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Science and Technology, Campus of Leioa, University of the Basque Country, 48940 Leioa, Spain;
manuel.delasen@ehu.eus

Abstract: The property of external positivity of dynamic systems is commonly defined as the non-
negativity of the output for all time under zero initial conditions and any given non-negative input
for all time. This paper investigates the extension of that property for a structured class of initial
conditions of a single-input single-output (SISO) linear dynamic system which can include, in general,
certain negative initial conditions. The above class of initial conditions is characterized analytically
based on the structure of the transfer function. The basic study is performed in the delay-free case, but
extensions are then given for systems subject to a finite number of internal and external, in general
incommensurate, point delays and for the closed-loop dynamic systems which incorporate a feedback
compensator. The formulation relies on calculating the output based on the impulse responses by
considering the relation of the mentioned sets of structured initial conditions with the zero-state
response which allows to keep the non-negativity of the zero-input response and that of the total
response provided the non-negativity for all time of the zero-state response.

Keywords: internal and external positivity; internal delays; external delays

1. Introduction

Internally positive, or simply positive, dynamic systems are those whose state and
output trajectory solutions have non-negative components for all time under any given non-
negative initial conditions and any given input with non-negative components for all time.
See, for instance [1–17], and references therein. The concept of externally positive systems
refers to the situation when all the components of the output trajectory are non-negative for
all time under zero initial conditions and any given input with non-negative components
for all time. See, for instance [1,3,4] and some references therein. The above concepts
of positivity and external positivity apply in the same way for continuous-time systems,
discrete-time systems and hybrid systems. Positive systems appear typically in common
problems of the Real World such as, for instance, in biological systems, epidemic systems,
medical models and economic systems and also, for instance, in the fields of Telecommuni-
cations, Ecology, population dynamics and others. See, for instance [1,2,5]. On the other
hand, the properties of observability, controllability and reachability of positive systems
have been very widely studied in the background literature. See, for instance [6–10] and
some of the references therein. It can be pointed out that the formulations of controllability
and reachability problems require the fulfilment of fixing a non-negative targeted state
in finite time though either a non-negative control function or a control sequence (in the
discrete case) as it is inherent to the own definition of the positivity property. The stability
and stabilization properties have been also widely studied in the background literature.
See, for instance [10–16], and some references there in, including the problems of finite-time
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stabilization, stabilization of switched positive systems and stability and stabilization of
fractional positive models. However, it can be pointed out that the positivity of the solution
is not an intrinsic property to a dynamic system, as it could be for instance, the eigenvalues
of a time-invariant linear system, which are not dependent on the particular state space
description. In fact, it suffices either a similarity or an equivalence state transformation
to loose the positivity property of the initial state space representation. Thus, the positiv-
ity property is not invariant, in general, under those kinds of transformations. See, for
instance [2]. It is also possible to deal with a kind of the inverse problem to the internal
positivity consisting of achieving the internal positivity under certain state transformations
perhaps at the expense of destabilizing partially the system. See, for instance [17].

The positivity property of periodic and 2-D systems has been focused on in [1,18,19].
See also some of the references therein while the positivity characterization in the presence
of internal (i.e., in the state) and/or external (i.e., in the input and/or output) delays has
also received a wide attention in the background literature. See, for instance [20–24]. The
reachability and observability properties of a class of fractional positive linear systems
which describe certain electrical circuits has been studied in [25] while the positivity of the
steady states of sub-homogeneous positive systems has been focused on in [26].

1.1. Specific Contribution

Generally speaking, internal positivity is a property related to the fact that both the
state and output of a dynamic system have non-negative state and output components for
all time for any given non-negative initial conditions and any given non-negative input
for all time. External positivity (in our proposed framework in this paper: “0-external
positivity”) is the property of all the output components being non-negative for all time
under zero initial conditions and any given non-negative input for all time. In particular, a
system which is 0-externally positive, but not internally positive, can, eventually, have some
negative output component at some time instant even under positive initial conditions.
The main objective of this paper is to extend the standard definition of external positivity
for a certain class of non-zero initial conditions which can be either positive or eventually
negative while belonging to a certain subset of the state space. Under this extension, the
output is non-negative for all time for any set of initial conditions in the mentioned set for
any non-negative input for all time. The performed basic formal study is performed in
Section 2 for the case of delay-free linear time-invariant systems while extensions are given
for systems which have, in general, finite sets of incommensurate point internal and/or
external delays. Such extensions are given in Section 3. In that case, the initial conditions
are given by an absolute continuous function with eventual jumps which is defined on an
initialization time interval in the non-positive real axis. The basic mechanism to state and
prove the obtained results is the use of the impulse response [27–31], to characterize the
zero-state response (that is, the output under zero initial conditions) and then to characterize
the zero-input response (that is, the output under zero input) for the defined admissible set
of initial conditions which can include some subset outside of the first orthant of the state
space, that is, it can include certain negative initial conditions. The extension of the external
positivity property for the inclusion of such a set of initial conditions, which extends the
standard definition of external positivity, is made through the superposition principle to
get the total output from the above two partial responses.

1.2. Notation

R+ = {r ∈ R : r > 0}; R0+ = R+ ∪ {0}
R− = {r ∈ R : r < 0}; R0− = R− ∪ {0}
n = {1, 2, · · · , n}; n0 = n ∪ {0}

L and L−1 are the Laplace transform, of argument “s”, and the inverse Laplace transform.
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The pairs of Laplace transform of a function and such a function as anti-Laplace
transform are, respectively, denoted as upper-case and lower-case styles as follows: M(s) =
L(m(t)) and m(t) = L−1(M(s)).

f (t+) and f (t−) denote the right and left limits of a discontinuous function f : R0+ → R
at t ∈ R.

In is the identity matrix of order n.
Consider matrices X =

(
Xij
)
∈ Rn×m, Y ∈ Rn×m. Then:

X�0, or X ∈ Rn×m
0+ , denotes a non-negative matrix, that is, Xij ≥ 0; ∀i, j ∈ n × m.

X�Y denotes X−Y�0.
X � 0, or X ∈ Rn×m

0+ , with X 6= 0, denotes a positive matrix, that is, Xij ≥ 0;
∀i, j ∈ n×m with at least one positive entry. In addition, X � Y denotes X−Y � 0.

X �� 0, or X ∈ Rn×m
+ , denotes a strictly positive matrix, that is, Xij > 0; ∀i, j ∈ n×m.

In additiion, X �� Y denotes X−Y �� 0.
Consider column vectors x = (x1, x2, . . . xn)

T ∈ Rn, y = (y1, y2, . . . yn)
T ∈ Rn. Then:

x�0, or x ∈ Rn
0+, denotes a non-negative vector, that is, xi ≥ 0; and x�y denotes

x− y�0.
x � 0, or x( 6= 0) ∈ Rn

0+, denotes a positive vector, that is, xi ≥ 0; ∀i ∈ n with at least
one positive entry. x � y denotes x− y � 0.

x �� 0, or x ∈ Rn
+, denotes a strictly positive real vector, that is, xi > 0; ∀i ∈ n.

x �� y denotes x− y �� 0.
x≺0 (no component of the vector x is positive) denotes −x�0. Similarly, we denote

x ≺ 0 and x ≺≺ 0 and close negativity notations are used for matrices X. The negativity
concepts or real matrices and vectors can be also denoted by referring them to the sets R−0
and R−.

The above notation applies also mutatis-mutandis for row vectors xT = (x1 , x2, . . . xn).
A Metzler matrix A is a real square n-matrix whose off-diagonal entries are non-

negative. It is known that if A is a Metzler matrix then the fundamental matrix of the
differential system

.
x(t) = Axt; ∀t ∈ R0+; x(0) = x0 ∈ Rn, is positive for all time, that is

eAt � 0.

2. Results
2.1. External Positivity for a Class of Eventually Non-Zero Initial State Conditions

In the following, we consider state space realizations R =
(

A, b, cT , d
)

of a transfer
function G(s) = cT(sIn − A)−1b + d, where s is the Laplace transform argument, of a
single-input single-output linear time-invariant system, where A ∈ Rn×n is the matrix of
dynamics; b , c ∈ Rn are the control and output transpose vectors and d ∈ R is the scalar
input-output interconnection gain. The state, input and output of R are x : R0+ → Rn ,
u : R0+ → R and y : R0+ → R , respectively, and R describes, in the time domain, a linear
time-invariant dynamic system through the equations:

.
x(t) = Ax(t) + bu(t); y(t) = cTx(t) + du(t)

with initial condition x0 = x(0+) ∈ Rn. The rational transfer complex function G(s) is
an external description of the same system which is the quotient between the Laplace
transforms of the output and input under zero initial conditions.

It is generically assumed that cT(sIn − A)−1b is strictly proper so that it has more
poles than zeros (then, relative degree of at least one) and, as a result, cT(sIn − A)−1b + d
is proper (that is, it has no more zeros than poles so that it is realizable in the state space)
and also biproper if d 6= 0 (that is, it has exactly the same number of zeros and poles so
that it is proper and state- space realizable as it is also its inverse). The consideration of a
single-input single-output in the study is made just to facilitate the exposition while most
of results also apply to multivariable systems under direct trivial generalizations.



Systems 2022, 10, 9 4 of 18

The extended external positivity concept dealt with considers a class of, eventually
non-zero, initial state conditions which are proportional to the control vector with arbitrary
non-negative proportionality slope.

Definition 1. A state space realization R =
(

A, b, cT , 0
)

of order n of a single-input single-
output transfer function G(s) = cT(sIn − A)−1b is externally positive for state initial conditions
x0 = x(0+) ∈ Ξ ⊂ Rn (in brief, Ξ -externally positive) if the output is non-negative for all time
for any given non-negative input. �

By convenience, the following dual definition to Definition 1 is given to be invoked in
some results later on:

Definition 2. A state space realization R =
(

A, b, cT , 0
)

of order n of a single-input single-
output transfer function G(s) = cT(sIn − A)−1b is externally negative for state initial conditions
x0 = x(0+) ∈ Ξ ⊂ Rn (in brief, Ξ -externally negative) if the output is non-positive for all time
for any given non-negative input. �

In Definition 1, the impulse response, i.e., the output, under zero initial conditions,
for a unity impulse at zero time (which is the Laplace inverse transform of the Laplace
transform) is non-negative for all time. In Definition 2, the impulse response is non-positive
for all time. Note that if R is externally positive then any realization obtained by changing
of sign an odd number of its parameterizing matrices is externally negative and vice-versa.

Kaczorek’s standard definition of external positivity corresponds to the above one
if x0 = 0, that is to zero-state external positivity [1]. So, it can be said that the standard
definition of external positivity corresponds to 0- external positivity according to Definition
1. The reason to the new definition is to extend the external positivity condition from zero
initial conditions to some wider sets as it is addressed in the subsequent result.

Note that internal positivity (or simply positivity) is the property of non-negativity
of all the components of the state trajectory solution for all time for any everywhere non-
negative input for any non-negative components of the initial condition. This property
stands if A is a Metzler matrix and b, c � 0, and it guarantees also the property of 0-external
positivity which holds if and only if the impulse response is non-negative for all time.

Note that if a linear system is internally positive then it is also externally positive
(or 0-externally positive following Definition 1). In fact, in [1], the definition of internal
positivity includes that of the external positivity. However, it has to be pointed out that
external positivity does not imply that the output trajectory solution is non-negative for all
time and any given everywhere non-negative input, in some case, even the initial conditions
are non-negative. This is visualized in the following simple example.

Example 1. Consider the state space realization R =
(

A, c, cT , 0
)

of order n , where A ∈ Rn×n

and c ∈ Rn of the single-input single-output transfer function

G(s) =
(
−cT

)
(sIn − A)−1(−c) = cT(sIn − A)−1c

which is assumed to be 0-externally positive what does not depend of c � 0 or c ≺ 0 . Now assume
that c ≺≺ 0 and that, for some λ < 0 , the initial state is x0 = −λc �� 0. The output of the above
realization is:

y(t) = −λcTeAtc + cT
∫ t

0
eA(t−τ)u(τ)dτ

where u : R0+ → R0+ is the input. Take a non-negative input u(t) =
{

θ f or t ∈ [0 , T]
0 f or t > T

.
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Then,
y(t) = −λcTeAtc + cTθ t

∫ t
0 eA(t−τ)cdτ f or t ∈ [0 , T]

y(t) = −λcTeAtc + cTθ T
∫ T

0 eA(t−τ)cdτ f or t > T

Note that y(t) < 0 for t > T if

λ

θT
>

cT
(∫ T

0 eA(t−τ)dτ
)

c

cTeAtc

Take a non-negative input u(t) =
{

θ f or t ∈ [0, T]
0 f or t > T

. Then,

y(t) =

 cTeAt
(

θt
∫ t

0 e−Aτdτ − λIn

)
c f or t ∈ [0, T]

cTeAT
(

θT
∫ T

0 e−Aτdτ − λIn

)
c f or t > T

Thus, the realization is not Rn
0+-external positive.

Remark 1. It has been seen that the external positivity for zero initial conditions does not imply the
external-positivity for any initial conditions and any given everywhere non-negative input within
the first closed orthant of the state space, that is, Rn

0+ -external positivity. �

Assume that a state space realization R =
(

A, b, cT , 0
)

of order n of a single-input
single-output transfer function G(s) = cT(sIn − A)−1b is 0-externally positive. Then, its
zero-state response (that is, the output under zero initial conditions) is non-negative for
all time for any given non-negative input. However, the zero -input response (that is, the
output under identically zero input y0(t) = cTeAtx0 is not necessarily non-negative since
it depends on c and eAt. In addition, the superposition of both partial responses could be
negative for certain non-negative inputs and non-negative initial conditions without extra
conditions on the realization elements. In addition, it is well- known that, if the state space
realization fulfils the stronger constraint of being (internally) positive [1,3,4], then the zero-
input response, the zero-state response and the total response are non-negative for all time
for any non-negative initial conditions and everywhere non-negative input. However, this
holds under the extra conditions that the state space realization R satisfies b � 0, c � 0 and
A being a Metzler matrix.

Note also that the fact that the impulse response is non-negative for all time, for
instance, cTeAtb ≥ 0; ∀t ∈ R0+, in the single-input single-output case, does not imply
that the zero-input response cTeAtx0 ≥ 0; ∀t ∈ R0+ for any x0 � 0. Therefore, 0-external
positivity does not imply, in general, neither that the zero-input response is non-negative
for all time or that the total response is non-negative for all time. �

The subsequent result states that 0-external positivity implies also external positivity
for any initial condition of the form λb for any λ ∈ R0+.

Proposition 1. Assume that a state space realization R =
(

A, b, cT , 0
)

of order n of a single-
input single-output linear time-invariant system of transfer function G(s) is 0 -externally positive.
Then, it is Ξ-externally positive where Ξ = {x ∈ Rn : x = λb, ∀λ ∈ R0+} . Conversely, if R is
Ξ-externally positive then it is 0-externally positive.

Proof. For given zero initial conditions and any input u : R0+ → R0+ , the output is,

y(t) =
∫ t

0
g(t− τ)u(τ)dτ =

∫ t

0
g(τ)u(t− τ)dτ ≥ 0; ∀t ∈ R0+

where the impulse response is g = L−1(G(s)) : R0+ → R0+ since, otherwise if g(t) < 0
for some t ∈ R0+, it suffices to take a positive impulsive input u(0) = δ(0) leading to
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y(t) < 0 contradicting that zero-state externally positive is zero-sate externally positive.
For any initial conditions satisfying x0 = λb(∈ Ξ) with λ ≥ 0, the Laplace transform of the
output is:

Y(s) = cT(sIn − A)−1x0 + G(s)U(s)
= λcT(sIn − A)−1b + G(s)U(s) = λcT(sIn − A)−1b + cT(sIn − A)−1bU(s)

(1)

Then, one gets after taking Laplace inverse transforms in (1) that,

y(t) = λL−1
[
cT(sIn − A)−1b

]
+ L−1

[
cT(sIn − A)−1bU(s)

]
= λg(t) +

∫ t

0
g(τ)u(t− τ)dτ ≥ 0; ∀t ∈ R0+ (2)

since g : R0+ → R0+ ,
∫ t

0 g(τ)u(t− τ)dτ ≥ 0 and λ ≥ 0. It has been proved that if R is
0-externally positive then it is Ξ-externally positive. The converse also holds since if R is
Ξ-externally positive, since, trivially, 0 ∈ Ξ, then R is 0-externally positive. �

Remark 2. Note that for Ξ = {x ∈ Rn : x = λb, ∀λ ∈ R0+}, Proposition 1 states that R is Ξ
-externally positive if and only if it is 0 -externally positive. �

Proposition 2. Assume that the state space realization R =
(

A, b, cT , 0
)

of order n of G(s) =

cT(sIn − A)−1b is Ξ-externally positive, where Ξ = {x ∈ Rn : x = λb, ∀λ ∈ R0+}. Then, the
state space realization R1 =

(
A, B, cT , d

)
of G1(s) = G(s) + d is Ξ -externally positive if and

only if d ≥ 0.

Proof. Now, one has from (2) that,

y(t) = λg(t) +
∫ t

0
g(τ)u(t− τ)dτ + du(t) ≥ du(t) (3)

Thus, for any given u : R0+ → R0+ , y(t) ≥ 0; ∀t ∈ R0+ since λ ≥ 0 which proves the
sufficiency. Now, proceed with contradiction arguments by assuming that d < 0. Then,
y(t+) = λg(t) +

∫ t
0 g(τ)u(t− τ)dτ − |d|u(t+) < 0 for t ∈ R0+ if u : R0+ → R0+ is such

that u(t+) >
λg(t)+

∫ t
0 g(t−τ)u(τ)dτ

|d| ; ∀t ∈ R0+ so that the necessity is proved since the Ξ-
external positivity fails since the output is not positive for all time for a particular positive
input. �

Remark 3. Note that the transfer functions G(s) and G1(s) = G(s) + d associated, respectively,
with the realizations

(
A, b, cT , 0

)
and

(
A, b, cT , d

)
are strictly proper and non-strictly proper,

respectively. Thus, the Ξ -external possibility of a non-strictly proper transfer function is maintained
under the incorporation of any direct input-output interconnection gain which converts it into a
non-strictly proper transfer function. �

Note that Proposition 2 states that, if Ξ = {x ∈ Rn : x = λb , ∀λ ∈ R0+}, then R =(
A, b, cT , 0

)
is Ξ-externally positive (equivalently, 0-externally positive) if and only if R1 =(

A, b, cT , d
)

is Ξ-externally positive (equivalently, 0-externally positive) for any d ≥ 0.
The following result is concerned with the property of 0-external positivity of a closed-

loop configuration under the assumption that the feed-forward is Ξ-externally positive.
The closed-loop configuration consists of the feed-forward transfer function G(s) and the
feedback one H(s) so that the closed-loop error ε(t) coincides with the input control u(t)
to G(s).

Theorem 1. Assume that the state space realization R =
(

A, b, cT , 0
)

of order n of the transfer func-
tion G(s) = cT(sIn − A)−1b is Ξ-externally positive, where Ξ = {x ∈ Rn : x = λb, ∀λ ∈ R0+}
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and that the state space realization RH =
(

AH , bH , cT
H , 0

)
of order nH is of the transfer function

H(s) = cT
H

(
sInH
− AH

)−1
bH has initial conditions:

xH(0) = xH0 = λHbH ∈ Ξ̂H = { x ∈ Rm : x = λHbH , ∀λH ∈ R}.

Assume also that G(s) and H(s) are, respectively, the feed-forward and feedback blocks of a
closed-loop transfer function with negative feedback whose reference input is r : R0+ → R , subject
to the constraint r(t) ≥

∫ t
0 gH(t− σ)y(σ)dσ + λH gH(t); ∀t ∈ R0+ where gH : R0+ → R is the

impulse response of H(s). Then, the following properties hold:
(i) The closed-loop state space realization of state

(
xT(t) , xT

H(t)
)Thas a non-negative output

y(t) = cTx(t) for all time so that it is 0-externally positive with respect to the closed-loop error
ε(t) = u(t) = r(t)−

∫ t
0 gH(t− σ)y(σ)dσ− λH gH(t). However, it is not Ξcl-externally positive

with respect to the closed-loop reference input r(t), where:

Ξcl =

{
z =

(
xT , wT

)T
∈ Rn+m : x = λb; w = λbH , ∀λ ∈ R0+

}
.

(ii) Assume that R is Ξ-externally positive, RH is Ξ-externally negative and r : R0+ → R0+ .
Then the closed-loop state space realization of state

(
xT(t) , xT

H(t)
)T is 0-externally positive and

also Ξcl-externally positive.
(iii) Assume that G(s) and H(s) of the Property (i) are replaced, respectively, with G1(s) =

G(s) + d and H1(s) = H(s) + dH with input-output interconnection gains d ≥ 0 and dH ∈ R.
Then, Properties (i)–(ii) still hold, for dH ≥ 0 and dH ≤ 0, respectively.

Proof. Since the Lapalce transform of the feedback control is U(s) = R(s) − H(s)Y(s),
Equation (1) takes the form:

Y(s) = λcT(sIn − A)−1b + G(s)U(s)
= λcT(sIn − A)−1b + G(s)(R(s)− H(s)Y(s))
= λcT(sIn − A)−1b + cT(sIn − A)−1b
×
(

R(s)− cT
H(sInH − AH)

−1bH Y(s)− cT
H(sInH − AH)

−1λHbH

) (4)

if x0 = λb and xH0 = xH(0) = λHbH . From (4), one gets the following identity:

P(s) =
(

1 + cT(sIn − A)−1bcT
H(sInH − AH)

−1bH

)
Y(s)

= (1 + G(s)H(s))Y(s)
= Q(s) = cT(sIn − A)−1b

[
λ− λHcT

H(sInH − AH)
−1bH + R(s)

] (5)

Taking anti-Laplace transforms in the left-hand-side and right-hand-side of the above
expression yields:

P(t) = L−1
{(

In + cT(sIn − A)−1bcT
H(sInH − AH)

−1bH

)
Y(s)

}
= y(t) +

∫ t
0

∫ τ
0 g(t− τ)gH(τ − σ)y(σ)dσdτ; ∀t ∈ R0+

(6)

and
Q(t) = L−1

{
cT(sIn − A)−1b

[
λ− λHcT

H(sInH − AH)
−1bH + R(s)

]}
= λg(t) − λH

∫ t
0 g(τ)gH(t− τ)dτ +

∫ t
0 g(t− τ)r(τ)dτ

= λg(t) +
∫ t

0 g(t− τ)[r(τ)− λH gH(τ)]dτ; ∀t ∈ R0+

(7)
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Since R is Ξ-externally positive, g : R0+ → R0+ and λg(t) ≥ 0; ∀t ∈ R0+, since λ ≥ 0.
By equalizing P(t) = Q(t) in (6)–(7), one gets:

y(t)= λg(t) +
∫ t

0
g(t− τ)

[
r(τ)−

∫ τ

0
gH(τ − σ)y(σ)dσ− λH gH(τ)

]
dτ; ∀t ∈ R0+ (8)

With g : R0+ → R0+ . Since λ ≥ 0, λH ∈ R and r(t) ≥
∫ t

0 gH(t− σ)y(σ)dσ + λH gH(t);
∀t ∈ R0+, one concludes from (8) that y : R0+ → R0+ as a result. In addition, it is 0-
externally positive related to the closed-loop error (that is, the reference input minus output
feedback signal):

ε(t) = u(t) = r(t)−
∫ t

0
gH(t− σ)y(σ)dσ− λH gH(t)

However, it is not Ξcl-externally positive since the output is not non-negative for
any reference input r : R0+ → R0+ . It suffices to take some r : R0+ → R0+ under the
constraint 0 ≤ r(t) < λgH(t), for some t ∈ R0+, some given λ > 0 and associated initial
state condition of the closed-loop system of the form λ

(
bT , bT

H
)

, so violating the reference
constraint of Property (i) to be unable to prove that y : R0+ → R0+ . Property (i) has been
proved.

To prove Property (ii), consider again (8) with g, (−gH) : R0+ → R0+ since R and RH
are, respectively, Ξ-externally positive and Ξ-externally negative. Since λ , λH ∈ R0+, then
(8) becomes modified as follows:

y(t)= λg(t) +
∫ t

0
g(t− τ)

[
r(τ) +

∫ τ

0
|gH(τ − σ)|y(σ)dσ + λH |gH(τ)|

]
dτ; ∀t ∈ R0+ (9)

so that y : R0+ → R0+ for any reference input r : R0+ → R0+ and Property (ii) is proved.
To prove Property (iii), note that (5) becomes modified as P̂(s) = Q(s) with,

P̂(s) = (1 + G1(s)H1(s))Y(s) = (1 + (G(s) + d)(H(s) + dH))Y(s) (10)

and the interconnection gains d and dH can be incorporated to the impulse responses
g1 , gH1 : R0+ → R . The discussion follows as in Property (i) and Property (ii) from which
it can be built a similar contradiction to the negativity of the output for some time instant
as it was carried out in the proof of Property (i). From there, Property (iii) follows. �

Note that set Ξcl in Theorem 1 is the subset of Rn+m defined by the vectors z =

λ
(
bT , bT

H
)T , λ ∈ R0+.

The following consequence of Theorem 1 is direct.

Corollary 1. Theorem 1 holds, in particular, if G(s) = cT(sIn − A)−1b is 0-externally positive
and the remaining constraints are kept identical. �

Note that the stipulations of Theorem 1 imply that the closed-loop state space real-
ization is not Ξcl-externally positive where Ξcl =

{
z = λ

(
bT , bT

H
)T : λ ∈ R0+

}
. However,

and in view of (7), Q(t) ≥ 0; ∀t ∈ R0+ if λH = 0, implying zero initial conditions for
the feedback block and leading to the reference input condition r(t) ≥ 0; ∀t ∈ R0+ if
the rest of the given stipulations hold. Therefore, Theorem 1 guarantees the Ξcl0-external
positivity of the closed-loop system, where Ξcl0 =

{
z = λ

(
bT , 0T)T : λ ∈ R0+

}
, namely,

for any initial condition of the feed-forward block being proportional (with non-negative
slope) to its corresponding control vector and zero initial condition of the feedback block.
Note also that it guarantees, in a similar way, the Ξcl−-external positivity of the closed-loop
system, where Ξcl− =

{
z =

(
λbT , −λHbT

H
)T : λ ∈ R0+, λH ∈ R0−

}
, namely, for any given

initial conditions of the feed-forward block proportional (with non-negative slope) to its
corresponding control vector and any given non-positive initial conditions of the feedback
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block. The above considerations are summarized, under the form of corollary to Theorem 1,
as follows:

Corollary 2. Let sets Ξcl0, Ξcl− ⊂ Rn+m defined by Ξcl0 =
{

z = λ
(
bT , 0T)T : λ ∈ R0+

}
and

Ξcl− =
{

z =
(
λbT , −λHbT

H
)T : λ ∈ R0+, λH ∈ R0−

}
. Assume that R =

(
A, b, cT , 0

)
is Ξ-

externally positive, with Ξ = {x ∈ Rn : x = λb, ∀λ ∈ R0+} and that RH =
(

AH , bH , cT
H , 0

)
is 0 -externally positive. Then, for any given input-output interconnection gains d ≥ 0 and
dH ≥ 0, the closed-loop systems consisting of any feed-forward and feedback state space realizations
R1 =

(
A, b, cT , d

)
and RH =

(
AH , bH , cT

H , dH
)

are jointly Ξcl0-externally positive and Ξcl−
-externally positive. �

An important discussion follows in the subsequent remark concerning the irrelevance
of the realization being minimal (that is, jointly controllable and observable) or non- mini-
mal if the initial conditions for the extra modes in non-minimal realizations satisfy also the
given constraints.

Remark 4. Note that the orders of the state space realizations are not relevant for the given
Ξ -external positivity results if the domain Ξ of initial conditions is extended in a natural way
according to the dimensionality of the non-minimal realization. The key facts are the positivity of the
impulse responses and the definition of sets of initial conditions with the indicated proportionality
characteristics with respect to the control vectors. This is easily seen by assuming that the transfer
function G(s) = cT(sIn − A)−1b has no zero-pole cancellation, thus, the state space realization
R =

(
A, b, cT , 0

)
is controllable and observable, and also a minimal realization of G(s) as a result,

and the dimension n of its state vector x(t) of R is the degree of the denominator of the transfer
function G(s). Consider now a transfer function G(s) = G(s) p(s)

p(s) , where p(s) is a polynomial of

arbitrary degree q ≥ 1. Thus, G(s) is identical to G(s) (after performing the zero-pole cancellations
of the extra coincident q zeros and poles) but any state space realization R of G(s) has (n + q)
-order (so that its state vector x(t) is of dimension (n + q) and it is either controllable and non-
observable, or non-controllable and observable or non -controllable and non-observable, but it cannot
be controllable and observable. �

Now, by inspecting (1), one concludes that,

G(s) = λcT(sIn − A)−1b + cT(sIn − A)−1bU(s)
= G(s) = λcT(sIn − A

)−1b + cT(sIn − A
)−1bU(s)

(11)

Thus, the zero-pole cancellations of G(s) lead to q extra modes in R (implying zero-pole
cancellations in the transfer function) related to those of R but this does not affect to any of
the given results in Proposition 1 and Proposition 2 if the initial conditions are x0 = λb and
x0 = λb for any real number λ ∈ R0+. Thus, results for minimal-realizations concerning
the given concepts of external positivity are also kept for their corresponding non-minimal
realizations of any orders provided the rules on the admissible initial conditions are kept
for the extra added modes. Similar conclusions apply to Theorem 1 and its given corollaries
for feed-forward/feedback tandems in closed-loop configuration with the appropriate
modifications. Thus, if the minimal realization R is Ξ-externally positive, where Ξ =
{x ∈ Rn : x = λb , ∀λ ∈ R0+} then the non-minimal one R is Ξ-externally positive, where
Ξ =

{
x ∈ Rn+m : x = λb , ∀λ ∈ R0+

}
. �

2.2. External Positivity for a System Subject to Point Delays for a Class of Eventually Non-Zero
Initial State Conditions

It is now considered that the linear time -invariant system is subject to µ and finite sets
ν of internal (i.e., in the state) and external (i.e., in the input) point delays hi and h′j ordered
by 0 = h0 < h1 < . . . < hµ = h and 0 = h′0 < h′1 < . . . < h′ν = h′ and it is described by the



Systems 2022, 10, 9 10 of 18

state space realization Rµν =
(

A0, A1, · · · , Aµ, b0, b1 , · · · , bν, cT , d
)

of associate state and
output equations:

.
x(t) = ∑µ

i=0 Aix(t− hi) + ∑ν

i=0 biu
(
t− h′i

)
= A0x(t) +

(
∑µ

i=1 Aix(t− hi) + ∑ν

i=0 biu
(
t− h′i

))
(12)

y(t) = cTx(t) + du(t) (13)

of initial conditions defined by a function ϕ : [−h, 0]→ Rn , with ϕ(0) = x0, which consists
of an absolutely continuous function plus, eventually, a function of finite jumps on a subset
of zero Lebesgue measure of [−h, 0], where x : [−h, 0] ∪R0+ → Rn , u : [−h′, 0] ∪R0+ → R
and y : R0+ → R are the state, input and output, respectively, and Ai ∈ Rn×n; c, bj ∈ Rn;
d ∈ R; i ∈ µ0, j ∈ ν0 with x(t) = ϕ(t) for t ∈ [−h, 0] and u(t) = 0 for t ∈ [−h′, 0). The
transfer function of the above realization is the following one:

Gµν(s) = ∑ν

i=0 Gi(s)e−h′is = cT
(

sIn −∑µ

i=0 Aie−his
)−1(

∑ν

i=0 bie−h′is
)
+ d (14)

where

G0(s) = cT
(

sIn −∑
µ
i=0 Aie−his

)−1

b0 + d

Gi(s) = cT
(

sIn −∑
µ
i=0 Aie−his

)−1

bi; ∀i ∈ ν

(15)

The unique time domain solution of (12) is:

x(t) = eA0tx0 +
∫ t

0
eA0(t−τ)

(
∑µ

i=1 Aix(τ − hi) + ∑ν

i=0 biu
(
τ − h′i

))
dτ (16)

= Ψ(t, 0)x0 +
∫ 0

−h
Ψ(t, τ)ϕ(τ)dτ +

∫ t

0
Ψ(t, τ)

(
∑ν

i=0 biu
(
τ − h′i

))
dτ; ∀t ∈ R0+ (17)

where Ψ : R0+ × [−h, 0) ∪R0+ → R0+ is the unique fundamental matrix of the unforced
(12) which satisfies the differential system:

.
Ψ(t, τ) = A0Ψ(t, τ) + ∑µ

i=1 AiΨ(t− hi, τ)U(t− hi − τ); t ≥ τ ≥ 0 (18)

whose solution is,

Ψ(t, τ) = ∑ν
i=0 Ψi(t, τ) =

[
eA0(t−τ)

(
In + ∑

µ
i=1 AiΨ(t− hi, τ)U(t− hi − τ)

)]
U(t− τ);

∀(τ (≤ t), t) ∈ ([−h , 0) ∪R0+)×R0+
(19)

where

Ψ0(t, τ) = eA0(t−τ)U(t− τ), Ψi(t, τ) = eA0(t−τ) AiΨ(t− hi, τ)U(t− hi − τ)U(t, τ);
∀i ∈ µ; ∀(τ (≤ t), t) ∈ ([−h , 0) ∪R0+)×R0+

(20)

where U(t) is the Heaviside function. In particular, Ψ(t , t) = In; ∀t ∈ R0+ and Ψ(t , τ) = 0;
∀τ(> t) , t ∈ R0+.

The Laplace transform of the output under eventually non-zero initial conditions is:

Y(s) = cT
(

sIn −∑µ

i=0 Aie−his
)−1

ϕ(s) +
[

cT
(

sIn −∑µ

i=0 Aie−his
)−1(

∑ν

i=0 bie−h′is
)
+ d
]

U(s) (21)

Note that,
Gµν(s) = L

(
cT∑

µ
i=0 Ψ(t, 0)bie−h′is

)
+ d

The impulse response is:

gµν(t, τ) = L−1(Gµν(s)
)
= ∑ν

i=0 gi(t, τ) = ∑ν

i=0 L−1(Gi(s))∀(τ (≤ t), t) ∈ ([−h , 0) ∪R0+)×R0+ (22)
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and gµν(t, τ) = 0; ∀τ(> t) , t ∈ R0+, where δ(i, j) is the Kronecker delta, that is unity if
i = j and zero, otherwise; and δ(t− τ) is the Dirac distribution, that is, it tends to infinity
for t = τ and it is zero otherwise. Thus, one gets from (13) and (17),

y(t) = cTΨ(t, 0)x0 + ∑
µ
i=1

∫ 0
−hi

cTΨi(t, τ)ϕ(τ)dτ + ∑ν
i=0 cTΨ(t, τ)biu(τ − h′ i)dτ + du(t)

= cTΨ(t, 0)x0 +
∫ 0
−h cTΨ(t, τ)ϕ(τ)dτ + ∑ν

i=0
∫ t

0 gi(t, τ)u(τ − h′ i)dτ

= cTΨ(t, 0)x0 +
∫ ∞

0 cTΨ(t, τ − h)ϕ̂(τ)dτ + ∑ν
i=0
∫ t

0 gi(t− τ)u(τ − h′ i)dτ; ∀t ∈ R0+

(23)

where the impulse responses and the extended initial function of initial conditions are:

g0(t, τ) = g0(t− τ) = cTΨ(t− τ)b0 + δ(t− τ)d; ∀(τ (≤ t), t) ∈ ([−h , 0) ∪R0+)×R0+ (24)

gi(t, τ) = gi(t− τ) = cTΨ(t τ)bi; ∀(τ (≤ t), t) ∈ ([−h, 0) ∪R0+)×R0+; ∀i ∈ µ (25)

ϕ̂(t) =
{

ϕ(t− h) f or t ∈ [0, h]
0 f or t > h

(26)

Note that the function of initial conditions in the second right-hand-side term of (23)
plays the role of a forcing function to the solution and that the use of its extended version
(26) converts such a contribution as a convolution term similar to the contribution of the
inputs. The following external positivity condition for a set of initial conditions extends in
a natural way that given previously for the delay-free case.

Definition 3. A state space realization Rµν =
(

A0, A1, · · · , Aµ, b0, b1, · · · , bν, cT , d
)

of order
n of associate state and output Equations (12)–(13), under initial conditions of initial conditions
defined by a function ϕ : [−h, 0]→ Rn , which consists of an absolutely continuous function
plus, eventually, a function of finite jumps on a subset of zero Lebesgue measure of [−h, 0] is
externally positive for state initial conditions in some set

{
ϕ : [−h, 0]→ Ξµν ⊆ Rn } (in brief,

Ξµν -externally positive) if the output is non-negative for all time for any given non-negative input.
�

Note that the transfer function of the system under eventual internal and external
delays, referred to in Definition 3, is of the form:

Gµν(s) = ∑ν

i=0 Gi(s)e−h′is = cT
(

sIn −∑µ

i=0 Aie−his
)−1(

∑ν

i=0 bie−h′is
)
+ d

The following result holds on external positivity for a set of initial conditions:

Theorem 2. Assume the 0 -external positivity, i.e., the external positivity under zero initial
conditions, of the state space realization Rµν =

(
A0, A1, · · · , Aµ, b0, b1 , · · · , bν, cT , d

)
of order

n, given by (12)–(13), of a transfer function (14). Then, Rµν is Ξµν -externally positive irrespective
of the delays sizes, where Ξµν = { ϕ : [−h, 0]→ Rn satis f ies conditions IC }:

Conditions IC : ϕ(t) = ∑ν
i=1 λi(t)bi; ∀t ∈ [−h, 0], x(0+) = x0 = ϕ(0+) = λ0b0, where

λ0 ≥ 0, and λi :
([
−min

(
hi
′, h
)
, 0
)
∪R0+

)
→ R0+ ; ∀i ∈ ν are absolutely continuous functions

plus, eventually, functions of finite jumps on subsets of zero Lebesgue measure of their definition
domains.

Conversely, if Rµν is Ξµν-externally positive then it is 0-externally positive.

Proof. The extended initial conditions obtained from Conditions IC in the definition of Ξµν,
to write the second right-hand-side of (23) as a convolution term, are as follows:

ϕ̂(t) = ∑ν

i=1 λ̂i(t)bi; ∀t ∈ [−h, 0) ∪R0+ (27)
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with λ̂i :
( [
−min

(
hi
′ , h
)
, 0
)
∪R0+

)
→ R0+ ; ∀i ∈ ν being defined by,

λ̂i(t) =
{

λi
(
t− h′i

)
f or t ∈

[
−min

(
hi
′, h
)
, 0
)

0 f or t ≥ 0
; ∀i ∈ ν (28)

In terms of the impulse responses, (22), subject to (24)–(25), the output (23) is expressed
as follows:

y(t) = λ0g0(t) + ∑ν

i=1

∫ ∞

0
gi(t− τ + h)λ̂i(τ)dτ + ∑ν

i=0

∫ t

0
gi(t− τ)u

(
τ − h′ i

)
dτ; ∀t ∈ R0+ (29)

where the total impulse response (22) is,

gµν(t, τ) = ∑ν
j=0 gi(t− τ) = ∑ν

j=0 cTΨ(t, τ)bj + δ(0, j)δ(t− τ)d
∀τ(≤ t) ∈ [−h, 0]×R0+; ∀t ∈ R0+

(30)

and gµν(t, τ) = 0 for τ > t. Note that the input-output interconnection gain d ≥ 0
for the realization to be 0-externally positive. From the 0-external positivity condition,
one gets that gi : ( [−h, 0]×R0+)×R0+ → R0+ ; ∀i ∈ ν0. Otherwise, assume that for
identically zero function of initial conditions ϕ : [−h, 0]→ Rn and some i ∈ ν0, there
exists some t ∈ R0+ such that gi

(
t + h′i

)
= 0, then it suffices to take an isolated input

impulse of sufficiently large positive amplitude u(t) = Kδ(0) to get a negative y(t). Thus,
gi : ([−h, 0]×R0+)×R0+ → R0+ ; ∀i ∈ ν0. Then, the forced output (or zero-state re-
sponse) in (29) satisfies:

y f (t) =
ν

∑
i=0

∫ t

0
gi(t− τ)u

(
τ − h′ i

)
dτ ≥ 0; ∀t ∈ R0+ (31)

Note that Conditions IC in the definition of Ξµν imply that the unforced output (or
zero-input response) response in (29) satisfies:

yu f (t) = λ0g0(t) + ∑ν

i=1

∫ ∞

0
gi(t− τ + h)λ̂i(τ)dτ ≥ 0; ∀t ∈ R0+ (32)

From (31)–(32), y(t) ≥ 0; ∀t ∈ R0+. It is direct to prove that, conversely, if Rµν is
Ξµν-externally positive then it is 0-externally positive since (ϕ ≡ 0) ∈ Ξµν. �

The subsequent result extends external positivity results Theorem 1, while it is sup-
ported by Theorem 2, from the delay-free case to the case of linear feed-forward and
feedback linear systems subjects to finite numbers of incommensurate internal and external
point delays. The point delays are said to be incommensurate in the subject literature if
they are not integer multiples of a basic delay. The commensurate delays are the particular
case where the delays are integer multiple of a basic delay. This, the subsequent results for
the general case of incommensurate point delays are directly applied to the particular case
of commensurate delays.

Theorem 3. Assume the 0-external positivity, irrespective of the delay sizes, of the state space
realization Rµν =

(
A0, A1, · · · , Aµ, b0, b1, · · · , bν, cT , d

)
of order n, given by (12)–(13), of a

transfer function (14) under the initial conditions:
IC : ϕ(t) = ∑ν

i=1 λi(t)bi; ∀t ∈ [−h, 0], x(0+) = x0 = ϕ(0+) = λ0b0, where λ0 ≥ 0
and λi : ([−min(hi? h), 0) ∪R0+)→ R0+ ; ∀i ∈ ν are absolutely continuous functions plus,
eventually, functions of finite jumps on subsets of zero Lebesgue measure of their definition domains.

Consider also the state space realization RµHνH = (A0H , A1H , · · · , AµH , b0H , b1H , · · · ,

bνH , cT
H , dH) of order nH of the transfer function HµHνH (s) = cT

(
sInH −∑

µH
i=0 AiHe−hiHs

)−1

(
∑νH

i=0 biHe−h′ iHs
)
+ dH , given by similar equations to (12) and (13), with respective µH and νH
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incommensurate nonzero internal and external point delays hiH for i ∈ µH0 and h′jH for j ∈ νH0,
ordered in size according to their respective subscripts with h0H = h′0H = 0 and hH = hµH H , and
with initial conditions in the set ΞµHνH = { ϕH : [−hH , 0]→ RnH satis f ies conditions ICH }:

Conditions ICH : ϕH(0) = x0H and ϕH(t) = ∑νH
i=1 λiH(t)biH ; ∀t ∈ [−hH , 0], xH(0+) =

x0H = ϕH(0+) = λ0Hb0H , where λ0H ∈ R and λiH : [−hH , 0)→ R ; ∀i ∈ νH are absolutely
continuous functions plus, eventually, functions of finite jumps on subsets of zero Lebesgue measure
of their definition domains.

Assume also that Gµν(s) and HµHνH (s) are, respectively, the feed-forward and feedback blocks
of a closed-loop transfer function with negative feedback whose reference input is r : R0+ → R ,
subject to the constraint

r(t) ≥ ∑νH
j=0

∫ t
0 gjH(t− σ)y(σ) dσ +

∫ 0
−min(hH ,hjH) gjH(t− σ)λjH(σ)dσ; ∀t ∈ R0+.

Then, the following properties hold:
(i) The closed-loop state space realization of state

(
xT(t), xT

H(t)
)T has a non-negative output

y(t) = cTx(t) for all time so that it is 0-externally positive with respect to the closed-loop error
ε(t) = u(t). However, it is not Ξcl-externally positive with Ξcl =

(
Ξµν, ΞµHνH

)
with respect to

the closed-loop reference input r(t), where Ξµν = { ϕ : [−h, 0]→ Rn satis f ies conditions IC }.
(ii) Assume that Rµν is Ξ-externally positive, RµHνH is Ξ-externally negative and r : R0+ → R0+ .

Then the closed-loop state space realization of state
(

xT(t) , xT
H(t)

)T is 0-externally positive and
Ξcl-externally positive.

Proof. It is known from Theorem 2 that Rµν is Ξµν-externally positive, where Ξµν =
{ ϕ : [−h , 0]→ Rn satis f ies conditions IC }. Now, the extended initial conditions ob-
tained from Conditions IC of Ξµν for the realization Rµν are defined in (27) and (28) while
the extended initial conditions obtained from Conditions ICH of ΞµHνH for the realization
RµHνH are as follows:

ϕ̂H(t) = ∑ν

i=1 λ̂Hi(t)biH ; ∀t ∈ [−hH , 0) ∪R0+ (33)

with λ̂Hi : ([−min(h′ iH , hH), 0) ∪R0+)→ R ; ∀i ∈ ν being defined by

λ̂iH(t) =
{

λiH(t− hH) f or t ∈ [−min(h′ iH , hH), 0)
0 f or t ≥ 0

(34)

�

Proof. Since the Laplace transform of the feedback control is U(s) = R(s)− HµHνH (s)Y(s),
Equation (21) becomes:

Y(s) = cT
(

sIn −∑
µ
i=0 Aie−his

)−1

ϕ(s) +
[

cT
(

sIn −∑
µ
i=0 Aie−his

)−1(
∑ν

i=0 bie−h′ is
)
+ d
]

U(s)

= cT
(

sIn −∑
µ
i=0 Aie−his

)−1(
∑ν

i=0 bie−h′ isλi(s)
)

+

[
cT
(

sIn −∑
µ
i=0 Aie−his

)−1(
∑ν

i=0 bie−h′ is
)
+ d
] (

R(s)− HµHνH (s)Y(s)
)

= cT
(

sIn −∑
µ
i=0 Aie−his

)−1(
∑ν

i=0 bie−h′ isλi(s)
)
+

[
cT
(

sIn −∑
µ
i=0 Aie−his

)−1(
∑ν

i=0 bie−h′ is
)
+ d
]

×
(

R(s)−
(

cT
(

sInH −∑
µH
i=0 AiHe−hiHs

)−1(
∑νH

i=0 biHe−h′iHs
)
+ dH

)
Y(s)− cT

H

(
sInH −∑

µH
i=0 AiHe−hiH

)−1(
∑νH

i=0 biHe−h′ iH λiH(s)
))

(35)

and, by taking Laplace inverse transforms in (35), one gets:
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y(t) = ∑ν
i=0
∫ t

0 gi(t− τ + h)λ̂i(τ)dτ

+∑ν
i=0
∫ t

0 gi(t− τ)
[
r(τ)−∑νH

j=0

∫ τ
0 gjH(τ − σ)y(σ)dσ−

∫ τ
0 gjH(τ − σ + hH)λjH(σ)dσ

]
dτ

= ∑ν
i=0
∫ 0
−min(h,hi)

gi(t− τ)λi(τ)dτ

+∑ν
i=0
∫ t

0 gi(t− τ)
[
r(τ)−∑νH

j=0

∫ τ
0 gjH(τ − σ)y(σ) dσ−

∫ 0
−min(hH ,hjH) gjH(τ − σ)λjH(σ)dσ

]
dτ

≥ ∑ν
i=0
∫ t

0 gi(t− τ)
[
r(τ)−∑νH

j=0

∫ τ
0 gjH(τ − σ)y(σ) dσ−

∫ 0
−min(hH ,hjH) gjH(τ − σ)λjH(σ)dσ

]
dτ≥ 0; ∀t ∈ R0+

(36)

since ∑ν
i=0
∫ 0
−min(h,hi)

gi(t− τ)λi(τ)dτ ≥ 0; ∀t ∈ R0+, since the realization Rµν is Ξµν-

externally positive, and since r(t) ≥ ∑νH
j=0

∫ τ
0 gjH(τ − σ)y(σ) dσ +

∫ 0
−min(hH ,hjH) gjH(τ − σ)

λjH(σ)dσ; ∀t ∈ R0+ by hypothesis. Thus, the closed-loop state space realization is 0-
externally positive but not Ξcl-externally positive with respect to the reference signal r(t)
since it has to fulfil stronger constraints than its non-negativity. Property (i) has been proved.
On the other hand, if, in addition, RµHνH is Ξ-externally negative, then the constraint of
Property (i) becomes:

r(t) ≥ −∑νH
j=0

∫ τ

0

∣∣gjH(τ − σ)
∣∣y(σ) dσ−

∫ 0

−min(hH ,hjH)

∣∣gjH(τ − σ)
∣∣λjH(σ)dσ (37)

is directly fulfilled for any reference signal r : R0+ → R0+ and it also holds, as in Property
(i), that y : R0+ → R0+ under the admissibility constraint ICH for any given function of
initial conditions of the feedback transfer function. Property (ii) has been proved. �

Now, some results are got for 0-external positivity of closed-loop configurations
involving a feed-forward compensator and a feed-forwards and a feed-back one based of
the 0-external positivity of each of the system parts provided they are also strictly stable.
It is considered the delay-free case for exposition facility while their extensions to the
presence of point delays are direct.

Theorem 4. Assume a closed-loop system configuration consisting of a of transfer function G(s)
with a feed-forward compensator C(s) under unity negative feedback. Assume that both state space
realizations of G(s) and C(s) are 0-externally positive and strictly stable. Assume also that the
reference signal r(t) is strictly positive and uniformly bounded for all time with r0 = in f

t≥0
r(t) and

r1 = sup
t≥0

r(t) and that the following constraint holds:

η =
kgkc

ρc|ρ− ρc|

(
2
ρc

+
1
eρ

)
≤ r0

r0 + r1
(38)

where kg, kc and ρ, ρc( 6= ρ) are positive real constants such that the impulse responses g(t) of G(s)
and gc(t) of Gc(s) are, respectively, upper-bounded by kge−ρt and kce−ρct; ∀t ∈ R0+.

Then, under zero initial conditions of both space realizations, y : R0+ → R0+ and it is uni-
formly bounded, and also (r− y) : R0+ → R0+ so that the closed-loop state space realization of
transfer function T(s) = C(s)G(s)/(1 + C(s)G(s)) is 0 -externally positive.

Proof. Under zero initial conditions, the output is given by the response impulses
g : R0+ → R0+ of G(s) and gc : R0+ → R0+ of C(s) as follows:

y(t) =
∫ t

0

∫ τ

0
g(t− τ)gc(τ − σ) (r(σ)− y(σ))dσdτ; ∀t ∈ R0+ (39)
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Since G(s) and Gc(s) are stable, that is, they have their poles in Res < 0, then there
exist positive real constants kg, kc and ρ, ρc( 6= ρ) such that g(t) ≤ kge−ρt;∀t ∈ R0+ and
gc(t) ≤ kce−ρct; ∀t ∈ R0+. Thus, it follows from (39) that:

|y(t)| ≤ sup
0≤θ≤t

|y(θ)| ≤
(

kgkc
∫ t

0

∫ τ
0 e−ρ(t−τ)e−ρc(τ−σ)dσdτ

)
sup

0≤τ≤t
|r(t)− y(t)|

=
(

kgkce−ρt∫ t
0

∫ τ
0 e(ρ−ρc)τeρcσdσdτ

)
sup

0≤τ≤t
|r(t)− y(t)|

=
(

kgkce−ρt∫ t
0 e(ρ−ρc)τ

(∫ τ
0 eρcσdσ

)
dτ
)

sup
0≤τ≤t

|r(t)− y(t)|

=
(

kgkce−ρt e(ρ−ρc)t−1
ρ−ρc

(∫ t
0

eρcτ−1
ρc

dτ
))

sup
0≤τ≤t

|r(t)− y(t)|

=
(

kgkc
e−ρct−e−ρt

(ρ−ρc)ρc

(
eρct−1

ρc
− t
))

sup
0≤τ≤t

|r(t)− y(t)|

=
kgkc

ρc |ρ−ρc |

(∣∣∣ 1+e−ρt−e−ρct−e−(ρ−ρc)t

ρc

∣∣∣− t
(
e−ρct − e−ρt)) sup

0≤τ≤t
|r(t)− y(t)|

≤ kgkc
ρc |ρ−ρc |

(
2
ρc
+ 1

eρ

)(
sup

0≤θ≤t
r(θ) + sup

0≤θ≤t
|y(θ)|

)
; ∀t ∈ R0+

(40)

Since ρ 6= ρc, r : R0+ → R+ is bounded, and Λ =

(
sup

0≤θ≤+∞
r(θ)

)
/

(
in f

0≤θ≤+∞
r(θ)

)
≥

1, if 1 > η =
kgkc

ρc |ρ−ρc |

(
2
ρc
+ 1

eρ

)
, one has that

|y(t)| ≤ sup
0≤θ≤t

|y(θ)| ≤ η Λ
1− η

in f
0≤θ≤+∞

r(θ) ≤ η Λ
1− η

r(t); ∀t ∈ R0+ (41)

Now, if furthermore, η Λ/(1− η) ≤ 1, which is implies the further constraint η ≤
1/(1 + Λ) to the above one η < 1 used to leads to (39), then |y(t)| ≤ r(t); ∀t ∈ R0+. Since,
in addition, g, gc : R0+ → R0+ , it follows that the output absolute value coincides with
y : R0+ → R0+ from y(r) ≤ r(t); ∀t ∈ R0+ and (37). �

Remark 5. The constraint ρ 6= ρc of Theorem 4 is merely instrumental and introduced to facilitate
the exposition. If ρc = ρ then the third equation of (40) is rearranged as follows before constructing
a particular “ad hoc” proof for that particular case:

|y(t)| ≤ sup
0≤θ≤t

|y(θ)| ≤
(

kgkce−ρt
∫ t

0

∫ τ

0
eρcσdσ

)
sup

0≤τ≤t
|r(t)− y(t)|; ∀t ∈ R0+ (42)

�

Remark 6. Assume that closed-loop system configuration consists of a of transfer function
G(s) with a feed-forward compensator C(s) under a feedback controller of transfer function
H(s) and that the state space realizations of the three transfer functions are 0-externally posi-
tive and strictly stable. Then, Theorem 4 still holds for the closed-loop transfer function T1(s) =
C(s)G(s)/(1 + C(s)H(s)G(s)) by replacing η → η = kh

ρh
η in (38), resulting in the modified

constraint η ≤ ρh/ [(1 + Λ) kh], where kh and ρh are positive real constants such that the response
impulse of H(s), gh : R0+ → R0+ is upper-bounded by khe−ρht;∀t ∈ R0+. The extended proof is
direct by re-arranging (40) as:

|y(t)| ≤
kgkc

ρc|ρ− ρc|

(
2
ρc

+
1
eρ

)(
sup

0≤θ≤t
r(θ) + sup

0≤θ≤t

∣∣∣y f (θ)
∣∣∣); ∀t ∈ R0+ (43)
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where y f : R0+ → R0 is the output of the feedback block which becomes
∣∣∣y f (t)

∣∣∣ = ∫ t
0 gh(t− τ)y(τ)

dτ ≤ kh
ρh

sup
0≤θ≤t

∣∣∣y f (θ)
∣∣∣; ∀t ∈ R0+ under zero initial conditions. �

Example 2. Consider the transfer function

G(s) = K
a + be−θs

(s + c)(s + d)

Of a linear and time-invariant system of input u(t) and output y(t) under some input delay
θ ≥ 0 with c 6= d.The associate differential equation is:

..
y(t) = −(c + d)

.
y(t)− cdy(t) + K(au(t) + bu(t− θ))

By decomposing the transfer function with respect to the auxiliary input v(t) = au(t) +
bu(t− τ)in simple fractions A/(s + c) and B/(s + d), one acquires:

A = K
b− c
d− c

; B = K
d− b
d− c

The state space realization obtained for the two above state variables and the output satisfy the
subsequent relations for all t ≥ 0:

.
x1(t) = −cx1(t) + K b−c

d−c (au(t) + bu(t− θ))
.
x2(t) = −dx2(t) + K d−b

d−c (au(t) + bu(t− θ))

x1(t) = e−ctx1(0) + K
∫ t

0 e−c(t−τ)(au(τ) + bu(τ − θ))dτ

x2(t) = e−dtx1(0) + K
∫ t

0 e−d(t−τ)(au(τ) + bu(τ − θ))dτ

y(t) = x1(t) + x2(t) = e−ctx1(0) + e−dtx2(0) + K
∫ t

0

(
e−c(t−τ) + e−d(t−τ)

)
(au(τ) + bu(τ − θ))dτ

y(t) = x1(t) + x2(t) = e−ctx1(0) + e−dtx2(0) + K
∫ t

0

(
e−c(t−τ) + e−d(t−τ)

)
(au(τ) + bu(τ − θ))dτ

Assume that c ≥ 0, d < c, Kmin(a, b) > 0, u(t) = 0 for −θ ≤ t < 0, u(t) ≥ 0 for t ≥ 0
and assume also that min(x1(0) , x2(0)) ≥ 0. Then, x1(t) ≥ 0, x2(t) ≥ 0 and y(t) ≥ 0 for all
t ≥ 0and the state space realization is internally positive and 0-externally positive.

Now, assume that the initial conditions are changed to x1(0) ≤ 0, x2(0) ≥ |x1(0)| and
that σ1 = min

(
t ≥ 0 : |x1(0)| ≥ K

∫ t
0 ecτ(au(τ) + bu(τ − θ))dτ

)
for some particular every-

where non-negative input. Then, x2(t) ≥ 0 for all t ≥ 0, and x1(t) = −e−ct(|x1(0)| − K
∫ t

0 ecτ

(au(τ) + bu(τ − θ))dτ) < 0 for t ∈ [0, σ1] and

y(t) = e−dtx2(0)− e−ct|x1(0)|+ K
∫ t

0

(
e−c(t−τ) + e−d(t−τ)

)
(au(τ) + bu(τ − θ))dτ

≥ e−ct(x2(0)− |x1(0)|) + K
∫ t

0

(
e−c(t−τ) + e−d(t−τ)

)
(au(τ) + bu(τ − θ))dτ

≥ 0; ∀t ≥ 0

Similarly, one can find in the same way a subset of the non-positive real axis for which x2(t)is
negative on a time interval [0, σ2] with,

σ2 = min
(

t ≥ 0 : |x1(0)| ≥ K
∫ t

0
edτ(au(τ) + bu(τ − θ))dτ

)
while the output is non-negative for all time. Thus, the state space realization is externally positive
for any initial conditions:

xT(0) ∈ Ξ = (R0+ ×R0+) ∪ ((−Ξ1)× Ξ1) ∪ (Ξ2 × (−Ξ2)); ∀Ξ1 ⊆ R0+, ∀Ξ2 ⊆ R0+



Systems 2022, 10, 9 17 of 18

irrespectively of the delay size θ ≥ 0, where:

Ξ1 =
{

x ∈ R0+ : x ≥ K
∫ σ1

0 ecτ(au(τ) + bu(τ − θ))dτ
}

Ξ2 =
{

x ∈ R0+ : x ≥ K
∫ σ2

0 edτ(au(τ) + bu(τ − θ))dτ
}

3. Discussion

The external positivity is an important property in dynamic systems which, basically,
consists of the output (or measurable solution) being non-negative for all time under zero
initial conditions and non-negative control efforts (or input) for all time. It is a weaker
property than that of the internal positivity or, simply, positivity under which all the state
components and measurable output are non-negative for all time and any non-negative
initial conditions and non-negative inputs for all time. The internal positivity typically
guarantees also the external positivity and there are relevant properties in many systems
and models, such as economic, biological or telecommunications ones.

This paper addresses the extension of the external positivity in the single-input single-
output linear time-invariant case to a wider class of initial conditions which can include
sets of non-negative initial conditions which are specifically characterized. The discussion
is addressed for the case of delay-free systems and also for the eventual presence of a finite
number of point internal delays possibly in both, the systems dynamics and the control
inputs. The external positivity property is typically related to the non-negativity for all
time of the contribution to the response of the forcing terms under zero initial conditions.
The basic formal analysis mechanism consists of applying the superposition principle to
construct the global output solution, i.e., the response to initial conditions plus the response
to the forcing controls or inputs. Based on the primary fact that the standard external
positivity property relies on the positivity of the second of the above contribution terms, it
is characterized the definitions of the sets of initial conditions which make the first of the
above terms (response to initial conditions) to have a similar structure in terms of Laplace
transforms, or the equivalent response impulse descriptions, to that of the contribution of
the response to the inputs.
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