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Abstract  

In everyday-life scenarios, prior expectations provided by the context in which actions are 

embedded support action prediction. However, it is still unclear how newly learned action-context 

associations can drive our perception and motor responses. To fill this gap, we measured behavioral 

(Experiment 1) and motor responses (Experiment 2) during two tasks requiring the prediction of 

occluded actions or geometrical shapes. Each task consisted of an implicit probabilistic learning and 

a test phase. During learning, we exposed participants to videos showing specific associations 

between a contextual cue and a particular action or shape. During the test phase, videos were earlier 

occluded to reduce the amount of sensorial information and induce participants to use the implicitly 

learned action/shape-context associations for disambiguation. Results showed that reliable 

contextual cues made participants more accurate in identifying the unfolding action or shape. 

Importantly, motor responses were modulated by contextual probability during action, but not shape 

prediction. Particularly, in condition of perceptual uncertainty the motor system coded for the most 

probable action based on contextual informativeness, regardless from action kinematics. These 

findings suggest that contextual priors can shape motor responses to action observation beyond 

mere kinematics mapping. 
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1. Introduction 

A vast body of evidence suggests that our brain is constantly involved in actively interpreting the 

outside world in a predictive manner (e.g., Bubic et al., 2010). This is particularly relevant in social 

situations, where we need to not only interpret what others have done, but also anticipate what they 

are going to do next to successfully interact with them in a timely manner. In this vein, our ability to 

read others’ intentions from observing their actions plays a crucial role in everyday life experiences, 

where others’ movement kinematics provide key information that allows intention decoding (e.g., 

Bisio et al. 2010; Sartori et al. 2011; Stapel et al. 2012; D’Ausilio et al. 2015; Cavallo et al. 2016; 

De Marco et al. 2020). Crucially, observing others’ actions activates matching motor 

representations in the onlooker’s motor system (Fadiga et al. 1995), in a mechanism referred to as 

‘motor resonance’. This motor resonant mechanism tends to map the observed movement 

kinematics, but it is also modulated by higher-level aspects of the observed action (Betti et al. 2015; 

Finisguerra et al. 2018).  

According to Grafton and Hamilton (2007), an action can be described at different levels in a 

hierarchical way, from lower levels, in which muscle activation pattern and kinematic profile of the 

action are represented, to the highest ones, representing the goal and the intention underlying a 

particular movement. Even if motor resonance is sensitive to the low-level features of an observed 

action, when the stimulus complexity increases going from the presentation of the sole movement 

kinematics to the presentation of the same movement embedded in a more complex, ecological 

scenario, motor resonance also appears to be modulated by high-level information (see Amoruso 

and Finisguerra 2019 for a review). Given that we usually observe others’ actions in contexts, high-

level information (i.e., the action intention) can be triggered also by contextual cues, which then 

constitute an important source of information for top-down predictions (e.g., Bar 2003; Fenske et al. 

2006; Trapp and Bar 2015). According to the hierarchical feedback model of social perception 

proposed by Kilner and colleagues (2007), the predictive involvement of the motor system during 
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action observation combines information provided by the observed action (likelihood) and the 

observer’s knowledge (prior), trying to minimize the mismatch between the observed and the 

expected movements (prediction error). In this Bayesian framework, the ability to recognize 

someone’s action and underlying intention appears then to rely on the combination of bottom-up 

sensory inputs provided by the observed movement kinematics and of top-down predictions on the 

likely cause of the behavior, thus reflecting previous experiences (e.g., Brown and Brüne 2012; 

Amoruso and Urgesi 2016; Amoruso et al. 2016, 2018a). 

An increasing number of studies have attempted to investigate how action prediction is influenced 

by both prior beliefs and sensory information (e.g., Chambon et al. 2011, 2017; Hudson et al. 2016; 

Amoruso et al. 2019; Koul et al. 2019). For example, in a psychophysics study, Koul and colleagues 

(2019) showed that decoding others’ intention is achieved through evidence accumulation, with 

explicit priors affecting more strongly the intentional attribution for an ambiguous and poorly 

informative movement kinematics as compared to a highly informative one. Similarly, by 

manipulating both the informativeness of a cue provided before the observation of an action and the 

availability of its kinematic information, Cretu et al. (2019) assessed the combined effect of priors 

and kinematics on motor resonance. To do so, motor-evoked potentials (MEPs) induced by single-

pulse Transcranial Magnetic Stimulation (spTMS) over the hand motor cortex (M1) were measured 

as a proxy for corticospinal excitability (CSE) during the observation of either full or occluded 

whole hand or precision grasping movements. Importantly, movement presentation was preceded 

by an informative or uninformative contextual cue (i.e., a square) that, based on its color, strongly 

suggested (as per arbitrary experimental instructions) a specific grasp or equally suggested a whole 

hand or a precision grasp. The authors demonstrated that providing informative cues boosted the 

muscle-specific CSE facilitation for the expected type of grasp, particularly when the actual 

kinematics was spatially occluded and even in an initial phase of the action before presentation of 

the grasp-typing kinematics (see also, de Beukelaar et al. 2016). Overall, these studies suggest that 
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the perception of an action and the motor responses to it are shaped by the integration of prior 

knowledge and sensory evidence, showing that informative cues can assist action prediction and 

motor resonance, especially for poorly informative kinematics.  

However, these previous studies have mainly adopted explicit informative cues (explicitly 

indicating for example the probability to subsequently encounter an action with a given intention), 

which hardly reflect how we usually learn and refine in a flexible manner our expectations in 

everyday life experience (i.e., ‘contextual expectations’; Series & Seitz, 2013). Indeed, we rarely 

receive explicit information on what others are going to do and why they do so, but we have to 

extract this information from implicit learning of behavioral regularities (e.g., Jacquet et al., 2016).  

In addition, the role of implicitly-learned informative cues embedded in naturalistic contexts (Trapp 

and Bar 2015; Amoruso and Urgesi 2016) has been mostly neglected.  

Recently, Amoruso et al. (2019) developed an experimental paradigm that allowed investigating 

how implicitly-learned associations between contextual cues and movement kinematics biased 

intention prediction in ambiguous social situations. In particular, a probabilistic learning phase 

(Learning) was followed by a prediction task (Test). In the Learning phase, the color of an object in 

the visual scene (contextual cue) was arbitrarily and implicitly associated with actions guided by the 

intention to interact or not with another individual. During the test phase, the same actions were 

presented, but their presentation was earlier occluded, so that the amount of kinematic information 

was reduced. Participants were able to decently predict actions unfolding independently from the 

context in which they were embedded, pointing to a readability of the initial kinematics. However, 

the performance of children (Amoruso et al. 2019) and adults (Bianco et al. 2020) with typical 

development notably improved when actions were embedded in the same context to which they 

were consistently associated in the learning phase. Conversely, individuals with autism spectrum 

disorders (ASD) were not able to capitalize on priors for predicting action unfolding (Amoruso et 

al. 2019), thus bringing out the difficulty characterizing ASD in integrating kinematic information 
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and contextual representations in social contexts (Sinha et al., 2014). In a following study, Bianco 

and colleagues (2020) tested the generalizability of these context-based predictions to non-social 

domains by using, along with the above-mentioned action prediction task, a control task that 

implemented the same probabilistic learning structure, but required the prediction of moving 

geometrical shapes. Furthermore, they extended the findings of a deficit of context-based 

predictions associated to subclinical autistic traits in the general population, as measured by the 

Autistic Quotient (AQ) questionnaire (Baron-Cohen et al. 2001). 

In sum, these previous studies showed that the implicit learning of new contextual priors may aid 

action understanding by complementing information provided by movement kinematics, and that a 

weak relying on these contextual priors is associated with ASD and with subclinical autistic-like 

traits. It remains unclear, however, whether and how these effects are mediated by modulation of 

activity in the observer’s motor cortex. In other words, does the observer’s motor cortex keep 

coding for the observed (reduced, but not obscure) kinematics or does it rely on the most likely 

action given a (reliable) contextual prior? Furthermore, is the motor coding of contextual priors 

specific for the social domain, or does it also extend to the mapping of non-social event likelihood 

(Schubotz and von Cramon 2004)? Finally, are individual differences in the motor coding of 

contextual priors associated to the distribution of autistic traits in the general population?  

To address these issues, we combined the tasks of context-based predictions of actions and shapes 

with spTMS and electromyography (EMG) recording techniques to test CSE facilitation during 

action observation. In Experiment 1, we probed a replication of the effect of contextual priors on the 

prediction of both social and non-social events (Amoruso et al., 2019; Bianco et al., 2020) and of its 

association with autistic traits at a behavioral level. We also probed whether the observers’ 

predictions were influence by the strength of the association between a contextual cue and a 

particular event. Indeed, in our probabilistic learning, we implicitly manipulated the co-occurrence 

of contextual cues (color) and a given event presentation (action/shape) by setting different 



7 

 

probabilities (10%, 40%, 60% and 90% of the trials), so that an event was more or less probable in a 

particular context. Critically, it could also be more or less strongly expected in that context based on 

the strength of the association (i.e., 10-90% and 40-60%, respectively). Therefore, in the high 

expectancy condition, a contextual cue was associated with an action/shape in 10% of the trials (low 

probability) and to a different action/shape in the remaining 90% (high probability). Conversely, in 

the low expectancy condition, the association between a contextual cue and a given event was 

weaker, having the 40% of the trials for the low probable condition and 60% for the high probable 

one. In this way, through the probabilistic manipulation, a contextual prior could more or less 

strongly suggest the incoming presentation of a given event. In Experiment 2, we probed motor 

resonance during observers’ predictions. We first used EMG recording during execution of 

interpersonal and individual actions to identify which muscle activation differentiate them at a 

motor level. Then, we recorded MEPs from these muscles during observation of interpersonal and 

individual action kinematics embedded in contexts that pointed to the same or a different action, as 

implicitly learned in the initial learning phase. Finally, we correlated the strength of these context-

driven CSE modulations to individual autistic traits.  

Behaviorally, in line with previous findings (Amoruso et al. 2019; Bianco et al. 2020), we expected 

participants to be biased towards the implicitly-learned contextual priors in order to facilitate 

predictions of both unfolding actions and shapes, especially in the high expectancy condition, in 

which the learned association was stronger. In motor terms, given the specific role played by the 

motor cortex in action but not shape prediction (Paracampo et al. 2018), a CSE modulation was 

expected to be confined to the action task, whereas no specific modulation was expected for the 

shape control task. Regarding the respective role of the contextual prior versus the action 

kinematics, if the latter is predominant in shaping observers’ motor responses during action 

prediction, then motor resonance should mimic in a muscle-specific way the action predicted on the 

basis of the observed kinematics, regardless of or moderated by contextual information (Amoruso 
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and Urgesi 2016; Amoruso et al. 2016, 2018b; Cretu et al. 2019). Conversely, if information 

derived from contextual priors guides motor responses, at least at the initial stages of action 

perception when the visual input is more ambiguous, then muscle responses should reflect the most 

probable action suggested by the context, in particular for the high expectancy condition, 

independently from the observed kinematics. Based on the findings of a lower reliance on 

contextual prior to predict event unfolding in individuals with higher autistic traits (Amoruso et al. 

2018b; Bianco et al. 2020) or with ASD (Amoruso et al. 2019), we expected lower contextual 

modulation of perceptual and motor responses in individuals with higher autistic traits.  

2. Experiment 1 

2.1. Materials and methods 

2.1.1. Participants 

A total of 32 healthy participants (9 men and 23 women, age range 19-36 years, mean age 22.8 

years) took part in this experiment. We determined the required sample size of this repeated 

measure ANOVA design (numerator df = 1) through the G*Power software (Faul et al., 2007) with 

the “as in Cohen (1988)” option by setting the expected effect size at f (V) = 0.6, the significance 

level at 0.05, and the desired power (1- β) at 0.85. The expected effect size was estimated on the 

basis of previous behavioral studies adopting the same prediction tasks (Amoruso et al. 2019; 

Bianco et al. 2020; Butti et al. 2020) and addressing the effect of context congruency in action 

perception (Amoruso et al. 2018a). The value of the partial eta squared obtained in these studies 

was then averaged resulting in an estimate of partial eta squared (η2
p) = 0.265. The study was 

approved by the local Ethics Committee (Comitato Etico Unico Regionale, Friuli Venezia Giulia, 

Italy) and was carried out in accordance with the ethical standards of the Declaration of Helsinki. 

All participants were naïve to the purposes of the experiment and gave their written informed 

consent for their participation.  
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2.1.2. Stimuli 

Two main types of video clips were adopted as experimental stimuli in two different tasks: 

a) Action videos (see Fig. 1A) depicted the right arm of a male child actor (10 years old) sitting at a 

table in front of a peer during execution of reach-to-grasp movements on one of two objects, 

namely an apple or a glass. These objects could be grasped to perform either an individual or an 

interpersonal action (i.e., grasping-to-eat/drink vs. grasping-to-offer, respectively). The kinematic 

profile of the individual and interpersonal actions differed in how a power grip was executed to 

pursue the two aims: the object was grasped on the side for the individual intentions to eat or drink, 

whereas it was grasped from the top when it was offered to the other child (i.e., interpersonal 

action). Importantly, each action was performed in presence of a specific contextual cue: for the 

actions performed with the apple, these cues were a violet colored dish or an orange one, while for 

the actions performed with the glass, these cues were a white or a blue tablecloth. Thus, a total of 

eight action-context association videos were created. In stimulus preparation, we ensured that the 

kinematics of the actor’s movements for the same action was matched between the two different 

contexts and that the contextual scenario was matched between the two actions. Other aspects of the 

videos (e.g., peer’s arm position or actor’s resting limb posture) could vary across different 

contextual scenarios, but they were always the same for the same action, ruling out that they could 

provide cues in contrast with the plate color (see Amoruso et al., 2019 for validation and further 

details). 

b) Shape videos (see Fig. 1B) depicted a geometrical shape moving from the left side of the screen 

towards a central receptor shape. The shape could be either a right-angle polygon (i.e., a square or a 

rectangle) or an acute-angle polygon (i.e., a parallelogram or a trapezoid). For each video, one of 

two possible receptors was presented, which could have on its left side a concavity to host 

alternatively a right-angle polygon or an acute-angle polygon. While the nature (i.e., right- or acute-

angle polygon) of the moving shape was immediately visible at the beginning of the videos, what 
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specific polygon was presented could be detected only when the horizontal segment appeared to be 

longer (unequal-length sided: rectangle or trapezoid) or of the same length (equal-length sided: 

square or trapezoid) compared to the vertical one. Similar to what was done in the Action videos, 

within the two couples of polygons, each shape could be presented in two different colors, namely 

in orange or violet, for the right-angle polygons, and in white or blue, for the acute-angle polygons. 

Thus, a total of eight shape-context association videos were created (see Bianco et al., 2020 for 

more details).  

 

Figure 1. Experimental stimuli. In the Action videos (A), participants observed a child performing an 

individual (eat or drink; left) or interpersonal (offer; right) action toward an apple (top) or a glass (bottom) 

object. In the Shape videos (B), participants observed a shape, which could be equal-length sided (i.e., 

square, parallelogram; left) or unequal-length sided (i.e., rectangle, trapezoid; right), moving towards a right- 

(top) or acute-angle receptor (bottom). The color of the contextual cues associated with the actions or the 

shapes could be violet/orange and blue/white. 
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2.1.3. Kinematic analysis of the action video stimuli 

To detect kinematic differences and similarities between the observed Action videos, we extracted a 

series of kinematic parameters from the actor’s right hand by using a dedicated software for motion 

analysis (Kinovea 0.8.15). For data reduction, after careful visual inspection of the action sequence 

from the start of the action to the hand-object contact, all videos were divided in five moments (i.e., 

T1, T2, T3, T4, and T5) at which the kinematics parameters were measured. At T1 the child was 

completely still, eventually the reaching movement started (T2), with his hand moving toward the 

object, progressively unveiling distinctive action kinematics based on the hand preshaping and wrist 

trajectory (T3-T4) till the hand-object contact occurred (T5). Specifically, at these time points we 

extracted: i) the “wrist angle”, which was defined as the joint angle obtained by connecting the 

lateral epicondyle of the humerus, the ulnar styloid process and the metacarpophalangeal joint of 

the little finger (Fig. 2A); ii) the “little finger angle”, defined as the joint angle obtained by 

connecting the ulnar styloid process, the metacarpophalangeal and the proximal interphalangeal 

joint of the little finger (Fig. 2B); iii) the “index finger angle”, defined as the joint angle obtained by 

connecting the radial styloid process, the metacarpophalangeal and the proximal interphalangeal 

joint of the index finger (Fig. 2C). These three parameters were extracted for each video. 

Differences between types of action (Individual, Interpersonal) within the same time-frame (from 

T1 to T5) were tested through nonparametric Mann–Whitney U tests. Four repetitions of each type 

of action (Individual, Interpersonal) were considered, based on the two colors of the contextual cues 

for the two objects. Results revealed that a significant difference between individual and 

interpersonal actions for the wrist angle occurred only at T5, at the time of hand-object contact (p = 

0.03; Fig. 2A). Conversely, the little finger angle was significantly wider for individual than 

interpersonal actions from T4, when the hand was approaching the object (ps = 0.03; Fig. 2B), while 

the index finger angle already differentiated between action types since T2, when the hand was 

starting to move toward the object (ps ≤ 0.04; Fig. 2C). Overall, this pattern of results suggests that 



12 

 

the considered kinematic parameters differently contributed over time to differentiate between 

action types, with some indexes providing differential information from an early phase of the 

actions, and others showing a dissimilar pattern for individual and interpersonal actions only when 

the hand approached the object. Crucially, only in the last part of the movement (i.e., at T5, 

approximately two frames before the hand contact with the object as shown during the learning 

phase) all parameters clearly differentiated the individual from the interpersonal action. Differently, 

in the first part of the movement, the two actions could be only partially differentiated. This allows 

the observers to decode the observed intentional actions through evidence accumulation over time.  

 

Figure 2. Kinematic parameters (left) and corresponding results (mean ± SEM; right) extracted for the wrist 

angle (A), the little finger angle (B), and the index finger angle (C) for the reach-to-grasp individual (solid 
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line) and interpersonal (dashed line) actions performed by the actor at five moments (T1-T5). Asterisks 

indicate statistically significant differences (p < 0.05) between types of action within each time frame. 

2.1.4. Procedure 

A within-subject design was used. It consisted in two sessions lasting approximately 20 minutes 

each, during which participants were asked to perform either an Action Prediction Task or a Shape 

Prediction Task (Amoruso et al. 2019; Bianco et al. 2020). Action and Shape videos were presented 

during Action and Shape prediction tasks, respectively. The order of the two sessions was 

counterbalanced between participants. Participants were asked to sit in front of a computer screen 

located about 60 cm from their faces. Before each session, instructions about the tasks and the 

experimental structure were given to the participants. Plus, they were introduced to the two objects 

of the action videos and to paper made reproductions of the four shapes, and received a 

demonstration of the different manipulations to grasp the objects or of the differences between the 

shapes in their form and length. Each task comprised a probabilistic learning phase followed by a 

test phase, each repeated twice, for a total of four blocks. Learning and Test phases were repeated 

and alternated to maintain the implicitly learned association and prevent any possible attenuation of 

the effect over time due to the equiprobable video presentation characterizing the Test phase. 

In both phases, participants were requested to respond in a two-alternative forced choice (2AFC) 

task, indicating which type of action (eat vs. offer; drink vs. offer) or shape (square vs. rectangle; 

parallelogram vs. trapezoid) was shown.  

During the two learning blocks (80 trials each), participants implicitly learned the association 

between contextual cues and events. In this phase, videos were stopped shortly before the target 

event realization, namely two frames before the hand made full contact with the object for the 

Action session, or when the geometrical shape was almost completely visible while getting closer to 

the receptor for the Shape session (25 frames, see Fig. 3). Critically, the eight videos for each task 

were presented for an unequal number of trials, thus the presentation of the action/shape context 
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associations was manipulated to bias the predictability of each action/shape depending on the 

contextual cue. Specifically, prior expectations were implicitly manipulated by setting different 

expectancy and probabilities (i.e., 10%, 40%, 60% or 90%) for the co-occurrence of contextual cues 

(color) and actions/shapes presentation (4, 16, 24 and 36 trials in total, respectively). For example, 

in the Action session, we could have biased 10-90% the action-cue association for the apple videos, 

having the motor intention ‘to offer’ combined with the presence of the violet plate in 90% of the 

trials (high expectancy, high probability), while in the other 10% of the trials the same action was 

associated to the orange plate (high expectancy, low probability). Accordingly, the ‘to eat’ action 

was associated with the orange plate in 90% of the trials (high expectancy, high probability), 

whereas in only 10% of the trials it was associated with the violet plate (high expectancy, low 

probability). Differently, for the glass videos, we biased at 40-60% the action-cue association, 

having the motor intention ‘to offer’ combined with the presence of the white tablecloth in 60% of 

the trials (low expectancy, high probability), while in the other 40% it was combined with the blue 

tablecloth (low expectancy, low probability). The opposite color association was true for the ‘to 

drink’ intention. As such, we manipulated the expectancy of an event given the context, having 

strongly or moderately informative context-based expectation associated to a specific object or pair 

of polygons: high expectancy for 90-10% versus low expectancy for 60%-40%. At the same time, 

within each level of expectancy, we manipulated the probability of an event given the context, 

which could be either low (i.e., 10% or 40%) or high (i.e., 90% or 60%). It is noteworthy that this 

probabilistic structure was kept identical throughout each session for each participant, but the 

association between a given color and each action/shape was fully counterbalanced between 

participants. For each block, videos were randomly presented.  

In the subsequent Test phase blocks (40 trials each), the same task was administered, but the 

amount of visual information was reduced by shortening the videos so that they stopped much 

earlier (i.e., only the first 15 frames were shown from the original 25 frames; see Fig. 3). With 

respect to the Action Prediction task, even if the initial reaching of the action could still contain 
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kinematic information to distinguish the two actions, the later hand pre-shaping that could clearly 

differentiate between the two grasping movements was occluded (see par. 2.1.3). Regarding the 

Shape Prediction task, the left half of the longer moving shapes was partially occluded, even if 

minimal information about the respective length of the horizontal axes was still available, thus 

hindering the detection of the vertical/horizontal segment ratio and the discrimination within each 

couple of polygons. This way, we aimed to induce participants to rely on the previously learned 

action/shape – context associations to predict the target events under perceptual uncertainty. In the 

Test phase, differently from the Learning phase, all possible action/shape-context associations were 

equally presented. Each association was then presented five times per block, for a total of 10 trials 

across the two blocks (i.e., 20 trials for each probability). To summarize, for each experimental 

session, participants performed 160 Learning and 80 Test trials, for a total of 240 trials.  

At the end of the experiment, participants filled out the Italian version of the Autism Spectrum 

Quotient (AQ) questionnaire (Baron-Cohen et al. 2001; Ruta et al. 2012) to quantify the amount of 

autistic-like traits across five domains – social skills, attention switching, attention to detail, 

communication, and imagination. This self-report questionnaire comprises 50 questions and higher 

scores are associated with higher traits related to the autism spectrum.  

2.1.5. Trial structure 

Stimuli were presented using the E-Prime V2 software (Psychology Software Tools, Inc., 

Pittsburgh, PA, United States) on a 24’’ monitor (resolution 1920 x 1080 pixels, refresh rate 60 Hz). 

The trial structure is represented in Figure 3. Each trial started with a two-second presentation of a 

fixation cross at the center of the screen to ensure all participants started observing the videos from 

the same spatial position. The overall trial structure was the same in the Learning and Test phases 

but videos lasted 833.33 ms (25 frames) in Learning blocks and 500 ms (15 frames) in Test blocks. 

Two verbal descriptors (in Italian) of the response alternatives were shown at the bottom of the 

screen; they referred to the possible overarching intentions underlying the grasping action for the 
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Action session (e.g., to eat vs. to offer) or to the type of shape presented (e.g., square vs. rectangle). 

Participants were requested to respond by pressing with their left or right index fingers the “Z” and 

“M” keys on a QWERTY keyboard, to report the left- or the right-sided descriptor, respectively. 

The descriptors were presented at the end of video presentation in the learning phase, to ensure 

participants were exposed to whole video presentation before responding, while they were shown 

since the beginning of video presentation in the Test phase, to ensure participants could respond as 

soon as they figured out the outcome of the action or the moving shape using both sensorial and 

contextual cues. The keys were covered with stickers to make them easily recognizable. The 

location of the two descriptors was fixed during the task for a participant, but it was 

counterbalanced between participants. 

 

Figure 3. Example of trial structure used in Experiment 1 for the Action (A) and Shape (B) videos. Each trial 

began with a fixation cross presentation (2,000 ms), followed by the video clip lasting 833.33 ms for the 

Learning and 500 ms for the Test phase. Participants were requested to respond with their index fingers 

when the verbal descriptors of the two possible intentions or shapes were presented at the bottom of the 

screen.  
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2.1.6. Data handling 

All the analyses were performed using the STATISTICA software (StatSoft Inc., version 8, Tulsa, 

OK, USA). The partial eta squared (η2
p) value was used as an estimate of effect size. Post hoc 

analysis was performed using Duncan’s test correction. A significance threshold of 0.05 was set for 

all statistical analyses. 

Individual performance in carrying out the two prediction tasks was measured through d prime 

values (d’), a bias-corrected measure of sensitivity in discriminating between two categories, 

according to the signal detection theory (Macmillan and Kaplan 1985; Stanislaw and Todorov 

1999). Higher values of d’ are indicative of a greater sensitivity to discriminate between the two 

action outcomes or the two shapes. Response bias was estimated by means of response criterion (c), 

which expresses to what extent one response is more biased towards the other, regardless of 

sensitivity (Green and Swets 1966). The d’ was calculated as the difference between the normalized 

z values of the proportions of Hit (H) and False Alarm (FA) rate (d’ = zH- zFA; Stanislaw and 

Todorov, 1999). For H in the Action task we considered Individual actions (eat the apple, drink the 

water) identified as “Individual action”, whereas FA referred to Interpersonal actions (offer the 

apple, offer the water) identified as “Individual action”. Similarly, for the Shape task, H referred to 

equal-length sides shapes (square, parallelogram) identified correctly, whereas FA referred to 

unequal-length sided shapes (rectangle, trapezoid) identified incorrectly. The c measure was 

computed by averaging the normalized z values of the H and FA rates, then multiplying the result 

by -1 [c = –(zH + zFA)/2]. In this context, c values close to 0 suggested no bias, negative c values 

suggested a tendency in reporting an individual action or an equal-length sided shape, while 

positive values suggested a tendency to report an interpersonal action or an unequal-length sided 

shape. To check whether the contextual probabilistic learning affected the speed at which 

participants made their predictions in the Test phase, we also analyzed reaction times (RTs). 

All data were checked for normality distribution using the Kolmogorov–Smirnov test. In case of 
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normal distribution, parametric statistics (repeated-measures ANOVA, Pearson’s correlations) were 

applied; in case of non-normal distribution, non-parametric statistics were used (Friedman 

ANOVA). As d’ and c values for the Learning phase were non-normally distributed, they were 

separately entered into Friedman’s ANOVAs with Task (Action, Shape) and Block (Block 1, Block 

2) as variables. The probability and expectancy levels were collapsed due to their unequal number 

of trials following the probabilistic manipulation. Differently, for the Test phase, in keeping with 

previous studies (Oldrati et al. 2021), rmANOVAs on d’ scores, c values and RTs were performed 

with Task (Action, Shape), Expectancy (Low expectancy, High expectancy) and Probability (Low 

probability, High probability) as within-subject variables.  

We also ran a Pearson’s correlation analysis (with Bonferroni correction) to test whether the 

sensitivity to the contextual priors’ manipulation was related to individual differences in autistic-

like traits measured through the AQ questionnaire. Based on the results of the rmANOVAs, for 

each type of task, we calculated a differential index obtained by subtracting the d’ values of the 

difference between high and low probability for the high and low expectancy conditions, 

respectively [Δd’ = (90% - 10%) - (60% - 40%)]. In this way, we obtained individual measures of 

the reliance in using contextual priors based on the context-dependent expectancy and the 

probability of association in predicting the upcoming event. We focused on two AQ subscales – i.e., 

attention to detail and social skills –, which were specifically related to contextual modulation of 

motor responses during action observation in a previous study (Amoruso et al. 2018b). Notably, we 

corrected the AQ scoring of Item 1 according to Baron-Cohen et al.’s (2001) errata. Please see 

Table 1 for mean sample score, SD and score range for the total AQ questionnaire scores and its 

subscales.  
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Table 1. Mean (SD) scores and score range for the total AQ and its subscales of both Experiment 1 

(left) and Experiment 2 (right). 

  EXPERIMENT 1   EXPERIMENT 2 

  N Mean SD Range  N Mean SD Range 

Social skills 32 2.4 2.3 0-9  25 1.6 1.8 0-7 

Attention switching 32 4.6 2.1 1-8  25 4.1 1.8 1-7 

Attention to detail 32 4.9 2.2 1-9  25 5.0 2.3 1-9 

Communication 32 2.1 1.9 0-8  25 1.6 1.3 0-4 

Imagination 32 2.7 1.9 0-7  25 2.3 1.4 0-5 

AQ Total 32 16.7 6.5 4-36   25 14.6 4.5 5-22 

 

2.2. Results 

During Learning, both d’ and c data showed no significant effects (χ2
(3) = 6.98, p= 0.073 and χ2

(3) = 

1.10, p= 0.777, respectively). The rmANOVA performed on d’ scores in the Test phase revealed a 

main effect of Probability (F1,31 = 8.30, p = 0.007, η2
p = 0.211), as participants performed better for 

the highly probable actions/shapes (mean = 1.90, SEM = 0.11) than for the low probable ones 

(mean = 1.43, SEM = 0.17). Plus, a significant interaction of Probability x Expectancy (F1,31 = 

6.851, p = 0.014, η2
p = 0.18) emerged. Post-hoc comparisons on this interaction indicated that 

participants were more susceptible to the probability of the event in the high expectancy context 

with respect to the low expectancy one. Indeed, for high expectancy, they were better at predicting 

the type of action/shape when probability was high (90%; mean = 2.03, SEM = 0.13) compared to 

when it was low (10%; mean = 1.20, SEM = 0.23; p < 0.001); no difference instead emerged 

between low and high probabilities with low expectancy (40% vs. 60%; p = 0.52; Fig. 4). In 

addition, participants performed worse when they had to identify a low probable action/shape in a 

high expectancy situation (10%) compared to either a low- or a high-probable event in a low 
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expectancy situation (40%, p = 0.025; 60%, p = 0.007, respectively; Fig. 4). The main effect of task 

or the interactions between probability, expectancy and task were not significant (all F < 1.47, ps > 

0.24, η2
p < 0.05). Thus, comparable effects of the probabilistic manipulation of contextual priors 

were obtained for the action and shape tasks at a behavioral level. 

The rmANOVA on c scores (Fig. 4) yielded a main effect of Task (F1,31 = 27.113, p < 0.01, η2
p = 

0.47), as c was significantly lower in the Shape (mean = -0.17, SEM = 0.05) than in the Action 

(mean = 0.04, SEM = 0.03) task. This suggests that participants tended to report an equal- rather 

than an unequal-length sided shape; whereas, in the action task they were unbiased. No other main 

effects nor interactions with either probability or expectancy emerged (all F < 1.84, ps > 0.18, η2
p < 

0.06).  

No significant effects nor interactions emerged when considering RTs (all F < 2.77, ps > 0.11, η2
p < 

0.08), overall indicating that our probabilistic manipulation did not affect the speed of the responses 

provided in the Test phase and ruling out speed accuracy trade-off effects.  

When testing the association between the Δd’ index and the scores at the AQ subscales, no 

significant correlations emerged both for attention to detail (Action: r = -0.2933, p = 0.206; Shape: r 

= 0.005, p = 0.979) and for social skills (Action: r = 0.104, p = 1; Shape: r = -0.144, p = 0.864).  
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Figure 4. Behavioral results. d’ (left) and c scores (right) results for Actions (top) and Shapes (bottom) in the 

Test phase of Experiment 1. Error bars represent standard error of the mean (SEM). Asterisks indicate 

statistically significant differences (p < 0.05) for the Probability x Expectancy interaction, for which higher 

sensitivity was found in the High vs. Low probability condition in the High expectancy condition only, 

irrespective of the task. The Probability x Expectancy x Task interaction was not significant. 

3. Experiment 2 

3.1. Materials and methods 

3.1.1. Participants 

A total of 25 healthy participants (7 men and 18 women, age range 19-42 years, mean age 24.5 

years) took part in the experiment. The sample size of this repeated measure ANOVA design 

(numerator df = 1) was determined a priori through the G*Power software (Faul et al. 2007) with 

the “as in Cohen (1988)” option by setting the expected effect size at f (V) = 0.685, the significance 
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level at 0.05, and the desired power (1- β) at 0.85. The expected effect size was estimated on the 

basis of a previous TMS study addressing the muscle-specific effect of context congruency on 

motor resonance during action perception (η2
p = 0.32; Amoruso et al. 2018b). All participants had 

normal or corrected-to-normal vision and were right-handed, as assessed by a standard Handedness 

Inventory (Briggs and Nebes 1975). Participants were screened for TMS exclusion criteria and for 

neurological, psychiatric and medical issues (Rossi et al. 2009) and none of them had 

contraindication to TMS. None of the participants complained of discomfort or adverse effect 

during the experimental session. To avoid any learning effect, which could have confounded the 

probabilistic learning manipulation, no participant who took part in Experiment 1 was recruited for 

Experiment 2. 

3.1.2. Stimuli, Procedure and Trial Structure 

Participants were tested individually in a single experimental session lasting approximately two 

hours and a half, comprising two main sessions (Action, Shape) of about 30-40 minutes each, with a 

small break between them, and a final session of about 15 minutes in which the AQ questionnaire 

was filled out. The order of the two main sessions was counterbalanced between participants. 

Participants were comfortably seated in a recliner chair with their right arm resting on a pillow. 

Participants were instructed to remain relaxed while watching the video clips presented on a 24’’ 

monitor (resolution 1920 x 1080 pixels, refresh rate 60 Hz) set at eye level at a distance of about 

100 cm. At the beginning and at the end of the experiment, participants’ baseline CSE was acquired 

in two Baseline blocks. During Baseline, participants observed for 1,250 ms a fixation cross (10 

repetitions) or a picture of a static resting hand (10 repetitions) in two respective blocks – 

counterbalanced between participants – while a single TMS pulse was administered. We decided to 

include the image of a static hand during baseline to control the possible influence that simply 

observing a body part – without any action being processed – had on CSE (Naish et al., 2014). 
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During the action observation sessions, the same Action and Shape stimuli and block structure used 

in Experiment 1 were employed with the same probabilistic manipulation. However, to adapt the 

trial structure of the test blocks for the TMS and MEP recording, videos in the Test phase lasted 500 

ms (15 frames), but they were followed by further 333.33 ms (10 frames) of black screen 

presentation. During the black screen presentation, a single TMS pulse was administered in one of 

five-time delays: 167, 200, 233, 267 and 300 ms after video offset (i.e., 667, 700, 733, 767 and 800 

ms after video onset). We opted for a variable TMS-pulse timing to prevent any effect related to the 

anticipation of the stimulation (e.g., Tran et al. 2021). The timing after occlusion was chosen to 

match the timing of a muscle-specific response during action observation (>150 ms; Cavallo et al. 

2013; Naish et al. 2014). A fixation cross lasting 2,000 ms was presented before the beginning of 

each video to ensure the observers adopted a central fixation prior to the video presentation. 

Moreover, a black screen was presented for 1,000 ms between trials after the recording of the 

participants’ responses, so that inter-pulse interval was longer than 5,000 ms, thereby avoiding 

changes in CSE due to repeated TMS pulses (Chen et al. 1997). Furthermore, in both the Learning 

and Test phases, participants were required to provide verbal, rather than manual, responses by 

saying “left” or “right” to report the left- or the right-sided descriptor. The experimenter recorded 

the response by pressing the left or the right mouse button. A verbal, rather than a motor response as 

in Experiment 1, was chosen to ensure that hand-response preparation would not affect MEP 

recordings during the task (Tokimura et al. 1996; Meister et al. 2003). In addition, the location of 

the two descriptors was counterbalanced and randomized within each block, so that in half of the 

trials a descriptor was unpredictably on the left and in the other half on the right. This way, we 

prevented participants from planning the response in advance based on the expected spatial location 

of the descriptors. At the same time, these adaptations of the task to the TMS setting prevented us 

from recording, in a reliable way, participants’ direct behavioral responses to action/shape 

unfolding. Furthermore, since it has been shown that TMS can exert non-specific effects on 

performance (e.g., blinking, alerting by tactile and acoustic sensations, etc.; Amoruso et al. 2016; 
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see also Duecker et al. 2013 for a discussion on non-neural effect of TMS on task performance), 

verbal responses were, indeed, merely required to engage the participants in the action/shape 

prediction task but not to test modulation effects. Thus, we only checked whether the participants 

were engaged in the task, by comparing overall task performance against chance (i.e., d’ = 0), but 

verbal responses in Experiment 2 were not further considered in the analyses. Nevertheless, 

behavioral responses were reliably measured and analyzed in Experiment 1 only. 

3.1.3. Electromyographic (EMG) recording during action execution  

This exploratory investigation aimed to describe the EMG activations characterizing the execution 

of the actions adopted in the experiment and to identify the finger and forearm muscles whose 

activity could discriminate between individual and interpersonal motor intentions. Prior to the 

design of the main TMS experiment, a total of 14 naïve right-handed healthy participants (3 men 

and 11 women, age range 20-40 years, mean age 26.1 years) were recruited for a 30-min 

experimental session in which EMG activity during the execution of individual and interpersonal 

actions was recorded. None of these participants took part in the main TMS experiment to avoid 

uncontrolled effects of visual or motor experience on motor resonance. They were seated at a table 

in front of an experimenter (female, 30 years) and were requested to perform a reach-to-grasp action 

toward an object (i.e., glass or apple) placed in front of them, with either an individual (i.e., to eat, 

to drink) or an interpersonal (i.e., to offer) intention. The types of grasp to be used were 

demonstrated by the experimenter at the beginning of the session, in order to ensure that they 

corresponded to the videos. Further, participants were requested to perform the instructed action as 

naturally as possible. At the beginning of each trial, participants kept their hands relaxed and resting 

on the table surface. They wore headphones and, for each trial, they were asked to first listen to a 

recorded voice indicating (in Italian) the type of action they had to perform toward the object, i.e., 

‘to eat’, ‘to drink’ or ‘to offer’. Then, they had to wait for the Go-signal sound (a high-pitched tone 

lasting 700 ms) to start the action. Participants performed the actions in blocks of 10 repetitions for 
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each condition; the order of the conditions was counterbalanced between participants. In each trial, 

an experimenter carefully observed the performed movements to place a marker on the EMG trace 

in correspondence with the time of hand-object contact. The EMG activity of the First Dorsal 

Interosseous (FDI) and Abductor Digiti Minimi (ADM) muscles of the right hand, and of the 

Extensor Carpi Radiali (ECR) and Flexor Carpi Ulnaris (FCU) muscles of the right forearm was 

recorded. Electrode position was determined by palpation during maximum voluntary contraction 

for each muscle; electrodes and wires were arranged so as not to restrict the participants’ 

movements. Reference electrodes were placed over the ipsilateral proximal interphalangeal joint for 

the ADM and FDI hand muscles, over the ulnar styloid process for the ECR and over the radial 

styloid process for the FCU. The ground electrode was positioned on the right elbow. For each 

muscle, surface Ag/AgCl electrodes (1 cm diameter) placed in a belly-tendon montage were used 

and connected to a Biopac MP-36 system (BIOPAC System, Inc., Goleta, CA) for amplification, 

band-pass filtering (5 to 2,000 Hz) and digitalization of the EMG signal (sampling rate 5,000 Hz). 

EMG data were analyzed offline using the AcqKnowledge software (BIOPAC Systems, Inc., 

Goleta, CA). For each trial, the EMG signal was rectified and the data points of the recording were 

averaged on a sliding mean of 30 ms. The mean rectified EMG signal (in mV) was then measured 

in bins of 200 ms starting from 1,000 ms before hand-object contact, as marked on the EMG trace, 

and ending 1,000 ms later (11 bins). This time window encompassed the relevant phases of the 

actions, starting with the participant’s arm laying in a still position and ending when the object was 

brought toward the mouth or handed to the co-experimenter (Fig. 5C). Even if the marker for hand-

object contact was manually positioned – thus potentially introducing some temporal uncertainty in 

its definition – we believe that it was precise enough not to affect the description of EMG activation 

during action deployment in 200-ms bins across a two-second time window. For each trial, the 

mean EMG signal of the second bin (200 ms) after the start of the trial, acquired prior to the Go-

signal, was used as baseline. The second bin was used to ensure ruling out any artifact at the 

beginning of epoch recording. To allow comparisons between conditions and between participants, 
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a comparative index was obtained for each trial and muscle by subtracting the EMG signal at 

baseline from that at each time point (Fridlund and Cacioppo 1986). We then normalized the EMG 

comparative indexes for each trial according to the distribution of all trials for each participant and 

each muscle (z-scores). The z-scores of each participant and muscle were then averaged for each 

condition (10 trials per cell). Each muscle was analyzed separately with rmANOVAs with Actions 

(Individual, Interpersonal) x Objects (Apple, Glass) x Muscles (FDI, ADM, ECR, FCU) x 11 Time 

bins as within-subject variables. Estimates of the effect size were obtained using the partial eta-

squared and post-hoc analysis was carried out using the Duncan’s test.  

The rmANOVA on the EMG signal (z-scores) showed a main effect of Time bins for all muscles: 

FDI (F10,130 = 99.13, p < 0.001, η2
p = 0.88), ADM (F10,130 = 64.19, p < 0.001, η2

p = 0.83), ECR 

(F10,130 = 117.43, p < 0.001, η2
p = 0.90) and FCU muscle (F10,130 = 47.35, p < 0.001, η2

p = 0.79), 

indicating, as expected, that the EMG activation increased over time while reaching and grasping 

the objects. The ECR muscle showed a main effect of Action, with a higher muscle activation for 

Individual than Interpersonal action (F1,13 = 12.14, p = 0.004, η2
p = 0.48). No other significant 

effects emerged either for the FDI and FCU muscles (ps > 0.05). Conversely, for both the ADM and 

the ECR muscles a significant interaction of Object x Time bin emerged (F10,130 = 1.91, p = 

0.049, η2
p = 0.13 and F10,130 = 2.61, p = 0.007, η2

p = 0.17, respectively), along with a main effect 

of Object only for the ADM muscle (F1,13 = 4.75, p = 0.048, η2
p = 0.27). In particular, significant 

differences were found for the ADM and ECR EMG activity between actions directed to the two 

objects, with higher activation for apple- compared to glass-directed actions starting from 200 ms 

since hand-object contact for the ADM muscle (ps < 0.042) and from 800 ms until 1,000 ms after it 

for the ECR muscle (ps < 0.015; Fig. 5A). Only for the ADM muscle we had a significant Action x 

Time bin interaction (F10,130 = 2.50, p = 0.009, η2
p = 0.16; Fig. 5B), with individual actions 

presenting higher ADM activations compared to interpersonal ones in the late phase of the action, 

namely 800-1,000 ms after hand contact with the object (ps < 0.040; Fig. 5B).  
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In summation, the results of this preliminary acquisition showed that, whereas the EMG activity of 

all recorded muscles changed over time while reaching and grasping the objects, only the ADM 

muscle activity differentiated between actions performed on the same object, but executed with an 

individual compared to an interpersonal intention. Therefore, the ADM hand muscle was considered 

as target muscle for the TMS main experiment; whereas, the ECR forearm muscle was kept as a 

control. 
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Figure 5. EMG results. Mean (±SEM) values of the EMG rectified signal (expressed as z-scores of the 

difference to baseline) during execution of actions directed to an apple and a glass (A; solid and dashed lines, 

respectively) or executed with individual and interpersonal intentions (B; solid and dashed lines, 

respectively), for the FDI, ADM, ECR and FCU muscles. The vertical grey dashed line corresponds to the 

time of hand-object contact. Asterisks indicate significant differences (p < 0.05) in the EMG activations 
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between different objects (left) or intentions (right).  An example of the timing corresponding to the various 

action phases during action execution is shown in the bottom panel (C). 

3.1.4. TMS and EMG recordings during action observation 

In the main experiment, single-pulse TMS was delivered to the hand motor region of the 

participant’s left M1 through a 70 mm figure-of-eight coil connected to a Magstim 200 stimulator 

(Magstim Co., Whitland, UK). TMS-induced motor-evoked potentials (MEPs), whose amplitude is 

considered as a measure of motor excitability and being modulated by action observation (see Naish 

et al., 2014 for a review), were recorded simultaneously from the ADM and ECR muscles. EMG 

recording was performed as in the action execution exploratory experiment, but digitalization of the 

EMG signal was set at a 6250-Hz sampling rate to optimize MEP epoch acquisition. For each 

participant, the optimal scalp position (OSP), where MEPs with maximal amplitude from both 

target muscles were simultaneously recorded, was identified and marked on a tight-fitting cap wore 

by participants. During the experiment, the coil was held in correspondence of the OSP by a coil 

holder with an articulated arm, and continuously checked by the experimenter to correct for 

potential small head movements. The intensity of TMS stimulation was set at 130% of the 

individual resting motor threshold (rMT), that is the minimum TMS intensity that allows recording 

MEPs from the higher threshold muscle with at least 50 µV of amplitude in five out of 10 

consecutive pulses (Rossini et al., 1994). The rMT ranged from 28 to 59% (mean = 43.4; SD = 7.2). 

Timing of stimuli presentation, TMS stimulation and EMG recording was managed by E-Prime V2 

software (Psychology Software Tools, Inc., Pittsburgh, PA, USA). 

3.1.5. Data analysis 

Individual mean peak-to-peak MEP amplitudes (in mV) were calculated separately for each muscle 

and condition. Trials in which peaks of EMG activity in the 75 ms window preceding the TMS 

pulse exceeded 2 SD from the mean background activity were discarded to prevent any MEP 

contamination due to muscle preactivation. In addition, trials in which MEP amplitude was lower 
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than 2 SD from the mean background EMG or exceeded 2 SD from the participant’s mean in each 

experimental session were excluded from further analysis as outliers. A total (mean ± SD) of 3.9 ± 

8.6% and 3.4 ± 5.6% of MEPs were excluded for ADM and ECR, respectively. To check for any 

basal CSE change during the experiment, pre and post Baseline raw MEPs were compared through 

paired-sample t-tests (two-tailed). Due to technical problems, the Baseline post of one participant 

was not recorded. Paired-sample t-tests were also carried out to compare fixation cross and static 

hand observation conditions during Baseline recording. In addition, to control for interindividual 

variability in MEP amplitudes, for each participant and each muscle the raw MEP amplitudes were 

z-transformed. Differently from the behavioral responses in Experiment 1, the two tasks were 

analyzed separately as the two levels of Action (individual and interpersonal) and Shape type (equal 

and unequal-length sided) were nested within each task and could not be compared. All data were 

checked for normality distribution using the Kolmogorov–Smirnov test with no violations noted. 

For the Action task, we ran an rmANOVA with Muscle (ADM, ECR), Action type (Individual, 

Interpersonal), Expectancy (Low expectancy, High expectancy) and Probability (Low probability, 

High probability) as within-subject variables. For the Shape task, we ran an rmANOVA with 

Muscle (ADM, ECR), Shape type (Equal-, Unequal-length sided), Expectancy (Low expectancy, 

High expectancy) and Probability (Low probability, High probability) as within-subject variables.  

To test the possible associations with motor responses and individual differences in autistic-like 

traits, we ran Pearson’s correlations between the contextual modulation of CSE and the AQ 

subscales ‘attention to detail’ and ‘social skills’ (see also Experiment 1). In particular, based on the 

results of the MEP rmANOVA, separately for the two tasks and muscles, we calculated a MEP 

differential index (ΔMEP) by subtracting the difference between the high and low probability 

conditions for the two types of actions/shapes [i.e., ΔMEP Actions = (Individual High Probability – 

Individual Low Probability) – (Interpersonal High Probability – Interpersonal Low Probability); 

ΔMEP Shape = (Equal-length sided shape High Probability – Equal-length sided shape Low 
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Probability) – (Unequal-length sided shape High Probability – Unequal-length sided shape Low 

Probability)]. This index estimates the amount of the MEP modulation according to the interaction 

between probability and type of action, thus how much the MEPs were facilitated by a contextual 

cue pointing to an individual or an equal-length sided shape as compared to a contextual cue 

pointing to an interpersonal or an unequal-length sided shape. P-values of correlations were 

Bonferroni corrected. In addition, a Fisher test was performed to compare the two correlation 

coefficients obtained for each subscale. 

3.2. Results 

3.2.1. MEP modulation  

No differences between MEP amplitudes recorded during baseline sessions at the beginning and at 

the end of the experiment emerged, either for the ADM (t23 = -0.80, p = 0.43) or the ECR (t23 = 

1.35, p = 0.19) muscle. This indicates that TMS per se did not induce general changes in motor 

excitability during the experiment. Moreover, no difference was found when comparing fixation-

cross and resting-hand observation conditions, either for the ADM (t24 = -0.19, p = 0.85) or the ECR 

(t24 = -0.27, p = 0.79) muscle.  

The rmANOVA performed on the normalized MEPs for the Action task (Table 2) revealed a 

significant interaction Muscle x Action type x Probability (F1,24 = 4.481, p = 0.045, η2
p = 0.157); no 

other main effects nor interactions were significant (all F < 3.23, ps > 0.09, η2
p < 0.12). Duncan 

post-hoc comparisons revealed that the ADM MEPs were differently modulated by the probability 

of action-context associations in the two action conditions (see Fig. 6). For the low probability 

condition, the ADM MEPs were higher for Interpersonal (mean = 0.20, SEM = 0.07) than for 

Individual actions (mean = 0.08, SEM = 0.06; p = 0.006); conversely, for the high probability 

condition, MEPs were higher for Individual (mean = 0.23, SEM = 0.08) than Interpersonal actions 

(mean = 0.13, SEM = 0.05; p = 0.019). Critically, the ADM MEP amplitudes were higher while 

observing Individual actions in the high- compared to the low-probability condition (p = 0.001). 
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This pattern of results suggests, in line with the EMG results, that higher ADM MEPs were 

measured when the contextual cues suggested for an Individual action, independently from whether 

the initial kinematics displayed an Individual (i.e., individual actions in the high probability 

condition) or an Interpersonal action (i.e., interpersonal actions in the low probability condition). 

Critically, no difference between those two conditions indeed emerged (p = 0.491).  

Regarding the Shape task (Table 2), the rmANOVA yielded only a main effect of Muscle (F1,24 = 

4.69, p = 0.041, η2
p = 0.16), with the MEP amplitudes of the ADM muscle being significantly lower 

than those of the ECR muscle. No other main effects or interaction turned out to be significant (all F 

< 4.14, p > 0.05, η 2
p < 0.12).  

It is important to note that participants were actually engaged in the prediction task and correctly 

responded above chance in both tasks (Actions: Mean = 2.45, SD = 0.53; one-sample t-test against 

0: t24 = 23.25, p < 0.001; Shapes: Mean = 1.44, SD = 0.65; one-sample t-test against 0: t24 = 11.05, 

p < 0.001). 
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Figure 6. MEP results for the ADM and ECR muscles for the Action (top) and Shape (bottom) Prediction 

tasks. CSE was probed while participants were predicting occluded stimuli unfolding in situations of Low 

and High contextual probability and were requested to discriminate between Individual (black) vs. 

Interpersonal (light gray) actions (top) or between Equal-length sides (black) vs. Unequal-length sided (light 

grey) shapes (bottom). Asterisks indicate statistically significant differences (p < 0.05); error bars indicate 

SEM. 
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Table 2. MEP z-score means (±SEM) for the ADM and ECR muscles according to the Expectancy 

and Probability levels of the Action and Shape prediction tasks.  

Muscle Expectancy Probability 

Individual 

actions 

Interpersonal 

actions 

Equal-length 

sided shapes 

Unequal-length 

sided shapes 

ADM 

Low 

Low 40% 0.076±0.064 0.190±0.066 -0.073±0.064 -0.011±0.077 

High 60% 0.177±0.096 0.141±0.070 0.032±0.070 -0.049±0.092 

High 

Low 10% 0.093±0.077 0.216±0.091 -0.043±0.06 -0.138±0.077 

High 90% 0.279±0.086 0.120±0.065 0.106±0.093 -0.021±0.083 

ECR 

Low 

Low 40% 0.073±0.074 0.085±0.075 0.024±0.070 0.137±0.074 

High 60% 0.073±0.062 0.141±0.075 0.074±0.067 0.035±0.071 

High 

Low 10% 0.067±0.078 0.091±0.076 -0.053±0.065 0.071±0.088 

High 90% 0.231±0.074 0.072±0.050 0.145±0.084 0.063±0.077 

 

3.2.2. Correlation results 

Probing whether the contextual modulation of the ADM CSE was related to individual differences 

in autistic traits (Amoruso et al., 2018), a marginally significant negative moderate correlation 

emerged between the ADM ΔMEP in the Action task and the social skills subscale (r = -0.44, p = 

0.05; Fig. 7), whereas no correlation emerged for the attention to detail subscale (r = 0.09, p = 1). 

This suggests that poorer social skills were associated with lower facilitation of the ADM MEPs for 

contextual cues pointing to an individual rather than to an interpersonal action. No significant 

correlations instead emerged in the Shape task for both AQ subscales (r = 0.28, p = 0.336, Fig. 7; r 

= -0.02, p = 1, respectively). Similarly, for the ECR muscle no correlations emerged for both the 

attention to detail subscale (r = -0.15, p = 0.98; r = -0.17, p = 0.82) and the social skills subscale (r = 

-0.21, p = 0.62; r = 0.20, p = 0.70) for both the Action and Shape task, respectively. When 

contrasting the two correlation coefficients obtained for the ADM and ECR in the social skills 
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subscale in the two tasks, a significant difference emerged for ADM (p = 0.014), with a more 

negative correlation for the Action than the Shape task; whereas, no difference between the two 

correlation coefficients emerged for ECR (p = 0.176). This suggests that poorer social skills were 

selectively associated to weaker contextual modulation of the ADM MEPs in the action, but not in 

the shape prediction task. 

 

Figure 7. Correlational results for the ADM MEP differential index (ΔMEP) and the social skill subscale of 

the AQ. A significant negative correlation emerged for the Action task (top), whereas no correlation emerged 

for the Shape task (bottom). * p = 0.05. 

4. Discussion 

In the present study, we sought to investigate the impact of implicitly learned associations between 

contextual cues and a given event in biasing predictions and motor responses when disambiguating 

unfolding social and non-social inputs. In keeping with a recent behavioral study (Bianco et al., 

2020), in Experiment 1 we demonstrated that the implicit learning of event-context associations 
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affected participants’ responses during the prediction of both social and physical events. In 

particular, when poor visual information was available, a reliable contextual cue led to a more 

accurate identification of the action intention or shape. This was particularly true for high 

expectancy contexts, where indeed the learnt contextual prior was stronger than for low expectancy 

contexts. When we tested the motor correlates of these context-based predictions, in Experiment 2 it 

emerged that contextual priors shaped motor responses during the prediction of intentional actions, 

but not during the prediction of geometrical shapes. Since we found that contextual priors drove, at 

a behavioral level, the prediction of unfolding events for both tasks, we can rule out that differences 

in context-based prediction abilities in the social and non-social domains can per se explain the 

absence of CSE modulation for non-social events at a neurophysiological level. Our findings rather 

indicate that the observer’s motor cortex selectively codes for contextual priors within the social 

domain.  

A large body of findings has demonstrated that observing others’ actions activates corresponding 

motor representations in the observer’s motor system, which are functionally equivalent to those 

involved in action execution (see Rizzolatti and Craighero 2004; Naish et al. 2014 for reviews). In 

the Shape control task, where no human motion was shown, no such modulation was observed. This 

is in line with findings from Paracampo and colleagues (2018) who pointed out the causal role 

played by M1 in action prediction, but not in the prediction of non-human shape movements. 

Previous evidence from Schubotz and von Cramon (2004) instead reported the involvement of the 

premotor cortex for prediction of both biological movements and abstract event sequences, pointing 

to the idea that anticipatory motor processing reflected a domain-general motor contribution to 

perception, not limited to action-specific simulation (Press and Cook 2015). Our findings, showing 

the context-based modulation of motor activity during observation of actions, but not of abstract 

moving stimuli, instead suggests that it is seemingly confined to the action domain, without 
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reflecting a more general mapping of predictability applying also to non-biological stimuli (see also 

Urgesi et al., 2006). 

Furthermore, the CSE modulation during the action prediction task was specific for the muscle that 

turned out to differentiate between individual and interpersonal actions during actual execution. 

Indeed, when we first assessed the muscle activity pattern characterizing the execution of the 

individual versus interpersonal actions adopted in the Action task, the ADM muscle – compared to 

the other recorded muscles (i.e., FDI, ECR, FCU) – showed to be specifically sensitive in 

discriminating actions based on intentions. In particular, the ADM EMG was more active when 

participants executed individual actions compared to interpersonal ones. Accordingly, when we 

then probed CSE through MEP recording during action observation, the ADM muscle showed to be 

modulated by the intention underlying the observed action, thus mimicking its action-specific 

tuning during action execution. The action and muscle specificity of CSE modulation suggests that 

it likely reflected motor resonance with the observed actions (Naish et al. 2014). 

The CSE modulation that emerged for the Action Prediction task seems to be predictive in nature. 

Indeed, CSE was probed later than 167 ms after action video offset (i.e., while a black screen was 

presented). Likewise, the preceding observed action was trunked at an early phase of the action 

unfolding, namely during the hand pre-shaping and before the hand contact with the object, so that 

the amount of provided visual information was limited. Contrarily, the EMG data revealed that the 

differential ADM activation during the execution of actions performed with individual compared to 

interpersonal intentions emerged after the contact with the object. Thus, since TMS was 

administered earlier than the expected moment of the hand-object contact in the video, the CSE 

increase for individual actions as compared to interpersonal ones suggests a predictive coding based 

on later stages of the action. This is in line with studies demonstrating that CSE is higher during 

middle action phases than in the final phase (Urgesi et al. 2010) and is affected by the future course 
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of the action (Sartori et al. 2015), suggesting that our motor system is preferentially tuned to 

anticipatory simulation of the observed action (Kilner et al. 2004).  

This is also in accordance with another recent study showing the predictive nature of others’ 

intention mapping into the observer motor system (Soriano et al. 2018). In this study, the authors 

found that, in absence of any contextual cues hinting toward a particular intention, subtle changes in 

kinematics drive, in a predictive way, the motor mapping of the inferred intention. Crucially, 

differently from Soriano et al. (2018), here we found that when contextual cues were available and 

were informative about the most plausible action intention, as it occurs in most of everyday life 

situations, the coding of subtle changes in kinematics in the observer’s motor system is integrated, 

and possibly overwritten, by context-based intention coding. 

Indeed, the ADM MEPs were higher when individual actions were observed embedded in a context 

congruently pointing to the same action (i.e., in the individual high probability condition) than in a 

context pointing to an interpersonal action (i.e., in the individual low probability condition). 

However, differently from Experiment 1, this effect was unrelated to the strength of the previously 

learned association (i.e., expectancy), but it was guided by probability. This might point to a great 

sensitivity of motor resonance to even weak prior signals (i.e., 60% vs. 40%), which was not 

enough to influence participants’ response at a behavioral level. A non-perfect correspondence 

between behavioral and neurophysiological results could be related to the fact that changes in MEP 

amplitude during action observation reflect processes not completely overlapping with the response 

production required in the behavioral task, and potentially related to different stages of stimulus 

processing (e.g., Bestmann and Krakauer 2015; Soriano et al. 2019). Nonetheless, our differential 

MEP modulation during intention prediction, based on contextual information, is in line with a 

series of studies showing that motor resonance is susceptible to top-down information (Amoruso 

and Finisguerra 2019). In particular, Amoruso et al. measured the effects of contextual information 

when participants had to disambiguate the intention of an action embedded in congruent or 
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incongruent contexts, namely, when the grasping kinematics and the action setting pointed toward 

the same or toward different intentions (Amoruso and Urgesi 2016; Amoruso et al. 2016, 2018b). 

When probing CSE during observation of a reaching action, they found higher CSE facilitation for 

actions embedded in congruent contexts as compared to actions embedded in incongruent contexts 

or in ambiguous neutral contexts in which different intentions were equally plausible. Accordingly, 

our low probability conditions were characterized by a mismatch between kinematic information 

and the action more frequently associated with the contextual cue in the probabilistic learning 

phase, leading to lower ADM CSE facilitation for individual actions as compared to the high 

probability conditions.  

Critically, differently from Amoruso et al.’s studies (Amoruso and Urgesi 2016; Amoruso et al. 

2016, 2018b, 2020) and moving beyond the mere context-kinematics compatibility, here we could 

dissociate motor resonance for two types of actions (individual vs. interpersonal) and we had a 

muscle-specific marker for one of the two actions (i.e., greater ADM activation during execution of 

individual than interpersonal action). This way, we showed that the ADM CSE was comparably 

facilitated during the observation of (initial) individual or interpersonal kinematics whenever it was 

embedded in a context calling for the presentation of an individual action. Indeed, comparable 

ADM MEPs were recorded in the individual high probability condition and in the interpersonal low 

probability condition. Thus, not only was motor resonance sensitive to the congruence between 

contextual and kinematic cues, it also reflected the most probable action based on the contextual 

prior, even when the actual available motor information provided by kinematics was in contrast 

with it. Contextual priors therefore appeared to shape motor resonance at the initial stages of action 

unfolding, a result that is in line with previous literature highlighting the role of priors in guiding 

motor responses (e.g., de Beukelaar et al. 2016; Amoruso et al. 2018a; Cretu et al. 2019; Koul et al. 

2019). Our findings, however, not only support the idea that motor resonance is susceptible to top-
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down information (Amoruso and Finisguerra 2019), but they also suggest that contextual priors 

may even override motor representations derived by bottom-up sensory information.  

It is worth noting that Amoruso et al. (2016) described a temporal modulation of contextual 

processing during action observation, with an early facilitatory effect for congruent contexts at ≈ 

240 ms after video onset and a later inhibition for incongruent contexts at ≈ 400 ms. Since we 

recorded MEPs only at a relatively late time window after video onset (i.e., 667-800 ms), we could 

not establish whether the observer’s CSE could reflect different sources of information, namely, 

kinematic and contextual cues, at early versus late time windows. Thus, future studies, directly 

exploring the time-course of these effects over a wider time window, will be needed to shed light on 

the respective role of prior expectancies guided by contextual cues and available kinematic 

information in shaping motor responses over time. 

We also found a relationship between the extent of contextual modulation of observer’s CSE during 

action prediction and the distribution of social aspects of autistic traits in the general population. In 

particular, the ADM CSE facilitation for contexts calling for an individual action, independently 

from the observed kinematics, was lower in those individuals that reported poorer social skills at the 

AQ questionnaire. This finding is in keeping with evidence that the CSE of individuals with lower 

social and communication abilities is less modulated by the congruence between the kinematics of 

actions and the context in which they take place (Amoruso et al. 2018b). The association between 

the social aspects of autistic traits and the contextual modulation of CSE was selective for the action 

task and for the ADM muscle and was not detected in the shape prediction task or for the ECR 

muscle. This suggests that the presence of autistic-like traits may be associated with a worse motor 

coding of observed intentional actions (e.g., Puzzo et al., 2009), without being generalized to the 

motor processing of visual stimuli in general. Notably, as in previous studies (Amoruso et al. 

2018b; Bianco et al. 2020), no relation was detected between the social aspects of autistic traits and 

the contextual modulation of the action prediction performance. This might reflect that, while the 
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motor coding of contextual action priors might be altered in individuals with high autistic traits, 

their action prediction performance is not necessarily affected, likely being compensated through 

context processing in different networks. In fact, the behavioral deficits of children with autism, as 

compared to children with typical development, in using contextual priors to predict action 

unfolding was not accounted by their levels of autistic traits, but by their behavioral problems 

(Amoruso et al. 2019). This may hint at the notion that, while autistic traits are associated to an 

altered sensitivity of motor resonance to action contexts, the prediction deficits of persons with 

ASD might stem from concurrent failure in other mechanisms (e.g., inferential processing). 

However, these results, either the significant correlation of AQ with the CSE contextual modulation 

or the non-significant correlation with behavioral performance, should be interpreted with caution 

given that our relatively small sample of individuals may not be representative of the AQ score 

distribution in the general population, thus limiting the range of AQ variation and the power of the 

correlation.  

5. Conclusions 

This study showed that our perceptions and motor responses are shaped by the implicitly learnt 

statistical regularities of the environment (i.e., the probability manipulation of the contextual cues), 

hence supporting the interpretation of incoming sensory evidence. Low-level information provided 

by stimuli features and high-level information acquired through probabilistic contextual learning 

then critically interact to support predictive processing, in consistency with the Bayesian framework 

of predictive coding (e.g., Kilner et al., 2007). Contextual priors affected prediction of both social 

and non-social stimuli as emerged from the behavioral responses; however, in motor terms, context-

based predictions only modulated motor responses for action stimuli. Specifically, when initial 

kinematic information was provided to the observer for intention prediction, motor responses 

reflected the representation of the more probable action in a given context. Contextual priors then 

appeared to be more influential than kinematic information in shaping the motor output at the initial 
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stages of action processing, highlighting the role played by top-down contextual expectations in 

driving our processing of others’ actions in social situations.  
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