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Abstract: Automatic emotion detection is a very attractive field of research that can help build
more natural human–machine interaction systems. However, several issues arise when real sce-
narios are considered, such as the tendency toward neutrality, which makes it difficult to obtain
balanced datasets, or the lack of standards for the annotation of emotional categories. Moreover, the
intrinsic subjectivity of emotional information increases the difficulty of obtaining valuable data to
train machine learning-based algorithms. In this work, two different real scenarios were tackled:
human–human interactions in TV debates and human–machine interactions with a virtual agent. For
comparison purposes, an analysis of the emotional information was conducted in both. Thus, a pro-
filing of the speakers associated with each task was carried out. Furthermore, different classification
experiments show that deep learning approaches can be useful for detecting speakers’ emotional
information, mainly for arousal, valence, and dominance levels, reaching a 0.7 F1-score.

Keywords: speech processing; emotion detection; machine learning; behavioral analysis; human–
machine and human–human interaction

1. Introduction

Emotion expression and perception is a very important issue in human interactions
and is one of the bases upon which the communication between humans is established.
Therefore, the automatic detection of emotions by a computer has become a very attractive
topic due to its impact on the effort towards more natural and empathic human–machine
interaction systems. Emotions can be expressed in different ways, including facial expres-
sion, speech, gestures, etc. In this work, we focus on speech and its ability to provide
diverse information.

In addition to the message communicated, speech signals can provide information
related to different aspects of the speaker. In fact, speech signals can give insights into the
emotional state of the speaker or even their baseline mood, as shown in many studies about
this issue [1,2]. The probability of suffering from a disease, such as depression, Alzheimer’s
disease [3–5], or even COVID-19 [6], can also be extracted from speech. However, speech
may also be influenced by several other variables, such as the speaker’s habits, personality,
culture, or specific objective [7,8].

Human–human interactions take place in specific contexts where, to some extent,
people know each other. However, current artificial agents have little capacity to imitate
a real user, resulting in shallow interactions [9]. In fact, users find it hard to interact with
agents with rudimentary visual and speech capacities [10]. The literature suggests that
human behavior in human–human interactions is guided by the other human’s behav-
ior and is, thus, reactionary behavior [11]. However, comparisons between these two
scenarios have almost only been carried out at the interaction and dialogue levels [9,11].
The emotional exchange in both scenarios is completely different due the rudimentary
emotional capacity of the agent, which results in very subtle emotions. This work aims
to contrast the similarities and differences for emotions identified in two very different
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scenarios: human–human interactions on Spanish TV debates (TV Debates) and human–
machine interactions with a virtual agent developed by the H2020 EMPATHIC project
(http://www.empathic-project.eu, accessed on 3 February 2022) (Empathic VA), also in
Spanish. Thus, we profile the task in each scenario or, more specifically, the speakers
involved in each task. Although they are quite different, they both share the spontaneity of
speech, as well as the spontaneity of the expression of emotions in real scenarios [12].

Disfluencies or spontaneous speech events, such as filled pauses or speech repairs,
enrich spontaneous communication [13] with paralinguistic information that depends on
the context, on the speaker profile, and on emotional state. In recent years, research on
spontaneously expressed emotions in everyday tasks has gained interest in the scientific
community [14,15]. However, this research has typically been conducted on emotions
simulated by professional actors in artificially designed databases such as EMODB [16] or
IEMOCAP [17]. The six basic emotions defined by Eckman [18] (anger, surprise, disgust,
enjoyment, fear, and sadness) can be represented by facial expressions that typically char-
acterize these emotions and thus can be used in the automatic identification of emotions
on a face [19]. However, spontaneous emotions are more varied and complex. Further-
more, emotions expressed during acting or during a real-life scenario show significant
differences [20]. In fact, only a small set of complex and compound emotions [21] can be
found in real scenarios [2,15,22], and this subset is strongly dependent on the situation.
Therefore, a set of categories including the emotions that arise in each specific task has
to be defined. To this end, some perception experiments have to be conducted to specify
the set of emotions of interest. However, this process is expensive; time consuming; and
sometimes, not viable. Alternatively, and assuming that ordinary communication involves
a variety of complex feelings that cannot be characterized by a reduced set of categories, a
number of researchers [23,24] proposed a dimensional representation [25] of the emotional
space. Thus, each affective state is represented by a point in a two-dimensional space,
namely valence and arousal, which space some authors extend to three dimensions by
also considering dominance (also known as the VAD model). This work employs both
approaches to analyze emotional information.

Additionally, spontaneous emotions cannot be unambiguously perceived, not even
by experts. In fact, the emotional label assigned by a speaker to their own utterances
might differ from those assigned by a listener, with the former being, of course, more
accurate [26]. In this work, we draw from some works dealing with the annotation of
a virtual agent [22,27] that provide insights into the problems associated with this kind
of annotation. The intrinsic subjectivity of this task makes obtaining a ground truth
for emotional states associated with an audio signal using either the categorical or the
dimensional model difficult. According to some work, such as the one presented in [28],
this subjectivity cannot be properly gathered when experts label emotions; therefore, a
more useful representation based on the interpretation of emotions across a crowd should
be used. In this work, crowd annotations, using a crowdsourcing platform [29], was carried
out to obtain emotional labels for both the VAD and categorical models. This methodology
led to two corpora for each task: (a) TV debates labeled in terms of discrete categories,
(b) TV debates labeled in terms of the VAD model, (c) empathic VAs labeled in terms of
discrete categories, and (d) empathic VAs labeled in terms of the VAD model.

In the context of interactions, annotations are usually carried at the turn or dialogue
levels [9]. However, the debate on the minimum temporal length of the audio for which
the emotions can be extracted reliably remain open. This length has usually been set in
tuning experiments for a particular situation [26]. In contrast, in this work, we propose
utterances compatible with clauses as segments to be annotated and develop an algorithm
to obtain them from speech signal.

Once a labeled corpus is designed, a machine learning-based system can be built to
carry out automatic emotion detection. One of the first steps in creating such a system is
to identify which acoustic features are the most suitable for detecting emotions. In recent
years, promoted by challenges such as the INTERSPEECH Computational Paralinguistic
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Challenge [30], several attempts have been made to obtain such a set, such as the mini-
malist set of GeMAPS speech features proposed in [31]. However, several studies [32,33]
suggested that no universal acoustic features that extract emotional content and work well
in all contexts exist. Low-level descriptors (LLD) [33,34] based on characteristics related to
prosody (pitch, formants, energy, jitter, and shimmer) or to the spectrum (centroid, flux,
and entropy), and its functionals (mean, std, quartiles 1–3, delta, etc.) have been widely
used. Alternatively, some authors avoided LLD features and let a neural network extract
the emotional features in the first layers using other speech representations, such as a
spectrogram [35–37] or a raw audio signal [38]. Moreover, the rise in the self-supervised
learning paradigm and the recently proposed transformer architecture [39], have led to
novel speech representations, such as wav2vec [40,41] or HuBERT [42]. These representa-
tions were extracted from raw audio and can be used to feed a neural network. In this work,
we primarily design and build a deep neural network architecture fed with a spectrogram.
Furthermore, we also provide some preliminary experiments for which the network is fed
with the wav2vec model to obtain preliminary insights into such an approach to working
with the tasks tackled in this work.

Within this framework in which the perception, modeling, and detection of emotions
constitute a challenge, the main contributions of this work can be summarized as follows:

• An in depth analysis of the emotions arising in two different scenarios as a way of
profiling the speakers associated with a task using both the categorical and the VAD
model to represent the emotional state.

• Two Spanish corpora are emotionally labeled by the crowd, where spontaneous
emotions can be found instead of acted ones.

• An emotion-detection system based on deep learning is specifically designed to the
tasks considered. In this framework, this paper discusses the issues derived from the
detection of realistic emotions in Spanish tasks as an attempt to progress research on
emotion detection.

• The preliminary experiments aimed to evaluate the convenience of the recent wav2vec
representation of speech for the automatic detection of spontaneous emotions in
Spanish Language.

This paper is structured as follows: Section 2 describes the tasks and the associated
corpora tackled in this work (Section 2.1) and provides insights into the annotation pro-
cedure (Section 2.2) as well as insights into the design of the automatic detection system
including the neural network architecture (Section 2.3). In Section 3, the results obtained
in terms of both an analysis of emotions (Section 3.1) and the classification performance
(Section 3.2) are given. Finally, Section 4 provides a discussion of the results.

2. Materials and Methods
2.1. Task and Corpus

This section describes the two tasks tackled in this work.

2.1.1. TV Debates

First, a set of real human–human conversations was gathered from TV debates. Specif-
ically, the Spanish TV program “La Sexta Noche” was selected. In this weekly broadcast
show, news about hot topics from the week are addressed by social and political debate pan-
els led by two moderators. A very wide range of talk-show guests (politicians, journalists,
etc.) analyze social topics from their perspectives. Given that the topics under discussion
are usually controversial, emotionally rich interactions can be expected. However, the
participants are used to speaking in public so they do not lose control of the situation. Thus,
even if they might overreact sometimes, this is a real scenario, where emotions are subtle.
The spontaneity in this situation is vastly different from scenarios with acted emotions, as
shown in [15]. The selected programs were broadcast during the electoral campaign of the
Spanish general elections in December 2015. Table 1 shows a small excerpt of a dialogue
taken from the TV Debates corpus.
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Table 1. Small excerpt extracted from the TV Debates corpus. This is an emotionally rich example of
a discussion between two talk-show guests debating politics. The same excerpt is shown in Spanish
(the original language) above and in English below.

Spanish

Speaker 1: Yo entiendo que de España y de datos y de hechos no quieras hablar, pero resulta. . .
Speaker 2: Claro que puedo hablar. . .
Speaker 1: Que acaban de imputar también al quinto tesorero en la historia de tu partido.
Speaker 2: Y dale.
Speaker 1: De cinco. . .

English

Speaker 1: I understand that you do not want to talk about Spain, about neither data nor facts, but it turns out. . .
Speaker 2: Of course I can talk. . .
Speaker 1: That they have just imputed the fifth treasurer in the history of your party as well.
Speaker 2: And hit it.
Speaker 1: Five out of five. . .

To start building the corpus, the whole audio signal was separated into shorter seg-
ments or chunks useful for crowd annotation. The segments have to be short enough to
avoid variations in emotional information but long enough to allow for their identification.
Thus, the audio signal was divided into clauses. A clause was defined as “a sequence of
words grouped together on semantic or functional basis” [43], and it can be hypothesized
that the emotional state does not change inside a clause. An algorithm that considered
silences and pauses as well as the text transcriptions was designed to identify the utterances
compatible with the clauses [2]. This procedure provided a set of 4118 audio chunks from
two- to five-seconds long that comprises our working corpus. Regarding the speaker’s
features, the gender distribution in this set was 30% females and 70% male, with a total of
238 different speakers within the age range from 35 to 65.

This corpus was developed by a consortium of Spanish Universities under the umbrella
of AMIC, “Affective Multimedia Analytics with Inclusive and Natural Communication”
project [44].

2.1.2. Empathic VA

The Empathic VA is a European Research and Innovation project [45,46] that imple-
ments personalized virtual coaching interactions to promote healthy and independent
aging. As a part of the project, a series of spontaneous conversations between people who
are older and a Wizard of OZ (WoZ) were recorded in three languages: Spanish, French,
and Norwegian. The WoZ technique allows users to believe that they are communicating
with a machine (and not a human), which makes their reaction more similar to one they
have when interacting with a fully automatic virtual agent [8,45]. The conversations are
related to four main topics: leisure, nutrition, physical activity, and social and family rela-
tionships [8,45]. Table 2 presents an example of a conversation about nutrition between a
user and the WoZ, where some emotional content can be found. In this work, we focused
on Spanish dialogues that were recorded by 31 speakers with an average age of 71.6 years.
The gender distribution was 45% female and 55% male. After applying the algorithm to
extract chunks that matched clauses, a corpus of 4525 audios from two to five seconds long
was achieved.
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Table 2. Small excerpt taken from the Empathic VA corpus. This sample is a segment of a conversation
between a user and the WoZ. It shows that the WoZ generally asks questions and tries to obtain
extensive answers from the user. The excerpt is shown in Spanish (original language) above and then
in English (translation) below.

Spanish

User: Para cenar suelo tomar o huevos con. . . o pescado con algo de también de verdura, y luego
suelo tomar o tomo algunas frutas, suelo tener fruta. Y luego pues no tomo nada más.

System: Sueles merendar?
User: A veces sí, depende. . . A veces sí meriendo y suelo merendar pues un. . . un café

y algún dulce o algún bocadillito de jamón también suelo tomar.
Depende de la ocasión, si estoy en casa o no.

System: Entiendo, ¿Crees que comes bien?
User: Creo que sí.
System: Dime Ana, ¿Hay algo que te gustaría cambiar en tu forma de comer?
User: Pues nada porque como a gusto, no. . . no quiero otra cosa.

English

User: For dinner, I usually have either eggs with . . . or fish with some vegetables too, and then
I usually take or I take some fruits, I usually have fruit. And then, well, I do not take anything else.

System: Do you usually have a snack?
User: Sometimes, yes, it depends. . . Sometimes, yes, I take a snack and I use to have a snack; let us say a. . . a coffee

and I also used to take some sweets or some small ham sandwich.
It depends on the occasion, if I am at home or not.

System: I understand. Do you think you eat well?
User: I think so.
System: Tell me Ana, Is there anything you would like to change in the way you eat?
User: Well, nothing because I eat at ease; no, . . . I do not want anything else.

2.2. Annotation Procedure

The TV Debates and Spanish Empathic VA datasets were labeled by emotion to achieve
two useful and very valuable corpora to model emotions in Spanish.

Emotions are traditionally represented by two models: a categorical representation,
in which emotions consist of discrete labels, such as happiness, anger, etc. [47,48], or an
alternative approach that emphasizes the importance of the fundamental dimensions of
valence and arousal in understanding emotional experience [49]. They are postulated as
universal primitives in [49], and a feeling at any point on this two-dimensional space is
called a core affect. A representation of the core affect is shown in Figure 1, where an
emotion such as sad is represented with a very low value of arousal and a neutral valence
slightly shifted to the negative side. Other researchers have found a third dimension,
dominance, to be important in representing emotional phenomena [50], particularly in
social situations. In this work, we use both representations, the categorical one and the
dimensional one. A set of categories of interest based on the selection provided in [51]
was first considered. Then, the set was adapted to the specific features of each of the
tasks presented above. For instance, sad was not included in the TV Debates set, since sad
emotions were not expected to appear in political debates. For the Empathic VA, a study
was conducted to identify the emotions that were perceived by the users. In addition, the
dimensional VAD model was also considered for both datasets.
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Figure 1. Illustration of Scherer’s circumplex [52], which shows categories represented by the
dimensions arousal and valence.

The intrinsic subjectivity of the tasks makes obtaining a ground truth for the emotional
status associated with an audio chunk difficult. One way to deal with this problem is
to use the crowd truth [28], which is based on the intuition that human interpretation is
subjective. Thus, measuring annotations on the same objects of interpretation across a
crowd provides a useful representation of their subjectivity and the range of reasonable
interpretations. In this work, crowd annotations was carried out through a crowdsourcing
platform [29] to obtain emotional labels for both the VAD and categorical models. To
this end, the annotation work was divided in micro-tasks that were performed by a large
number of untrained annotators who did not speak to each other. This division in tasks
made the annotations diverse, which is a plus for our dataset [53] and was made possible
by the wide variety of different annotators. In this work, each audio chunk was annotated
by five different annotators who were asked to fill in the following questionnaire for each
audio clip.

Some categories have two or three names as a result of the preliminary task adaptation
carried out over the categories selected from [51].
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• How do you perceive the speaker?

– Excited
– Slightly Excited
– Neutral

• His/her mood is

– Rather Positive
– Neither Positive nor Negative
– Rather Negative

• How do you perceive the speaker in relation to the situation which he/she is in?

– Rather dominant/controlling the situation
– Rather intimidated/defensive
– Neither dominant nor intimidated

• Select the emotion that you think best describes the speaker’s mood:

(TV Debates)

– Calm/Indifferent
– Annoyed/Tense
– Puzzled
– Angry
– Interested
– Satisfied/Pleased
– Worried
– Enthusiastic
– Embarrassed
– Bored/Tired

(Empathic VA)

– Calm/Bored/Tired
– Sad
– Happy/Amused
– Puzzled
– Annoyed/Tense

Annotators Agreement

Given that each audio chunk was labeled by five different annotators, an analysis
of the agreement among the annotators was carried out. Table 3 gathers the statistics of
agreement per audio chunk for the categorical model. This table shows that, for about 70%
of the data in the TV Debates dataset, the agreement was 2/5 or lower. For the Empathic VA
dataset, a higher agreement was achieved due to the lower number of categories that were
selected. However, almost 50% of the samples still showed an agreement of lower than 4/5.
This confirms the ambiguity and subjectivity of the task. Moreover, Krippendorff’s alpha
coefficient [54] was also low for both tasks, resulting in values of 0.11 and 0.2, respectively.
This coefficient reflects the degree of agreement but is very dependent on the number
of labels.

Table 3. Statistics of the agreement per audio chunk for each corpus. Column Agr. Level indicates
the condition, i.e., the minimum inter-annotator agreement, and the next two columns (No. Audios
and % audios), indicate how many samples and what percentage of them fulfilled the agreement
condition.

TV Debates Empathic VA

Agr Level No. Audios % Audios No. Audios % Audios

>1/5 4118 100.00% 4525 100.00%
>2/5 3035 73.70% 4522 99.93%
>3/5 1266 30.74% 4023 88.91%
>4/5 392 9.52% 2519 55.67%
>5/5 82 1.99% 1086 24.00%

In the rest of the document, we do not consider samples with an agreement below 3/5
for the categorical model, which means that we used 30.74% of the annotated audio files of
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the TV Debates dataset and 88.81% of the Empathic VA for the experiments with emotional
categories. Then, the majority voting method was used to establish the ground truth for
these sets.

The answers to the questionnaires related to the VAD model were transformed into
real values, ranging from 0 to 1, by applying the rules of Table 4 to each response. Then,
these values were averaged per sample over all five annotators to obtain a real value in
the 3D space. In this case, carrying out majority voting and thus obtaining a minimum
agreement level were not required. The average was computed due to the vast diversity
derived from the subjectivity of this task, which was reflected in the different answers
provided by the diverse labels generated by the annotators. The size of the resulting labeled
corpus (100% of the audio clips shown in Table 3) was bigger than the corpus labeled in
terms of the categorical model.

Table 4. Transformation of the answers to the VAD questions into continuous values in the range [0, 1].
Later, the means of the transformed values of the five annotators were computed to obtain continuous
values for the dimensional model.

Arousal Valence Dominance Value

neutral rather negative rather intimidated/defensive 0.0
slightly excited neither positive nor negative neither intimidated/defensive 0.5

excited rather positive rather dominant/controlling the situation 1.0

2.3. Classification Framework

The automatic detection of emotions was carried out within the machine learning
paradigm using the aforementioned corpora for training and test purposes. To this end,
the usual pipeline includes a first procedural stage to extract features from a speech signal
that feeds a classifier in a second stage. The feature set can make a difference in the
resulting performance. However, no standard audio feature set seems to work well for
all emotion recognition corpora [32,33,55]. The audio Mel-frequency spectrogram was
considered in this work given that it demonstrated an efficient method to encode the
information extracted from audio clips, as shown in [56,57]. Thus, each audio chunk in the
aforementioned corpora was transformed into its corresponding spectrogram using the
librosa toolkit [58]. This decision led us to the pipeline described in Figure 2.

Figure 2. Pipeline of a basic procedure in audio classification problems. First, raw data are identified,
i.e., the wav audio itself. Then, the characteristics are extracted with a tool, the spectrogram, through
librosa [58], in this case. Finally, the classification problem is carried out, in this case, using neural
networks. Color in Deep Learning diagram means input, intermediate and output layers.

Furthermore, one of the challenges to be addressed in both datasets was the difference
in the audio sample lengths. Recurrent neural networks (RNNs), such as LSTMs, are specif-
ically well suited to dealing with this problem [59,60] in the framework of neural networks
(NN). However, convolutional architectures can outperform recurrent networks on tasks
related to sequence modeling, as shown in [61]. Moreover, the training of convolutional
neural networks (CNNs) is a simpler process that neither requires as many computational
resources as RNNs nor suffers from a vanishing gradient [62]. Nevertheless, a common
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approach allowing for the use of CNNs is to pad all samples in such a way that all of them
have the same input length [63,64], which also allows the network to learn which parts are
relevant for the task.

The network architecture proposed in this work (Figure 3) takes the padded mel-
spectrogram input and reduces both the mel-frequency and the time dimensions using 2D
convolutions and max-poolings. This sub-network reduces the time dimension but creates
a richer audio representation. Then, the network takes the new representation and tries to
classify each time step using a multi-layer perceptron of three layers. After classifying all
of the time steps, the network averages it to provide a single output for the input audio.
The same architecture is employed for classification in terms of the categorical and VAD
models. In the latter, the annotation values were discretized as described in Section 3.2.

Figure 3. Neural network architecture used for classification when the spectrogram represents the
speech signal. First, a succession of convolutional and maxpooling layers reduce the dimensions,
obtaining a small time dimension with 110 features each (10 filters times 11 frequencies). Then, some
logits are obtained for each of the features of the time dimension over three linear layers. Finally, the
mean of all of the logits is computed to classify the sample.

In the training process, several decisions were made. On the one hand, all samples
were padded to obtain the same time dimension, as mentioned above. Thus, the training
process is easier when all of the batches have the same input length. On the other hand,
an ADAM optimizer with stochastic weight averaging (SWA) [65] procedure was used as
the optimization method. SWA can be used with a learning rate schedule that encourages
exploration of the flat region of solutions. To this end, a cyclical learning rate schedule was
used (see Figure 4). First, 60,000 batch updates were performed with a constant learning
rate of 10−4. Second, a decaying schedule with a learning rate of 10−5 over 1000 batch
updates was applied. Finally, cyclical learning rates were adopted over five cycles, with
a decaying learning rate schedule from 10−3 to 10−5. The models for averaging were
collected at the end of each cycle, corresponding to the lowest values of the learning rate.

The imbalance in classes of the training corpora can negatively influence the per-
formance of the machine learning algorithms [22]. In some cases, this imbalance can
even lead to completely ignoring the minority class, which is often the class with which
we are more interested. An approach to dealing with this challenge is the use of over-
sampling/undersampling methodologies to duplicate/delete samples from the minor-
ity/majority class, respectively. In this work, a repetition oversampling method was chosen,
where all of the non-majority class samples were duplicated. This procedure helped the
network alleviate the problem of exclusively predicting the majority class. Finally, the
experiments were carried out over a 10-fold cross-validation procedure.
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Figure 4. Learning rate schedule for SWA updates. Each SWA update is performed when the learning
rate is at the minimum (u1, u2, . . . , u6).

In addition to the architecture mentioned above, a preliminary work that deals with
a novel methodology based on pretrained networks was also considered. The wav2vec
2.0 [41] speech representation was used, which is a pretrained end2end network for speech
feature extraction (https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/
README.md (accessed on 3 February 2022)). Specifically, xlsr_53 was considered, a
multilingual model that was trained on the MLS, CommonVoice, and BABEL databases.
MLS [66] is a multilingual dataset derived from audiobooks. The Common Voice corpus [67]
is a massive multilingual collection of transcribed speech built using crowdsourcing for
both data collection and data validation. Crowd contributors record their voice by reading
sentences displayed on the screen. The goal of the BABEL project [68] is to produce a
multi-language database of speech for five of the most widely differing Eastern European
languages. We note that, in these datasets, the amount of Spanish speech is not significant.
In fact, BABEL does not include it at all. Moreover, some parts do not include European
Spanish but, rather, American Spanish, which makes a great difference. Furthermore, the
datasets include non-spontaneous speech, and as a consequence, emotional content is not
expected. The wav2vec 2.0 representation has been recently proposed for speech emotion
recognition in English, for which specific pretrained networks can be found [69].

The pipeline used for these preliminary experiments is similar to the previous one.
Only the feature extraction module differs and is now implemented by the pretrained
network that transforms the speech signal into sequences of vectors. This pipeline is shown
in Figure 5.

Figure 5. Pipeline for emotion detection from audio signals using wav2vec 2.0 [41]. First, raw
data must be identified, i.e., the wav audio itself. Then, the characteristics are extracted with the
pretrained wav2vec model, and finally, the classification problem is carried out, in this case, using
neural networks. Colors in Deep Neural Networks means different type layers.

In the wav2vec architecture, the output of the last layer of the pretrained wav2vec
2.0 model was chosen to feed the network as audio representations. This representation
has a dimension of 1024 features plus the time dimension (250 time samples for 5 s). The
network architecture implemented for the wav2vec 2.0 input reduces the time dimension
over several 1D convolutions and max-poolings and then takes the new representation and
tries to classify each time step using a multi-layer perceptron of three layers. Finally, once
all time steps are classified, the network averages the logits in the same way as the network
when using the spectrogram, as the input in Figure 3 shows.

https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/README.md
https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/README.md
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The training process used in the wav2vec network architecture was the same as the
one used with the spectrogram network architecture, explained above.

3. Analysis of Emotions and Classification Results

For this section, we conducted an analysis of the emotions perceived by the annotators
in the different tasks, and then, different series of classification experiments were carried
out.

3.1. Analysis of Emotions

First, the categorical model annotation was analyzed. Table 5 shows the list of cate-
gories for each task along with the percentage of samples in each category in descending
order. A minimum agreement of 0.6 (3/5) was requested to consider a sample to be valid,
as mentioned above. Moreover, a minimum number of samples (1% of the total) was
required in each class. These requirements led to a reduction in the valid samples, resulting
in a set of 1266 samples for the TV Debates dataset and 4023 for the Empathic VA dataset
when considering the categorical model. This table shows that different categories are
predominant in each of the corpora. Some of them could be considered equivalent, such as
calm/indifferent and calm/bored/tired, which are the most frequent categories in both
sets. However, annoyed/tense, for instance, is the second most frequent class in the TV
Debates dataset but was almost last in the Empathic VA dataset. In the same way, puzzled
is almost absent (included in others) in the list for the TV Debates dataset.

Table 5 also shows that both datasets are imbalanced, with the calm category being
the majority class, with more than 70% of the samples. This reflects the spontaneous
nature of the data, showing that, most of the time, people do not show extreme emotions.
Moreover, more positive emotions, such as happy/amused, appear in the Empathic VA
annotations and more negative emotions, such as annoyed/tense, appear in the TV Debates
set. This difference comes from the specific nature of the tasks. During political debates
(human–human interactions), people try to convince or even impose their opinions on other
interlocutors. However, during coaching sessions (human–machine interaction), speakers
are quiet and pay attention to the virtual agent while preparing their next exchange.

Table 5. Frequency of the different categories in the corpora. Both the TV Debates and Em-
pathic VA datasets are unbalanced. The majority class is the neutral emotion (calm/indifferent
and calm/bored/tired), with more than 70% of the samples.

TV Debates Empathic VA

Category % Audios Category % Audios

calm/indifferent 73.64 calm/bored/tired 79.47
annoyed/tense 14.32 happy/amused 13.55
enthusiastic 4.72 puzzled 3.11
satisfied/pleased 3.23 annoyed/tense 2.83
worried 2.12 sad 1.04
interested. 1.57
others 0.40

As mentioned above, all of the samples were considered for the VAD model. Figure 6
shows the probability density function of each variable (valence, arousal, and dominance)
that was obtained by a Gaussian kernel density estimator (upper row). Figure 6 also
shows different 2D projections of the sample distribution in the 3D space (row below),
representing each scenario in a different color. When regarding arousal, the Empathic VA
dataset works in a very neutral scenario, where excitement is almost absent. In TV debates,
although neutrality is also predominant, some excitement is perceived due to the nature of
debates. The distribution of valence also shows a clear deviation towards positive values
for the Empathic VA scenario, which is an indicator of the good acceptance of the system
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among users, whereas in TV debates, neutrality is predominant, with only a slight nuance
towards positiveness. On the contrary, dominance is shifted towards dominant values in
TV debates but remains neutral when users interact with the Empathic VA case. These
results correlate well with the types of audio we deal with in the two scenarios. In the TV
debates, people express themselves without becoming angry (low levels of excitement)
but in a very assertive way (quite high dominance levels). Additionally, they appear to
be neutral when communicating their opinions (valence tends to be neutral or slightly
positive). In the Empathic VA scenario, the users are volunteers with a good predisposition
and seem to be pleased with the system (positive valence values). They are relaxed while
talking to the agent (levels of excitement tend toward neutrality) and are not intimidated
(dominance values are around neutrality, with a slight shift to the right). The differences
between human–human and human–machine interactions are also noticeable in the specific
tasks we are dealing with. Human–human communication appears to be more intense
and emotional, with higher arousal and dominance values. During communication with a
machine, on the contrary, people are not confident and they tend to be expectant, which
might be translated into low values of arousal/dominance and higher values of valence.

Figure 6. Representation of the VAD dimensional model. In the first row, each of the dimensions
is displayed independently, letting us compare each corpus. The vertical lines are the cuts that
have been used for the discretization (see Section 3.2). In the second row, a representation of the
same dimensions but taken two-by-two is displayed, helping to provide a better understanding of
the corpora.

The two models, categorical and VAD, were also considered together. Each category
was represented in the 3D VAD space for comparison purposes. Specifically, the average of
the valence, arousal, and dominance values of all of the audios labeled within a specific
category was computed, and the resulting value was represented as a point in the 3D
space. Figure 7 shows a 2D projection of the resulting representation. If we focus on the TV
Debates dataset, we notice that interested and worried, the least representative categories,
according to Table 5, are very close to the category with the highest number of samples,
calm/indifferent, in all of the 2D projections (the purple, orange, and deep-blue points), so
they were merged into only one category. The same happens with enthusiastic and satisfied
(light-blue and green points). Overall, three different categories were finally considered for
the TV Debates dataset. With regard to the Empathic VA scenario, puzzled and sad were
merged into a single category because they are extremely close in all three projections, as
shown in Figure 7. Thus, the final set of categories used for the classification experiments
reported in this work are shown in Table 6.
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Figure 7. Representation of the mean value of each of the categories in the dimensional model.
The first row shows the TV Debates representations, and the second row shows the Empathic VA
representations. Some emotions are very close to one another in all dimensions, which is why we
considered merging them into a single category.

The distribution of categories is quite different for both sets due to the nature of the
scenarios (see Table 6). For instance, annoyed/tense, although present in both tasks, has a
very different significance in the TV Debates dataset (almost 15%) and in the Empathic VA
dataset (less than 3%). Puzzled was not considered in the TV Debates dataset due to the
low number of samples labeled with that emotion, but it entails 3% of the samples in the
Empathic VA dataset. Moreover, the final category, puzzled + sad, represented by the union
of brown and purple points (low levels of valence and dominance) is not represented in the
TV Debates dataset and is slightly separated from the other categories in the Empathic VA
scenario. Moreover, Figure 7 shows that the location of annoyed/tense (red point, which
is in fact quite separated from the other categories) is closer to neutrality in the Empathic
VA scenario (lower excitement levels and lower negative values of valence) than in the
TV Debates dataset, meaning that this negative feeling is softer when interacting with the
machine and within this specific scenario.

Table 6. Composition of the final categories of each corpus with the number of samples that each
category contains.

TV Debates Empathic VA

calm/indifferent + interested + worried CALM 983 calm/bored/tired CALM 3197
enthusiastic + satisfied ENT 101 Happy/Amused HAPPY 545

annoyed/tense ANN 182 annoyed/tense ANN 114
puzzled + sad PUZZ 167

This correlates well with the idea that people interacting with the Empathic VA
scenario are not angry with the system, and if they experience any anger, their feelings are
more related to annoyance, which is quite common during debates. Furthermore, speakers
in debates do not usually show that they are in an unexpected situation (puzzled), since
this emotion can be interpreted as weakness, while it is often shown in interactions with
machines. In fact, puzzled was detected in the Empathic VA scenario. Categories such
as calm also had a similar location in both scenarios, but with higher values of valence
for the Empathic VA interactions; what the annotators perceived as calm tend to be more
positive in the Empathic VA scenario than in the TV Debates scenario. The same occurs
with enthusiastic + satisfied from the TV Debates scenario and with happy/pleased from
the Empathic VA scenario, which although are very close in location in both scenarios (with
very similar meanings), happy/pleased seems to have more positive valence values than
enthusiastic + satisfied but a bit lower dominance and arousal values.
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3.2. Classification Results

Some classification experiments were carried out for the tasks described in Section 2.1.
In the TV Debates dataset, 1266 chunks were selected and distributed into the three cate-
gories mentioned above (CALM, ANN, and ENT), and for the Empathic VA, 4023 samples
were selected and divided into four categories (CALM, HAPPY, ANN, and PUZZ).

When using the dimensional model, previous studies showed that trying to predict
a specific value in 3D space (as a regression problem) leads to very poor results [2,15]
due to the scarcity of data and the tendency toward neutrality. To solve this problem, a
discretization of each dimension was carried out and the regression problem was converted
into a classification one. The discrete levels were selected according to the distributions of
the annotated data in Figure 6, with orange lines as selected frontiers for the TV Debates
dataset and green lines selected for the Empathic VA dataset.

According to the top row displayed in Figure 6, arousal can be approximated by a
log-normal distribution with a longer tail towards higher values of excitement. Thus, we
decided to discern between only two values: neutral and excited. The thresholds (0.25 for
TV Debates and 0.075 for Empathic VA) were selected to keep the classes as balanced as
possible without distorting the limits imposed by the density function form.

In the case of valence, three categories were kept because of their similarity to a
Gaussian distribution. The decisions related to these thresholds also avoided the imbalance
problem. In the TV Debates set, since many of the samples are neutral, the values outside
the limits [0.4, 0.6] were considered negative or positive samples respectively. The Empathic
VA corpus was slightly more positive, and as a consequence, the limits were shifted towards
the more positive values 0.45 and 0.8, respectively.

Finally, the dominance distribution was similar to a Gaussian distribution. However, it
shifted towards dominant values; intimidated samples were almost absent. Consequently,
only two categories were considered: dominant and neutral. The cutoff limit between
neutral samples and dominant ones was set to 0.75 for the TV Debates dataset and to 0.65
for the Empathic VA dataset, which was the less dominant corpus.

Once the aforementioned discretization was applied, the distribution of samples in
the different classes remained, as Table 7 shows.

Table 7. Final categories for each dimension of the VAD model with the number of samples they
contain in each of the corpora.

TV Debates Empathic VA

arousal neutral 3068 2498
excited 1050 2027

valence
negative 682 520
neutral 2239 2811
positive 1197 1194

dominance neutral 3039 2946
dominant 1079 1579

The classification results for the TV Debates and Empathic VA datasets are given in
Table 8. The experiments were carried out by considering the categorical and VAD models
in an independent way. In both series, the spectrogram represented the speech signal.
Different evaluation metrics were given to provide better insight into the capabilities of the
neural network in predicting: the accuracy (ACC), precision (P), recall (R), and F1-score
(F1). Since we dealt with a multi-class classification problem, weighted and macro averages
were considered. Macro F1 is the average of the F1-scores for all classes; thus, it penalizes
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imbalanced datasets, which was the case in this work. It was computed as shown in
Equation (1):

F1 =

Nc
∑

i=1
F1i

Nc
(1)

where Nc is the number of classes and F1i is the F1-score computed assuming that the i-th
class is the positive one and that the negative one is composed by the remaining classes.

In weighted F1 (F1W) (Equation (2)) instead, the F1-scores were calculated for each
label, and then, their average is weighted with the number of true instances for each label.

F1W =

Nc
∑

i=1
nCi F1i

n
(2)

where nCi is the number of samples in Ci class and n is the total number of samples in the
test set.

Note that, hereafter, macro averages are denoted as P, R, and F1, whereas weighted
averages are denoted as PW , RW , and F1W .

In the results associated with the TV Debates experiments, a macro F1-score of 0.56
was achieved in the categorical model. Interestingly, all of the evaluation metrics (P, R,
and F1) provided results in the same range and were quite compensated for. Weighted F1
(F1W) provided better results (about 0.65) than macro F1 due to the imbalance that could
be appreciated in the dataset (the minority class comprises only 8% of the corpus, as seen
in Table 6). If we focus on the specific categories, the best results were achieved for the
most frequent one (CALM), but the F1 scores for the rest were still acceptable. Focusing
on the VAD model, we notice that arousal provideds a much better F1-score, reaching 0.7;
the F1-score dropped again for valence (0.47) and, then, increased a bit for dominance
(0.58). Let us note that three different labels were provided for valence, which made the
classification task more difficult, while only two were provided for arousal and dominance.
Dominance was the most difficult dimension to perceive for the annotators and the most
ambiguous one. Nevertheless, in this dataset, dominance had a significant presence and
was efficiently perceived and classified.

The experiments in the Empathic VA task resulted in lower performances. The cate-
gorical model provided a much lower F1-score when compared with those obtained in the
TV Debates dataset, which may be due to the imbalance being even higher in this dataset.
The minority class comprised 2.8% of the whole corpus, which was lower than that found
in the TV Debates dataset (8%), as shown in Table 6. In fact, looking at the independent
categories, the evaluation metrics were very low for less-frequent classes, such as PUZZ or
ANN. Moreover, in this set, the number of labels was higher (four instead of three), which
also leads, in general, to more confusion and lower performance. The VAD model followed
the same tendency observed in the TV Debates dataset, with the highest performance for
arousal and lower values for valence and dominance. However, in this case, the results
achieved in the previous corpus were not reached, either, because it was a more neutral
dataset and little emotional information could be learned.
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Table 8. Classification results on the spectrogram input for each of the problems (categorical and
each dimension of the VAD) and corpus (TV Debates and Empathic VA). Each problem has a row per
category with the precision, recall, and F1-score metrics and a row of means (Overall) that shows the
macro and weighted average measures of the metrics for all categories.

TV Debates Empathic VA

Acc P/PW R/RW F1/F1W Acc P/PW R/RW F1/F1W

Cat.

overall 0.65 0.56/0.65 0.57/0.65 0.56/0.65 0.73 0.34/0.64 0.27/0.73 0.26/0.66 overall
CALM 0.75 0.74 0.75 0.76 0.94 0.84 CALM
ENT 0.42 0.45 0.43 0.26 0.08 0.13 HAPPY
ANN 0.51 0.50 0.51 0.20 0.01 0.03 ANN

0.14 0.03 0.05 PUZZ

Aro.
overall 0.76 0.69/0.77 0.71/0.76 0.70/0.77 0.58 0.58/0.58 0.56/0.58 0.54/0.55 overall
neutral 0.86 0.82 0.84 0.59 0.81 0.68 neutral
excited 0.53 0.60 0.56 0.57 0.30 0.40 excited

Val.

overall 0.51 0.48/0.52 0.47/0.51 0.47/0.52 0.55 0.41/0.52 0.39/0.55 0.38/0.52 overall
negative 0.41 0.36 0.38 0.21 0.21 0.21 negative
neutral 0.60 0.59 0.59 0.63 0.77 0.69 neutral
positive 0.42 0.47 0.44 0.40 0.18 0.25 positive

Dom.
overall 0.63 0.58/0.69 0.60/0.63 0.58/0.65 0.63 0.59/0.62 0.58/0.63 0.59/0.63 overall
neutral 0.80 0.66 0.72 0.71 0.74 0.73 neutral
dominant 0.36 0.54 0.43 0.47 0.42 0.45 dominant

Preliminary Classification Results Using wav2vec Model

Some preliminary experiments were also carried out using the wav2vec model, as
shown in Table 9. The performance achieved was significantly lower. Minority categories,
such as HAPPY and PUZZ, were almost never recognized. However, the same tendency
observed with the spectrogram was also perceived, here: the VAD model performed better
than the categorical one, where arousal was the best recognized dimension and weighted
averages provided better results due to the imbalanced nature of these scenarios. Thus, the
results achieved were promising, considering the pretrained nature of the model and the
specific datasets employed in the training process. These datasets were based on speech
that is quite far from the conversational nature of the scenarios we deal with in this work.
Their contents were mostly neutral, and Spanish was scarcely included. A fine-tuning
process would be needed, in this case, to adapt the model to specific features of the task
and language. However, the aforementioned corpora might not be large enough to robustly
perform such an adaptation, which, currently, makes the use of pretrained representations
of the speech signal to model emotions in Spanish really difficult.

Table 9. Classification results on wav2vec input for each of the problems (categorical and each
dimension of the VAD) and corpus (TV Debates and Empathic VA). Each problem shows the accu-
racy, and macro and weighted average measures of the metrics (precision, recall, and F1-score) for
all categories.

TV Debates Empathic VA

Acc P/PW R/RW F1/F1W Acc P/PW R/RW F1/F1W

categorical 0.63 0.44/0.53 0.34/0.63 0.27/0.50 0.79 0.20/0.63 0.25/0.79 0.22/0.70

arousal 0.75 0.64/0.71 0.56/0.75 0.55/0.70 0.53 0.51/0.51 0.51/0.53 0.49/0.51

valence 0.38 0.29/0.39 0.35/0.38 0.27/0.33 0.62 0.33/0.48 0.33/0.62 0.26/0.48

dominance 0.74 0.37/0.54 0.50/0.74 0.42/0.63 0.63 0.55/0.59 0.53/0.63 0.52/0.59

4. Discussion
4.1. Analysis of Emotions

The perceived emotions provide very valuable information to profile the specific
features of the speakers in a scenario. The analyses carried out showed, for instance,
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the predominant neutrality in scenarios where spontaneous speech was considered. As
mentioned above, most of the time, conversational speech does not show extreme emotions
and tends to be calm. However, some differences are found when analyzing different
scenarios such as the ones tackled in this work. Quite noticeable was that human–human
interactions in a TV Debate format showed higher levels of excitement and dominance and
more negativeness, whereas human–machine interactions in the Empathic VA task showed
more positive feelings and lower values of excitement and dominance. These observations
could be easily reflected using the VAD model. However, when trying to translate it to
categories, finding appropriate ones is difficult without a previous perception study. This
fact makes the VAD model very appropriate when dealing with a new real task that is not
an artificial database specially designed for carrying out machine learning studies (with all
five basic emotions equally distributed).

When focusing on a speaker, their emotions can also help profile them. Looking at
their dominance, for instance, provides good insight into the kind of person they are when
taking part in a conversation (speaking in public to convince others vs. talking in a relaxed
environment an interest). Valence can also provide information about the speaker’s interest
during a conversation.

The experiments conducted also showed that the location of a specific category in
the 3D VAD space could vary depending on the scenario considered. As shown above,
the category CALM in the Empathic VA dataset was more positive than in TV Debates,
showing the ambiguity in the definition of the categories and the relevance of the VAD
model, which might consider more general definitions.

4.2. Classification Results

The classification experiments carried out show that the system performance was
significantly better in the TV Debates scenario than in Empathic VA one when using the
categorical model, which may be due to the specific composition of the tasks. In fact, even
though the TV Debates scenario is a heavily imbalanced task, the percentage of minority
classes was higher than in the Empathic VA one. This deviation towards only one category
is very difficult to tackle, even using oversampling methods. In future work, the use of a
data-augmentation technique, such as SMOTE algorithm [22,70] may be useful. Moreover,
the analysis of emotions in the Empathic VA dataset revealed that the dataset is a very
neutral corpus (much more than the TV Debates one), which complicates the detection of
emotional information. This fact is a major challenge when designing emotionally conscious
human–machine interaction systems. However, the differences among each value of the
VAD dimensions (excited/neutral for arousal, negative/neutral/positive for valence, or
dominant/neutral for dominance) were not very significant. Thus, we can hypothesize
that the VAD model might helped extract more precise and valuable information when
considering spontaneous emotions that tended toward neutrality. Finally, the preliminary
experiments conducted with the wav2vec model showed that these kinds of representations,
although very powerful, would require a tuning and adaptation process specific for the
task and language under consideration.

5. Conclusions

This work analyzed the emotional features found in two very different spontaneous
speech scenarios: human interactions during TV debates and human–machine conversa-
tions with a virtual agent. In both scenarios, a very reduced set of emotions was perceived
by a large number of annotators. Moreover, the emotional information had a high tendency
to be neutral, with the rest of the emotions being of a clear minority. This fact raised a
difficult pattern recognition problem, which was the imbalance in the data. Overall, the
automatic identification of spontaneous speech and related emotional content is still a
difficult problem to address. However, this work also showed that human interactions
could be more emotional and, thus, easier to tackle than human–machine interactions.
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Thus, the design of human–machine conversational systems, aimed at integrating a user’s
emotional state, are still challenging tasks.

In this framework, the VAD model was demonstrated to be more adequate in rep-
resenting emotional information. The dimensional VAD space, in fact, could be better
managed than categories in terms of annotation and automatic identification. The classifica-
tion experiments carried out in this work showed that deep learning approaches are useful
for detecting speakers’ emotional information, reaching a 0.7 F1-score for arousal. The
preliminary experiments with the novel wav2vec2.0 representation of speech signals seem
to be promising. However, this representation needs large sets of spontaneous emotional
speech in the target language, i.e., Spanish, which are not currently found.
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