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Abstract: A secondary arrest is frequent in patients that recover spontaneous circulation after
an out-of-hospital cardiac arrest (OHCA). Rearrest events are associated to worse patient outcomes,
but little is known on the heart dynamics that lead to rearrest. The prediction of rearrest could
help improve OHCA patient outcomes. The aim of this study was to develop a machine learning
model to predict rearrest. A random forest classifier based on 21 heart rate variability (HRV) and
electrocardiogram (ECG) features was designed. An analysis interval of 2 min after recovery of
spontaneous circulation was used to compute the features. The model was trained and tested
using a repeated cross-validation procedure, on a cohort of 162 OHCA patients (55 with rearrest).
The median (interquartile range) sensitivity (rearrest) and specificity (no-rearrest) of the model
were 67.3% (9.1%) and 67.3% (10.3%), respectively, with median areas under the receiver operating
characteristics and the precision–recall curves of 0.69 and 0.53, respectively. This is the first machine
learning model to predict rearrest, and would provide clinically valuable information to the clinician
in an automated way.

Keywords: out-of-hospital cardiac arrest (OHCA); rearrest; electrocardiogram (ECG); heart rate
variability (HRV); random forest (RF)

1. Introduction

Cardiac arrest remains a major public health problem with more than 275,000 out-of-hospital
cardiac arrest (OHCA) cases treated yearly in Europe [1], and survival rates below 10% [2,3].
Prompt treatment is crucial because the probability of survival decreases by 10% for every minute
treatment is delayed [4,5]. Current cardiopulmonary resuscitation (CPR) guidelines define chain of
survival to ensure a prompt OHCA treatment, with five important links [6]: early recognition of the
arrest, CPR with chest compressions and ventilations, rapid defibrillation, basic/advanced emergency
medical treatment, and post-cardiac arrest care.

The final aim of the treatment provided by the emergency medical services is to achieve the
return of spontaneous circulation (ROSC), and to then proceed to the last link of the chain of survival,
post-arrest treatment, and transportation to hospital. CPR manoeuvres, defibrillation, and drugs
produce changes in the patient’s state, which are reflected in the cardiac rhythm. For instance,
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defibrillation may bring a patient from ventricular fibrillation to a rhythm with spontaneous pulse,
that is, to ROSC.

Rearrest is experienced by patients who achieve ROSC and suffer a subsequent cardiac arrest
during their prehospital care. Rearrest is frequent in the prehospital setting with observed incidences
between 24% and 43% [7–10]. Moreover, rearrest is associated to poorer patient outcomes, both for
hospital discharge and neurological state at follow up [7–11]. The prediction of rearrest would
contribute to better outcomes by providing adequate medical treatment to better stabilize the patient,
and by delaying transport to hospital, as providing adequate care is more difficult when rearrest occurs
in an ambulance during transport to hospital.

Several characteristics observable in the electrocardiogram (ECG) are associated to rearrest risk
factors: low heart rate, increased heart rate variability, long QRS complexes, irregular beats, etc.
Nevertheless, very few automated methods have been proposed to predict rearrest. Some important
contributions by Salcido et al. in the use of heart rate variability (HRV) features and morphology
features of the ECG [9,12] showed the potential of the ECG in this context. Other studies focused
on the transition between cardiac rhythms, including the transition from pulse-generating rhythms
(ROSC) to non-pulsatile rhythms, that is, rearrest [13].

In this paper, a machine learning technique is developed to predict rearrest in OHCA patients.
A solution based on a random forest (RF) classifier is adjusted for 1 and 2 min of ECG signal acquired
by the defibrillation pads, a signal commonly recorded by all defibrillators in OHCA scenarios. In the
Materials section, the source of the OHCA cases and the ECG signals is described. The HRV features
and the design of the RF classifier is detailed in Methods, and the Results are given next. In the
Discussion section, the clinical importance and implications in OHCA treatment of this algorithm
are elaborated.

2. Data Collection

The data used in this study were a subset of a large OHCA episode collection gathered in the
Dallas–Fortworth area by the DFW center for resuscitation research (UTSW, Dallas). Every episode
was recorded using the Philips HeartStart MRx device, which acquires the ECG signal and the thoracic
impedance through the defibrillation pads. The ECG signal was acquired with a sampling frequency
of 250 Hz and a resolution of 1.03µV per least significant bit. Additionally, some episodes included the
chest compression depth signal, which in conjunction with the impedance signal, permitted identifying
the intervals with chest compressions.

There were a total of 797 episodes with concurrent ECG and impedance signals. Episodes with
ROSC were identified based on the instant of ROSC (tROSC) annotated by clinicians on the scene.
No rearrest episodes (NoRA) corresponded to patients with sustained ROSC according to the clinical
information in the patient’s chart, and no chest compressions until the end of the episode. A minimum
duration of 2 min was required for the ROSC interval. Rearrest episodes (RA) were identified if ROSC
was lost in an interval of 12 min after ROSC. Patients that suffered a rearrest after 12 min from the
ROSC onset were considered in the NoRA group. Figure 1 shows a RA case, where spontaneous pulse
was lost tRA seconds after the onset of ROSC, tROSC. The final patient cohort included 162 patients,
107 NoRA, and 55 RA cases. In the NoRA cases, the median (first quartile–third quartile) duration
from the onset of ROSC to the end of episode was 300 (240–874) s. In the RA cases the median duration
from ROSC onset to RA was 303 (195–410) s.
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Figure 1. Out-of-hospital cardiac arrest (OHCA) episode where the instant of return of spontaneous
circulation (ROSC), tROSC(s), is associated to the pulse generating rhythm (green), and rearrest
(RA) occurs tRA(s) later when the rhythm degenerates into a pulseless activity and asystole (red).
The segment of analysis is noted with a duration of tw(s).

3. Methods

The rearrest prediction algorithm proposed in this manuscript was applied to segments of
tw minutes of ECG signal extracted right after tROSC, as shown in Figure 1. For case number i
a vector of 21 features, vi = {vi,1, · · · , vi,21}, was computed for each segment and a machine learning
classifier applied for the binary classification (yi = {0, 1} = {NoRA, RA}). Two segment lengths were
considered in the model, tw = 1 min and tw = 2 min.

3.1. ECG Processing and Feature Extraction

A total of 21 features (Table 1) were extracted to vectorize the ECG segment: 17 were based
on HRV metrics as proposed in [14], and four new features were incorporated based on the ECG
waveform.

First, the ECG signal was filtered between 0.5 and 40 Hz using order 4 Butterworth (zero-phase)
filter to remove baseline wander and high frequency noise. Second, HRV features were computed using
the R peaks detected using the well-known Hamilton–Tompkins QRS detector [15]. A variance-based
correction was applied to prevent false negative heartbeat detections caused by large amplitude
changes in the R-peaks. The impact of spiky artifacts in the adaptive thresholding of the QRS detector
was thus reduced and the RR series were constructed. Examples of RR series for a RA and a NoRA
case can be observed in Figure 2.

The HRV features computed using the RR series can be divided into three groups [16]:

• Time domain features. The classic metrics of RR variability were computed: mean RR interval
(v1), standard deviation (v2), root mean square of the successive differences (v3), coefficient of
variation (v4 = v2/v1) [17], number of RR intervals that differ more than 50 ms (v5), and the
interquartile range of RR intervals (v6).

• Frequency domain features. First, the spectrum of the RR sequence was computed using the
Lomb–Scargle periodogram for unevenly sampled signals [18]. Then, two different frequency
bands were analyzed, the low-frequency or LF band (0.04–0.15 Hz) and the high-frequency or HF
band (0.15–0.4 Hz). The computed features were the absolute and relative power in the LF band
(v7 and v8), the absolute and relative power in the HF band (v9 and v10), the relation between LF
and HF power (v11), and the peak frequencies in LF and HF bands (v12 and v13).
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• Nonlinear features. Self similarity of the RR samples was evaluated using the Poincaré plot and
entropy-based features. From the Poincaré plot the variability was measured with the width,
SD12, and depth, SD22, of the ellipse, v14 and v15, respectively. Their relation was computed as
v16. The sample entropy of the RR series (v17) was computed from a cubic interpolation of the RR
series to form a uniformly sampled series (10 Hz), and m = 1 and r = 0.2 were used [19].

Additionally, four features were computed using the ECG signal, three of them proposed in [13]
(v18, v19, and v21). They were computed as follows.

• The centroid frequency, v18, was computed based on the power spectral density (PSD) of the ECG
signal. The PSD was estimated for the fi frequencies using Welch’s periodogram with a signal
window of 12 s, an overlap of 50% and a fast Fourier transform of 4096 points:

v18 =

∑
i

PSD( fi) · fi

∑
i

PSD( fi)
(1)

• The mean of the absolute values of the samples of the ECG segment, v19.
• The relative QRS-power, as the power of the signal concentrated in the frequency band

corresponding to the QRS complexes (5–14 Hz) [15,20]:

v20 =

fi=14
∑

fi=5
PSD( fi)

∑
i

PSD( fi)
(2)

• The variability of the duration of the QRS complexes. QRS complexes were delineated using
a wavelet based algorithm [21] and the standard deviation of their durations was v21.

Table 1 provides a quick reference for the meaning of the vi features.

Table 1. Overview of the computed features.

Time-domain HRV features Non-linear HRV features
v1 : Mean RR v14 : SD12

v2 : Standard deviation RR v15 : SD22

v3 : RMSSD v16 : SD12/SD22

v4 : Coefficient of variation v17 : Sample entropy
v5 : nNN50 Signal-level features
v6 : Interquartile range RR v18 : Centroid frequency

Frequency-domain HRV features v19 : Signal amplitude
v7 : LF absolute power v20 : Relative QRS power
v8 : LF relative power v21 : Standard deviation of QRS width
v9 : HF absolute power
v10 : HF relative power
v11 : LF/HF power
v12 : LF peak frequency
v13 : HF peak frequency

Figure 2 shows the ECG segment and the RR sequence for tw = 1 min in an RA and NoRA
case. The RR instants (marked), the RR spectrum (LF and HF highlighted), and the Poincaré diagram
are plotted. Larger variability of the RR series, a more disperse Poincaré plot, and more power
concentration in the high frequency band were all associated to RA.



Entropy 2020, 22, 758 5 of 12

-1.5
-1

-0.5
0

0.5
E

C
G

 (
m

V
)

0 10 20 30 40 50 60
Time (s)

0.5

1

1.5

R
R

 (
s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
f (Hz)

0

0.5

0.5 1 1.5
RR[n]

0.5

1

1.5

R
R

[n
-1

]

-1

0

1

E
C

G
 (

m
V

)

0 10 20 30 40 50 60
Time (s)

0.5

1

1.5

R
R

 (
s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
f (Hz)

0

0.01

0.5 1 1.5
RR[n]

0.5

1

1.5
R

R
[n

-1
]

(a) Case leading to rearrest

(b) A case with no rearrest.

Figure 2. Signals corresponding to RA and no rearrest (NoRA) cases are plotted in panels (a,b),
respectively. The ECG signal for tw = 1 min, the RR sequence, its power spectrum and and the
Poincaré plot are shown.

3.2. Building the RF Classifier

First, an univariate analysis was carried out to analyze the power of each feature to discriminate
RA and NoRA cases. A cost-sensitive logistic regression classifier was fitted using a single feature in the
training set and the performance metrics were obtained for that model in the test set (see Section 3.3).
Then, a Random Forest (RF) classifier was used to combine all the features for several reasons: it can
learn nonlinear mappings, it can be easily adapted for imbalanced datasets, and, besides allowing an
embedded feature selection, feature importance can be estimated. Moreover, in our preliminary tests
with other machine learning models the RF produced the best classification results. The RF classifier is
an ensemble of B decision trees (weak learners) that produce uncorrelated predictions, and the final
label is decided by majority voting [22]. Uncorrelated decisions are made by using different bootstraps
of the training data to train each weak learner, and also a limited set of randomly selected features are
used at each tree split. The importance of each feature can be estimated by permuting the values of
each feature and looking at the increase in the out-of-bag error (error measured using the data that
each weak learner did not see during the training process). The following two steps were followed.
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• The RF was trained using the training dataset at hand and the importance of each feature was
computed and correspondingly sorted.

• The RF was trained again using the same training data and using only the most important N f
features from the previous ranking. Considering the class imbalance in our study (≈34/66%),
the number of instances per class were balanced when creating the bootstraps to train each tree by
oversampling the minority class. The RF model was evaluated with the testing dataset in hand.

Both RFs were trained using B = 300 weak learners and each tree was trained using only 5% of
the data. Bootstrapping was made using sampling with replacement, i.e., repeated instances were
possible. For binary classification problems, the number of trees that predicted that a certain instance is
positive divided by B can be interpreted as the probability or likelihood of the instance being positive.

3.3. Evaluation

The RF model was trained and tested using patient-wise and stratified 5-fold cross-validation
data partition. Data were divided in five nonoverlapping groups, one was used for testing and the
other four for training. This is repeated five times so every patient is used in the training and test
sets. The procedure was repeated 100 times to estimate the statistical distributions of the performance
metrics in terms of median (interquartile range (IQR)). The standard metrics for binary classification
problems were considered.

The classification problem in this study involved two unbalanced classes: a negative class with the
majority of the instances (NoRA), and a minority positive class (RA). In this scenario, two diagnostic
tools are helpful to evaluate the models: receiver operating characteristics (ROC) and precision–recall
(PR) curves. These curves are calculated evaluating corresponding performance metrics for different
thresholds of the likelihoods given by the RF classifier. The following metrics were considered;
sensitivity (Se) or recall (probability of detecting a RA case correctly), specificity (Sp, probability of
detecting a NoRA case correctly), precision (probability that a positive detection corresponds to
a positive case) and the harmonic mean between precision and recall (F1 score). Areas under both
curves, area under receiver operating characteristics curve (AUROC) and area under precision–recall
curve (AUPRC), are good representative metrics to evaluate the performance of the model. Every metric
is given as percentage.

4. Results

In the QRS detection, the variance based filter only changed the detections of the
Hamilton-Tompkins algorithm in five cases (3% of episodes), and less than 0.3% of the samples
were modified in those cases. To asses the quality of QRS detection and the RR series derived thereof,
a signal quality index was adopted, the proportion of beats that are detected by two different QRS
detectors over all detected beats [23]. As proposed by the authors of [23], we used a QRS detector
robust to noise (Hamilton–Tompkins [15]) and a detector based on a length transform proposed by
Zong et al. [24], which is more sensitive at lower signal-to-noise ratios. Median (first quartile–third
quartile) agreement between the QRS detectors was 98.4% (90.7–99.6%), showing the good quality of
the data.

The analysis of the logistic regression classifier for single features yielded median AUROC and
AUPRC values for tw = 1 min in the range of 52.0 to 65.1 and 29.3 to 50.3, respectively. Similar results
were obtained for tw = 2 min, with AUROC in the range of 53.7 to 66.2 and AUPRC in the range of
28.2 to 50.1. A random classifier in this case would correspond to AUROC = 50.0 and AUPRC = 34.0.
Table 2 shows the distributions and median AUROC/AUPRC for the top 10 features (highest harmonic
mean between AUROC and AUPRC) for tw = 1 min and tw = 2 min, respectively. It can be observed
that time features like v2 and v4 were important for both values of tw, showing that the variability of
the RR sequence is a powerful discriminative feature. Nonlinear features measured through Poincaré
plots and entropy (v15 and v17) also showed high AUROC with medians of 65.0 and 65.5, respectively.



Entropy 2020, 22, 758 7 of 12

The correlation analysis between the features, based on the Pearson coefficient, r2, showed high
correlation between features in the same or different domains. Thus, v2 showed good correlation
(r2 > 0.75) with v3, v4, v14 and v15, and also v4 with v14.

The median (IQR) values of the features showed that RA patients presented more variable RR
intervals, reflected in higher values of time HRV features, v2 and v4, and in a wider Poincaré plot
as measured by v15. The entropy of the RR series (v17) was lower in RA cases, suggesting a more
regular/predictable time series.

Table 2. Distributions of the values for the top 10 features, represented as median (IQR) for each
class, and their median area under receiver operating characteristics curve (AUROC) and area under
precision–recall curve (AUPRC) values. Results for tw = 1 min and tw = 2 min are shown.

tw = 1 min tw = 2 min

Feature NoRA RA AUROC AUPRC Feature NoRA RA AUROC AUPRC

v15 0.01 (0.02) 0.03 (0.10) 65.0 50.3 v2 0.08 (0.12) 0.21 (0.37) 66.2 50.1
v2 0.07 (0.10) 0.15 (0.25) 64.9 50.2 v4 0.16 (0.19) 0.29 (0.40) 65.7 49.4
v7 0.00 (0.00) 0.00 (0.01) 63.3 49.4 v6 0.06 (0.11) 0.14 (0.26) 63.4 48.7
v4 0.14 (0.17) 0.23 (0.24) 64.2 48.9 v17 0.31 (0.45) 0.18 (0.27) 65.5 47.4
v9 0.00 (0.00) 0.01 (0.03) 62.4 47.8 v3 0.57 (0.23) 0.71 (0.49) 63.3 48.4
v14 0.05 (0.06) 0.09 (0.18) 61.9 47.8 v14 0.05 (0.09) 0.11 (0.20) 64.0 47.7
v17 0.35 (0.51) 0.20 (0.30) 65.1 45.9 v15 0.01 (0.02) 0.05 (0.22) 61.7 47.0
v3 0.56 (0.26) 0.68 (0.45) 60.3 48.2 v20 0.38 (0.20) 0.28 (0.22) 64.5 45.4
v1 0.55 (0.24) 0.63 (0.38) 59.3 46.8 v5 216 (81) 180 (104) 61.6 46.6
v5 106 (45) 93 (54) 59.4 45.4 v7 0.00 (0.00) 0.01 (0.03) 60.7 46.4

Figure 3 shows the median AUROC and AUPRC for the RF classifier as a function of the number
of features considered in the model, N f . Adding features to the model improved both metrics.
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Figure 3. AUROC and AUPRC for the random forest (RF) classifier in function of the number of
features of the model, N f , for tw = 1 min and tw = 2 min.

Figure 4 shows the ROC and PR curves for the repetition closest to the median performance.
The AUROC and AUPRC increased a median of 2 and 1 points for tw = 2 min, showing that longer
intervals improved the accuracy of the features in general and that of the spectral features in particular.
The distributions of importance for each feature, depicted in Figure 5, show that most of the features
had a positive importance and were relevant for the RF model. Features like v20, v17, v7, v15, or v2 were
in the top 10 when analyzed individually (see Table 2). Others, like v16, were relevant when combined
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with the rest in the predictive model and when considering a RF classifier instead of a cost-sensitive
logistic regression classifier.
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Figure 4. Receiver operating characteristics (ROC) and precision–recall (PR) curves for both values
of tw. The repetition that was closest to the median AUROC or AUPRC was chosen to depict the
curves. The AUROC and AUPRC increased from 67.0 to 69.3, and from 53.2 to 53.7, respectively,
when tw = 2 min were considered.
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Figure 5. Distributions of feature importances given by the RF classifier sorted by importance for
tw = 1 min (blue) and tw = 2 min (red).

Table 3 shows the overall metrics for the RF classifier for the thresholds that maximized the F1

score. Adding the ECG features, v18–v21, to the HRV features significantly increased Se for both tw

values (p < 0.05 according to the Mann–Whitney test). For tw = 2 min the AUROC and AUPRC
increased 2 points, and the Se almost 6 points, meaning that 20% of the missclassified RA cases would
be correctly detected.
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Table 3. Performance metrics for the RF model in median (IQR) using only the HRV features and using
all the features for both interval analyses, tw = 1 min and tw = 2 min.

tw Se or Recall (%) Sp (%) Precision (%) F1 (%) AUROC AUPRC

HRV features 1 min 57.3 (11.8) 75.7 (14.5) 54.5 (9.8) 55.8 (2.8) 65.4 (2.3) 51.2 (2.9)
2 min 61.8 (6.4) 72.9 (6.1) 54.4 (4.6) 57.6 (2.0) 67.3 (2.0) 50.7 (2.7)

All features 1 min 63.6 (15.5) 69.2 (20.6) 51.5 (10.0) 55.4 (3.1) 66.2 (2.2) 52.0 (2.6)
2 min 67.3 (9.1) 67.3 (10.3) 51.4 (5.3) 57.9 (1.7) 69.2 (1.6) 53.1 (3.0)

5. Discussion

The final objective of prehospital treatment of OHCA is to recover spontaneous pulse.
However, many detrimental factors may induce a secondary cardiac arrest, or rearrest, before arrival
to hospital. These rearrest events reduce the probability of survival to hospital discharge [7,8,25–27].
Currently, clinicians apply expert knowledge on scene to foresee if a patient who has achieved ROSC
should be transported immediately, or if the patient requires longer on-site treatment. Defibrillators
show physiologic signals on screen but do not provide tools to assist clinicians on the prediction of
a secondary arrest. To the best of our knowledge, this study provides the first automated method
based on the ECG to predict rearrest. This is important because the ECG is routinely recorded in all
defibrillators. The method is based on a RF classifier using HRV features and ECG waveform features,
and showed a Se and Sp of 67%.

Fluctuating heart rates are frequent in organized rhythms during cardiac arrest.
When spontaneous circulation is restored the QRS complexes may still be irregular in morphology
and rate. ECG features associated to the heart rate have been used to successfully predict time to
RA [12], especially the standard deviation of the measured heart rate. The standard deviation of the
RR intervals (v2) is a similar measure, and was also one of the most important features of the RF
classifier. Moreover, v2 alone showed a median AUROC of 66.2 (65.3–67.0) and median AUPPRC of
50.1 (49.3–50.7).

HRV features have been widely used in non-arrest situations to detect and predict cardiac
arrhythmias [20,28,29]. They were originally designed to analyze long intervals, minutes, or even
hours, in hemodynamically stable patients. Interestingly, in this study, HRV features have been proven
to be good predictors of RA even with segments as short as tw = 1 min. The spectral HRV features
showed better performance for tw = 2 min due the better resolution of the RR spectrum associated
to longer analysis segments. We observed median increases of 1–2 points in the AUROC when the
segment was increased from tw = 1 min to tw = 2 min.

In a post-cardiac arrest scenario, the patient may not be breathing spontaneously after ROSC,
and rescuers should artificially ventilate the patient. This may cause reduced respiratory-related heart
rate dynamics and may influence HRV features. However, more studies are needed to analyze the
relationship between the HRV metrics and ventilation metrics of the patient.

During treatment of OHCA patients many rhythm transitions occur, such as from an initial
ventricular fibrillation to recovery of spontaneous pulse. Many studies have focused on the analysis of
the prevalence and the prediction of rhythm transitions [30,31], including the transition from ROSC to
another cardiac rhythm, that is, rearrest. A short time predictor was proposed in [13] using features
v18, v19, and v21 to predict the rhythm in the next 3 s with an AUROC of 73. Our clinical context was
different as we developed a model for patients that recovered a stable spontaneous pulse, and applied
our model to predict a rearrest occurring on average 5 (6–7) min later. This is a much more challenging
scenario, but of great clinical importance as it would allow clinicians to make more informed decision
on transport to hospital after spontaneous pulse is recovered.

In this study, we also confirmed that the ECG waveform features significantly improved the
performance of the RF model. Compared to the RF based exclusively on HRV features that we
proposed in [14], the combination of HRV and ECG features improved the AUROC and AUPRC in
2 points when we increased the number of patients in the dataset by 65%. These are the first results
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of a machine learning solution to predict rearrest, and the RF model showed that including more
features increased the accuracy of the method. The prediction of rearrest is a clinically important topic
in OHCA treatment, and our results show that it is a challenging one. In the future, more sources
of information available during treatment could be added to the models, including measures of the
respiratory function (capnogram), cerebral state (cerebral oximetry or EEG-based bispectral analysis),
or even blood pressure. These signals are not universal in OHCA treatment, but could be used to
provide complementary information to that derived from HRV/ECG analysis.

The duration of the analysis interval of the ECG is important to predict rearrest. Our results
showed that the performance improved when longer analysis windows were used, with differences
of 2 points in AUROC when the duration of the analysis window was increased from 1 min to 2 min.
In order to confirm that hypothesis, we replicated the analysis using the typical short window for
HRV parameter calculations (tw = 5 min). This reduced the sample size to 98 (26 RA and 72 NoRA).
In this subset the AUC when tw = 5 min was 8 points larger than for tw = 2 min. This shows that
longer analysis intervals improve the accuracy for the prediction of rearrest. However, in an OHCA
scenario, time to clinical decisions and interventions is critical for survival, so a trade-off must
be found between the detection of critical situations (rearrest) and the time needed to identify
those situations. Longer delays to transport the patient in sustained ROSC to a hospital for
a percutaneous coronary intervention may substantially lower the probability of survival of the
patient [32]. Consequently, short analysis intervals (if sufficient for a diagnosis) should always be
adopted.

This study has several limitations. The first one is the small patient cohort (162 cases),
which, albeit being the largest cohort studied to date for this purpose, is still insufficient to draw
conclusive results. Further studies on larger cohorts are needed, based on the evidence provided
in this study. Second, the interpretation of the HRV parameters in a cardiac arrest context is
controversial. Our results show they convey important information on the prediction of rearrest,
but their physiological interpretation as measures of how cardiac arrest affects the autonomic nervous
system are unclear. Third, in OHCA, time constraints in clinical interventions are of life and death
importance; this limits the time available for the decisions and thus the segment lengths to compute
HRV metrics. Short segments under 5-min should be used to compute HRV metrics, which further
complicates the accuracy and interpretability of these measures. Finally, the conditions in which the
ECG is recorded in a prehospital setting (hygiene, electrode contact, movement, and interventions)
make QRS detection and thus RR-series calculations more challenging than in controlled hospital or
laboratory conditions.

6. Conclusions

A RF model to predict a secondary arrest in the out-of-hospital setting is proposed using only
1 or 2 min of ECG signal right after return of spontaneous circulation. This manuscript shows that
ECG signal and HRV metrics contain information about rearrest events, further studies are needed to
confirm and improve our results.
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Abbreviations

The following abbreviations are used in this manuscript:

AUROC area under ROC curve
AUPRC area under PR curve
CPR cardiopulmonary resuscitation
ECG electrocardiogram
HF high frequency
HRV heart rate variability
LF low frequency
NoRA no rearrest
OHCA out-of-hospital cardiac arrest
PR precision–recall
RA rearrest
RF random forest
ROC receiver operating characteristics
ROSC return of spontaneous circulation
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