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a b s t r a c t

This paper reports on the state-of-the-art of the main non-destructive assay (NDA) techniques usually
used for in-situ radiological characterization of nuclear facilities subject to a decommissioning pro-
gramme. For the sake of clarity and coherence, they have been classified as environmental radiation
monitoring, surface contamination measurements, gamma spectrometry, passive neutron counting and
radiation cameras. Particular mention is also made here to the various challenges that each of these
techniques must currently overcome, together with the formulation of some proposals for a potential
evolution in the future.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Decommissioning of nuclear facilities (power reactors, open or
closed fuel cycle plants, research or medical accelerators, etc.) re-
fers to the final step, after shutdown, in their life cycle and covers
thewhole process whereby the considered site is properly removed
and its near environment restored to a predetermined endpoint,
namely an unrestricted and unconditional release or future reuse
[1,2]. It is hence essential to act on the upstream stage of every
decommissioning programme for the optimum definition of viable
and cost-effective dismantling scenarios, as well as for the safe
classification and segregation of all radioactive wastes. This un-
doubtedly constitutes a complex issue, considering thewide variety
of involved structures and equipment. For that reason, their proper
in-situ radiological characterisation by means of non-destructive
assay (NDA) techniques, in combination with any historical infor-
mation and laboratory analysis of representative samples taken
from specific locations, becomes a necessary prerequisite for a
successful quantification of the different contaminated materials
before starting the dismantling activities [3]. The main NDA in-
struments used in this domain are based on the detection of the
different types of ionizing radiation, such as alpha (a), beta (b),
by Elsevier Korea LLC. This is an
energetic photons (X- or g-rays) and neutrons, emitted by the
sought radionuclides in the item of interest, without affecting the
physical or chemical form of this latter.

In the middle of the XXIst century, more than half of the existing
nuclear facilities around the world are already scheduled for a
definitive shut down and the launch of a long deconstruction
period. For the majority of them, an important part of the initial
phase of in-situ radiological characterization will be performed
under several constraints, such as those in difficult access spaces
(e.g., embedded piping, ducts, etc.) and the ones with the presence
of high radiation levels or even other hazards [4]. Obviously, such
constraints condition themeasurement instruments to be used, not
only from the point of view of the detector or its associated elec-
tronics, but also regarding the implementation of accompanying
equipment and accessories.

This situation implies the need for targeted criteria allowing the
selection of the most appropriate equipment for each situation,
taking into account not only the parameter to be determined, but
also any radiological and/or non-radiological restriction that may
exist in the area where the in-situ measurements should be per-
formed. To do this, it is convenient to analyse the most important
characteristics of the equipment that are currently being used, from
the most conventional to those that are still being developed or
optimized, with emphasis on their response to the restrictive
conditions under which such a measurement will be carried out.
This is one of the objectives of this paper.
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The simplest, fastest and inexpensive NDA technique is that
consisting of environmental radiation monitoring at predefined
locations to map the associated spatial distribution over vast areas
[5]. It is very convenient in the first instance, as it gives an idea
about radioactive singularities or hotspots, and can be roughly
correlated with the activities of the predominant gamma emitting
radionuclides, or the neutron ones on rare occasions. Nevertheless,
despite being widely applied, it is seriously affected by substantial
uncertainties of the characteristics of the detector used, of the
geometric configuration of the whole scene under study, and of the
specific properties (frequently not fully known) of the measured
objects. Furthermore, cartography of alpha/beta contamination on
large surfaces would also be of great utility [6].

Other sophisticated methods, which are able to be applied for
the same purpose, are gamma spectrometry, passive neutron
counting, and radiation cameras [7e15]. Some of them, although
being less used today, still have a great potential, especially if
certain challenges, described in the following sections, are
addressed.

In those situations when facing the above-mentioned con-
straints, robotics or other remotely deployed systems based on
reduced-size detectors are a good alternative. However, in others,
collimation mechanisms with small opening angles may also be
considered to restrict the field-of-view of the chosen instruments
to only specific portions of the item to be measured. At that stage,
the acquisition is then performed at different positions around the
object providing a high degree of precision with regard to the
spatial distribution of the radioactive source term [16].

The present paper reports on the state-of-the-art of the NDA
techniques that can be used for in-situ radiological characterization
of nuclear facilities subject to a decommissioning programme. For
the sake of clarity and coherence, they have been classified as
environmental radiation monitoring, surface contamination mea-
surements, gamma spectrometry, passive neutron counting and
radiation cameras. Particular mention is also made here to the
various challenges that each of these techniques must currently
overcome, together with the formulation of some proposals for a
potential evolution in the future. Although some basic concepts are
assumed, the interested reader can refer to Refs. [11,17,18] for more
details on the theories and practices of radiation instrumentation
and detection.

2. Environmental radiation monitoring

At any nuclear facility, environmental radiation monitoring is
generally conducted at different positions around its structures in
order to investigate their radiological status, to evaluate the effec-
tiveness of protection measures, as well as to assess the associated
doses likely to be received by individuals. Depending on the in-
formation provided, the measurement techniques used in this
domain can be classified into the following three groups: gross
counters, air-kerma monitors and probes measuring the ambient
dose equivalent or H*(10).

2.1. Gross counting

Gross counting instruments are primarily used to detect the
presence of radioactive material. At least in theory, almost any type
of the available radiation detectors [11] could be used for this
purpose. The oldest one, but still used today, is the Geiger-Müller
(GM) counter, which has the advantages of being cheap and robust
with a large variety of sizes and it requires minimal electronic
processing. It consists of a gas-filled tube whose walls are either
metal or have their inner surface coated with a conducting material
to operate as a cathode, whereas the anode is made of a wire
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mounted axially in the centre of the tube. By applying a polarizing
potential difference of several hundred volts, every ionizing particle
reaching the detection volume is able to produce a detectable
electronic “pulse” or “count” through both the gas multiplication
and electron avalanche mechanisms. In addition, there is a possi-
bility of using GM counters with halogen quenching that helps to
maintain their operating lifetime against sustained exposure [19].

However, as all the GM generated pulses almost have the same
height, regardless of the number of original electron-ion pairs that
initiated the process, these detectors cannot distinguish between
radiation types or energies. At best, for a single photon energy, the
total count rate (i.e., number of pulses per unit time) will respond
linearly with the intensity of the radiation beam. Conversely, for
many nuclear facilities, the presence of several radioactive sources
emitting X- or g-rays at various energies might result in erroneous
and unreliable interpretation of the measurement results. Instead,
thin silicon diodes can also constitute a good alternative due to
their radiation hardness and charge collection efficiency [20].

2.2. Air-kerma dosimetry

Kerma represents the amount of the kinetic energies per unit
mass of all charged particles initially released by indirectly ionizing
or uncharged radiation in a sample of matter. It is quite often
confused with the absorbed dose in this industrial sector, as both
quantities are expressed in joule per kilogram or Gray (Gy). In the
case of photons in air, such a quantity can be measured by an
ionization chamber consisting of a gas-filled tube at atmospheric
pressure but operating at a very low electric field strength, contrary
to a GM counter, to avoid both the gas multiplication and electron
avalanche mechanisms.

In such a circumstance, when an incident photon interacts with
the gas molecules it may produce electron-ion pairs along its path.
The generated ions then drift to the cathode under the influence of
the electric field whilst free electrons are collected by the anode
and the resulting current remains constant over a given range of the
applied voltage.

Yet, ionization chambers used as air-kerma monitors cannot
discriminate between radiation types and cannot provide the cor-
responding energy spectrum. Their wall material is normally
selected to have an effective atomic number similar to that of air
(Zeff ¼ 7 according to Tahmasebi Birgani et al. [21]). This “air
equivalent” material has the effect of ensuring that the whole de-
tector is acting as an infinite air volume to reach an electronic
equilibrium.

Another alternative to measure air-kerma is the one based on
the energy-compensated silicon diodes [22]. Compared to air, these
detectors have the inherent advantages of a low ionisation energy
and high atomic density, thus allowing very small-sized detectors
to be used for routine survey in nuclear facilities.

2.3. H*(10) dosimetry

The ambient dose equivalent is an imaginary quantity
commonly used for monitoring strongly penetrating ionizing ra-
diation, such photons above 12 keV and neutrons [23], as a proxy of
the effective dose, which in turn can never be measured in realistic
situations because it requires knowledge of the doses delivered to
all organs and tissues in the human body.

2.3.1. The case of X- or g-rays
According to ICRP Publication 74 [24], the ambient dose equiv-

alent in the case of X- and g-rays is very conservative from the
radiation protection point of view since it generally overestimates
the effective dose to around 15%e50% in the energy range of 60 keV
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to 2 MeV. However, it can even exceed a factor 2 for low energy
photons.

Practically any type of photon detector is able to measure
H*(10), but the chosen measurement instrument needs to be
properly calibrated using standard radioactive sources (most often
137Cs).
2.3.2. The case of neutrons
Although it is not often frequent, measurement of neutrons can

provide highly relevant supplementary information, such as before
dismantling uranium enrichment plants or the spent fuel reproc-
essing ones. This should nonetheless consider the fact that neu-
trons often have fairly wide energy spectra covering, at the same
time, a total of 10 decades ranging from 1 meV to several MeV and,
as being electrically uncharged, they do not interact with the
atomic electrons. The sole way to detect them is through the sec-
ondary charged particles released from their varied nuclear in-
teractions in the considered medium. Accordingly, the neutron
detection imperatively needs the addition of a converter material
offering a significant interaction probability to produce this desired
ionization process. The most commonly used are 3He, 6Li or 10B due
to their optimum cross-section for thermal neutrons (i.e., with
energies below 1 eV), as shown in Fig. 1.

To detect more energetic neutrons the conjunct
detector þ converter is habitually surrounded by an extra moder-
ating material, made of polyethylene, so that their energy is pre-
viously slowed down via multiple and/or successive elastic
collisions with Hydrogen nuclei. In many instances, further re-
finements are needed in terms of associated electronics to differ-
entiate between the neutron-induced pulses from those that may
be generated by the gamma radiation. Table 1 summarizes the
strengths and weaknesses of the most common neutron detectors.

Nevertheless, independently of the considered configuration
regarding the detector itself, the converter material and the
moderator, satisfactory results in terms of the neutron ambient
dose equivalent are only obtained in restricted energy intervals
and/or in specific irradiation conditions. Therefore, the chosen
Fig. 1. Cross section vs. incidence energy some nuclear reaction of interest in neu
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instrument must be previously calibrated under the same experi-
mental configurations, or at least considering a representative
neutron spectrum [25].

Another option to properly estimate H*(10) would be the pre-
liminary determination of the spectrometric information about all
the possible neutron fields in order to derive the proper transfer
functions for each location. Among several complex neutron
spectrometry techniques, only the Bonner sphere system [26] is
able to measure neutron spectra, independently of their direction
of incidence, over the whole energy range of interest (i.e., 10�3

eV � 10 MeV). The system consists of a set of polyethylene multi-
sphere moderators of various sizes (between 2 and 12 inches)
surrounding a central detector that is mainly sensitive to thermal
neutrons. As the size of the sphere increases, the maximum
response of the sphere-detector combination shifts to the highest
neutron energies [27]. To derive the spectral contribution of ther-
mal neutrons, an additional measurement must be performed by
directly using the central detector in bare configuration or by
adding a thin cadmium shell to the smallest polyethylene sphere.

The next crucial challenge in this domain is to design a unique
system configuration (detector þ converter þ moderator) that is
suitably optimized regarding its size and weight, preferably with
increased radiation tolerance. Such an improvement must allow for
real-time measurement of the neutron ambient dose equivalent in
every situation, notably referring to their incidence angles and
energy distributions, from just a single measurement.
3. Surface contamination measurements

Surface contamination can be “fixed” or “removable”, depending
onwhether it can be transferred from a contaminated surface to an
uncontaminated one when both accidentally touch. Surface
contamination measurements should provide the activity per unit
area for all the present radionuclides. Yet, without previous
knowledge about the processes behind the presence of these two
forms of contamination, it is impossible to make any kind of
quantitative assessment about them. As such, only a qualitative
tron detection (Source: JANIS, available at: https://www.oecd-nea.org/janis/).

https://www.oecd-nea.org/janis/


Table 1
Strengths and weaknesses of the most common neutron detectors.

Detector type Strengths Weaknesses

3He proportional counter Reasonably light
Good neutron cross-section
Varied filling pressure
Resistant to intense radiation fields

Reduced g pulse discrimination
Sensitive to vibrations
3He shortage

BF3 proportional counter Reasonably light
Good g rejection
Readily available than 3He

Low neutron cross-section
Sensitive to vibrations
Limited filling pressure
Toxic and corrosive

LiI(Eu) scintillator Compact design
Detection efficiency*
Insensitive to vibrations

Reduced g pulse discrimination
Hygroscopic material
Pile-up effect

*: the high atomic density of the crystal fully compensate for the very low cross-section of 6Li.
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comparisonwith clean surfaces and an assessment of which part of
the contamination is fixed, and which is removable, can be
provided.

In addition, when an exhaustive list of expected radionuclides
and their relative contribution to the total activity at a given
reference date (commonly called radiological “fingerprint”) is
available, specific calibrations of the measurement instrument are
required to achieve reliable quantitative results. Some guides on
how to carry out these specific calibrations are already established
by the ISO standards 7503 [28e30].

There are two methods to measure radioactive contamination
on surfaces: “directly” by keeping the radiation detector almost
immobile, as close as possible to the surface under examination (no
more than a few mm), or “indirectly” by means of smear tests.
Whereas the direct method can handle both types of surface
contamination, the indirect one allows for the evaluation of the
corresponding removable part only after wiping the surfaces con-
cerned by this issue. Afterwards, the collected smears can be
measured outside of the area being monitored, preferably in
another location with low background radiation, and/or sent to a
radiochemical laboratory for a more precise analysis.

While carrying out the direct method, special care needs be
taken to avoid contamination of the detector itself. In addition, such
a method must be applied on accessible, smooth and even surfaces
that are ideally free from solid or liquid deposits. If any of these
conditions is not met or if there is an excessive level of interfering
radiation, the indirect method should be considered, even though it
cannot properly assess fixed contamination and has a high degree
of uncertainty, given the lack of knowledge regarding the effec-
tiveness of the wiping.

Table 2 provides an overview of the strengths andweaknesses of
each method. The two methods are often complementary and
together they help to provide a comprehensive picture of the
contamination state of the studied zone.

Proportional counters could measure the radioactive contami-
nation on surfaces directly, since they have a small dead time effect
and can enable discriminating the alpha-induced pulses from the
beta ones [31]. They consist of gas-filled tubes operating in a
voltage region immediately after that of an ionization chamber.
Consequently, the electric field strength is intense enough to
Table 2
Overview of the strengths and weaknesses of surface contamination measur

Method type Strengths

Direct Total contamination measuremen
Control of large areas

Indirect Very simple concept
Access to loose contamination
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accelerate the primary free electrons, which are released after each
interaction of the incident radiation, to energies so high that their
collisions with the gas molecules cause further ionizations before
reaching the anode. This effect, called gas multiplication, makes the
height of the output electric pulse proportional to the energy
deposited by the incident radiation. The detection volume can be
fully sealed after the gas filling or can operate under a continuous
flow [32], which is quite impractical or entirely unfeasible in the
majority of in-situ applications.

Other types of detectors like plastic scintillators [33,34] also
represent a highly effective alternative, mainly due to their ability
to differentiate between various types of radiation and to provide
the corresponding spectrometric information. An interesting issue
for further development in this field would be the implementation
of an automatic measurement instrument that is able to gather
accurate real-time data, unequivocally with regard to both identi-
fication and quantification, about practically any kind of mixture of
pure beta and/or alpha emitting radionuclides likely to be present
on contaminated surfaces.

3.1. Alpha contamination

Because of the extremely low penetration of alpha particles, an
appropriate barrier must be implemented to let them come into
contact with the sensitive region of a detector, while simulta-
neously protecting this latter, inter alia, against inner contamina-
tion. Most times, a detector with an ultra-thin (~0.8 mg/cm2) end-
window, made of an aluminized mylar or mica film, is used, and
thus any eventual contact with hard objects may puncture it. This
can cause a gas exhaust when using a proportional counter or the
entrance of ambient light to sensitive crystal in the case of scin-
tillators detectors, hence overwhelming the photomultiplier tube.

3.2. Beta contamination

Many of the problems encountered during the measurement of
alpha contamination do not apply for b-particles, except perhaps
for those with a low penetrating power like 3H, 63Ni and 241Pu.
Notwithstanding, as most of the conventional detectors used are
also sensitive to X/g-rays, they cannot systematically assess the
ements depending on the method used.

Weaknesses

t Not suitable on all surfaces
Sensitivity to high radiation background
Wiping effectiveness
Fixed contamination representability



Table 3
Typical energy resolution for different gamma spectrometers.

Energy NaI(Tl) LaBr BGO CZT CdTe HPGe

122 keV ~15 keV ~8 keV ~30 keV ~8 keV ~2 keV ~0.5 keV
662 keV ~46 keV ~20 keV ~66 keV ~17 keV ~4 keV ~1.0 keV
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individual contribution of each radiation. This issue is normally
solved by making an additional measurement with a filter thick
enough to only absorb the incident b-particles, thus enabling the
estimation of the background contribution to the detector reading.

4. Gamma spectrometry

Gamma spectrometry is the start NDA technique, as some ra-
dionuclides of interest emit characteristic X- and/or g-rays with
specific energies, intensities and decay probabilities, hence allow-
ing their identification and quantification. Its general principle
consists in measuring one or more of these mono-energetic pho-
tons with a detector that is able to generate a pulse signal, the
height of which is proportional to the amount of energy deposited
within the sensitive volume. This energy transmission can be either
total or partial, depending on the different interaction mechanisms
(photoelectric, Compton scattering and pair production) followed
by each incident photon. The usage of a multi-channel analyser
(MCA) and evaluation algorithm is henceforth recommended for a
proper display of the recorded pulse-height histogram.

The following two key parameters must be considered when
performing a g-spectrometry:

- the energy resolution, indicating the ability of the detector to
distinguish between incident photons with very close energies,
and

- the absolute efficiency of detection, which is universally defined
as the number of net pulses under the observed full-energy
peak, often called “photopeak”, divided by the number of its
associated X- or g-rays emitted by the radioactive source.

Indeed, this last parameter varies depending on the detector
type, the emission energy, the geometric configuration (measure-
ment distances, use of collimation, shielding, screens, etc.), as well
as the corresponding self-absorption effect in the measured item. A
complete characterisation of the detector response is normally
carried out by means of radioactive standard sources and theoret-
ical calculations [35e37].

It should be emphasised, moreover, that energy resolution is
also paramount when trying to measure low activity X- or g-
emitting radionuclides in the presence of background and Compton
interference. In fact, the higher the energy resolution of a given
detector, the better its signal-to-noise ratio [38].

When projecting gamma spectrometry for in-situ radiological
characterization, the net count rates under the observed photo-
peaks must at last be converted into activity concentrations of the
associated radionuclides, taking into account several plausible hy-
potheses regarding the volume distribution of the radioactive
source termwithin the object under examination. For this purpose,
as nuclear facilities contain huge and complex equipment, ad hoc
transfer functions need to be calculated on a case-by-case basis
from a theoretical model representing the physical characteristics
of the object itself (shape, volume, weight or mass density and
material composition), the different distances scheduled for mea-
surements, and all the possible volume distributions of the sought
radionuclides.

The gamma spectrometers most commonly employed in this
industrial sector are based on inorganic scintillators, such as
NaI(Tl), LaBr or BGO, as well as on high-purity germanium (HPGe),
CdTe or CdZnTe semiconductors. Their typical energy resolutions
with respect to 57Co (122 keV) and 137Cs (662 keV) peaks are given
in Table 3.

All these spectrometers, described below, are usually used un-
der an open geometry, also known as “one shot”measurement, with
the shielded detector located in a fixed position and rightly
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oriented so that its field-of-view allows to “see” the whole volume
of the item to be measured [39]. However, the corresponding re-
sults are generally more sensitive to the variations of the radioac-
tivity distribution within objects and their matrix effect. A
collimation mechanism with a small opening angle can then be
added to the detector to reduce the associated uncertainties.

4.1. Scintillation detectors

Scintillation is the emission of a flash of light in transparent
materials when exposed to an ionizing radiation. A scintillation
detector consists of a scintillator crystal (NaI(Tl), CsI, SrI2, LiI, LiF,
LaBr, LaCl3, CeBr3, BGO, etc.) coupledwith an electronic light sensor,
which is traditionally a photomultiplier tube (PMT). The latter
converts every light photon emitted by the scintillator into an
electrical pulse that provides a meaningful information about the
energy deposited by the incident radiation.

Scintillation detectors can be manufactured in large volumes
but they generally have poor energy resolution. They are therefore
often employed for low-level radioactivity measurements with
simple X/g spectra. However, since most scintillators have a very
fast signal response, they can likewise be applied at high count
rates or for coincidence counting.

As they are the most representative of all the above-mentioned
scintillator crystals used for gamma spectrometry, only NaI(Tl),
LaBr and BGO are described in the following subsections. The big
challenge for this family of detectors is to obtain a new scintillation
material that offers an enhanced energy resolution while preser-
ving, as much as possible, other relevant parameters, such as
response linearity, fast pulse rise/fall time, nearly symmetric peaks,
thermal stability, absence of internal radioactivity, radiation resis-
tance, etc.

4.1.1. NaI(Tl)
Sodium iodide crystal activated with thallium or NaI(Tl) is the

classical scintillation crystal, available in a large variety of sizes and
geometries, and its detection efficiency has been historically taken
as the reference for the other g-spectrometers. Its energy resolution
is nonetheless very limited (see Table 3), it does not tolerate high
radiation levels [40] and it is a hygroscopic material. Consequently,
it cannot tolerate exposition to humid environments and requires
the use of a hermetically sealed assembly, but with a minimum
front-end thickness so as not to hinder the detection efficiency at
low energies. The detector encapsulation is often made from low
atomic number metal or metal alloys (e.g., aluminium). An addi-
tional aspect that must be highlighted is its complex response
behaviour (in terms of light output, energy resolution and decay
time constant) at varied ambient temperatures [41].

4.1.2. LaBr
Cerium-doped lanthanum bromide or LaBr3(Ce), often abbre-

viated as LaBr, is one of the promising new generation of scintil-
lation detectors, offering improved energy resolution (see Table 3),
slightly better detection efficiency and fast emission rates
compared to NaI(Tl). It is also a hygroscopic material that needs a
protective encapsulation, but with an adequate temperature
tolerance [42] and a good resistance to intense radiation fields [40].
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Although the LaBr crystals are currently available in small sizes,
they are very appropriate to be applied in spaces with limited
accessibility, especially when coupled with silicon drift detectors
(SDD) or silicon photomultipliers (SiPM).

4.1.3. BGO
Bismuth germanium oxide or BGO, which can be manufactured

under different chemical compositions [43], is a relatively hard,
rugged and non-hygroscopic crystal, so no particular hermetic
sealing is required. Although its light output is only 10 to 15% that of
NaI(Tl), it is considered to have a superior detection efficiency given
its high density, almost twice that of Nal(Tl), and atomic number,
which definitely enhances photoelectric interactions of incident X-
and/or g-rays and the their associated peak-to-total ratios. How-
ever, it has a very limited energy resolution and does not tolerate
temperature variations.

4.2. Semiconductor detectors

In semiconductor detectors, ionizing radiation is measured by
the number of charge carriers (i.e., electrons and holes) set free
after its interaction with the substrate material, which is arranged
between two electrodes. Under the influence of an electric field, the
number of collected charge carriers when exposed to an ionizing
radiation results in a pulse signal that is significantly lower than in
scintillation detectors, but with better energy resolution.

It must be noted that semiconductor detectors are relatively
sensitive to performance degradation when exposed to intense
radiation fields, especially in the case of neutrons. Electronic
components are also radiation-sensitive, particularly the pre-
amplifiers, which are the first stage in the signal processing chain
for both the scintillators and semiconductors.

Among the available semiconductors, only the most common
ones will be described in the following subsections, namely HPGe,
CdTe and CZT. The first of them has an excellent energy resolution
but low detection efficiency and it needs reinforced cooling to
cryogenic temperature (<120 K) given its narrow band gap [44].
The other two, in spite of being able to operate at room tempera-
ture, have good detection efficiencies but not optimum energy
resolutions. The ultimate goal for this type of detectors continues to
be the achievement of an energy resolution quite similar to that of
HPGe but at ambient temperatures.

4.2.1. HPGe
The operating principle of germanium detectors is fully based on

that of a p-n junction, which is a transition zone, depleted of charge
carriers, created in the contact between a n-type semiconductor
(with excess electron concentration) and a p-type semiconductor
(with excess hole concentration) from the same crystal. This junc-
tion behaves like a diode, allowing the electric current to flow in a
unique direction and can be made wide enough, under a reverse-
bias voltage (i.e., in the direction of no electric current flow), to
enable the detection of both X- and g-rays.

However, unwanted impurities in the crystal material trap
electrons and holes that may be generated by the incident radia-
tion, ruining the performance of the detector, so purification
techniques should be applied. High-purity Germanium (HPGe)
detectors are characterised by an excellent energy resolution. In
addition, they may have large sensitive volumes, ranging from cm3

to about 1 L, which can be used as total absorption detectors for
photon energies up to several MeV.

Their major drawback is that the crystal must be placed in a
vacuum cryostat and cooled to cryogenic temperatures, which may
restrict their usefulness in a number of in-situ applications, namely
in zones with limited accessibility or with radioactive
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contamination. In these two cases, an HPGe detector coupledwith a
compact pulse-tube cryocooler [45] is to be considered among
other refrigeration options.

In environments where the electronics can be damaged by the
circumstances (e.g., intense radiation fields), it is possible to use a
low-noise charge preamplifier allowing the remote control of the
detector with adequate shielding from large distances [46].

4.2.2. CdTe or CZT
The main advantage of the Cadmium telluride (CdTe) or cad-

mium zinc telluride (CdZnTe or CZT) crystals, when compared to
that of HPGe, is their high detection efficiency because of their high
atomic number and density, thus favouring photoelectric in-
teractions. Moreover, their wide band gap allows them to operate in
room temperatures (i.e., from�5 �C to 50 �C according to Park et al.
[47]) without requiring reinforced cooling.

Their energy resolution is not as optimal as that of HPGe de-
tectors, but it is slightly better than that of scintillators. In contrast,
they are characterized by a poor mobility for both electrons and
holes due to the charge trapping effect that is mainly caused by
structural defects, impurities and other irregularities (e.g., dislo-
cations, inclusions, etc.). This usually results in the so-called low-
energy tailing of the observed peaks in the measured spectrum,
which needs to be accounted for during data processing.

CdTe and CZT detectors are generally fabricated with ohmic or
Schottky contacts, allowing measurements over a wide range of
radiation dose rates between 10 mGy/h and 100 mGy/h. The cor-
responding radiation-induced damage has been investigated by
Cavallini et al. [48], demonstrating that CdTe is quite insensitive to
an integrated 60Co gamma dose up to 10 kGy, whereas CZT starts
degrading only after 25 kGy irradiation. According to the same
authors, exposition above this value causes a full degradation of its
spectroscopic capabilities, such as a loss of energy resolution and an
incomplete charge collection.

5. Passive neutron counting

Passive neutron counting is an exclusive NDA technique that is
able to deliver relevant information about the presence of fissile
materials after a detailed analysis of the spontaneous neutrons
principally emitted by the plutonium isotopes: 238Pu, 240Pu and
242Pu [17]. Its main advantage is its low dependence regarding
dense objects containing such radioactive elements. Compared to
gamma spectrometry, it is less sensitive to metallic matrices,
commonly found in nuclear facilities, making these two techniques
quite complementary. Of course, it also has its own limitations that
will be discussed in this section.

For many years, a set of 3He proportional counters, duly ar-
ranged in the shape of long tubes inside a polyethylene block, has
been the preferred measuring system in this domain. However,
because of the acute shortage of this rare non-radioactive gas, some
serious alternatives have been or are being explored [49e61].

There are two modes of passive neutron counting. In the total
mode, all the incident neutrons are measured, without distinction
between their emission process, that is spontaneous fission or (a,n)
reactions. Whereas in the coincidence mode, we only record the
number of times that time-correlated neutrons (pairs, triplets or
even more) issued from spontaneous fission are detected. With
either these two counting modes, the presence of neutron ab-
sorbers or other materials rich in hydrogen, like water, plastics and
paraffin, may reduce the signals of interest.

Another important limitation of the total counting mode is its
high dependence with regard to the chemical form of the pluto-
nium isotopes, consisting essentially of pure metal, PuO2 and PuF4
[17]. In addition, any potential presence of other a-emitting
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radionuclides, which cannot be completely ruled out, may equally
generate neutrons via (a,n) reactions that are expected to happen
with most light elements, from lithium up to chlorine.

Unfortunately, all the energy spectra originally emitted from the
aforementioned neutron sources, independently of the production
mechanism that is followed, are broad enough to cover the entire
range between 0.1 and 10 MeV without showing any substantial
difference between them [25]. Therefore, the direct identification of
a given neutron-emitting radionuclide through its energy spectrum
is not at all feasible.

Anyhow, this difficulty can be overcome by analysing the tem-
poral dynamics of all the recorded signals and discriminating be-
tween events issued from spontaneous fission and those resulting
from (a,n) reactions. This would thus facilitate the quantification of
the number of the coincident neutrons, which do not depend in any
way on the chemical form of the plutonium isotopes. Such an in-
formation is subsequently used to estimate the masse of fissile
materials in terms of effective 240Pu mass that would give the same
coincidence response as the measured one.

Notwithstanding, neutron coincidence counting has the disad-
vantage of being extremely affected by the 242Cm and 244Cm
spontaneous neutron emission, which is very intense, representing
a factor between 4170 and 20600 times higher than for the pluto-
nium isotopes [17].

In all circumstances, detailed information concerning the pres-
ence of actinides in the source term, and on the isotopic compo-
sition of the sought fissile materials, would be of great help in order
to better interpret the measurement results. This information could
be based on previous inventories, though preliminary, and/or from
further gamma spectrometry. Otherwise, a complete sensitivity
study needs to be carried out, by means of theoretical calculations
and different statistical deconvolution methods, considering all
realistic hypothesis and evaluating their impact on the measure-
ment uncertainties. The whole characterization of the chosen
measurement instrument is usually conducted considering stan-
dard neutron sources (e.g., 241AmeBe and 252Cf), as well as nu-
merical simulations using MCNPX [62] or other Monte Carlo codes
[63e65].

At the risk of being repetitive, the same challenge stated in
Section 2.3.2 is also valid for total neutron counting. In the case of
coincidence mode, there have certainly been many recent efforts to
build transportable and easy-to-handle systems [66] but their cost
remains prohibitive.

6. Radiation cameras

Radiation cameras may provide another valuable solution that
cannot be disregarded for in-situ radiological characterization of
nuclear facilities subject to a decommissioning programme. Their
associated information regarding the relative intensity of the
ionizing radiation being measured (i.e., a sort of colour map
display) is directly superimposed on the real view of the scene
under study, normally taken by a visible camera. Hence, they allow
for the localisation of radioactive objects or hotspots from greater
distances than conventional instruments, thus significantly
reducing the radiation dose received by operators in line with the
ALARA (as low as reasonably achievable) principle [67].

The deployment of this type of equipment requires coupling with
other instruments or acquisition methods: vision, telemetry, gamma
spectrometry, etc. These additional systems should collect at least
dimensional data (position of the probe in space), identification of
radionuclides, radiation levels, and/or a visible image. Today, mod-
ules often associated with a robotized platform or drones grouping
several instruments [68e75] could be deployed to surmount many
of the constraints encountered in nuclear facilities [4].
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6.1. Gamma cameras

Current g-cameras are undergoing impressive developments in
terms of lightness, compactness, usability, response sensitivity,
angular resolution, panoramic vision and spectrometric capabil-
ities. According to their measurement principle, they can be clas-
sified into three categories: Compton, pinhole and coded aperture.
In what follows, we introduce the main concepts of each of these
techniques, whose main strengths and weaknesses are summa-
rized in Table 4. This section ends with a rough description of the
stereo g-camera, which represents the latest technological break-
through that has been developed very recently [76].

6.1.1. Pinhole technique
A pinhole photographic camera, also known as “dark chamber”,

is a simple optical imaging device in the shape of a light-opaque
box. On one of its sides is a small aperture through which the
light coming from an outside source is projected as an inverted
image on the opposite side inside the box. Initially, this technique
was applied for different purposes until the mid-20th century
when scientists discovered that it could also be used to visualise
gamma sources [77]. Nevertheless, the pinhole size has a direct
impact on its angular resolution and signal-to-noise ratio (SNR).
The smaller the aperture diameter, the better the angular resolu-
tion, but the poorer the signal-to-noise ratio. Therefore, a
compromise must be reached with respect to these two perfor-
mance parameters.

An earlier attempt to develop a portable gamma camera based
on the pinhole technique was carried out in the 1990s by CEA [10].
This instrument is a mature technology combining an inverted
double-cone collimator (i.e., two right circular cones placed apex-
to-apex) to be used as a single pinhole aperture, a CsI/Tl (thallium
doped caesium iodide) scintillation crystal, a multi-channel image
intensifier, and a CCD camera. With the exception of the pinhole
aperture, the whole instrument is fully shielded against back-
ground radiation (see Fig. 2), leading to a very narrow collimation
angle. There is also the possibility of taking an extra measurement
in every situation by placing a dense screen or shutter over the
pinhole aperture to have a “blank” image, the correction of which
hence allows improving the signal-to-noise ratio.

In short, the shielding requirement could be suitable for high
dose rate environments, like that currently encountered inside the
reactor containment vessels of the Fukushima Daiichi nuclear po-
wer plant [78]. It however poses several restrictions from the
practical point of view, due to the heavyweight of the instrument in
question, as well as the lowest amount of incident photons allowed
through such a small frond-end opening. In order to improve all
these aspects, the implementation of a coded aperture technique
was first tested by the Kurchatov Institute [79] and then by CEA
[80].

6.1.2. Coded aperture technique
The principle of a coded aperture mask is the use of a front-end

collimator with several pinholes defined by a given rank and
thickness in mm. The motivation behind this design was to pre-
serve many of the pinhole properties, like its high angular resolu-
tion, while significantly improving the signal-to-noise ratio of the
acquired images, proportionally to the sum of the open areas of all
the pinholes constituting the coded aperture mask [81].

For an accurate localisation of radioactive sources, a coded
aperture mask based on the Modified Uniformly Redundant Array
or MURA [82] is placed in front of a pixelated detector, as illustrated
in Fig. 3. The photon beam coming from any g-emitting source is
modulated by the coded aperture mask and projected on the
pixelated detector surface as a shadow image. To obtain the



Table 4
Strengths and weaknesses of the different g-camera types.

Detector type Strengths Weaknesses

Pinhole Optimal angular resolution (1.9�e6.7�)
Wide energy range (from241Am to60Co)
Good dose-rate linearity
Enhanced signal-to-noise ratio

Heavy (�15 kg)
Low sensitivity (~0.5 mSv/h137Cs in 10 min)
Small field-of-view (30� or 50�)
Moderate energy resolution

Coded aperture Can be ultra-compact (<300 g)
High sensitivity (~2 nSv/h241Am in 2 min)
Optimal angular resolution (2.5�e6�)
Wide energy range (from 30 keV to60Co)
Dose-rate linearity up to 10 Sv/h

Small field-of-view (45�e50�)
Moderate energy resolution

Compton Can be compact (3e5 kg)
Field-of-view up to 360�

High energy resolution (~1% at 662 keV)

Low sensitivity (30 nSv/h137Cs in 5 min)
Moderate angular resolution (10�e30�)
Hardly applicable below 250 keV

Fig. 2. Illustration of the pinhole g-camera concept.
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position of the source with respect to the g-camera field-of-view,
the reconstruction technique described by Gottesman & Fenimore
[82] is adopted.

As explained by Braga et al. [83], an important limitation of such
a reconstruction technique is the systematics arising from the non-
uniform detector spatial response. Furthermore, in the correlation
process, any variation in the background level measured by
different segments of the detector plane can affect the estimates of
source intensities. A solution to these problems is to observe the
source field in alternate measurements: the mask pattern can be
inverted by a 90� rotation [84]. Such rotation creates an anti-mask
of the original pattern, except for the central element. This provides
an anti-mask measurement without additional weight and com-
plex mechanical manipulations. By performing alternate mea-
surements with a mask and with an anti-mask for equal time
Fig. 3. Illustration of the coded aperture concept for two radioactive source
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durations, the systematic effects are eliminated. The main features
and performances of existing ultra-portable and compact g-cam-
eras based on the coded aperture technique have been extensively
studied as reported in Refs. [7,85,86], although the latter reference
is rather focused on medical applications.

Relying on all the above capabilities, a new automatic method
has been proposed to obtain panoramic views of both optical and
radiation images based on a robust homography estimation [87].
This method allows self-locating radioactive sources or hotspots
that would potentially exceed the field-of-view of the camerawhile
preserving their geometrical coherency. Moreover, the feasibility of
analysing large rooms or facilities has been proved by displaying
the respective results within a single image, enabling the rendering
of spherical images and the creation of interactive virtual tours.

6.1.3. Compton technique
Compton cameras consider inelastic photon scattering theory to

reconstruct the location of radioactive sources [88,89]. They typi-
cally consist of two parallel and energy sensitive detectors (see
Fig. 4). When an incident g-ray with energy E0 hits the camera, it
may undergo Compton scattering in the first detector, called
“scatter” detector, and photoelectric absorption in the second one,
called “absorber” detector. Let E1 and E2 be the energies as
measured by these two detectors, respectively, we should then
have E0 ¼ E1 þ E2. By quoting the positions of each interaction and
applying the laws of conservation of energy and momentum in
physics, the scattering angle q is obtained as follows:

cosq ¼ 1�meC2
�
1
E2

� 1
E1 þ E2

�

s placed at different locations within the field-of-view of the g-camera.

https://www.linguee.fr/anglais-francais/traduction/enabling.html


Fig. 4. Illustration of the Compton g-camera concept, where E1 and E2 are the energies
as measured by the scatter detector and the absorber one, respectively.
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where me is the electron rest mass and c is the speed of light in
vacuum.

The photon origin can thus be constrained to the surface of a
back-projected cone, called the Compton cone, spanned by qwith its
apex given by the primary interaction position in the scatter de-
tector. From the intersection of different Compton cones, inferred
from subsequent photons susceptible to generate coincident
interaction events (scattering followed by a photoelectric absorp-
tion) in both detectors, the location of the corresponding emitting
source can be determined.

According to Table 4, Compton g-cameras present an optimal
field-of-view (up to 360�) and a high-energy resolution (~1% for the
137Cs 662 keV g-rays) when compared to both pinhole and coded
aperture techniques. Conversely, they have a very limited angular
resolution (10�e30�), they are hardly applicable below 250 keV and
they are less sensitive, as only a small portion of incident g-rays can
generate the signals of interest in the two detectors.

As an example of field-testing of such an interesting technique
under real conditions, several measurements have been conducted
inside the turbine building of Unit 3 of the Fukushima Daiichi nu-
clear power plant and made it possible to locate all the radioactive
hotspots [90]. They have also allowed visualizing a high-dose
spatial distribution map (up to 3.5 mSv/h) of the studied environ-
ment after integrating the associated point cloud data provided by a
laser rangefinder. The same techniquewas also successfully used by
Wahl et al. [91] inside the residual-heat-removal pump room at a
given US nuclear facility (they did not specify where exactly). The
authors were thus able to detect and identify the presence of two
cobalt isotopes (58Co and 60Co) in different portions of the pump, as
well as a known 137Cs contamination on the floor and the wall
behind the camera, issued from a past flood of the room. After-
wards, the camera was oriented towards two pipes in the room to
determine which of them was radioactive in order to foresee some
shielding. It however showed that almost all the radioactivity came
from a third pipe under the floor, which was unexpected before. By
placing protective material on the floor, it was therefore possible to
significantly reduce the dose to workers. Such a radiological pro-
tection was not anticipated from previous conventional
measurements.

Over the last few years, there have also been fairly promising
initiatives to develop hybrid g-cameras by combining all the ad-
vantages of the Compton technique either with the coded aperture
ones [92] or with those of an active pinhole [93].

6.1.4. Stereo gamma camera
The existing industrial g-cameras only provide a planar or two-
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dimensional (2-D) view showing the presence of radiation emitting
objects in the surrounding environment. That is, they just super-
impose a colour map display, indicating the amount of the emitted
g-rays, on the optical image of the scene under study, but without
the possibility of determining the distance between the located
radioactive sources and the measuring instrument.

The adoption of both gamma and optical sensors also leads to
significant parallax errors between the respective acquired images,
which is often manually corrected by assigning the average source-
to-detector distance. However, such a correction though presents
several problems. Overall, the superimposition can be coherently
performed only if the person using the g-camera already knows
which object is supposed to be radioactive. However, this fact might
limit the benefit of using g-cameras, as the radioactivity location is
not always known a priori. An alternative type of scenario that
might occur is when several radioactive sources are detected at
different locations within the field-of-view of the g-camera, mak-
ing it impossible to infer a unique distance for all of them. Indeed,
even if we successfully correct by hand the parallax error on one of
these sources, the others will not be properly superimposed, thus
leading to potentially misleading results.

To overcome this difficulty, a stereo g-camera has been recently
developed [76] to localise radioactive sources, regardless of their
shape and volume, even when they are behind an occluding object
(e.g., wall) or covered by other materials (e.g., within a barrel)
without being fully shielded. This is a straightforward technique
able to directly extract both visible and gamma 3-D information of a
scene, by applying a triangulation approach from at least two
different perspectives, like those obtained by the human eyes (left
and right). When applied to two identical g-cameras, whose
detection centres are horizontally separated from each other, such a
technique allows to automatically estimate the actual distance to
any radiation emitting position within their shared field-of-view
through the disparity map [94], computed as pixel-by-pixel shifts
between their respective reconstructed images. Values in this
disparity map are inversely proportional to the scene depth at the
corresponding pixel location. Fig. 5 illustrates the basic concept of a
stereo g-camera in the case of a radioactive point source.

6.2. Alpha cameras

In spite of their short range in air, the remote and safe local-
isation of materials or surfaces contaminated with a emitters is
possible based on the ionization-induced fluorescence of airborne
molecules [8]. As shown in Fig. 6, after depositing their energy in a
small layer of air, monochromatic ultraviolet (UV) lights are emitted
because of the presence of nitrogen, which is the major air
component (up to ~ 78%). Such a radiation has quite a long range in
air, allowing for direct visualisation of the location of the corre-
sponding pure alpha sources, with the help of an adapted optical
camera, preferably with an optimum spectral response in the
UVevisible range, and appropriate light filters to easily retrieve
both pieces of information. It moreover enables that kind of
detection even in the presence of beta and/or gamma radiation,
because of their inability to generate as much localized fluores-
cence as in the case of a-particles, and also through UV transparent
materials [95], namely the translucent ones, making it possible to
take the complementary visible pictures.

Normally, the camera does not find the exact position of an a-
emitting radionuclide, but rather a fluorescence zone around it. As a
rough approximation, this zone usually has a spherical shape, with
a radius equal to the range of a-particle in air (e.g., ~5 cm for
Ea ¼ 6 MeV), and is subjected to a fluorescence gradient, being the
most intense luminous part highly condensed in its centre, within
only few mm from the emission point [12].



Fig. 5. Illustration of the stereo g-camera concept in the case of a radioactive point source.

Fig. 6. Typical UV emission lines of dry air at 800 hPa and 293 K [96].
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The UV-fluorescence yield depends on the energy of every a-
particle stopped in air, as well as on the ambient temperature,
pressure and humidity. According to the experiments carried out by
Sand et al. [97], later confirmed through Geant4 predictions [98], it
is assumed to be proportional to the absorbed energy and that
almost 20 UV photons per MeV can be released in the case of dry air
at normal temperature and pressure. The authors have additionally
put in evidence the strongest luminescence in pure nitrogen at-
mospheres (up a factor of 6 times higher than in air) and the
quenching effect of water molecules, together with oxygen. Better
still, it has been recently shown that when the air is fully purged
with nitrogen containing a trace amount (~50 ppm) of nitric oxide
(NO), UV-fluorescence can even be up to 150 times more intense,
especially at wavelengths between 200 nm and 280 nm [99].

This imaging technique, which was originally employed to
observe cosmic ray showers in the Earth's atmosphere in the form
of large-aperture telescopes [100], has been optimized since the
last decade to develop field-deployable cameras able to search for
alpha contamination on surfaces from a sufficient stand-off dis-
tance [101e113]. Most of these cameras were tested in realistic
fields, providing very encouraging results. This was particularly
true, although not exclusively, when the sought a-emitting radio-
nuclides were enclosed within a glove box made of Plexiglass or
inside a hot cell with a lead glass window [12,107,111].

Nevertheless, their intrinsic sensitivity must improve to be
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likewise applied under natural or artificial lighting conditions. To
date, the preferred mitigation measures involve controlling the
lighting of the scene or performing measurements in complete
darkness. Other improvements consisted of just considering the so-
called solar-blind photodiodes with a wavelength cut-off below
280 nm [103,106,108,112] or else taking advantage, where possible,
of the recorded spectroscopic information [101]. These are chief
aspects needing further efforts to be unquestionably consolidated.

6.3. Neutron cameras

In principle, neutron imaging could also be performed based on
both the pinhole and the coded aperture techniques described
above [114]. The difference with respect to gamma cameras is the
type of materials selected for shielding (e.g., lead or tungsten for g-
rays and borated polyethylene for neutrons). In addition, neutrons
may undergo proton recoil scattering that provides analogous
directional information, as in the case of the Compton technique
that only applies to photons. However, the mathematical expres-
sion here is quite different and is derived, by virtue of kinematics,
from the recoil proton energy Ep deposited in the first segmented
(or position-sensitive) detector and the remaining scattered
neutron energy, Ens, which can be measured using the time-of-
flight to the second detector, Therefore, the neutron scattering
angle is calculated as follows [115]:
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tan q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep
�
Ens

q

where En ¼ Ep þ Ens is the neutron incident energy.
Several prototypes have been recently developed for many ap-

plications related to in-situ radiological characterisation, radiation
protection of workers, assurance of nuclear non-proliferation
safeguards and homeland security, especially those associated
with the prevention of illicit trafficking in radioactive materials
[14], [116e126]. Others are also able to operate in dual neutron-
gamma imaging mode [127e132].

Notwithstanding, the challenge for the in-situ radiological
characterisation of nuclear facilities to be dismantled, is still to
design neutron cameras that are as compact and robust as possible,
demanding less logistical arrangements, while remaining suffi-
ciently sensitive to neutrons and optimizing their angular resolu-
tion. Potentially, Lynde et al. [133] and Whitney et al. [134] each
proposed a good compromise in this aspect.
7. Conclusions and perspectives

This paper gives a review of the main non-destructive tech-
niques usually used for in-situ radiological characterisation of nu-
clear facilities subject to a decommissioning programme. Broadly
speaking, the important thing to retain here is that there is no
universal solution, as the choice of the appropriate techniques
depends on the characterization objectives and on the potential
constraints under which the measurement must be performed.
Accordingly, the most widespread techniques until now generally
consist of environmental radiation monitoring, surface contami-
nation measurements, gamma spectrometry, passive neutron
counting, and radiation cameras.

For the two first techniques providing preliminary screening
information, several existing instruments and methodologies are
applied because of their robustness and fitness to meet pre-
established purposes. Potential further developments in this
domain could be the miniaturization of the most common devices
along with their components and the implementation of an auto-
matic measurement probe able to gather accurate real-time data,
unequivocally with respect to both identification and quantifica-
tion, about practically any kind of mixture of pure beta and/or alpha
emitting radionuclides likely to be present on contaminated
surfaces.

Regarding gamma-spectrometry, there is a general agreement
that high-purity germanium (HPGe) is the favourite detector due to
its excellent energy resolution. However, the fact that it must
operate under reinforced cooling to cryogenic temperature may
restrict its usefulness to a number of in-situ applications, namely in
zones with limited accessibility. Great efforts must therefore be
exerted to obtain a new gamma spectrometer, whether based on a
scintillation detector or on a semiconductor one, offering the op-
timum energy resolution at room temperature while preserving, as
much as possible, other relevant parameters, such as response
linearity, fast pulse rise/fall time, nearly symmetric peaks, thermal
stability, absence of internal radioactivity, radiation resistance, etc.

The next crucial challenge when measuring neutrons is to
design a unique system configuration (detector þ
converterþmoderator) that is suitably optimized regarding its size
and weight, preferably with increased radiation tolerance. Such an
improvement must allow for real-time measurement of the
neutron ambient dose equivalent in any situation, notably referring
to their incidence angles and energy distributions, from just a
single measurement. In the case of neutron coincidence counting,
there have certainly been many recent efforts to develop
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transportable and easy-to-handle systems, but their cost remains
prohibitive.

Finally, concerning radiation cameras, where more de-
velopments are strongly emerging, the possibility of evolving to-
wards a multifunctional, highly compact and fully autonomous
instrument, which guarantees the localisation of radioactive sour-
ces, independently of whether they are emitting gammas, alphas or
neutrons, would be very beneficial for the majority of nuclear
installations.
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