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Abstract: Materials undergo various loading conditions during different manufacturing processes,
including varying strain rates and temperatures. Research has shown that the deformation of metals
and alloys during manufacturing processes such as metal forming, machining, and friction stir
welding (FSW), can reach a strain rate ranging from 10−1 to 106 s−1. Hence, studying the flow behavior
of materials at different strain rates is important to understanding the material response during
manufacturing processes. Experimental data for a low strain rate of <101 s−1 and a high strain rate of
>103 s−1 are readily available by using traditional testing devices such as a servo-hydraulic testing
machine and the split Hopkinson pressure bar method, respectively. However, for the intermediate
strain rate (101 to 103 s−1), very few testing devices are available. Testing the intermediate strain rate
requires a demanding test regime, in which researchers have expanded the use of special instruments.
This review paper describes the development and evolution of the existing intermediate strain rate
testing devices. They are divided based on the loading mechanism; it includes the high-speed
servo-hydraulic testing machines, hybrid testing apparatus, the drop tower, and the flywheel
machine. A general description of the testing device is systematically reviewed; which includes the
working principles, some critical theories, technological innovation in load measurement techniques,
components of the device, basic technical assumption, and measuring techniques. In addition, some
research direction on future implementation and development of an intermediate strain rate apparatus
is also discussed in detail.

Keywords: dynamic loading; material characterization; intermediate strain rate; hopkinson bar; load
measuring techniques; shear tests; high-temperature tests

1. Introduction

Studying the mechanical behavior of materials in manufacturing processes at different strain
rates and temperatures is very important for researchers to develop predictive material behavior
models. An overview of typical strains, strain rates, and temperatures found in manufacturing
processes is given in Table 1. The table reveals that in commonly used manufacturing techniques,
such as machining, forging, forming, and friction stir welding (FSW) [1–3], the materials are deformed
differently under different conditions. In addition, the microstructure of the material is significantly
affected by the thermomechanical constraints and is difficult to access experimentally. For example,
during manufacturing processes, the strain rates are in the order of 10−1 to 106 s−1, while the those
obtained in conventional testing machines are in the order of 10–3 to 101 s−1. Hence, the predictability
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of any material model largely depends on the accuracy of the material parameters obtained for the
constitutive model from experimental tests [4].

Table 1. Typical strains, strain rates, and temperature ratio (T/Tm) of some manufacturing processes
also given by [5]. (T = Temperature during the process, Tm = melting temperature of the material).

Manufacturing Process Strain Strain Rate (s−1) T/Tm

Extrusion 2 to 5 10−1 to102 0.16–0.7

Metal Forging 0.1 to 0.5 100 to 103 0.16–0.7

Machining 1 to 10 103 to 106 0.16–0.9

Sheet metal forming 0.1 to 0.5 100 to 102 0.16–0.7

Friction Stir Welding (FSW) 0.1 to 5 ≤102 0.16–0.9

Many different testing devices have been developed over the years, depending on the type of
material and the property to be determined, some of which have become standards in industrial
practice. The experimental procedure usually consists of submitting a specimen to different loading
conditions and measuring the applied force and specimen deformation. Some examples of this type of
experiment are tensile, compression, shear, punch, and bulge tests. When the material behavior is
more complex, and several parameters (e.g., strain rate, temperature, and strain) must be identified for
material modelling, the characterization becomes more difficult, and multiple tests have to be used.

Many researchers have carried out the experimental tests at various strain rate conditions and
found that the material exhibits an increased yield strength and flow stress with increased strain
rate [6–12], the existing material models developed by the researchers cannot predict, very accurately,
the microstructure changes that are taking place during the manufacturing processes [13,14]. During
heat deformation, the material undergoes dynamic strain-hardening and dynamic softening (consisting
of dynamic recovery (DRV) and dynamic recrystallization (DRX)), resulting in the evolution of the
complex microstructure of the deformed material which is directly reflected in the flow stress curves [15].
At the beginning of straining, there is an increase in the work hardening due to dislocation generation
and accumulation. As the deformation continues, part of the stored energy is released with the
dislocation annihilation, in which the microstructure and the properties of the material can be partially
restored to their original values, called dynamic recovery. Further increase of strain leads to the
formation of the new grains called dynamic recrystallization. This behavior of the material is greatly
affected by the temperature and strain rate. The higher the temperature of deformation and the lower
the strain rate, the larger the sub grains that are formed during high-temperature deformation. As they
increase in size, the sub grains contain fewer dislocations and enters a steady-state given by the
dynamic equilibrium of storage and recovery of defects. It means the material experiences a lesser
strain hardening effect. At low strain rate domain (i.e., <0.1 s−1), DRX is mainly governed by the higher
growth of DRX grains due to longer (deformation) time available for the grain boundary migration.
As a result, a larger DRX grain size is obtained. At high strain rate domain (i.e., >1 s−1), DRX is
mainly governed by the higher nucleation due to combining effects of higher stored energy, adiabatic
heating, and limited (deformation) time for grain boundary migration. As a result, finer grain size is
obtained. Hence it is important to study the behavior of material at different strain rates. The complete
overview on the effect of the strain rate on the microstructure behavior of the material is given by
the McQueen [16]. A complete description of all of these phenomena in a single constitutive model
is an extremely difficult task. Thus, more experimental tests are required with different engineering
parameters and test environments to study the behavior of materials over the wide range of strain
rates, from quasi-static to high.

The existing commercial and traditional testing devices are mainly divided based on the speed of
loading (or at various strain rates) from low to high. Table 2 provides a representation of the range of
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applicable strain rates covered by existing test machines, including types of loading, such as tension,
compression, and shear.

Table 2. Characterization of the machines based on the strain rate and type of loading.

Testing Technique

Applied Strain Rate (s−1)

Low Strain Rate (≤101)
Intermediate Strain Rate

(101–103) High Strain Rate (>103)

Compression Tests
Conventional load frame and

servo-hydraulic machine

Commercial machines like MTS,
Shimadzu, Instron, etc., Special

Servo hydraulic load frames,
drop tower, Flywheel device

Split Hopkinson pressure bar,
Gas gun, Taylor impact test

Tensile Tests Split Hopkinson bar in tension,
Flyer plate, expanding ring

Shear tests
Conventional shear test, special

servo-hydraulic frames,
Torsion test

-
Compressive/tensile shear

apparatus, Hopkinson Klosky bar
in torsion

Among the three strain rate divisions in Table 2, conventional load frame and standard
servo-hydraulic testing machines [17–20] are generally used for quasi-static strain rates in the range
of ≤101 s−1 with different load conditions. These tests are called quasi-static because the specimen
and the test machine are in static equilibrium during the test. For high strain rate testing >103 s−1,
the split Hopkinson pressure bar (SHPB) method [21,22] is often used. In the last decade, many
proven experimental techniques have been developed for high strain rate testing, e.g., compression
loading, drop weight [23], SHPB [24], and gas guns [25] are regularly used. For tensile loading,
the split Hopkinson tension bar (SHTB) [26–28], flyer plate impact test [29], and the expansion ring [30]
are used. For torsion experiments, the torsional split Hopkinson bar (TSHB) with different loading
mechanisms such as pre-stored energy loading [31], explosive loading [32], direct impact loading [33],
and electromagnetic loading [34] are generally used. However, tests at an intermediate strain rate
in the range of 101 to 103 s−1 are not very common, and neither servo-hydraulic machines nor SHB
techniques are suitable for testing with an intermediate strain rate regime.

Numerous methods have been introduced to bridge the gap between quasi-static and high strain
rate testing in order to provide experimental data for engineering materials. Servo-hydraulic machines
were considered as a solution to perform tests with an intermediate strain rate regime. The results of
such tests, however, are not very accurate. The problem is that during the experiment, stress–strain
data are influenced by the effect of high inertia, and records obtained from such machines are often
noisy with large oscillations. As a result, servo-hydraulic machines only give reliable measurements at
strain rates below 10 s−1.

After the development of the split Hopkinson bar technique [22] in 1949, a few researchers tried
to modify classical dynamic split Hopkinson pressure bar device to achieve a deformation rate in
the intermediate rate regime by increasing the loading time [35]. However, the main drawback of
the modified device is that the duration of the test is limited to the length of the bars [36]. Such a
duration does not allow the significant strain to be accumulated in the specimen at medium strain
rates. Therefore, an alternative loading technique is required. Over the last decade, some researchers
have developed specialized test machines capable of performing intermediate strain rate tests to
study material characterization, such as special commercial machines designed by Instron, Shimadzu,
etc. [37,38]; elastic-bar-type systems (ISO 26203-1: 2018) [39], modified servo-hydraulic load frames
(ISO 26203-2:2011) [40], hybrid testing apparatus [41], drop tower [42], flywheel device [43], and
flywheel wedge [44].

The material response at intermediate strain rates is of great interest to the automotive industry
and producers of electronic packaging [45,46]. Additionally, intermediate strain rates have been
recognized as being important in the transitioning of material response and changing of the material
deformation mechanism from low to high strain rates [47,48]. Therefore, in the past decade, the material
response at intermediate strain rates has attracted more attention. In addition, material properties at
intermediate strain rates are rarely characterized due to experimental difficulties, leaving a significant
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gap in the experimental data between low and high strain rates for high-fidelity strain rate dependent
material model development. Therefore, a comprehensive review is required for research leading to a
better understanding of the intermediate strain rate test device.

This review paper is organized into six sections, the first being the introduction. Section 2 briefly
discusses the development of the existing intermediate strain rate testing devices based on the loading
mechanism; it includes the high-speed servo-hydraulic testing machines, hybrid testing apparatus,
the drop tower, and the flywheel device in conjunction with various load measurement techniques
such as piezoelectric load cell and the Hopkinson bar technique. Section 3 describes the improvement
in the existing testing device based on a modification in the Hopkinson bar system and load measuring
techniques. Section 4 provides a general description of the test device, comprising the requirements for
its components, the basic technical assumption, and the specimen geometry. Section 5 deals with the
shortcomings of existing machines, for example, in high-temperature and shear load testing. Finally,
conclusions are given in Section 6.

2. Existing Intermediate Strain Rate Testing Devices

2.1. High Speed Servo-Hydraulic Machines

Over the past decade, the experts from various industries such as Instron, MTS, Shimadzu, and
Zwick/Roell have developed a new family of high-speed servo hydraulic testing machines specifically
designed to cope with the dynamics of intermediate strain rate testing [37,38,49,50], and after these
devices are used in a number of applications to predict material behavior, for instance; in the landing
gear on aircraft or the crash impact of a road vehicle, all of these examples involve one or more
components of a product that are subjected to intermediate strain rate impact <103 s−1.

High-speed servo hydraulic machines are used for all kinds of impact loadings like dynamic
tension, compression, bending, and shear loading. The most important high-speed test mode is the
tension test. For example, Figure 1 shows the schematic diagram of the high-speed testing machine [51].
The stroke speed is controlled by the opening and closing of the servo-valve of hydraulic supply.
The test machine can deliver a speed range from 1 mm/s to 20 m/s.
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Figure 1. Schematic diagram of the high-speed testing machine.

The strain rate data obtained from this machine is from quasi-static to intermediate strain rates.
Dynamic load is introduced to the lower grip through a slack adaptor that consists of a hollow tube
and a sliding bar with a conical tip. When the machine is actuated, the hollow tube travels freely with
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the actuator over a distance to reach a specified velocity before making contact with the cone-shaped
end of the sliding bar that is connected to the lower grip. The slack adaptor eliminates the inertia
effect of the lower grip and actuator in its acceleration stage. However, the sudden engagement with
the upper portion of the setup generates a high amplitude stress wave, causing oscillations at the
system’s natural frequency, i.e., system ringing [52]. A conventional piezoelectric load cell installed in
the machine shows the vibration and oscillating signals. See Figure 1. At strain rates above 50 s−1

these systems become unreasonably difficult to acquire load data. Therefore, experimentalists are
forced to use smoothing or filtering the load test data by using low-pass filters, averaging or other
algorithms (e.g., power-law function) [53,54], or the single degree of freedom (SDOF) model (spring
mass damping model) [51]. However, the accuracy of such filtering procedures, to a great extent,
depends on the user’s choice of the filtering algorithm. It also includes a risk of losing some important
characteristics with respect to the hardening behavior of the tested material.

2.2. Hybrid Testing Apparatus

In 1996, LeBlanc et al. [41] designed and introduced a unique hybrid testing apparatus to perform
intermediate strain rate tests in order to improve the load measuring data that observed in the
high-speed servo hydraulic machines. This device was developed by combining a servo-hydraulic
machine with the split Hopkinson bar technique. The apparatus combines the loading capabilities
of a servo-hydraulic testing machine and the load measuring technique of a Hopkinson bar. The bar
is freely suspended against the specimen. When the specimen is compressed or elongated against
the bar, the loading of the specimen is transmitted to the bar at the elastic wave velocity. The load in
the bar is determined from strain gauges located close to the loading end; the measurement is free of
disturbance until the reflected wave reaches the gage and interferes with the loading wave. The stress
in the test specimen is assumed to be uniaxial and can be calculated using the elastic wave analysis of
the Hopkinson bar.

The experimental test was carried out by Othman [55], using a standard servo-hydraulic machine
MTS 819 (MTS Systems Corporation, Eden Prairie, MN, USA) with a maximum speed of 16 m/s, and
the sample was loaded in tension as shown in Figure 2a. A long steel bar with a length of 820 mm is
attached to the upper crosshead of the machine. The strain gages are connected to the bar. These gage
positions allow a good deconvolution of the signals. The specimen is attached to the bar and to the
lower crosshead. The high-speed video camera is fixed in order to capture the displacement field using
the digital image correlation (DIC) technique [56,57].

The load records are captured by using piezoelectric load sensor (PCB Piezotronics, Depew, NY,
USA) and Hopkinson bar technique and the stress–strain curves are compared from both techniques
shown in Figure 2b. The stress curve recorded by using a piezoelectric load sensor shows large
oscillations compared to the Hopkinson bar technique. The oscillations are caused by stress waves
propagating through the piezoelectric load sensor including reflected waves. The stress waves
also impinge upon the test specimen, as evidenced by the very small magnitude oscillations in the
Hopkinson bar output shown in Figure 2b. Therefore, it is apparent from these tests that the hybrid
test technique significantly improves the quality of stress–strain test data in comparison with the
traditional piezoelectric load cell. This new Hopkinson bar technique to measure the load shows a less
oscillating behavior at an intermediate strain rate around 102 s−1.

The advantage of a hybrid testing apparatus is that it applies a continuous loading during the
test, which gives more reliable stress–strain data. The load is directly derived from using the strain
gage attached to the bar. However, the loading time of the test was only 1ms due to the specific
length of the bar, and this time duration does not allow enough strain in specimen. Furthermore,
Othman et al. [55] modified the hybrid testing apparatus to improve the load measuring technique,
by increasing longer time duration and to perform test at various strain rate regime by using the “wave
separation method” [58,59]. A detailed explanation of this method is given in Section 3.2.
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2.3. Drop Tower

A drop tower apparatus [60,61] is typically used to study the crushing and collapsing behavior of
the material by dropping a mass on a structural component. It is mainly used to perform the test at
medium strain rates. In recent years, very little effort has been made to develop special apparatus
and devices that will allow drop towers to perform tests under various loads using accurate load
measurement techniques such as the special piezoelectric load cell and Hopkinson bar technique [62,63].
In 2018, a new tensile testing device, the “Dropkinson” bar, inspired by the drop tower, was developed
by Bo Song and his collaborators [42], which is capable of testing at an intermediate strain rate shown
in Figure 3. Unlike the other devices explained above, the Dropkinson bar system is the same hybrid
test rig.

The loading mechanism of the Dropkinson bar combines a drop table and a Hopkinson bar;
it generates stable and durable impact velocity and facilitates deformation in the specimen at a constant
strain rate. A long Hopkinson bar system was used to measure the load history to reduce the effect of
inertia in the system. The Hopkinson bar is fixed parallel to the drop table. The drop table is used to
generate a free fall impact of the trolley, as shown in Figure 3. A cylindrical steel impactor attached to
the bottom of a carriage strikes the center of the impact plate during the test.

The guided rods are situated in the impact plate to ensure uniaxial travel of the drop table.
A plastic bumper is installed on the bottom of the impact plate to absorb the momentum. One end of
the specimen is fixed to the impact plate adapter, and the other to the Hopkinson bar, as shown in
Figure 3. Two strain gauges are attached to the bar to measure the load history. After the free fall of
the carriage, the impactor attached to the bottom of the carriage hits the impact plate at the center.
The impact plate transfers the impact load to the tensile specimen in dynamic tension. The tensile stress
wave transmits into the vertical bar through the specimen and bar end. The strain gauges attached to
the bar, record the load history of the specimen. Furthermore, a custom laser extensometer is used to
calculate the specimen strain. The strain rate obtained using the Dropkinson bar is up to 600 s−1 with a
loading time of 0.5 ms, producing a strain of 0.27. A newly developed Dropkinson bar has shown
reliable results. However, there is a significant amount of ringing noise; it may alter the force and
strain signals due to the impact between the impactor and the moving metallic carriage.
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2.4. Flywheel Device

The flywheel device is a dynamic testing apparatus designed by researchers to perform the test at
intermediate and higher strain rates. In this rotary type of testing machine, the kinetic energy of the
rotating flywheel is used to fracture specimens at different strain rates. The loading speed (mean strain
rate) depends on the speed of the flywheel. The machine uses the kinetic energy stored in the flywheel
to deform the specimen rapidly.

Manjoine et al. [64] and Quinlan et al. [65] carried out dynamic tensile tests on various metallic
materials using a flywheel device at strain rates up to 1000 s−1. Load and deformation were measured
using optical technologies, incorporating a piezoelectric load sensor. This apparatus is designed
to perform tests at elevated temperatures. A new flywheel tensile testing device was developed at
the Institute of Mechanics and Engineering, Bordeaux, derived from the Charpy pendulum system;
its working principle was well described by Froustey [43]. This dynamic device allows the test
to be performed at medium strain rates in the range of ε·∈ [102, 103] s−1, which lies between the
values obtained with servo-hydraulic machines and SHPB. The flywheel is a shock generator machine.
The wheel has a large dimension (1 m diameter) and mass (620 kg) and is equipped with a hammer on
its circumference, as shown in Figure 4.

The flywheel rotates freely until it reaches the selected speed, ranging from 1 to 40 m/s.
The specimen is connected to the long Hopkinson bar pendulum system with an anvil fixed to
one end. Once the required speed of the flywheel device is reached, the pendulum system is lowered.
The hammer comes to strike the anvil, and the specimen is then strained, as shown in Figure 5.
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Figure 5. Schematic diagram of pendulum device before and after setting in position (the figure is
reproduced from [43] with the permission from authors (open access), 2007).

The load is measured by using Hopkinson bar techniques. With eight strain gauges attached to
the bar and mounted in a full Wheatstone bridge. The impact wave is completely transmitted from
the specimen to the bar without any reflected pulse reloading. The time duration of the test is less
than 1.3 ms. A high-speed camera is also attached to the flywheel device to measure the displacement
field of the specimen. The strain rate achieved in this testing is around 300 s−1. This technique is very
reliable in that the loading mechanism is able to perform a constant rate of deformation.

In 2007, Viot [66,67] designed a new compression module on the same flywheel device as explained
above in order to provide mechanical data under compression loading. The compression setup is
shown in Figure 6. This device was specially designed to perform tests on foam material. The working
principle is explained in [66]. When the required flywheel velocity is reached, the pneumatic jack is
triggered, which pushes the anvil against the wheel. The anvil is then struck by the hammer (see point
A, Figure 6). The impact rotates the lever and moves the bar BC (length of buckling bar); hence,
the lower punch, moving upward vertically, compresses the specimen.

The force sensor is placed above the upper punch to measure the compressive force.
The deformation of the specimen is derived from a laser displacement sensor. This compressive module
is designed to perform tests up to 102 s−1. However, the flywheel compressive apparatus has some
disadvantages. The loading method used in this setup generates a shock wave, which has a significant
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3. Technological Improvements in Existing Testing Devices

The existing test devices explained in Section 2 combine the load capacities of a servo-hydraulic
actuator, a drop tower, and a flywheel machine in conjunction with a load measurement technique,
such as the piezoelectric load cell and Hopkinson bar technique. However, the piezoelectric load cell
shows the greatest vibration and oscillation of the load data compared to the Hopkinson bar technique
due to high inertial effect during impact loading. In addition, the test time obtained by these devices is
very short, which is insufficient to deform the specimen to a relatively large strain at intermediate strain
rates. Moreover, it is difficult to perform test at different strain rate regimes due to restriction in the
load cell capacity and bar length. For this reason, some researchers have tried to improve the existing
intermediate strain rate test device to obtain a longer test duration and good quality measurement data.
Two different strategies are presented in this section, such as modifying the bar system and improving
the load measurement technique.

3.1. Modifying the Hopkinson Bar System

Gilat et al. [68] developed a unique device for compression testing at intermediate strain rates.
The device is based on the same principle as the hybrid test device, as explained in Section 2.2, and
provides mechanical data at a wide range of strain and strain rates. It is composed of a hydraulic
actuator and a long transmission bar, approximately 40 m long, as shown in Figure 7. The apparatus
consists of a custom hydraulic actuator capable of producing a force of 22,000 N and speed of up to
2 m/s. The test specimen is placed on the long bar with the other end free. The spring and damper are
attached at the end of the transmitted bar, which bring the bar to rest after the test.
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As the specimen is loaded, the compressive wave propagates through the Hopkinson (transmitted)
bar without any reflection. The wave is measured by using strain gauges, which are attached near
the specimen on the bar. The wave reflects and reaches the strain gauges again after 16 ms; this is
enough loading time to accumulate the maximum strain in the specimen. The DIC technique is used to
calculate the strain of the specimen.

This apparatus can be operated at various strain rates between 10 s−1 and 200 s−1. Overlapping
of the waves is significantly reduced due to the length of the bar. The test can be conducted for a
long duration. The load measurement by the long bar can be used to determine the response of the
material without complex numerical calculations, as given by Othman [55]. Further refinement of the
test technique could allow a more constant strain rate to be achieved. However, this testing apparatus
is too large to fit in laboratories.

In 2014, Whittington [69] proposed a design of a serpentine bar for intermediate strain rate tests
in laboratories that cannot house a long bar system, as shown in Figure 8. A serpentine bar is a series
of a tubes connected like a snake. Its advantage over a conventional long bar is that it can transfer the
stress wave propagating from the sample into a series of tubes. These tubes are designed in such a
way as to eliminate reflection due to the joints. This setup is inspired by the “recovery” Hopkinson
bar setup [70], in which the heavy mass is used to trap the stress wave energy. This process allows a
precise amount of strain to be applied to the specimen without repeated loading from the reflected
waves. The concept here is to increase the duration of the stress wave in a given bar length, rather
than trapping a shorter stress wave inside a detachable tube. The main difference with the serpentine
bar setup is that series of tubes are rigidly connected at alternating ends of the bar. Figure 8 shows a
serpentine bar with two attached tubes; the specimen is under compression load.
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Figure 8. Serpentine transmitted bar loaded in compression, with two strain gauge stations (yellow),
the specimen (white), and bushings (blue) (the figure is reproduced from [69], with permission from
the Elsevier, 2015).

This technique allows longer recording times than conventional bars of the same effective length.
Experimental results also show that the operating strain rate is up to 300 s−1. The main advantage of
this technique is that it eliminates the wave dispersion observed when using the long Hopkinson bar
technique. Although the new serpentine bar can be used for several applications, manufacturing it is
very complicated because of its complex snakelike structure.

Tateyama et al. and Koboyashi [71,72] used a special universal rate range (URR) load cell to
evaluate the load without the influence of the reflected stress wave. A schematic view of the load
cell is given in Figure 9a. It is composed of a small stress detection part (A1), compared to the
stress transmission part (A2). The stress waves are measured using a semiconductor strain gage
(KSP-1-350-E4, Kyowa Electronic Instruments Co., Ltd., Chofu, Tokyo, Japan) attached to the center of
the stress detection part.
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Figure 9. (a) schematic view of universal rate range (URR) load cell and stress wave propagation
and (b) setup of drop-weight testing machine for dynamic compressive test (the figure is reproduced
from [71], with permission from the Elsevier, 2016).

As shown in Figure 9b, the load cells are attached on the top and bottom of the drop weight
testing machine to evaluate the stress equilibrium of the specimen by measuring the upper and lower
load histories. Where, σ11 and σ21 are two different stress waves (the incident and transmitted stress
waves) observed at the detection part and stress-transmitted bar, respectively. Furthermore, the relation
between the stress waves can be given by using simple equation based on the load equilibrium and the
continuity of particle velocity at the interface [70].

σ21 =
2

1 + A2
A1

σ11 (1)

A1 is the cross-sectional area of the detection part, and A2 is the cross-sectional area of the
stress-transmitted bar. If A2 > A1, then σ21 � σ11. Thus, the effect of the stress wave reflected from the
bottom of the transmitted bar is very small. This means that compressive stress deformation can be
detected for a long time without any disturbance because of the reflected stress wave. The dynamic
compressive test confirmed that stress equilibrium was achieved within a strain rate of 100 to 101 s−1.

3.2. Load Measuring Technique

Load measurement is always the main concern with an intermediate strain rate device due to
the effects of inertia and high vibration on the load signals. Traditionally there are two types of
load measurement techniques: Piezoelectric sensor (load cell) and Hopkinson bar (by strain gauging
the bar).

Very few dynamic testing devices are equipped with the piezoelectric load cell. Although load
cells have an adequate dynamic range [73], the load measurements are still problematic. Oscillation and
vibration noise occur due to high inertia effects in the output signals of the load cell, and in addition,
the impedance change (due to joints with different mechanical connections) between the components
in the load train generates a wave reflection that causes further degradation of the load measurement.

Various techniques have been developed to improve the quality of load cell data. Xia et al. [74]
performed the tests by customizing the existing load cell to investigate the vibration and oscillation
effect, the tests were conducted by using a high speed servo hydraulic machine under three different
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strain-rates, 10, 100, and 200 s−1 plotted in Figure 10, clearly supportive to the advantage of the
customized sensor. Neither the customized sensor nor the commercial built-in load cell suffers
from oscillation under 10 s−1. Moreover, their test results superimpose upon each other very well,
indicating the good reliability of the two sensor systems under this strain-rate. However, when the
strain-rate increases to 100 s−1, oscillation effect becomes evident for the commercial load cell. On the
contrary, the customized load sensor is much more robust in the load measurement, which verifies
the methodology and design procedure proposed in previous sections. As the strain-rate increases to
200 s−1, even the customized load sensor undergoes a small degree of system oscillation see Figure 10c.
The authors are still working on how to improve the situation, but it seems that the current level of
data quality is already acceptable for characterization use [40].
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load oscillations, and Follansbee’ [77] used a ring of soft solder to lessen the shock (i.e., increase the 
loading wave rise time) of a hydraulic actuator contacting a compression fixture. The addition of 
damping material in the load train can lessen the strain rate, however, and may make sample 
deformation measurement more difficult. The influence of damping materials on the load cells is 
investigated at different strain rate levels [78]. The experimental results show that different damping 
levels show unacceptable oscillations from measured force signals at intermediate strain rates in 
comparison to undamped testing. However, it is still difficult to draw conclusions about which types 
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Figure 10. Load signals measured by the two different load sensors under (a) 10 s−1; (b) 100 s−1; and
(c) 200 s−1 (DP780: An advanced high strength steel and 2024-T4an aluminum alloy) (the figure is
reproduced from [74], with permission from the Elsevier, 2016).

Several other techniques were also used to improve the load measurement data. For example,
Groves et al. [75] used a laminate of impedance-mismatched materials to damp wave reflections on a
drop-tower base, Kussmal et al. [76] used plastic deformation of an aluminum damper to reduce load
oscillations, and Follansbee’ [77] used a ring of soft solder to lessen the shock (i.e., increase the loading
wave rise time) of a hydraulic actuator contacting a compression fixture. The addition of damping
material in the load train can lessen the strain rate, however, and may make sample deformation
measurement more difficult. The influence of damping materials on the load cells is investigated at
different strain rate levels [78]. The experimental results show that different damping levels show
unacceptable oscillations from measured force signals at intermediate strain rates in comparison to
undamped testing. However, it is still difficult to draw conclusions about which types of damping
materials are the most effective.
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The conventional split Hopkinson bar (SHB) technique is an attractive alternative to the load
sensor; it measures only the load transmitted through the specimen. The theory of stress wave
propagation in a Hopkinson bar is well documented in the literature [22]. The Hopkinson bar is defined
as a perfectly elastic, homogeneous bar with a constant cross-section. A stress wave propagates in a
Hopkinson bar as a one-dimensional elastic wave without attenuation or distortion. The specimen is
attached to the bar on one end, and other end of the bar is free/fixed. The Hopkinson bar configuration
is shown in Figure 11. When the specimen is loaded; the inertia of the bar provides a reaction to the
specimen. When the specimen is compressed or elongated against the bar, the loading of the specimen
is transmitted down the bar at the elastic wave velocity. At the other end of the bar, the elastic wave
reflects back toward the loading end. The load in the bar is determined from a strain gage located close
to the loading end. The strain gage is attached in the Wheatstone bridge, which leads to the separation
of different stress waves (incident, reflected, and bending) [79]. The strain can then be translated into
stress by Hooke’s uniaxial law.
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Stress–strain measurement:
The stress in the test specimen is assumed to be uniaxial and can be calculated using the elastic

wave analysis of the Hopkinson bar. Specimen stress as a function of time σ(t) is

σ(t) =
E ∗ ε(t) ∗Ab

As
(2)

εs = −
C
Ls

t∫
0

ε(t)dt (3)

where E is the modulus of elasticity of the Hopkinson bar, ε(t) is the bar strain as a function of time, Ab

is the bar cross-section area, As is the cross-sectional area of the specimen, and Ls is the length of the
specimen. The velocity of a wave (C) propagating in the bar is an intrinsic characteristic directly related
to the material properties and type of loading. In compression and tensile loading, elastic waves are
propagated into the bar, whereas in shear loading, torsion waves are propagated. The velocity of the
waves in the bar is directly linked with Young’s modulus (E) (for tensile and compression) or shear
modulus (G) (for shear loading) and the density (ρ) of the material.

For traction or compression elastic wave,

C =

√
E
ρ

(4)

For torsion wave,

C =

√
G
ρ

(5)

Isotropic materials such as steel and aluminum are usually used to manufacture the bar. Recently,
brass material was used for a Hopkinson bar [24], showing very good results in intermediate strain
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rate testing. The wave velocity in the brass material is very slow, and it maximizes the test duration,
making the bar more economical than other materials.

Length of the Hopkinson bar =
C ∗ loading time

2
(6)

The minimum length of the Hopkinson bar is mainly dictated by the desired duration of the
specimen deformation. This duration is equal to the duration of the wave propagation, i.e., the length
of the bar depends on the specimen deformation time and the velocity of the wave inside the bar.

However, the Hopkinson bar technique is limited to high strain rates due to the limited duration of
the test. Assuming that the sample is deformed at a constant strain rate, the maximum strain recorded
is therefore εmax= ε·∆t, whereas ∆t is the test duration and ε· is the strain rate. The test duration is
rarely longer than 1 ms in conventional SHB. Therefore, at an average deformation rate of 100 s−1,
the maximum strain measured is 10%. The existing testing devices explained in the Section 2 combines
measurement technique of a Hopkinson bar shows very low strain. However, in this work, only one
strain gage is used on the bar (regarded as an output bar in a SHB technique). The strain gage is not far
from the specimen bar interface. Therefore, the test duration is approximately twice the duration of a
conventional SHB, i.e., no more than 2 ms, which is not enough to accumulate higher strain. This led
many authors [80–84] to develop wave separation techniques to increase the test duration.

Wave separation method:
The wave separation method uses mathematical tools to process at least two measurements from

two strain gages attached to the bar in order to separate the effect of two or more different types
of waves such as forward and downward waves on the load signals [85]. It is first introduced by
Lundberg [86] and Yanagihara [87] for the Hopkinson bar testing machine. The use of wave separation
methods eliminates the test time limitation caused by overlapping waves in the strain gages, which
often occurred in the hybrid testing device.

The wave separation method measures the load in the Hopkinson bar, captures the signals
from strain gauges attached to the bar, and gives the mathematical relation between the waves
passing through the strain gauges. This method is either time dependent or frequency dependent.
The frequency dependent method is more reliable and easier, and it takes into account the wave
dispersion in the bar [58].

Let us consider a straight uniform viscoelastic bar. The strain ε(x, ω), particle velocity v(x, ω), and
force F(x, ω) are determined by a strain gauge attached to the bar at any cross-section distance x from
the loading end, and ω is the one-dimension wave velocity. The wave dispersion is also considered in
this method. The Fourier transform for strain is given by

ε(x,ω) = F(ω)e−iξ(ω)x + D(ω)e−iξ(ω)x (7)

where F(ω) and D(ω) are waves propagating in opposite directions (forward and backward) and ξ(ω)
is the wave dispersion relation that can account for both material and geometrical effects. The objective
of the wave separation method is to recover waves F(ω) and D(ω), knowing some strain and/or velocity
measurements on some cross-sections of the bar. Knowing the expression of the Fourier transform of
the strain at one cross-section, it is possible to derive the Fourier transform of particle velocity and
normal force at the same cross-section, as follows:

V(x,ω) =
ω

ξ(ω)

(
−F(ω)e−iξ(ω)x + D(ω)e−iξ(ω)x

)
(8)

F(x,ω) = E(ω)A
(
F(ω)e−iξ(ω)x + D(ω)e−iξ(ω)x

)
(9)

where A and E(ω) is the cross-sectional area and the young’s modulus of the bar, respectively.
That accounts for the possible viscoelastic behavior of the bar. Equations (8) and (9) represent the
particle velocity and the force and it can be recovered at cross-section of the bar if the four-following
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frequency-dependent functions are known: E(ω), ξ(ω), F(ω), and D(ω). The two first functions are
characteristics of the bar. Thus, they can be independently determined. Hence, the wave separation
methods assume that E(ω) and ξ(ω) are known. Now the main objective is to determine F(ω) and D(ω),
the two waves propagating in opposite directions, from a reduced number of measurements on the bar.

Since it has two unknowns F(ω) and D(ω), for each frequency, the establishment of two equations
should be sufficient to solve the problem. This is done by using two strain measurements, which are
recorded in two different sections of the bar [81,85] shown in Figure 12. Then, two equations can be
derived from Equation (6).

ε1(x1,ω) = F(ω)e−iξ(ω)x1 + D(ω)e−iξ(ω)x1 (10)
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And
ε2(x2,ω) = F(ω)e−iξ(ω)x2 + D(ω)e−iξ(ω)x2 (11)

where ε1(x1, ω) and ε2(x2, ω) are the Fourier transforms of the measured strain at the two cross-sections
x1 and x2. If these two equations are independent, we can simply calculate the two waves, as first
suggested by Zhao and Gary [17].

The full development of this technique is explained in [58,85]. It is the most noise-insensitive wave
separation method; the wave dispersion effects are also considered in this method. The test duration is
increased to few seconds, which is some thousand times more than the duration of a conventional SHB,
therefore intermediate strain rate tests can be carried out without any limitation on the test duration.

4. General Description of Intermediate Strain Rate Testing Device

There is no universal standard for the design of an intermediate strain rate device; researchers
have designed, and developed test devices based on necessity. In this section, the general requirements
for an intermediate strain rate testing device are given.

4.1. Components of Intermediate Strain Rate Testing Device

1. The loading system must be capable of generating a dynamic load in traction, compression,
and shear (e.g., high-speed servo-hydraulic actuator, drop weight tower, and flywheel device,
as explained in Section 2).

2. The components of the testing machine, such as clamps, fasteners, fixtures, handles, adapters,
and bar alignment system, are designed and assembled in such a way that the effect of inertia
is eliminated.

3. The load applied to the specimen is usually measured by using a Hopkinson bar, which acts
as a load sensor. The working principle of the load sensor is explained in Section 3.2. It is
one of the most widely used load sensors in dynamic testing. The load is measured based on
wave propagation theory. Hence, the dimension and selection of the material for the bar are
very important.
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4. To measure the strain of the specimen, noncontact techniques are often used for dynamic
measurement. There is a wide range of methods for displacement measurement, e.g., DIC, laser
displacement sensor, and customized extensometer.

5. A strain amplifier and an oscilloscope are necessary to magnify, transfer, and record the strain
history of the bar.

4.2. Basic Technical Assumption

The design of an intermediate strain rate testing apparatus must meet some basic assumptions to
provide the expected experimental results:

1. The loading system must generate constant intermediate impact speed without any vibration,
noise, or oscillation.

2. Due to the length of the Hopkinson bar, bar supports are required at regular distances. In order
to not disturb the wave propagation in the bar, the supports must allow free movement of the bar.
Hence, the bar is supported by low-friction material enclosed around the bar.

3. To obtain accurate load data, a different load measuring technique must be adopted, such as
Hopkinson bar using wave separation, serpentine bar, long Hopkinson bar, and wave trap
system. These techniques help to avoid reloading of the specimen and the inertial effect in the
load measurement.

4. The strain gauges are attached to the surface of the Hopkinson bar to measure the stress wave
history; the position of the strain gauges must be defined properly. In many research articles,
the strain gauges are usually connected in a Wheatstone bridge pattern. This pattern helps to
eliminate unnecessary bending wave signals during load measurement.

4.3. Specimen Geometry

The specimen geometry (including the diameter, length, width, and thickness) is very important
in dynamic testing. It is designed to achieve uniform stress in the gage section of the specimen and to
minimize the effect of inertia. The strain rate is also influenced by the specimen geometry.

For tensile testing, a dog-bone shaped specimen is generally used. The strain rate that develops
in the gauge length of the specimen is proportional to the velocity difference across the gauge
length [88]. The starting point for the design of the specimen is to calculate the strain rate using
a theoretical prediction:

ε̇ =
V
Li

(12)

For a fixed loading velocity (V), the prediction suggests that the engineering strain rate is
dependent on the initial length of the specimen (Li); the smaller the gauge length, the higher the
engineering strain rate. The simple prediction suggests that merely changing the gauge length will
offers wide flexibility in various strain rates ranges of interest. In addition, the width and thickness of
the specimen must be determined by keeping the length to the cross-section area of specimen constant.

Li
√

Ai
= constant (13)

For compression testing, a cylindrical or cube-shaped specimen can be used; the strain rate is
influenced by the length of the specimen similar to the tensile specimen as explained above. However,
the thickness of the specimen under compression should not be small; it may undergo buckling.
Moreover, it should not be very large; it may undergo barreling. Hence, the suitable dimension of the
specimen must be chosen for the compression specimen.

For shear tests, the typical specimen geometry is of two types: Solid and tubular. Solid bar
specimens are the easiest to fabricate and test; they are preferred for high stresses because tubular
specimens tend to deform in this regime. Tubular specimens, on the other hand, are particularly
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suitable for stress and strain analysis of work hardening at low strain. The latter are manufactured
with a thin wall such that shear stress gradients and shear stress rate gradients are eliminated in the
radial direction and the temperature variation across section [89]. The main elements of the design
are the gauge cross section, fillet radius, shoulder length, and handle design. The geometry of the
gauge section is very important as it determines the level and rate of strain, and these are studied to
calculate the flow stress and strain. In addition, there are many researchers performing shear tests
by using tensile and compression tests and modifying the specimen geometry to convert the tensile
and compression load into shear load. It is well explained in Section 5.2. However, there is not much
information available on the specimen size for intermediate strain rate tests.

5. Future Development in the Existing Testing Device

5.1. Experimental Test at High-Temperature

In recent years, there has been increasing interest in characterizing materials at low to high strain
rates while varying temperature. Consequently, studying and modelling of the behavior of materials
under such conditions has been encouraged. In many applications, such as metal forming, machining,
FSW, high-speed impact or high-energy metal deposition, and car accidents, materials are deformed at
medium to high strain rates. This produces self-heating at high temperatures due to adiabatic processes.
The stress–strain response in this case will be a balance between the effects of hardening (due to strain
and strain rate) and thermal relaxation. In other cases, the working temperature may be different from
the ambient temperature. Therefore, the mechanical response of the material and the effect of strain rate
must be investigated in the area of interest. At high temperatures, materials generally become much
more ductile and can also exhibit microstructural changes due to recrystallization phenomena [90–93].
At low temperatures, however, the strength of the material generally increases, and the mechanical
behavior changes from ductile to brittle. Figure 13 shows the flow stress–strain curves are influenced by
the strain rate and temperature. From these considerations, it can be seen that temperature and strain
rate are variables of fundamental importance in predicting the mechanical response of materials and,
play an important role in many deformation processes. The development of a temperature experiment
has allowed researchers to study the combined effects of strain rate and temperature on the mechanical
and microstructure behavior of materials.

The experimental data for high-temperature tests are mainly available for low strain rate and
high strain rate testing devices. High-temperature intermediate strain rate experiments are not very
popular. Some conventional test devices can provide high temperature test data, but at a very limited
temperature [37,38]. However, it has been found that measuring the dynamic mechanical properties
of materials at low temperatures using dynamic tests is not as difficult as that involving heating the
specimen at high temperatures.

The possible heating methods to perform high-temperature dynamic tests includes: A resistance
band heating, resistance heater or direct electric resistance heating, heating furnace, and an induction
heating coil. In the resistance heater, a large amount of current is passed through the specimen, thereby
heating it. However, the resistance is attached at the ends of the specimen, which would alter the test
dynamics and experimental data. The existing experimental data for the high temperature intermediate
strain rate is given by the flywheel device discussed in [65]. The test is performed by using a resistance
band heater to heat the specimen up to 600 ◦C. However, the maximum temperature obtained in this
method is very low and available only for few materials.

In heating furnace, the external parts attached to the specimen, remained in the furnace, are also
heated and eventually influence the stress–strain data. Hence, heating furnaces are also not very
consistent for very high-temperature tests. An induction heating device often used for dynamic testing.
It does not contact the specimen, and the heat is only produced by the induced current transmitted
through the workpiece. It is a fast, compact, and non-contact heating method; the temperature is easily
controllable. A non-contact thermocouple (pyrometer) is also used to measure the temperature and
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helps to maintain the homogenous temperature throughout the test. The strain measurement is very
straightforward using induction heating due to enough visible access to the surface of the specimen.
Hence, it is suggested that the selection of the appropriate heating device is important to perform tests
at high temperature in order to obtain appropriate stress strain data.
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5.2. Shear Loading Test

The existing testing devices are mainly designed to perform tensile and compression tests, not
shear tests. In a lot of manufacturing processes, the deformation within the material is generated by
shear stress and not by tensile or compressive stresses: Turning, milling, drilling, and friction stir
welding. In addition, under dynamic loads, in particular, such as forging, metal forming, collisions,
and ballistic impacts, materials are more susceptible to shear failure. Hence, the understanding of the
material behavior under shear loading has great importance for a researcher to develop a material
model. For such material behavior analysis, shear tests provide a useful means to investigate the
mechanisms leading to shear localization and evolution of the microstructure at a wide range of
temperature, strain, and strain rates. It is therefore essential to test the material under stress conditions
similar to those it will undergo during the manufacturing process.

Shear tests can be carried out by direct shear loading (e.g., a torsion test on thin-walled tubular
specimens) or by a simple shear test (e.g., using a suitable sampling plan to convert tensile or
compressive loading to shear). The torsion test is the simplest way to achieve a shear load and
shear strain in the specimen. Dynamic loading conditions (high strain rate) are usually achieved by
a split Hopkinson bar in a torsional configuration and quasi-static loading conditions (low strain
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rate) by the servo-hydraulic torsion machine. In the pioneering work of Marchand and Duffy [94],
the phenomenon of shear localization in structural steels was studied extensively by Hopkinson torsion
tests. Later, Hopkinson torsion tests were used by, among others, Gilat et al. [95], Klepaczko et al. [96],
and Ramesh et al. [97]. However, all these dynamic torsion devices perform tests at very high strain
rates > 103 s−1. Yet there is no experimental testing device available that can produce a state of large
equivalent strain with dominant shear strain under the intermediate strain rate. The existing testing
devices are mainly designed to perform under tensile and compressive loading. Therefore, there is an
increasing need to develop a reliable experimental test bench to accurately determine the behavior of
the material at intermediate strain rates under shear loading.

Some other testing methods are also available to performed tests under shear loading e.g., shear
test can be performed by appropriate specimen geometry by using traditional tensile and compression
apparatus in static and dynamic loading. It is also called a combined loading technique with dominate
shear deformation. It has a several advantages such as the necking or barreling in the specimen can be
eliminated, without the Poisson-ratio effect and large strain and strain rate can be obtained easily [98].
Dodd, and Bai [20] gave a detailed critical review on different kinds of shear specimens with their
advantages and disadvantages. However, the design of specimen is very important, and it must satisfy
the following requirements:

1. The specimen must obtain the uniform shear strain along the shear region.
2. There should be a simple relationship between the measured force and the shear stress.
3. There is a negligible effect of boundary conditions on stress and strain in the shear region.
4. The fabrication of the sample geometry should not be very complex.
5. The specimen geometry must be used in both static and dynamic experiments.
6. A suitable clamping device is used to hold the specimen.

Many research studies show various specimen geometries are used to characterize material
behavior in shear. The first simple shear specimen was developed by Hundy and Green [99] under
tensile loading to study the shear properties of the material. Meyer and Manwaring [100] designed the
“Hat specimen” to study shear localization behavior under compression loading, and later this specimen
was modified and used by many other researchers. Another group of a specimen such as double
shear specimen [101], single or double edge [102], step or dumbbell [103], compact forced-simple-shear
(CFSS) [104], truncated conic [105], indentation [106], and inclined flyer were designed to study the
shear behavior of the various metals and alloys. Despite the fact that the majority of these combined
loading specimens are designed to study only in static and high strain rate regime, the tests for
intermediate strain rate are not easily available.

6. Conclusions

The understanding of the behavior of materials in manufacturing processes is important for the
researchers to develop a material model. For such material behavior analysis, experimental tests
provide a useful means to investigate the material behavior in a realistic manner. The existing testing
devices are mainly divided in terms of strain rate, ranging from low to high. However, for intermediate
strain rate testing, very few testing devices are available. In this paper, reviews on existing intermediate
strain rate testing devices are given and following conclusion are made.

1. The existing intermediate strain rate testing devices given in this paper are mainly divided based
on the loading mechanisms, such as a servo-hydraulic actuator, drop tower, and flywheel machine
with different load measurement technique. The assets of this testing machines are: (1) continuous
loading during the test and (2) a reliable force and consequently stress measurement. However,
the testing devices equipped with the piezoelectric load cell shows the larger vibration and
oscillation in the load data due to high inertial effects during impact loading compare to the
Hopkinson bar technique. In addition, the test duration obtained by these devices is very short,
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which is insufficient to deform the sample to a relatively large deformation at intermediate strain
rates. Furthermore, it is difficult to performed tests at various strain rate regime.

2. Some researchers have tried to improve the existing intermediate strain rate testing device in
order to obtain a longer test duration and good quality measurement data by modifying the
bar system (long Hopkinson bar, serpentine bar, URR load cell, etc.) and by improving the load
measurement technique (piezoelectric load cell with damping material, wave separation method).
Hence, using these techniques, one can avoid the reloading of the specimen and the inertial effect
in the load measurement. In addition, it increases the loading time enough to accumulate large
deformations under various strain rate regime.

3. There is not enough work done on high-temperature experimental testing. The development of
a temperature experiment allowed researchers to study the combined effects of strain rate and
temperature on the mechanical and microstructural behavior of materials. Hence, an intermediate
strain rate device must be equipped with heating device to study the behavior of the material
over a wide range of temperatures

4. The existing test devices focus only on the tensile and compressive behavior of the material.
There is no intermediate strain rate testing device available to study the pure shear behavior.
Shear test can reproduce the same response of the material behaviors encountered in processes
such as machining, friction stir welding, and cutting. Therefore, there is an increasing need to
develop reliable techniques to determine the shear characteristics of materials at intermediate
strain rates and to provide experimental data to improve material model.

5. The development of combined loading techniques, such as shear-tensile and shear-compression,
for an intermediate strain rate device can also be very useful for material modelling, numerical
simulation, engineering design, etc. The combined loading technique will help to understand the
behavior of the material in complex stress states.
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