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Abstract: Compliant mechanisms are widely used for instrumentation and measuring devices for
their precision and high bandwidth. In this paper, the mechatronic model of a compliant 3PRS
parallel manipulator is developed, integrating the inverse and direct kinematics, the inverse dynamic
problem of the manipulator and the dynamics of the actuators and the control. The kinematic
problem is solved, assuming a pseudo-rigid model for the deflection in the compliant revolute and
spherical joints. The inverse dynamic problem is solved, using the Principle of Energy Equivalence.
The mechatronic model allows the prediction of the bandwidth of the manipulator motion in the
3 degrees of freedom for a given control and set of actuators, helping in the design of the optimum
solution. A prototype is built and validated, comparing experimental signals with the ones from
the model.

Keywords: compliant mechanisms; parallel compliant mechanisms; 3PRS parallel kinemat-
ics; mechatronics

1. Introduction

The use of compliance in mechanisms has become very common for several purposes.
Compliant and continuum mechanisms make use of the flexibility of some parts of the
mechanism to achieve motion with several degrees of freedom. While continuum mecha-
nisms present slender elements that deflect along their whole length, compliant mechanism
are composed of rigid elements joined by flexure hinges that deform under the application
of a load [1,2]. Other applications of compliance can be found in the interaction with human
or other elements, where a variable stiffness must be provided by the actuators to resemble
a physiological response [3–5].

Among those applications of compliance, compliant mechanisms have found a place
in applications that require short range of motion, high precision, high bandwidth, special
environmental conditions, such as high vacuum, and one or more degrees of freedom. In [6],
a mechanism for a single-axis nano-positioning stage is presented with a range of motion up
to a millimeter and a compact stage size based on flexures. With 2 degrees of freedom, in [7],
a planar motion stage design based on flexure elements is shown. In [8], another example
for 2 degrees of freedom is presented with a relatively large range and high scanning speed,
that is, high bandwidth. With 3 degrees of freedom, an ultra-precision XYθz flexure stage
with nanometric accuracy is presented in [9], and a cartesian XYZ compliant mechanism is
designed in [10]. Another high-performance three-axis serial-kinematic nano-positioning
stage for high-bandwidth applications is developed in [11], and in [12], where a large
range modular XYZ compliant parallel manipulator is presented, where the structure is
composed by identical spatial double four-beam modules.

The use of these planar or spatial mechanisms both in serial or parallel configurations
has many advantages in the conditions mentioned due to the lack of clearances and reduced
friction and maintenance, although their design is still more complex than in conventional
mechanisms, as special attention must be dedicated to the design of the compliant joints or
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flexure hinges [13]. Several authors have studied the behavior of these kinds of joints to
be able to determine equations that relate their geometrical parameters and material with
their stiffness and their parasitic deformations [14]. The simulation of these joints to predict
their stiffness in those works is performed using finite elements method-based software.
Their simulation is not trivial, as the flexure hinges usually present relatively thin sections
that change fast in a small space, giving place to stress concentration. Hence, adaptative
and custom meshes must be used to obtain precise results. Yong and Fu provided their
experimental results after testing several circular flexure hinges in an experimental setup
and made a comprehensive comparison of their results with the stiffness formula developed
in the previous bibliography [15].

On the other hand, fatigue is one of the main problems that these mechanisms suffer.
Small flexure hinges are a source of stress concentration, and the cyclical loads that the
flexure hinges experience, usually at high frequencies, mean the possibility of appearance
of cracks and damage. Schoenen et al. developed a test bench for the fatigue analysis
in high precision flexure hinges, analyzing the influence of inertia effects on the bending
moment, longitudinal and transverse force on the flexure hinge [16]. Liu et al. modeled
the influence of cracks in the circular flexure hinges of a RRR planar parallel compliant
mechanism, concluding that the appearance of cracks reduces the driving force of the
actuators due to the reduction of stiffness in the hinge. Hence, the difference between the
driving forces in a healthy and a cracked hinge can be used to monitor its condition [17].

In the present work, the complete mechatronic modeling of a compliant 3PRS ma-
nipulator developed is presented. The mobile platform is connected to the base by three
bars at 120◦, where the prismatic joints are actuated in the horizontal plane, the revo-
lute joints are circular flexure hinges and the spherical joints are hinges with cylindrical
shape, see Figure 1. The 3PRS manipulator with conventional joints, developed by Car-
retero et al. [18,19], is a low mobility parallel kinematics mechanism with 3 degrees of
freedom, a translation and two rotations around two normal axes perpendicular to the
translation axis [20]. Nowadays, it is a well-known low mobility parallel platform whose
kinematics and dynamics were studied by several authors due to its axisymmetric prop-
erties and ease of construction and integration with other stages to achieve 6 degrees of
freedom [21–23].

The 3PRS preliminary prototype here modeled was designed with the aim of providing
Z motion of±2 mm and tilting of±1 degrees to molds for micro lenses during their milling
process; see Figure 2. Its design and construction is presented in [24] and the dynamic
modeling in [25]. There, the precision of the manipulator was tested when reaching fixed
positions by measuring the position reached by the platform and the actuators with a
coordinate-measuring machine, basing the modeling of the mechanism in a pseudo rigid
body approach, as in [1]. In the present work, the mechatronic model developed to predict
the performance of the system is presented. The mechatronic model integrates the dynamics
of the compliant manipulator, actuators, and control. In this way, the influence on the
manipulator performance of the control algorithm and its parameters and vice versa can be
considered, providing a reliable estimation of the bandwidth of the manipulator, apart from
validating a given selection of actuators and a control algorithm or its gains tuning. This
kind of modeling is along the lines proposed by the guideline VDI 2206 for mechatronic
design [26]. Data, such as the motor torque/force and motor position of platform position,
can be affected by the control algorithm and the gain tuning, so this kind of approach is
mandatory for a better estimation of the dynamic performance.
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Figure 1. (Top) 3PRS compliant parallel manipulator developed. (Bottom) Revolute and spherical
joints used.

Figure 2. FEM simulations: (Left) Maximum position in Z direction. (Right) Maximum tilting around
Y axis.

The dynamics of the compliant mechanism is modeled with a pseudo rigid body
approach, that is, replacing the flexure hinges by conventional joints with springs to model
the flexure stiffness [1]. This approach not only simplifies the dynamic analysis, but also
allows using the dynamic model for a future optimization of the control algorithm. FEM
models, although they can be more suitable for a thorough dynamic modelling, are not
easy to implement in control algorithms [10]. In the following section, the details of the
mechatronic model are shown. In Section 3, the tests performed to validate the mechatronic
model are shown, and then discussed in Section 4. Conclusions are shown in Section 5.

2. Mechatronic Model and Hypotheses

The approach followed for the mechatronic modeling is based on decoupling the 3PRS
compliant mechanism from the actuators, see Figure 3, in such a way that the forces required
to move the manipulator are seen as if they were a disturbance from the perspective of the
actuators. In this way, it is possible to decouple the modeling of the mechanism from the
modeling of the actuators, which can be more detailed with several degrees of freedom
if desired.
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Figure 3. Decoupling of the compliant mechanism and actuators.

Hence, the mechatronic model follows these steps, as seen in Figure 4, assuming that
a joint space control is going to be performed. First, the commanded displacement in
workspace coordinates (ψc, θc, pzc) is introduced into the inverse kinematic problem to
obtain the commanded joint space coordinates (s1c, s2c, s3c). Second, these are introduced
into the dynamic model of the control and actuators, which models the cascaded position,
velocity and current control loops as well as the actuators dynamics. As the force required
to deform the compliant mechanism can be higher than in a conventional mechanism, it
is advisable to model the stiffness of the actuator and its transmission chain, as it may
happen that a given transmission is less rigid than the compliant mechanism itself. For that
purpose, in the present work, a 2-degrees-of-freedom model with two inertias linked by a
torsional spring and damper is proposed. As a result of this modeling, the position reached
by the actuators is obtained, which is, third, fed into the direct kinematic problem to know
the simulated position of the manipulator.

Figure 4. Mechatronic model of the compliant 3PRS.

Fourth, to consider the dynamics of the compliant manipulator, the position reached
is fed into the inverse dynamic problem of the manipulator. There, the main assumption
is to consider the flexures as conventional joints with torsional springs, whose stiffness
is considered constant inside the workspace of the manipulator, and it is calculated by
FEM analysis [10]. The forces obtained (F1, F2, F3) are then fed back into the model of the
actuators, where they act as if they were disturbances that the control must counteract to
reach the desired position. This approach of decoupling actuators and control dynamics
from the manipulator dynamics allows a more detailed modeling of the control or actuator,
as is the case here with 2-degrees-of-freedom modeling in state-space.
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In the following section, all the theoretical considerations to develop the mechatronic
model of the compliant 3PRS are thoroughly shown, mainly, the kinematics and the dy-
namics of both the manipulator and the control and actuators.

3. Kinematics

The kinematic diagram of the 3PRS manipulator is shown in Figure 5. The mobile
platform has the end effector in P. Three bars CiBi of equal length L connect the base and
the mobile platform by means of an actuated prismatic joint P, a revolute joint R in Ci, and
a spherical joint S in Bi. The angles αi between the bars and the fixed base are 45◦ in the
default position. The Bi points are in a circumference of radius b with center in P. The origin
of the linear actuators is located in Ai over a circumference of radius a and center in O. The
actuators are inside three vertical planes at 120◦, and their location is defined by the joint
space coordinates si.

Figure 5. Schematic diagram of the 3PRS kinematics.

Two reference systems are defined. The fixed system XYZ has the origin in O, with
the X-axis aligned with OA1, and the Z-axis is vertical. The XOY plane is horizontal at a
height defined by the center of the compliant revolute joints. The mobile system UVW
has the origin in P with the U-axis aligned with PB1 and the W-axis perpendicular to the
mobile platform. It is also shifted in such a way that the UPV plane contains the center of
the compliant spherical joints.

The platform position is defined by the workspace coordinates px, py, and pz that
determine the position of P and three angles ψ, θ, and φ, which are the rotations around
the X-, Y- and Z axes. This is a low mobility parallel mechanism with 3 degrees of freedom
pz, ψ, and θ, and 3 parasitic motions, px, py and φ. The parasitic motions of this 3PRS
mechanism are already presented in [24] and here, for completeness, we have included
the formulation in Appendix A. In addition, the inverse kinematics problem to calculate
the joint space coordinates si to reach a given position of the mobile platform in shown in
Appendix B. The direct kinematics problem to determine the task space coordinates from
the joint space ones is presented in Appendix C.

Finally, the rotation in the revolute and spherical joints is calculated to obtain the
bending and torsional moments due to the deformation of the compliant joints represented
there. The formulation is shown in Appendix D. The rotation in the compliant revolute
joints is measured by the angle αi. The torsional rotation around the CiBi bars is measured
by the angle βli, the bending rotation inside the vertical planes that contain the bar is
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determined by βmi, and the angle due to the bending in perpendicular direction to the
vertical planes is βni.

3.1. Jacobians

For the resolution of the inverse dynamic problem, the Jacobians of the different
elements of the manipulator are required.

3.1.1. Jacobian of the Mobile Platform

Closing the kinematic loop for each bar from O to Bi, both through P and Ai, the
following equation is obtained:

OP + PBi = OAi + si·si0 + L·li0 (1)

The li0 unity vectors define the direction of the bars and si0 define the positive direction
of the actuators. The derivative with respect to time is

vp + wp × PBi =
.
si·si0 + L·wi × li0 (2)

where vp is the velocity of P, wp is the angular velocity of the mobile platform, and wi is
the angular velocity of the bar i. Applying the dot product by li0,

li0·vp + (PBi × li0)·wp = si0·li0·
.
si (3)

and in matrix form, lT
10 (PB1 × l10)

T

lT
20 (PB2 × l20)

T

lT
30 (PB3 × l30)

T

{ vp
wp

}
=

 s10l10 0 0
0 s20l20 0
0 0 s30l30


.
s1.
s2.
s3


JP1

.
p = JP2

.
s

(4)

where
.
p =

{ .
px

.
py

.
pz wpx wpy wpz

}
T .

s =
{ .

s1
.
s2

.
s3
} T (5)

On the other hand, due to the revolute joints, the motion of the bars is planar in a
vertical plane whose normal vector is mi0. Those restrictions can be expressed as follows:

OBi·mi0 = (OP + PBi)·mi0 = 0 (6)

The derivative with respect to time is

vp·mi0+(PBi ×mi0)·wp=0 (7)

In matrix form, mT
10 (PB1 ×m10)

T

mT
20 (PB2 ×m20)

T

mT
30 (PB3 ×m30)

T

{ vp
wp

}
=

 0 0 0
0 0 0
0 0 0


.
s1.
s2.
s3


JP3

.
p = [0]

.
s

(8)

Grouping Equations (4) and (8),[
JP1
JP3

]
· .
p =

[
JP2
[0]

]
· .s⇒ JP·

.
p = JS·

.
s (9)

Finally, the Jacobian of the mobile platform is obtained as follows:

.
p=
[
JP
−1·JS

]
· .s = Jplat·

.
s (10)
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3.1.2. Jacobian of the BiCi Bars

Calculating the dot product of Equation (2) and PBi and rearranging,

PBi·vp = (PBi·sio)·
.
si + L·(lio × PBi)·wi (11)

The angular velocity of the i-th bar wi can be posed as follows:

wi =
.
αi·mi0 (12)

Substituting Equation (12) in Equation (11), introducing Equation (A20) and rearranging,

L·(ni0·PBi)·
.
αi = −PBi·vp + (PBi·sio)·

.
si (13)

where

− PBi·vp =

 −PBT
1 {0}

−PBT
2 {0}

−PBT
3 {0}

 .
p=

 −PBT
1 {0}

−PBT
2 {0}

−PBT
3 {0}

Jplat
.
s (14)

Substituting Equation (14) in Equation (13) and rearranging in matrix form, Jαi is the
Jacobians that relate the angular velocity of the bars with the velocity of the actuators:

Jw·
.
α = Jws·

.
s→ .

α =


.
α1.
α2.
α3

 =
[
J−1

w Jws

] .
s =

 [Jα1]
[Jα2]
[Jα3]

 .
s = Jα

.
s (15)

where

Jw =

 L·(n10PB1) 0 0
0 L·(n20PB2) 0
0 0 L·(n30PB3)



Jws =

 −PBT
1 {0}

−PBT
2 {0}

−PBT
3 {0}

Jplat +

 PB1s10 0 0
0 PB2s20 0
0 0 PB3s30


(16)

On the other hand, the position of the mass center of each bar is

OGi =


xGi
yGi
zGi

 = OAi + si·si0 +
L
2
·li0 (17)

Differentiating and rearranging,

vGi =


.
xGi.
yGi.
zGi

 =
.
si·si0 +

L
2
·wi × li0 → vGi −

L· .αi
2
·(mi0 × li0) =

.
si·si0 (18)

In matrix form, and introducing the Jacobian of each bar as obtained in Equation (15)
and the Kronecker delta,

[
[I] L

2 {ni0}
{0} 1

]{
vGi.
αi

}
=

[
si0·δ1i si0·δ2i si0·δ3i

{Jαi}

]
.
s1.
s2.
s3


Ji1·

.
qbi = Ji2·

.
s

(19)

Finally, the Jacobian of each i-th bar is calculated as

.
qbi =

{
vGi
wi

}
=
[
J−1

i1 ·Ji2

]
· .s = Jbi·

.
s (20)
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3.1.3. Jacobian of the Rotation of the Spherical Joints

To relate the first derivative of the rotations in the spherical joints with the velocity
of the actuators, first, the platform angular velocity in Equation (28) is substituted by the
following expression, which considers the relative motion of the platform with respect to
each one of the bars.

wp = wj + wprj j = 1, 2, 3 (21)

Hence, the following nine equations result:

vp + wj × PBi + wprj × PBi =
.
si·sio + L·wi × lioi, j = 1, 2, 3 (22)

Applying the dot product by li0 and rearranging,

(PBi × lio)·wprj = −lio·vp − (PBi × lio)·wj + (lio·sio)·
.
sii, j = 1, 2, 3 (23)

In matrix form, for the relative motion to one of the j-th bars, (PB1 × l10)
T

(PB2 × l20)
T

(PB3 × l30)
T




wprjx
wprjy
wprjz

 = −

 lT
10

lT
20

lT
30

vp −


(PB1 × l10)
(PB2 × l20)
(PB3 × l30)

wj +

 s10l10 0 0
0 s20l20 0
0 0 s30l30

 .
s (24)

In Equation (24), the relative velocity to the j-th bar in the XYZ reference system is the
sum of the rotations around mj, nj and lj in the local reference system Sj, premultiplied by
the corresponding rotation matrix Rj as defined in Equation (23).

wprj=Rjwrj = Rj
(
wmj+wnj+wlj

)
= Rj

 1 0 sβnj
0 cβmj −sβmjcβnj
0 sβmj cβmjcβnj




.
βmj.
βnj.
βl j

 = Rβj
.
βj (25)

Additionally, in Equation (24), the term dependent on the velocity of P can be expressed
as in Equation (26) using Equation (36).

−

 lT
10

lT
20

lT
30

vp =

 −lT
10 {0}

−lT
20 {0}

−lT
30 {0}

 .
p =

 −lT
10 {0}

−lT
20 {0}

−lT
30 {0}

Jplat
.
s (26)

What is more, in Equation (24), the term dependent on the angular velocity of the j-th
bar can be expressed as follows, substituting Equations (38) and (15).

−


(PB1 × l10)
(PB2 × l20)
(PB3 × l30)

wj =


−(PB1 × l10)mj0
−(PB2 × l20)mj0
−(PB3 × l30)mj0

 .
αj =


(l10 × PB1)mj0
(l20 × PB2)mj0
(l30 × PB3)mj0

Jαj
.
s (27)

Introducing Equations (25)–(27) in Equation (24), the desired Jacobian for the spherical
joint of the j-th is obtained:

Jβj1·
.
βj = Jβj2·

.
s→

.
βj =

[
J−1
βj1Jβj2

]
· .s = Jβj·

.
s (28)

where the direct and inverse Jacobians are, respectively,
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Jβj1 =

 (PB1 × l10)
T

(PB2 × l20)
T

(PB3 × l30)
T

Rj

 1 0 sβnj
0 cβmj −sβmjcβnj
0 sβmj cβmjcβnj


Jβj2 =


 −lT

10 {0}
−lT

20 {0}
−lT

30 {0}

Jplat +


(l10 × PB1)mj0
(l20 × PB2)mj0
(l30 × PB3)mj0

Jwj +

 s10l10 0 0
0 s20l20 0
0 0 s30l30




(29)

4. Dynamics

To solve the inverse dynamic problem of the manipulator, it is divided in n subsystems
of open chain, where the Lagrange equations can be conveniently applied with respect to
the local generalized coordinates, qn. The equations of motion of those elements are posed
as a function of the generalized forces τn and the Lagrangian Ln, dependent on the kinetic
energy Tn and the potential energy Vn.

τn =
d
dt

∂Ln

∂
.
qn
− ∂Ln

∂qn
(30)

If the n subsystems move as if they were assembled, the set of local generalized
coordinates of all subsystems qN is a function of the global generalized coordinates of the
assembled mechanism qs. Hence, their virtual displacements can be related through the
corresponding Jacobian:

δqN =
∂qN
∂qs

δqs = Jδqs (31)

On the other hand, if all subsystems move as if they were assembled, the virtual work
done during a generic motion must be the same as in the assembled mechanism; hence,

δWs = δWN
δqT

s τs = δqT
NτN = δqT

s JTτN
(32)

Therefore, the actuator forces needed to move the manipulator are obtained as

τs = JTτN =
N

∑
n=1

JT
nτn (33)

This is the so-called Principle of Energy Equivalence, which is applied to the 3PRS
elements in the following subsections, being that qs = s = {s1 s2 s3}T and τs = { F1 F2 F3}T.
This approach allows the direct and systematic obtainment of the forces on the manipulator,
and it was partially developed in [11], where the moments due to the flexures’ deflection
were considered external actions. Here, the complete formulation, including the proper
modeling of the bending and torsional moments in the joints, is considered.

4.1. Mobile Platform

In the mobile platform subsystem, the following contributions to the Lagrangian will
be considered: the one due to the translational motion with the total mass located in the
center of mass, the one due to the rotational motion around the center of mass, and the
elastic energy due to the deformation of the spherical joints.

The external forces acting on the mobile platform are also considered. If an external
force fextm = {Fu Fv Fw}T is applied on a point D located as PDm = {du dv dw}T, the force
and the moments on the manipulator in the fixed reference system XYZ are

fext = R·fextm τext = R·(PDm × fextm) (34)
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4.1.1. Translational Dynamics

Considering the platform as a point mass located in the center of mass located in P,
the Lagrangian can be expressed as

LpT = TpT −VpT =
1
2

Mplat

( .
p2

x +
.
p2

y +
.
p2

z

)
−Mplatgpz (35)

where Mplat is the mass of the mobile platform and g is the gravity. Applying the Lagrange
equation, the equations of motion in matrix form are

Fx
Fy
Fz

 =

 Mplat 0 0
0 Mplat 0
0 0 Mplat


..
px..
py..
pz

+


0
0

Mplatg


fext = Mplat

..
pT + g

(36)

To apply the Principle of Energy Equivalence, first the local generalized coordinates
are replaced as a function of the global ones through the corresponding Jacobian in
Equation (36). There, the Jacobian of the platform can be divided in a translational and a
rotational part as

.
p =

{ .
pT
wp

}
= Jplat·

.
s =

[
JplatT

JplatR

]
· .s (37)

Hence, after derivation and substitution, Equation (36) becomes

fext = Mplat

[
JplatT

..
s +

.
JplatT

.
s
]
+ g (38)

Finally, the contribution of this motion to the dynamics of the assembled manipulator
is obtained by premultiplying the transpose of the Jacobian:

JT
platT

fext =
[
JT

platT
MplatJplatT

]..
s +

[
JT

platT
Mplat

.
JplatT

] .
s + JT

platT
g (39)

4.1.2. Rotational Dynamics

To consider the dynamics of the rotation around the center of mass, the Boltzmann–
Hamel equations are used. These equations allow a simpler resolution of the Lagrange
equations, using the components of the angular velocity of the platform in the UVW mobile
reference system as quasivelocities. The quasivelocities depend on the platform rotations ψ,
θ, and φ and their derivatives as follows:

wpm = W· .
q =

 cφ sφcψ 0
−sφ cφcψ 0

0 −sψ 1




.
ψ
.
θ
.
φ

 (40)

Equation (37) relates the angular velocity of the platform in the XYZ reference system
with the global generalized coordinates of the mechanism through the Jacobian. Applying
the inverse of the rotation matrix and substituting Equation (37) in Equation (40),

wpm = R−1·wp = R−1·JplatR
· .s = W· .

q→ .
q =

[
W−1·R−1·JplatR

]
· .s = Jq·

.
s (41)

The Lagrangian due to this motion can be posed as a function of the kinetic energy
obtained in the UVW system:

LpR = TpR −VpR =
1
2

wT
pm·IP·wpm (42)
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To differentiate the Lagrange equations with respect to the platform rotations, the
Boltzmann–Hamel equations and the Lagrange equations make use of the quasivelocities
as partial differentiations in order to avoid too complex operations:

d
dt

(
∂LpR

∂
.
q

)
−

∂LpR

∂q
=

(
∂wpm

∂
.
q

)T d
dt

(
∂LpR

∂wpm

)
+

d
dt

(
∂wpm

∂
.
q

)T( ∂LpR

∂wpm

)
−
(

∂wpm

∂q

)T( ∂LpR

∂wpm

)
(43)

where (
∂wpm

∂
.
q

)T d
dt

(
∂LpR
∂wpm

)
= WT(IP

.
wpm

)
d
dt

(
∂wpm

∂
.
q

)T( ∂LpR
∂wpm

)
=

.
W

T(
IPwpm

)
(

∂wpm
∂q

)T( ∂LpR
∂wpm

)
=
(

∂wpm
∂q

)T(
IPwpm

)
(44)

Substituting in Equation (43),

d
dt

(
∂LpR

∂
.
q

)
−

∂LpR

∂q
= WTIP

.
wpm +

.
W

T
IPwpm −

(
∂wpm

∂q

)T
IPwpm (45)

To obtain the contribution of this motion to the global dynamics of the manipulator,
first, Equation (41) is introduced to relate the angular velocity in UVW with the global
generalized coordinates:

d
dt

(
∂LpR

∂
.
q

)
− ∂LpR

∂q =
[
WTIPW

]
Jq

..
s + . . .

. . . +
[[

WTIPW
] .
Jq +

[
WTIP

.
W +

.
W

T
IPW−

(
∂wpm

∂q

)T
IPW

]
Jq

]
.
s

(46)

Then, premultiplication by the transpose of the Jq Jacobian is applied. In addition, as
the external torque is already calculated in the XYW reference system, it is premultiplied
by the platform Jacobian.

JT
platR

τext =
[
JT

q

[
WTIPW

]
Jq

]..
s + . . .

. . . +
[

JT
q

[
WTIPW

] .
Jq + JT

q

[
WTIP

.
W +

.
W

T
IPW−

(
∂wpm

∂q

)T
IPW

]
Jq

]
.
s

(47)

4.1.3. Contribution of the Elastic Energy in the Spherical Joints

The relative motion of the platform with respect to the bars results in the elastic
deformation of the spherical joints, that must be taken into account. The Lagrangian
presents here only a contribution from the potential energy

LpK = TpK −VpK = −
3

∑
i=1

1
2
βT

i ·Ki·βi (48)

where

βi =
{

βmi βni βli
}TKi =

 ks f 0 0
0 ks f 0
0 0 kst

 (49)

being that ksf and kst are the flexural and torsional stiffnesses of the spherical joints, and βi
is the angles obtained in Equation (26). Having calculated the corresponding Jacobians in
Equation (28), the contribution to the equation of motion can be posed directly as

d
dt

(
∂LpK

∂
.
s

)
−

∂LpK

∂s
= −

∂VpK

∂s
=

3

∑
i=1

(
1
2

∂βT
i

∂s
·Ki·βi +

1
2
βT

i ·Ki·
∂βi
∂s

)
=

3

∑
i=1

JT
βi·Ki·βi (50)
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4.2. Couplings between Actuators and 3PRS Manipulator

The local generalized coordinates of the manipulator coupling with the actuators are
the same as the global generalized coordinates, si, where Fi is the forces that the actuators
must do. The Lagrangian takes into account the kinetic energy of the couplings and the
elastic energy due to the deflection of the compliant revolute joints, where Mi is the mass of
the couplings and kr is the flexural stiffness of the joints. Being that α0 is the α angle in the
default position with no deformation,

L = T −V =
3

∑
i=1

(
Mi
2

.
s2

i −
kr

2
(αi − α0)

2
)

(51)

Hence, applying the Lagrange equations, and introducing the transpose of the Jacobian
obtained in Equation (15), the contribution to the global dynamics in matrix form is obtained
as in Equation (52).

Mcoup
..
s + JT

αKrα = fact + JT
αKrα0 (52)

4.3. BiCi Bars

The local generalized coordinates selected for the bars are the position of the center of
mass, xGi, yGi, and zGi, and their angle αi. Being that Mb is the mass of the bars and IbG is
their inertia moment in that point, their Lagrangian is

Lbi = Tbi −Vbi

Tbi =
Mb
2

( .
x2

Gi +
.
y2

Gi +
.
z2

Gi

)
+ IbG

2 w2
i

Vbi = MbgzGi +
kr
2 (αi − α0)

2 +
ke f
2
(

β2
li + β2

mi
)
+ ket

2
(

β2
ni
) (53)

Applying the Lagrange equation to each generalized coordinate of the bars and
grouping in matrix form,

Mb 0 0 0
0 Mb 0 0
0 0 Mb 0
0 0 0 IbG




..
xGi..
yGi..
zGi..
αi

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 kr




xGi
yGi
zGi
αi

+ . . .

. . . + JT
βi−bi

 ks f 0 0
0 ks f 0
0 0 kst


βmi
βni
βli

 =


0
0

−Mbg
krα0


(54)

where the Jacobian that relates the rotations in the spherical joints with the local generalized
coordinates of the bar is

Jβi−bi =


∂βmi
∂xGi

∂βmi
∂yGi

∂βmi
∂zGi

∂βmi
∂αi

∂βni
∂xGi

∂βni
∂yGi

∂βni
∂zGi

∂βni
∂αi

∂βli
∂xGi

∂βli
∂yGi

∂βli
∂zGi

∂βli
∂αi

 (55)

Hence, in matrix form, the equation of motion of each i-th bar subsystem is

Mbi
..
qbi + Krqbi + JT

βi−biKiβi = gbi (56)

Introducing the Jacobian in Equation (20) to apply the Principle of Energy Equivalence,

.
qbi = Jbi·

.
s

..
qbi = Jbi·

..
s +

.
Jbi·

.
s

(57)
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Substituting in Equation (56) and premultiplying by the transpose of the Jacobian of
the bar Jbi, the contribution of each bar to the dynamics of the manipulator is[

JT
biMbiJbi

]
·..s +

[
JT

biMbi
.
Jbi

]
· .s +

[
JT

biKrqbi + JT
βiKiβi

]
= JT

bigbi (58)

where JT
βi = JT

biJ
T
βi-bi is obtained in Equation (28).

4.4. Dynamic Model of the Whole Mechanism

Taking into account all the contributions, the equation of motion of the 3PRS compliant
manipulator will be[

Mact +
3
∑

i=1

[
JT

biMbiJbi
]
+
[
JT

platT
MplatJplatT

]
+
[
JT

q

[
WTIPW

]
Jq

]]
·..s + . . .

+


3
∑

i=1

[
JT

biMbi
.
Jbi

]
+
[
JT

platT
Mplat

.
JplatT

]
+ . . .[

JT
q

[
WTIPW

] .
Jq + JT

q

[
WTIP

.
W +

.
W

T
IPW−

(
∂wpm

∂q

)T
IPW

]
Jq

]
· .s+

+

[
3
∑

i=1

[
JT
βiKiβi

]
+

3
∑

i=1

[
JT
βiKiβi

]
+

3
∑

i=1

[
JT

biKrqbi
]
+ JT

αKrα− JT
αKrα0

]
+ . . .

+
[
JT

platT
g− JT

bigbi

]
−
[
JT

platT
fext + JT

platR
τext

]
= fact

(59)

4.5. Dynamic Model of the Control and Actuators

The manipulator is controlled using a joint-space control approach, where the workspace
position commands are fed through the inverse kinematic problem to obtain the position
commands sic in the joint space. Then, the position control is done using a cascaded control
of position, velocity and current that is modelled in Simulink following the scheme of
Figure 6. A proportional controller (kV) is used in the position loop, whereas a proportional–
integral (kP, kI) control is used in the velocity loops. As the current loop runs at a lower
loop cycle, the conversion from current to torque is assumed to be immediate through the
motor torque constant kT, so the current loop is simplified in this way. The transmission
ratio of the actuators is iR.

Figure 6. Modeling of the control and actuators dynamics.

In the model represented in Figure 6, the dynamics of the actuators are represented by
a state-space model that relates, respectively, the motor torque and the mechanism distur-
bance with the motor velocity and the motor position. The state-space model is calculated,
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modeling the actuator transmission with a 2 degrees of freedom model with two inertias
coupled by a torsional spring and damper to consider the flexibility of the transmission.

τmi = J1
..
θ1i + c1

.
θ1i + kt(θ1i − θ2i) + ct

( .
θ1i −

.
θ2i

)
−τi = J2

..
θ2i + kt(θ2i − θ1i) + ct

( .
θ2i −

.
θ1i

) (60)

Hence, the terms of the state-space model are as follows:

A =


0 1 0 0

−kt J1
−1 (−c1 + ct) −kt J1

−1 ct J1
−1

0 0 0 1
kt J2

−1 ct J2
−1 −kt J2

−1 −ct J2
−1

 B =


0 0

J1
−1 0
0 0
0 −J2

−1


C = [I]4x4 D = [0]4x2

(61)

5. Experimental Validation

A prototype is developed to test the validity of the mechatronic model developed.
All the elements of the compliant manipulator are built in Aluminum 7075-T6, as seen
in Figure 7. The actuators are linear belt drives from Igus of 70 mm/rev, model ZLW-
1040-02-S-100 coupled to RE-40 Maxon DC servomotors with GP-32 14:1 reductor. The
control system is implemented in a NI-PXIe 1062, which works in real time with a position
loop cycle time of 5 ms. The only sensors are the encoders of the Maxon motors and the
torque measurement from the motors’ drives. Although the error in the transmission is not
compensated by the control, the mechatronic model has considered this fact in the control
model, so it should be predicted.

Figure 7. Experimental setup.

A compilation of all the dimensional parameters and dynamic parameters of the
compliant 3PRS as well as the control parameters is shown in Table 1. The stiffness of the
flexure hinges of the revolute and spherical joints was calculated by FEM in [24].

To validate the mechatronic model with the prototype, the simulated motor position
and torque are compared with the corresponding signals measured during the tests. Two
examples of the motions tested are shown here. First, the mobile platform performs a
translation in Z direction with a sine profile with an amplitude of 2 mm and a frequency of
0.5 Hz; see Figure 8. Then, the same motion is performed but with a phase shift between
actuators of 120◦, see Figure 9, to generate a variable tilting in the table. To avoid problems
due to fatigue and cracks in the flexure hinges, a new set of bars is used.
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Table 1. Parameters of the compliant 3PRS: dimensions, dynamic parameters, control parameters.

Parameter Value Units

a 125.137 mm
b 47.61 mm
L 109.215 mm

Mb 0.028 kg
IbG 2.36 × 10−5 kgm2

Mplat 0.153 kg
α0 45 deg.

Iplatu 6.834 × 10−5 kgm2

Iplatv 6.834 × 10−5 kgm2

Iplatw 1.309 × 10−5 kgm2

Mi 0.204 kg
kr 98.37 Nm/rad
ksf 32.665 Nm/rad
kst 24.46 Nm/rad
iR 2 × π × 14/0.07 -
kV 65 1/s
kP 1 As
kI 8 A
kT 0.0302 Nm/A
J1 1.423 × 10−4 kgm2

J2 4.817 × 10−8 kgm2

ct 1.085 × 10−5 Ns/m
c1 0.003 Ns/m

Figure 8. Experimental vs. simulated signals: (Left) Angular position of the motors. (Right) Mo-
tor torque.
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Figure 9. Experimental vs. simulated signals: (Left) Angular position of the motors. (Right) Mo-
tor torque.

6. Discussion

As it can be seen in Figures 8 and 9, the results obtained in both motions by the
simulation resemble the measurements, taking into account all the simplifications made
and the fact that the dynamic parameters used are the theoretical ones, that is, they are
not experimentally verified to evaluate the degree of accuracy of the simulation used as a
design tool previous to the manufacturing of the prototype. There is a little delay between
the experimental and simulated signals due to the difficulty in time aligning the initial
moment of the motion. Additionally, the error is higher in the rotation motion of Figure 9,
which is a more complex motion than the translation in Z of the Figure 8, where all the
actuators move in unison. There are several sources for these errors, mainly manufacture
errors in the prototype, the possible difference between the real dynamic parameters and
the estimated ones, the modeling errors, and the appearance of disturbances as friction and
nonlinearities in the linear belt drives.

What is more, the profile of the torque signals in both figures suggest that there are
nonlinearities in the system. Part of it is due to the dry friction in the actuators. However,
after examining separately the manipulator and the actuators with the linear belt drives,
the cause of that nonlinearity lies mainly on the linear belt drives, where the belt is not stiff
enough to properly actuate the compliant 3PRS. The belt is preloaded and works under
traction but, under higher forces, it is further deformed. As the length of belt under traction
is not the same when the drive moves in positive and negative directions, its stiffness also
changes depending on the direction of the motion. In addition, the top and bottom of
the angular position in the motors are flat, which could be related to this behavior of the
belt drives.

7. Conclusions

An integrated approach for the mechatronic modeling of a compliant 3PRS parallel
manipulator is presented. This approach considers the kinematics and dynamics of the
compliant mechanism, the dynamics of the actuators and the dynamics of the control
algorithm. The model can be used to validate the design of the compliant manipulator,
and to evaluate and select the best control algorithm or set of actuators by simulating the
response to a given motion profile.

The model is based on decoupling the dynamics of the manipulator and the actuators,
so that the input force on the manipulator is considered by the actuators as if it was a
disturbance that should be counteracted by the control.
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For the dynamic modeling of the manipulator, the flexures are simplified using a
pseudo rigid body approach, considering them as conventional joints with torsional springs
that model the bending or torsional moments. This simplifies the dynamic modeling,
avoiding the use of FEM, and the problem becomes more parameterizable. To solve the
inverse dynamic problem, the Principle of Energy Equivalence is used, which allows the
direct obtainment of the input forces required and also decouples the contribution to the
global dynamics of each part of the manipulator.

Regarding the dynamics of the control and the actuator, the control algorithm is simu-
lated, modeling the actuators with a 2-degrees-of-freedom model that allows considering
their stiffness, which can be relevant when trying to deform the compliant mechanism.

The model is validated with a prototype developed, proving that the predictions made
are similar to the experimental tests. Nevertheless, there are still some deviations that
can be due to all the simplifications made, but mainly seems to be due to the unexpected
nonlinear behavior of the linear belt drives used for the prismatic joints.
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Appendix A. Parasitic Motions

According to Figure 4, the position of the end effector point P is

OP =
{

px py pz
}T (A1)

The position of the spherical joints Bi in the mobile reference system is

PB1m =


b
0
0

 PB2m =


−b/2√

3b/2
0

 PB3m =


−b/2
−
√

3b/2
0

 (A2)

To represent those vectors in the fixed reference system XYZ, the rotation matrix that
relates UVW and XYZ is defined as

R = RθRψRφ =

 ux vx wx
uy vy wy
uz vz wz

 =

 cθcφ + sψsθsφ −cθsφ + sψsθcφ cψsθ
cψsφ cψcφ −sψ

−sθcφ + sψcθsφ sθsφ + sψcθcφ cψcθ

 (A3)

where u, v and w are the unity vectors that define the axis of the UVW reference system,
and c and s refer to cosine and sine, respectively. Hence, the position of each spherical joint
in the fixed reference system XYZ is

OBi = OP + R·PBim i = 1, 2, 3 (A4)
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Considering that the revolute joints in Ci restrict the motion of the spherical joints to a
plane defined by the linear actuators OAi and the manipulator bars CiBi, so the following
conditions must be met:

OB1y = 0 OB2y = −
√

3OB2x OB3y =
√

3OB3x (A5)

Substituting the equations of restriction in Equation (A5) and the terms of the rotation
matrix in Equation (A3) into Equation (A4), the expressions of the parasitic motions of the
3PRS manipulator are obtained, which are a rotation around the Z-axis and two translations
in X and Y:

φ = atan
(

sψsθ
cψ+cθ

)
px = b

2 (cθcφ + sψsθsφ− cψcφ) py = −bcψsφ (A6)

Appendix B. Inverse Kinematic Problem

First, the following kinematic relation defines the position of the spherical joints with
respect to the origin of the actuators:

AiBi = OBi −OAi (A7)

The origin of the actuators in the XYZ system is

OA1 =


a
0
0

 OA2 =


−a/2√

3a/2
0

 OA3 =


−a/2
−
√

3a/2
0

 (A8)

In addition, the vectors CiBi that locate the spherical joints with respect to the prismatic
joints can be written as in Equation (A9). Their modulus is the length L of the bars:

CiBi = L·li0 = AiBi −AiCi = AiBi − si·si0 (A9)

The unit vectors si0 define the positive direction of the actuators motion:

si0 = −OAi

OAi
(A10)

The li0 unity vector defines the direction of the bars and is calculated as

li0 =
CiBi

L
(A11)

Rearranging and squaring Equation (A10), a quadratic equation is obtained.

s2
i − 2si·si0·AiBi + AiBi·AiBi − L2 = 0 (A12)

Solving it, the inverse kinematic problem, that is, the position of the actuators si, is
calculated.

si = (si0·AiBi)±
√
(si0·AiBi)

2 −AiBi·AiBi + L2 (A13)

Appendix C. Direct Kinematic Problem

Calculating the vectors that define the position of the spherical joints with respect to
the revolute joints in Ci,

OBi −OCi = OBi − (OAi+ACi) = CiBi (A14)

In addition, imposing the condition of fixed length L of the CiBi bars in the follow-
ing equations,

|CiBi|2 = |OBi −OCi|2 = L2 (A15)
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where the OCi vectors are

OC1 =


a− s1

0
0

 OC2 =


−(a− s2)/2
(a− s2)

√
3/2

0

 OC3 =


−(a− s3)/2
−(a− s3)

√
3/2

0

 (A16)

Substituting Equation (A16) and Equation (A4) in Equation (A15) for each i bar, the
following nonlinear equations are obtained, which allow calculating the position pz and
the angles Ψ, and θ of rotation around the X and Y axes.

(px + b(cθcφ + sψsθsφ)− a + s1)
2 +

(
py + bcψsφ

)2
+ (pz + b(−sθcφ + sψcθsφ))2 − L2 = 0(

px − b
2 (cθcφ + sψsθsφ) +

√
3b
2 (−cθsφ + sψsθcφ) + a−s2

2

)2
+ . . .

. . . +
(

py − b
2 (cψsφ) +

√
3b
2 (cψcφ)−

√
3(a−s2)

2

)2
+ . . .

. . . +
(

pz − b
2 (−sθcφ + sψcθsφ) +

√
3b
2 (sθsφ + sψcθcφ)

)2
− L2 = 0(

px − b
2 (cθcφ + sψsθsφ)−

√
3b
2 (−cθsφ + sψsθcφ) + a−s3

2

)2
+ . . .

. . . +
(

py − b
2 (cψsφ)−

√
3b
2 (cψcφ) +

√
3(a−s3)

2

)2
+ . . .

. . . +
(

pz − b
2 (−sθcφ + sψcθsφ)−

√
3b
2 (sθsφ + sψcθcφ)

)2
− L2 = 0

(A17)

Appendix D. Passive Coordinates

The rotation in the compliant revolute joints is measured by the angle αi between the
CiBi bars and the XY plane can be calculated as

αi = acos(li0·si0) (A18)

The rotation of the joint is then calculated as the difference between αi and the default
angle 45◦.

To calculate the rotations in the spherical joints, angles βmi, βni and βli, the relative
rotation matrix between the MNL reference systems in Figure A1 must be obtained. Two
reference systems MNL are used with the origin in the Bi spherical joints. The first one, Si0,
is fixed to the mobile platform, and the second one, Si, is fixed to the CiBi bars, as it is seen
in Figure A1. Rotations around the axis defined by unity vectors mi and ni, βmi and βni,
refers to the deflections in the spherical joint in those directions, and rotation around the
axis defined by li, βli, measures the torsional deformation of the joint.

Figure A1. Reference systems in the spherical joints.
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First, regarding the unit vectors of the Si0 system in the fixed reference system XYZ is,
lio is already shown in Equation (A11). Additionally, mio is the unit vectors orthogonal to
the vertical planes that contain the bars, defined as

m10 =


0
−1
0

m20 =


√

3/2
1/2

0

m30 =


−
√

3/2
1/2

0

 (A19)

Unity vectors ni0 are calculated from the following cross product:

ni0 = li0 ×mi0 (A20)

Hence, the rotation matrix Ri0 of the reference system Si0 is

Ri0 =
[

mi0 ni0 li0
]

(A21)

Doing the same for the Si reference system, unit vectors mi, ni and li in the UVW
system are defined as

m1m = m10 m2m = m20 m3m = m30

n1m =


√

2/2
0√

2/2

 n2m =


−
√

2/4√
6/4√
2/2

 n3m =


−
√

2/4
−
√

6/4√
2/2


l1m =


−
√

2/2
0√

2/2

 l2m =


√

2/4
−
√

6/4√
2/2

 l3m =


√

2/4√
6/4√
2/2


(A22)

In the fixed reference system XYZ, those vectors are expressed premultiplying with
the rotation matrix of the mobile platform:

Ri =
[

mi ni li
]
= R

[
mim nim lim

]
(A23)

Finally, the rotation matrix Ri-i0 between reference systems Si0 and Si is obtained as

Ri-i0 = RT
i0·Ri (A24)

On the other hand, Ri-i0 can be developed as a function of the three consecutive
rotations around m, n and l axis. The resultant matrix is

Ri−i0 = Rm·Rn·Rl

Ri−i0 =

 cβni cβli −cβni sβli sβni

sβmi sβni cβli + cβmi sβli −sβmi sβni sβli + cβmi cβli −sβmi cβni

−cβmi sβni cβli + sβmi sβli cβmi sβni sβli + sβmi cβli cβmi cβni

 (A25)

Equaling terms in Equations (A24) and (A25), the following rotations for the spherical
joints are obtained:

βmi = atan
(
−Ri-i0(2,3)
Ri-i0(3,3)

)
βni = asin(Ri-i0(1, 3)) βli = atan

(
−Ri-i0(1,2)
Ri-i0(1,1)

)
(A26)

References
1. Howell, L. Compliant Mechanisms; Wiley: New York, NY, USA, 2001.
2. Bryson, C.E.; Rucker, D.C. Toward Parallel Continuum Manipulators. In Proceedings of the 2014 IEEE International Conference

on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 778–785.
3. Grioli, G.; Wolf, S.; Garabini, M.; Burdet, E. Variable stiffness actuators: The user’s point of view. Int. J. Robot. Res. 2015, 34,

727–743. [CrossRef]

http://doi.org/10.1177/0278364914566515


Robotics 2022, 11, 4 21 of 21

4. Stoeffler, C.; Kumar, S.; Müller, A. A Comparative Study on 2-DOF Variable Stiffness Mechanisms. In Springer Proceedings in
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