
����������
�������

Citation: Echeberria-Barrio, X.;

Gil-Lerchundi, A.; Orduna-Urrutia,

R.; Mendialdua, I. Optimized

Parameter Search Approach for

Weight Modification Attack Targeting

Deep Learning Models. Appl. Sci.

2022, 12, 3725. https://doi.org/

10.3390/app12083725

Academic Editors: Mikel Galar and

Daniel Paternain

Received: 28 February 2022

Accepted: 6 April 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Optimized Parameter Search Approach for Weight Modification
Attack Targeting Deep Learning Models

Xabier Echeberria-Barrio 1,2,* , Amaia Gil-Lerchundi 1 , Raul Orduna-Urrutia 1 and Iñigo Mendialdua 2

1 Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Mikeletegi 57,
20009 Donostia-San Sebastián, Spain; agil@vicomtech.org (A.G.-L.); rorduna@vicomtech.org (R.O.-U.)

2 Department of Computer Languages and Systems, University of the Basque Country (UPV/EHU),
20018 Donostia-San Sebastián, Spain; inigo.mendialdua@ehu.eus

* Correspondence: xetxeberria@vicomtech.org

Abstract: Deep neural network models have been developed in different fields, bringing many
advances in several tasks. However, they have also started to be incorporated into tasks with critical
risks. That worries researchers who have been interested in studying possible attacks on these
models, discovering a long list of threats from which every model should be defended. The weight
modification attack is presented and discussed among researchers, who have presented several
versions and analyses about such a threat. It focuses on detecting multiple vulnerable weights to
modify, misclassifying the desired input data. Therefore, analysis of the different approaches to
this attack helps understand how to defend against such a vulnerability. This work presents a new
version of the weight modification attack. Our approach is based on three processes: input data
clusterization, weight selection, and modification of the weights. Data clusterization allows a directed
attack to a selected class. Weight selection uses the gradient given by the input data to identify the
most-vulnerable parameters. The modifications are incorporated in each step via limited noise. Finally,
this paper shows how this new version of fault injection attack is capable of misclassifying the desired
cluster completely, converting the 100% accuracy of the targeted cluster to 0–2.7% accuracy, while the
rest of the data continues being well-classified. Therefore, it demonstrates that this attack is a real
threat to neural networks.

Keywords: deep learning vulnerabilities; deep learning attacks; deep learning threats

1. Introduction

Nowadays, computational power has allowed the development of new architectures
in the growing field of deep learning. In some tasks, they can outperform human beings in
their remits, and hence, these networks are being implemented in more and more fields
with a direct impact on the lives of human beings [1,2]. In addition, models used in some
fields such as healthcare or autonomous vehicles have to make critical decisions affecting
human lives. These models can be compromised, putting lives at risk. For these two
reasons, in recent years, research has been carried out on how a model can be attacked and
defended to make neural networks more secure and reliable.

Several state-of-the-art attacks on neural networks have been proposed [3–5]. A ma-
chine learning system (Figure 1) can be separated into several elements: training data, input
data, model, and prediction (output). The attacks found in the literature can be grouped
into these elements according to their focus.

• Training data attacks: Attacks that threaten the training data are those that exploit
the modification of this data to attack the target model. Thus, the attacker causes
a malfunction modifying its proper behavior. Among the attacks focused on this
module are the poisoning attack [6,7] and the obfuscation attack [8].

• Input data module: Attacks to the input data are implemented to somehow affect the
predicted output of the model. The attacker studies samples to corrupt the behavior

Appl. Sci. 2022, 12, 3725. https://doi.org/10.3390/app12083725 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12083725
https://doi.org/10.3390/app12083725
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6836-2890
https://orcid.org/0000-0002-0760-8479
https://orcid.org/0000-0002-5932-0987
https://orcid.org/0000-0003-2519-4094
https://doi.org/10.3390/app12083725
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12083725?type=check_update&version=2

Appl. Sci. 2022, 12, 3725 2 of 15

of the target model. In this category, we would find the widely known adversarial
attack. Moreover, this element contains other attacks, such as the overstimulation
attack [9], the evasion attack [10], the impersonation attack [11], and the feature
deletion attack [12].

• Prediction attacks: Predictions can also provide valuable information about the inner
structure of the model to the adversary. The model shows different behaviors depend-
ing on the input received, which can reveal sensitive or private information contained
in the model. Therefore, in this module, we can find privacy attacks such as the
inversion attack [13], the inference attack [14], and the Ateniese attack [15].

• Model element: Other attacks focus on attacking the model directly. These attacks
can modify parameter values, model structures or model functions. Attacks directed
against this module are those related to obtaining parameters and hyperparameters,
such as the equation-solving attack [16] and hyperparameter stealing [17]. However,
in many cases it is also possible to attack model parameters by directly modifying
their values. This is the case of the fault injection attack described by Liu et al. [18].

Figure 1. Schematic representation of a machine learning system.

In the evasion attack [10], the adversary directly modifies the input sample to obtain a
misclassified instance. However, that modification tends to be passed over due to the input
weights of the target model, bypassing the malicious data. In this case, the manipulation
converts the target data into misclassified data without modifying it. There are a lot of
adversarial attacks affecting the input of a model, but in actual deployments, it can be
easier for a potential intruder to change the model’s available inputs. Therefore, in this
sense, an attack that modifies the model parameters is more general than an evasion attack
because the evasion attack obtains a single malicious sample, while the described attack
converts complete subsets of target input data into misclassified data. However, parameter
manipulation can also change the prediction of the data that the attacker does not want to
change. Therefore, an exhaustive analysis of the selection of the weights to be manipulated
is necessary.

In this work, a new approach to the fault injection attack is presented. This version in-
corporates three steps to attack the targeted model, making the manipulation more efficient.

• Identifying input data clusters: Similar input data generates similar model behaviors
given by the activation of the model’s neurons. Therefore, they could share influential
weights, which would not be applicable for the other data. Thus, modification of these
parameters will affect the targeted cluster.

• Selection of the most-influential weights: This step chooses some weights to be modified.
For this selection, a metric is necessary; some types of adversarial attacks target
the gradient of the input data according to the prediction. Thus, the idea is based
on introducing a constant adversarial example in the model for a concrete input
data subset.

• Modification of the selected weights: Incorporation of noise in the chosen weights is
essential to manipulate the prediction of the targeted model. Noise can be added or
subtracted according to the computed gradient, modifying the behavior differently.
This decision allows the attacker to focus on varying weights.

Appl. Sci. 2022, 12, 3725 3 of 15

This new version allows more precise manipulation and without misclassifying
the non-targeted input data. This attack was tested with a model formed by the con-
volutional neural network VGG16 and a dense classifier, which deals with a binary
classification problem.

The rest of the paper is divided as follows: Section 2 presents the literature related
to the analyzed attack. Section 3 details the attack generation, highlighting the principal
steps to carry out the attack. Section 4 describes the experiments detailing the dataset and
the model used for them. The results are given in Section 5, and Section 6 lists the lessons
learned and future work.

2. Background

Model parameter modification attack was introduced first by Liu et al. [18] and named
fault injection attack. They proposed two attack strategies: one by only modifying the bias
values of the model, single-bias attack (SBA), and the other, gradient descent attack (GDA),
that pursued maintaining model accuracy by mitigating the impact of other input patterns
and centering modified weights in a specific layer. In SBA, the proposed bias modification
is independent of the input value, i.e., it only depends on the sensitivity of the bias to the
selected class. That allows applying the attack in real-time without analyzing the input data
characteristics. The GDA attack is centered on modifying a single input data prediction.
Furthermore, the level of modification of the weights is uniquely dependent on the number
of neurons in the selected layer, as they directly use the gradient descent algorithm to modify
them at once.

Zhao et al. [19] detailed the theoretical problem formulation and applied it to fully
connected neural networks, modifying the bias and weight parameters. Their results showed
that it is possible to attack the models by this strategy while controlling the damage to
model accuracy. Their novel solution allows attacking multiple images with a unique
attack. Moreover, it uses the ADMM framework for dividing the global problem into more
minor local issues. However, the particular similarities between the selected images are not
analyzed to guide the optimization problem directly, centering the modification on the most
influential parameters.

Rankin et al. [20] demonstrated how to achieve targeted adversarial attacks by modi-
fying the weights by flipping the smallest possible number of bits of weight values. They
propose an iterative process, where in each iteration, a single weight-bit is selected and
flipped. For its selection, an intra-layer bit search is first applied in each iteration, selecting
the most vulnerable weight-bit in each layer using gradient values. Then, a cross-layer
search is pursued from the selected subset of bits, identifying the layer with maximum
loss due to bit-flip. The winner-layer weight-bit is the only bit chosen to be flipped in
the iteration.

The sensitivity of the model to this attack was also studied. On the one hand, Tsai et al. [21]
described the generalization of the weight perturbation sensitivity for feed-forward neural
networks and described the robustness of the models to this attack category. From their
perspective, the sensitivity of the weight is related to the pairwise class margin function
against weight perturbation. On the other hand, Weng et al. [22] specifically studied
the robustness of the model in response to model weight perturbations attacks. For that
purpose, for each weight value, they define regions near the specific value where the model
can maintain accuracy. Taking into account the sizes of these regions, a model robustness
measure can be defined against this type of attack.

Finally, new defenses are emerging to avoid fault injection attacks. Wang et al. [23]
propose a defense against this type of attack, increasing the robustness of the model using
a novel randomization scheme called hierarchical random switching (HRS). This defense
contains multiple channels in the model with different weight values that a controller
switches, making this type of attack unfeasible. The advantage of this defense compared
to ensemble defenses that use multiple networks is that HRS only requires a single base
network architecture to launch the defense.

Appl. Sci. 2022, 12, 3725 4 of 15

The references detailed above are related to the presented version of the fault injection
attack, but comparison with the actual proposal is complicated since they share a unique
step in attack generation. Furthermore, some of the cited background strategies are not even
formulated as attacks. With this in mind, the most-similar reference is [18], which presents an
attack strategy that searches for the most-sensitive parameters through use of the gradient.
However, the gradient they use is over the weights and not over the input features, as the
version proposed in this paper is. Moreover, ref. [18] does not use the clusterization step to
optimize the attack; rather, it selects a sample subset randomly. In [19,20], they present attack
versions which focus on the whole targeted model, and they use neither the gradient nor
clusterization. Finally, refs. [22,23] describe strategies related to the search of vulnerability
parameters, similar to our version, but they are not presented as an attack. On the one hand,
ref. [22] details a possible method of clusterization of the input data, focusing on the model’s
prediction, while our strategy focuses on the input features for that objective. On the other
hand, ref. [23] presents a methodology to detect the vulnerable weights by injecting noise in
the target model instead of using the gradient as the weight metric.

3. Methodology

This work aims to implement a weight modification attack with an optimized search of
the most-influential parameters for attacking the desired samples (Figure 2). The main idea
of the attack is to modify a minimal quantity of weights from the target model to obtain
misclassification of the targeted input data. Concretely, this approach attacks a particular
layer of the targeted model. Take into account that the targeted layer’s input features will
be considered as the input data, and the input layer will be the neurons that introduce the
input data to the target layer.

Figure 2. The process followed by the attack we developed and implemented in this work.

Note that if only a few parameters are manipulated, the attack is less likely to be
detected and will be more efficient. Moreover, there are other variables to qualify the threat
developed, such as quantification of the modification (noise) added to the weight and the
model’s decrease in accuracy.

In the rest of this section, the steps to generate the general fault injection attack
are detailed.

3.1. Identifying Input Data Clusters

With the intuition that the model should act equally for similar data, first, a cluster
analysis is performed on input data. The attacker focuses on the similarity analysis between
the selected subset of the input data where he/she is attacking. In this paper, the model’s

Appl. Sci. 2022, 12, 3725 5 of 15

behavior refers to activations when specific input is injected into the model, taking into
account the connections between neurons. From this point of view, depending on the
input sample, the model behaves differently because the neuron activations are different
in each case. For this reason, when two input samples are similar, it is expected that the
model should behave similarly, activating the same subset of neurons. The activation value
of a neuron depends on its inputs and its weights. By studying the similarities between
activation values of different input data and cluster divisions found in the analyzed data,
it is possible to detect the most influential neurons in the classification of the selected
subset. With this information, the attacker should be able to choose specific weights of
the model towards which to direct the attack. Thus, by manipulating those particular
parameters, the attacker can misclassify the selected cluster of images while leaving the
others classified correctly.

In supervised machine learning, the input data is labeled with different classes, and the
target model learns to classify them by detecting the patterns associated with each input
sample. The model’s objective is to learn to group the data into classes, i.e., it modifies its
weights to classify the detected patterns correctly. That may mean that some weights are
specialized to classify particular patterns, concretely tying some specific items to a class.
The first possible clusters the attacker would consider are the model classes themselves.
If there is some way to detect the most influential weights based on the class selected to be
misclassified, the attacker could modify those to carry out the attack.

However, misclassification can be more specialized, since within the same class,
the model can contain different behaviors, and the influential neurons of those behaviors
mix. Therefore, a study of clusters (similar instances) in the data can considerably spe-
cialize the attack, as the effectiveness of the attack depends on misclassifying the desired
set without altering the prediction of the others. Therefore, by reducing the amount of
influential weights, the attack area is smaller and more distinct, making the attack less
detectable. These clusters of input data can be obtained by various similarity measures,
such as Euclidean distance [24], Hamming distance [25], mean square error [26], maximum
signal-to-noise ratio [27], and structural similarity [28].

3.2. Selection of the Most-Influential Weights

The main challenge of selecting the weights to be modified is that they can also affect
the prediction of other input sets (different from the selected ones), making the model attack
evident. Therefore, optimizing the chosen modifications in the parameters is necessary to
carry out this attack efficiently.

There are several ways to perform this selection, such as centering the search to a
specific layer [18] or by analyzing the sensibility of the weights in the model [21]. In this
work, following the evasion attack approach, parameters are chosen by how the gradient
of the input data influences predictions. This gradient indicates how important a feature of
the input data is, i.e., it can be considered a metric to select the position of the most-relevant
data of the input layer (input neuron). In this regard, it should be noted that each input
neuron is usually assigned more than one weight by the next layer. Therefore, once the
input neurons have been chosen, the attacker must set the upper limit quantity indicating
the maximum number of weights to be selected for pursuing the attack. Moreover, a metric
is necessary to select this quantity from the assigned parameters. In this work, this subset
of parameters is generated according to the absolute values of the weights, taking the
highest ones.

In summary, this approach starts by detecting the most-relevant input neurons of the
input layer through the gradient. Among the weights assigned to those features, the ones
with the highest absolute values are defined as the most influential ones. This subset is
used for generating the attack.

Appl. Sci. 2022, 12, 3725 6 of 15

3.3. Modification of the Selected Weights

Once the critical parameters are selected, noise is added to obtain the desired mis-
classification. That modification is incorporated step-by-step to observe the effect of such
manipulation on the chosen weights. Moreover, adding less noise in several steps makes the
attack more optimized since the manipulated weights will be more similar to the original
ones, i.e., the attack will be less perceptible. The magnitude of the noise added in each
step is defined by the parameter ε, and the number of steps is indicated by the parameter
s. Therefore, the upper limit of the difference between the original weight value and the
modified one is s · ε.

As mentioned above, the gradient indicates the impact each input feature has on the
prediction of the target neural network. In the training phase of a neural network, its
weight gradients are calculated. Those values are subtracted from the previous value of
the parameters, causing model learning. In other words, the subtraction of the gradient
generates model learning while the addition would imply a step backwards in the learning
(i.e., the model would unlearn). Therefore, when a value of the same sign of the gradient is
subtracted from the weight, it makes that weight gain more important in the prediction,
while addition would make that parameter lose strength.

With this in mind, assuming that the attacker wants to misclassify one of the clusters,
they can follow two different strategies. On the one hand, one can weaken the impact
of the most-influential weights of the target cluster by adding the multiplication of the
selected noise by the sign of the corresponding gradients. With previous modifications,
the attacker would make those weights have a lower impact on the prediction, achieving
misclassification of the cluster. On the other hand, the second strategy strengthens the
most-influential parameters associated with the rest of the clusters. This is accomplished
by subtracting the multiplication of the noise by the sign of the corresponding gradients.
In this way, these weights would gain impact in the prediction, transferring data from the
target cluster to the other clusters.

The second approach could lead to worse results because it can modify some weights
without control. For example, assuming a dataset A containing three different clusters,
A = C1 ∪ C2 ∪ C3, where Wi is the selected weights assigned to Ci, and C1 is the targeted
cluster to misclassify. Then, the second method would modify W2 and W3, strengthening
those weights and converting elements from C1 to C2 or C3. However, items from C2
could convert to C3 and vice versa since strengthening of W2 and W3 affects to C1 ∪ C3
and C1 ∪ C2, respectively. That would not happen with the first method because it is more
focused on C1, reducing the impact of W1, which directly affects C1.

4. Experiment

In this work, the proposed new version of the weight modification attack was imple-
mented to the targeted model, a classifier of cancerous and non-cancerous breast tissues.
The model is composed of a convolutional part and a dense part; the convolutional block is
in charge of extracting features from the input data, whereas the dense part classifies those
data using the computed features. In this experiment, the goal is to misclassify a targeted
cluster by modifying the weights of the first layer of the dense block.

First, this section describes the dataset used for the analysis. Next, the model selected
to be attacked is detailed. Then, the experiment is described, detailing how the attack is
managed. Finally, configuration parameters of the experiment are shown.

4.1. Dataset

The Breast Histopathology Images dataset has been used for this experiment. Breast
cancer is the most common form of cancer in women, and invasive ductal carcinoma (IDC)
is the most common form of breast cancer. The dataset consists of 277,524 patches of
size 50 × 50 of breast tissues with 198,738 IDC negative and 78,786 IDC positive [29,30].
Moreover, those images are labeled by zero (IDC negative) if the tissue does not have
cancer and one (IDC positive) if cancer is present. This dataset (https://www.kaggle.

https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://www.kaggle.com/paultimothymooney/breast-histopathology-images

Appl. Sci. 2022, 12, 3725 7 of 15

com/paultimothymooney/breast-histopathology-images, accessed on 5 April 2022) is
open-access, and it contains 2 GB of images.

For the experiment, the dataset is divided into two subsets: training data (70%) and
test (30%) data, as is usual in this type of study [31,32]. A stratified train–test split is used
to preserve proportions of classes from the original dataset. The training dataset is used to
train the model detailed in Section 4.2, while the test data is used to measure the obtained
results of the experiment.

4.2. Model

The analyzed model is a convolutional neural network. It is built by the convolutional
block of the VGG16 neural network and a multi-layer perceptron (MLP) model. In total,
the complete model contains 21 layers (Table 1), and the first 18 layers (VGG16 part) are
pre-trained using the ImageNet dataset. The completed model was trained with the dataset
presented in Section 4.1, thus it learned to classify the breast tissue images.

Table 1. Target model structure.

Layer Name Layer Type Input Size Output Size

input_2 InputLayer (50, 50, 3) (50, 50, 3)
block1_conv1 Conv2D (50, 50, 3) (50, 50, 64)
block1_conv2 Conv2D (50, 50, 64) (50, 50, 64)
block1_pool MaxPooling2D (50, 50, 64) (25, 25, 64)

block2_conv1 Conv2D (25, 25, 64) (25, 25, 128)
block2_conv2 Conv2D (25, 25, 128) (25, 25, 128)
block2_pool MaxPooling2D (25, 25, 128) (12, 12, 128)

block3_conv1 Conv2D (12, 12, 128) (12, 12, 256)
block3_conv2 Conv2D (12, 12, 256) (12, 12, 256)
block3_conv3 Conv2D (12, 12, 256) (12, 12, 256)
block3_pool MaxPooling2D (12, 12, 256) (6, 6, 256)

block4_conv1 Conv2D (6, 6, 256) (6, 6, 512)
block4_conv2 Conv2D (6, 6, 512) (6, 6, 512)
block4_conv3 Conv2D (6, 6, 512) (6, 6, 512)
block4_pool MaxPooling2D (6, 6, 512) (3, 3, 512)

block5_conv1 Conv2D (3, 3, 512) (3, 3, 512)
block5_conv2 Conv2D (3, 3, 512) (6, 6, 512)
block5_conv3 Conv2D (3, 3, 512) (3, 3, 512)
block5_pool MaxPooling2D (3, 3, 512) (1, 1, 512)

flatten_1 Flatten (1, 1, 512) (512)
dense_2 Dense (512) (256)
dense_3 Dense (256) (2)

4.3. Weight Modification

In this work, the attack exploits the dense part of the detailed model; specifically,
the first fully connected layer is the target of the weight modification attack. Briefly, we
start by searching different image clusters from the breast cancer image dataset presented
in Section 4.1. For each clustering, the attack described in Section 3 is applied and the
results are discussed in Section 5.

Once the model is trained, 2000 well-classified images (1000 per class) are selected
randomly from the test data. The misclassified images are discarded from the test data
since the internal behavior of the model is different or abnormal in those cases. This
selected subset of images is separated by classes, generating two initial clusters. Next,
the feature vectors of the images are obtained through the convolutional network (Figure 3).
In this case, the first layer of the dense part is considered the targeted layer. The output of
the convolutional block is a feature vector, where the output values of the convolutional
layers from the vector are assigned to an input neuron of the dense block. Therefore, if the
most-influential features in the prediction are known, the input neurons with the highest

https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://www.kaggle.com/paultimothymooney/breast-histopathology-images

Appl. Sci. 2022, 12, 3725 8 of 15

impact are detected. With this in mind, the influence of the densest input neurons is studied
through the computed feature vectors.

Figure 3. The process of cluster and feature obtention.

The gradient is used as a metric of prediction impact to obtain the most-influential,
densest input neurons. Once all gradients are calculated, two sets of the same size of
gradient vectors are obtained (Figure 4). Note that a gradient vector of the same dimension
is obtained for each feature vector. Each group contains various important values of the
input neurons. Specifically, one value is assigned to a neuron for each gradient vector in the
gradient set. Since a single value per feature is desired, the mean of the absolute value of all
gradients associated with an input neuron is selected as a representative value indicating
the impact level of the feature. Therefore, a single gradient vector is computed from each
gradient set. The values of these vectors indicate the importance of the input features in
predicting the selected cluster. Both clusters can share some highly influential features,
but modifying the corresponding weights could also misclassify unwanted input data.
Therefore, when choosing meaningful attributes for generating the attack on the specified
cluster, it is essential to discard the features shared with the rest of the clusters (Figure 5).

In the model used for the experiment, the input layer interacts with 131,072 (512× 256)
weights, where 256 are associated with each input neuron. So once the 0 < krow ≤ 512
most-influential neurons are selected, note that 256 specific weights could be modified for
each one. Therefore, the highest 0 < kcol ≤ 256 values in each row were selected, obtaining
the final weights to be manipulated. In other words, k = krowkcol influential weights are
chosen for each defined cluster. However, the shared influential weights (the parameters
that appear as influential in more than one cluster) are removed, maintaining 0 < ki ≤ k
influential weights associated with the cluster i.

With the influential weights selected for each defined cluster, an attempt is made to
misclassify each image from the selected cluster. Both strategies described in Section 3 are
used, i.e., adding noise to the parameters associated with the cluster to be misclassified
and subtracting noise from the weights associated with the clusters that we do not want
to manipulate. Each of these methods obtains different results for each class, which are
presented and discussed in Section 5.

Appl. Sci. 2022, 12, 3725 9 of 15

Figure 4. The process to obtain the gradient per cluster.

Figure 5. The process to select the input neurons with highest impact on the prediction.

4.4. Experiment Parameters

The experiment depends on the configuration of the following parameters that allow
varying numbers of modified weights, the targeted cluster, and the strategy used:

• k:= the upper limit of the number of modified weights.
• cn:= the cluster n to be misclassified, where n ∈ N.
• m f := the method used to incorporate the noise, where f ∈ {sum, sub}. Note that, sum

indicates the summation method and sub indicate the subtraction method.
• ε:= magnitude of the noise added in each step.
• s:= number of steps used to generate the attack.

Moreover, these parameters define a configuration (k, m f , cn, ε, s), where the attack is
implemented with k modified weights, m f indicates the method used, with the target cluster
cn using ε magnitude noise and s number of steps. For each (k, m f , cn, ε, s) configuration,
the accuracy of each cluster defined in the input data is shown in Section 5. Suppose that
φ is the attacked model and lcp are the original labels of the elements in a certain cluster
cp, then

r
(k,m f ,cn ,ε,s)
cp =

|{a ∈ cp|φ(a) = lcp}|
|cp|

(1)

Appl. Sci. 2022, 12, 3725 10 of 15

is the result of the cp for the configuration (k, m f , cn, ε, s). Defining C as the cluster with the
complete input data, suppose C = {c1, c2..., ct} is the set of defined clusters of the input
data, 1 ≤ n ≤ t and the configuration (k, m f , cn, ε, s) is used to generate the attack, then

R(k, m f , cn, ε, s) =

1 +

(
∑t

i=1
i 6=n

r
(k,m f ,cn ,ε,s)
ci − r

(k,m f ,cn ,ε,s)
cn

)
t + 1

(2)

is the main result of the analysis of the (k, m f , cn, ε, s) configuration. Observe that it is in the

interval [0, 1]. Note that, when the result r
(k,m f ,cn ,ε,s)
cn decreases, R(k, m f , cn, ε, s) increases,

and vice-versa if the result r
(k,m f ,cn ,ε,s)
cn increases. Moreover, if the ∑t

i=1
i 6=n

r
(k,m f ,cn ,ε,s)
ci decreases,

R(k, m f , cn, ε, s) decreases, and vice-versa. Therefore, a high R(k, m f , cn, ε, s) value means
that the attack is misclassifying mostly the target cluster, and a low R(k, m f , cn, ε, s) value
means that the attack is misclassifying mostly the rest of the defined clusters. In other words,
the objective of the attacker is to achieve as high a value of R(k, m f , cn, ε, s) as possible.

5. Results and Discussion

In this work, with the goal of avoiding an excessive number of options, the parameters
ε and s are fixed at 0.01 and 500, respectively. Therefore,

(k, m f , cn, ε, s) = (k, m f , cn, 0.01, 500) := (k, m f , cn) (3)

As mentioned in Section 4, in this case, the classes are taken as clusters. That is why
the investigation is divided into two main analyses, (k, m f , c0) and (k, m f , c1), where c0
refers to the cluster of class 0 and c1 refers to the cluster of class 1.

The experiment begins by analyzing (k, m f , c0). Table 2 shows the results from varying
k and m f . Concerning k, all integers between (26, 14,400) are tested, but the results shown
in the table are selected according to the highest values of R(k, msum, c0) and R(k, msub, c0).
The five highest results of each are shown.

Table 2. The best results obtained in the analysis (k, m f , c0).

k r(k,msub ,c0)
c0 r(k,msub ,c0)

c1 r(k,msum ,c0)
c0 r(k,msum ,c0)

c1

961 0.077 1 0.09 1
1089 0.068 1 0.101 0.999
2809 0.073 1 0.063 1
2916 0.079 1 0.047 1
3025 0.11 0.999 0.027 1
3249 0.082 0.998 0.044 0.992
3364 0.154 0.992 0.033 0.996
3481 0.16 0.991 0.032 0.997
3600 0.164 0.989 0.032 0.996
4356 0.148 0.995 0.036 1

Therefore, Table 2 shows that in both strategies, (k, msum, c0) and (k, msub, c0), the accu-
racy of c0 is successfully reduced. However, the summation method achieves better results
by misclassifying c0 and keeping the accuracy of c1 unmutated. Moreover, R(k, m f , c0)
was monitored (Figure 6) during the noise incorporation process. Figure 6 shows how
R(k, m f , c0) evolved when noise was added to the weights. It can be noticed how the initial
modification has a high impact, while as more noise is added, there is less impact on the
accuracy. It even reaches the point where new noise no longer impacts the predictions.

Appl. Sci. 2022, 12, 3725 11 of 15

(a) (b)

Figure 6. Monitoring of (a) R(k, msub, c0) and (b) R(k, msum, c0) during the noise addition process.

In the case of analyzing (k, m f , c1), Table 3 shows the best results obtained from (k, msub, c1)
and (k, msum, c1) for different values of k. The top five were selected from each one accord-
ing to R(k, m f , c1).

Table 3. This table shows the best results obtained in the analysis (k, m f , c1).

k r(k,msub ,c1)
c1 r(k,msub ,c1)

c0 r(k,msum ,c1)
c1 r(k,msum ,c1)

c0

961 0.006 1 0.003 1
1024 0.013 1 0.003 1
1089 0.011 1 0.001 1
2916 0 1 0.005 1
3025 0 1 0.007 1
3600 0 1 0.023 1
3721 0.001 1 0.007 1
3844 0.001 1 0.006 1
4624 0 1 0.087 1
4761 0 1 0.114 1

Table 3 shows that the attack manages to successfully reduce the accuracy of c1 in
both strategies, (k, msum, c1) and (k, msub, c1). However, in this case, the subtraction method
achieves better results by misclassifying c1 while keeping the accuracy of c0 unchanged.
Moreover, R(k, m f , c1) was monitored (Figure 7) during the noise incorporation process.
Figure 7 shows how R(k, m f , c1) evolved when the noise was being added to the weights.
It can be noticed how the initial modification has a high impact, while as more noise is
added, it has less impact on accuracy. It even reaches the point where new noise no longer
impacts the predictions.

Comparing both (k, m f , c0) and (k, m f , c1), the results are similar. However, in (k, m f , c0),
msum performs the best, while in (k, m f , c1), msub has the best results. Moreover, there ex-
ists a small gap between the results of (k, m f , c0) and (k, m f , c1). Thus, the attack is more
successful when misclassifying c1. This may be because the model classifies class 0 images
better than class 1 images. Such knowledge could help the attacker decide what cluster
to attack.

Deeper Clusterization

Once the previous attacks are analyzed, other clusters are searched in the already
defined clusters c0 and c1 in order to develop a more guided and precise attack. Supposing
n ∈ {0, 1}, the goal is to find and misclassify a new subcluster c0

n (cn while the others,
c1

n := cn \ c0
n and c|n−1|, are well-classified. Notice that,

cn = c0
n ∪ c1

n (4)

Appl. Sci. 2022, 12, 3725 12 of 15

and

c|n−1| =

{
c0 si n = 1
c1 si n = 0

(5)

(a) (b)

Figure 7. The monitoring of (a) R(k, msub, c1) and (b) R(k, msum, c1) during the noise addition process.

The first method to detect c0
n is by visualization implemented through the PCA algo-

rithm [33], which may help us find possible subclusters inside c0 and c1. The proposed
visualization is applied to the complete set of data to check if clusters c0 and c1 are dis-
tinguishable (Figure 8). The color of the visualization represents the mean distance of
specific input data to the other samples. For visualization generation, the Hamming and
the Euclidean distances are tested in the plots.

(a) (b) (c)

Figure 8. The projection of the feature vectors generated by the PCA algorithm: (a) colors the dots
using Euclidean distance, while (b) colors the dots by Hamming distance. In addition, (c) shows how
the elements of each class are distributed, where the blue ones are labeled by zero and the red ones
are labeled by one.

Figure 8a with the Euclidean distance shows possible separation between two cluster
that may coincide with the Figure 8c, where the color is labeled by model classes. Mean-
while, if the Hamming distance is used (Figure 8b), no differentiated subsets are found.
For this reason, the visualization based on Euclidean distance is implemented to try to find
subclusters in each cn (Figure 9).

Plots in Figure 9 show possible subclusters in c0 and c1, respectively. If darker samples
are grouped in a concrete zone, this could be interpreted as desired subclusters. Thus, two
algorithms based on Euclidean distance are implemented to isolate those possible subsets:
K-means [34] and DBSCAN [35]. However, neither K-means nor DBSCAN can separate
those possible subclusters successfully. Every generated c0

n did not have any particular
influential weight compared to c1

n. In other words, the values obtained in R(k, m f , c0
n)

and R(k, m f , c1
n) with n in {0, 1} were less than 0.5, i.e., the attacks were not successfully

pursued, requiring further research and a more complex approach.

Appl. Sci. 2022, 12, 3725 13 of 15

(a) (b)

Figure 9. The projection of the feature vectors generated by the PCA algorithm: (a) represents the
elements from c0 and (b) represents the elements from c1.

6. Conclusions and Future Work

This work presents a new version of the weight modification attack. Moreover, it was
proven that it successfully attacks the clusters formed by the model’s classes. Both classes of
images are misclassified, reducing their accuracy considerably. Notably, cluster one, which
began with 100% accuracy, ended with 0% accuracy, while cluster zero maintained 100%
accuracy. In the same way, attacking cluster zero, initial accuracy was successfully reduced
to 2.7% while maintaining the other cluster’s accuracy at 100%. Therefore, this investigation
presents a successful new version of the fault injection attack, showing a possible threat that
a deep learning model can contain.

This paper presents the proof-of-concept in a model with two classes with a specific
dataset. However, the presented attack could be implemented for a model with more
classes or with other datasets. In the same way, it may be good to misclassify smaller
subclusters to increase the focus of the attack, but this must be demonstrated in future
work. These cluster-detection methods can continue to be investigated and analyzed to
determine if the identified clusters can specialize the attack. Moreover, other strategies to
define clusters can be presented and studied. For example, another method to detect those
clusters could be via the model’s behavior, focusing on activation of the neurons.

The experiments in this paper only analyzed the sensitivity of the parameter k. Future
work to be considered includes analyzing the effects of modifying the rest of the attack
configuration parameters. Furthermore, in the presented version, the attacker manually
selects the layer used for the attack without further information about the vulnerability of
the parameters in that layer. An initial cross-layer analysis could be formulated to optimize
the success of the attack and guide the attacker to optimize layer selection.

Author Contributions: X.E.-B. and A.G.-L. designed and implemented the experimental testbed and
algorithm. R.O.-U. and I.M. supervised the experimental design and managed the project. R.O.-U.
and I.M. reviewed the new approach of this research. X.E.-B. performed the experimental phase. All
authors contributed to the writing and reviewing of the present manuscript. All authors read and
agreed to the published version of the manuscript.

Funding: This research has been partially funded by European Union’s Horizon 2020 research and
innovation programme project SPARTA and by the Basque Government under ELKARTEK project
(LANTEGI4.0 KK-2020/00072).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 3725 14 of 15

References
1. Finlayson, S.G.; Bowers, J.D.; Ito, J.; Zittrain, J.L.; Beam, A.L.; Kohane, I.S. Adversarial attacks on medical machine learning.

Science 2019, 363, 1287–1289. [CrossRef] [PubMed]
2. Sharma, P.; Austin, D.; Liu, H. Attacks on machine learning: Adversarial examples in connected and autonomous vehicles. In

Proceedings of the 2019 IEEE International Symposium on Technologies for Homeland Security (HST), Woburn, MA, USA,
5–6 November 2019; pp. 1–7.

3. Akhtar, N.; Mian, A. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access 2018, 6, 14410–14430.
[CrossRef]

4. Deng, Y.; Zhang, T.; Lou, G.; Zheng, X.; Jin, J.; Han, Q.L. Deep learning-based autonomous driving systems: A survey of attacks
and defenses. IEEE Trans. Ind. Inform. 2021, 17, 7897–7912. [CrossRef]

5. Chakraborty, A.; Alam, M.; Dey, V.; Chattopadhyay, A.; Mukhopadhyay, D. A survey on adversarial attacks and defences. CAAI
Trans. Intell. Technol. 2021, 6, 25–45. [CrossRef]

6. Mozaffari-Kermani, M.; Sur-Kolay, S.; Raghunathan, A.; Jha, N.K. Systematic poisoning attacks on and defenses for machine
learning in healthcare. IEEE J. Biomed. Health Inform. 2014, 19, 1893–1905. [CrossRef] [PubMed]

7. Yang, C.; Wu, Q.; Li, H.; Chen, Y. Generative poisoning attack method against neural networks. arXiv 2017, arXiv:1703.01340.
8. Biggio, B.; Pillai, I.; Rota Bulò, S.; Ariu, D.; Pelillo, M.; Roli, F. Is data clustering in adversarial settings secure? In Proceedings of

the 2013 ACM Workshop on Artificial Intelligence and Security, Berlin, Germany, 4 November 2013; pp. 87–98.
9. Corona, I.; Giacinto, G.; Roli, F. Adversarial attacks against intrusion detection systems: Taxonomy, solutions and open issues. Inf.

Sci. 2013, 239, 201–225. [CrossRef]
10. Jiang, W.; Li, H.; Liu, S.; Luo, X.; Lu, R. Poisoning and evasion attacks against deep learning algorithms in autonomous vehicles.

IEEE Trans. Veh. Technol. 2020, 69, 4439–4449. [CrossRef]
11. Lee, S.J.; Yoo, P.D.; Asyhari, A.T.; Jhi, Y.; Chermak, L.; Yeun, C.Y.; Taha, K. IMPACT: Impersonation attack detection via edge

computing using deep autoencoder and feature abstraction. IEEE Access 2020, 8, 65520–65529. [CrossRef]
12. Globerson, A.; Roweis, S. Nightmare at test time: Robust learning by feature deletion. In Proceedings of the 23rd International

Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 353–360.
13. Fredrikson, M.; Jha, S.; Ristenpart, T. Model inversion attacks that exploit confidence information and basic countermea-

sures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
12–16 October 2015; pp. 1322–1333.

14. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings
of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–24 May 2017; pp. 3–18.

15. Ateniese, G.; Mancini, L.V.; Spognardi, A.; Villani, A.; Vitali, D.; Felici, G. Hacking smart machines with smarter ones: How to
extract meaningful data from machine learning classifiers. Int. J. Secur. Netw. 2015, 10, 137–150. [CrossRef]

16. Nguyen, T.N. Attacking Machine Learning models as part of a cyber kill chain. arXiv 2017, arXiv:1705.00564.
17. Wang, B.; Gong, N.Z. Stealing hyperparameters in machine learning. In Proceedings of the 2018 IEEE Symposium on Security

and Privacy (SP), Francisco, CA, USA, 21–23 May 2018; pp. 36–52.
18. Liu, Y.; Wei, L.; Luo, B.; Xu, Q. Fault injection attack on deep neural network. In Proceedings of the 2017 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16 November 2017; pp. 131–138. [CrossRef]
19. Zhao, P.; Wang, S.; Gongye, C.; Wang, Y.; Fei, Y.; Lin, X. Fault sneaking attack: A stealthy framework for misleading deep neural

networks. In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019;
pp. 1–6.

20. Rakin, A.S.; He, Z.; Li, J.; Yao, F.; Chakrabarti, C.; Fan, D. T-bfa: Targeted bit-flip adversarial weight attack. IEEE Trans. Pattern
Anal. Mach. Intell. 2021. [CrossRef] [PubMed]

21. Tsai, Y.L.; Hsu, C.Y.; Yu, C.M.; Chen, P.Y. Formalizing Generalization and Adversarial Robustness of Neural Networks to Weight
Perturbations. In Proceedings of the NeurIPS Thirty-Fifth Annual Conference on Neural Information Processing Systems, Virtual,
6–14 December 2021; Volume 34.

22. Weng, T.W.; Zhao, P.; Liu, S.; Chen, P.Y.; Lin, X.; Daniel, L. Towards certificated model robustness against weight perturbations. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 6356–6363.

23. Wang, X.; Wang, S.; Chen, P.Y.; Wang, Y.; Kulis, B.; Lin, X.; Chin, S. Protecting Neural Networks with Hierarchical Random
Switching: Towards Better Robustness-Accuracy Trade-off for Stochastic Defenses. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence (IJCAI-19), Macao, China, 10–16 August 2019; pp. 6013–6019. [CrossRef]

24. Singh, A.; Yadav, A.; Rana, A. K-means with Three different Distance Metrics. Int. J. Comput. Appl. 2013, 67, 13–17. [CrossRef]
25. Norouzi, M.; Fleet, D.J.; Salakhutdinov, R.R. Hamming distance metric learning. In Proceedings of the NeurIPS Twenty-Sixth

Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25.
26. Judd, D.; McKinley, P.K.; Jain, A.K. Large-scale parallel data clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 871–876.

[CrossRef]
27. Abramovich, Y.I. A controlled method for adaptive optimization of filters using the criterion of maximum signal-to-noise ratio.

Radio Eng. Electron. Phys. 1981, 26, 87–95.
28. Gentner, D.; Markman, A.B. Defining structural similarity. J. Cogn. Sci. 2006, 6, 1–20.

http://doi.org/10.1126/science.aaw4399
http://www.ncbi.nlm.nih.gov/pubmed/30898923
http://dx.doi.org/10.1109/ACCESS.2018.2807385
http://dx.doi.org/10.1109/TII.2021.3071405
http://dx.doi.org/10.1049/cit2.12028
http://dx.doi.org/10.1109/JBHI.2014.2344095
http://www.ncbi.nlm.nih.gov/pubmed/25095272
http://dx.doi.org/10.1016/j.ins.2013.03.022
http://dx.doi.org/10.1109/TVT.2020.2977378
http://dx.doi.org/10.1109/ACCESS.2020.2985089
http://dx.doi.org/10.1504/IJSN.2015.071829
http://dx.doi.org/10.1109/ICCAD.2017.8203770
http://dx.doi.org/10.1109/TPAMI.2021.3112932
http://www.ncbi.nlm.nih.gov/pubmed/34529561
http://dx.doi.org/10.24963/ijcai.2019/833
http://dx.doi.org/10.5120/11430-6785
http://dx.doi.org/10.1109/34.709614

Appl. Sci. 2022, 12, 3725 15 of 15

29. Cruz-Roa, A.; Basavanhally, A.; González, F.; Gilmore, H.; Feldman, M.; Ganesan, S.; Shih, N.; Tomaszewski, J.; Madabhushi, A.
Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In Medical Imaging
2014: Digital Pathology; SPIE: Bellingham, WA, USA, 2014; Volume 9041, p. 904103.

30. Janowczyk, A.; Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use
cases. J. Pathol. Inform. 2016, 7, 29. [CrossRef] [PubMed]

31. Reitermanova, Z. Data splitting. In Proceedings of the WDS 2010, Prague, Czech Republic, 1–4 June 2010; Volume 10, pp. 31–36.
32. Krittanawong, C.; Johnson, K.W.; Rosenson, R.S.; Wang, Z.; Aydar, M.; Baber, U.; Min, J.K.; Tang, W.W.; Halperin, J.L.; Narayan,

S.M. Deep learning for cardiovascular medicine: A practical primer. Eur. Heart J. 2019, 40, 2058–2073. [CrossRef] [PubMed]
33. Ding, C.; He, X. Principal component analysis and effective k-means clustering. In Proceedings of the 2004 SIAM International

Conference on Data Mining, Lake Buena Vista, FL, USA, 22–24 April 2004; pp. 497–501.
34. Pham, D.T.; Dimov, S.S.; Nguyen, C.D. Selection of K in K-means clustering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2005,

219, 103–119. [CrossRef]
35. Deng, D. DBSCAN clustering algorithm based on density. In Proceedings of the 2020 7th International Forum on Electrical

Engineering and Automation (IFEEA), Hefei, China, 25–27 September 2020; pp. 949–953.

http://dx.doi.org/10.4103/2153-3539.186902
http://www.ncbi.nlm.nih.gov/pubmed/27563488
http://dx.doi.org/10.1093/eurheartj/ehz056
http://www.ncbi.nlm.nih.gov/pubmed/30815669
http://dx.doi.org/10.1243/095440605X8298

	Introduction
	Background
	Methodology
	Identifying Input Data Clusters
	Selection of the Most-Influential Weights
	Modification of the Selected Weights

	Experiment
	Dataset
	Model
	Weight Modification
	Experiment Parameters

	Results and Discussion
	Conclusions and Future Work
	References

