can be found in Carnap’s explication of properties as similar-
ity circles [17]. Carnap proposed to consider similarity circles as surrogates for
properties. The main challenge to this position came from Goodman’s coexten-
sionality, companionship and imperfect community problems (all of which were
already anticipated by Carnap). According to the simplest version of egalitarian
nominalism, the truthmaker of ”x is P” is the fact that x ∼ y1 & x ∼ y2 & . . .
where for each yi it is also true that ”yi is P”. A simple but misleading way of
expressing this is by saying that ”x is P” is true iff x is similar to the P -s.

The main contemporary defendant of egalitarian resemblance nominalism
is Pereyra [109]. However, his specific approach is somewhat more compli-
cated. He approaches the main problems of resemblance nominalism, imperfect
community and companionship, separately. These two problems will be intro-
duced in more detail in the next chapter. Nevertheless, in order to understand
Pereyra’s approach it is convenient to give a short description of them now.
The nominalist suggests taking the properties to be maximal classes of pairwise
similar objects. This will not work, as Carnap himself pointed out. On the
one hand, properties (or their extensions) can be properly included into one
another, whereas similarity circles cannot, since they are maximal by definition.
This is the companionship problem. On the other hand, there can be a set of
objects that share pairwise a property without all of them sharing any property,
a fortiori, all of them will be similar to each other and will form a similarity
circle. This is the imperfect community problem. These two problems show that
the naive egalitarian approach does not work.

4.3.2 Pereyra’s Egalitarianism

In order to deal with these two problems, Pereyra makes two moves. First,
instead of taking as primitive a categorical similarity relation that holds just
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between objects, he takes the similarity to hold between objects, pairs of objects,
pairs of pairs of objects, and so on. The idea is that, if the nominalist takes all
these resemblance facts as primitive, that should give her information enough
to filter those classes that do correspond to properties, avoiding the imperfect
community. Second, in order to distinguish between some properties that are
included in others, Pereyra introduces different degrees of similarity. This allows
him to avoid companionship.

In order to show how his strategy works, I will reformulate some of the theses
that Pereyra defends in [109]. Nevertheless, I will try to keep the notation and
assumptions as closely as possible to the original ones. Recall that the aim of the
nominalist is to reconstruct a realist context (S,Q, I)14. From now on we will
assume that such a context is finite (because Pereyra assumes so), set-theoretical
Q ⊆ ℘(S), satisfies the non-bare particulars and exemplification principles and
is such that no property is included into another.

Definition 35. Let (S,Q, I) be a finite context such that Q ⊆ ℘(S) and I =∈.
Let us assume that:

i If x ∈ S, then i(x) 6= ∅.

ii If R ∈ Q, then e(R) 6= ∅.

iii If R,P ∈ Q and P ⊆ R then P = R.

We need this last assumption because at first Pereyra only deals with the
imperfect community, not with the companionship problem. The following op-
erator will be very useful, given an arbitrary set Y and a subset A ⊆ Y :

Pair(A) := {{x, y} | x, y ∈ A & x 6= y}

This operator gives all the pairs of distinct elements in A. Now we must
extend the set of objects to include all the pairs, pairs of pairs, and so on.

Definition 36. Let (S,Q,∈) be a context. Then its domain of objects∗ is the
set S∗ defined as follows:

i S ⊆ S∗.

ii If a, b ∈ S∗ and a 6= b, then {a, b} ∈ S∗.

The domain now contains all objects, pairs of distinct objects, pairs of pairs
of objects, and so on. The domain of properties is expanded too. The idea is
that pairs of objects can also be similar to each other. In fact, if binary relations
are to be reconstructed too, Pereyra says, that should be the case. Consider for
instance the properties Red = {a, b, c} and Blue = {e, f}. Then although the
pairs {a, b} and {a, c} are similar to each other in being pairs of red objects,
the pairs {a, b} and {e, f} are not. Since the two former pairs are similar, they
must have a property in common. Of course, a pair of red objects is not itself
red. Pereyra suggests that the property be something like being a pair of red
objects. So the domain of properties needs to be expanded suitably. Recall that
Q is finite. All the properties of objects are supra-indexed by a 0, we have
Q = {X0

1 , . . . , X
0
i }. We now extend the domain of properties as follows:

14This whole reconstruction process will be considered in detail in the next chapter.
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Definition 37. Let (S,Q,∈) be a context. Then its domain of properties∗ is
the set Q∗ defined as follows:

i Q ⊆ Q∗.

ii If Xn ∈ Q∗, then Xn+1:=Pair(Xn) ∈ Q∗

For example, if Red0 = {a, b, c}, then Red1 = {{a, b}, {b, c}, {a, c}}, Red2 =
{{{a, b}, {b, c}}, {{a, b}, {a, c}}, {{b, c}, {a, c}}}, and so on. In other words, each
property X0 induces a whole hierarchy of higher-order properties that include
in their corresponding extensions the pairs of pairs of . . . of the members in the
extension of X0.

Then a function that maps objects* to properties* is introduced. Let us call
the resulting structure a ’Pereyra context’:

Definition 38. Let (S,Q,∈) be a context where S∗ and Q∗ are defined as
previously. If f : S∗ → Q∗ is a function defined piecewise as follows, then
(S∗, Q∗, f) is the Pereyra context induced by (S,Q,∈):

i f(x) = i(x) if x ∈ S.

ii f(x) = {Xn+1
1 , . . . , Xn+1

i } if x = {a, b} ∈ S∗ − S and f(a) ∩ f(b) =
{Xn

1 , . . . , X
n
i }.

iii f(x) = ∅ otherwise.

In words, the function extends the intension function that maps each object
to its properties. In the case of pairs, it takes the pair of elements a, b and maps
it to all the higher-order properties that correspond to the properties common
to them. Pereyra uses this function to introduce a similarity relation:

Definition 39. Let (S∗, Q∗, f) be a Pereyra context. Then a ∼∗ b iff f(a) ∩
f(b) 6= ∅ is the Pereyra similarity in S∗.

Note that this similarity relation generalizes the usual one. This similarity
holds not only between objects, but also between pairs of objects, pairs of pairs
and so on. This is one step where Pereyra deviates from the original strategy.

In order to distinguish between a given set of objects, the set of its pairs,
and so on, Pereyra introduces some further notation. First, all subsets α of the
domain of objects S are supra-indexed by a 0, the rest are defined as follows:

∅ 6= α0 ⊆ S
αn+1 = Pair(αn)

So if α0 = {x, y, z} then α1 = {{x, y}, {x, z}, {y, z}}. The second point
where Pereyra deviates from the original strategy is in his definition of the
nominalistic properties. Instead of taking similarity circles, he proposes:

Definition 40. Let (S∗, Q∗, f) be a Pereyra context and α0 ⊆ S. Then α0 is a
perfect community iff ∀n ∈ N ∀a, b ∈ αn a ∼∗ b.

In other words, a perfect community is something like a stratified clique. It
is not difficult to see that any subset of a perfect community is also a perfect
community. Therefore, although all the properties are perfect communities, not
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all the perfect communities are properties. What Pereyra claims is that perfect
communities are exactly the subsets of the original properties in Q. In other
words, that they are exactly the sets of objects which are such that all their
members share a property. Since we assumed that no property in the context
is properly included into another, the maximal perfect communities are exactly
the properties. Thus the following would hold (recall that through this section
a ’context’ is finite, set-theoretic, has no property included into any other and
so on):

Theorem 5. Let (S,Q,∈) be a context. Then its Pereyra context (S∗, Q∗, f)
induces a similarity structure (S∗,∼∗) which is such that the family of maximal
perfect communities is just Q.

As an example, take the context Q = {{x, y}, {x, z}, {x,w}, {y, z}, {y, w},
{z, w}, {x, y, z}, {x,w, z}, {x, y, w}, {y, w, z}}. Let us rename the properties as
XY 0, XZ0, XW 0 and so on. In this example, the set α0 = {x, y, z, w} is an
imperfect community, since there is no property common to its four members.
All its members are similar to each other, and so it forms a clique. However, it
is not a perfect community, since the set Pair(α0) = α1 = {{x, y}, {z, w}, . . . }
is not a clique. The reason is that the pairs {x, y}, {z, w} are not similar to each
other. Whereas f({x, y}) = {XY 1, XY Z1, XYW 1}, we have that f({z, w}) =
{ZW 1, XZW 1, Y ZW 1}, so the two sets of properties are disjoint.

In sum, in order to reconstruct the properties, the nominalist only needs
to take as primitive the similarity relation ∼∗. She starts from the structure
(S∗,∼∗). It is important to notice, as Pereyra says, that it will not be enough
to consider only similarities between pairs of objects. One has to consider
similarities between pairs of pairs, between pairs of pairs of pairs, and so on.

In order to prove the former theorem, something like the following lemma is
needed:

Lemma 4. Let (S,Q,∈) be a context and (S∗, Q∗, f) its Pereyra context. Then
α0 ⊆ S is a perfect community iff there is a X0 ∈ Q such that α0 ⊆ X0.

The right-to-left direction can be proven by induction. One just needs to
show that if α0 ⊆ X0, for some property X0 ∈ Q, then αn ⊆ Xn for every
natural number n. So every subset of a property is a perfect community.

However, Pereyra does not give a proof for the left-to-right direction of this
lemma, which is the crucial one. Although the proposition seems to be true,
showing that it is so requires some work. In page 168 of [109] he says:

”First, if α0 is a perfect community then, for every n, αn is a com-
munity, while if α0 is an imperfect community then there is some n
such that αn is a non-community. This can be easily proved since
(1), of section 9.4, conjoined with the assumption that the members
of a class α0 form a perfect community allows us to reach by a sort
of induction that, for every n, αn is a community.”

Here ’community’ means a subset of a property. The assumptions Pereyra
refers to are these (page 165):

”(1) If certain properties are shared by certain entities then the
properties shared by their pairs are the corresponding higher-order
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properties. Thus if Fn is shared by x, y and z, Fn+1 is shared by
{x, y}, {x, z} and {y, z}.”

”(2) If an nth-order pair has a property Fn then its bases share the
property F 0.”

The first assumption is true by definition and does not help giving a proof,
therefore Pereyra seems to be referring to the second one. In fact, this propo-
sition (2) can help proving the result, but it itself is still unproven. For this
we must establish a correspondence between each set of pairs of pairs of . . . and
its ’basis’, the set of elements from which it has been obtained. Then (2) can
be proven. Let us define the basis of a set of pairs of pairs . . . by the following
function base : S∗ → ℘(S):

base(x) = {x}, for x ∈ S

base(A) =
⋃
{base(a) | a ∈ A}, for A ⊆ S∗ − S

In particular, base({a, b}) = base(a) ∪ base(b). For example, base({{1, 2},
{2, 3}}) = {1, 2, 3}, as expected.

Lemma 5. Let base : S∗ → ℘(S) be the function just defined. Then:

i Let αn be induced by α0 ⊆ S. Then base(αn) = α0.

ii base(Xn) = X0, for each property X0 ∈ Q.

iii If A ⊆ B, then base(A) ⊆ base(B).

iv Xn ∈ f({a, b})⇔ {a, b} ⊆ Xn.

v If {a, b} ∈ αn is such that Xn ∈ f({a, b}), then base({a, b}) ⊆ X0.

Proof. (i) By induction. (ii) By (i). (iii) If A ⊆ B then base(A) =
⋃
{base(a) |

a ∈ A} ⊆
⋃
{base(b) | b ∈ B} = base(B). (iv) By induction: Let Xn ∈

f({a, b}). If n = 1, then X0 ∈ f(a) ∩ f(b), therefore a, b ∈ X0. Suppose that it
holds for n. If Xn+1 ∈ f({a, b}), then Xn ∈ f(a) ∩ f(b) = f({c, d}) ∩ f({e, f})
for a = {c, d}, b = {e, f} ⊆ Xn, by hypothesis. So a, b ∈ Xn+1. Conversely,
let {a, b} ⊆ Xn. If n = 1, then {a, b} ⊆ Pair(X0) so a, b ∈ X0 therefore
X1 ∈ f({a, b}). Suppose that it holds for n. If {a, b} ⊆ Xn+1 then a =
{c, d}, b = {e, f} ⊆ Xn, therefore Xn ∈ f(a) ∩ f(b) and so Xn+1 ∈ f({a, b}).
(v) If {a, b} ∈ αn is such that Xn ∈ f({a, b}), by (iv) we have {a, b} ⊆ Xn, and
by (ii), (iii) we have base({a, b}) ⊆ base(Xn) = X0.

The contrapositional of (v), which is the assumption that Pereyra was refer-
ring to, is:

base({a, b}) * X0 ⇒ Xn /∈ f({a, b}), for{a, b} ∈ αn

Therefore, if the basis of a given ’n-th order pair’ has no properties, then
the corresponding pair has no properties either, in other words:

f(base{a, b}) = ∅⇒ f({a, b}) = ∅
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Let α0 be a perfect community and suppose by reductio that it is not included
in any property X0 ∈ Q. One has to show that there is a number n such that αn

is not a clique anymore. The simplest way to do so would be to find a natural
number n which is big enough so that αn contains an element {a, b} whose basis
is α0. This means that {a, b} has to include each of the elements of α0 in one
of its pairs of pairs of pairs . . . How can we find such an n?

We need to find a way to represent a given set, like α0, by a set of pairs of
pairs of . . . in such a way that all the elements in the set occur in one of these
pairs. That such a representation must exist is plausible, given that the set α0

is finite. Moreover, there are many ways to do it. I will just give one example
on how one could do it, since filling the details can be a bit tricky.

Let N∗ be the set of all natural numbers, all pairs of natural numbers, all
pairs of pairs, and so on, as we defined before. Let s : N∗ → N∗ be the following
auxiliary function:

s(n) = n+ 1, for n ∈ N
s({a, b}) = {s(b), ss(b)}, for {a, b} ∈ N∗ −N

Next we define the following sequence of sets:

A1 :={1, 2}
An+1 ={An, s(An)}

The first sets in this sequence are:

A1 ={1, 2}
A2 ={{1, 2}, {3, 4}}
A3 ={{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}
A4 ={{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}}, {{{{9, 10}, {11, 12}}, {{13, 14}, {15, 16}}}}
. . .

Let A = {x1, . . . , xn} be a finite set of at least two elements, say, A = α0.
The previous sequence of sets gives a way of representing A as a set of pairs
of pairs of . . . in such a way that every element of A appears in one of these
pairs. In order to force only elements of A to appear in those pairs, some
elements must appear twice. Each of the previous sets Am has as basis 2m,
for m a natural number. For any A with cardinality |A| = n, one should
choose the simplest representation, namely Am where m is the smallest nat-
ural number such that |A| = n ≤ 2m. For example, if A = {x1, . . . , x5}
has cardinality 5 one chooses m = 3, and so A gets represented as the set
A3 = {{{x1, x2}, {x3, x4}}, {{x5, x1}, {x2, x3}}} whose basis is 23. Thus, if
|A| = n the function that sends Am to A, or what is the same, 2m to A, simply
maps the number (or position) p to xp if p ≤ n and to xm−n otherwise (to allow
for repetitions). It is clear that such a representation will contain all and only
elements in A (some of them occur at most twice) as elements in pairs of distinct
pairs of distinct pairs of . . . Thus, the basis of such a pair is simply A. In any
case, once such an Am is found, it must belong to some αk constructed from
α0, and so it follows from the previous results that if the α0 lack a property,
f(α0) = f(base(Am)) = ∅, then Am lack properties too, f(Am) = ∅. There-
fore, Am cannot be similar to any other element in αk and so αk is not a clique,
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which contradicts the assumption that α0 is a perfect community and finishes
the proof of the lemma required.

Pereyra argues that the nominalist has to assume as primitive similarity
relations between ordered pairs anyways if he is to reconstruct binary relations
(as sets of ordered pairs). This is indeed the case. However, the similarity
relations that need to be assumed as primitive among ordered pairs will differ
from the ones needed to solve the imperfect community for monadic properties.
In order to reconstruct binary relations, the set Q of the context must contain
sets of ordered pairs, whereas S must contain ordered pairs. Then the induced
0-similarities hold between these ordered pairs, the 1-similarities hold between
pairs of these ordered pairs, and so on. Consider the case where S also contains
some of the members of these pairs and Q contains some monadic property.
Then the similarities that hold between these objects and the ordered pairs and
that are used to reconstruct relations are different from the similarities that hold
between the pairs for reconstructing the monadic properties. In other words,
there are two different kinds of similarities among ordered pairs. Some of are
used to reconstruct monadic properties from the elements and the others are
used to reconstruct binary relations from these ordered pairs.

There are other problems with Pereyra’s solution15. The first one is formal,
it is that half of the interesting result is missing. In other words, the previous
result only gives half of the nominalistic reduction. Even if there is a way
to define a similarity relation between objects, pairs of objects, pairs of pairs
of objects and so on, which is such that the perfect communities are exactly
the original properties, this does not say what the original similarity by the
nominalist should look like. A fortiori, it is not shown either that there is
indeed a unique correspondence between such a similarity and the one induced
following the previous recipe. The similarity structure that the nominalist starts
from must contain objects, all pairs of objects, all pairs of pairs of objects, and
so on. But what other conditions must satisfy? Clearly, it is not enough to take
any similarity structure (S,∼) and then extend the similarity to all the pairs
in S∗. This will not do, one has to assume as primitive the whole similarity
structure that includes all the pairs. The point is that some further axioms
have to be given concerning the relation between the similarities between pairs
and the similarities between objects.

There is another problem which concerns adequacy. The structure (S∗,∼∗) is
much more complex than it seems. It is not clear to me how different Pereyra’s
egalitarianism is supposed to be from collectivist approaches. This strategy
assumes from the outset primitive similarities between pairs of pairs of pairs
of . . . of objects. This is not very different from assuming similarities between
arbitrary sets of objects, as several authors (like Busse [15]) have noted. In fact,
one can collapse any such pair of pairs of . . . of objects onto the set of objects
from which it was constituted by using the base function. Such a move is needed
to actually prove the main result. If we take a closer look at how this works,
we can see that what is doing the job is the following relation:

Xn ∈ f({a, b})⇔ {a, b} ⊆ Xn

15I will ignore the finiteness constrain, but it is also problematic given that the strategy
should work independently of the cardinalities of the domains of objects and properties in-
volved.
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In other words, what we have here is the resemblance {a, b} ∼ {c, d} iff
{a, b}, {c, d} ⊆ Xn for some n, that holds among sets. It is true that the
relation is not reflexive, but one can easily restrict the attention to the sets that
are similar to themselves (those whose bases are included in a property). This is
in fact Goodman’s collectivist solution to the problem of imperfect community
in disguise. What Pereyra’s solution is doing is representing each base as a
set of pairs, but a resemblance relation between the bases themselves could
do the job equally well. The resemblance is A ∼ B iff A,B ⊆ X for some
property X ∈ Q. This Goodmanian strategy is used by Rooij and Schulz [111]
too to give a set-theoretic version of Pereyra’s approach (their formulations
are somewhat different though). Starting with sets allows getting rid of the
cumbersome representation in terms of pairs of pairs of . . . There is no much
difference since similarities between pairs, between pairs of pairs, and so on
had to be assumed. Moreover, the representation is also simpler in terms of
cardinality, since one only assumes a resemblance relation on ℘(S) and thus the
domain has cardinality 2m.

Things become even more complex with respect to Pereyra’s solution of the
companionship problem. The problems that this solution has are analogous to
the ones just mentioned. Furthermore, this solution expands on the previous
one and so inherits the cumbersomeness of the representation in terms of pairs
of pairs of pairs of . . . In sum, Pereyra gives an interesting way to approach
the nominalist reconstruction of universal (natural) attributes. However, the
strategy has several flaws. First, it is incomplete. We have been shown how
to define a similarity relation starting from a realist structure (a context) in
such a way that the properties are certain subsets (perfect communities) of the
domain of objects. But the conditions that the primitive similarity must satisfy
for the converse to hold are not given. Second, assuming as primitive similarity
relations among pairs of pairs of . . . seems to make this version of resemblance
nominalism really a variant of collectivist nominalism, as several authors have
already noted. In fact, a simpler version of the strategy could be given just by
starting with a resemblance relation between sets.

4.3.3 Collective Resemblance Nominalism

Our second kind of nominalism is Collective Resemblance Nominalism. It ap-
peared as a different answer to Goodman’s problems for nominalism, first sug-
gested by Goodman himself in a mereological fashion in [48] and then again
by Lewis [73]. The idea is that properties are collections of collectively similar
particulars. Collective similarity has some special features that make it irre-
ducible to binary or pairwise similarity. The point of collectivism can be made
by comparing the following two principles that link pairwise similarity to collec-
tive similarity (see Guigon’s [50]). We will read A ∼∗ A as ”the A-s are similar
to each other collectively”:

Rdistributivity If the A-s resemble each other, then for any x and y such that
x and y are among the A-s, x resembles y. Equivalently, if the A-s share
a property, then each pair of A-s shares a property.

A ∼∗ A⇒ ∀x, y ∈ A x ∼ y
i(A) 6= ∅⇒ ∀x, y ∈ A i(x) ∩ i(y) 6= ∅
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Rcumulativity If any x and y such that x and y are among the A-s resemble
each other, the A-s resemble each other. Equivalently, if each pair of A-s
shares a property, the A-s share a property.

(∀x, y ∈ A x ∼ y)⇒ A ∼∗ A
(∀x, y ∈ A i(x) ∩ i(y) 6= ∅)⇒ i(A) 6= ∅

According to the collectivist, what imperfect communities show is that ap-
proximate binary similarity is cumulative. But it should not be, given that
members of an imperfect community do not share a natural property. There-
fore, they argue, we should assume as primitive a collective resemblance relation
that is not cumulative and forget about binary similarity. As several authors
like Busse [15] or Lewis have suggested, resemblance nominalism is very close to
what is known as Natural Class Nominalism, which just takes some basic collec-
tions of particulars as fundamental, thus bypassing the problem of constructing
them from a similarity relation. The boundaries are even more difficult to draw
regarding collectivist approaches. We will not consider Collectivism in this the-
sis, but since it is one of the main competitors it is important to keep it in
mind.

4.4 Aristocratic Resemblance Nominalism

4.4.1 Naive Aristocraticism

In contrast to Egalitarianism, Aristocratic Resemblance Nominalism says that
properties are collections of particulars that are sufficiently similar to some
special particulars which behave as paradigmatic members of the collection. So
there are some particulars, the paradigms, that occupy a special role in the
unification of the collection. A particular belongs to the class iff it is sufficiently
similar to the paradigm(s) of the class. For instance, the truthmaker of ”x is P”
is the fact that x ∼ p, where p is a paradigm. The truthmaker of ”All P -s are R-
s” is the fact that if x ∼ p then x ∼ r, where p and r are some paradigms of the
corresponding classess. Once again, a simple but misleading way of expressing
this is by saying that ”x is P” is true iff x is similar to the P -paradigm p. The
first one to defend an aristocratic nominalism was Price [102], who says:

”It is agreed by both parties that there is a class of red objects.
The question is, what sort of a structure does a class have? That
is where the two philosophies differ. According to the Philosophy
of Universals, a class is so to speak a promiscuous or equalitarian
assemblage. All its members have, as it were, the same status in
it. All of them are instances of the same universal, and no more
can be said. But in the Philosophy of Resemblances a class has a
more complex structure than this; not equalitarian, but aristocratic.
Every class has, as it were, a nucleus, an inner ring of key-members,
consisting of a small group of standard objects or exemplars. The
exemplars for the class of red things might be a certain tomato, a
certain brick and a certain British post-box. Let us call them A, B
and C for short. Then a red object is any object which resembles A,
B and C as closely as they resemble one another. The resemblance
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between the exemplars need not itself be a very close one, though it
is of course pretty close in the example just given. What is required
is only that every other member of the class should resemble the
class exemplars as closely as they resemble one another.”[102]

Nowadays this position is not very popular due to some objections raised by
Armstrong [2] and Pereyra [109], [110]. The main ones are:

1. There are some technical problems regarding the power of aristocratic
nominalism to reconstruct properties from the paradigmatic elements.

2. The motivation for introducing paradigmatic elements seems suspicious.
That some elements are more paradigmatic than others seems to be the
result of a conventional choice or of a psychological mechanism that does
not have so much to do with the objective structure of the world.

I will soon develop a formally adequate model of aristocratic resemblance
nominalism. This should be enough to answer the first objection. Nevertheless,
one of the objections launched by [110] appears to go against the formal ade-
quacy of the model. I think that it just goes against the assumptions regarding
the paradigmatic objects that such a model would make, but in any case it is
worth considering:

”A further problem is that Cargile’s paradigms cannot do the work
they are supposed to do, namely to collect all and only F -things.
Cargile’s examples involve a single paradigm. But a single paradigm
cannot collect all and only the things it is supposed to collect. To see
this consider the white paradigm. If it collects white things because
they resemble it, it also collects non-white things, for many of these
also resemble it. This is because the white paradigm will have other
properties apart from being white.” [110]

This is a serious problem. Let us grant that each property has at least one
paradigmatic exemplar. In addition, let us suppose that each property has at
most one paradigmatic instance (this is the sort of model I will introduce in
Chapter V). Is not this assumption blatantly false? Why should each property
have a unique paradigm? This sounds unrealistic. As Pereyra says, each object,
including the paradigms, will have more than one property. Therefore it will
not be similar just to the objects that have the property P of which it is a
paradigm. Since it will be similar to objects having a different property R, it
will follow that P -s and R-s are similar to each other. But this is precisely what
the non-transitivity of similarity is supposed to avoid.

Let us take a closer look. First, we should not forget about the different de-
grees of similarity. Regarding degree d, object p may be a paradigm of property
P and therefore p is not an instance of any other property P ′. But if the degree
of similarity d′ is finer than d, p may be a paradigm of a different property P ′′.
Or if d′ is coarser than d, p may not be a paradigm at all. So although p may
only be d-similar to the white things, it can be d′-similar to white and square
things. The point is that whether an object is a paradigm or not may depend on
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the relevant degree of similarity. In short, being a paradigmatic element need
not be an invariant property under some similarity transformations (in fact,
according to the model to be given below, it is not invariant under similarity
homomorphisms, just under polar continuity). I grant that the idea that each
property has at most one paradigmatic exemplar may sound somewhat suspi-
cious or at least like a high idealization. In fact, something like a generalized
aristocratic nominalism with more paradigms can be developed, as it will be
shown in Chapter V. Although an explanation for this will be given in the last
sections of the next chapter, developing such a project fully falls outside of the
scope of this thesis.

Regarding the second objection, the worry seems to be that it is implausible
to think that nature would be structured in such a way that some members
of a kind K or an attribute P would be more K-s or more P -s than others.
Paradigms may have some role to play in allowing us to successfully refer to
all the members of a collection of objects, and they may also have some other
psychologically useful roles to fullfil (making conceptual categorisations possible,
for instance). But if objects are primitively objectively similar to each other,
then what does it mean to say that some objects are more paradigmatically P -s
than others? The problem is that commitment to paradigmatic objects seems to
introduce some subjective components into the picture. After all, it seems that
the choice of some objects as paradigms instead of others would be motivated by
several psychological factors, like the fact that the subject founds some objects
to be paradigmatic simply because they resemble more those exemplars that he
has already found before. But which objects the subject has encountered first
is just a purely contingent feature of his learning process. If anything, nature
is egalitarian. All the instances of a property or a kind are on a par. Any
alleged difference between the members of the kind is to be attributed to the
idiosyncrasies of the subject making the similarity comparisons.

But why should we think that nature has such a high level of symmetry?
We might be wrong after all. Consider the structure of space. One may think
that space is necessarily homogeneous: a god could permute any space-time
point by any other while the overall structure of space remained intact. Nobody
would notice. This seems prima facie reasonable, after all, what could possibly
distinguish one point or location of space from another? The space should look
the same from any of its locations. But it turns out that, at least for physical
space, this may not be the case. Whether physical space is homogeneous or not is
a substantive empirical question. Analogously, nature may be non-homogeneous
too in having some exemplars of its natural properties (or kinds) clustered more
closely around a ’nucleus’ or ’core’ and others around its ’boundary’. This may
happen due to the fact that objects may belong to several classes and therefore
may occur in the boundaries of these. Think about the case of the colour wheel.
Some hues seem to be more red-like than others and some hues are at the
boundaries of several colours. The spatial analogy is crucial here for reasons that
were hinted at in Chapter III while we discussed the Hierarchy constraint. The
traditional conception of classification is non-spatial and ignores the possibility
of the classes being internally structured in different ways. Moreover, some of
our concepts may have aristocratic structure because they successfully track the
structure of the corresponding attributes or kinds. If so, then the fact that a
given object is a paradigm or not is fixed by the world, not by us.

Nevertheless, the previous objections cannot be answered in more detail
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unless we describe a specific instance of aristocratic resemblance nominalism.
In the following sections I will consider three models for aristocratic resemblance
nominalism and I will argue that they are materially adequate. This will provide
us a starting point for the reduction of the realist model.

4.4.2 A Topological Model

Let us introduce our first model for aristocratic nominalism. Recall the concep-
tual spaces approach, which was introduced in Chapter II. Conceptual spaces
are spatial models of conceptual categorisation that represent objects as points,
natural properties (simple concepts) as spatial regions and degrees of dissimilar-
ity as distances. Prototypical objects are represented as certain chosen points
in the space, the attributes being the collections of points which are sufficiently
close to these. We could use conceptual spaces to give a model for aristocratic
nominalism, by taking paradigms to be the prototypical objects that classify the
rest. However, these models make use of degrees of similarity. What we need
here is a model that appeals to a categorical notion of similarity. Thus, it would
be convenient if there was a conceptual spaces-like approach which was closer
to this categorical conception and did not appeal to degrees as represented by
the distances between points. Such an approach can be found, I think, in the
polar model proposed by Rumfitt in [114] and developed by Mormann in [90].

Rumfitt proposes in [114] a topological model of vagueness as a way to deal
with the Sorites paradox. The crucial point is the introduction of a structure of
objects that are ”similar” to certain paradigmatic objects. These structures are
called ’polar distributions’, paradigms being called ’poles’. A simple example is
the colour circle used to represent the different hues. The more paradigmatic
exemplars of red, yellow, orange and so on are taken to be the poles. Any other
colour in between, such as an orangish red or a yellowish green, gets mapped
to the poles to which it is similar. Rumfitt maps each pole to a linguistic
predicate, in such a way that the former ones determine the extension of the
latter ones, thus providing a semantics for the language. His approach is inspired
by the prototype and exemplar models of psychological categorisation that we
mentioned before. Rumfitt’s proposal has been developed by Mormann [90] as
a qualitative model for Gärdenfors theory of conceptual spaces. I will consider
it here as a model for aristocratic nominalism.

I will use the formulation in [90] of some of the basic notions. I introduce
condition ’PII’ (Identity of Indiscernibles again) for reasons that will become
evident in the next chapter:

Definition 41. Let S be a non-empty set and P ⊆ S. A polar distribution over
S is a function m : S → ℘(P ) that satisfies (1)-(2). A distribution is (PII) iff
it satisfies in addition (3):

1. ∀x ∈ S m(x) 6= ∅.

2. ∀x ∈ S ∀p ∈ P m(x) = {p} ⇔ x = p.

3. ∀x, y ∈ S m(x) = m(y)⇒ x = y. (PII)

The polar distribution is denoted by (S, P,m). Elements in P are poles or
paradigms. The crucial insight by Rumfitt was that the role played by poles
in the polar distributions induces literally a spatial structure in the domain of
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objects. To explain this we need to introduce some basic notions of topology.
The concepts are standard and can be found in any textbook on topology, say
[141]:

Definition 42. Let S be a set and O(S) ⊆ ℘(S). Then (S,O(S)) is a topolog-
ical space iff:

1. S ∈ O(S) and ∅ ∈ O(S).

2. A,B ∈ O(S)⇒ A ∩B ∈ O(S).

3. A1, A2, · · · ∈ O(S)⇒
⋃

iAi ∈ O(S).

Members of O(S) are called open sets. A set B ⊆ S is closed iff Bc is
open. C(S) is the family of closed sets of S. A set C ⊆ S is clopen iff is open
and closed. Given an element x, an open neighbourhood of x is an open set
N(x) ∈ O(S) which is such that x ∈ N(x). In particular, we will say that a
point x is open (closed) iff {x} is an open (closed) set. Loosely put, one can
think about a topological space as a set of points S and some families (open,
closed, . . . ) of regions closed under familiar set-theoretic operations.

Definition 43. Let (S,O(S)) be a topological space and A ⊆ S. Then:

1. Cl(A) :=
⋂
{B ∈ C(S) | A ⊆ B} is the closure of A.

2. Int(A) :=
⋃
{B ∈ O(S) | B ⊆ A} is the interior of A.

3. Bd(A) := Cl(A) ∩ Cl(Ac) is the boundary of A.

4. Ext(A) := Int(Ac) is the exterior of A.

To determine whether two topological spaces are structurally similar we need
the notion of continuity:

Definition 44. Let (S,O(S)) and (S′, O(S′)) be topological spaces and f : S →
S′ a function. Then:

1. f is continuous ⇔ ∀A ∈ O(S′) f−1(A) ∈ O(S).

2. f is a homeomorphism ⇔ f is bijective, f is continuous and f−1 is con-
tinuous.

Examples:

i. O(S) = {S,∅} is the indiscrete space and O(S) = ℘(S) is the discrete
space.

ii. Let S = {0, 1}, then O(S) = {∅, {1}, {0, 1}} is the Sierpinski space.

iii. Let (S,≤) be a preordered set. Then O(S) = {A ⊆ S | A is an up-set} is
the Alexandroff topology of S.

The indiscrete and the discrete are the two trivial or extreme examples
of spaces. The indiscrete space is so coarse that one cannot use regions to
distinguish between the points. In the other extreme, the discrete space is so
fine-grained that each collection of points is a region. The Alexandroff topologies
are the ones we are interested in, they can be equivalently introduced as follows:
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Definition 45. Let (S,O(S)) be a topological space. Then S is an Alexandroff
space iff O(S) is closed under arbitrary intersections.

Alexandroff topologies correspond to preorders. As the previous example
shows, every preorder induces an Alexandroff topology by taking the open sets
to be the up sets. Conversely, every Alexandroff topology induces a preorder
over its points called the specialization preorder and defined as x ≤ y ⇔ x ∈
Cl(y) ⇔ ∀A ∈ O(S)(x ∈ A ⇒ y ∈ A). Moreover, a function from one Alexan-
droff topology to another is continuous iff it is monotone with respect to the
corresponding preorders.

The indiscrete and discrete spaces already hint at a minimal condition that
any interesting space should satisfy. Namely, the space should give us enough
resources to distinguish the points by making use of the (open) regions. Topolo-
gists have studied many of the so-called ’separation axioms’. For our purposes,
the weakest of these axioms is enough:

Proposition 19. Let (S,O(S)) be a topological space. The following conditions
are equivalent:

1. O(S) is a T0 space.

2. For all x, y in S, there is an open neighbourhood of x which is not of y,
or viceversa.

3. The specialization preorder is a partial order.

In other words, the T0 Alexandroff spaces are the ones corresponding to
posets. These brief topological remarks are enough to consider the fruitfulness of
the polar approach. It turns out that a polar distribution induces an Alexandroff
topological space as follows [114], [90]:

Proposition 20. Let (S, P,m) be a polar distribution. Let O(S) := {A ⊆ S |
∀x ∈ A (p ∈ m(x) ⇒ p ∈ A)}. Then O(S) is a T0 Alexandroff topology over S
called the polar topology.

The topological closure of a paradigm p is Cl(p) := {x ∈ S | p ∈ m(x)}
[114]. The specialization order is x ≤∗ y iff x = y or y ∈ m(x). The smallest
open set for each x is Nx = {x} ∪m(x). There is a property that characterizes
this sort of spaces. First note that the set of open points in the space is exactly
P , the set of poles or paradigms.

Definition 46. Let (S,O(S)) be a topological space and A ⊆ S. Then A is
dense iff Cl(A) = S. Moreover, O(S) is weakly-scattered iff the set of open
points is dense.

A dense region in a space is a set of points which are ’everywhere’, so to
speak. Whichever point in the space we choose, we will always be able to find
one of these points arbitrarily close to it. The most important fact about polar
spaces is the following one, as shown by Mormann [90]:

Proposition 21. Let (S, P,O(S)) be a polar topology. Then O(S) is weakly-
scattered.
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Figure 4.2: Example of Polar Space: Colour Circle

So a polar distribution is a space whose fundamental regions, the open sets,
are ’centred around’ the paradigms. Moreover, the paradigms, which are the
open points, form a dense subset. In other words, whichever object we choose,
we will always be able to find a paradigm that is arbitrarily close to it.

Let us put an example of a polar distribution. We will take the classic
example of the colour wheel or colour circle, but in a discretized fashion. Let S =
{A,B,C,D,E, F,G,H, I, J,K,L} be a set of spots and P = {A,C,E,G, I,K},
where the paradigms are A (orange), C (yellow), E (green), G (blue,) I (purple),
K (red) and the rest of items are coloured spots that are in intermediate position
between these, e.g. B (orangish yellow) and J (purplish red). The assignment
m is shown by arrows in Figure 4.2 (paradigms are circled). For instance, the
smallest neighbourhood of J is NJ = {J,K, I} and Cl(A) = {A,L,B}. This
example satisfies (PII).

The model preserves the ontological commitments of aristocratic resem-
blance nominalism. There is just one basic category of entities, objects, and
some of them (the poles) have a special property. In his proposal Rumfitt ar-
gues by assuming an implicit comparative relation of similarity of the sort ”pole
p is maximally similar to object x”. Some of these comparisons are captured
explicitly by the specialization order and the mapping that classifies objects ac-
cording to their poles. Each object is mapped to a set of poles, pre-theoretically
understood to be those poles to which the object is similar. The axioms impose
very weak constrains. First, each object is mapped at least to one pole which is
maximally similar to it. Second, an object is a pole iff the only pole it is mapped
to is itself. This implies that every non-paradigmatic objects gets mapped to at
least two distinct poles. If an object is a pole then no other pole is maximally
similar to it, that seems plausible. The converse may seem less plausible, be-
cause it involves an indiscernibility constraint. If an object is maximally similar
just to one pole, then it is in no way different to that pole. Thus it could be
used as a pole for that same property too. The polar model identifies all these
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objects that are indiscernibles or duplicates from a given pole16.
Moreover, the model has spatial content given by its topology. Given any

object in an open region, one can always find a region which is small enough to
contain all the objects that are sufficiently close to it, namely the region formed
by the object and its poles. One can get as close as wanted to any object in
the domain by selecting the appropriate pole. Given a pole, the set of all those
objects mapped to it form a closed region. Thus any object that is mapped
to a pole is spatially arbitrarily close to it. This closed region can be taken
to be a surrogate for the corresponding universal attribute17. In other words,
a property is the set of all those objects that are arbitrarily close to a given
pole or paradigm. Thus, the interior of a property is just its pole, whereas the
boundary contains all those non-paradigmatic instances of the property. Two
properties overlap exactly at their boundaries, which contain no poles. The
model has other nice topological properties (for instance, related to boundaries)
that we will not deal with. The interested reader is referred to [90]. It is to
be said that since polar spaces are only a special case of a more general class
of spaces, that of weakly-scattered spaces, Mormann takes the latter to be the
appropriate models for conceptual spaces.

In any case, the only drawback this model has is that it does not mention
similarity relations at all. If the model is to be a model for resemblance nomi-
nalism then similarity should figure somewhere. The distribution suggests that
objects are to be mapped to the poles to which they are similar, but the formal
properties of categorical similarity are absent.

4.4.3 An Order-Theoretic Model

The second model I will consider is order-theoretic. In [90] and [91] Mormann
argues for replacing polar spaces by the more general class of weakly-scattered
Alexandroff spaces. One of the reasons he gives is that this allows replacing the
categorical notion of a prototype by a comparative notion. Instead of saying
simply that an object is a prototype, objects are ordered according to how pro-
totypical they are. The poles of the polar model are then the most prototypical
elements in the model (which are guaranteed to exist). This order of prototyp-
icality is the specialization order induced by the topology. Mormann takes the
class of weakly-scattered Alexandroff spaces to be adequate for his purposes of
giving a model for conceptual spaces. However, my main purpose here is to
give a model for aristocratic nominalism. For this reason, I will put one further
constraint in order to get a model for aristocraticism that will turn out to be
equivalent to the other two models.

The basic idea is this. Objects are ordered by how qualitatively rich they
are. We say that x ≤ y iff i(x) ⊆ i(y) iff y has all the properties that x

16One could have an even more general model where the latter requirement is dropped and
there are many objects indiscernible from a given pole. In fact, Rumfitt seems to suggest this.

17I take the properties to be the closures of poles. In contrast, [114] and [90] take the
properties to be the open sets, more specifically, the open regular sets. The reason why I
choose the closures will be explained in the next chapter. Roughly speaking, it will follow
that all the instances of the property are similar to each other. Moreover, the closures of
poles will be exactly certain class of similarity circles. Rumfitt and Mormann choose the open
sets because they want the polar structure to be a semantics for vague predicates and very
plausibly the extensions of vague predicates are open sets. Moreover, Mormann proposes the
more general weakly-scattered Alexandroff spaces as the more appropriate framework.
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has and possibly more. The dual order can be interpreted as the order of
prototypicality, x ≤ y iff x is more prototypical than y. In other words, the
order of prototypicality is inverse to the order of qualitative richness. The more
properties an object has, the less prototypical it is, and vice-versa. The order
of prototypicality has some minimal elements, the objects which are such that
no other object is more prototypical than they are. These elements will be
called ’paradigms’ and they form the set of elements for which the order of
prototypicality collapses into the categorical notion of prototypicality. Up to
now, what we have done is this: we took the specialization order and we put it
upside-down (we took the dual order).

The new constraints I will demand are two. First, I will force each object to
be a ’qualitative sum’ of the paradigms which are more prototypical than it is.
This condition can be interpreted as some sort of ’qualitative atomism’. Second,
I will take attributes to be surrogated by ultrafilters (this will be explained
below). The reasons for demanding these two features will become clearer in
the next chapter (in fact, they were suggested by the results I obtained there,
not vice versa).

The former idea can be explained in terms of the standard notion of atomistic
lattices [26]. However, some posets that are not lattices are already structured
enough to look like atomistic lattices, let us introduce them:

Definition 47. Let L be a poset. Then L is atomic iff for each element x there
is an element z such that z is minimal and z ≤ x. If L is atomic, then L is an
atomistic poset iff each element in L is the join of its minimal elements.

We get the dual notions of co-atomic and co-atomistic. Atomic posets are
also called (DCC) posets, since they are the posets that satisfy the Descending
Chain Condition, which prevents the poset from having infinitely descending
chains of elements · · · < x < x′ < x′′. Any such chain will sooner or later
hit a minimal element. The dual notion is that of (ACC) or Ascending Chain
Condition.

Note that in an atomistic poset not every pair of elements needs to have a
join, and that if a poset has a bottom element, it is atomistic iff it has just one
element. So atomistic posets do not have bottoms. The following is an easy
reformulation of the condition:

Proposition 22. Let L be a poset. Then the following conditions are equivalent:

1. S is an atomistic poset.

2. ↑ x =
⋂
{↑ p | p ∈↓ x & p is minimal} for every x in S.

The second formulation is the corresponding topological separation condition
and it will get an interpretation right now. Let Min(S) be the set of minimal
elements in S and min(x) the set of minimal elements below x. We have that if
x ≤ y then min(x) ⊆ min(y) by transitivity and conversely, if min(x) ⊆ min(y)
then x = ∨min(x) ≤ ∨min(y) = y. From this fact the previous proposition
follows.

In this model, attributes will be represented as certain sets of objects named
’fixed ultrafilters’. Let us now introduce the following notion [141]:

Definition 48. Let L be a poset and F ⊆ L. Then:
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1. F is a filter iff F is an up-set such that every pair of elements in F has
a lower bound in F .

2. F is an ultrafilter iff F is a maximal filter.

3. F is a fixed ultrafilter iff F is a non-trivial ultrafilter and
∧
F 6= 0 exists.

The trivial ultrafilter is ↑ 0. When L is a lattice, a filter is closed under
meets. If the lattice is complete then

∧
F is of course guaranteed to exist.

Thus, attributes have the following properties:

1. If x is F and y is qualitatively richer than x (x is more prototypical than
y), then y is also F .

2. If x and y are F , then there is a z which is also F and which is more
prototypical than x and y (z is qualitatively poorer than x and y).

3. Every attribute F is maximal, in the sense of not being properly included
into another attribute.

4. There is an element
∧
F which is the qualitatively richest element among

all those objects that are more prototypical than every exemplar of F .

5. The set of all objects is not an attribute.

The third condition prevents companionship and corresponds to the maxi-
mality of similarity circles, whereas the last condition excludes the trivial prop-
erty shared by all objects. The first, second and fourth conditions say that
a property is a collection of objects that can be ’refined’ until one reaches an
exemplar that is more prototypical than any other exemplar of the property.
This element is precisely a paradigmatic object, namely, the paradigm of the
property:

Lemma 6. Let L be an atomistic poset and A ⊆ L. Then A is a fixed ultrafilter
iff ∃p ∈Minimal(L) A =↑ p.

Proof. (←) Let p be a minimal element. Then ↑ p is a filter and
∧
↑ p = p.

Suppose that ↑ p ⊆ A and A is a non-trivial filter. Let x ∈ A, then there is a
z ∈ A such that z ≤ x. Since p ∈ A it follows that there is an element pz ≤ p, z
in A. Since p is minimal, pz = p ≤ z ≤ x. Therefore x ∈↑ p = A, which is
an ultrafilter. (→) Let A be a fixed ultrafilter. We prove that

∧
A 6= 0, which

exists by assumption, is a minimal element. Suppose that q ≤
∧
A. Consider

A∪ ↑ q =↑ A∪ ↑ q =↑ (A ∪ {q}), which is an up-set. If x, y ∈ A∪ ↑ q, then
either x, y ∈ A or x, y ∈↑ q or x ∈ A and q ≤ y. In the first case, since A is
a filter, there is a z ≤ x, y in A ⊆ A∪ ↑ q. Analogously in the second case. In
the third case, since q ≤

∧
A ≤ x we have that q ≤ x, y and so this shows that

A∪ ↑ q is a filter. Since A is a non-trivial ultrafilter, q ∈ A = A∪ ↑ q, therefore∧
A ≤ q, so

∧
A is a minimal element. By the other direction we just proved,

↑
∧
A is a non-trivial ultrafilter. Now, A ⊆↑

∧
A and since A is an ultrafilter,

A =↑
∧
A.

So a property is the set of all the objects that are qualitatively richer
(less prototypical) than a given paradigmatic object. This lemma shows that
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paradigms and properties are in bijective correspondence, which is a very im-
portant fact that we will make use of later on when we deal with quasianalysis.

Let us come back to the topology once more. Recall that Alexandroff spaces
and preorders are mathematically equivalent. The weakly-scattered Alexan-
droff spaces of Mormann’s model [90] are exactly the co-atomic posets, in other
words, the posets that satisfy the Ascending Chain Condition. So we can con-
sider a more specific class of weakly-scattered Alexandroff spaces, the ones that
correspond to the co-atomistic posets. We just need the topological separation
condition that is dual to the one we mentioned before, namely:

Definition 49. Let (S,O(S)) be a weakly-scattered Alexandroff topological space.
Then S is co-atomistic iff Cl(x) =

⋂
{Cl(p) | p ∈ Nx and p is open} for every

x ∈ S.

What the previous condition says is that the set of objects that have the same
properties (and possibly more) of a given object x is exactly the set of objects
that belong to all the properties induced by the paradigms of x. Topologically,
this says that every object z that is sufficiently close to x is sufficiently close
to every paradigm of x. To put it shortly, whereas the order-theoretic model
describes the order of qualitative richness, this more specific Alexandroff model
describes the order of prototypicality. Nevertheless, both models are equivalent.
In the next chapter it will be shown that, under an indiscernibility constraint
((SNI), (PII) or anti-simmetry) the three models we are discussing are indeed
equivalent. This is I think a surprising result, for the following reason: despite
the fact that weakly-scattered spaces are richer in their order, the coatomistic
weakly-scattered spaces turn out to be dually equivalent to the (PII) polar
spaces. Thus both models can serve the same purposes.

Of course, there are some differences between the use of the order I make
and Mormann’s approach. For instance, Mormann wants to deal with vague-
ness, and therefore takes properties to be open (regular) sets. Since I put the
model upside-down, ultrafilters are closed properties and therefore will not be
useful for his purposes. However, this is essential for the applications I will give
of this model, since this order will make ultrafilters to be just similarity circles
and therefore attributes in the nominalist sense. For another difference, Mor-
mann suggests the class of weakly-scattered Alexandroff spaces, but he does not
restrict this class, so he might reject the axiom just introduced.

4.4.4 A Similarity Model

Regrettably, the previous models make no mention at all of similarity relations
between objects. In contrast, I want to propose a new model for aristocratic
resemblance nominalism that makes heavy use of the resources provided by the
theory of similarity structures. In [89] Mormann considers an interesting result
by Brockhaus on quasianalysis [14]. We will review these results later on in
chapter V. The crucial point I want to mention here is that Mormann makes a
distinction between certain kinds of similarity structures for which Brockhaus’
Theorem holds. This distinction makes use of the notion of the order of a
similarity structure. The class of similarities for which the theorem holds are
called ’similarity structures of order n ≤ 2’. This class of similarity structures
is linked to the existence of certain elements in the domain that have very
special features regarding their relations to similarity circles. In a sense, there
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is enough information in the relations these elements have to other elements in
the structure to ’generate’ the similarity circles. For these reasons, Mormann
calls them ’generators’. The class of similarity structures that, I think, provides
a successful model for aristocratic resemblance nominalism is that of similarity
structures of order 1. For reasons of conceptual clarity, I propose to extend the
notion of order 1 both to similarity circles and to elements (to generators). This
move will turn out to be very useful in the reduction steps taken in the next
chapter. Moreover, it will help us to clarify the introduction of new concepts
that explain the role that these special elements have in the structure. It should
be clear by now that these special elements will be precisely our paradigmatic
objects.

In the following definitions one can take the second condition as defining
the concept appearing in the first condition, the rest are trivially proven to be
equivalent conditions:

Definition 50. Let (S,∼) be a similarity structure and x, y, p ∈ S. The follow-
ing conditions are equivalent:

i. p is a generator of order 1.

ii. x ∼ p ∼ y ⇒ x ∼ y.

iii. x ∼ p⇔ p ≤co x.

iv. co(p) ∈ SC(S).

v. p ∈ int(T ) for some T ∈ SC(S).

We define as Gen(S) := {p ∈ S | ∀x, y ∈ S x ∼ p ∼ y ⇒ x ∼ y} the set
of generators of order 1. This set is defined independently of the order of the
similarity. We could have called them ’transitive elements’ too. I will usually
drop the adjective ’of order 1’ when referring to a single generator.

Definition 51. Let (S,∼) be a similarity structure and T ⊆ S. The following
conditions are equivalent:

i. T is a similarity circle of order 1.

ii. T = co(p) for some p ∈ S.

iii. T is a clique and int(T ) 6= ∅.

Proof. (i)-(ii) by definition. (i)-(iii) Suppose (iii), let p ∈ int(T ). If z ∈ S and
z ∼ x for all x ∈ T , we have z ∼ p, so z ∈ T . Therefore, T is a similarity circle
of order 1. Converse is obvious.

We define as SC1(S) := {T ∈ SC(S) | ∃p ∈ S co(p) = T} the set of
similarity circles of order 1. This set is also defined independently of the order
of the similarity. Similarity circles of order 1 are fundamental to the purposes
of this PhD thesis. In the following chapter I will propose them as surrogates of
universal attributes. In other words, an attribute will be reconstructed as the
collection of all the objects that are similar enough to a paradigm.

Definition 52. Let (S,∼) be a similarity structure. The following conditions
are equivalent:

182



i. ∼ is a similarity of order 1.

ii. x ∼ y ⇒ ∃p ∈ Gen(S) x ∼ p ∼ y.

iii. x ∼ y ⇒ ∃T ∈ SC1(S) x, y ∈ T .

We will sometimes assume that our similarities satisfy the following separa-
tion axiom introduced by Mormann [89]:

Definition 53. Let (S,∼) be a similarity structure. Then S is (SNI) or satis-
fies the Similarity Neighbourhood Identity Axiom iff ∀x, y ∈ S co(x) = co(y)⇒
x = y.

In an (SNI) similarity structure of order 1, each similarity circle of order 1
has exactly one generator. But for most of our purposes we do not need the
full power of this indiscernibility axiom. It is enough to just assume that each
similarity circle of order 1 has exactly one generator. In other words, we just
identify duplicate paradigms:

Definition 54. Let (S,∼) be a similarity structure of order 1, p, q ∈ Gen(S)
and T ∈ SC1(S). The following conditions are equivalent:

i. S is pure.

ii. p ∼ q ⇒ p = q.

iii. T has a unique generator p.

Every (SNI) similarity of order 1 is pure, but the converse is false. For
instance, the similarity y ∼ p ∼ x & y ∼ q ∼ x is pure, but is not (SNI)
since x and y are indiscernible. Adopting this axiom is ontologically innocuous,
since given any similarity one can always force paradigms to be identical by
taking the quotient of the structure. In such cases we will be dealing just with
equivalence classes of indiscernible paradigms.

As we will see later on, similarity structures of order 1 have very interesting
features that make them relatively simple, at least compared to their siblings
of higher order. This family is easily seen to be infinite. Take an n-polygon
and attach to each edge a triangle in such a way that the base of the triangle is
identified with the edge. As is easily checked, the resulting similarity structure
is (SNI) and is of order 1. Since this construction works for any number n of
edges, the family of similarity structures of order 1 is infinite. An even simpler
construction starts from a point x and attaches edges to x, forming stars (the
domain can be uncountable, e.g. take the unit circle alongside the origin in
the Cartesian plane and define the paradigms to be the points in the circle and
the only non-paradigm to be the origin). Informative and concrete examples of
similarities of order 1 will have to wait until we explore the role of quasianalysis
in the next chapter. Nevertheless, we can already consider some examples:

i. p ∼ x ∼ q is the smallest (SNI) similarity of order 1 [87].

ii. x ∼ p ∼ y & x ∼ q ∼ y is the smallest pure similarity of order 1 which is
not (SNI).
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iii. Let the context be S = {x, y, z} and Q = {{x, y}, {y, z}, {x, z}}. The
similarity, which is of order 1 but not (SNI), is the so-called ’Goodman
Triangle’ x ∼ y ∼ z ∼ x [87]. Here Gen(S) = {x, y, z} is an imperfect
community.

To sum up, the structures we will be concerned with are the following ones:

Definition 55. Let (S,∼) be a set S with a binary relation ∼⊆ S × S. Then
S is a pure similarity structure of order 1 iff ∀x, y ∈ S ∀p, q ∈ Gen(S):

i. x ∼ x. [Reflexivity]

ii. x ∼ y ⇒ y ∼ x. [Symmetry]

iii. p ∼ q ⇒ p = q. [Pure]

iv. x ∼ y ⇒ ∃p ∈ Gen(S) x ∼ p ∼ y. [Order 1]

For this class of similarity structures, I will introduce the following repre-
sentation function gen : S → ℘(Gen(S)):

gen(x) := {p ∈ Gen(S) | x ∼ p} = co(x) ∩Gen(S)

The function gen(x) will turn out to be very important soon. In the next
chapter it will be seen that gen(x) is in fact a non-standard quasianalysis. This
function maps each object to the set of its generators (its paradigms).

It might not be completely obvious now how Goodman’s problem of im-
perfect community will be solved by making use of these notions, this will be
explained in the next chapter in detail. Nevertheless, a hint can be given. Con-
sider those similarity circles induced by paradigms. Any such similarity circle
contains a paradigm, which is unique by purity. An imperfect community is a
collection of objects that pairwise share a property but that do not have any sin-
gle property in common collectively. If we assume that each property is paired
with a unique paradigmatic instance, then it is easy to see that no imperfect
community will correspond to a similarity circle of order 1.

In the previous sections I mentioned that in this model a comparative sim-
ilarity relation could be defined in such a way that Tversky’s non-symmetry
effects are explained. Let us explain this as an application of the model. Let me
take an example from Goldstone [46]. Suppose that the subjects rate, given the
three countries Russia, Cuba and Jamaica, that their similarities are given by
the following ordinal similarity scale S(Russia, Cuba) = 7, S(Jamaica, Cuba) =
8, S(Russia, Jamaica) = 1. Using Multidimensional Scaling Techniques psy-
chologists show that one can infer that at least two dimensions are needed to
give an adequate metric model for these similarities, for instance political af-
filiation and climate. In the first dimension, Russia is closer to Cuba than to
Jamaica while in the second dimension Cuba is closer to Jamaica than to Russia.
Now let us reduce this to the relational model by defining the following cate-
gorical similarity x ∼ y := S(x, y) ≥ 5. Two countries will be similar enough iff
they have a score higher than (or equal to) 5 in the similarity scale. This results
in the similarity structure Russia ∼ Cuba ∼ Jamaica, where the properties are
political affiliation = {Russia, Cuba} and climate = {Cuba, Jamaica}. Here
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Russia and Jamaica are the paradigmatic countries regarding, respectively, po-
litical affiliation and climate. Now define the following comparative similarity
taken from [89]:

T (x, y, z) := co(x) ∩ co(z) ⊆ co(y) ∩ co(z)

In words, y is more similar to z than x iff y and z are similar to all the
objects to which x and z are similar (and possibly more). For example, we have
that T (Russia, Cuba, Jamaica) and T (Jamaica, Cuba,Russia). Now we can
explain what happens in cases of typicality effects of the sort ”Cuba is more
similar to Russia than Russia is to Cuba”, Russia being the paradigmatic coun-
try here. The reason is that although it is true that T (Russia, Cuba,Russia)
for co(Russia) ⊆ co(Cuba), it is not the case that T (Cuba,Russia, Cuba) since
we do not have Jamaica ∈ co(Cuba)−co(Russia). In words, Cuba is more sim-
ilar to Russia than Russia is to Cuba, because we are considering other objects
to which Cuba is similar (and so other properties that Cuba has and Russia
lacks) that ’interfere’ so to speak in our similarity judgement. In fact, in this
sense Cuba is just as similar to Russia as Russia is to itself since we have both
T (Russia, Cuba,Russia) and T (Russia,Russia,Russia). Even more, so long
as one of the objects is paradigmatic while the other is not (both being similar
to each other) in the sense to be explained when we introduce the model below,
this is guaranteed to happen:

Corollary 4 (Typicality Effects). Let (S,∼) be a similarity structure of order
1. Let p ∈ Gen(S), x ∈ S−Gen(S) and p ∼ x. Then T (p, x, p) but ¬T (x, p, x).

Proof. T (p, x, p) iff co(p) ⊆ co(x) ∩ co(p) = co(p) but T (x, p, x) iff co(x) ⊆
co(x)∩co(p) iff co(x) ⊆ co(p) iff co(x) = co(p). So x ∈ Gen(S), which contradicts
the assumption that x is not paradigmatic.

Now that the model is in place, I claim that it is plausibly materially ade-
quate, since it preserves directly the ontological commitments of aristocratic re-
semblance nominalism. First of all, the fundamental ontology consists of objects
in relations of resemblance. All entities belong to the same category, although
some of them have special features, since they act as paradigmatic objects.
Second, there are just four axioms.

1. Every object is similar to itself.

2. If an object is similar to another, the latter is similar to the former.

3. Two similar paradigms are indiscernible (identical in the model).

4. If two objects are similar, then they are both similar to a common paradigm.

The first two are the basic logical properties of a binary categorical simi-
larity that have already been argued for. The third one is an indiscernibility
constraint that identifies in the model any two similar paradigmatic objects. It
implies two things. First, that we identify any two duplicate paradigms. From
this point of view the condition is purely technical, it requires only that for
the most applications that we will make of the model, whenever two duplicate
paradigms occur we will consider the class of all objects duplicate to these ones
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and we will only choose one as a ’representative’ of the class. This means sim-
ply that the model cannot distinguish between two similar paradigms, because
these are considered to be indiscernible. But it also implies a second, and per-
haps more controversial, constraint: that each paradigmatic object exemplifies
a unique attribute. A fortiori, no paradigmatic object is similar to another
paradigmatic object. I will try to give some arguments for it in the following
sections. Nevertheless, if one thinks about the categorical similarity as a degree
of similarity implicitly given by the context, the condition only says that no
paradigm is sufficiently similar to another paradigm. This seems plausible. In
a given context, if p is a paradigm of Red and q is a paradigm of Round, then it
makes sense to consider the degree of similarity as being high enough to prevent
p from being similar to q. A coarser degree of similarity according to which p
and q are similar would defeat the very purpose of appealing to paradigms to
classify the rest of the objects in this context. If p is also round, then if there is
another object x which is red but not round, then x and not p is more plausibly
the paradigm of Red.

The fourth condition is the one that does all the work. It says that there
are enough paradigms to explain the similarity between objects. This seems to
be the core requirement of aristocratic nominalism. Any similarity between a
pair of objects will correspond, according to the realist, to their having a com-
mon attribute. Any attribute will have at least one paradigmatic exemplar and
exemplifying the attribute will be equivalent to being similar to that paradig-
matic exemplar. Therefore if two objects are similar, then there will be at
least one paradigmatic object to which both are similar (namely, the paradigm
of the attribute they will have in common). Although a property may have
several paradigms, all of them will be exactly similar and therefore by (3) the
uniqueness of the paradigm will follow.

In addition to the previous axioms, the model uses the following definition
of a paradigmatic object:

Paradigm An object is a paradigm iff any two objects that are similar to it
are similar to each other.

Finally, in the next Chapter the model will be used to reconstruct attributes
as similarity circles of order 1. Thus it is convenient to state already that:

Attribute An attribute is the collection of all the objects that are similar to a
given paradigm.

There are two comments to make. One is that in contrast to the Pricean
view that introduces paradigms comparatively, this one is a purely categorical
notion. Objects are not more or less similar to the paradigms than to other
objects. Either they are similar to them or they are not. The second comment
is that, as we said, it will follow in the model that (relative to a fixed degree
of similarity) a paradigm exemplifies exactly one attribute. This implies that
Pereyra’s worry concerning transitivity, that a paradigm may collect exemplars
of two different attributes, will not arise. Paradigms are the objects that act
transitively by definition. Given that they are to fulfil the role of grounding the
unity of the class, I think that this definition of a paradigm is reasonable. If an
object is paradigmatic (relative to a fixed degree of similarity), then any two
objects that are similar to it will be similar to each other. That is in fact the
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P R W
p X X X
x X X
y X X
z X X

Table 4.1: Imperfect Community Example

role of a paradigmatic object according to aristocratic resemblance nominalism.
The converse may sound more suspicious. May not be the case that any two
objects that are similar to a certain given object p are similar to each other by
coincidence, without p being a paradigm? If there are imperfect communities,
something like this may seem to happen. An example is given by the Table 4.1.

The similarity induced by this property assignment will be the blob. Every
pair of objects are similar to each other. A fortiori, all of them satisfy the right-
hand side of the definition of a paradigm. But is any of them a paradigm? Since
we will take certain similarity circles as surrogates for attributes, the whole do-
main S = {x, y, z, p} will be a similarity circle and thus any of the elements
could in some sense be considered as a paradigmatic exemplar of S (as a prop-
erty). But S is an imperfect community that does not correspond to any of the
previously given ones. Thus one could object to the definition by appealing to
a pre-theoretical notion of a paradigmatic object and pointing to this imperfect
community. Note that the similarity induced by this counterexample does not
satisfy purity (the third condition), since all the objects are paradigms. So if
we had strong reasons to accept that axiom, it would not be a counterexample
at all.

However, let us grant that one could reject such an assumption. Do we have
such a pre-theoretical notion of a paradigm? I am not sure that this is so. In
any case, this prompts an interesting question: what is it to be a paradigm? I
will consider two possible answers. According to the former one, paradigms are
ontologically special entities, they are limiting cases of property bearers or qual-
itative atoms. Thus properties and kinds are really aristocratically structured.
According to the latter one, paradigms are not ontologically different from the
other objects. The difference is a difference in their epistemological roles that
it is brought up by the processes of conceptual categorization that occur during
the learning period of a given epistemic subject. Thus the aristocratic structure
of properties and kinds is ’put there’ by the subject. This makes aristocratic
positions a mix of resemblance nominalism and conceptualism. These answers
give two completely different pictures of what these paradigms are supposed to
be and will be considered later on.

4.5 What Paradigms could Be

I have suggested that an aristocratic version of resemblance nominalism is still
defensible and I have given two formal models for it. Nevertheless, a crucial issue
concerns the nature of these paradigmatic entities. I will consider two proposals.
According to the first one, the difference between paradigmatic objects and non-
paradigmatic objects is based on the ways in which a given epistemic subject
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may learn about the world (and about the kinds in the world). According to the
second one, the difference between paradigmatic objects and non-paradigmatic
objects is based on the ways that the entities themselves are related to each
other. Whereas both approaches are compatible with the idea that the degrees
of similarity are given by the world, the former one puts more weight on the role
of an agent and introduces conceptualistic components into the theory. Whereas
the former one puts resemblance nominalism closer to conceptualism, the latter
one makes it closer to trope theory.

4.5.1 Paradigms as Constituents of Concepts

The first approach to the nature of paradigms basically follows the psycholog-
ical exemplar theory of concepts that was explained before. According to it,
paradigms are just some objects that a given epistemic subject has found in
his concept-learning process. The subject stores mental token copies of these
objects in his memory and uses the latter ones as fixed reference points to build
his concepts around them. Thus when he finds two new objects x and y, he
compares how similar they are to a mental copy of an object p that he has pre-
viously found. If they are similar enough to it then the extension of the concept
induced by p is enlarged so that x and y fall under it. For any two objects x
and y that appear to be similar enough, he will be able to find out a stored
paradigm p to which both of them are similar.

The main advantages of this position are epistemological. First, it can be
more easily explained how could one ever get and store knowledge of a given
attribute or kind. Both attributes and kinds are concepts (kinds are complex
concepts), and these are just mental entities developed by the subject based
on certain objects he has already found. One does not know the whole exten-
sion of the attribute or kind, only some of its members. To know whether a
newly encountered object belongs to the kind he just has to compare it to the
paradigms instead of comparing it to all the members of the kind (which would
be an impossibly time-consuming task). As the subject learns more about the
world the corresponding extensions of the concepts grow, shrink or get modified
in different ways. The subject gets to generalizations that purport to be about
all the members of the attribute or kind by induction from this limited sample
and then tests these against newly encountered objects. Second, one can ex-
plain why some attributes or kinds seem to overlap by considering these as cases
of vagueness, as has been done using conceptual spaces (see [146]). The same
object falls under several concepts because it is similar to various paradigms.
Overlappings of attributes and kinds are the rule rather than the exception and
explain in which sense concepts themselves can be vague. Vagueness would
then be explained as a mental phenomenon. Third, the position is more com-
patible with naturalism and in particular, it is very close to the psychological
accounts of conceptual categorization in terms of prototypical instances or ex-
emplars as depicted in [42], and has lead to empirically testable hypotheses. The
conceptual spaces approach seems to assume something like this conception of
paradigmatic entities and has shown it can do some fruitful work. Evidence for
this can be found in the fast development of the conceptual spaces approach
(see again [146]).

In fact, Douven and Gärdenfors [30] have argued for several ’design princi-
ples’ that natural concepts should satisfy. They reason by analogy as follows.
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Suppose that we had to develop a conceptual scheme to allow for a system to
make correct, sufficiently fine-grained and successful classifications. Of course,
such a system would be limited in several ways, for instance, it would have a lim-
ited memory, limited perceptual capacities (which restricts the fine-grainedness
of the classifications it would make), it would be forced to make decisions quickly,
it should be able to successfully communicate with other systems, and so on.
According to the authors, in order to design such an optimal conceptual scheme,
it would be plausible to follow these principles, which we quote directly from
[30]18:

1. Parsimony: The conceptual structure should not overload the
system’s memory.

2. Informativeness: The concepts should be informative, meaning
that they should jointly offer good and roughly equal coverage
of the domain of classification cases.

3. Representation: The conceptual structure should be such that
it allows the system to choose for each concept a prototype that
is a good representative of all items falling under the concept.

4. Contrast: The conceptual structure should be such that proto-
types of different concepts can be so chosen that they are easy
to tell apart.

5. Learnability: The conceptual structure should be learnable,
ideally from a small number of instances.

At the level of the whole system of concepts, parsimony and informativeness
pull in opposite directions, as the authors rightly point out. The more concepts
we have, the more informative and less parsimonious the system of concepts will
be, and vice versa. A system with many concepts can be used to make many
inferences about the objects classified, but this makes all the concepts involved
harder to remember. Dually, a system wich requires remembering fewer concepts
is easier to use, but it supports fewer interesting inferences and thus gives less
information about the items classified.

As we have seen several times in this thesis, this dual trade-off is present in
the different models of kinds. In the case of the similarity models discussed in
this chapter (or the special cases of equivalences and partitions), parsimony and
informativeness concern how fine-grained the similarity relation chosen is. The
more fine-grained the similarity is, the greater the amount of attributes (similar-
ity circles) and also of paradigms will be, and dually. In the case of the concept
lattice model of kinds, this fact is well illustrated by Kant’s Law. In order to
achieve a parsimonious system, the extensions of concepts have to be large. But
the larger the extensions of the concepts are, the smaller their intensions will
be, and a fortiori, the concepts will be less informative. Dually, in order to
achieve an informative system, the intensions of concepts have to be large. But
the larger the intensions of the concepts are, the smaller their extensions will
be, and a fortiori, the system of concepts will be less parsimonious.

Similarly, at the level of the paradigms chosen, representation and contrast
pull in opposite directions too. Whereas representation requires maximizing

18See [91] for arguments by Mormann that the class of weakly-scattered spaces also satisfy
the design principles.

189



the similarities among the instances of a concept, contrast requires maximizing
the dissimilarities between paradigms of different concepts. In the case of the
similarity model, consider again the basic axioms and definitions, now restated
in terms of concepts and prototypes:

� No two prototypes are similar to each other.

� An item is a prototype iff any two items that are similar to it are similar
to each other.

� If two items are similar, then they are both similar to a common prototype.

� A (simple) concept is the collection of all the items similar to a given
prototype.

On the one hand, representativeness is guaranteed by combining the axiom of
order 1, that forces two similar objects to be similar to a common paradigm, with
the definition of a paradigm and the definition of attributes as similarity circles
of order 1, which makes all the objects similar to a common paradigm similar
to each other and the resulting collection to be maximal. On the other hand,
contrast is assumed by the axiom of Purity, which states that no two paradigms
are sufficiently similar to each other. In other words, one can interpret the
assumptions made by the similarity model directly as the requirements that the
conditions of representation and contrast be satisfied.

Finally, parsimony and learnability are very tightly linked to each other.
However, whereas the former involves the whole system of concepts, the latter
is concerned with the amount of prototypes required. A parsimonious system re-
quires fewer concepts. Since each concept corresponds to a (set of) paradigm(s),
a fewer amount of paradigms will make concept learning easier for the agent. In
the case of the models proposed here, there is a bijection between attributes and
paradigms. This means that the amount of paradigms posited is the minimal
one that guarantees such connection between parsimony and learnability: in
order to learn a concept one has to store just one paradigm and then compare
every new instance of the concept to this paradigm. And in order to remember
a concept, one only has to remember the corresponding paradigm. From a con-
ceptualist point of view though, a unique paradigm for each concept is a quite
strong idealization though.

The main disadvantages are ontological. The main problem is that the choice
of paradigms seems to be completely arbitrary. If the subject had had different
experiences or had lived in a different environment, he would have encountered
different objects. Therefore, the objects that would have given rise to the mental
paradigms would have been different. In other words, paradigms are not ’chosen
by nature’. The difference between a paradigm and a non-paradigmatic object
is a difference simply in which of the two objects the subject finds first in his
learning process. This objection is again the one made by Pereyra [109]. In
other words, the choice of an object as a paradigm may have more to do with
psychological biases, social and cultural prejudices or the scarcity of exemplars
of certain kinds than with tracking real similarities.

Of course, it is highly unlikely that a Japanese person develops her concept
of BIRD by storing in her memory the same exemplars that I did for my concept
of BIRD. The paradigms chosen by each of us are distinct. However, this does
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not imply that the choice of paradigms is arbitrary. It is not so clear that
every object found by the subject could do as a paradigm for a concept. If the
exemplar is badly chosen and the degrees of similarity are fixed by the world, the
subject may not find out enough new exemplars to develop a sufficiently stable
concept. The objects he finds may not be similar enough to the stored one and
the resulting concept will be unfruitful enough to be left apart. Or he may fix
some new objects as paradigms and find out that what he took as a paradigm was
in fact similar enough to the new ones to fall under the newly developed concept.
In such a case, the subject would modify his system of concepts. Moreover, if
the choice of an object as paradigm of a concept was completely arbitrary,
this would not explain how it is that psychologists have found stability among
subjects regarding which objects are considered to be more or less paradigmatic
or prototypical for each kind. Furthermore, this stability does not only hold for
the members of a given community, it holds across different cultures too. This
debate between conceptual universalists and conceptual relativists is not solved
yet. It could be that relativists are right after all and there are no universal
concepts shared by the members of all the different cultures. Nevertheless, the
point is that the thesis that paradigms are prototypical instances of concepts is
compatible with the idea that the subject is tracking real similarities. Some of
the similarity relations he finds between a new exemplar and the mental copy of
the object (chosen to be paradigmatic) may be natural or sparse. Others may
be abundant. To have some hints regarding whether they are more likely to be
sparse than abundant the concept will have to be used for serious research and
shown to be fruitful. But the subject does make a choice regarding the relevant
degree of similarity, for any two paradigms will not be similar to each other under
that same degree he is choosing as ’yardstick’. Such a position will be a hybrid
view between resemblance nominalism and conceptualism. It is a resemblance
nominalism, since it accepts that objects are in objective resemblance relations
to each other and that the similarity satisfies necessarily (de dicto) the formal
properties of being reflexive and symmetric. But it also has conceptualistic
components, since it considers attributes and kinds to be extensions of those
concepts (as collections of similar objects) developed by a subject after making
some choices regarding which objects should be taken as paradigmatic with
respect to some given degree of similarity.

Moreover, the fact that objects are only paradigms relative to the choice of
some degree of similarity may receive some support from the model. Being a
paradigm is a similarity invariant, in the sense that if p is a paradigm of (S,∼)
and (S′,∼′) is f -isomorphic to S, then f(p) will be a paradigm in S′. But finer
or coarser similarities may not preserve paradigms. Thus, being a paradigm is
relative to the degree of similarity that is being considered. For instance, as we
will see, the similarity ∼ induced by SC(S) = {{p, x}, {x, y, z}, {q, y}} is (SNI)
of order 1 and here r is a paradigm (whereas x and y are not). But now consider
a finer degree of similarity ∼′⊆∼ given by SC ′(S) = {{p}, {x, r}, {r, y}, {q}}.
This new similarity is also (SNI) and of order 1. Here the object r is no longer
a paradigm, whereas y and x have become paradigms. Objects are paradigms
relative to a certain degree of similarity. If that is the case, then no object is a
paradigm in an absolute sense. One has first to choose the degree of similarity
to be considered.

Under this conception of paradigms the model does not (at least directly)
reflect the ontological structure of the world, but the epistemological states of
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a given subject that purports to know about it. Which are the objects is given
by the world, alongside all the degrees of similarity. But it is the subject who
has chosen some degree of similarity as relevant and some of the objects as
paradigmatic relative to that degree. To learn about these objects, at a given
time t the subject chooses a degree of similarity and some of these objects as
paradigms. The choice of the degree of similarity may have different motivations.
The subject may have some theory concerning the objects that he wants to test,
and chooses that degree of similarity as a sorting criterion. Or what may be
more usually the case, the subject being psychologically disposed to make such
a choice. For any new exemplars he finds, he compares it to mental copies
(stored in his memory) of the objects he chose as paradigms. If it is similar
enough to one or more of them (that is to say, similar up to the chosen degree
of similarity), then it will fall under the corresponding concept(s). If not he
may forget about it or form a new concept by taking it as a paradigm. Thus
the subject goes on enlarging the concepts or modifying them in view of the
new evidence gathered. From some of these concepts, say of attributes, he
may develop more complex concepts of kinds. He tests the usefulness of these
concepts by comparing them to the world. Some degrees of similarity will be
highly theoretically loaded and may result in very fruitful (e.g. predictive)
concepts. These concepts may hint at natural attributes and kinds. Others
may only be tracking too coarse degrees of similarity that correspond to more
abundant attributes and kinds. The subject does not have access to all the
exemplars of the attribute or kind, just to a limited sample of them (those
from which he has developed his concepts). To put it shortly, the model does
not check (directly) whether the subject is tracking real kinds, but how the
corresponding concepts of the epistemic subject are developing19.

4.5.2 Paradigms as Qualitative Atoms or Tropers

We just saw one way to interpret paradigms. But is there any other view? What
could these paradigmatic objects be, if not objects selected by an epistemic
subject? Let us take the description of a paradigm literally. At first glance,
these entities look like tropes. A particular instance of the property Crimson
looks like the sort of entity that could be a paradigm of crimson: for a given fixed
degree of similarity, such an entity only has the property of being Crimson (it
is also red, say, for a coarser degree of similarity) and any two entities that are
sufficiently similar to it (up to the same degree) will be crimson and therefore will
be similar to each other. However, tropes are not objects, they are properties.
Since I want to remain as closely as possible to object nominalism, let us see
whether there could be objects that could fulfill such description.

In order to understand what these paradigmatic objects would be, one can
appeal to the distinction developed by [75] and [41] between tropes and tropers
or modifier tropes and module tropes. According to these authors, the notion
of trope is ambiguous. On the one hand, tropes may be considered to be par-
ticular characterizers. On this account tropes are properties, they are called
’modifier tropes’. On the other hand, tropes can be considered to be very spe-
cial characterizable particulars, called ’tropers’ or ’module tropes’. Tropers are

19Moreover, it gives a frozen picture of the knowledge of the subject for some time t (and
some implicitly conveyed restricted spatial location.
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qualitatively thin particular objects. Pre-theoretically speaking, a troper is an
object that has a unique property. Thus, the notion of a troper is dual to the
notion of haecceity. Consider the following example used by Garćıa. Take two
balls a and b. Ball a has a ’trope’ sphericity-a which exactly resembles another
trope sphericity-b that b has. According to a trope theorist, sphericity-a is a
property of the ball a and is not itself spherical. According to a troper theorist,
sphericity-a is an object and is itself spherical (although the troper theorist will
posit neither a trope sphericity-sa nor a universal sphericity to account for this
fact of course). Whereas according to a troper theorist sphericity-a is an object,
and plausibly is a mereologically ordinary part of the object a, according to a
trope theorist sphericity-a is a property and it is therefore either a mode of a or
a constituent of a, but not an ordinary part of a. What links a troper with an
object is the ordinary mereological relation of parthood, after all, tropers are
just objects. What links a trope with an object is a relation of characterization,
which can be either primitive or surrogated as membership to a class of compre-
sent or existentially dependent tropes. Thus a troper resemblance nominalist is
an objectual resemblance nominalist that assumes a further distinction between
qualitatively coarser or thinner objects. Suppose that Alice points at the ball
a and says ”a is round”. According to the trope theorist, Alice is pointing at a
property, the trope of roundness that characterizes a. According to the troper
theorist, Alice is pointing at an object which is part of a, a qualitatively thin
part of a which only has one property, namely, that of being round. One could
say that tropers are qualitative slices of ordinary objects.

Thus the object resemblance nominalist can make sense of the existence of
tropers by assuming that objects are ordered by qualitative thinness. By con-
sidering the previous explanation, I propose to render this ordering as follows:

x is qualitatively thinner than y iff if x has a property P , then y has P
too.

Which corresponds in the model to the order induced by the intension or
quasianalysis:

x ≤q y ⇔ q(x) ⊆ q(y)⇔ i(x) ⊆ i(y)

A fortiori, it makes sense to consider those objects which are maximally
qualitatively thin (equivalently, minimally qualitatively thick). As I will show
later, such a distinction need not be taken as a primitive fact, it follows from
the resemblance relations that hold between objects. Indeed, one can define the
order of qualitative thisness as follows. Let x and y be objects, then:

x is qualitatively thinner than y iff if z is similar to x, then z is similar to
y.

Which corresponds in the model to the order induced by the similarity neigh-
bourhood:

x ≤co y ⇔ co(x) ⊆ co(y)

The tropers will be qualitatively minimal objects, that is to say, objects
which are such that no other object is qualitatively thinner than they are. The
consequences of this fact will be seen in the next Chapter.
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Once the classical resemblance nominalist acknowledges this distinction, he
obtains the benefits of the trope theoretic positions. First of all, think about
what it is for an object to exemplify a property. It is for it to be similar to one
of its parts, which is a troper. If two objects x and y have a common property
P , then each x and y have as parts tropers tx and ty which are duplicates. Thus
what makes x and y be similar to each other is that they are both similar to
tropers tx and ty. Any such a troper is as good as any other as a candidate for
a paradigmatic instance of property P . Another interesting feature of tropers
is that they solve the coextensionality problem without requiring any appeal
to modal realism, just as tropes do. Suppose there were two coextensional
properties F and G. Then F and G are both exemplified by at least one common
object x. This object x has two tropers tF , tG as parts, the former one has the
property F and the latter one has the property G. Due to their qualitative
thisness, tF is not G (and tG is not F ). But tF is in the extension of F , because
tF is an object that exemplifies F . Since the extension of F is identical to the
extension of G, this implies a contradiction. Therefore, there cannot be two
coextensional properties. The existence of qualitatively thin objects prevents
the coextensionality problem from even starting.

In the next chapter I will show in more detail how the appeal to paradig-
matic entities also gets rid of the imperfect community in a new and simple
way. Nevertheless, some hints of the solution can be given now informally by
interpreting paradigms as tropers. Consider again our previous assumptions,
now rephrased:

� Two tropers which are similar to each other are indiscernible (identical in
the model).

� An object is a troper iff any two objects that are similar to it are similar
to each other.

� If two objects are similar, then they are both similar to a common troper.

As I said, the first one is not a real commitment, it is a purely technical
condition. Whenever it is not satisfied it can be forced by considering instead
equivalence classes of duplicate objects. If there are tropers, then when we say
”an object is similar to a paradigm” we mean ”any object from this class of
duplicate objects is similar to a troper from this class of duplicates” which is
equivalent to ”all the objects in this class of duplicates are similar to all the
tropers in this class of duplicates”. For instance, if we have two tropers of
redness, we consider the class of all the tropers of redness and take any of each
elements as the paradigm. The second one is the definition of a paradigmatic
object. Suppose that p is a troper. If x and y are approximately similar to p,
since p ’only has one property P ’ (pre-theoretically speaking), x and y must be
similar to each other. Now we can show that if we take tropers as candidates, the
converse plausibly holds. Suppose that any two objects x and y that are similar
to p are similar to each other. Let p have two (possibly identical) properties
P and R. Then p has two tropers as parts, tP and tR, one for each of these
properties. Since p and tp are P , they are similar to each other. Analogously,
p and tR are similar to each other by being R. By the assumption, tP and tR
are similar to each other. Since the only property that tP has is P and the only
property that tR has is R, P must be identical to R. Therefore p is a troper,
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identical to tP and tR. Therefore, tropers are exactly the objects satisfying the
definition of a paradigmatic object. Lastly, if two objects x and y are similar
then ’they have a common property P ’. We can find in x a troper which is
a duplicate of a troper in y. These tropers are objects that only have that
property P . Thus x and y are both similar to these two tropers, which are
paradigms by the previous principle. Positing paradigms and interpreting them
as tropers gives us an aristocratic objectual resemblance nominalism that can
deal with Goodman’s objections. This can already be taken as a good reason
to accepting their existence:

Fruitfulness Argument for Paradigms

i. If assuming the existence of certain entities solves the difficulties faced by
a theory by explaining why the latter do not arise, then plausibly these
entities exist.

ii. Assuming the existence of paradigmatic-like entities such as tropers solves
Goodman’s objections.

iii. Therefore (plausibly), paradigmatic-like entities such as tropers exist.

Furthermore, if paradigms are taken to be tropers, since tropers are objects
this does not force the object resemblance nominalist to go beyond its original
ontological commitments.

Is there any other argument that may back up the thesis that such entities
exist? Here a known quote by Bertrand Russell may be helpful:

”When I speak of ’simples’, I ought to explain that I am speaking
of something not experienced as such, but known only inferentially
as the limit of analysis. It is quite possible that, by greater logical
skill, the need for assuming them may be avoided.”

One way is to think about these entities as limiting cases of property bearers.
They are what it would be left if we deprived an object of almost all of its
properties except for one. It will be useful to argue by analogy here. Consider
space. Spatial entities, like regions, can be thought to be ordered by their being
contained inside one another by their extension. We can conceive of a spatial
entity which is such that no other spatial entity is contained in it (it lacks proper
subregions). How do we do it? We conceive first of an extended region and we
go on slowly ’shrinking it’ by ’deleting its extension’ until we get to an atomic
spatial region. These atomic regions are spatial entities which have a minimal
extension (or no extension at all), they are called points. Now consider time.
Temporal entities, like intervals, can be thought to be ordered by their being
’contained’ inside one another by duration. We can conceive of a temporal entity
which is such that no other temporal entity is contained in it (it lacks proper
subintervals). How do we do it? We conceive first of an interval with duration
and we go on slowly ’shrinking it’ by ’deleting its duration’ until we get to an
atomic temporal interval. These atomic intervals are temporal entities which
have a minimal duration (or no duration at all), they are called instants. Next,
consider the parthood relation. Composable or mereological entities, say parts
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or wholes, can be thought to be ordered by their being ’contained’ inside one
another by parthood relations. We can conceive of a mereological whole which
is such that no other mereological whole is part of it (it lacks proper parts).
How do we do it? We conceive first of a mereological whole and we go on slowly
’deleting its parts’ until we get to an atomic whole. These atomic wholes are
the minimal parts, they are called atomic parts or mereological atoms. Finally,
consider properties or similarity relations. Entities that have properties or are
in similarity relations, say objects, can be thought to be ordered by their being
’contained’ inside one another by these properties or similarity relations. More
precisely, they can be thought to be ordered by their qualitative thinness. An
object x is qualitatively thicker than y iff x has all the properties that y has
(and possibly others) iff x is similar to all the objects to which y is similar. In
a sense, x is qualitatively richer than y, any adequate description of y will be
an adequate description of x, and there will be richer descriptions of x that do
not apply to y. We can conceive of an object which is such that no other object
is qualitatively thinner than it (no other object has less properties). It is an
object which is qualitatively impoverished. How do we do it? We conceive first
of an object and we go on slowly ’deleting its properties’ until only one of them
remains. These atomic objects are the ones which are minimal with respect
to similarity or having properties, we can call them paradigms, tropers, module
tropes or qualitative atoms20

Thus, paradigms or qualitative atoms are the similarity analogues of points,
instants and atomic parts. They are the building blocks of the similarity struc-
ture, just as points, instants and atomic parts are the building blocks of spatial,
temporal and mereological structures. Just as a region can be thought to be
spatially composed of points, an interval temporally composed of instants and
a whole mereologically composed of its parts, an object can be thought to be
qualitatively composed of its qualitative atoms.

Analogical Argument for Paradigms

i. Spatial, temporal and mereological entities are the bearers of spatial, tem-
poral and mereological relations respectively.

ii. Spatial, temporal and mereological entities are spatially, temporally and
mereologically composed of spatial, temporal and mereological atomic en-
tities, namely points, instants and atomic parts, respectively.

iii. Objects are the bearers of properties or similarity relations.

iv. Therefore (analogically), objects are qualitatively composed of similarity
or property-like atomic entities, namely paradigms or qualitative atoms.

I grant that an argument by analogy is usually not a very powerful argument.
The success of the analogy depends on how similar the two situations are in
those respects that are relevant to make the comparison. What is relevant here
is the common formal ontological, plausibly compositional, structure. But one
may worry that, even though we can make sense of points, instants and atomic

20There are more examples of this pattern, for instance singletons, point-events, basic ac-
tions, logical atoms, and so on. I am tempted to suggest that all of them are, in some sense,
cases of mereological composition.
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parts as being ’inside’ or ’contained’ in regions, intervals and wholes, that is not
the case for objects. Objects are not ’qualitatively contained’ in one another.
What is this qualitative composition? The first thing to say is that this idea is
not completely alien to philosophers. It is, after all, the basic intuition lurking
behind (universal or trope) bundle theories of objects. Moreover, the idea makes
sense under some substance-attribute theories too. For example, according to
the immanent realist, objects do literally overlap due to their properties being
in them. So if y has all the properties that x has, i.e. i(x) ⊆ i(y), then in some
sense many of the ’qualitative parts’ of x are literally contained in y. Qualitative
composition is in principle not objectual mereological composition. An object
y may have all the properties that an object x has, without x being literally a
part of y in the ordinary sense. For instance, take two duplicates x and y and
add a property to y. This does not make x a part of y. But one may wonder
also whether the way in which a point or an instant is contained in a region
or an interval can be literally thought of as ordinary mereological composition.
Since ordinary objects are concrete and standard mereology is modelled after
them, we may find it obvious that points are parts of regions. But what about
instants? In what sense is an instant literally a part of an interval? An instant is
not spatially extended, it is not a concrete object. And to say that an instant is
abstract is simply to miss the point (how could a temporal entity be atemporal?).
But the relation between instants and intervals closely resembles that between
points and regions or parts and wholes. The former resembles the latter one
close enough for us to legitimately talk about compositional structure. And the
same happens in our case, qualitative composition behaves sufficiently enough
like mereological composition.

If qualitative atoms or paradigms are just tropers, then they are indeed parts
of ordinary objects. In that case it is no wonder that the qualitative order of
thinness closely follows the mereological one. Given that tropers are such that
no other object is qualitatively thinner than they are, a plausible conjecture is
that they are atomic parts of ordinary objects. I will show that this is indeed
the case. Let us suppose that our objects are mereologically structured by some
partial order. For the parthood and similarity relations to be compatible, they
have to satisfy some constrain. I suggest the following:

Definition 56. Let S be a set, ≤ a partial order and ∼ a similarity of order
1 over S. Then (S,≤,∼) is a partial similarity poset of order 1 iff ∀x, y ∈
S (∃z, w ∈ S z ≤ x & w ≤ y & z ∼ w ⇒ x ∼ y).

The condition requires that two objects are similar if they have similar parts.
The converse is inmediate due to the reflexivity of the partial order. If two ob-
jects do not have similar parts, since each object is part of itself then they
cannot be similar. I think it is a reasonable constraint. If two objects have
similar parts, then since the similarity is approximate and not exact the objects
will be similar to each other (the similarity is inherited ’upwards’). If we as-
sume that there are paradigms and that the indiscernibility is satisfied, then we
immediately have that (the converse of (1) does not hold):

Proposition 23. Let (S,≤,∼) a partial similarity poset of order 1, x, y ∈ S
and p ∈ Gen(S). Then:

1. x ≤ y ⇒ co(x) ⊆ co(y).
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2. x ≤ p⇒ co(x) = co(p).

3. S is (SNI) or pure ⇒ p is minimal.

Proof. (1) Let x ≤ y. If z ∼ x, since z ≤ z we have z ∼ y. Therefore
co(x) ⊆ co(y). (2) If x ≤ p then by (1) co(x) ⊆ co(p) ∈ SC1(S). Therefore
co(p) ⊆ co(x). (3) If S is (SNI) or pure, from (2) follows that x ∼ p and therefore
p = x, p is minimal.

(1) says that if object x is part of object y, then x is qualitatively thinner
than y. What (3) shows is that under the assumption that objects are mereo-
logically structured by a partial order which is compatible with the similarity,
that the similarity satisfies the indiscernibility axiom and that there are paradig-
matic objects, it follows that these paradigmatic objects must be mereologically
minimal. In other words, if there are paradigms, they must be atomic parts (the
converse is easily seen to be false though). If the indiscernibility is not satisfied,
then not every paradigm will be mereologically atomic. But all of them will
be indiscernible from their parts, which will also be paradigms. This means
that if there are mereologically minimal objects, they will also be paradigms
and if there are none then we will have infinite descending chains of paradigms.
In both cases paradigms will turn out to be ’quite small’ mereological parts.
The argument does not show that paradigms exist, but it shows that if they
exist then they will be mereologically atomic (or qualitatively indiscernible from
mereologically smaller parts):

Mereological Argument for Paradigms

i. There are paradigmatic objects. [Similarity is of order 1]

ii. Objects are mereologically structured. [Poset]

iii. Two objects are similar iff they have similar parts. [Partial Similarity]

iv. Any two paradigms are indiscernible (identical in the model). [Pure]

v. Therefore (deductively), paradigms are atomic parts.

The position may look metaphysically extravagant. We may dislike positing
points, instants and atomic parts. They seem to be suspicious limiting cases we
get at just by a process of abstraction applied over bona fide entities. It may be
the case that, at the end of the day, points, instants, atomic parts and paradigms
are just the result of such limiting processes of abstraction. But if so one would
have to show how this process works. The development of techniques that would
allow us to dispense with them usually takes more time and knowledge21, and
for the time being they do a sucessful job as building blocks of the corresponding
composed entities. The claim I want to make is that we should be as justified
on positing the existence of qualitative atoms as we are on the existence of their
spatial, temporal and mereological analogues22.

21Witness the amount of non-trivial mathematical results that are needed to get rid of
points in topology.

22Of course, one is not mathematically forced to accept the existence of paradigms, just as
one is not mathematically forced to accept the existence of points or mereological atoms. Just
as there are gunky spaces, there are also similarity structures that lack this sort of atoms.
One example is a cyclic structure x ∼ y ∼ z ∼ w ∼ x. Another example is an infinite path
· · · ∼ x ∼ y ∼ z ∼ w ∼ . . .
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4.6 Conclusion of Chapter IV

The purpose of this chapter was mainly defensive, namely to clear the ground for
a formal model of natural kinds based on aristocratic resemblance nominalism.

First, I have given some explanations regarding the concept of categorical
(all-or-nothing) similarity or resemblance, including some of its most basic for-
mal properties. The properties shown should be enough to convince the reader
that Quine’s animadversions regarding the logical status of categorical similarity
are ill-founded.

Second, I have discussed some objections against the fundamental properties
of categorical similarity. In particular, the objections against symmetry stem-
ming from the psychological literature and Tversky’s attribute model have been
discussed in detail. Tversky objects to the symmetry of similarity by providing
evidence of non-symmetric similarity judgements. However, I have given three
reasons to resist the argument. First, spatial models can give alternative expla-
nations for this fact without dropping the symmetry axiom. Second, Tversky’s
own alternative model, the attribute model, makes several questionable assump-
tions regarding the nature of similarity. Third, the discussions seems to concern
the notion of degrees of similarity, not categorical relations of similarity. This
is important, for a comparative similarity relation can be introduced from a
categorical one which allows explaining the violations of symmetry in terms of
the paradigmatic entities involved.

Third, I briefly reviewed the three main forms of resemblance nominalism,
namely egalitarian, aristocratic and collectivist nominalism. I have discussed
Pereyra’s egalitarian approach in detail and make some objections to it. Al-
though Pereyra’s egalitarianism provides a way to recover properties as certain
’stratified cliques’, it has two problems. On the one hand, only half of the re-
quired result is provided. He does not give the axioms that a similarity between
pairs of pairs of pairs of . . . have to satisfy in order to reconstruct any realist
context. Thus, the approach is incomplete. On the other hand, the approach is
too close to collectivism, since the similarity relations between pairs of pairs of
pairs of . . . can be replaced by the similarity relations between the correspond-
ing bases (which are sets). These similarities can be plausibly interpreted to be
collective. Thus, the approach risks being inadequate. Moreover, this solution
only works for the imperfect community problem. In order to deal with the
companionship problem, more assumptions have to be made.

Fourth, I have considered three different models for aristocratic resemblance
nominalism. One of them makes use of polar models introduced by Rumfitt and
Mormann, which provide a formal framework for conceptual spaces approach.
The second one is based on Mormann’s suggestion that the specialization order
of weakly-scattered spaces is a good model for the prototypicality order among
objects. I extended this model by (putting it upside-down and) adding an ax-
iom to it and I made a proposal regarding what the attributes would be (fixed
ultrafilters). The disadvantage of these models is that they do not mention
similarity at all. The third one is introduced for the first time in this thesis and
is based on similarity structures of a special kind. According to this model, no
two paradigms are sufficiently similar to each other and any two similar objects
are similar to a common paradigm. This model will allow for reconstructing at-
tributes as collections of objects similar to a given paradigm. This one preserves
both the spirit and the letter of aristocratic resemblance nominalism.
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Finally, I have considered two different conceptions of what paradigms are.
According to the former conception, paradigms are some exemplars found (and
stored in memory) by an epistemic subject during her concept learning process.
In contrast, this solution puts resemblance nominalism closer to conceptualism.
The notion of a paradigm appealed to by the similarity model was shown to
satisfy the criteria that proponents of the conceptual spaces approach have
given. According to the latter one, paradigms are tropers, qualitatively thin
objects that are mereologically related to ordinary objects. I argued that this
choice solves the coextensionality problem and makes plausible the assumptions
made in the model. I also considered three more arguments for the existence of
tropers. First, one can argue for the existence of tropers by showing how positing
them solves Goodman’s problems. Second, one can argue for the existence
of tropers as qualitative atoms by analogy with space, time and composition.
Third, if one accepts the basic assumptions of the model then if objects are
mereologically structured it follows that tropers will be mereological atoms (or
at least will form an infinite chain of smaller and smaller duplicate parts). This
solution moves resemblance nominalism closer to trope theory.

The upshot is that the notion of categorical similarity stands the test and
that a version of aristocratic resemblance nominalism can at least be presented
in a systematic fashion. The purpose of Chapter V is more constructive, its aim
is to show that the three models just introduced are equivalent and can give an
answer to the infamous Goodman’s objections to similarity and quasianalysis,
towards which we now turn.

200



Chapter 5

Resemblance Structure of
Natural Kinds
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The supreme maxim in scientific
philosophizing is this: wherever
possible, logical constructions are
to be substituted for inferred
entities.

Our Knowledge of the External
World

Bertrand Russell

In chapter IV I chose resemblance nominalism as an account of the inter-
nal structure of natural kinds. There I presumed that resemblance nominalism
could in fact give an adequate answer to the problem of kinds. This chapter
works in tandem with the previous one. First, I briefly discuss the method-
ological question concerning what a successful nominalist reduction should be
like. I propose to reformulate the formal side of the problem of universals as the
quest for certain structural representation between the corresponding models.
Next, I deal with the second pack of objections to a resemblance nominalism of
kinds, namely Goodman’s companionship and imperfect community objections
to similarity. I consider them alongside several replies by Leitgeb and Mormann.
Third, I show that the polar and similarity models for aristocratic resemblance
nominalism introduced in the previous chapter are equivalent and can indeed
answer Goodman’s objections, so long as we restrict our attention to a special
class of realist structures. Finally, I show what the resulting nominalist lattice
of natural kinds looks like, by proving several theorems about its structure.
This will give us a picture of the external structure of kinds according to the
nominalist. In particular, it is shown that kinds form a complete (co)atomistic
lattice.

5.1 Adequacy Conditions for a Nominalist Re-
construction

This section is devoted to discussing methodological matters concerning ade-
quate nominalist reconstructions. Many of these ideas can already be found
in the discussions about the possibility of Constructive or Constitutional Sys-
tems of Concepts by Carnap [17] and Goodman [48], and others come from the
discussions of philosophers of science concerning the nature of scientific repre-
sentation and the notions of theoretical reduction and theoretical equivalence.
The contemporary popular Quinean paraphrasing techniques seem to me to be
a drawback from the approaches assumed in these areas.

Philosophers have many times tried to avoid commitment to entities that
they considered to be ontologically suspicious, or have tried to show that some
entities are more fundamental than others. To argue for their views, they have
attempted to reconstruct the undesirable entities from the favoured ones. Con-
sider for instance a philosopher who gave the following quick arguments for the
existence of certain entities called ’absences’. First, absences seem to be causes
and having causal power is a sufficient condition for existence. To take a stan-
dard example, the lack of water killed my plant. Second, we seem to quantify
over absences in natural language. As an answer to the question ”what killed
my plant” I could say ”the lack of water killed it”, from which one may sug-
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gest that it informally follows that there exists something that killed my plant.
Third, some specific domains, like that of classical propositions, Russellian facts,
Platonic Forms or standard parts and wholes are closed under negation-like op-
erations that produce ’negative’ entities. Based on these considerations the
(Heideggerian) philosopher may argue that absences are entities in their own
right. A cautious philosopher will balk at this ontological inflationist attitude
by suggesting that less suspicious entities could fulfill some of the tasks that
absences are posited for. To explain away the apparent need to posit absences,
the latter philosopher will suggest some sort of ’revision’ or ’reconstruction’ of
what the former philosopher is saying. A more interesting (and non-exhaustive)
list of well-known examples could be the following one, where many pairs can
be read in both directions:

� Logical Atoms-Logical Complexes.

� Particulars-Bundles of Universals.

� Universals-Collections/Sums/Pluralities of Particulars.

� Instants-Intervals.

� Points-Regions—Points-Lines—Points-Solids.

� Propositions-Possible Worlds.

� Constituents-States of Affairs/Facts.

� Experiences-Qualitative atoms.

The aim of such a reduction is not always clear, but I would say that it
purports to be explanatory. The nominalist or anti-realist about X-s wants
to explain the same phenomenon that the realist about X-s wants without
committing himself to the existence of X-s. As a first step, the nominalist will
suggest that a different ontology will be sufficient to give an explanation of the
aforementioned phenomenon. However, it will usually not be enough for the
nominalist to give an account of the phenomenon in his terms by appealing
to his basic ontology, for the realist will always be able to reply that there
are some features of the phenomenon that he is capturing by appealing to his
posited entities that are not accounted for by the nominalist. So long as the
nominalist finds these features worth explaining, he will have to find a way
to explain them by appealing just to the sort of entities he accepts. Since the
ontology of the nominalist will be sparser than that of the realist, he may not be
able to give such an explanation by appealing to the basic entities of his system.
How is he then to perform his task? He may construct, constitute or derive
some entities from the more basic ones, by performing certain nominalistically
acceptable operations over the latter, and then show that these derived entities
can indeed fulfill the same roles that the entities posited by the realist do. The
morale of the story is that the nominalist can dispense with the entities posited
by the realist, since he can find other constructed or derived entities to do the
same job.

For instance, the nominalist about universals wants to give an explanation
of the same phenomena that the realist wants, be it resemblance among ob-
jects, naturalness, having a common nature, the truthmaking relations between
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some entities and some specific statements of the form ”a is F”, the categorial
structure of the world, or whatever. But the nominalist wants to give this expla-
nation without committing himself to the existence of universals. So he proposes
a sparser ontology, say objects or tropes, and suggests that it will be enough to
perform the desired explanation. The realist will reply that the nominalist is
still not able to explain in a systematic fashion some facts like those that make
statements like ”a and b are F” true. It is not clear how the nominalist can
give a systematic answer that guarantees that the same ‘recipe’ will be followed
to give a nominalistically acceptable explanation in all the cases that are simi-
lar to the one just mentioned. Here is where the reductive move is to play its
role. The nominalist proposes some entities derived from the fundamental ones
in his system, say mereological sums, pluralities, sets or collections, predicates,
concepts, and so on, and shows that they can perform the same tasks that the
universals do. The fundamental methodological question that should concern
us is how to make such a nominalist reduction.

It is currently customary in metaphysics to assume that the task of such
nominalist reconstructions is one of making logical paraphrases for any (true)
sentence that implies the existence of the undesired entities. This method was
popularized in its current form by Quine, particularly in [105], inspired by the
success of the Russell’s use of definite descriptions for similar purposes. It
consists in making a translation of the sentence, formulated first in a natural
language, to the language of some formal logic. This logic is usually classical
first order logic suitably augmented (e.g. with identity). Once in this logic, it
is shown that the sentence really does not commit oneself to the existence of
the purported entities, since these entities are not the values of the existentially
quantified variables that occur in the w.f. formula that translates the original
sentence. So the basic procedure consists in mapping each sentence in natural
language that contains the controversial term (e.g. ’shadow’) to a w.f. formula
in the logic chosen, so that all the truth values are preserved. Then one looks
for the entities at the domain of values for the variables that are quantified in
the formula. But there are some differences between current uses of neoquinean
methodology and Quine’s own approach. On the one hand, Quine would only
consider as worthy of translation those sentences found in our most successful
scientific theories. On the other hand, in most of the examples that one comes
across in the literature, the paraphrases are given in some sort of hybrid language
of natural and formal languages. A problem with this practice is that usually
the authors give only a rough and sketchy presentation of the ’translation’ by a
couple of examples, instead of giving a proof that the paraphrase works for any
sentence that implies the existence of the entities in question. It is not enough to
say that one has a paraphrase for one or two kinds of sentences, as for instance
for ”there are opaque objects that project shadows” [62]. The reason is that we
could always find a different sentence that may imply the existence of shadows
and did not adjust to the paraphrase template given.

I think that the problems can be circumvented if one turns to a more inter-
esting version of ”paraphrasing” that comes from mathematics and that philoso-
phers of science concerned with the problem of scientific representation know
well. The paradigmatic example of this method is given by the Representa-
tional Theory of Measurement (from now on, ’RTM’) developed by [128]1. The

1My suggestion is inspired by the approach developed by [87] and [89], who reformulates
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idea is that paraphrases should be understood as structural representations, in
the sense explained by Swoyer [129]. According to RTM, measurement consists
in the establishment of structural mappings from qualitative structures to nu-
merical structures. This explains why real numbers are so useful for making
measurements, since they can be used to make what Swoyer calls ’surrogative
reasoning’. We go from the represented entities in the world to the numbers in
our representation and we make calculations with these numbers. Then we infer
something about the represented entities using the representing entities and we
come back to the world to check that the conclusions hold. What guarantees
that our ’prediction’ of the behaviour of the entities in the world is more or less
right is precisely the structural correspondence between both domains. This
correspondence preserves the relations and operations found in the qualitative
domain. If for instance the concatenation of bodies, when considering their
lengths, was not associative then there could not be much that we could infer
from the numbers we use to measure them. Or consider the possibility that
our mapping did not respect the order between lengths. For instance, suppose
that z < x < y, but the corresponding numerical representations are arbitrarily
’ordered’ e.g. f(z) < f(x) > f(y). Even if we ignore the psychological impulse
to say that the numbers do tell us that x must be greater than y, we are simply
not able to make any sense of this situation. What the theory establishes is
something like the conditions of possibility of measurement itself. It also ex-
plains why the choice of a particular scale is irrelevant, showing that the choice
of scale is unique up to an equivalence relation for all those representations that
leave invariant the relevant structure. Moreover, it also explains the differences
between those structures more often encountered in physics (the ’extensive-like’
structures) and those found in psychology and other social sciences. It explains
them as differences between ways in which entities in the world may be struc-
tured.

The classical simplest example is that of an extensive structure. Extensive
structures are empirical structures of the form (S,≤, ?), where S is a domain
of objects to be measured (e.g. a collection of rigid rods), ≤ is a linear order
that holds between those objects (e.g. x ≤ y iff y is longer than x) and ? is a
concatenation operation under which the domain is closed (e.g. x ? y is the rod
obtained by juxtaposing the rod y with the rod x). A scale is a function s : (S,≤
, ?) → (R+,≤,+) that maps each object to a real number representing the
attribute that is being measured (e.g. length) in such a way that the empirical
structure gets preserved. In other words, x ≤ y ⇔ s(x) ≤ s(y) and s(x ? y) =
s(x) + s(y). Note that not all the structure of the real numbers is needed for
these purposes, we only require the order and additive structure of the real line.
Moreover, any other scale would do so long as it preserves the same structure.
In that sense, the scale for an extensive structure is unique up to a given notion
of equality between the scales (in this case, the scale has to be a ratio scale). A
proof of the existence and uniqueness (up to equivalence) of a scale for a given
structure (say, extensive structures) shows which conditions are necessary and
sufficient for certain numerical statements about it to be meaningful.

The results of this theory can be interpreted as nominalist paraphrases that
show that real numbers are dispensable for measurement. An ontology of par-
ticulars, sets and (extensional) relations and operations over them (which can

the quasianalytic approach as a case of structural representation (see section 3 below).
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be interpreted as ideal actions) suffices. Of course, the results themselves are
neutral regarding the realism-nominalism disputes. The theory does not say
whether the entities in the qualitative domain are ordinary substantial partic-
ulars, tropes or even magnitudes taken as universal properties. But it does
show that it is not necessary to assume that numbers themselves are in some
way ’in’ the entities to be measured. Entities which behave structurally in a
sufficiently and relevantly similar way to numbers are enough to explain why
measurement works. Moreover, this goes hand in hand with the modern devel-
opment of mathematics. Mathematicians have developed many different ways
to get structures that are isomorphic to numeric structures just by starting
with ’qualitative’ structures and adding more and more assumptions. From the
point of view of these theories, number structures are just highly complex qual-
itative structures that happen to have interesting order-theoretic, algebraic or
geometric properties which are related in very nice ways to each other.

Why should one consider these intermediate structures introduced by RTM?
After all, if number structures are the ones doing all the work, why not simply
assume that the world is just as highly structured as these are? Because we
would be making unnecessarily stronger assumptions about how (some portion
of) the world is structured. We may be even imposing structure where there isn’t
any. These features will be ’representational artefacts’ [129]. But then we could
fall into the trap and take too seriously some features of the representation
which lack a worldly correlate. In contrast, if we assume just those features
that are needed to do the job (those that are conditions of possibility of the
corresponding phenomenon), then at least we know that such a structure will
be embeddable in any other structure that should do the same job. This can
be taken as an Ockhamist argument in favour of any RTM-like project. So
we can think about the nominalist project roughly along the lines of the RTM
approach. For a given structure posited by the realist, we will look for the
minimal conditions that a structure formed from the entities acceptable to the
nominalist needs to satisfy for the realist representation to be meaningful (in
his terms).

What the existence of such a structural mapping shows is that we may
be able to avoid commitment to some entities by considering them simply a
metaphorical way of speaking about other entities. But this mapping by itself
does not show that the disputed entities do not exist. The nominalist usu-
ally requires additional arguments. Traditionally, these have been arguments
of ontological parsimony or epistemological (e.g. empiricist) arguments. Nev-
ertheless, the existence of some mapping of this sort seems to be a necessary
condition, for if such a ’translation’ is impossible in principle, then the nominal-
ist thesis is doom to failure. An additional reason for the structural mapping not
being enough by itself is that philosophers usually look for identities and not
only isomorphisms (that explains the heated discussions concerning the work
by Kripke on identity statements). Whatever this really amounts to, if there is
no such an isomorphism then there is no identity, and therefore it makes sense
to ask first for the existence of such structural mappings. This does not mean
that it is easy to find such correspondences. It may be a mathematical problem
too difficult to solve for philosophers. Furthermore, this does not mean either
that we should always seek for identities or for isomorphisms. The example of
the Representational Theory of Measurement already shows that we may be
content with an embedding. This is reasonable, for the nominalist will surely
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reject some features of the real numbers as mere representational artefacts that
do not correspond to anything in the world. If this is so, there is no reason why
we could not argue for weaker structural correspondences.

Nevertheless, I will impose stronger constraints than those required by the
Theory of Measurement. The additional condition required is that the surrogate
or representing entities themselves will have to be constructed from the primi-
tive nominalist ontology, which is an idea that can already be found in the works
of Carnap and Goodman2. So the methodology that I am proposing combines
two steps. First, surrogates for the undesired entities are constructed by mak-
ing use only of primitive entities in the system by applying logico-mathematical
operations to them. Second, the existence of a (unique) structural mapping
from the surrogate structure to the structure posited by the realist is proven.
This shows that the surrogates do behave as desired and can actually fulfil the
tasks they were introduced for. In other words, it is not enough to establish the
existence of a certain structural mapping, the surrogates have to be constructed
from the primitive entities. Therefore, the procedure is even more demanding
than in the measurement case. An analogous move in RTM would be to con-
struct the real line itself from the extensive structure. With all this in mind,
we can try to give some requirements for an adequate nominalist reconstruction
of universal entities along these lines:

i The ontology must be nominalist. In our case, it should include partic-
ulars, sets of particulars and one (or at least few) relation which can be
reasonably interpreted as a resemblance relation. Moreover, this relation
should have some expected formal properties, depending on whether it
represents a categorical, comparative, degree-like or collective resemblance
relation.

ii The structure of universal attributes should be reconstructed from the
ontology in (i) as previously discussed. The correspondence between the
structures should be an isomorphism (or some weaker structural relation-
ship, if suitably argued).

iii Ideally the reconstruction should satisfy some additional constraints. It
should be as simple and general as possible. It should have some uni-
fication power, so it should at least imply as special cases ones already
known. It should have some explanatory power, so it should at least ex-
plain why other alternatives work or do not work, hint at why it seems pre-
theoretically plausible to posit the entities that are being reconstructed
and explain in some way the features that realists usually attribute to
universals.

Conditions (i)-(iii) are inspired by Carnap’s notion of explication [18]. (ii)
requires the explicatum to be formally adequate or precise, whereas (iii) requires
it to be simple and fruitful. As we know, some of these conditions, such as
adequacy and fruitfulness, often pull in opposite directions. Regarding (i) which
concerns material adequacy, the following moves seem to be cheating or at least
suspicious:

2This makes the proposal closer to the requirement that there is definitional equivalence
between the two classes of models than just requiring the existence of an isomorphism from
each of the models in one class to another model in the other class.
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� Starting from one similarity relation for each of the universal properties.
Many philosophers have claimed that one would be smuggling in universals
as ’respects’ of comparison.

� Introducing external entities which are not obtained as a result of applying
logico-mathematical operations over entities taken from the basic ontology.

� Obtaining the reconstruction by ’trivial’ moves.

Concerning the first case, one could appeal to degrees of similarity without
necessarily committing himself to universals, this is for instance what [109]
does. As long as the degrees of similarity are not interpreted as ’respects’ of
comparison, this is a legitimate strategy. Regarding the second case, I think
it is a very important point. Suppose I claim that the basic ontology consists
in particulars, sets and a degree-like similarity relation. Then I introduce the
euclidean space R3, with its metric, vector-space structure and even cartesian
coordinates. Finally I say that the surrogates for universal properties are to
be found in some regions of this space (say, convex regions) that are to be
described using the coordinates in some specific way. In this case, I would owe
the nominalist an explanation of where does this euclidean space come from,
why are all its properties needed and what does it have to do with the original
ontology. So the first problem is that the entities introduced could be at odds
with the nominalist ontology. Second, the more structure we put the greater
the risk is of taking too seriously features that may simply be (at least for the
nominalist) representational artefacts. We could then start wondering about the
worldly correlate of the inner product, about the ontological status of vectors
or about the number of dimensions that our space should have. Of course,
one could argue that it is legitimate to appeal to certain entities in a fictionalist
fashion, leaving the reconstruction of these entities as a task for further inquiriy.
But in that case one should specify why. The third case is difficult to make more
precise. The following would be a clear example of a violation of this condition.
We start from a context (S,Q, I) and we define a collective resemblance relation
over the power set of S as follows:

A ∼ B := ∃P ∈ Q A = B = e(P )

The reflexive nodes in the graph (℘(S),∼) are exactly the extensions of the
original properties. This case does not violate the two previous conditions, since
there is only one resemblance relation, it only appeals to particulars and sets
of particulars and no extra-systematic entities are introduced. But it is clearly
trivial. The similarity is ”the A-s and the B-s are similar iff they are exactly the
extension of a property P”. This definition has some awkward consequences too:
it makes the similarity necessarily transitive and just as fine as identity, proper
subsets of extensions of properties are not similar to themselves (even if all the
members clearly share some property and therefore should be similar to each
other), etc. At most it could be a way of subsuming naturalness nominalism as
a trivial case of collective resemblance nominalism.
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5.2 Goodman’s Problems for Resemblance Nom-
inalism

5.2.1 Companionship and Imperfect Community

As it is well known, Goodman [48] highlighted some problems for Carnap’s
quasianalytical account, as developed in the Aufbau, that were later interpreted
as objections against resemblance nominalism. These problems had already
been identified by Carnap in [16] and [17], but Goodman did not find Carnap’s
answers convincing. The discussion of how Goodman’s problems block the at-
tempt at reconstructing a realist context is neatly reconstructed by Leitgeb
[70]. Although I will make some changes in terminology to adjust it both to
the terms that we have been using so far and to those of the realist-nominalist
controversy3, I follow his presentation closely.

Suppose that the realist asks the nominalist to give a model of the world.
The nominalist chooses a similarity structure (S,∼). The realist then claims
that he can choose a given context (S,Q, I) to show that a similarity ∼∗ can be
defined in this context which is equal to the one chosen by the nominalist. The
realist has several options. The simplest one is to choose a context (S,Q, I)
which is such that P ∈ Q iff e(P ) ∈ SC(S). To put it simply, he chooses
attributes whose extensions coincide with the similarity circles. Then he defines
the new similarity among the objects as x ∼∗ y := i(x) ∩ i(y) 6= ∅, which
turns out to be equal to ∼. Following this recipe, the realist can reformulate
whatever the nominalist says in his own terms. The realist gives a reduction of
the nominalist model.

Let us go back, now from the point of view of the nominalist. The realist
starts from a context (S,Q, I), which satisfies at least the following condition:

∀x ∈ S ∃P ∈ Q xIP [Instantiation/Exhaustiveness]

This is not a problem since the realist we are considering accepts the Princi-
ple of No-Bare Particulars, that is, that necessarily any particular object must
instantiate some universal property (the principle will follow from the reflexivity
of similarity). The nominalist is willing to accept a counterpart of this principle
in his terms. Namely, the reflexivity of categorical similarity. Then the realist
advances the following definition of similarity:

∀x, y ∈ S x ∼ y := ∃P ∈ Q (xIP & yIP ) [Similarity]

This is a crucial step, since the resemblance nominalist could simply reject
this definition and ask for a different one. For instance, he could argue that
this is not a convincing definition of similarity, since properties themselves can
be more or less similar to each other. He could ask for something like Car-
nap’s part-similarity (see [17]) or for an overall similarity of a different sort.
Nevertheless, the resemblance nominalist grants this definition and starts from
the similarity structure. Notice that now the answers that the nominalist can
give are constrained. Under the previous definition of similarity, and given that
the surrogates for attributes must be sets, we have that any attribute P in the

3For example, what here is called a ’formal context’ that satisfies some additional condi-
tions, using the terminology of concept lattices, is called ’property structure’ by Leitgeb, and
so on.
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context is a clique. That is to say, for any x, y ∈ P it trivially holds that x ∼ y.
Therefore, the nominalist knows that he must choose cliques as surrogates for
attributes. In fact, all the attributes the realist is asking for are among the
cliques of the nominalist. Is the problem of the nominalist solved then? Not
really. If we start from a context (S,Q, I) and define a similarity structure
(S,∼) in terms of it, which cliques should the nominalist choose to surrogate
the attributes in Q? It will not do to simply say that they must be the ex-
tensions of the attributes in Q. That would be tantamount to cheating. Such
a move would be like starting from the beginning with a chosen set of cliques
Q ⊆ ℘(S). A naturalness class nominalist may be allowed to make that move,
our resemblance nominalist is not.

So as a second crucial step, the nominalist proposes to follow Carnap’s sug-
gestion. He will take as surrogates for the universal attributes the similarity
circles SC(S) of the structure (S,∼). That is to say, universals are maxi-
mal collections of pairwise similar particulars. He finally offers the context
(S, SC(S),∈) as a surrogate of the structure (S,Q, I) given by the realist, argu-
ing as we previously explained that they are isomorphic (not identical of course,
the nominalist rejects the existence of universals!). To summarize:

Naive Egalitarian Resemblance Nominalism (L,≤) is the concept lattice
of the exhaustive set-theoretic context (S, SC(S),∈) induced by the sim-
ilarity structure (S,∼).

Unfortunately, this will not do. Not every context can be uniquely recon-
structed from a similarity structure following the recipe given by resemblance
nominalism. The classical objections of coextensionality, companionship and
imperfect community can be seen as different ways in which the required iso-
morphism fails. The first objection is the coextensionality problem. There could
be two different but coextensional properties. Therefore, there are more prop-
erties than sets and no possible bijection. The classical example is that of
the different but coextensional predicates ’creature with a kidney’ and ’crea-
ture with a heart’. Pereyra [109] argues that this particular counterexample is
wrong but in any case, he acknowledges the possibility of there being coexten-
sional predicates that correspond to different sparse properties. In other words,
the nominalist can reconstruct at most those contexts that satisfy the condition
of extensionality :

∀P,R ∈ Q e(P ) = e(R)⇒ P = R [Extensionality]

Which is dual to the (unqualified) Principle of Identity of Indiscernibles:

∀x, y ∈ S i(x) = i(y)⇒ x = y [Identity of Indiscernibles]

By ’dual’ I mean that we can obtain one of the principles from the other one
by substituting the variables for a certain kind of entity (e.g. particulars) for the
variables of another kind of entity (e.g. universals) and the corresponding oper-
ator (e.g. intension) for its dual (e.g. extension). This gives us some clues, since
the problems that they give rise to are structurally the same. In other words,
they impose the same representational limits to the reconstructions given by
those who only accept one kind of entities, be they particulars or universals.
For instance, the nominalist must accept [Extensionality], and therefore cannot
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distinguish between coextensional universals. Analogously, the bundle theo-
rist must accept [Identity of Indiscernibles], and therefore cannot distinguish
between indiscernible particulars, i.e. particulars that instantiate exactly the
same universals4. If the bundle theorist uses for the reduction a similarity rela-
tion of coinstantiation, i.e. being instantiated by the same particulars, then he
may face analogous problems to the companionship and imperfect community.
Moreover, the nominalist may construct new surrogates for universals choos-
ing appropriate extensions. The bundle theorist may construct new particulars
choosing appropriate intensions.

As we know, the nominalist can appeal to other strategies to guarantee
that the context to be reconstruct must satisfy Extensionality. For instance,
he can accept some version of modal realism (say [73]), or he can appeal to
possibilia and then show how to reconstruct possibilia themselves from other
entities. I will not discuss these strategies and for the time being I will simply
assume that both parties agree on restricting themselves to extensional contexts.
These contexts are in unique correspondence with those contexts whose set of
properties Q is a subset of the power-set of S, i.e. whose properties are just
sets. So the nominalist can simply restrict his attention to the set-theoretical
contexts of the form (S,Q, I) where Q ⊆ ℘(S) and I =∈. So instead of making
a distinction between a property P and its extension e(P ), both parties agree
now to talk about the property P , taken as an extensional entity. We simply
have to remember that, strictly speaking, the nominalist is giving as a surrogate
a structure (S,Q∗, I∗) which is isomorphic to the one proposed by the realist,
who does not accept that properties are sets.

The second objection is the companionship problem. Given (S,Q, I), it can
happen that for two different properties one is properly included into the other
one. In other words, a pair A,B ⊆ S forms a companionship iff

A ⊂ B [Companionship]

For instance, take S = {x, z} and Q = {{x}, {x, z}}, then the pair {x}, {x, z}
is a companionship. {x} is not a similarity circle because it is not maximal.
Since similarity circles are maximal, neither of them can be properly included
into the other one, and so the included property cannot be recovered. The
method fails because one of the properties in Q is not constructed. In other
words, the similarity structure is not ’full’ [70].

One of the classical examples of companionship is as follows:

� Let x be a red scarlet object and y a red crimson object. Suppose that
x ∼ y iff x and y are of the same colour. Then if one intends to recover all
the colours from a sufficiently general degree of similarity, i.e. such that
x ∼ y, then one will only recover the colour red. If one restricts the degree
of similarity such that x is not similar to y, then one can only recover the
most specific determinates red scarlet and red crimson, but not the colour
red.

The nominalist realizes that the properties to be recovered can be properly
included into one another. So instead of the set of similarity circles, he can
suggest the set SC∗(S) of all the cliques of S. But then the realist points

4However, Pereyra has recently argued that this is not indeed the case.
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out that now there are too many properties, and that some of them (e.g. the
singletons, the empty set, some edges, . . . ) do not correspond to any of the
properties in the original context. He could take some of these cliques, but
without any clue that helped to distinguish those cliques that are properties
from those that are not, he could not do much more.

The nominalist can complain that the realist is asking for too much. He
obviously cannot recover all the properties from a single degree of similarity,
since some properties are more specific than others. For that he would require
a distinction between degrees of the same relation of similarity (e.g. [109] uses
this strategy). But the problem now lies in giving a plausible account of such
degrees of similarity and a general recipe that shows how to choose an adequate
family of them for each context. For instance, choosing a degree of similarity
for each attribute would be cheating. This is not an easy thing to do. The
nominalist can also insist on the fact that the properties to be reconstructed
are of the lowest level of specificity, and that the rest simply supervene on
them (once more [109] seems to suggest this solution). The properties to be
reconstructed are the lowest determinate natural properties. Therefore, some
of the counterexamples given by the realist are not counterexamples at all.

The third objection is the infamous imperfect community problem. Given
(S,Q, I), it may happen that for at least three particulars x, y, z ∈ S, each pair
of them instantiate a common property whereas there is no property which is
instantiated by all of them. In other words, a set of objects A ⊆ S forms an
imperfect community iff

∀x, y ∈ A i(x) ∩ i(y) 6= ∅ & i(A) = ∅ [Imperfect Community]

Imperfect communities are cliques and some of them can be similarity cir-
cles. For instance, suppose the context has the form of a Goodman triangle
S = {x, y, z} and Q = {{x, y}, {y, z}, {x, z}}. Then {x, y, z} is an imperfect
community, more specifically a similarity circle, which does not correspond to a
property in Q. Now the method fails because the property constructed was not
there. In other words, the similarity structure is not ’faithful’ [70].

Let us put some examples of imperfect communities for different domains of
entities:

� Let x, y be organisms and x ∼ y iff x and y can interbreed. As it is known
to the philosophers of biology, this relation is indeed non-transitive (this
phenomenon is called ’ring species’). If one intends to reconstruct species
as similarity circles, the method may fail since we could have a Goodman
triangle.

� Let x, y be (social) agents and x ∼ y iff x and y act jointly. If one intends
to reconstruct collective actions as similarity circles, the method may fail
since we could have a Goodman triangle.

� Let x, y be epistemic agents and x ∼ y iff x and y communicate with each
other. If one intends to reconstruct shared or common knowledge (i.e.
shared propositions) as similarity circles, the method may fail since we
could have a Goodman triangle.

� Let f, g be functions with the same domain and range, and f ∼ g iff there
is an x such that f(x) = g(x). If one intends to reconstruct points as
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similarity circles from the overlappings of functions, the method may fail
since we could have a Goodman triangle.

It is important to realize that not all similarity relations, taken in the purely
formal sense of reflexive and symmetric relations, produce imperfect communi-
ties. It depends on the interpretation of the relation and of the entities to be
reconstructed. For instance consider:

� Take entities which have continuous-like structure, like spatial regions,
temporal intervals, processes, colors in the wheel, and so on. For a con-
crete example, let x, y be spatial regions, and x ∼ y iff x and y overlap.
Let us say that we want to reconstruct the smallest region that contains
the overlapping of x, y and z, i.e. the region common to x, y, z. It is plau-
sible to say that if the space was modelled as a similarity structure, the
corresponding region to be reconstructed must exist. The similarity circle
x ∼ y ∼ z ∼ x will correspond to that region.

� Let x, y, z be people, and x ∼ y iff x and y are friends (or acquaintances).
Let us say that we want to reconstruct (maximal) groups of friends. Then
we cannot have imperfect communities. It is nonsense to say that x and y
are friends, y and z are friends, x and z are friends, but there is no group
of friends to which x, y and z belong. The similarity circle is this group
of friends, by definition5.

The point of these concrete examples is to hint at the fact that there is
nothing defective in the formal definition of the relation of similarity. We get
into trouble as soon as similarity is given certain interpretations, for instance
when it is defined as ”x and y have a property in common”, and when certain
entities are to be recovered as abstracted from similarity circles. The reason for
this is to be found in the additional structure that the entities to be recovered
have, as will be seen in the following sections.

It would be a mistake to think that the formal problems related to categor-
ical similarity are in some sense rooted in its being qualitative. For instance,
quantitative similarities are also subject to imperfect communities. Consider
the similarity x ∼ y := |i(x) ∩ i(y)| ≥ n, for some n ∈ N. For instance,

we may require that |i(x) ∩ i(y)| ≥ |i(x)∪i(y)|
2 . Then we construct an imper-

fect community as follows. Let x, y, z be such that x and y share n proper-
ties, y and z share n properties and x and z share n properties, but x, y, z
share less than n properties. For example, for n = 1, a Goodman triangle
suffices. Thus, although x, y, z are pairwise similar to each other, they are
not collectively similar. Moreover, this is not so surprising considering that
since i(x) ∩ i(y) ∩ i(z) ⊆ i(x) ∩ i(y), i(y) ∩ i(z), i(x) ∩ i(z), we will have that
|i(x) ∩ i(y) ∩ i(z)| ≤ |i(x) ∩ i(y)|, |i(y) ∩ i(z)|, |i(x) ∩ i(z)|. To sum up, making
use of a similarity defined in terms of the number of shared properties does not
solve the problem.

There are several answers one can give to these problems. But before seeing
the details, we must distinguish the different theoretical proposals that will
be discussed. On the one hand, we have Carnap’s original Aufbau approach
[17]. This is the development of a very general formal procedure or principle

5I think these are called ’cliques’ in sociology too.
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of abstraction, the quasianalysis, for constituting some structures of entities
from other more basic ones. This formal device was introduced for the task of
building what he called ”constitutional systems of concepts”. This is in fact
the research line that Mormann [89] and Leitgeb [70] continue in different ways.
This approach is much more general than the problem we are going to discuss
here, and encompasses the constitution of various formal structures6. I will
delve into this project later on, since the the nominalist reduction can be seen
as a specific application of those tools.

On the other hand, we have the proposal of the nominalist, say Pereyra
[109]. This consists in assuming as primitives some particular entities in some
resemblance relation (binary, comparative, degree-like, collective or whatever).
From this, some suitable collections of entities are chosen, in such a way that
they uniquely correspond to the extensions of any structure of universal proper-
ties, i.e. any context (¡!), that the realist may have chosen. This construction is
similar both for the resemblance nominalist that starts from substantial partic-
ulars and for the trope nominalist7. Of course these two projects overlap, but
their aims are different and we should try to keep this in mind.

5.2.2 A Summary of the Puzzle

Let us sum up the puzzle:

1. We start from a given arbitrary exhaustive set-theoretical context (S,Q, I)
which acts as a realist model.

2. We define a binary categorical similarity relation in the domain of objects
S as sharing a common property.

3. We select certain class of cliques in the similarity structure to act as sur-
rogates for the original properties.

4. The class of cliques selected must be identical to the original set Q of
properties.

5. We select as the class of cliques the class of all similarity circles.

We know that if we follow these steps the strategy fails. Thus, in order to
answer to Goodman’s problems, at least one of these steps has to be rejected.
Since we want to preserve the correspondence between being similar and hav-
ing a common property, the second step will not be challenged. Since all the
properties are cliques in the induced similarity and the purpose is to recover
some of the original properties, the third step will not be rejected. This leaves
the first, fourth and fifth steps. I will consider two approaches found in the
literature. Leitgeb [70] preserves the fourth and fifth steps but rejects the first
one. He proposes to reconstruct just a restricted class of contexts, not the class

6These are structures that are specially useful for doing formal ontology, such as mereo-
logical and topological structures

7Trope theorists usually appeal to the transitive relation of exact resemblance, so that the
maximal classes of resembling tropes (which are the surrogates for universal properties) end up
being equivalence classes. This avoids imperfect communities. I am not sure that this strategy
works. After all, it is plausible to argue that tropes are also more or less approximately similar
to each other (consider colour or magnitude tropes). If this is the case, then the threat posed
by the imperfect community will still be there.
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of all such contexts. Mormann [89] suggests several solutions. According to his
main solution, steps one, four and five are rejected. Not every context should be
reconstructed, because we need not have access to a given such context (since
all we know are the similarity relations). Since we do not have access to such a
context, the cliques chosen need not be identical to some given properties. The
class of cliques chosen is in fact a restricted class of similarity circles (namely
those of order n ≤ 2). Since we are not to reconstruct an arbitrary context, we
are free to choose the similarity structure from which to start. This allows us
to choose a certain class of similarities (similarities of order n ≤ 2) for which
there is indeed a unique corresponding context such that the properties of the
former are the similarity circles just mentioned8.

My proposal contains a bit of Leitgeb’s and a bit of Mormann’s. I will reject
steps one and five. I will preserve Leitgeb’s requirement that a previously given
realist context should be reconstructed, in such a way that the class of cliques
selected is identical to the class of properties to be reconstructed. But I will also
follow Mormann in selecting only a certain class of similarity structures (namely
the pure similarities of order 1) and of similarity circles (namely the circles of
order 1, and more generally the simple circles), so that a plausible model for
nominalism results. The reason for this move is to be found in the philosophical
purposes of the model in this thesis: in order to fulfil the nominalist reduction
requirement and obtain a unique correspondence between some given realist
models and the nominalist ones, I need to follow Leitgeb’s path and restrict
my attention to a subclass of such contexts. But in order to give a model for
aristocratic nominalism that involves paradigms I need to follow Mormann’s
path and restrict the attention to a certain class of similarities and of similarity
circles.

5.2.3 Property-First Approaches

One answer is to accept Goodman’s objections, but to reply that the task of
reconstructing any possible (exhaustive and set-theoretical) formal context was
too much to ask for. This strategy rejects the first step of the puzzle. A reason
could be that, after all, our task is to reconstruct structures of natural properties,
not of abundant ones. Not every possible set-theoretical context is guaranteed
to be a suitable context of sparse properties. For instance, as we have discussed,
natural properties are not necessarily closed under the usual boolean operations.
One could argue that the structure of properties should satisfy some additional
structural constraints for it to be a structure of natural properties. However,
neither Goodman nor the realists have given us any clues regarding what these
would be. In the absence of such conditions, the nominalist is free to propose
them. Let us call this the property-first approach9.

Suppose that one thinks that, for a given domain of entities, the natural
properties are fundamental properties. In such a domain no property implies
the others, all are ’implicationally independent’ from each other, so to speak.
Then one can suggest the conditions given in Leitgeb’s [70]:

8According to another solution by Mormann, step four is rejected. The class of cliques
need not be identical to the one given, it can be equivalent in some specified weaker sense.

9Leitgeb himself proposes to consider the following contexts as contexts of natural proper-
ties. He then rejects this option as implausible.
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Definition 57. Let (S,Q, I) be a finite exhaustive set-theoretical context. Then
it is a Gilmore context iff:

i ∀P,R ∈ Q (P ⊆ R⇒ P = R). [Maximality]

ii ∀P,R, T ∈ Q ∃N ∈ Q (P ∩R) ∪ (P ∩ T ) ∪ (R ∩ T ) ⊆ N . [Gilmore]

Another way to understand what (i) says is to define as usual the boolean
implication in the power set of S (in Q is undefined!) as P →B R := P c ∪R, so
that P ⊆ R iff P →B R = S. Therefore, what (i) says is that no two distinct
properties imply each other, they are independent. There is another condition
equivalent to (Gilmore) which was proposed by Hazen and Humberstone in [58]:

∀A ⊆ S (∀x, y ∈ A ∃K ∈ Q x, y ∈ K ⇒ ∃K ′ ∈ Q A ⊆ K ′) [H-H]

If any two objects in A share a property, then all of them share a property. In
other words: there are no imperfect communities. Any Gilmore context defines
a similarity structure over S as x ∼′ y := i(x) ∩ i(y) 6= ∅. What Leitgeb [70]
shows is that this correspondence is unique10:

Theorem 6. Let (S,∼) be a finite similarity structure. Then (S, SC(S),∈
), where SC(S) is the set of all similarity circles of S, is a Gilmore context
whose similarity structure (S,∼′) is such that ∼=∼′. Conversely, let (S,Q, I)
be a Gilmore context. Then (S,∼′) is a similarity structure which is such that
(S, SC ′(S),∈) where SC ′(S) = Q and ∈= I.

To be clear, the aim of Leitgeb [70] is to assess the adequacy of Carnap’s
method of quasianalysis, that will be introduced soon. His conclusion is precisely
that, due to Goodman’s objections, the quasianalysis only works adequately un-
der the conditions stated by the previous theorem. The version of quasianalysis
that Leitgeb discusses is the one from Carnap’s Aufbau, we call it here the stan-
dard weak quasianalysis11. In this thesis (following Mormann) we identify the
method of quasianalysis itself with the function which maps each object to the
set of all the similarity circles to which it belongs (this is important, for we will
see now several variations of this notion):

q : S → ℘(SC(S)) q(x) := {T ∈ SC(S) | x ∈ T}

So q is the intension function of the context induced by the similarity. For
Leitgeb it seems that the method of quasianalysis is the correspondence (de-
scribed in the previous theorem) between the similarity structures and the con-
texts of properties. In any case, this is a minor difference. According to Leitgeb,
under the assumptions made so far, Carnap’s method of quasianalysis of recon-
structing a given structure of properties from a similarity relation fails. In other
words, not every context of properties can be reconstructed from a similarity

10Leitgeb gives still another equivalent formulation using notions from hypergraph theory.
In the case of finite structures, he also gives a combinatorial result that shows that the
correspondence cannot obtain because there many more property structures than similarities.
Thus, in the finite case the correspondence fails for cardinality reasons.

11Later on we will mean by ’standard’ any quasianalysis that assigns similarity circles,
independently of whether these are all of them or just some. The reason is that other entities
apart from cliques can be assigned to objects too, e.g. paradigms.
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following the previously listed steps. This is indeed the case, as the previous
theorem shows, so long as we do not drop other assumptions of the puzzle.

Realists will agree with this conclusion, and they will answer in the follow-
ing way. There are formal contexts which are plausibly structures of natural
properties, but whose similarity faces the companionship problem, e.g. these
context do not satisfy (Maximality). Leitgeb himself argues that it would be
implausible to consider the previously mentioned contexts as the contexts of
natural properties. For instance, take these examples of contexts from the stan-
dard book on concept lattices [40]. These are used typically as nominal and
ordinal scales in social sciences. The corresponding properties are determinates
of a common determinable:

Ordinal Context a context where the extensions of properties in Q form a
chain. E.g. extremely loud ≤ very loud ≤ loud.

Bi-ordinal Context a context where the extensions of properties in Q satisfy
the hierarchy condition (it may not have a top), i.e. they form a disjoint
union of chains. E.g. very low ≤ low & very loud ≤ loud.

Interordinal Context a context where some extensions of properties in Q
form a chain whose complements are also extensions of properties in Q.
E.g. very hot ≤ hot ≤ warm ≥ cold ≥ very cold.

For example, consider the interordinal context. If x is very hot, then is hot
and therefore (plausibly) warm, but it is not cold. If it is very cold then it is
cold and therefore (plausibly) warm, but not hot. The realist will point out that
it is embarrassing for the nominalist that he cannot reconstruct such common
examples of ordered properties. Thus, the discussion will again revolve around
the plausibility of the thesis that natural properties are implicationally indepen-
dent from each other. Plausible cases of imperfect communities are even easier
to come up with, as Goodman’s classic example shows. Even assuming a dis-
tinction between natural properties and natural kinds, imperfect communities
can also happen for the latter ones, as can be seen from the example of ring
species. So the point is that the realist will insist on the fact that there are
legitimate contexts that should be reconstructed by the nominalist. Neverthe-
less, the property-first approach does offer a partial solution to the problem. At
least for Gilmore contexts of universals, the nominalist strategy succeeds.

My own assessment of Goodman’s problems is similar to that made by Leit-
geb. Since I take the nominalist to be concerned with a given realist structure of
properties to be reconstructed, I agree with Leitgeb that not every such struc-
ture can be reconstructed. The main difference with the approach taken in this
thesis is that I will make use of some of the results by Mormann (to be described
in the next section) in order to select a specific subclass of realist structures to
be reconstructed. This class overlaps the one described by Leitgeb, but neither
contains the other. This choice will also force me to select specific subclasses
of similarity structures and of similarity circles, namely the pure similarities of
order 1 from the similarity model in the previous chapter. The reason for this
is to be found in some results by Brockhaus, that will be considered now.
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5.2.4 Similarity-First Approaches

Another answer is to reject that the nominalist has any access to a previously
given structure of properties that has to be reconstructed. If so, the nominalist
has to develop some sort of theory or hypothesis that explains the similarities
between the objects by positing quasiproperties as theoretical representational
constructs. This interpretation is, roughly speaking, what one gets by applying
the answer that Thomas Mormann proposed in [87] and [89] to the point of
view of the nominalist. In other words, this strategy rejects steps one and four
(and possibly five too). The nominalist can start from the formal properties of
the similarity and try to argue that several other axioms should be accepted.
From this point of view, some of the axioms that [89] proposes, concerning
the indiscernibility of the similarity neighbourhood (C3) or the principle or
parsimony (C4), are plausible. Let us call this the similarity-first approach. This
approach makes sense in those cases where we start from a similarity relation
and we want to discover interesting kinds of objects12. But before considering
this approach in more detail, we have to understand what Carnap’s main formal
innovation in his Aufbau project was. This is a formal tool called ’quasianalysis’.

What is a quasianalysis? From a formal point of view, it is a function that
represents a similarity structure by a set-theoretical structure, preserving the
structure of the former into the latter. Thus, a quasianalysis is a representation
function just as those found in the set-theoretic representations of other struc-
tures, such as lattices. From an ontological point of view, things are a bit more
complicated. The quasianalysis can be seen as a generalization of the method of
abstraction of Russell and Whitehead, by which a set of objects in equivalence
relations are transformed into a set of equivalence classes, thus collapsing the
identity relation into the coarser equivalence relation and moving one level up to
a layer of higher abstraction. Quine was well aware that this method could be
useful for making ontological reductions. So a quasianalysis is a principle of ab-
straction. Put more interestingly, a quasianalysis is a general method by which
one can constitute or synthesize new entities from more basic or fundamental
ones in such a way that the original structure is preserved. The method is a way
of enriching the content of the original structure. If the elements of the struc-
ture are particulars, the quasianalysis gives us a bundle representation of these
particulars. In other words, it represents them as bundles of some previously
chosen properties that Carnap called ’quasiproperties’. In the most interesting
case, these quasiproperties themselves are constructed from the particulars too,
say as similarity circles.

Carnap’s proposal was to use these principles of abstraction as synthetic
methods of constitution of new entities from some previously given ones that
were to be taken as more basic or fundamental13. These principles of abstraction
could allegedly be applied again and again to jump from a structure of basic
entities to even more complex structures, constructing what pre-theoretically

12As far as I understand, this is roughly speaking what is done with the spatial models of
categorisation used in cognitive psychology that were briefly mentioned in Chapter IV.

13The choice of a base of entities was largely a pragmatic issue for Carnap, depending on
what piece of science one wanted to reconstruct and why. So the fact that Carnap chose a
phenomenalistic base to give an example of constitution of entities is irrelevant. This feature
has been repeatedly pointed out by Carnap scholars. There are several proposals of bases in
the Aufbau, some of them are physicalistic, some are phenomenalistic and Carnap even plays
with the idea of starting from a cultural basis.
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could be considered to be the parts, properties or kinds to which these basic
entities belonged. This partially explains what Carnap meant by ’synthetic’.
Some of the entities that one could construct could, pre-theoretically speak-
ing, be interpreted as constituents of the objects. An analytic procedure would
consist in dividing an entity into its logical constituents, be they parts or prop-
erties. In contrast, a synthetic procedure would consist in starting from some
pre-theoretically (logically) complex or extended entities as if they were atomic
and constructing their logical constituents from them, in such a way that one
could later on give an enriched structural description of the basic entities as
complex. In this way one does not need to assume the constituents as if they
were basic entities in the system. So, taking the previous example by Goodman,
imagine that one starts with lines instead of points as basic entities. Although
pre-theoretically we consider the points to be constituents of the lines, we can
construct them as overlappings of lines, i.e. as sets of lines. Then we can re-
describe the lines as bundles of points, that is to say, as sets of sets of overlapping
lines. In the simplest case, one represents an object by an equivalence class. This
is not unrelated to the methods of reduction we are used to. For instance, we are
familiar with the representation (or reduction) of possible worlds by (to) equiv-
alence classes of propositions. But we know that, as Lewis suggested, we could
start from the possible worlds and represent (reduce) propositions as (to) sets
of possible worlds. Carnap’s method does the same job for any non-transitive
similarity.

It is time to take a closer look to the formal features of quasianalysis. We
start from [89]:

Definition 58. Let (S,∼) be a similarity structure, Q a non-empty set, ∼∗ the
similarity relation A ∼∗ B := A∩B 6= ∅ on ℘(Q), and q : S → ℘(Q) a function.
Then q is a standard quasianalysis iff Q ⊆ SC(S) and q(x) := {T ∈ Q | x ∈ T}.
Moreover, q is a weak quasianalysis iff satisfies (C1-C2), strong iff satisfies
(C1,C2,C3,C4) for any q′ : S → ℘(Q′) defined as follows:

i x ∼ y ⇔ q(x) ∼∗ q(y). [C1-C2]

ii co(x) = co(y)⇔ q(x) = q(y). [C3]

iii co(x) ⊆ co(y)⇔ q(x) ⊆ q(y). [C3*]

iv If Q′ ⊆ Q is such that q′ : S → ℘(Q′), defined as q′(x) := {T ∈ Q′ | x ∈ T}
satisfies (i)-(ii), then Q′ = Q. [C4]

Here Q is a set of quasiproperties, surrogates for attributes. Recall that
co(A) := {z ∈ S | z ∼ x} is the similarity neighbourhood of A and the sim-
ilarity interior is int(A) := co(Ac)c. By (i) a quasianalysis is a similarity ho-
momorphism that by (ii) preserves the equivalence relation (and even the order
(iii)) among neighbourhoods. (iv) is a principle of parsimony14. It says that
we cannot replace the quasianalysis by one using fewer quasiproperties with-
out violating one of the previous conditions. (C3*) is stronger than (C3). A
quasianalysis is injective iff ∼ satisfies the indiscernibility axiom (SNI). What

14We can restrict the range of q by introducing the overlapping similarity relation ∼′ in Q
taking as range of q the set of cliques of (Q,∼′). So, (SC(S),∼∗) is the intersection graph of
∼ and the elements of S are represented by cliques in this graph. But we will not make use
of this. For more on these intersections graphs, see [70].
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Figure 5.1: Counterexample to Uniqueness

Mormann does here is to subsume the quasianalytic account as a special case
of the RTM approach. What the function q does is precisely to represent each
object as a bundle of its quasiproperties.

In this section we will focus on the strong standard quasianalysis. Two
fundamental questions concerning any representation are (1) whether there are
any of them and (2) if so whether it is unique. The first question has a positive
answer [89]:

Theorem 7 (Existence). Let (S,∼) be a similarity structure. Then it has a
strong standard quasianalysis.

The second question, however, has a negative answer. There are similarity
structures which have several strong standard quasianalysis, the simplest exam-
ple is given by [89] and is depicted in Figure 5.1. It has two different strong
standard quasianalysis, one of them includes the similarity circle {x, y, z} and
the other one the circle {y, z, w}.

But there is a family of similarity structures which do have a unique strong
standard quasianalysis. There are several ways to describe it. One of them goes
back to a theorem by Brockhaus [14]. To explain this, we have to introduce
several concepts. The first one is [87], [89]:

Definition 59. Let (S,∼) be a similarity structure. Then T ∈ SC(S) is a
similarity circle of order n iff ∃x1, . . . , xn ∈ T such that co(x1)∩· · ·∩co(xn) = T .

The elements x1, . . . , xn are called the generators of the similarity circle.
The result by Brockhaus says is that if we restrict to similarity circles of order
n ≤ 2 then there is a unique quasianalysis. That is to say, the relevant class of
structures is:

Definition 60. Let (S,∼) be a similarity structure. Then S is a similarity of
order 2 iff there is a family F ⊆ SC(S) of similarity circles of order 2 which is
such that ∀x, y ∈ S x ∼ y ⇒ ∃T ∈ F x, y ∈ T .
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To prove the theorem we need to introduce some additional notions discussed
by Mormann [87] and [121].

Definition 61. Let (S,∼) be a similarity structure and F ⊆ SC(S). Then F
is a similarity covering iff ∀x, y ∈ S x ∼ y ⇒ ∃T ∈ F x, y ∈ T .

As usual, if F is a similarity covering and F ′ ⊆ F , then F ′ is a similarity
subcovering iff F ′ is still a similarity covering. The family of similarity coverings
of ∼ ordered under inclusions is upwards closed and therefore closed under
arbitrary non-empty unions, the top being SC(S). By reflexivity, F is also a
covering in the usual sense. Observe that it is not enough for F to be a covering
in the usual sense. What we must cover is not the domain but the similarity,
because pairwise similarities have to be explained as sharing a common property.
For example:

Let SC(S) = {{p, x}, {q, y}, {r, z}, {x, y, z}}. Then Q := SC(S)−{x, y, z}
is a covering of S, but it is not a similarity covering. The similarities
x ∼ y ∼ z ∼ x are unexplained by Q.

This is important for the following reason. Take Mormann’s [89] counterex-
ample of a similarity of order 3:

Let SC(S) = {{p, x, y}, {q, x, z}, {x, y, z}, {y, z, w}, {r, y, w}, {s, w, z}} and
define the families Q := SC1(S) = SC(S) − {{x, y, z}, {y, z, w}}, Q′ :=
SC(S)–{{x, y, z}} and Q′′ := SC(S)− {{y, z, w}}.

This counterexample is crucial. As we saw, the similarity has two strong
standard quasianalysis that can be constructed by using the minimal similarity
coverings Q′ and Q′′. However, Q is a family of similarity circles of order 1 that
covers the domain. Nevertheless, Q is not a similarity covering for it cannot
account for the similarity y ∼ z. That the condition must be so strengthened
should be expected, after all what we need is that each pairwise similarity
corresponds to having a common property. To prove the theorem we just need
to introduce the relevant notion, that of a similarity covering which has no
irredundant circles. This condition is the one corresponding to axiom (C4), just
as the notion of similarity covering corresponds to (C1)-(C2):

Definition 62. Let (S,∼) a similarity structure and F ⊆ SC(S) a similarity
covering. Then F is minimal iff ∀A ∈ F ∃x, y ∈ A (x ∼ y & ∀B ∈ F (x, y ∈
B ⇒ B = A)).

This notion was introduced by Schreider under the name ’base’. If x, y ∈
A are such that ∀B ∈ F x, y ∈ B ⇒ B = A then we say that x, y are F-
indispensable for A. A similarity covering F is minimal iff each of its circles has
a pair of F-indispensables. In other words, a pair of F-indispensables belongs
exclusively to one of the circles in the covering. Minimal Covering requires that
each circle in the covering has such a pair of exclusive elements (note that what
is exclusive is the pair, not just one of the elements).

Proposition 24. Let (S,∼) be a similarity structure and F, F ′ ⊆ SC(S) be
similarity coverings. Then the following conditions are equivalent:

i F is minimal.
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ii F has no proper similarity subcoverings.

iii F − {A} is not a similarity covering of S, for each A ∈ F .

iv Every set A in F has a pair of F-indispensable elements.

Proof. (ii)-(iii) Suppose (ii), then since it is properly contained in F , F −{A} is
not a similarity covering of S. (iii)-(iv) Suppose (iii) and, by reductio, that there
is an A ∈ F such that if x ∼ y then x and y belong to a B ∈ F distinct from A.
Define F ′ := F − {A}. If a ∼ b, then there is a C ∈ F such that x, y ∈ C, and
if C = A we can replace C by a B distinct from A. Therefore, F ′ is a similarity
covering of S, contradicting the assumption. (iv)-(ii) Suppose that F ⊆ F ′ and
A ∈ F ′. Then there are two x, y ∈ A such that ∀B ∈ F ′ {x, y} ⊆ B ⇒ B = A.
But since x ∼ y, {x, y} ⊆ C for some C in F , and since C belongs to F ′ too,
we have A = C and therefore F = F ′.

A minimal similarity covering is non-redundant, each of its members is
needed to cover the similarity. If x ∼ y then x and y may not be indispensable
for any of the sets. For example:

Let SC(S) = {{p, x, y}, {q, x, y}}. The only minimal similarity covering
of this similarity is SC(S), but x and y are not indispensable for they
appear in each circle.

Definition 63. Let (S,∼) be a similarity structure. Then S is finite-like iff
every similarity covering F ⊆ SC(S) has a minimal similarity subcovering.

Every finite similarity structure is finite-like. Moreover:

Corollary 5. Let (S,∼) be a similarity structure of order n ≤ 2. Then S is
finite-like.

Proof. Let F ⊆ SC(S) be a similarity covering. If T is a similarity circle of
order n ≤ 2 then it has two generators x, y. Now, if x, y ∈ T ′ then T ′ ⊆
co(x) ∩ co(y) = T therefore T ′ = T for any circle T ′. So T is the only circle
containing x, y and since x ∼ y and F covers the similarity, T ∈ F . Therefore
SC2(S) ⊆ F . Since S is of order n ≤ 2, SC2(S) covers the similarity and given
that each pair of generators in each circle of order n ≤ 2 are indispensable to the
circle, SC2(S) is a minimal similarity covering. Therefore, S is finite-like.

I do not know whether every similarity structure is finite-like. A straight-
forward application of Zorn’s Lemma is not enough, the family of subcovers of
a similarity covering ordered by inclusion may still have infinitely descending
chains. But if there is a counterexample it is quite complex. With this notions
at hand, we obtain Brockhaus’s result from the following lemmas:

Lemma 7. Let (S,∼) be a finite-like similarity structure. Then S has a unique
minimal similarity covering F ⊆ SC(S) iff F is a similarity covering all of
whose members are similarity circles of order n ≤ 2.

Proof. Let S have a unique minimal similarity covering F . Let T ∈ F , we prove
it is of order n ≤ 2. Suppose for reductio that T is not of order n ≤ 2. Since F
is minimal, there are at least two elements x, y ∈ T which are F-indispensable
for T . Since x and y do not generate T , there is a z ∈ co(x) ∩ co(y) − T
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such that {x, y, z} ⊆ Txy for some Txy ∈ SC(S) since {x, y, z} is a clique.
Besides, Txy is not in F by indispensability. Let Ind(T ) := {{a, b} ⊆ S |
a and b are F-indispensable for T}. For each {a, b}, since a ∼ b by the previous
reasoning they are included in at least one circle Tab which is not in F . Assign
one such circle Tab to each pair {a, b} ∈ Ind(T ) and take the family of all these
similarity circles SInd(T ). Define F ∗ := (F − {T}) ∪ SInd(T ). By stipulation,
T does not belong to SInd(T ). For any a, b ∈ S such that a ∼ b, if they are
F-indispensable for T , then there is a Tab ∈ SInd(T ) ⊆ F ∗ such that a, b ∈ Tab.
If they are not F-indispensable for T , then there is a T ′ ∈ F −{T} ⊆ F ∗ which
is such that a, b ∈ T ′. Therefore, F ∗ is a similarity covering of S. By finite-
likeness, it has a minimal similarity subcovering F ∗∗ ⊆ F ∗ and clearly T is not
in F ∗∗. Therefore, by uniqueness F = F ∗∗, which contradicts the fact that T is
not in F ∗∗. So T is of order n ≤ 2.

Conversely, let F be a similarity covering of circles of order n ≤ 2. We prove
F is minimal and unique. Let F ′ ⊆ F be a similarity subcovering and suppose
there is a T ∈ F − F ′. Then T is of order n ≤ 2. Let x, y be two (possibly
identical) generators of T , then cro({x, y}) = cro({x}∪{y}) = cro(x)∩cro(y) =
co(x) ∩ co(y) = T . Since x ∼ y, there is a T ′ ∈ F ′ such that x, y ∈ T ′ and
therefore T ′ = cro(T ′) ⊆ cro({x, y}) = T , i.e. T ′ = T , which contradicts the
assumption. Therefore F = F ′ and F is minimal. Let F ∗ ⊆ SC(S) be a
minimal similarity covering of S. Let T ∈ F , since it is of order n ≤ 2 take two
(possibly identical) generators x, y of T . Since x ∼ y, again there is a T ′ ∈ F ′
such that x, y ∈ T ′ and therefore T ′ = cro(T ′) ⊆ cro({x, y}) = T , it follows
that T = T ′ ∈ F ′ and thus F ⊆ F ∗. Since F ∗ is minimal, F = F ∗ and therefore
F is unique.

Equivalently put, S has a unique minimal similarity covering by circles iff it
is of order n ≤ 2. In principle, being the unique minimal similarity covering does
not immediately imply being the smallest one. The poset of similarity coverings
could have the following shape. There are at least two chains stemming from the
top. One is an infinitely descending chain of coverings. The other one, infinite
or not, ends in the unique minimal covering.

Lemma 8. Let (S,∼) be a similarity structure. Then S has a unique strong
standard quasianalysis q : S → ℘(Q) iff S has a unique minimal similarity cov-
ering F ⊆ SC(S).

Proof. Let q be the unique strong standard quasianalysis of S, we prove Q is
a unique minimal similarity covering of S. First, Q ⊆ SC(S) and by (C1-C2)
is a similarity covering, for if x ∼ y then there is a T ∈ q(x) ∩ q(y) 6= ∅
and by standarness x, y ∈ T . Let Q′ ⊆ Q be a similarity covering of S and
define q∗(x) := {T ∈ Q′ | x ∈ T}. Since Q′ covers the similarity, x ∼ y ⇒
q∗(x)∩q∗(y) 6= ∅. The converse holds because circles are cliques, thus q∗ satisfies
(C1-C2). If co(x) = co(y), then T ∈ q∗(x) iff x ∈ T iff T ⊆ co(x) = co(y) iff
y ∈ T iff T ∈ q∗(y). Conversely, if q∗(x) = q∗(y) then z ∼ x iff q∗(z)∩q∗(x) 6= ∅
iff q∗(z) ∩ q∗(y) 6= ∅ iff z ∼ y by (C1-C2). Thus q∗ satisfies (C3). But q is a
strong quasianalysis, therefore Q′ = Q and so Q is a minimal similarity covering.
Suppose that Q is not unique, there is a Q∗ ⊆ SC(S) such that Q∗ is a minimal
similarity covering. Then q∗(x) := {T ∈ Q∗ | x ∈ T} is a standard quasianalysis
satisfying (C1-C4) by previous reasoning and since the quasianalysis is unique,
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q = q∗. Therefore, Q∗ = Q and Q is the unique minimal similarity covering of
S.

Conversely, define q∗(x) := {T ∈ F | x ∈ T}. It is standard and satisfies (C1-
C3) by previous reasoning. Let F ′ ⊆ F be such that q

′
(x) := {T ∈ F ′ | x ∈ T}

satisfies (C1-C3). If F ′ 6= F , then since F is a minimal similarity covering and
F ′ = F−{Tk} for some Tk, F ′ does not cover the similarity anymore, i.e. q

′
does

not satisfy (C1). Therefore F = F ′ and q∗ is a strong standard quasianalysis.
We now show that q∗ is unique. Let q′ be a strong standard quasianalysis of
the form q′ : S → ℘(Q′). We just proved that Q′ ⊆ SC(S) must be a minimal
similarity covering. Since S has a unique minimal similarity covering, we have
Q′ = F .

As a corollary we obtain the following result. I propose to call it the
Brockhaus-Mormann-Schreider Theorem (or BMS-Theorem, for short):

Theorem 8 (BMS Uniqueness). Let (S,∼) be a finite-like similarity structure.
Then the following conditions are equivalent:

i S is a similarity structure of order n ≤ 2.

ii S has a unique strong standard quasianalysis.

iii S has a unique minimal similarity covering by similarity circles.

What the BMS guarantees is that similarity structures of order 1 or 2 have a
unique strong standard quasianalysis. The previous counterexample is a struc-
ture of order 3, where all elements in {x, y, z} or in {y, z, w} are generators.

Now recall from Chapter IV that the structures we are concerned with are:

Definition 64. Let (S,∼) be a set S with a binary relation ∼⊆ S × S. Then
S is a pure similarity structure of order 1 iff ∀x, y ∈ S ∀p, q ∈ Gen(S):

i x ∼ x. [Reflexivity]

ii x ∼ y ⇒ y ∼ x. [Symmetry]

iii p ∼ q ⇒ p = q. [Pure]

iv x ∼ y ⇒ ∃p ∈ Gen(S) x ∼ p ∼ y. [Order 1]

Since every similarity of order 1 is finite-like and of order 2, this class satisfies
the conditions required by the BMS theorem:

Corollary 6. Let S be a similarity structure of order 1. Then it satisfies BMS.

Now we can give some concrete examples of similarities of different orders:

i (S, S × S), (S,∆),∅, ({x},∼x) and ({x, y},∼xy) where x ∼xy y, are of
order 1.

ii p ∼ x ∼ q is the smallest (SNI) similarity of order 1 [87].

iii x ∼ p ∼ y & x ∼ q ∼ y is the smallest pure similarity of order 1 that is
not (SNI).
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iv Every cycle and every path with at least 4 points is a (SNI) similarity
of order 2. The square x ∼ y ∼ z ∼ p ∼ x is one of the smallest (SNI)
similarities of order 2.

v Let the context be S = {x, y, z} and Q = {{x, y}, {y, z}, {x, z}}. The
similarity, which is of order 1 but not (SNI), is the so-called ’Goodman
Triangle’ x ∼ y ∼ z ∼ x [87]. Here Gen(S) = {x, y, z} is also the imperfect
community.

vi Let the context be S = {x, y, z, p, q, r} andQ = {{x, y, p}, {y, z, q}, {x, z, r}}.
The similarity, which is of order 1 and (SNI), is given by SC(S) =
{{x, y, p}, {y, z, q}, {x, z, r}, {x, y, z}}. Although all the properties in Q
are similarity circles of order 1, the imperfect community {x, y, z} is not
of order 1 but of order 2. Here Gen(S) = {p, q, r}.

vii Let SC(S) = {{p, x}, {q, y}, {r, z}, {x, y, z}}, then it is (SNI) of order 2.

The example (v) shows that some contexts that induce similarities with
imperfect communities can still be recovered from them if we take as properties
only the similarity circles of order 1. The existence of generators gives us an
additional piece of information that we can use to discard some similarity circles.
There lies the importance of Brockhaus Theorem. The examples (v)-(vi) show
some important features of our definition. First, some similarities of order 1
like (v) contain similarity circles of higher order. Second, the crucial point is
that there must be enough similarity circles to cover the similarities between the
objects, and not just to cover the objects. If that is satisfied, then some circles
may be redundant, as {x, y, z} is in (v). But if that is not satisfied, then some
circles will be indispensable to cover these similarities, as {x, y, z} is in (vi).

For the case of similarity structures of order 1 remember that I introduced
a new function q′ : S → ℘(Gen(S)). It turns out that it is equivalent (in an
interesting sense) to the unique strong standard quasianalysis q:

q(x) := {T ∈ SC1(S) | x ∈ T}
gen(x) := {p ∈ Gen(S) | x ∼ p} = co(x) ∩Gen(S)

They are interdefinable, i.e. q(x) = {Tp ∈ SC1(S) | p ∈ q′(x)} and gen(x) =
{p ∈ Gen(S) | Tp ∈ q(x)}. The reason is that in a pure similarity structure
of order 1, each similarity circle has a unique generator. The function gen(x)
will turn out to be very important soon. The sense in which both functions are
equivalent is the following one, introduced by [89]:

Definition 65. Let (S,∼) be a similarity structure, Q and Q′ sets of quasiprop-
erties, f : S → ℘(Q) and g : S → ℘(Q′) mappings. Define for P ∈ Q as
ef (P ) := {x ∈ S | P ∈ f(x)}, the f-extension of P. Define now the following
quasianalysis called the extensionalization of f as f∗(x) := {ef (P ) | P ∈ f(x)}.
Then f and g are extensionally equivalent f =EXT g iff f∗ = g∗.

We first check that gen is indeed a non-standard strong quasianalysis:

Proposition 25. Let (S,∼) be a pure similarity structure of order 1. Then
gen : S → ℘(Gen(S)) defined as gen(x) := {p ∈ Gen(S) | p ∼ x} is a strong
non-standard quasianalysis.
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Proof. (C1)-(C2) and (C3∗) are immediate by S being of order 1. For (C4),
take Q∗ ⊂ Gen(S) and a function gen∗ : S → ℘(Gen(S)) defined as gen∗(x) :=
{p ∈ Q∗ | p ∼ x} satisfying (C1)-(C3). Since there is a p ∈ Gen(S) − Q∗,
by purity we have that gen(p) = {p}, and therefore we have that p ∼ p but
gen∗(p) ∩ gen∗(p) = ∅, which violates (C1-C2).

We check that the previously defined functions q and gen are indeed exten-
sionally equivalent:

Proposition 26. Let (S,∼) be a (SNI) pure similarity structure of order 1,
where q and gen are defined as above. Then q =EXT gen.

So every element x in S can be represented either by the set of its similarity
circles of order 1 q(x) or by its set of generators gen(x). Since the structure
is (SNI), gen is injective and therefore gen(x) = gen(y) implies x = y. The
representation by gen will acquire an interpretation later on.

Now we come back to the dispute between nominalism and realism. As an
answer to the questions concerning the feasibleness of the constitutional systems
programme, and if we agree that Carnap’s project does not depend on the sim-
ilarity structure having to reconstruct a previously given arbitrary context15,
there is no objection to make to the approach so far. But as a nominalist pro-
posal, to the similarity-first approach the realist will answer as follows. If the
aim is to reduce or paraphrase any talk concerning properties to talk about sim-
ilarity, then supposing that this requires us to give a direct reconstruction of any
formal context, this still does not solve the problem, since we have uncontentious
examples of contexts of properties which should be given some nominalist recon-
struction and do not correspond to these similarity structures. As an example,
take any ordinal context where the attributes are chained.

There are several other strategies. For instance, [89] shows that imperfect
communities can be considered as transitory phenomena that disappear if one
enlarges the domain in question. The author also shows that there are differ-
ent notions of equivalence between quasianalytic mappings. So even if some
reconstructions may not be identical to the one we started with, they may still
be equivalent to it in some sufficiently relevant sense. The nominalist can give
approximate reconstructions. Moreover, different answers result from dropping
the requirement that the similarity be defined as coincidence in some property
or the requirement that the surrogates for properties be similarity circles. As I
said, it is up to the nominalist to propose a different notion of similarity to be
defined from (S,Q, I) or a different surrogate for the universals once the simi-
larity structure is assumed. Concerning the former case, several authors have
suggested to start from triadic or tetradic comparative relations of similarity,
collective relations of similarity or other different relations. Of course, the diffi-
cult part of these proposals rests on reconstructing the properties. Concerning
the latter case, one could try to argue that any subset of a property is in some
weak sense a property too, or at least a part of a property. Taking all the cliques
would solve the companionship problem in this way (but not the imperfect com-
munity). Or one could use this to try to argue that it is enough to show that
any property can be found as a clique in a similarity structure, in other words,
that is enough to show that the realist context can be order-embedded into the

15For example, Leitgeb disagrees on this point. I will not enter into this dispute, which
concerns Carnap’s project in the Aufbau.
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context determined by all the cliques of the similarity. In any case, in the fol-
lowing sections I will use the formal tools that we have gathered to discuss how
aristocratic resemblance nominalism can deal with Goodman’s problems.

5.3 A Nominalist Reduction of Universals

Given the difficulty of Goodman’s problems, a piecemeal approach may be more
enriching and explanatory. The idea is that which nominalist structure we
should choose may depend on the additional structure present in the realist
context. Here I want to tackle what I think it is a very promising approach
and which was introduced in the previous chapter: Aristocratic Resemblance
Nominalism. Remember that according to it, there are some particulars, the
paradigms, that occupy a special role, they are the ground of the class. A
particular belongs to the class iff it is sufficiently similar to the paradigm(s)
of the class. What I want to show is that aristocratic nominalism succeeds in
reconstructing at least some interesting realist contexts.

5.3.1 Equivalence between Polar and Similarity Models

There is a close conceptual affinity between the polar and similarity models
for resemblance nominalism. In this section I will show that they are strictly
speaking equivalent. Moreover, I will also describe the class of realist contexts
to which they are equivalent. This will provide a partial reduction of the realist
ontology. The contexts to be reduced are the following ones:

Definition 66. Let (S,Q, I) be an exhaustive set-theoretical context and P ⊆ S.
Then (S, P,Q, I) is a polar context iff it satisfies:

1. ∀R ∈ Q ∃p ∈ P (p ∈ R & ∀r ∈ P (r ∈ R⇒ p = r)).

2. ∀p ∈ P ∀R, T ∈ Q (p ∈ R ∩ T ⇒ R = T ).

Members of P are once again paradigms. So (1)-(2) say that in polar contexts
there is a bijection between properties and paradigms. Each property is in some
sense ’generated’ by a unique element, which is the paradigm of the property.
Of course, this amounts to some idealizations, usually several paradigms are
assigned to each property. But since each paradigm belongs at most to one
property, one can simply think about the paradigm of a property R as if it were
a representative of all the paradigms in R. We can now prove the first main
result:

Theorem 9. Let (S, P,m) be a polar distribution. Then (S, P,Q∗,∈), where
Q∗ := {Cl(p) ⊆ S | p ∈ P}, is a polar context whose polar distribution (S, P, n)
is such that n = m. Conversely, let (S, P,Q,∈) be a polar context. Then
(S, P, n), where n(x) := {p ∈ P | i(x) ∩ i(p) 6= ∅}, is a polar distribution whose
polar context (S, P,Q∗,∈) is such that Q∗ = Q.

Proof. (S, P,Q∗,∈) is a realist set-theoretical structure, since p ∈ m(x) 6= ∅
implies x ∈ Cl(p) 6= ∅. If R ∈ Q∗, then p ∈ m(p) = {p} iff p ∈ Cl(p) = R.
Suppose p, r ∈ P ∩ R = P ∩ Cl(q). Then q ∈ m(p) ∩ m(r) = {p} ∩ {r}, so
p = q = r. Let p ∈ P ∩ R ∩ T = P ∩ Cl(r) ∩ Cl(t), then r, t ∈ m(p) = {p},
so R = Cl(r) = Cl(p) = Cl(t) = T , which proves that the structure is polar.
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We prove n is polar. Since p ∈ m(x) 6= ∅ for all x, x, p ∈ Cl(p). Let p ∈ P
and q ∈ n(p), then p, q ∈ Cl(r), therefore r ∈ m(p) ∩ m(q) = {p} ∩ {q} and
so n(p) = {p}. We prove n = m. Let p ∈ n(x), then x, p ∈ Cl(q) for some
Cl(q) ∈ Q∗. Therefore q ∈ m(p) = {p}, which implies p ∈ m(x).

Conversely, if p ∈ m(x) then x, p ∈ Cl(p) so p ∈ n(x). Let n : S → ℘(P )
be defined as n(x) := {p ∈ P | ∃R ∈ Q x, p ∈ R}. By assumption, for every
x we have x, p ∈ R for some p ∈ P,R ∈ Q and thus p ∈ n(x). Let p ∈ P and
q ∈ n(p). Then p, q ∈ R so by polarity p = q, which makes n polar. It follows
that (S, P,Q∗,∈) is polar. We prove now that Q = Q∗. Let Cl(p) ∈ Q∗. Since p
is a paradigm, it corresponds to a unique R ∈ Q. If x ∈ Cl(p), then p ∈ n(x), so
there is a T ∈ Q such that x, p ∈ T = R. If x, p ∈ R then p ∈ n(x) so x ∈ Cl(p).
So Cl(p) = R. It follows that Q∗ ⊆ Q. Let R ∈ Q, then it corresponds to a
unique paradigm p ∈ R, we analogously prove that Cl(p) = R.

So, some of the closed sets in the polar topology are the surrogates for
universals. We can extend our correspondences to pure similarity structures of
order 1:

Theorem 10. Let (S, P,m) be a polar distribution. Then (S,∼) defined as
x ∼ y := ∃p ∈ P p ∈ m(x) ∩ m(y) is a pure order 1 similarity. It induces a
polar distribution (S,Gen(S), gen) which is such that P = Gen(S) and m = gen.
Conversely, let (S,∼) be a pure order 1 similarity. Then (S,Gen(S), gen) is a
polar distribution where (S,∼′) is such that ∼=∼′.

Proof. Let (S, P,m) be polar and define x ∼ y := ∃p ∈ P p ∈ m(x) ∩ m(y),
which is symmetric. By polarity, m(x) 6= ∅ and reflexivity follows. Let p ∈
P , if w ∼ p ∼ z, then there are r, s ∈ P such that r ∈ m(w) ∩ m(p) and
s ∈ m(z) ∩ m(p), so by polarity r = p = s. Therefore p ∈ m(w) ∩ m(z) and
w ∼ z. So p is a generator. If x ∼ y then there is a p ∈ P ∩m(x) ∩m(y) and
so the similarity is of order 1. Suppose that p, r ∈ P then if p ∼ r we have
m(p) ∩m(r) = {p} ∩ {r} 6= ∅, so p = r and the similarity is pure.

Now let (S,Gen(S), gen). We have Gen(S) ⊆ S and gen : S → ℘(Gen(S))
which satisfies gen(x) 6= ∅ by order 1. If p ∈ Gen(S), then gen(p) = {p}
because if q ∈ Gen(S) ∩ gen(p) we have q ∼ p and by purity p = q. So it is
a polar distribution. We already showed that P ⊆ Gen(S). Let p ∈ Gen(S)
we prove m(p) = {p}. If q ∈ m(p) then q ∈ m(p) ∩m(q) and so p ∼ q. Since
p, q ∈ Gen(S) by purity p = q. Therefore m(p) = {p} and so p ∈ P . It follows
that P = Gen(S). Therefore, p ∈ m(x) ⇔ p ∈ P & p ∼ x ⇔ p ∈ Gen(S) &
p ∼ x⇔ p ∈ gen(x), because if p ∈ P and p ∼ x then there is a q ∈ m(p)∩m(x)
such that q = p.

Conversely, let (S,∼) be a pure similarity of order 1. We already proved
that (S,Gen(S), gen) is a polar distribution and that (S,∼′) is pure of order 1.
We show ∼=∼′. By order 1, x ∼ y ⇔ ∃p ∈ Gen(S) p ∈ gen(x)∩ gen(y)⇔ x ∼′
y.

Thus, there is a correspondence between polar distributions and the similar-
ity structures of order 1. Therefore:

Corollary 7. Let (S, P,Q,∈) be a polar context. Then its similarity structure
(S,∼), where x ∼ y := ∃R ∈ Q x, y ∈ R, is pure of order 1. It induces
the polar context (S,Gen(S), SC1(S),∈) which is such that SC1(S) = Q and
P = Gen(S). Conversely, let (S,∼) be a pure similarity structure of order 1.
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Then (S,Gen(S), SC1(S),∈) is a polar context whose similarity (S,∼′) is such
that ∼=∼′.

Corollary 8. Polar distribution is (PII) ⇔ Polar context is (PII) ⇔ Similarity
is (SNI).

Proof. (i)-(ii) m(x) = m(y) ⇔ ∀p ∈ P (p ∈ m(x) ⇔ p ∈ m(y)) ⇔ ∀Cl(p) ∈
Q∗ (x ∈ Cl(p)⇔ y ∈ Cl(p))⇔ i∗(x) = i∗(y).

(i)-(iii) If (S, P,m) is (PII) and co(x) = co(y), then p ∈ m(x) ⇔ p ∈ P &
p ∼ x ⇔ p ∈ P & p ∼ y ⇔ p ∈ m(y). Conversely, if (S,∼) is (SNI)
and m(x) = m(y), then x ∼ z ⇔ ∃p ∈ Gen(S) x ∼ p ∼ z ⇔ ∃p ∈ P p ∈
m(x) ∩m(z) ⇔ ∃p ∈ P p ∈ m(y) ∩m(z) ⇔ ∃p ∈ Gen(S) y ∼ p ∼ z ⇔ y ∼ z.
Thus co(x) = co(y) and by (SNI) we have x = y.

So polar distributions, polar contexts and pure similarity structures of or-
der 1 are all mathematically equivalent structures. Paradigms are exactly the
generators. Closures of paradigms are some polar-closed sets which are exactly
the properties and which are also exactly the similarity circles of order 1. A
fortiori, exemplification now has spatial content: to say that a particular x has
a property P is just to say that x is arbitrarily close to the paradigm p of P .
Polar distributions give us a new axiomatization of pure similarities of order 1.
These correspondences extend to some of the structure preserving mappings,
we will skip the proofs for readability:

Lemma 9. Let (X,Px,mx, Tx), (Y, Py,my, Ty) be polar distributions. If f is a
homeomorphism from X to Y , then f(Px) = Py and f(mx(z)) = my(f(z)).

Proposition 27. Let (X,∼X , genX), (Y,∼Y , genY ) be (SNI) similarity struc-
tures of order 1 and f : X → Y a function. Then:

1. If f is polar continuous, then it is a similarity homomorphism.

2. If f is a similarity isomorphism, then f(Gen(X)) = Gen(f(X)).

3. f is a similarity isomorphism ⇔ f is a polar homeomorphism.

From the allegedly anaemic similarity we got an enriched similarity structure
with its topology and polar structures. The paradigms induce a classification
over the domain of objects, the classes being the similarity circles of order 1,
which are closed sets. Each similarity circle T can be partitioned into two
parts, the similarity interior int(T ) = {p} that contains the generator of the
class, and the similarity interior boundary bdint(T ) = T–p that contains the
rest of elements in the class (recall bd(A) := co(A) ∩ co(Ac) and bdint(A) :=
bd(A)∩A). As we will see, the similarity interior boundary of the class coincides
with its (polar) topological boundary Bd(T ) (again, we will skip the proofs for
readability):

Corollary 9. Let (S,∼) be an (SNI) similarity of order 1 with its polar topology
and similarity order. Let T, T ′ ∈ SC1(S), then:

i bdint(T ) = Bd(T ) & int(T ) = Int(T ) = {p} & cro(T ) = T = Cl(T ).

ii If T and T ′ are distinct, then T ∩ T ′ = Bd(T ) ∩Bd(T ′).

iii If ∼ is not the identity, then there are two overlapping circles of order 1.
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iv x ∼ y ⇔ Nx ∩Ny 6= ∅⇔ ∃p ∈ Gen(S) x, y ∈ Cl(p).

v co(x) is polar-closed.

vi co(p) = T for p ∈ Gen(S) is an atom regular-closed set. (see [90])

Point (i) says that for similarity circles (of order 1), the topological and
similarity operations coincide. (ii) says that kinds corresponding to similar-
ity circles overlap at their boundaries. (iii) says that (for non-trivial cases) at
least two kinds must overlap, since the structure is (SNI) and therefore each
non-paradigmatic element must belong to several classes. This implies that the
corresponding classifications, in contrast with the kind of traditional classifica-
tions discussed in Chapter III, have many ’criss-crossings’. (viii) says that the
similarity corresponds to the overlapping of the corresponding minimal open
neighbourhoods. This allows us to give a spatial reading of kinds: two objects
are similar iff they are arbitrarily close to a common paradigm, and if an object
is arbitrarily close to the extension of a kind then it belongs to that kind (i.e.
kinds are stable).

5.3.2 Equivalence between Order and Similarity Models

I will now show that the order-theoretic and similarity models are also equivalent
to each other. Let us consider the following pre-order from Mormann’s [89], it
can be defined in any similarity structure:

Definition 67. Let (S,∼) be a similarity structure. Then (S,≤co) where x ≤co

y := co(x) ⊆ co(y) is the similarity preorder over S.

It is easy to see that (S,∼) satisfies (SNI) iff ≤co is a partial order. For this
reason, from now on we will only deal with (SNI) structures. To distinguish
it from the polar order x ≤∗ y iff x = y or y ∈ gen(x), we will call this order
the similarity order or similarity poset. One can think about it as a qualitative
ordering. We can say that x is qualitatively thinner than y iff x ≤co y. This is
what I have been calling qualitative thinness up to now.

We want to establish a correspondence between this order and the similarity.
Let us introduce some auxiliary definitions. An element x is a dense element
⇔ co(x) = S ⇔ x belongs to every similarity circle. Equivalently in order-
theoretic terms x is dense iff it is the top element. Since ∼ is (SNI), the dense
element is unique. See that the similarity order cannot have a bottom. If x = 0
then co(x) would be included in every other neighbourhood. But if there is a y
similar to x, then co(y) = S, and by (SNI) y = x. Therefore, x is similar only
to itself, and if the structure has at least two points, x cannot be the bottom.
Nevertheless, for similarities of order 1 some interesting meets and joins do exist:

Proposition 28. Let (S,∼,≤co) be an (SNI) structure of order 1. Then:

i p is minimal ⇔ p is a generator of order 1.

ii x =
∨
gen(x).

iii x =
∧

(
⋂
{T ∈ SC1(S) | x ∈ T}) =

∧
(
⋂
q(x)).

iv If p generates the similarity circle Tp of order 1, then p =
∧
Tp.
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v x is maximal ⇔ {x} =
⋂
q(x).

Proof. We only prove (i)-(ii). (i) Let p be minimal. It belongs to some similarity
circle T of order 1 with unique generator z. Then T = co(z) ⊆ co(p) and by
minimality p = z. Conversely, let p be the generator of an order 1 circle T and
y ≤ p. Then y ∈ co(y) ⊆ co(p) = T and therefore co(y) = T . It follows that
p = y and so p is minimal. (ii) x is greater than each of its generators. Let
p ≤ y ≤ x for each generator p of x. Then gen(x) ⊆ gen(y) ⊆ gen(x) and
therefore x =

∨
gen(x).

What (i) says is that paradigms are such that no other object can be qualita-
tively thinner than they are. By (ii) we see now that elements are represented by
their generators in a very strong sense. Indeed, they can be directly constructed
from them. This is very important, as we will see now.

The first thing to notice is that two isomorphic similarity structures have
isomorphic posets [89]:

Proposition 29. Let (S,∼), (S′,∼′) be (SNI) isomorphic similarity struc-
tures. Then their posets (S,≤co), (S′,≤′co) are isomorphic.

Proof. Let f be the similarity isomorphism. If x ≤ y and f(p) ∼′ f(x), it
follows that p ∼ x, so p ∼ y and f(p) ∼′ f(y), i.e. f(x) ≤′ f(y). Conversely,
if f(x) ≤′ f(y), then if p ∼ x, f(p) ∼′ f(x), so f(p) ∼′ f(y) and p ∼ y, i.e.
x ≤ y.

However, the converse is false, as Mormann [89] shows. A simpler counterex-
ample is this. Take the square x ∼ y ∼ p ∼ q ∼ x and the similarity structure
consisting of four isolated elements. These two similarities are T1 and deter-
mine the same poset, the antichain of four elements, and therefore the same
completion, the diamond of four points. Notice that the square is of order 2.
This matters, for if the similarities are of order 1 then it is easy to show that
the correspondence holds:

Proposition 30. Let (S,≤co), (S′,≤′co) be the isomorphic posets of two simi-
larity structures (S,∼), (S,∼′) (SNI) of order 1. Then (S,∼), (S,∼′) are iso-
morphic.

This suggests that there is an interesting correspondence between the simi-
larity and order in similarities of order 1. This is indeed the case. The following
is one of the main new results that grounds the rest of results of the chapter:

Theorem 11. Let (S,∼) be a (SNI) similarity structure of order 1. Then
(S,≤co) is an atomistic poset where the minimal elements are Gen(S). More-
over, (S,∼∗), defined as x ∼∗ y := ∃z ∈Min(S) z ≤ x, y, is identical to (S,∼).
Conversely, if (S,≤) is an atomistic poset, then (S,∼∗) is a (SNI) similarity
structure of order 1 such that ≤=≤co∗ .

Proof. Let (S,∼) be the similarity. We already proved that the generators are
exactly the minimal elements and that every element is the join of its generators.
Now x ∼ y iff gen(x) ∩ gen(y) 6= ∅ iff x ∼∗ y. Conversely, let (S,≤) be an
atomistic poset. If p is minimal and x ∼∗ p ∼∗ y then z ≤ x, p and w ≤ y, p
and by minimality z = p = w and so x ∼∗ y. Conversely, if p is a generator and
x ≤ p then min(x) ⊆ min(p). If q ∈ min(p) and y ∼∗ q then y ∼∗ p therefore
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co∗(q) ⊆ co∗(p). Since p is a generator of order 1, x ∈ co∗(p) = co∗(q) and
therefore q ∼∗ x, from which it follows that q ≤ x by minimality and therefore
min(x) = min(p). Thus x = p and so p is minimal. So the minimals are exactly
the generators and by definition S is of order 1. Let co∗(x) = co∗(y), then by
order 1 min(x) = gen∗(x) = gen∗(y) = min(y) and therefore x = y. Finally,
x ≤ y iff min(x) ⊆ min(y) iff gen∗(x) ⊆ gen∗(y) iff x ≤co∗ y.

In other words, the class of (SNI) similarities of order 1 is the class of atom-
istic posets. The generators of order 1 are exactly the minimal elements and the
similarity circles of order 1 are the principal filters ↑ p of the minimal elements.
In other words, the similarity circles of order 1 are exactly the non-trivial fixed
ultrafilters.

Note that the similarity corresponds to having a common lower bound, to
’overlapping non-trivially’. In a sense it is old news to say that the similarity
circles of order 1 are the fixed ultrafilters. We are requiring not only that any
two elements in the circle overlap (are similar to each other), but that all of
them collectively overlap. In other words (surprise!): there are no imperfect
communities.

This result has a very interesting consequence. Recall that Mormann [91]
proposes to take the general class of weakly-scattered Alexandroff spaces as a
model for conceptual spaces. I suggested that we added one more axiom in
order to restrict this class (co-atomistic spaces), so that its dual corresponds
to atomistic posets. By combining the two results of these sections we obtain
the following corollary, that establishes the equivalence of the two topological
models:

Corollary 10. Let (S,O(S)) be a co-atomistic weakly-scattered Alexandroff
space. Then (S,Max(S),m′) where m′(x) := {p ∈ S | x ∈ Cl(p) and p is open},
is a (PII) polar distribution such that (S,≤) defined as x ≤ y ⇔ m′(y) ⊆ m′(x)
is the specialization order of the original space. Conversely, if (S, P,m is a
(PII) polar distribution, then (S,≤) is the specialization order of a co-atomistic
weakly-scattered Alexandroff space which is such that Max(S) = P and m′ = m.

This is an interesting result for the following reason. Although the class of
weakly-scattered spaces is more general than that of polar spaces, an additional
axiom makes them equivalent, so that the comparative and categorical notions
of prototypicality can be defined in terms of each other.

5.3.3 Relevance and Limitations of the Previous Result

To sum up, we had several different models of aristocratic nominalism: the
polar topology induced by a polar distribution, polar contexts and similarity
structures of order 1. These three models are equivalent. Let us summarize this
result roughly as:

Theorem I Polar contexts, polar topologies and pure similarity structures of
order 1 are equivalent.

Moreover, under the further assumption of indiscernibility, we got:

Theorem I* Atomistic posets, co-atomistic topologies and (SNI) similarity
structures of order 1 are equivalent.
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The result establishes a correspondence between all these models. But what
is the philosophical relevance of this result? There are two things to consider.
On the one hand, how does it deal with Goodman’s problems? For instance,
so long as we take attributes to be represented by similarity circles, the com-
panionship problem cannot be dealt with. How is this a reply to Goodman?
The result might seem quite limited. It gives the resources to ’translate’ only a
certain class of realist structures.

However, what the nominalist can question is whether the extensions of at-
tributes can be nested at all. The nominalist assumes that the realist structure
to be reconstructed has, for each property, a unique object that only has that
property. In such a structure, no property can be properly included into others.
Consider the interpretation of paradigms as tropers, qualitatively thin entities,
that we made in the previous chapter. If there is, for each property, a unique
object which is such that it only has that property, then it is no mystery that no
companionship problems arise. If all R-s are T -s, then the paradigm of R is also
a T and since such an object has a unique property, R = T . Analogously, there
cannot be imperfect community problems. If there is a (maximal) imperfect
community, it is not an attribute and therefore there is no paradigm corre-
sponding to it. The members of the imperfect community are pairwise similar
to each other because they are pairwise similar to a paradigmatic object (the
paradigm of the property that the two objects share). But there is no paradigm
to which all the objects are similar. Equivalently put, similarity circles of order
1 cannot be imperfect communities.

For the strategy to work in every case, the realist would have to accept the
correspondence between attributes and paradigms. To many this will sound
unreasonable. The realist can reject the existence of objects that have a unique
property as suspicious entities. If the realist accepted the existence of tropes,
then that would be an argument for assuming this kind of contexts. But most
realist of universals do not accept tropes. Why would they accept qualitatively
thin objects?

Nevertheless, it is not clear to me that the aristocratic nominalist cannot re-
ply again. Similarity circles cannot be nested. However, all the objects that one
paradigm is similar to can also be similar to another paradigm. In other words,
if we delete the paradigms from the similarity circles, the resulting collections
of non-paradigmatic objects can be nested. For example, recall the example of
an ordinal context where the properties in Q form a chain: extremely loud ≤
very loud ≤ loud. Let us grant that there is a unique paradigm p, q, r for each
such property. Then, every non-paradigmatic object that is extremely loud is
also very loud and loud, and every non-paradigmatic object that is very loud is
also loud. If one thinks about the degree of similarity as being strict enough,
the paradigm of extreme loudness is not itself very loud nor loud. Equivalently,
we have co(p)− {p} ⊆ co(q)− {q} ⊆ co(r)− {r}.

Now consider the following move. The realist gives a context. The nominalist
replies and says that each of the properties of the realist that lacks a paradigm
should have one. So, he introduces new paradigms into the context which will
look to the realist like entities constructed from his own ontology. In this way
the nominalist ’completes’ the realist structure by adding what he thinks it
should be there, namely the remaining paradigms. The resulting context is
polar. Then the nominalist defines a similarity as usual in this new context
and recovers the properties by making use of the previous result. However, the
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properties recovered contain entities that the realist did not accept, namely the
paradigms introduced by the nominalist. Accordingly, the nominalist deletes
these paradigms and nests the remaining collections, which are the original
realist properties. In other words, the new strategy amounts to introducing
new paradigms (’quasi-paradigms’) into the old context and then preserving this
information while passing to the similarity structure. In particular, if there are
no paradigms at all, according to the realist, then the set of polar properties is
always empty. If so the nominalist can introduce these new paradigms (which for
the realist are idealizations of some sort) and then recover the original properties
from the similarity induced by deleting the paradigm of each similarity circle
of order 1. I will not consider the formal details of such an approach, although
with the previous result at hand this is straightforward (the move is analogous
to some of the results obtained below, regarding order 1 completions).

There is another way to reply. In the last sections of this chapter I will
generalize the similarity model to one where each object can be a paradigm of an
arbitrary number of properties and each property can have an arbitrary number
of paradigms. Although I will not specify the class of contexts that can be
reconstructed, it will be clear that this class is huge and forms a more plausible
model for the realist contexts. This will be done by focusing on a generalization
of similarity circles of order 1 (which will be called ’simple circles’). I think that
such an answer will make more difficult for the realist to reject that the contexts
should have such structure. After all, the thesis that each property has exactly
one paradigm might be too strong, but the thesis that, for every property, there
is a smallest set of objects whose only common property is that property (a
set of paradigms of the property) does not look so strong. In fact, these sets
of paradigms that ’generate’ the properties will be defined in such a way to
allow for the property (as a set of objects) to be a set of paradigms for itself
(so long as there is no smaller subset that is enough to generate the property).
Thus, trivially every property can have a set of paradigms that generate it. The
crucial question will be whether there is always a smallest one. Unfortunately,
these questions lead us beyond the limits of this PhD thesis.

On the other hand, one can question how plausible these models are and what
sort of ’bridge principles’ we get from them. I argued for the plausibility of the
similarity model in the previous chapter and I briefly suggested in what sense
the topological model is plausible too. The fact that different plausible models
of the same phenomenon turn out to be mathematically equivalent strongly
suggests their material adequacy. In the previous chapter I suggested that
the polar and similarity models were plausibly materially adequate accounts
of aristocratic resemblance nominalism. Thus, Theorem I already suggests an
argument in favour of similarity structures as an adequate model for aristocratic
resemblance nominalism. In other words, I give the following argument for the
material adequacy of similarity structures as a model of aristocratic resemblance
nominalism:

Argument for Adequacy as Convergence of Models

1. If several different independently intuitively plausible models of the same
phenomenon turn out to be mathematically equivalent, this suggests that
they are materially adequate.

2. Pure similarity structures of order 1, polar contexts and polar topolo-
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gies (and atomistic posets, under (SNI)) are mathematically equivalent
and independently intuitively plausible models of aristocratic resemblance
nominalism.

3. Therefore (plausibly), similarity structures give a materially adequate
model of aristocratic resemblance nominalism.

This one is a ’convergence argument’. The first premiss says that if different
independently intuitively plausible models that purport to be models of the
same phenomenon turn out to be mathematically equivalent, this suggests that
they are adequately tracking the fundamental features of the phenomenon in
question. To mention a famous example, the celebrated Church-Turing thesis
says that any of the models of computability (Turing machines, λ-calculus or
recursive functions) adequately represents the phenomenon of computability.
The Church-Turing thesis is not something that can be proven to be true, since
it is a thesis concerning the correspondence between a mathematical model and
a phenomenon to be modelled. Nevertheless, the fact that these three different
models turn out to be mathematically equivalent strongly suggests that they are
adequately tracking the phenomenon in question. The second premiss appeals
to the First Theorem and to the arguments given in Chapter IV in favour of the
adequacy of the model in terms of similarity structures to reach the conclusion.

The idea is this. In order to explain the assumptions of this sort of resem-
blance nominalism one could give different models. According to the similarity
model, objects are in categorical similarity relations to each other, paradigms
are objects which are such that any two objects similar to them are similar to
each other, no two paradigms are sufficiently similar to each other and every pair
of similar objects are similar to a common paradigm. According to this picture,
objects get classified by selecting those paradigms to which they are similar
and then taking the classes consisting of all the objects similar to each of those
paradigms. According to the polar context model, objects belong to certain ex-
tensional properties (sets) which are in one-one correspondence with some of the
objects, the paradigms. Paradigms are objects which have a unique property, a
fortiori, no two distinc paradigms can share a property. Therefore, since every
object has a property, every object shares a property with at least one paradigm.
According to this picture, objects come already classified by the properties they
share with each other. Thirdly, according to the topological model, objects are
thought of as points in a space. The open points, the paradigms, are located
through the space in such a way that they form a dense region, in the sense
that any object we choose will be found to be arbitrarily close to at least one
of these paradigms. In other words, the paradigms structure the space around
them. According to this picture, objects are classified by taking for each open
point all the objects that are arbitrarily close to it. Finally (once indiscernibilty
axioms are added), according to the order-theoretic model, objects are related
by qualitative richness or prototypicality relations, paradigms are the qualita-
tively poorest (most prototypical) objects and attributes are ultrafilters. These
pictures are independently plausible ways to represent the commitments of the
resemblance nominalist. Since they are mathematically equivalent, this suggest
that they offer us an adequate model for the facts involved.

Regarding the connections between these different pictures, we have some
interesting correspondences. The previous theorem establishes some sort of
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’translations’ among them. Let us assume the indiscernibility axioms to get the
whole picture. First, similarity consists of sharing a common property, being
mapped to a common paradigm, being arbitrarily close to a common open point
and having overlapping bundles of attributes (this will be explained later on):

x is similar to y iff

x and y are similar to a common paradigm iff

x and y have a common property iff

x and y are arbitrarily close to a common open point.

x and y, as bundles of attributes, overlap.

Indiscernibility corresponds to being similar to the same objects, sharing the
same properties and being mapped to the same paradigms:

x and y are indiscernible iff

x and y are similar to the same objects iff

x and y are similar to the same paradigms iff

x and y have the same properties iff

x and y are arbitrarily close to the same open points iff

x and y, as bundles of attributes, are identical.

Paradigms correspond to open points and to objects that have a unique
property:

p is a paradigm iff

Any two objects similar to p are similar to each other iff

p has a unique property iff

p is an open point iff

p is a qualitatively minimal or most prototypical object.

Attributes are special similarity circles generated by paradigms, the collec-
tions of objects similar to a paradigm:

T is an attribute iff

T is the collection of all the objects similar to a paradigm iff

T is a maximal collection of pairwise similar objects generated by a unique
object iff

T is the closure of an open point.

T is a fixed ultrafilter.

Finally, we have the correspondences of the qualitative order:
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x is qualitatively thinner than y iff

y is similar to every object to which x is similar iff

y is similar to every paradigm of x iff

y has all the properties that x has iff

x is more prototypical than y is.

In any case, it is now time to get to the nominalist picture of kinds.

5.4 External Structure of Nominalist Kinds

In the previous section I offered a partial reduction of realist structures by
showing first that the similarity and polar models of aristocratic resemblance
nominalism were equivalent, and then proving that there is a unique one-one
correspondence with a certain class of realist structures. In this section I want
to consider the main application of these results, which is the core of this phd
thesis: to get a picture of the resemblance nominalism approach to natural
kinds. As argued in Chapter III, we need at least a complete lattice of kinds.
Through the next sections, there are several questions I want to consider:

1. Which one is the most plausible candidate for the nominalist lattice of
natural kinds?

2. What are the properties of this lattice? What does it look like?

3. What more specific kinds of similarities are there?

In other words, the first question asks for the most plausible nominalist
model of kinds obtained from the similarity model and the second and third
questions are about the structure of this lattice of kinds. All these questions are
entangled and they lead to interesting results. In particular, they will give us a
picture of the nominalist lattice of kinds. We will deal with them in the order
just given.

5.4.1 Lattice of Nominalist Kinds

Let us start with the first question. Since we chose similarity circles of order 1
as surrogates for attributes, the most plausible surrogate for the realist account
of natural kinds is the lattice B(S, SC1(S),∈). That is to say, we just take
the nominalist surrogates for realist attributes and we generate the lattice of
natural kinds following the steps described in Chapter III. Nominalist kinds are
pairs (A,B) where A is the overlapping of all the similarity circles (of order 1)
in B. In other words, the extension of a kind is a set of all those objects that
are similar to some set of paradigms. Its intension is a family of sets of similar
objects. For the resemblance nominalist, membership to a given kind is equiv-
alent to being similar to all the paradigms of those attributes common to the
members of the kind. There is no circularity here of course, since the attributes
themselves are taken to be the sets of objects similar to a given paradigm. It is
important to notice that although Goodman’s companionship problem did not
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allow us to get attributes that are implied by (or whose extension is included
in) other attributes, the resulting nominalist kinds can be proper species of one
another. Since the resulting lattice is obtained following the recipe in Chapter
III, we immediately have nominalist surrogates for the species-genus relations
and Kant’s Law; the logical operations of abstraction, specification, specific dif-
ference and negation; Aristotelian syllogistics; and so on. The nominalist just
takes advantage of all the resources we outlined.

Corollary 11. Let (S,∼) be an (SNI) similarity of order 1. Let T ∈ SC1(S)
and (A,B) ∈ B(S, SC1(S),∈), then:

i A ∈ BS ⇔ A =
⋂

({T ∈ SC1(S)|A ⊆ T}).

ii B ∈ BQ ⇔ B = {T ∈ SC1(S) |
⋂
B ⊆ T}.

iii A ∈ BS ⇒ A is polar-closed.

iv A ∈ BS − SC1(S)⇒ Int(A) = ∅.

Proof. (i) A = ei(A) iff A =
⋂
i(A) =

⋂
{T ∈ SC1(S) | A ⊆ T}. (ii) Idem.

(iii) If A is an extension, then A =
⋂
q(A), but q(A) ⊆ SC1(S) ⊆ C(S) where

C(S) is the family of the polar-closed sets. So A is polar-closed. (iv) If A ∈
BS − SC1(S), then if x ∈ Int(A) it would follow that ∅ 6= gen(x) ⊆ A. But
then A∩Gen(S) 6= ∅ and A ∈ SC1(S), contradicting the assumption. Therefore
Int(A) = ∅.

Point (i) says that every extension is an intersection of similarity circles. (iii)
says that the extensions of natural kinds are topologically well-behaved sets in
the polar topology, all of them are closed sets. Since no paradigm can have
more than one attribute, the complex kinds that result from the overlapping of
other kinds contain no paradigms in their extension. In other words, attributes
are closed regions that are structured around a given paradigmatic object, they
contain all the objects that are similar (arbitrarily close) to that paradigm.
In contrast, kinds have as extensions closed regions which are the overlapping
of several attributes and therefore contain the objects that are similar to the
paradigms of these attributes.

Let us consider some examples. If the kind Crow has as intension B =
{Blackness, Featheredness, . . . } then the extension of Crow is the set of ob-
jects (the crows) which are similar to the paradigm of Blackness, the paradigm
of Featheredness, and so on. The kind of crows does not include any of these
paradigms, since no paradigm can have more than one attribute. Furthermore,
Blackness, Featheredness and so on are maximal classes of objects that are sim-
ilar to given paradigms. If we say that ”all crows are birds”, Crows ≤ Birds,
then the nominalist explains this claim equivalently as ”if an object is similar to
all the objects in the extension of Blackness and of Featheredness and of . . . then
it is similar to all the objects in the extension of featherness and of . . . ”, which
is also equivalent to ”if an object is similar to the paradigm pblack and to the
paradigm qfeather and to . . . , then it is similar to qfeather and to . . . ”.

As another example, let us consider once again the colour wheel. Our simi-
larity structure is given by a domain of particular spots S = {A,B,C,D,E, F,
G,H, I, J,K,L} where the paradigmatic spots are Gen(S) = {A,C,E,G, I,K}
and the similarity induces the similarity circles of order 1 SC1(S) = {{A,B,L},
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Orange Yellow Green Blue Purple Red
A X
B X X
C X
D X X
E X
F X X
G X
H X X
I X
J X X
K X
L X X

Table 5.1: Context of the Colour Circle

{B,C,D}, {D,E, F}, {F,G,H}, {H, I, J}, {J,K,L}}. These attributes can be
renamed as SC1(S) = {Orange, Y ellow,Green,Blue, Purple,Red}. Now that
we have the natural attributes, we have the context (S, SC1(S),∈) as shown by
the table 5.1.

The context induces the lattice of natural kinds, whose members are the
kinds Orange, Orangish − Y ellow (Turmeric), Y ellow, Y ellowish − Green
(Lime), Green, Greenish−Blue (Turquoise), Blue, Bluish−Purple (Indigo),
Purple, Purplish−Red (Magenta), Red, Reddish−Orange (V ermellion), e.g.
Lime = ({D}, {Y ellow,Green}) = ({D}, {{B,C,D}, {D,E, F}}).

Let us take stock of what we have done. According to aristocratic resem-
blance nominalism:

Aristocratic Resemblance Nominalism (L,≤) is the concept lattice induced
by the polar context (S, SC1(S),∈), which is induced by a pure similarity
structure of order 1 (S,∼).

The aim of the following sections is to get more information regarding this
lattice of kinds and connect this topic to that of quasi-analysis.

5.4.2 Quasianalytic Representations of Objects

The introduction of paradigmatic objects is just half of the story. Recall that
the discussion about the reducibility of properties arose from Carnap’s project
of developing a theory of systems of constitution of concepts. Carnap con-
sidered the reconstruction of properties as similarity circles just as an appli-
cation of his quasianalytic method. Mormann reformulated the quasianalysis
as a function that allows us to represent objects set-theoretically as bundles
of (quasi)properties. Representing entities as bundles of properties is a very
popular strategy. A clear example is the way spatial models (like Carnap’s or
Gärdenfors’s) use n-tuples of determinate properties to represent objects. Other
examples could be the use of spatial and temporal coordinates or other indexes
such as possible worlds to represent objects. Moreover, such representations
immediately give tools to construct new surrogate entities. To put a specific
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example of philosophical relevance, if one starts with possible worlds and con-
structs propositions as similarity circles, then possible worlds can be represented
as sets of propositions without circularity. The class of similarities we have been
dealing with is a very rich source of these representations. In this section I will
explore at least two interesting ways to represent objects quasianalytically by
using similarity structures of order 1:

� Objects can be represented as the sets of those paradigms to which they
are similar.

� Objects can be represented as the sets of their attributes, which in turn
are just sets of similar objects.

As a consequence, whenever we are dealing with what seems to be just one
similarity structure and its corresponding lattice of nominalist kinds, many other
structures will result. The lattice of kinds will be translated to other isomorphic
lattices where the objects are replaced by sets of paradigms or sets of properties.
Everything that holds for objects will be translated as something that holds for
bundles of paradigms or bundles of properties. This strategy allows us to get as
close as we want to the ontological pictures of spatial models without having to
assume as primitive or basic any properties whatsoever. Moreover, by using the
set-theoretic representations we can enrich our domain of objects in such a way
that operations that were only partially defined for them are now fully defined.

Our first goal will be to construct a ’small’ complete lattice of individuals
out of this order. Later on we will extend the original similarity relation to this
lattice. This will be our small ’calculus of individuals’. The device we will use for
this is the well-known method of ’completion by cuts’ or ’Dedekind-MacNeille
completion’. Later we will explore how this structure is related to the lattice of
kinds.

Now we will construct our lattice of individuals. Let us recall the operator
cro(A) := {y ∈ S | ∀x ∈ A y ∼ x} introduced in Chapter IV. It is analogous
to the extension and intension functions. This is the alternative generalization
for sets of the similarity neighbourhood co16. It is linked to the two following
fundamental operations:

Definition 68. Let (S,≤) be a poset and A ⊆ S. Then the set of upper bounds
of A is ⇑ A := {x ∈ S | ∀y ∈ A y ≤ x} and the set of lower bounds of A is
⇓ A := {x ∈ S | ∀y ∈ A x ≤ y}.

As it is known, the set of upper bounds and the set of lower bounds form
a Galois connection [26]. Therefore, their compositions are closure operators.
The set of lower-upper-closed sets, i.e. A =⇓⇑ A, is the complete lattice of
closed sets called the Dedekind-MacNeille completion or DM-completion of S.
We take from [26] the following well-known result:

Theorem 12. Let (S,≤) be a poset. Then the function DM(x) :=↓ x is an
order-embedding of (S,≤) in the complete lattice DM(S) = ({A ⊆ S | A =⇓⇑
A},⊆) called its Dedekind-MacNeille completion or completion by cuts. More-
over:

i DM preserves every existing join and meet.

16Its lattice of closed sets is B(S, S,∼).
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ii If S is a lattice, DM is a lattice embedding.

iii If S is a complete lattice, then it is isomorphic to DM(S).

iv If S is embedded in some lattice L, then DM(S) is also embedded in L.

v If L is a complete lattice, then it is the completion of any of its join-dense
and meet-dense subsets.

vi DM is the concept lattice of the context (L,L,≤).

According to these properties, the completion by cuts is the smallest com-
plete lattice in which the poset can be embedded. In that sense, it is the
optimal completion. The completion constructs new objects as sets from the
original particular objects. We can think about them as some sort of ’ideal
particulars’. They are added to the original poset to guarantee that the join
and meet operations are well defined. They are ’quasi-individuals’, so to speak.

Now we simply use this fact on the similarity poset:

Definition 69. Let (S,∼) be a (SNI) similarity structure of order 1. Then its
completion DM(S) is the Dedekind-Completion of its similarity order (S,≤co).

Since the posets of two isomorphic order 1 similarities are isomorphic, their
completions are isomorphic too. Of course, the correspondence between the
similarities of order 1 and the DM-completions is not unique, since several
non-isomorphic posets have the same DM-completion.

It is interesting to note that the construction can be carried on combining the
similarity operations int, cro and co. So in some sense we are still on similarity
grounds:

Proposition 31. Let (S,∼) be a (SNI) similarity structure of order 1, (S,≤co)
its poset, x ∈ S, and A ⊆ S. Then:

i co(A) =↑↓ A

ii ⇑ A = croco(A).

iii ⇓ A = intcro(A).

iv x is maximal ⇔ croco({x}) = {x}.

v x is minimal ⇔ intcro({x}) = {x}.

In any case, we have now several lattices at work. Some of them are given
by these structures:

� The similarity structure (S,∼). It induces the Dedekind-MacNeille com-
pletion DM(S). We will call DM(S) the completion of the similarity or
the lattice of individuals.

� The polar context (S, SC1(S),∈). It induces three lattices. The most in-
teresting ones are its lattice of intensions BSC1(S), which we will call the
lattice of bundles of properties, and its lattice of natural kinds B(S, SC1(S),∈
) which we will call simply the nominalist lattice of natural kinds.
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� The context (Gen(S), S,∼). It also induces three lattices. The most
interesting one is its lattice of extensions BGen(S), which we will call the
lattice of bundles of paradigms.

Each of these structures offers a unique picture of the entities we have been
discussing. Take the similarity structure (S,∼). The lattice DM(S) represents
objects in terms of their qualitative thinness relations to other objects.

Take the context (Gen(S), S,∼). The lattice BGen(S) represents quasiana-
lytically the objects as bundles of paradigms. Let A ⊆ Gen(S) and B ⊆ S. The
extension operator is e(B) = gen(B) = {p ∈ Gen(S) | ∀x ∈ B p ∈ gen(x)}. The
intension is i(A) = cro(A). Therefore, ei(A) = {p ∈ Gen(S) | cro(A) ⊆ co(p)}
and ie(B) = {x ∈ S | gen(B) ⊆ co(x)}. Here gen generalizes the corresponding
quasianalytic representations for sets. In other words, each object is represented
as the bundle of the paradigms to which it is similar. Two objects are similar
iff their bundles overlap iff they are similar to a common paradigm.

Take the polar context (S, SC1(S),∈). The lattice BSC1(S) represents quasi-
analytically the objects as bundles of properties. The extension operator is
e(B) = {x ∈ S | ∀T ∈ B x ∈ T} = {x ∈ S | B ⊆ q(x)} =

⋂
B. The intension

operator is i(A) = q(A) = {T ∈ SC1(S) | ∀x ∈ A x ∈ T} =
⋂
q(x). Here q

generalizes the corresponding quasianalytic representations for sets. In other
words, each object is represented as the bundle of its properties. Two objects
are similar iff their bundles overlap iff they have a common property.

The main result of this section is that the three structures DM(S), BSC1(S)

and BGen(S) are isomorphic:

Theorem 13. Let (S,∼) be a (SNI) similarity structure of order 1. Then the
following lattices are isomorphic:

1. The Dedekind-MacNeille completion DM(S) of the similarity.

2. The lattice of intensions BSC1(S) of its polar context (S, SC1(S),∈).

3. The lattice of extensions BGen(S) of the context (Gen(S), S,∼).

Proof. (1)-(3): We shall prove that the function f : DM(S)→ BGen(S) defined
as f(A) := A ∩Gen(S) is an order isomorphism. Its inverse is g(B) = {x ∈ S |
gen(x) ⊆ B}. Let us recall that A ∈ DM(S) iff A =⇓⇑ A, where the order in
S is induced by the similarity neighbourhood co.

First, f is well-defined: we show that gencro(A ∩ Gen(S)) = A ∩ Gen(S)
in BGen(S). Let p ∈ gencro(A ∩ Gen(S)) ⊆ Gen(S) and x ∈⇑ A. We have
A∩Gen(S) ⊆ A ⊆ co(A), therefore x ∈⇑ A = croco(A) ⊆ cro(A∩Gen(S)) and
therefore p ∼ x, so p ≤co x, i.e. p ∈⇓⇑ A = A.

Second, f preserves order: if A ⊆ B, then f(A) = A ∩ Gen(S) ⊆ B ∩
Gen(S) = f(B). Conversely, suppose that f(A) = A∩Gen(S) ⊆ B∩Gen(S) =
f(B). Let x ∈ A and y ∈⇑ B. If q ∈ gen(x), then for every z ∈⇑ A we
have q ≤co x ≤co z, i.e. q ∈⇓⇑ A = A, so gen(x) ⊆ A. Therefore, gen(x) ⊆
A∩Gen(S) ⊆ B ∩Gen(S) ⊆ B. But then q ≤co y, i.e. gen(x) ⊆ gen(y) and we
have x ≤co y. Thus, x ∈⇓⇑ B = B. So A ⊆ B and it follows that f is injective.

Finally, f is surjective: let B ∈ BGen(S), we show that A := {x ∈ S |
gen(x) ⊆ B} is such that f(A) = A ∩ Gen(S) = B, which gives the inverse.
First, if gen(p) = {p} ⊆ B ⊆ Gen(S), then p ∈ f(A). And if p ∈ A ∩ Gen(S)
then {p} = gen(p) ⊆ B. Second, we show that A ∈ DM(S). Let x ∈⇓⇑ A.
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Since B = gencro(B), let y ∈ cro(B), we show that y ∈⇑ A. Let z ∈ A, then
gen(z) ⊆ B, therefore gen(z) ⊆ gen(y) since y ∈ cro(B), i.e. z ≤co y. But
x ∈⇓⇑ A, so x ≤co y, i.e. gen(x) ⊆ gen(y). So if p ∈ gen(x), p ∼ y. A fortiori,
p ∈ gencro(B) = B, i.e. x ∈ A ∈ DM(S).

(2)-(3): The context (S,Gen(S),∼) is dual to (Gen(S), S,∼), by the sym-
metry of similarity. So the lattice of extensions of (Gen(S), S,∼) is isomorphic
to the lattice of intensions of (S,Gen(S),∼). Now, (S,Gen(S),∼) is isomor-
phic to (S, SC1(S),∈), under the context isomorphism (f, g), where f : S → S
f(x) := id(x) and g : Gen(S) → SC1(S) g(p) := co(p). Both f, g are bijective
and x ∼ p iff x ∈ co(p) iff f(x) ∈ g(x). Therefore the lattice of extensions
BGen(S) of (Gen(S), S,∼) is isomorphic to the lattice of intensions BSC1(S) of
(S, SC1(S),∈).

So the lattice of individuals DM(S) is isomorphic to the dual of the lattice
of natural kinds induced by its polar context. This gives us several mathemati-
cally equivalent ways to represent objects, by using sets of qualitatively ordered
objects, sets of nominalist properties or sets of paradigms. A fortiori, this gives
also several ways to represent kinds as well. This establishes a correspondence
between different ways in which the three models, the topological model, the
order-theoretic model and the similarity model, can be used to represent objects
by making use of structure that is induced by these objects themselves. One can
represent an object as the set of its paradigms, as the set of its properties or
as the set of all the objects that are ordered with respect to it according to
qualitative richness (or prototypicality). For example, one can think about a
specific crow as the set consisting of a specific paradigm of blackness, a specific
paradigm of featheredness, and so on. Equivalently, one can think about the
crow as the set consisting of the property of blackness, the property of feath-
eredness, and so on. One can also think about the crow as the set of all those
objects that are qualitatively richer (or less prototypical) than the paradigms to
which the crow is similar. One of the uses Carnap suggested for the quasianaly-
sis, as a synthetic procedure, was that of ’translating’ a relational description of
objects to a class-based or property-based description of them. In other words,
the quasianalysis was supposed to be a method of summarizing the relations
that hold between objects by transforming them into entities that behave like
properties. Something like this is still the case: similarities between objects and
paradigms, between different objects and qualitative orderings can all of them
be used to represent objects in new ways as bundles of other entities.

5.4.3 Qualitative Atomism

Recall that we left several questions unanswered. The second one was ”what
are the properties of this lattice?”. Our nominalist lattice is not an arbitrary
complete lattice. The presence of paradigms constrains its structure. Since
every object can be ’qualitatively composed by’ its paradigms, each kind can
be obtained as the overlapping of its maximal genera. In formal terms, the
lattice of bundles of paradigms is atomistic and therefore the lattice of natural
kinds is coatomistic. In this section we will show that the converse holds too, in
other words, that every (co)atomistic complete lattice can be obtained from a
similarity structure of order 1. We already show that the correspondence holds
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between posets and similarities. However, the correspondence can be extended
by making use of the Dedekind completion.

The notion of (co)atomism for lattices is standard [26]:

Definition 70. Let L be a complete lattice and p, x ∈ L. Then p is an atom
iff 0 < p & ∀y ∈ L (0 ≤ y ≤ p ⇒ y = p). L is atomistic iff x =

∨
{p ∈ L |

p is an atom & p ≤ x}.

We define Atom(S) := {p ∈ L | p is an atom} and atom(x) :=↓ x∩Atom(S).
The notions of coatom and coatomistic are defined dually. A lattice is atomistic
iff its dual is coatomistic.

What is the relation between atomistic posets and atomistic lattices? It
sounds like a plausible conjecture to say that the Dedekind completion of an
atomistic poset should be an atomistic lattice. We will prove this now and in
the process we will get a more abstract picture of what was shown in the section
before:

Lemma 10. Let L be an atomistic poset. Let the functions be min : DM(L)→
℘(Min(L)), defined as min(A) := {p ∈ Min(L) | ∃x ∈ A p ∈ min(x)}, and
⇓⇑Min : ℘(Min(L)) → DM(L), which is the restriction of the domain of the
DM-closure to the set of minimal elements. Then the pair (min,⇓⇑Min) is a
Galois connection.

Proof. Let B,B′ ∈ ℘(Min(L)) and A,A′ ∈ DM(L). Both functions are obvi-
ously monotone. We now prove that ⇓⇑Min (B) ⊆ A iff B ⊆ min(A). Suppose
⇓⇑Min (B) ⊆ A. If p ∈ B ⊆⇓⇑Min (B) ⊆ A, then by reflexivity p ∈ min(A).
Conversely, suppose B ⊆ min(A) and let x ∈⇓⇑Min (B). If y ∈⇑ A and
q ∈ B ⊆ min(A) then there is a z ∈ A such that q ≤ z ≤ y and therefore
y ∈⇑ B. So x ≤ y and thus x ∈ A =⇓⇑ A.

A fortiori, the composition clMin = min ⇓⇑Min : ℘(Min(L)) → ℘(Min(L))
is a closure operator on the set of minimal elements of L. In contrast, the
function ⇓⇑Min min : DM(L) → DM(L) is a kernel. Let CL(Min(L)) be the
lattice of closed sets. We can now restrict the range and domain of the previous
functions (respectively), by replacing the whole power set of Min(L) by the
smaller lattice of closed sets. We then have that the pair (min,⇓⇑Min) is an
order isomorphism:

Lemma 11. Let L be an atomistic poset. Let the functions min : DM(L) →
CL(Min(L)), ⇓⇑Min : CL(Min(L))→ DM(L) be defined as before. Then:

i The lattice CL(Min(L)) is atomistic.

ii The poset L is embedded into CL(Min(L)) by the function min(x).

iii CL(Min(L)) and DM(L) are isomorphic under (min,⇓⇑Min).

Proof. L has a bottom element iff it only has one element, so the lattice is
trivially atomistic. Let us suppose that L has no bottom. (i) Since min ⇓⇑
∅ = min ⇓ L = min{0} = min∅ = ∅, the operator is normal. And since
p is a minimal element, then min ⇓⇑ {p} = min{p} = {p} the closure T1,
thus the lattice of closed sets is atomistic (see the sections below). (ii) Since
min(x) = min({x}), by Galois min ⇓⇑ min(x) = min(x) so min(x) is closed.
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The function is monotone and is injective by atomism. (iii) We will show that the
functions are inverses, in other words, min ⇓⇑= idCL(Min(L)) and ⇓⇑ min =
idDM(L). The former is trivial and since ⇓⇑ min is kernel, we already have
⇓⇑ minA ⊆ A for A ∈ DM(L). Let x ∈ A =⇓⇑ A and y ∈⇑ min(A). Since
min(x) ⊆ min(A) ⊆ min(y) we have x ≤ y, so A ⊆⇓⇑ minA.

In words, what happens in the case of atomistic posets is that the Dedekind
completion can be simplified by representing each element in the original poset
as the set of its minimal elements. From the point of view of similarity, we are
representing each object by the set of its paradigms. This result is the abstract
counterpart of the one given in the previous section.

Corollary 12. Let L be an atomistic poset. Then its Dedekind completion
DM(L) is atomistic.

Since the minimal elements are in bijective correspondence with the fixed
ultrafilters, we get an equivalent representation of objects as closed sets of ul-
trafilters.

Since the completion DM(S) is isomorphic to the lattice of generators
BGen(S), which is dually isomorphic to the lattice of kinds B(S, SC1(S),∈),
we can give now an answer to the second question:

Corollary 13. Let (S,∼) be a (SNI) similarity structure of order 1. Then:

1. DM(q(S)) is isomorphic to BSC1(S) and DM(gen(S)) is isomorphic to
BGen(S).

2. BGen(S) is an atomistic lattice, the atoms are the singletons of paradigms.

3. B(S, SC1(S),∈) is a coatomistic lattice.

In other words, the lattice of nominalist kinds is coatomistic.
The natural question to ask is whether every atomistic lattice is the com-

pletion of an (SNI) similarity structure of order 1, and if so, what kind of
correspondence this is. To answer this question, we extend the similarity rela-
tion to atomistic lattices. We just have to be careful with the bottom and with
the corresponding similarity circle {0}17:

Proposition 32. Let (L,≤) be a complete atomistic lattice. Define in L the
relation x ∼ y := ∃p ∈ Atom(S) p ≤ x, y or x = 0 = y. Then ∀x, y, w, r ∈ L:

i ∼ is a similarity.

ii co(0) = {0} & co(1) = L− {0}.

iii ∀p ∈ Atom(S) p ≤ x⇔ p ∼ x.

iv ∼ is of order 1, where Atom(S) ∪ {0} = Gen(S).

17Notice that if L = DM(S) there cannot be a similarity ∼DM over L that both extends
the original similarity and is also compatible with the meets, i.e. that x ∼ y & w ∼ r ⇒
x ∧ w ∼ y ∧ r. Take as a counterexample the similarity x ∼ z ∼ y which is of order 1 and
(SNI). Therefore x, y ≤ z. So DM(S) is the boolean structure B2. Suppose that x ∼ y iff
x ∼DM y. If ∼DM is compatible with meets, then since x ∼DM z & z ∼DM y, we have
x = x ∧ z ∼DM y ∧ z = y, so x ∼ y. This contradicts the assumption. Therefore ∼DM is not
compatible with meets.
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v ∼ is (SNI).

vi x ∼ y ⇔ ∃Tp ∈ SC1(L) {x, y, x ∧ y, x ∨ y} ⊆ Tp.

vii x ∼ y & w ∼ r ⇒ x ∨ w ∼ y ∨ r. [Compatible with Joins]

viii If x 6= 0 6= y, then x ≤ y ⇔ co(x) ⊆ co(y)⇔ x ≤co y.

ix T 6= {0} is a similarity circle of order 1⇔ T is a fixed ultrafilter.

x If x 6= 0 6= y, then x ∼ y ⇔ x ∧ y 6= 0.

Proof. Since L−{ 0} is an atomistic poset, (i)-(v) and (viii) follow immediately,
by treating the bottom separately. Note that since 0 is isolated it is the gen-
erator of the similarity circle 1 T0 = {0}. In particular, the similarity order is
isomorphic to the order of L−{ 0}, not to that of L. For (ix) we use the previous
Lemma. For (vi) If x ∼ y there is a generator p such that p ≤ x∧y ≤ x, y ≤ x∨y,
therefore {x, y, x∧ y, x∨ y} ⊆ Tp. The converse is obvious. (vii) If x ∼ y, w ∼ r
then x and y have a common atom p ≤ x ∨ w, y ∨ r, so x ∨ w ∼ y ∨ r. (x) Let
x ∼ y, so there is an atom p such that 0 < p ≤ x ∧ y ≤ x, y. Conversely, if
0 < x ∧ y, by atomism we have an atom p such that 0 < p ≤ x ∧ y ≤ x, y so
x ∼ y.

Property (ix) hints at what is happening. Whereas the quasianalysis gen
represents each element as the set of its atoms (its generators), the quasianalysis
q represents each element as the set of its fixed ultrafilters (its similarity circles
of order 1).

Corollary 14. Let (S,∼) be an (SNI) similarity structure of order 1. Then
(S,∼,≤) is order-embedded and similarity-embedded by ⇓⇑ in (DM(S),∼DM

,⊆), where for a, b ∈ DM(S) a ∼DM b := ∃c ∈ Atom(DM(S)) c ≤ a, b or
a = 0 = b.

Proof. Since ∼ is of order 1, x ∼ y iff ∃p ∈ Gen(S) x ∼ p ∼ y iff p ≤co x, y iff
⇓⇑ p ⊆⇓⇑ x,⇓⇑ y iff ⇓⇑ x ∼DM⇓⇑ y.

Let 2 be the boolean lattice {0, 1}. This atomistic lattice cannot be the
completion of a similarity structure for the following reason. Since a poset is
embedded in its completion, it has a smaller cardinality than the latter one.
But we have shown that the similarity poset necessarily lacks a bottom. So
the cardinality of the poset, and therefore of the similarity structure, would be
n ≤ 1. If n = 0 it is the empty set. If n = 1 then the poset is the lattice 1 = {0}
and therefore it is isomorphic to its own completion. So 2 is not the completion
of a similarity poset. From the similarity point of view, the reason is that (SNI)
prevents the similarity poset being a chain (although we can get two disjoint
copies of 2, just take the poset of the similarity of order 2 p ∼ x ∼ y ∼ q).

As we have seen, if we stick to general (SNI) similarities of order 1 the cor-
respondence will not be unique. Each lattice corresponds to all those similarity
structures that have the same completion. But if we ask for the original simi-
larity to already be a complete join-semilattice (thus having a dense element 1),
then we can guarantee the bijective correspondence (uniqueness up to isomor-
phism). The reason is that adding a bottom element to this similarity makes it
a complete lattice, and it is therefore isomorphic to its completion. We can go
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back by starting from an atomistic complete lattice, imposing a similarity and
deleting the bottom element. The problematic cases are the boolean lattices
0, 1 and 2. Although 0 and 1 do correspond uniquely to similarities, we will
treat them separately since they do no fit the general construction. Both 1 and
2 are special in the sense that if we eliminated their bottoms, then we could
not recovered them by the DM-completion since the resulting posets (0 and 1)
would already be complete lattices. These are the only exceptions. Remember
that a complete join-semilattice is a poset where every non-empty subset has a
join:

Definition 71. Let (S,∼) be a (SNI) similarity structure. Then S is join-
similarity iff (S,≤co) is a complete join-semilattice, i.e. every non-empty subset
A ⊆ S has a join.

There is an important detail to consider. See that S can be a join-similarity
even if it is not closed under all the joins of the order induced by the similarity
neighbourhood, for example:

SC(S) = {{p, x, 1}, {q, y, 1}, {r, x, y, 1}} is a (SNI) similarity of order 1.
Then S is a join-similarity, for p, r ≤ x ≤ 1 & q, r ≤ y ≤ 1 forms
a complete join-semilattice. Attaching a 0 we get a lattice isomorphic to
the DM-completion of S. Nevertheless, not all the joins induced by co are
in S, since these correspond to unions of neighbourhoods. For instance,
p∨co q would be such that co(p∨co q) = co(p)∪ co(q) = {p, x, y, q}, but no
such element exists in S.

In other words, although arbitrary joins exist in ≤co, these joins need not
be those corresponding to the lattice induced by the similarity neighbourhood.
Note that assuming that every non-empty subset has a join is a harmless as-
sumption. We have already shown how to get these joins by using the DM-
completion, so the reader can think about them as logical constructs.

We will consider also the bottomed S∗ := (S∗,∼∗,≤∗) where S∗ = S ∪ {0},
x ∼∗ y := x ∼ y or x = 0 = y and x ≤∗ y := x ≤ y or x = 0, which is isomorphic
to the DM-completion of S18. It is rather obvious that:

Lemma 12. Let (L,≤) 6= 2 be a complete atomistic lattice where |L| ≥ 2. Then
DM(L− {0}) ∼= L.

Proof. By assumption, L 6= 0, 1, 2. We know that L–{0} is embedded into
L by the identity function, that it must have at least two distinct minimal
elements and that L–{0} has no bottom (minimals are disjoint). Let L′ be a
complete lattice and g : (L–{0})→ L′ an embedding. So we can simply extend
the embedding g to g′ : L → L′ as g′(x) = g(x) iff x 6= 0 and g′(x) = 0′ iff
x = 0. Therefore L is up to isomorphism the smallest complete lattice in which
(L–{0}) is embedded, DM(L− {0}) ∼= L.

This Lemma would be false if L was a chain, which is what happens for
instance in cases 1 and 2.

18The 0 is introduced conventionally. But again, if one is worried about this, one can think
about it just as the set of all those objects that are less than all those objects that are greater
than all those objects that are not identical to themselves, i.e. as ⇓⇑ (∅) = ∅.
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Theorem 14. Let (S,∼) be a join-similarity of order 1 where |S| ≥ 2. Then
DM(S) is a complete atomistic lattice distinct from 2 which is such that |L| ≥ 2
and DM(S) − {0} ∼= (S,∼). Conversely, let (L,≤) be a complete atomistic
lattice distinct from 2 such that |L| ≥ 2. Then (L,∼∗) is a join-similarity of
order 1 which is such that DM(L− {0}) ∼= L.

Proof. Let S be a join-similarity of order 1 with at least two elements. Then
DM(S) is a complete atomistic lattice distinct from 2. We show DM(S)–0 ∼=
(S,∼). By the previous corollary, (S,∼,≤co) is embedded into (DM(S),∼DM

,⊆) under ⇓⇑, since the latter preserves similarity. Since S has at least two
elements, it is neither 1 nor 2. If we add a bottom to S, S0 := (S ∪ {0},≤∗)
where x ≤∗ y iff x ≤co y or x = 0, then S0 is a complete lattice. We extend the
original similarity to S0 as x ∼∗ y := x ∼ y or x = 0 = y, so (DM(S),∼DM ,⊆
) ∼= (S,∼∗,≤co)0 and DM(S)–{0} is isomorphic to (S,∼).

Conversely, let (L,≤) be a complete atomistic lattice distinct from 1 and
2 with is similarity defined as before. By the previous proposition, (L,∼∗) is
a join-similarity of order 1 with a dense element and at least two elements,
and if a 6= 0 6= b it follows that a ≤ b iff a ≤co b. Therefore, (L–{0},∼∗
,≤co) ∼= (L–{0},∼∗,≤), where the identity function is the similarity and order
isomorphism. By the previous lemma, (DM(L–{0}),⊆) ∼= (L,≤) since L 6= 2,
so (DM(L–{0}),∼∗,⊆) ∼= (L,∼∗,≤).

The trivial lattices 0 and 1 uniquely correspond to the similarities S = ∅
and S = {x}. As said, 2 cannot be recovered from a similarity. Therefore, every
complete atomistic lattice except for 2 is the completion of the similarity poset
of some similarity structure of order 1. Let us summarize the results of this
section roughly as:

Corollary Every (SNI) join-similarity structure of order 1 with at least two
elements uniquely corresponds to a complete atomistic lattice, and con-
versely.

5.4.4 Kinds of Nominalist Worlds

As was suggested in Chapter III, kinds can be ordered in many different ways
and thus are not necessarily hierarchically arranged. But what other specific
orderings could be? I will now make use of the previous results to obtain new
species of similarity structures of order 1. In this way we will get new axioms that
will give us aristocratic structures that may hold in more specific domains. This
will answer our last question, which was ”can we give some sort of classification
of the similarity structures of order 1 in terms of its completions?”. To simplify
the results we will assume that our similarity poset is already a join-semilattice
and that the domain has at least two elements. This allows us to greatly simplify
the formulation of the following axioms:

Definition 72. Let (S,∼) be a (SNI) join-similarity of order 1 and such that
|S| ≥ 2. Let p ∈ Gen(S), x, y ∈ S and ∅ ⊂ A ⊆ S, then:

i S is an algebraic similarity iff p ∼
∨
A⇒ p ∼

∨
B for some finite B ⊆ A.

ii S is a topological similarity iff p ∼ x ∨ y ⇒ p ∼ x or p ∼ y.
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iii S is a boolean similarity iff ∀∅ 6= A ⊆ Gen(S)∃x ∈ S co(x) = co(A).

These properties are similarity invariants. To ’classify’ the different kinds
of similarities we just need to look at the different properties that the closure
operator gencro may have:

Definition 73. Let X be a set and cl : ℘(X)→ ℘(X) a closure operator. Then
cl may satisfy:

i cl(∅) = ∅. [Normal]

ii cl({x}) = {x}. [Closed Points/T1]

iii cl(A) =
⋃
{cl(B) | B ⊆ A & B is finite}. [Finite]

iv cl(A ∪B) = cl(A) ∪ cl(B). [Preserves Union]

We say that a closure operator is algebraic iff it is normal and finite. It is
topological T1 iff it is topological and T1. Note that complete atomistic lattices
of at least two elements are exactly those corresponding to normal T1 closure
operators (this is known). It can be easily checked:

Lemma 13. Let (S,∼) be a (SNI) similarity of order 1. Then (i) holds and if
|S| ≥ 2, (ii) holds too:

i gencro is T1.

ii gencro is normal.

Proof. (i) Let p ∈ Gen(S). Then if q ∈ gencro(p) = genco(p), co(p) ⊆ co(q)
and so p = q. (ii) Let |S| ≥ 2. Then if ∅ 6= gencro(∅), there is a generator p ∈
cro(∅) = S. Therefore, S ⊆ co(p) and so S is a clique. By (SNI), S = {p} and
therefore |S| ≤ 1, which contradicts the assumption. So gencro is normal.

When S has exactly one point, gencro(∅) = gen({p}) = {p} and normality
fails. We will now show that the following result holds:

Theorem 15. Let (S,∼) be a (SNI) join-closed similarity of order 1 and such
that |S| ≥ 2. Then:

i S is an algebraic similarity ⇔ gencro is an algebraic closure.

ii S is a topological similarity ⇔ gencro is a T1 topological closure.

Let us introduce some notions from lattice theory, we apply them to simi-
larities:

Definition 74. Let (S,∼) be a join-closed similarity, x ∈ S,A ⊆ S and T ∈
SC(S). Then x is compact iff x ≤

∨
A⇒ x ≤

∨
B for some finite B ⊆ A.

In the special case of a generator p, p is compact iff p ∼
∨
A⇒ p ∼

∨
B for

some finite B ⊆ A.

Proposition 33. Let (S,∼) be a join-closed (SNI) similarity of order 1, where
|S| ≥ 2. The following conditions are equivalent:

i S is an algebraic similarity.
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ii Every generator of order 1 is compact.

iii The gencro closure operator is algebraic.

As it is well known, there is a correspondence between algebraic complete
lattices and convex spaces given by the convex or hull operators, which are just
the algebraic closures. In short, the closed sets are to be understood as convex
regions in a space. In our case the points are convex regions too. So if the
similarity is algebraic, we can get spaces like those advocated by the theory
of conceptual spaces [42], [43]. But every finite lattice is algebraic. So every
finite join-closed similarity (of two points) is algebraic. Moreover, due to the
correspondence between BGen(S) and BSC1(S), we can take the points to be
properties and the convex regions to be objects, represented quasianalytically
as bundles of properties. If we strengthen the previous condition we can even
get a space which has geometric structure. So under stronger conditions over a
similarity structure, the generators behave as points and the rest of elements,
now represented as sets of paradigms, behave as lines, planes, and so on (gener-
ally, as the ’flats’ of a geometry). However, we will not deal with this case here.
To sum up, S is an algebraic similarity ⇔ BGen(S) is the lattice of convex sets
of a T1 convexity.

But we can also go in a different direction. Let us suppose that our domain
contains an infinite amount of paradigms. For complete atomistic lattices to be
the lattices of closed sets of certain topological spaces, the T1 ones, it is known
that the only requirement is that the atoms should be join-prime elements19:

Definition 75. Let (S,∼) be a join-closed similarity, x ∈ S, T ∈ SC(S). Then
x is a join-prime element iff x ≤ y ∨ z ⇒ x ≤ y or x ≤ z. T is a join-prime
similarity circle iff x ∨ y ∈ T ⇒ x ∈ T or y ∈ T .

In the special case of a generator p, p is join-prime iff x ∼ y ∨ z ⇒ x ∼ y or
x ∼ z.

Proposition 34. Let (S,∼) be a join-closed (SNI) similarity of order 1, where
|S| ≥ 2. The following conditions are equivalent:

i S is a topological similarity.

ii Every generator of order 1 is join-prime.

iii Every similarity circle of order 1 is join-prime.

iv The gencro closure operator is topological.

Thus the extensions of the context (Gen(S), S,∼) are the closed sets of a T1
topology whose points are the generators. Of course, this topology is only inter-
esting when the number of generators is infinite (otherwise it is discrete). Since
DM(S) (or equivalently, the bottomed S) is isomorphic to BGen(S), we have
obtained a topological representation of the elements in S: each element is rep-
resented as a closed set of paradigms in a T1 topological space. Moreover, since
BGen(S) is isomorphic to the lattice of intensions BSC1(S) of (S, SC1(S),∈),
this means that the ie-closure of the latter context over SC1(S) is also topo-
logical. What we have here is a T1 topological space, homeomorphic to the

19This forces the lattice to be co-Heyting.
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former one, where the points are properties (similarity circles of order 1) and
where the closed regions are objects represented quasianalytically as bundles of
properties. Thus, these are very close to Carnap’s attribute spaces. To sum
up, S is a topological similarity ⇔ BGen(S) is the lattice of closed sets of a T1
topology.

The third example is that of the boolean algebras:

Proposition 35. Let (S,∼) be a (SNI) similarity of order 1, where |S| ≥ 2.
Let S be a boolean similarity. Then BGen(S) is a complete atomistic boolean
algebra.

Proof. We prove that (S,≤co) is a bottomless complete atomistic boolean alge-
bra. Therefore, its completion will be a boolean algebra isomorphic to BGen(S).
Consider the power set ℘(Gen(S)− {∅}, we show that the function gen : S →
℘(Gen(S)−{∅} is an order isomorphism. The function is well-defined by order
1, monotonous and it is injective by (SNI). The boolean similarity axiom guar-
antees surjectivity. The inverse is monotonous too, since if gen(x) ⊆ gen(y)
then by order 1 x ≤co y.

Note that the similarity need not be join-closed, since the axiom is so strong
that it immediately implies all the boolean structure. The atoms of the boolean
algebra are the paradigms, and every other object can be obtained as a boolean
join from its paradigms. In fact, every possible combination of paradigms cor-
responds exactly to an object20.

Due to the correspondence between atomistic lattices and similarities of or-
der 1, the converses of these results also hold for those structures with more than
two elements. For example, since the lattice of closed sets of any T1 topology is
an atomistic lattice, it (all classical topological spaces of more than two points)
can be obtained from a similarity of order 1.

The reader may wonder why such an investment of time and effort in mak-
ing these abstract distinctions between kinds of similarities should be of any
philosophical interest. I think that the objection is fair, so let me give a couple
of examples of applications. Suppose that one wants to give a nominalist recon-
struction of classical propositions. Let us suppose that the realist introduces
them as entities that satisfy the laws of a complete atomistic boolean algebra.
Then the nominalist can say that, necessarily, there will be some similarity
structure whose lattice of kinds corresponds to such an algebra, and therefore
that he will be able to give an appropriate surrogate for it (maybe by using
possible worlds or token-sentences). But this will not be very informative. Af-
ter all, the nominalist still owes the realist some sort of story regarding how
boolean operations (which for the realist in fact generate new entities) arise
from these nominalistically acceptable entities. But now the nominalist has an
answer: propositions are kinds (or the extensions of these kinds) induced by
some boolean similarity structure of order 1.

More specifically, suppose one wants to reduce propositions to possible worlds.
One may start with a set W of possible worlds and a relation of similarity which
can be pre-theoretically understood as ”w ∼ w′ iff there is an atomic proposition
p that is true in both w and w′”. Of course, for this condition not to be circular
one has to introduce it as a primitive relation. So one considers ’atomic worlds’,

20Note what this means from the point of view of classical propositional logic: its algebraic
structure can be obtained from the similarity relation of consistency, i.e. φ ∼ ψ iff φ∧ψ 6= ⊥.
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which are pre-theoretically those worlds in which just one atomic proposition p
is true, and one understands similarity as closeness to a common atomic world.
The boolean axiom says that for any set of atomic worlds, there is exactly one
world which is close exactly to the former ones. In pretheoretic terms, for each
set of atomic propositions, there is exactly one world in which exactly these
propositions are true. Then atomic propositions are constructed as similarity
circles. Lastly, we get the rest of complex propositions as the elements of the
lattice of kinds. The nominalist need not defend that the whole world is so
structured, it may be that just a certain substructure of it satisfies the boolean
axiom.

As a second example, consider a realist about magnitudes. We have given
a nominalist reconstruction of universals, but we have not touched on issues
related to the additional structure that these universals may have. Suppose that
the realist asks for some nominalist story regarding the composition and order
of these magnitudes. How will the nominalist answer? The answer will start
by considering a piece of the world that happens to be a geometric similarity
structure. The more conditions we impose on this part of the world, the closer
it will resemble the real line. Of course, there is quite a long (and exciting) road
from merely geometric similarities to the specific geometry we may be interested
in. But the point is that such a road exists.

As a third example, suppose that the realist insists that the natural kinds
are hierarchically arranged as a tree [135]. Then the nominalist can point at a
corresponding tree similarity as an adequate surrogate. The axiom will require
now that if two objects are similar to a common paradigm, then all the objects
similar to one of them are already similar to the other. The paradigms will
be the leaves of the tree. Consider for instance the following relation between
species as conceived under the phylogenetic concept: ”K ∼ K ′ iff K and K ′ have
a common contemporary descendant species p”, the contemporary descendant
species being the leaves of the tree. Recall that each species induces a unique
clade, the set of all its descendant species. Then each species is represented by
the contemporary species that form a subset of this clade. An axiom for trees
can be given by translating the conditions discussed in Chapter III.

Lastly, suppose that one argues that natural kinds are the convex regions of a
conceptual space (e.g. [42], [43]) or closed regions in a T1 topological space (e.g.
a metric space, which coheres with Carnap’s attribute spaces). If the points in
this space are convex or closed too, then the nominalist can argue that these
convex or closed regions are induced by an algebraic or topological similarity
relation, respectively. These convex or closed regions are sets of paradigms. Or
equivalently, they are the natural kinds determined by the similarities. Given
the quasianalysis and the correspondence between paradigms and properties,
these can be seen also as spaces whose points are properties and whose convex
or closed regions are objects, represented as bundles of properties.

I would like to add a final methodological remark regarding classifications
that will connect this chapter with Chapter III. If similarities of order 1 are
taken to be plausible models of the structure of non-classical classifications we
are quickly lead to a plurality of kinds of classifications: some classifications are
partitions, others are more genral similarities of order 1, others are topologies,
still others geometries, and so on. This should not be a surprise, after all, there
is a plurality of kinds of orderings and a plurality of kinds of structures for mea-
surement. Moreover, the unification power of the theory of similarity structures

252



of order 1 is quite remarkable. For instance (except for domains with less than
two entities) all atomistic trees, all T1 topologies, all the concept lattices of po-
lar contexts and the partition lattices can be obtained as (completions of) the
orders induced by a similarity relation of order 1. I think these are highly non-
trivial facts to be considered by any general theory of classifications and they
show how narrow a conception of classifications as a (hierarchically ordered)
family(s) of exhaustive and exclusive sets is. Nevertheless, this goes far beyond
our purposes here, so I will leave this point for future discussion.

5.5 A World Full of Paradigms

There is a last question I want to consider. The model of pure similarities of
order 1 makes a strong assumption, namely, that each attribute is generated
by exactly one paradigmatic exemplar. This requires us to posit qualitatively
thin objects that fulfill this special role of being the unique paradigmatic ex-
emplar of a property. This has two drawbacks. First, although some reasons
for positing such entities were given in the previous chapter, it is still question-
able whether there are qualitatively thin entities such as these ones. Second,
it forces us to assume that each attribute can be generated by a unique such
paradigm, whereas for attributes in general it seems that there are several pos-
sible candidates for being their paradigms. One may wonder whether a more
complex version of aristocratic resemblance nominalism could be developed ac-
cording to which each attribute has several paradigmatic exemplars and each
such a paradigm may exemplify several different attributes. In other words,
the question is whether there is a more general class of similarities that allows
us to reconstruct attributes with plenty of qualitatively enriched paradigmatic
exemplars. Moreover, we would like this class of similarity structures to be as
closely related as possible to our pure similarities of order 1. For instance, we
might want the class of pure similarities of order 1 to be just a special case of
the new class. Therefore, the last question to consider is:

Can we generalize the aristocratic model to deal with properties having
several paradigms and paradigms having several properties?

Recall that according to Brockhaus’ Theorem, the similarity covering must
be made up by similarity circles that can be generated by two (or less) members.
[89] generalized this notion in order to classify similarity structures in terms of
the number of generators each similarity circle had. The idea is that a similarity
structure is of order n iff each similarity circle can be generated by n members
(or less). Let us recall that:

Definition 76. Let (S,∼) be a similarity structure. Then T ∈ SC(S) is a
similarity circle of order n iff ∃x1, . . . , xn ∈ T such that co(x1)∩· · ·∩co(xn) = T .
Here the xi are the generators of T .

One can consider x1, . . . , xn jointly as paradigms of the property T . Now
what we need to do is to generalize this notion to similarity circles that might
be generated by an arbitrary number of elements. To do that it is convenient
to lift the notion of generator from single elements to sets. The idea is that
the generator of a circle is a subset, the set of all the generating elements taken
collectively. The choice I propose is this:
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Definition 77. Let (S,∼) be a similarity structure, x, y ∈ S and G ⊆ S a
clique. Then the following conditions are equivalent:

i G is a generator.

ii cro(G) is a clique.

iii G generates a similarity circle, i.e. cro(G) ∈ SC(S).

iv cro(G) = crocro(G).

v (∀p ∈ G x ∼ p ∼ y)⇒ x ∼ y.

vi cro(G) =
⋂
{co(p) | p ∈ G} ∈ SC(S).

Proof. Assume (i)-(ii) as a definition, (v) and (vi) are just reformulations of (ii)
and (iii), respectively. (ii)-(iii) Let G be a generator, so cro(G) is a clique. Since
G is also clique, G ⊆ cro(G). If z ∈ crocro(G) ⊆ cro(G), so cro(G) is a similarity
circle. (iii)-(iv) Recall that cro(G) is a similarity circle iff crocro(G)=cro(G).

When |G| ≤ n we get the original notion of generator. Thus a clique G gen-
erates a circle T iff cro(G) = T . The operator cro moves us from the generators
to their circles. In the case of similarities of order 1 to avoid clutterness we can
simply replace the generator {p} by the element p itself. This allows us to avoid
an unnecessary higher layer in the set-theoretic hierarchy when representing an
element by the set of its generators.

Now, if G generates a similarity circle T and G ⊆ H ⊆ T then H also
generates T . In fact, every similarity circle trivially generates itself. Similarity
circles always have at least one generator (themselves), and usually they have
many redundant generators. We are interested in those generators which are
such that no smaller set generates the same circle:

Definition 78. Let (S,∼) be a similarity structure and G ⊆ S a generator.
Then G is a minimal generator iff if H ⊆ G and cro(H) is a clique, then
H = G.

This hints at the usefulness of the generalization made. We need to con-
ceive of generators as sets not just to consider arbitrary cardinalities, but to
make possible simpler comparisons among different minimal sets of generating
elements of the same circle.

Lemma 14. Let (S,∼) a similarity structure, G ⊆ S a set of generators and
T = cro(G) the circle it generates. Then:

i If T ′ is a similarity circle and G ⊆ T ′, then T ′ = T .

ii If H ⊆ G and H is a set of generators, then cro(H) = T .

Proof. (i) If T ′ is a circle and G ⊆ T ′, then cro(T ′) = T ′ ⊆ cro(G) = T and
therefore T = T ′. (ii) If H ⊆ G and H is a generator, then cro(H) is a clique
and cro(G) = T ⊆ cro(H), i.e. T = cro(H).

(i) says that generators are exclusive to the similarity circles they generate.
Now, the same similarity circle may have several different minimal generators.
The last move is to consider only those similarity circle that have a smallest
generator:
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Definition 79. Let (S,∼) be a similarity structure and T ∈ SC(S). Then T is
a simple similarity circle iff T has a unique minimal generator.

In other words, the simple circles are the ones in bijective correspondence
with their smallest generators. Each simple similarity circle has a unique small
generator. A similarity covering is simple iff all its members are simple similarity
circles.

Examples are:

� The similarity SC(S) = {{p, q, x}, {x, r}} is of order 1 but {p, q, x} is not
simple. It can be generated either by {p} or by {q}.

� The similarity SC(S) = {{p, x}, {q, y}, {r, z}, {x, y, z}} is of order 2 but
{x, y, z} is not simple. It can be generated by {x, y}, {y, z} or {x, z}.

By taking into account these two features, the class of similarity structures
we should take a look at is the following one:

Definition 80. Let (S,∼) be a similarity structure. Then S is simple iff S has
a similarity covering by simple similarity circles.

We define the set of simple similarity circles as Simple(S) := {T ∈ SC(S) |
T is simple} and the set of smallest generators as SGen(S) := {G ⊆ S |
G is the smallest generator of a simple circle}. Every pure similarity of order
1 is simple, because its similarity is covered by SC1(S). See that if a similarity
is simple then Simple(S) also covers it. Of course, if all similarity circles are
simple, then the similarity is simple.

Examples:

� The classical example in [89] of a similarity SC(S) = {{p, x, y}, {x, z, q},
{r, y, w}, {w, z, s}, {x, y, z}, {y, z, w}} of order 3 has two minimal similar-
ity coverings by simple circles, one of them includes {x, y, z} and the other
one includes {y, z, w}.

� The similarity SC(S) = {{p, x}, {q, y}, {r, z}, {x, y, z}} is of order 2 but
it has no similarity covering by simple similarity circles, since {x, y, z} is
not simple. It can be generated by {x, y}, {y, z} or {x, z}.

� The (SNI) similarity of order 1 SC(S) = {{p, x, y}, {y, z, q}, {x, z, r},
{x, y, z}} is such that all circles are simple, since {x, y, z} is simple (its
generator is itself). However, the covering by all the simple similarity
circles is different from SC1(S), because {x, y, z} is of order 3.

� Let the simple similarity of order 1 be SC(S) = {{a, b, p}, {a, c, q}, {a, d, r},
{b, c, w}, {b, d,m}, {c, d, n}, {a, b, c, d}}. Then {a, b, c, d} is a non-simple
circle of order 3, for instance it can be generated by {a, b, c} or {b, c, d}.
Here Gen(S) = {p, q, r, w,m, n}. Nevertheless, the family SC1(S) =
SC(S)− {{a, b, c, d}} is a similarity covering by simple similarity circles.

The first example shows that a simple similarity can be covered by two
minimal but distinct simple similarity coverings. The second example shows
that some similarities of order 2 are not simple. The third example shows that
in a similarity of order n, not all the simple similarity circles may be of order
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n, they can be of higher order. The last example shows that a simple similarity
can be such that not every similarity circle is simple. Of course, although a
similarity structure may have several minimal simple coverings there is only one
which is the biggest one, namely Simple(S).

From now on we focus on simple similarity structures. Recall that Simple(S)
and SGen(S) are the family of simple similarity circles and the family of smallest
generators of simple circles, respectively. We now have two very similar weak
quasianalysis:

gen : S → ℘(℘(S)) gen(x) := {G ∈ SGen(S) | x ∈ cro(G)}
q : S → ℘(℘(S)) q(x) := {T ∈ Simple(S) | x ∈ T}

Whereas q is standard, gen is not. These generalize to sets:

gen : ℘(S)→ ℘(℘(S)) gen(A) := {G ∈ SGen(S) | ∀x ∈ A x ∈ cro(G)}
q : ℘(S)→ ℘(℘(S)) q(A) := {T ∈ Simple(S) | ∀x ∈ A x ∈ T}

Although here we will always choose Simple(S), all the results hold if we
replace this family by a possibly smaller family Q∗ ⊆ Simple(S) that still covers
the similarity (which must exist, by assumption). There may be several such
families, although in some contexts a natural one suggests itself. For example,
for pure similarities of order 1 one takes Q∗ = SC1(S) ⊆ Simple(S). In such
cases we just replace accordingly the family SGen(S) by the corresponding
family SGen(S)∗ of generators of the circles in Q∗. Without further constrains
there is in general no unique weak quasianalysis of simple similarity circles
(unless one requires it to contain all the simple circles).

Let us take a closer look now at the lattices induced by the contexts of simple
similarities. We have at least the following two:

i The context (SGen(S), S, I), where GIx iff x ∈ cro(G), of bundles of
paradigms. Consider its lattice of extensions BSGen(S), which represents
each object as a bundle of generators. Let A ⊆ SGen(S) and B ⊆ S:

(a) e(B) = {G ∈ SGen(S) | ∀x ∈ B x ∈ cro(G)} = gen(B).

(b) i(A) = {x ∈ S | ∀G ∈ A x ∈ cro(G)} =
⋂
{cro(G) | G ∈ A} =

cro(
⋃
A).

ii The context (S, Simple(S),∈) of bundles of properties. Consider its lat-
tice of intensions BSimple(S), which represents each object as a bundle of
properties. Let A ⊆ S and B ⊆ Simple(S):

(a) e(B) = {x ∈ S | ∀T ∈ B x ∈ T} =
⋂
B.

(b) i(A) = {T ∈ Simple(S) | ∀x ∈ A x ∈ T} = q(A).

Furthermore, if the simple similarity is (SNI) then ≤co is a partial order and
we can consider its Dedekind-MacNeille Completion too:

DM(S) is the Dedekind-MacNeille completion of ≤co.

256



We know that for (SNI) similarities of order 1, DM(S), BSGen(S) and
BSimple(S) are isomorphic. This does not hold in general though, as the next
example shows.

Let SC(S) = {{p, x}, {q, x, w}, {r, y, w}, {x, y, w}}. This similarity is (SNI),
simple and of order 2 since {x, y, w} is of order 2 and its only generator is {x, y}.
The rest of circles are of order 1, where Gen(S) = {p, q, r}. The order induced
by the similarity neighbourhood is p, q ≤co x & q ≤co w & r ≤co y ≤co w. Its
Dedekind completion DM(S) simply adds a top 1 and a bottom 0. This lattice
is not atomistic. For instance, y corresponds to a join-irreducible element. But
the lattice of extensions BSGen(S) is not isomorphic to it. It contains an element
that does not correspond to any element in DM(S). This element emerges as a
representation of the generator {x, y} of the circle {x, y, w}, by overlapping the
bundles of x, y and w. So in BSGen(S) this element is the meet of the images
of x and y. However, in the DM(S) the meet of the images of x and y is the
bottom 0.

For similarities of order higher than 1, some information encoded by the sim-
ilarity gets lost when we go to the similarity order. This is easily seen to be the
case for x and y if we modify slightly the preceding example. Take the similarity
of order 2 SC(S) = {{p, x}, {s, y}, {q, x, w}, {r, y, w}, {x, y, w}}. Nothing in the
≤co order tells us that x and y are similar. A fortiori, the same order is induced
by the different similarity of order 1 SC ′(S) = {{p, x}, {s, y}, {q, x, w}, {r, y, w}},
where x and y are not similar to each other. Once we are in ≤co, we cannot
know whether the original similarity was that of SC(S) or that of SC ′(S). We
lost the relevant information.

The previous example is also interesting because it already hints at what
happens in the concept lattices of simple similarities: although for similarity
circles of order higher than 1 there is no element whose bundle of generators
just includes the generator of that circle (because all members of such a circle
have more than one property), such an ’ideal’ element is produced by the lattice
of extensions.

Nevertheless, due to the bijective correspondence between simple similarity
circles and their generators the other two lattices are dually isomorphic:

Proposition 36. Let (S,∼) be simple. Take the contexts (SGen(S), S, I) and
(S, Simple(S),∈). Then BSGen(S) is isomorphic to BSimple(S).

Proof. (SGen(S), S, I) is dual to (S, SGen(S), I), and the latter one is isomor-
phic to (S, Simple(S),∈) under the function cro : SGen(S) → Simple(S), for
if G is a smallest generator then cro(G) is a simple circle. If cro(G) = cro(G′),
given that the similarity circle has a unique smallest generator, injectivity fol-
lows G = G′. Since every simple circle has at least a smallest generator, the
function is surjective too. Let us prove that the pair of functions (id, cro) where
id : S → S and cro : SGen(S) → Simple(S) is an isomorphism of contexts.
If x ∈ S and G ∈ SGen(S) then xIG iff x ∈ cro(G). Therefore, the lattice
of extensions of (SGen(S), S, I) is isomorphic to the lattice of intensions of
(S, Simple(S),∈).

Now, the interesting thing is that just as in the case of similarities of order
1, BSGen(S) is a complete atomistic lattice. Recall that the blob is the trivial
similarity ∼= S × S (i.e. S is a similarity circle):
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Proposition 37. Let (S,∼) be simple, distinct from the blob and (SGen(S), S, I).
Then BSGen(S) is a complete atomistic lattice where Atom(BSGen(S)) = {{G} |
G ∈ SGen(S)}.

Proof. Since ei is a closure operator on (℘(SGen(S)),⊆), in order to prove that
the lattice is atomistic we only need to show that the closure is T1 and normal.
Since i(∅) = S vacuously, ei(∅) = ∅ iff e(S) = ∅ iff there is no G ∈ SGen(S)
such that S ⊆ cro(G) iff ∼ is not the blob, which holds by assumption. Let
G,G′ ∈ SGen(S), then since i({G}) = i(G) = cro(G), we have G′ ∈ ei(G) iff
∀x ∈ i(G)x ∈ cro(G′) iff cro(G) ⊆ cro(G′) iff TG = TG′ iff G = G′, therefore
ei(G) = {G}.

As a corollary, if the similarity is pure of order 1 and distinct from the blob
the concept-lattices are atomistic even if the similarity is not (SNI) (i.e. purity
is enough). However, to get the correspondence with the DM-completion we
still need (SNI) (if it is order 1 (SNI) then it is distinct from the blob iff it has
at least two distinct elements).

What happens was suggested earlier: since BSGen(S) is closed under arbi-
trary intersections, for each simple circle T of order n ≥ 2, it contains the
singleton whose only member is the generator G of T . In other words, the clo-
sure fills the gaps by adding to each simple similarity circle T of order n ≥ 2
an ideal element that behaves as a generator of order 1 for that circle. That
element is the one having as bundle of paradigms {G}, where G is the generator
of T . A fortiori, BSGen(S) behaves as if it had been induced by a similarity of
order 1. This has a negative and a positive side. From the negative side, simple
similarities do not move us beyond similarities of order 1. Once we get to their
lattices it is as if we had just come back to similarities of order 1, thus forget-
ting the complexity carried by the different orders of the generators. To put it
differently, the lattice-theoretical representations collapse simple similarities to
order 1 similarities and therefore they will give us no new information. But it
has a positive side too: we can use similarities of order 1 to understand what
simple similarities look like.

Since BSGen(S) is complete atomistic, it is also a (SNI) similarity of order
1. Thus, we can ’complete’ our original simple similarity by transforming it
into the order 1 similarity (BSGen(S),∼∗). The completion procedure inserts
in each simple circle of order n ≥ 2 a new ideal element that behaves as an
order 1 generator for the circle (of course, it adds many other elements too).
An analogous completion works by using BSimple(S).

Proposition 38. Let (S,∼) be a (SNI) simple non-blob similarity. Take its
simple 1-completion to be the similarity (BSGen(S),∼∗) where A ∼∗ B := (A ∩
B 6= ∅ or A = ∅ = B), with the corresponding function gen(x) : S → BSGen(S).
Then:

i BSGen(S) is a (SNI) similarity structure of order 1 and for A,B 6= 0,
A ⊆ B ⇔ co∗(A) ⊆ co∗(B).

ii gen is a similarity-embedding.

iii gen is a ⊆-order-embedding and a ≤co∗-order embedding.

iv gen preserves every existing (so non-empty) ≤co-join in S, gen(
∨
A) =∨

co∗ gen[A].
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Proof. (i) Since S is not the blob, it has at least two distinct elements. Therefore,
BSGen(S) is a complete atomistic lattice and then the similarity A ∼ B :=
A∩B 6= ∅ iff there is a G ∈ BSGen(S)G ∈ A∩B iff there is a G ∈ BSGen(S){G} ⊆
A ∩ B, for A 6= ∅ 6= B, is (SNI) of order 1. We already proved that for
a, b 6= 0, a ≤ b iff co(a) ⊆ co(b). (ii) Since gen is a weak quasianalysis, it is
a faithful similarity homomorphism. If gen(x) = gen(y) then z ∼ x iff ∃T ∈
Simple(S) x, z ∈ T iff ∃G ∈ BSGen(S) x, z ∈ cro(G) iff ∃G ∈ BSGen(S)y, z ∈
cro(G) iff ∃T ∈ Simple(S)x, y ∈ T iff y ∼ z, by (SNI) we have x = y. Therefore,
gen is injective. (iii) By (SNI) ≤co is a partial order. If G is minimal generator,
then {G} = gen(T ) for some simple circle T , for if G′ is a minimal generator
in gen(T ) it follows that T ⊆ cro(G′) = T ′, and therefore G′ = G and the
function is well-defined. If x ≤ y and x ∈ cro(G) then crocro(G) = cro(G) ⊆
cro(x) = co(x) ⊆ co(y). Therefore, y ∈ cro(G) and so gen(x) ⊆ gen(y). And
if gen(x) ⊆ gen(y), if z ∼ x then there is a simple circle x, z ∈ T and so T
has a generator GT ∈ gen(x) ⊆ gen(y). It follows that y ∈ cro(GT ) = T and
y ∼ z. Since gen is injective, it is an order-embedding. Since gen(x) ⊆ gen(y)
iff co∗(gen(x)) ⊆ co∗(gen(y)) iff gen(x) ≤co∗ gen(y), we are done. (iv) Let
A ⊆ S suppose that

∨
A exists in S, where the join is that of ≤co. Since the

join exists and S is not the blob we have A 6= ∅, if not we would have
∨
A = 0,

which is impossible, so gen(
∨
A) 6= ∅. We prove that gen(

∨
A) =

∨
co∗ gen[A]

for gen[A] = {gen(x) | x ∈ A}. If gen(x) ∈ gen[A], then x ∈ A and since
x ≤co

∨
A, we have gen(x) ≤co∗ gen(

∨
A) by monotonicity. Suppose there is

a X ∈ BSGen(S) such that gen(x) ≤co∗ X ≤co∗ gen(
∨
A) for every x ∈ A.

Since X is an extension, there is a Y ⊆ S such that X =
⋂
{gen(y) | y ∈

Y }. Since gen(x) ≤co∗ X we have gen(x) ⊆ X therefore X 6= ∅, and finally
Y 6= ∅. It follows that ∀x ∈ A gen(x) ≤co∗

⋂
{gen(y) | y ∈ Y } = X iff

∀x ∈ A gen(x) ⊆
⋂
{gen(y) | y ∈ Y } = X iff ∀x ∈ A ∀y ∈ Y gen(x) ⊆ gen(y)

iff ∀x ∈ A ∀y ∈ Y x ≤co y iff ∀y ∈ A
∨
A ≤co y iff ∀y ∈ A gen(

∨
A) ⊆ gen(y)

iff gen(
∨
A) ⊆ X iff gen(

∨
A) ≤co∗ X. Therefore gen(

∨
A) =

∨
co∗ gen[A].

We must be careful, in this specific context we denote by gen[A] = {gen(x) |
x ∈ A}, which is distinct from gen(A) = {G ∈ SGen(S) | ∀x ∈ A x ∈ cro(G)}.
Although gen still preserves the similarity and the preorder in both directions,
we need (SNI) for the preorder to be partial and gen to be injective. Thus,
for most purposes the completion procedure will require the simple similarity
to be (SNI). Since S is order-embedded in the lattice of extensions, it follows
by the fundamental properties of the DM-completion that the latter one is so
embedded too:

Corollary 15. Let (S,∼) be a simple (SNI) similarity. Then DM(S) is order-
embedded in BSGen(S).

In the special case of (SNI) similarities of order 1 the converse holds too,
gen being surjective. In other words (modulo the 1-completion), the theory of
simple similarity structures is that of (SNI) similarity structures of order 1.

Recall what our original aim was. We wanted to generalize the class of
pure similarities of order 1 to get a model according to which each property is
generated by a subset of its members. This gives us a generalized aristocratic
resemblance nominalism (a generalized polar model) where each property has
several paradigms. Take any simple similarity circle T and its generator G. The
cardinality of any such G can be as wished, so long as the resulting similarity
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is still simple. How well does G correspond to our notion of a set of paradigms
for T? First, G is a clique, so all the objects in G are similar to each other
(as should be, all of them share property T ). However, each paradigm in G
may have more than one property, in contrast to the paradigms of similarity
circles of order 1. Our paradigms can be qualitatively enriched. Moreover,
each member in G may share with other members in G properties distinct from
T . Even more interestingly, the same object can be a paradigm for different
properties. The only requirement is that taken collectively all of the members
of G are paradigmatic of T . A fortiori, there is no other property T ′ different
from T which is such that all members of G are jointly instances of T ′. The
only property common to all the members in G is T .

How does this relate to Goodman’s problems? In simple similarities there is
no unique cover by simple circles. This guarantees that the approach generalizes
directly the case of pure similarities of order 1. In exchange, we lose the unique
correspondence with a class of realist contexts. However, we could select, for
each simple similarity, the class of all simple similarity circles. This will carve a
class of the contexts which correspond to the collections of all the simple circles
of a simple similarity. I have not described such family of contexts, but one
can guess what it would look like. Each property has a smallest generating
set of paradigms, but each paradigm can have several properties and even be a
paradigm of these properties. Such set of paradigms need not be finite. From a
realist point of view, such contexts do not pose the problems that pure order 1
similarities have. Moreover, this does not sound so implausible. Is not there, for
each property R, a smallest set of exemplars of R that only have the property
R in common? This is then the question that is left open for future work: could
a world full of paradigms be used as a reply to Goodman’s objections?

5.6 Conclusion of Chapter V

At the beginning of this chapter, the formal side of the problem of universals
has been formulated as the task of finding a suitable mapping from a surrogate
structure of properties (constructed from a resemblance nominalist structure)
into a realist structure of universals. Then Goodman’s problems of coextension-
ality, imperfect community and companionship have been recasted as objections
to the existence of such a mapping. After reviewing the basic results on quasi-
analysis, the aristocratic models were proposed as a solution to these problems.
The three models were shown to be equivalent. One starts from a similarity
structure which contains some paradigmatic objects, and constructs the surro-
gates for universal attributes. From objects and attributes, we get the surrogate
for the lattice of natural kinds. Natural kinds are reconstructed as pairs of ex-
tensions and intensions, where the extensions are certain collections were each
pair of objects are similar to each other and where the intensions are the quasi-
analytic representations of particular objects (i.e. bundles of objects). We can
sum up the results as follows:

1. By the first main theorem, the models of aristocratic resemblance nom-
inalism in terms of polar distributions (and topologies), polar contexts
and pure similarity structures of order 1 turn out to be equivalent. This
correspondence extends to atomistic posets by adding the indiscernibility
constraint. Moreover:
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(a) That several intuitively correct models of the same phenomenon turn
out to be mathematically equivalent supports the claim that the orig-
inal model is materially adequate.

(b) The equivalence between similarity structures and polar contexts
gives a way to surrogate a big class of reductivist realist models,
as introduced in Chapter III. This reduction satisfies the constraints
imposed in the beginning of the chapter, namely, it is a structure-
preserving map (iso) which is such that the basic entities of the realist
model are reconstructed from the nominalist one.

(c) Given the correspondence with polar topologies, we get for free a
spatial model where both attributes and extensions of kinds turn out
to be topologically well-behaved regions (namely, closed sets).

2. By the second main theorem, the resulting nominalist lattice of natu-
ral kinds turns out to be coatomistic, the converse (that every complete
coatomistic lattice can be obtained from a similarity structure) being true
too. Moreover:

(a) There are two other lattices that are isomorphic to the (dual of the)
lattice of kinds, namely the lattice of bundles of paradigms and the
lattice of bundles of properties. These lattices are given by the two
extensionally equivalent quasianalysis that are defined over the sim-
ilarity relation. Thus, each object can be quasianalytically repre-
sented either as its (nominalist) infimae species, or as a bundle of its
(extensional) attributes or as a bundle of its paradigms.

3. By the third main theorem, different properties of the lattice of kinds
correspond to different axioms that similarities of order 1 may satisfy.
This allows us to construct possible worlds where more specific conditions
hold and therefore where different kinds of entities can be reconstructed
by nominalist means. Moreover:

(a) The conceptual spaces approach, according to which natural prop-
erties are convex regions in a space, can be considered as a special
case.

(b) Boolean approaches, according to which properties are abundant, can
be considered as a special case.

(c) Atomistic trees, as used in models for classification, can be considered
as a special case.

4. By the last main theorem, some of the notions used in this chapter can
be generalized to a model where each property is generated by a set of
paradigmatic entities and each paradigmatic entity may have several prop-
erties. This provides the nominalist with a general aristocratic model.

These results hint at the picture of natural kinds one gets by assuming the
theses of the aristocratic resemblance nominalist. Objects are fundamentally
similar or dissimilar to each other. Some of these objects, the paradigms, behave
as bridges that make similar any two objects that are similar to them. The
collections of all the objects similar to a given paradigm work as attributes. The
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nominalist can then mimic the Minimal Conception by taking these collections
to form the intensions of kinds. The resulting order structure satisfies some
sort of qualitative co-atomism: every kind is the result of the overlapping of its
maximal genera, which are the kinds induced by the attributes, which are those
collections of objects gathered around a given paradigmatic object.
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Chapter 6

Conclusion
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The present study is an attempt
to apply the theory of relations to
the task of analyzing reality.

The Logical Structure of the
World

Rudolf Carnap

6.1 What was Done

Let us recall what the aim of this thesis was. In Chapter II, we introduced the
topic of kinds and considered some of the reasons that philosophers give to posit
natural kinds. We also presented one of the main theories of kinds, namely
scientific essentialism, cluster theories and conceptualism. Several objections
to these positions were reviewed. The main diagnosis was that the discussions
prompted by these theories (except possibly for conceptualism) were too general.
They have not lead us to specific principles about the structure of kinds that
may help us improve our understanding about them.

In order to better understand what kinds are supposed to be, I suggested
a different strategy. Instead of defending a specific theory of kinds, I proposed
looking at two structural features of kinds by using formal models of kinds:

i The external structure of natural kinds, that is to say, the different ways
in which kinds are ordered by species-genus specificity relations.

ii The internal structure of natural kinds, that is to say, the fact that the
members of a given kind have several common properties or are sufficiently
similar to each other.

The background idea was that most contemporary theories of kinds assume
at least that kinds have as members some objects that belong to the kind because
they share some natural properties (or are in similarity relations to each other)
and that these kinds are ordered by specificity relations. By looking at these
two aspects, I conjectured that we could find more specific principles about the
behaviour of kinds that we could focus the discussion on. However, in order to
get at specific principles, some minimal assumptions had to be made. These
were introduced in Chapter III.

About the external structure of kinds, a principle discussed in the literature
was considered, namely the hierarchy constraint. According to this principle,
kinds are ordered in a tree-like fashion. It was argued by appealing to current
discussions in the literature that the principle is too strong, and that kinds
can be ordered in many other different ways. I looked for weaker conditions.
According to Thomason, kinds form an ordered structure called a ’complete
lattice’ that is not necessarily hierarchical. The problem with Thomason’s ap-
proach was that it gave no further reasons for why this should be a plausible
model for kinds. According to Martin’s version of Corcoran’s standard syllogis-
tic logic, if kinds are to satisfy at least the basic relations described by syllogistic
propositions, kinds must form a lattice too. Given that kinds satisfy these re-
lations, this suggested the hypothesis that the external structure of kinds is at
least that of a (complete) lattice. In other words, that kinds are ordered by
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specificity relations in such a way that the overlapping of kinds is a kind and
that there is a summum genus that includes all the other kinds as species.

Nevertheless, the models just mentioned were not very informative regarding
the way the external structure of kinds is linked to the internal structure. In
other words, they do not say anything regarding how the species-genus relations
depend on the fact that kinds have certain objects as members that share certain
properties. For the purpose of explaining this relation, I introduced a Minimal
Conception of Kinds:

Minimal Conception of Kinds Every kind has as members some objects
(the extension) sharing certain sparse attributes (the intension). More
strongly, all the objects share all these attributes, and these attributes are
all those sparse attributes shared by these objects.

The Minimal Conception is somewhat stronger than what some theories of
kinds are committed to, but it is still minimal since it does not mention other
philosophically loaded concepts such as that of essences, causality or natural
laws. However such a conception appeals to sparse attributes without saying
what these are. I wondered whether a nominalist explanation for these attributes
could be given. Accordingly, this fixed the more specific aim of this thesis, which
was:

Aim of the Thesis To develop a formal model for kinds that satisfies the
Minimal Conception and is based on the ontological assumptions of re-
semblance nominalism.

A fortiori, the project was divided into two different tasks. The first one
was to provide a model for the Minimal Conception and use it to get more
information regarding the external structure of kinds. This was done in Chapter
III. The second one was to reconstruct such a model by starting from purely
nominalist assumptions. This was done in Chapters IV and V. Overall, this
resulted into the three main results of the thesis:

i I selected a class of mathematical structures, that of concept lattices, to
provide a model for the Minimal Conception of Kinds. Such a model is a
realist model.

ii I selected a class of mathematical structures to provide a model for a
specific conception of resemblance nominalism, namely aristocratic resem-
blance nominalism. Such a model is a nominalist model.

iii I showed which subclasses of realist models can be reconstructed from
the nominalist ones. In other words, the models used by the realist were
’translated’ to models used by the nominalist.

Concerning the model for the Minimal Conception, I chose the theory of
concept lattices. A concept lattice is the lattice induced by a context, which is
a structure consisting in some objects that have some attributes. The elements
of this lattice are pairs of sets, which were used to represent kinds. One of the
sets, the extension of the kind, includes all and only those objects that have the
attributes in the other set. The other set, the intension of the kind, includes
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all and only those attributes had by the objects in the extension. Thus, the
representation of a kind in the model follows the Minimal Conception. Since
concept lattices are complete lattices, the model is a special case of Thomason’s
and Martin’s, and therefore it gives a semantics for syllogistic logic. Moreover,
the connection between objects, attributes and the species-genus relation reveals
a classical principle of logic, namely Kant’s Law of the duality between extension
and intension. According to it, the extension of a kind is inversely related to
its intension. This was shown to hold in the concept-lattice model of kinds.
In contrast, the hierarchy condition was shown to be just a special case of the
model.

As an application of the model, I showed that two new operations of spe-
cific difference are defined in any such concept lattice. The properties of these
operations were studied. They allow for definitions of kinds in terms of gen-
era and specific differences. Moreover, each specific difference was shown to
induce a non-classical internal negation of kinds, whose properties were also
studied. A comparison between the picture given by the model and the clas-
sical Aristotelian one was made. Overall, these results gave more insight into
the species-genus specificity relations according to which kinds are ordered and
provided a realist model of kinds to be reconstructed by nominalist means in
the remaining chapters.

Concerning the nominalist approach to the internal structure of kinds, the
nominalist reconstruction worked in two steps (developed in Chapters IV and
V, respectively):

1. First, the natural attributes were reconstructed as collections of objects
similar to paradigmatic objects.

2. Second, the natural kinds were reconstructed as pairs consisting of a set
of objects and a set of attributes (where these attributes were the ones
obtained in the first step).

In Chapter IV, the first step was discussed. In order to reconstruct the
attributes, a version of resemblance nominalism was selected and an adequate
model for it was provided. Since similarity relations have a bad philosoph-
ical reputation, I answered to some of the objections that have been raised
against them. In particular, Tversky’s criticism of symmetry was considered at
length. Then the three main versions of resemblance nominalism, namely egali-
tarian, aristocratic and collectivist resemblance nominalisms were reviewed. The
shortcomings of the standard egalitarian approach by Pereyra were discussed in
detail. In contrast, an aristocratic approach was selected. According to aristo-
cratic resemblance nominalism, there is a distinction between paradigmatic and
non-paradigmatic objects. The former are the ground for the resemblance rela-
tions that hold among all objects and thus structure the corresponding classes
of objects.

The core of the chapter consisted in the introduction of two different models
for aristocratic nominalism. The first one was the topological polar model by
Mormann and Rumffitt. According to this model, attributes are reconstructed
as certain topologically closed sets, sets containing all the objects that are ar-
bitrarily close to a given paradigmatic object. The second one is the similarity
model based on pure similarities of order 1, which was the new model introduced
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in this thesis. This class of structures was based on previous results by Brock-
haus and Mormann on similarities and quasianalysis. According to this latter
model, attributes are reconstructed as collections of objects that are similar to
a given paradigmatic object. These collections are called ’similarity circles of
order 1’. Despite the apparent difference, these two models were later shown to
be mathematically equivalent.

Nevertheless, the reconstruction of the attributes was not proven yet. This
was done in Chapter V. The goal now was to get to the Minimal Conception
of Kinds just by starting from the sparser ontology of aristocratic resemblance
nominalism. This required making first use of the similarity model of Chapter
IV to reconstruct natural attributes and then obtaining the lattice of kinds from
the resulting context (just as it was done for realist contexts in Chapter III).
However, the main obstacles for reconstructing the context were Goodman’s
infamous companionship and imperfect community problems.

Goodman’s problems required us to narrow down the class of realist con-
texts that can be reconstructed. This class was later called the class of ’polar
contexts’. The similarity model introduced in Chapter IV was shown to be able
to reconstruct such a class of contexts, thus providing nominalistic surrogates
for attributes. Moreover, in the process, the two nominalistic models introduced
in Chapter IV (the polar and similarity models) were shown to be equivalent.
Once the context was obtained, the next step was to generate the corresponding
concept lattice, which was to represent the nominalistic lattice of kinds:

Aristocratic Resemblance Nominalism The lattice of nominalist kinds is
the concept lattice induced by the context induced by a similarity model,
where the attributes are the similarity circles of order 1.

I proved that the concept lattices that can be obtained starting from a sim-
ilarity model are all (co)atomistic. Moreover, I also proved that every such
complete lattice can be obtained uniquely in that way by starting from a sim-
ilarity model. This gave us a description of the class of specificity orders be-
tween kinds that the nominalist can mimic and also more specific orders that
can be reconstructed just by adding the corresponding axioms to the similarity
structures. Furthermore, the quasianalysis was shown to give several equivalent
representations of objects: the same object can be represented as the set of its
paradigms or as the set of its attributes (which are classes of similar objects).

However, there remained some doubts concerning the paradigmatic objects.
The last question I considered was whether a generalized picture could be given,
according to which paradigms may have several properties and each property
may be generated by several paradigms. In fact, I generalized several concepts
and results concerning pure similarities of order 1 to similarity structures (called
’simple’ similarities) where there is an arbitrary number of paradigms for each
property and each paradigm can have an arbitrary number of properties. This
lead to a more plausible model for aristocratic nominalism.

In this way an answer to the questions that motivated this thesis, namely
a search for a better understanding of both the external and internal structure
of kinds, was given: under nominalist ontological assumptions regarding the
nature of objects and resemblance relations, the internal structure of kinds is
determined by the similarities among these objects and their paradigms, whereas
the external structure of kinds is that of a complete (co)atomistic lattice that
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satisfies the requirements of the Minimal Conception of Kinds, including Kant’s
Law.

6.2 What is Yet to be Done

In this thesis I have just hinted at how a Minimal Conception of natural kinds
can be developed by nominalistic means formally. But there is a lot of work to
do for such an analysis to be shown to be fruitful for other aspects of the topic
of kinds.

Consider again the arguments surveyed in Chapter II in favour of natural
kinds, namely the epistemological argument based on projectability and induc-
tion, the semantic argument based on the reference of natural kind terms, the
metaphysical argument based on naturalness and universals and the naturalistic
argument based on the role of classifications in scientific theories. In this thesis I
have only explored issues having to do with some parts of the metaphysical side
of the problem. I have not said much regarding how the models for the Minimal
Conception of kinds may be used to deal with the epistemological, semantic and
naturalistic issues. Furthermore, I have barely touched on issues regarding how
natural kinds are related to time and qualitative change, ontological dependence
relations and other main metaphysical problems. For example, the extension of
a kind changes from one time to another.

The epistemological argument is based on Quine’s suggestion that appealing
to kinds could help dealing with the new riddle of induction. This lead some
philosophers, like Gärdenfors [42], to take kinds to be concepts and to represent
them as regions in conceptual spaces (moreover, this would make hypotheses
about the structure of these domains empirically testable). The issues concern-
ing proyectability and induction were then interpreted in terms of the concept
learning processes of a given epistemic subject. The idea was that conceptual
categorization in terms of prototypical instances could help dealing with these
epistemological problems. A very similar approach to induction was made by
Carnap, in terms of his attribute spaces [131]. Although some connections be-
tween the standard conceptual spaces approach and the models introduced in
this thesis were made, it would be interesting to see these relations in more
detail. Furthermore, ideally such an approach should be compatible with cur-
rent standard answers to the problems of confirmation and induction in formal
epistemology (say, Bayesian approaches).

The semantic argument is based on Kripke’s and Putnam’s idea that natural
kind terms behave similarly to proper names, since they are rigid designators
(expression whose reference remains invariant across possible worlds). This
lead to discussions on natural kind essentialism. Adding modal features to the
model of kinds introduced in this thesis would help with discussing such matters.
Again, such an approach should be compatible with standard frameworks in
formal semantics.

The naturalistic argument suggests that kinds are described by scientific
classifications. I have not focused on scientifically accepted classifications, such
as the ones given by the different taxonomic programs in biology or the peri-
odic system in chemistry. However, philosophers of science have argued that
traditional approaches to the topic of natural kinds are at odds with some of
these classifications, for example with the biological ones (see [37]). I find this

268



diagnosis somewhat surprising. The mathematical structures that were used in
this thesis to model kinds (lattices, concept lattices, trees, similarity relations,
and so on) are among the most used mathematical models of classifications in
science (see [100]). Furthermore, the ontological assumptions made by these
models fit very nicely many aspects of the more traditional conception of kinds
(they remain silent on some issues such as essentialism). Given the minimal
assumptions made in this thesis, I find it hard to believe that the structure of
scientific classifications is really in conflict with such an approach to natural
kinds. Therefore, it would be interesting to check this issue in more detail.

Although I think that this approach can be used to say a great deal about
each of these topics, that still requires further investigation. For the time being,
I hope that the approach to natural kinds taken in this thesis has shown to be
fruitful enough to be developed further in the future.
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de las Prácticas Clasificatorias en Ciencia. PhD Thesis, UPV-EHU.

[2] Armstrong, D. M. (1978): Nominalism & Realism: Universals &
Scientific Realism, Volumes 1-2. Cambridge: Cambridge University Press.

[3] Armstrong, D.M. (1997): A World of States of Affairs. Cambridge: Cam-
bridge University Press.

[4] Armstrong, D. M. (1989): Universals: an opinionated introduction. Boul-
der: Westview Press.

[5] Bealer, G. (1987): The Philosophical Limits of Scientific Essentialism.
Philosophical Perspectives, 1, Metaphysics, 289–365.
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[92] Mosteŕın, J. (1984): Taxonomı́a Formal. Enrahonar: Quaderns de
Filosofia, 7, 8, 109–119.

[93] Mumford, S. (2005): Kinds, Essences, Powers. Ratio, XVIII.

[94] Niiniluoto, I. (1987): Truthlikeness. Dordrecht: D. Reidel Publishing
Company.

[95] Nosofsky, R. M. (1991): Stimulus bias, Assymmetric Similarity and Clas-
sification. Cognitive Psychology, 23, 94–140.

[96] Nosofsky, R. M. (2011): The Generalized Context Model: an Exemplar
Model of Classification. In Emmanuel Pothos (ed.) Formal Approaches in
Categorization (pp. 18–39). Cambridge: Cambridge University Press.

[97] Oliver, A. (1996): The Metaphysics of Properties. Mind, 105, 1–80.

275



[98] Orilia, F.; Swoyer, C. (2017): Properties. In The Stanford Encyclope-
dia of Philosophy (Winter 2017 Edition), E. N. Zalta (ed.), URL =
¡https://plato.stanford.edu/archives/win2017/entries/properties/¿.

[99] Parsons, T. (2017): The Traditional Square of Opposition. In The Stanford
Encyclopedia of Philosophy (Summer 2017 Edition), E. N. Zalta (ed.),
URL = ¡https://plato.stanford.edu/archives/sum2017/entries/square/¿.

[100] Parrochia, D.; Neuville, P. (2013): Towards a General Theory of Classifi-
cations. Basel: Birkhäuser.
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