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RESUMEN 
 

El objetivo general de la presente tesis se ha centrado en la monitorización de modelos 

celulares mediante la técnica de espectroscopia de Raman aumentada en superficies 

(SERS). Las tecnologías desarrolladas en la tesis han perseguido, por un lado, mejorar la 

recreación del ambiente tumoral a escala de laboratorio, y por otra parte, su integración 

junto con estructuras plasmónicas para el análisis por SERS de los modelos tumorales 

creados artificialmente. Más en concreto, se han analizado las alteraciones en la 

concentración relativa de los metabolitos presentes en el medio extracelular como 

resultado de la reprogramación metabólica característica de los tumores, la cual permite 

a su vez un crecimiento descontrolado de dichas células.  

 

La disposición conjunta de ambas tecnologías (cultivos celulares en 3D y 

nanoplasmónica) ofrece un marco único para la identificación de aquellos procesos 

celulares que se encuentran alterados durante el crecimiento de tumores. Hasta la fecha, 

la mayoría de las técnicas de laboratorio que se habían empleado para caracterizar 

ambientes celulares en el laboratorio implicaban procesos invasivos, es decir, que 

modifican o incluso desintegraban la muestra para poder analizarla. En contraposición, la 

espectroscopia Raman había permitido adquirir información sobre la composición del 

medio celular de una manera mínimamente invasiva. Basada en los fenómenos de 

dispersión inelástica, la técnica de Raman emplea luz monocromática (generalmente de 

un láser) para irradiar la muestra bajo análisis, de forma que la interacción entre la muestra 

y el láser provoca un cambio en la energía de los fotones dispersados, específico de los 

modos vibraciones de las moléculas irradiadas. Por lo tanto, la luz dispersada y recogida 

por un detector, permite caracterizar el sistema biológico que ha sido previamente 

iluminado, sin marcaje previo. Sin embargo, las señales detectadas por dispersión Raman 

son de manera general muy débiles, por lo que se requiere una intensificación de dichas 

señales para poder detectar la presencia de metabolitos extracelulares (a bajas 

concentraciones). En esta tesis se decidió implantar la modalidad conocida como SERS, 

que hace uso de las propiedades plasmónicas de nanopartículas metálicas (principalmente 

de oro), las cuales dan lugar a campos eléctricos elevados cuando se iluminan en 
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resonancia con los plasmones superficiales. Como resultado, la señal de Raman de las 

moléculas adsorbidas sobre dichas superficies metálicas se ve amplificada en varios 

órdenes de magnitud. Sobre esta base, se han desarrollado en la tesis diferentes 

plataformas destinadas a combinar sustratos plasmónicos, formados por fijación de 

nanopartículas de oro sobre estructuras rígidas en 2D, o bien embebidas en redes 

poliméricas, junto con modelos de células tumorales en crecimiento. La finalidad de la 

tesis ha sido pues, la monitorización de diferentes procesos celulares en dichos 

dispositivos mediante SERS, y su posterior interpretación biológica en el ámbito del 

metabolismo tumoral y la mejora del tratamiento. 

 

En el Capítulo 1 se recoge la fabricación de sustratos amplificadores de SERS, basada 

en dos estrategias que comparten la fijación de nanopartículas de oro (30 nm de diámetro) 

sobre un soporte de vidrio, pero se diferencian en su distribución sobre el sustrato. 

Mientras que aquellas estructuras plasmónicas fabricadas a través de la disposición de 

capas de polielectrólitos con cargas opuestas presentan una distribución desorganizada, 

la utilización de moldes  con cavidades nanométricas guía el ensamblaje de las 

nanopartículas hacia el interior de dichos espacios, creando agrupaciones controladas de 

las nanopartículas en las posiciones previamente definidas por el molde. Además, dicho 

diseño en forma de superred genera, tras irradiación con un láser a la longitud de onda 

adecuada, un efecto de difracción sobre la luz irradiada que da lugar a un aumento de 

intensidad del campo eléctrico, y por tanto de la señal de SERS. Posteriormente, se evaluó 

la capacidad de ambos sustratos plasmónicos para amplificar la señal Raman de 

metabolitos con funciones inmunoreguladoras en el microambiente tumoral, como son el 

triptófano, la kinurenina y los derivados de purinas. Ambos sustratos plasmónicos 

demostraron sensibilidad en incubación con disoluciones acuosas de dichos metabolitos 

hasta concentraciones de 1 µM, amplificando las vibraciones características de cada 

molécula. Sin embargo, cuando dichos metabolitos se miden en conjunto con los medios 

celulares, necesarios para el crecimiento de tumores, únicamente los sustratos ordenados 

permiten monitorizar la presencia de dichos metabolitos en la mezcla. En consecuencia, 

la mayoría de los experimentos llevados a cabo en etapas posteriores se realizaron con 

sustratos plasmónicos organizados en superredes.  

 

Una vez determinada la eficacia de los sustratos plasmónicos (su capacidad para detectar 

metabolitos en el rango micromolar en ambientes complejos), se inició la monitorización 
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de sobrenadantes en contacto con células tumorales. Como primer paso, se investigó la 

sobreexpresión de la enzima indolamina-2,3-dioxigenasa 1 (IDO-1) en la línea celular 

HeLa (procedente de un tumor de cuello de útero), tras su activación con la citoquina 

interferón-𝛾. Como resultado de su expresión, las células eran capaces de consumir el 

triptófano, y liberar al medio extracelular el producto de kinurenina generado en la 

reacción. Este fenómeno fue utilizado para medir por SERS (simultáneamente) las 

fluctuaciones de ambos metabolitos en los sobrenadantes celulares, y estimar a su vez la 

actividad de IDO-1 en el tumor. Además, se observaron cambios significativos en los 

espectros SERS (reflejados en la aparición de nuevas bandas de vibracionales) cuando el 

cofactor de hemina, necesario para la actividad de IDO-1, se incubaba con las células a 

altas concentraciones. Este evento, que ocurría en paralelo a un aumento de la muerte 

celular por el efecto citotóxico de la hemina, se asoció a la liberación de metabolitos 

derivados de purina (especialmente hipoxantina) en condiciones de estrés celular. En el 

siguiente paso, este proceso de estrés y muerte celular se estudió en dispositivos celulares 

denominados como “tumores-en-un-chip” que habían sido previamente diseñados para 

favorecer el crecimiento de los tumores en matrices de colágeno, permitiendo su 

ensamblaje con los sustratos amplificadores de SERS previamente fabricados. Como 

consecuencia, los metabolitos liberados por las células podían, en esta configuración, 

interaccionar directamente con las nanopartículas fijadas en el sustrato, sin necesidad de 

tomar muestras del sobrenadante en cada medida. Esta aproximación destaca por su 

capacidad para facilitar el seguimiento de diferentes procesos celulares de manera rápida 

y sencilla a diferentes tiempos.  

 

No obstante, se observó que para mantener la precisión en los resultados a lo largo del 

tiempo era necesario renovar el sustrato plasmónico en cada medida. Esta situación 

suponía un gasto elevado de material, a la vez que añadía la desventaja de una 

manipulación continuada del chip celular, con riesgos asociados como pueden ser la 

contaminación o la perturbación de la muestra biológica. Por lo tanto, en el Capítulo 3, 

se investigó una nueva estrategia que permitió medir la señal de SERS con exactitud 

independientemente del momento de medida. 

 

En una primera etapa, se identificó que la adsorción irreversible de los metabolitos sobre 

los sustratos plasmónicos, fenómeno denominado como efecto memoria SERS, era la 

principal causa de la inexactitud de los resultados obtenidos a lo largo del tiempo; los 
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espectros de SERS presentaban vibraciones propias de metabolitos que, aunque habían 

estado en contacto con el sustrato, ya no estaban presentes en el medio incubado. Además, 

se comprobó que este fenómeno era extrapolable a una gran variedad de condiciones, en 

las que se suelen analizar diferentes compuestos sobre distintos tipos de sustratos. En este 

contexto, la estrategia planteada en este capítulo buscaba proteger el sustrato plasmónico 

con una capa delgada de un polímero impermeable de PLGA (co–polímero ácido 

poli(láctico–co–glicólico)), para posteriormente degradar el PLGA localmente por 

irradiación con un haz de laser a alta potencia. Debido al efecto fototérmico originado en 

las nanopartículas presentes en el sustrato, el aumento local de la temperatura en el área 

iluminada con el láser daba lugar a una degradación del film de PLGA, creando ventanas 

micrométricas en las que se exponía la superficie plasmónica a la muestra. La realización 

de diferentes ventanas de medida a lo largo del tiempo permite medir con precisión la 

señal SERS en el momento deseado. Esta estrategia no sólo se utilizó para evaluar el 

ambiente tumoral en los chips diseñados en el capítulo 2, sino que también mostró su 

eficacia en combinación con dispositivos de microfuídica y en el análisis de muestras en 

flujo. 

 

El Capítulo 4 de la tesis está orientado a profundizar en el concepto de secretoma, 

entendido como el conjunto de metabolitos liberados por las células en los procesos de 

estrés y muerte celular, analizando por SERS las variaciones en el secretoma de las células 

en función del estímulo que ocasiona su muerte. En esta aproximación se buscó además 

la implementación de técnicas computacionales de aprendizaje automático no 

supervisado (técnicas de procesamiento multivariante) y supervisado, en concreto 

arquitecturas basadas en redes neuronales (CNN). Con estas estrategias se pretendía 

extraer la información contenida en los espectros SERS, en especial para aquellas 

situaciones donde la complejidad de la señal obtenida dificultaba la identificación  directa 

de los metabolitos de forma individual, tal y como se había realizado en los capítulos 

anteriores. Los resultados obtenidos revelaban la existencia de secretomas específicos 

asociados a las condiciones en la que se había inducido la muerte celular. En una segunda 

aplicación, se demostró que los perfiles SERS, tras la inducción de situaciones de estrés, 

mostraban una evolución temporal característica. De esta manera, fue posible monitorizar 

el efecto de diferentes tratamientos antitumorales (quimioterapia y radioterapia) tanto a 

periodos de tiempo cortos (24 horas) como de larga duración (3 semanas) 
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Finalmente, en el Capítulo 5, se llevó a cabo un cambio en el diseño de los sustratos de 

SERS utilizados, orientado en este caso a favorecer su inserción dentro de modelos 

tisulares más complejos, es decir, se buscaba que existiera un contacto más estrecho entre 

el sensor plasmónico y el entorno de las células. Para dicho fin, se generaron por 

impresión 3D andamios formados por polímeros biocompatibles (alginato y gelatina) con 

nanopartículas distribuidas en su interior, permitiendo así la detección por SERS de 

compuestos con propiedades antitumorales, en particular el azul de metileno (MB), a lo 

largo de la estructura que sustentaba el crecimiento de las células. En este contexto, se 

comprobó que las cargas opuestas entre el polímero de alginato que formaba el andamio 

y las moléculas de MB, favorecía la penetración del fármaco a través de la red 

tridimensional de polímero. De esta forma, se facilitaba su posterior interacción con las 

nanopartículas de oro, lo cual era necesario para poder realizar la monitorización por 

SERS de la difusión del fármaco en tiempo real. En el siguiente paso, se puso a punto el 

crecimiento de tumores embebidos en una matriz extracelular generada por la 

polimerización de Matrigel©, dispuesta homogéneamente a lo largo de la superficie del 

andamio. Dicha configuración permitía estudiar de forma no invasiva los gradientes de 

MB generados, en función de las condiciones del ensayo; por ejemplo, la presencia o no 

de la matriz extracelular, o de células tumorales sembradas a altas densidades. Los 

resultados obtenidos proporcionaron información acerca de la distribución del fármaco 

en los tejidos, y cómo esto puede afectar a la eficacia del tratamiento, correlacionado los 

parámetros de difusión del MB con la citotoxicidad generada a lo largo del andamio. 

 

Aunque las técnicas desarrolladas en la tesis se encuentran todavía en estadios tempranos 

para su integración rutinaria en la práctica clínica y de investigación, su utilidad ha sido 

demostrada a través de la detección de diferentes biomarcadores tumorales. La 

combinación de sensores plasmónicos con plataformas de cultivo celular en 3D permitió 

el seguimiento de procesos metabólicos característicos del microambiente tumoral, lo que 

aportó nueva información sobre el comportamiento de estos tejidos. En definitiva, a lo 

largo de esta tesis se han desarrollado nuevas herramientas que han concluido con la 

generación de sensores para SERS con mayor versatilidad, permitiendo encarar nuevos 

desafíos previos a su implantación final en el campo biomédico. 
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GLOSSARY 
 

SERS    Surface-enhanced Raman scattering 

ECM    Extracellular matrix 

TME    Tumor microenvironment 

CAFs    Cancer associated fibroblasts 

MMP    Matrix metalloproteinases 

IFN-𝜸    Interferon-gamma cytokine 

TGFβ    Transforming growth factor β 

IDO-1    Indoleamine-2,3-dioxygenase 

Trp    Tryptophan 

Kyn    Kynurenine 

AhR    Aryl hydrocarbon receptor 

ATP    Adenosine triphosphate 

ADP    Adenosine diphosphate 

AMP    Adenosine monophosphate 

Ado    Adenosine 

MTAP    Methylthioadenosine phosphorylase 

MTA    Methylthioadenosine 

PCD    Programmed cell death 

LC-MS   Liquid chromatography coupled to mass spectrometry 

NMR    Nuclear magnetic resonance 

IR    Infrared 

EM    Electro-magnetic 

NP    Nanoparticle 

AuNPs     Gold nanoparticles 

LSPR    Localized surface plasmon resonance 

AuNRs    Nanorods 

UV    Ultraviolet 

EF    Enhancement factor 

PDMS    Poly-dimethylsiloxane 

PMMA    Poly-methylmethacrylate 

PBS    Phosphate-buffered saline 

POC    Point of care 
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MIPs    Molecular imprinting polymers 

PCA    Principal components analysis 

LbL    Layer-by-layer 

L    Lattice period 

Ino    Inosine 

HX    Hypoxanthine 

A    Adenine 

STP    Staurosporine 

AI    Artifical intelligence 

PLGA    Poly(lactic co-glycolic acid) 

NIR    Near-infrared 

4-MBA    4-Mercaptobenzoic acid 

Nam    Nicotinamide 

TBZ    Thiabendazole 

CV    Crystal violet 

MB    Methylene blue 

4-NTP    4-Nitrothiophenol 

ACD    Accidental cell death 

DNN    Deep neuronal network 

t-SNE    t-Distributed Stochastic Neighbouring Entities 

HBBS    Hanks′ Balanced Salt solution 

DA    Discriminant analysis 

DT    Decision trees 

Bag    Bootstrap aggregation 

SVM    Support vector machine 

DMEM   Dulbecco's Modified Eagle Medium 

FBS    Fetal Bovine Serum 

ROS    Reactive oxygen species 

ABDA    9,10-Anthracenediyl-bis(methylene)dimalonic acid 

PI    Propidium iodide 

GFP    Green fluorescent protein 
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CHAPTER 0 

“Scope and objectives” 
 

This thesis has been performed in the context of the ERC Advanced Grant “Four-Dimensional 

Monitoring of Tumour Growth by Surface Enhanced Raman Scattering (4DbioSERS)”, under the 

joint supervision of Prof. Luis M. Liz-Marzán (CIC biomaGUNE) and Prof. Arkaitz Carracedo 

(CIC bioGUNE). The context and co-supervision have necessarily resulted in a multidisciplinary 

thesis project, most importantly with components of nanomaterials science and cancer 

metabolism, but where a wealth of techniques and concepts were unified to advance in the 

understanding of cancer.  

 

More specifically, the thesis was oriented towards the screening of tumor environments by a non-

routine spectroscopic tool, namely surface-enhance Raman scattering (SERS). Therefore, the 

results presented in this document aim at supporting the development of cell cultures in 3D and 

applications of SERS toward in situ, time- and space-resolved monitoring of specific biomarkers 

secreted during tumor growth. In particular, we focused our attention on the secretion of 

metabolites that may impact the disease outcome, for instance by eliciting an immunosupressive 

activity. The deployed technology seeks both, a better recreation of tumor models in 3D, and the 

close integration of such biological systems within plasmonic nanostructures for efficient SERS 

monitoring of nearby cell events. We ultimately aimed at demonstrating that SERS technology 

can be used for fast metabolomic profiling in multiple applications, such as the preclinical 

evaluation of novel therapeutic systems. 
 

A first stage in the thesis involved the fabrication of suitable plasmonic substrates for SERS 

spectroscopy, comprising gold nanoparticles of different sizes and shapes and with different 

degrees of organization, for their use as Raman signal enhancers. The confinement of light at 

nanoscale volumes by such plasmonic nanomaterials is the responsible for the dramatic increase 

in Raman scattering by adsorbed molecules. In this thesis, the nanostructured hierarchical 

materials were devised to be constructed on 2D rigid supports, following literature reports, but 

additionally within three-dimensional composite scaffolds made of biopolymer hydrogels with 

embedded nanoparticles. Highly sensitivity SERS sensors with multiplexing capability allowed 

the detection of metabolites in complex mixtures, even at low concentrations, thus rendering them 

excellent candidates for biological sensing applications.  
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The synthesis and fabrication of plasmonic substrates was carried out in CIC BiomaGUNE. The 

Bionanoplasmonics group has an extensive track record in the field of colloidal metal 

nanoparticles and SERS-based sensors. Indeed, prior work by the group showed that quorum 

sensing metabolites in Pseudomonas aeruginosa communication could be detected by SERS. 

Notwithstanding, the conditions required to sustain tumor growth are typically more complex 

than those found in bacteria cultures, resulting in larger interferences from the large variety of 

biomolecules present in the cell medium. As a consequence, the spectra acquired in cell media 

can largely differ from reported results in the literature of the same metabolites in pure water. 

This thesis thus goes beyond the state of art by addressing continuous, long-term monitoring of 

tumor cell metabolites in situ, which demanded the improvement of both SERS substrates and 

methods for SERS spectral analysis of cell milieu.  

 

Because of the limited availability of data on the detection of cancer metabolites by SERS, 

potential candidates were initially identified by considering the following features.  

 

- In the first instance, we select secreted tumor metabolites with a well-described role in 

the tumor environment, and which extracellular concentrations increased because of 

altered mechanisms sustaining tumor growth. Examples of such oncometabolites with 

demonstrated relevance in tumor progression include lactate, adenosine and kynurenine, 

which are known to impair immune system activation.  

 

- Subsequently, their intrinsic Raman cross section (i.e. the intensity of the acquired Raman 

signal), as well as their affinity to metallic surfaces, which is necessary for plasmonic 

enhancement, were the parameters of choice among the library of metabolites with 

previously reported biological activity. On this account, the higher polarizability of 

aromatic moieties renders adenosine and kynurenine metabolites more amenable for 

SERS detection, and thus preferentially selected over lactate or related metabolites.  

 

To support a complete biological analysis, part of the activity in this thesis was carried out at CIC 

bioGUNE, within the Cancer Cell Signaling and Metabolism group, with extensive experience in 

state-of-the-art techniques for characterizing metabolic alterations in cancer. The work within this 

group has largely contributed to describe different molecular pathways involved in metabolism 

reprogramming processes that catapult tumor proliferation. Such previous knowledge of tumor 

regulation was thus meant to guide the biological interpretation of those environmental changes 

sensed by SERS. 
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The construction of cell culture devices with a suitable design that supports the integration of 

plasmonic nanostructures, was additionally required in the process, towards non-invasive SERS 

monitoring within complex tumor models. To do so, different strategies were explored using 

modifications of available 3D printing technology, taking into account the optimization of the 

acquired SERS signal and the conditions that better mimic the cancer environment. In this respect, 

it was essential that the plasmonic substrates maintain their optical features and sensitivity over 

time, while being accessible to the biological fluid for SERS monitoring. The design of the 

materials used for 3D-printing was based on prior expertise in the Bionanoplasmonics group, 

regarding the fabrication of porous films (hydrogels) containing gold nanoparticles. Besides, the 

group in CIC bioGUNE has routinely worked with 3D tumor models, and related fluorescence-

based tools to capture spatio-temporal tumor heterogeneity. 

 

Finally, the major challenge was the practical demonstration of the deployed systems towards the 

identification of a subset of metabolites under uncontrolled environmental conditions (i.e., real 

world application) and upon administration of therapeutic treatments. In this scenario, the 

implementation of methods based on artificial intelligence was addressed to extract the 

information contained in SERS spectra. To better approach this task, international collaboration 

was established with Professor Alexandre Brolo at Victoria University (Canada), wherein 

different chemometrics techniques were applied for SERS data classification. Furthermore, the 

combination of experiments performed in CIC biomaGUNE and Victoria University, employing 

machine-learning architectures for analysis of SERS spectra, were evaluated in terms of their 

ability to assess the impact of cancer therapies. 

 

Considering the interdisciplinary nature of the thesis, the objectives can be divided in three 

groups:  

 

A. Design of plasmonic substrates and involved materials: 
 
1. Fabrication of 2D plasmonic substrates supported on rigid materials, and design of configurable 
cell culture devices that can be combined with such SERS sensors.  
 
2. Development of nanocomposite scaffolds containing SERS-active plasmonic nanoparticles, 
that can establish an intimate contact with the cell milieu. 
 
 
B. Monitoring of metabolites by SERS and tumor growth 
 
3. Identification of potential cancer biomarkers, based on their relevant biological activity for 
tumor progression and a chemical structure that favors their detection by SERS. 
 
4. Demonstration of SERS sensing of such cancer-associated analytes in cell media using 
previously developed SERS substrates.  
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5. SERS analysis of selected metabolites when secreted by growing tumor cells, first from 
samples of the cell supernatant, and subsequently measured on cell culture platforms for in situ 
monitoring. 
 
6. SERS monitoring of tumor-secreted events with spatial and temporal resolution, under different 
environmental conditions. 
 
 
C. Applications aiming to explore cancer therapy impact on tumor environments 
 
7. Analysis of the effect of cancer therapies (or other stress conditions) on registered SERS 
profiles, combined with the implementation of strategies based on artificial intelligence. 
 
8. SERS monitoring of drug diffusion within 3D cell models, and correlation with cytotoxicity. 
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CHAPTER 1 

“General Introduction” 

The future treatment of cancer will be undoubtedly sustained by the detection of validated 

biomarkers and the development of personalized in vitro models that enable a precise 

classification of patients, as well as understanding the basis of the disease. Up to now, genomics, 

transcriptomics and immunohistochemistry have been the main amenable tools at hand for 

identifying key processes in tumors. However, other strategies, including metabolomics or 3D 

cell cultures, are still in their infancy and require more progress towards their routine 

implementations. In this context, surface-enhanced Raman scattering (SERS) spectroscopy has 

been recently recognized as a promising technology for cell environment monitoring, including 

complex tumor models, thanks to its high sensitivity and label-free operation. SERS promises to 

accelerate the discovery of biomarkers and their corresponding screening in a simpler, faster, and 

less expensive manner, so that it may improve cancer treatment and diagnosis. In this chapter, we 

introduce cancer disease and the challenges that lie ahead, with special emphasis on metabolism 

and tumor environments. Then, we discuss strategies for 3D cancer cell models and the use of 

SERS (among other label-free optical techniques) to shed light on cell extracellular milieu, along 

with other biomedical applications. 
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1.1 Cancer 

 

Our understanding of cancer disease and how we treat it, has evolved throughout history. 

Noteworthily, the eldest reports containing references of this pathology date back to 1600 BC in 

Egypt. The disease was later named by the Greek physician Hippocrates (460-370 BC) who 

employed the terms Karkinos and Karkinomas, accounting for their crab-like appearance, to 

denominate lesions ranging from benign processes to malignant tumors.1 Nowadays, by using the 

word “cancer”, we are including different pathologies that share the uncontrollable division of 

abnormal cells, originated upon certain DNA mutations that cause alterations in cell 

differentiation, proliferation and death.2 Hence, cancerous cells are mainly characterized by 

following their own internal agenda for reproduction, accumulation and invasion of their 

surroundings, which cause local damage and inflammation. Particularly, they may even spread 

into the host body, so that other tissues and distant organs can also get affected, to an extent that 

most aggressive tumors can be lethal if they impair the function of organs required for survival of 

the whole organism.3   

 

According to the World Health Organization, cancer disease represents the second cause of 

mortality worldwide, with an estimated of 9.6 million deaths in 2018. Indeed, these numbers are 

expected to rise by about 70% over the next two decades (http://www.who.int/cancer/en). On this 

account, the development of new therapeutic and diagnostic tools is still required towards a better 

understanding of the disease. Current knowledge suggests that there could be over 200 different 

forms of cancer; almost every tissue may develop this malignancy and what is more, some even 

yield several types. Moreover, cancer cells present dynamic and constantly evolving properties, 

therefrom originates a significant intracellular heterogeneity of the bulk tumor.4 This intrinsic 

complexity dramatically hampers the eventual goal of complete cancer eradication since, despite 

of sharing common features, every cancer case demands different therapeutic and  diagnosis 

strategies (Figure 1.1a). This displayed heterogeneity has imposed a daunting health challenge 

that motivated intense scientific research, not only into biomedical science, but also in 

traditionally non-related disciplines such as physics and engineering.  

 

1.2 Hallmarks of cancer 

 

Two decades ago, Hanahan and Weinberg aimed at classifying cancer´s commons capabilities,5,6 

a view that has been recently updated.7 Owing to the problem of high cancer complexity – with a 

great variation of  types and subtypes, they sought to unveil a logical framework that could 

simplify the diversity of neoplastic disease.5,6 Their final observations identified that the vast 
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catalogue of phenotypes in cancer disease is primarily originated by the acquisition of six 

common alterations in functional capabilities, which together constitute the hallmarks of cancer. 

Nevertheless, these common alterations can be acquired through multiple routes, which in turn 

determine the distinctive and complementary traits that dictate tumor growth and cancer 

dissemination.  

 

Originally, such common capabilities in cancer included: self-sufficiency in growth signals, 

evading growth suppressors, activating tissue invasion, limitless replicative potential, sustained 

angiogenesis and evasion of programmed cell death. Over the past twenty years, the initial 

concept of cancer hallmarks has been extended and redefined as the result of a growing knowledge 

in the field (see Figure 1.1b). Specifically, new concepts have been proposed; for example, the 

term “enabling characteristics” has been incorporated to define those properties that are essential 

for the acquisition of core hallmarks. Likewise, new emerging hallmarks have been included in 

agreement with their reported roles in tumorigenesis processes, such as avoiding immune 

destruction and the deregulation of metabolism.6,7 

 

In view of their great significance and implications, much effort has been focused on describing 

the specific mechanisms underlying every cancer hallmark, which has also been guiding the 

development of more targeted treatments.7–10 In addition, the hypothesis that considers tumors as 

more than insular masses of proliferating cancer is now widely endorsed. Recent studies have 

described tumors as complex tissues, comprising multiple cells that participate in heterotypic 

Figure 1.1. a) The high heterogeneity among different patients can only be tackled through the development of 

new therapeutic and diagnosis strategies, which will underpin future precision medicine in oncology. Modified 

from ref. 4. b) Revised hallmarks of cancer, the great diversity among cancer phenotypes is originated mainly from 

the acquisition of eight common alterations in functional capabilities. Two enabling capabilities are pivotal to 

trigger such alterations: genome instability and inflammation. Modified from ref. 7. 

 

a) b)
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interactions with each other, which were found to crucially contribute to the expression of certain 

hallmark capabilities. 11,12 In this context, multiple lines of evidence have revealed that the biology 

of tumors must be understood in tandem with the contributions of the “tumor surroundings”, 

where stromal components may dictate the final fate of the tumor.  

 

1.3 Tumor Microenvironment 
 

Contrary to the initial reductionist idea of cancer, the tumor mass was found to not only present 

transformed cells generated by clonal division, but also a great variety of resident and infiltrating 

cell types, secreted factors, and the extracellular matrix (ECM). The interactions among all these 

components (e.g., malignant and non-transformed cells) create a unique physiology that is 

collectively known as the tumor microenvironment (TME). Hence, cancer cells do not act alone 

in disease progression; their behavior is closely influenced by their communication with the 

nearby environment, which ultimately determines whether the primary tumor is eradicated or, 

instead, proliferates and metastasizes.13-15 Particularly, some microenvironments are favorable for 

progression of altered cells, whereas other restrict it. Cancer niches may otherwise display some 

plasticity, evolving from suppressing to pro-tumoral environments, so that cancer cells will try to 

functionally sculpt their microenvironment through the secretion of various cytokines and 

metabolites.16–18 In this context, deciphering the environmental instructions that dictate the fate of 

malignancies has become crucial to the next-generation of cancer treatments.  

 

Examples of stroma components that are widely recognized for exhibiting tumor promoting 

functions are fibroblasts, type I collagen, and infiltrated immune cells. Fibroblasts are 

mesenchymal cells localized in the stroma of most tissues, their main physiological function is 

the deposit and turnover of the ECM. Unlike normal fibroblasts, cancer associated fibroblasts 

(CAFs) are abundant in the TME; they stimulate cancer cell growth and inflammation by high 

overexpression of pro-tumoral factor (for example, transforming growth factor β -TGFβ) and can 

even promote tumor migration by remodeling the ECM.19,20 Such alterations in ECM could 

include the upregulation of the ECM synthesis, which causes a stiffer fibrotic matrix, and an 

extensive transformation of ECM proteins by proteinases (e.g., matrix metalloproteinases 

(MMP)). On the other hand, modifications in the type I collagen architecture are commonly 

reported in the ECM. Whereas collagen fibers are normally curly and parallel-oriented to normal 

epithelium, they become straighter and mostly perpendicular along the tumor border; this process 

accelerates cell invasion and enhances tumor proliferation via integrin signaling.21–23 Moreover, 

immune cells also contribute to the final ecosystem. In spite of their well-known abilities to kill 

tumor cells, consistent evidences confirm that innate cells (e.g., macrophages, dendritic cells, 
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natural killer cells) as well as adaptive cells ( T and B cells) can be recruited by diverse cytokines 

for cancer promotion within the TME (such as interferon-gamma cytokine, IFN-𝛾).24 

 

Despite of all these induced alterations, the TME typically remains hostile for the proliferation of 

cancer cells, mainly due to a deficient activity of the vascular system. The uncontrolled growth 

of the tumor mass, along with the increased interstitial pressure, impairs bloods vessels to 

efficiently deliver nutrients and remove waste products. Moreover, the limitation in gas exchange 

creates regions of hypoxia and the accumulation of lactate, thereby acidifying the 

environment.25,26 Under such extrinsic features of TME, the malignant cells must rewire their 

metabolic features accordingly,27 so that reprograming will enable them to sustain growth and 

proliferation over time. All these mechanisms together (Figure 1.2) govern cross-talk 

communication between cancer cells and surrounding stroma, thereby contributing to more 

aggressive cancer states.28  

 

 

Figure 1.2. Features of tumor microenvironments, comprising tumor cells and other specific cell types. Intrinsic 

properties of tumor cells, such as multiple gene mutations, in combination with the extrinsic conditions of the 

tumor microenvironment: acid pH, low oxygen and nutrients, orchestrate an aberrant cell metabolism. The 

metabolites produced under such conditions play in turn a messenger role in multiple pathophysiological 

interactions between cancer and stroma cells. Adapted from ref. 25. 
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1.3a Metabolic interactions in the tumor microenvironment 

 

As discussed earlier, the TME is characterized by deregulated metabolic properties. The 

exacerbated growth and the intrinsic deranged metabolism of cancer cells, one of their hallmarks, 

affect the composition of the extracellular space, while poor blood perfusion is insufficient to 

properly re-establish physiological levels.29 These accumulative effects lead to considerable local 

variations in the concentration of metabolites, which can modulate the behavior of different cells 

within the TME. In this context of reshaping environments, symbiotic and competitive 

interactions among the components of the TME have been reported, revealing a metabolite-based 

communication system which fosters tumor growth and hinders antitumor immunity. The 

identification of these intratumoral alterations and the involved metabolites is still in its infancy.30 

Some of the already described metabolic processes (addressed in the following chapters) in the 

literature are included in Figure 1.3.  

 

 

 

Figure 1.3. Schematic representation of different metabolic interactions within the tumor microenvironment.  

Purine derivatives, which are metabolically connected, play diverse functions on immune cells according to the 

expression of a group of ectonucleotidases and receptors on the surface of cancer cells. Modified from ref. 37. For 

IDO-1 expressing cells, Trp is catalytically converted into Kyn, which plays an immunomodulatory function in 

the tumor niche. 

 

Tryptophan
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• Tumor immune escape mediated by IDO-1: 

 

Numerous solid tumor types overexpress tryptophan-degrading dioxygenases (e.g., Indoleamine-

2,3-dioxygenase (IDO-1)), which convert the essential amino acid, tryptophan (Trp), into 

kynurenine (Kyn). This phenomenon is widely considered as one the most relevant enzymatic 

mechanisms co-opted by malignant cells, on their way to evading the immune system. The 

activity of IDO-1 causes a significant tryptophan depletion and the subsequent accumulation of 

immunosuppressive metabolites, mostly Kyn. Therefore, Kyn is released to the extracellular 

media where it acts as a ligand for the aryl hydrocarbon receptor (AhR). In virtue of the AhR 

expression on immune cells, Kyn transduces tolerogenic immune responses imparted by IDO-1. 

Finally, Kyn may also potentiate autocrine signaling through the AhR on cancer cells themselves, 

promoting degradation of the extracellular matrix and invasion.31–35 

 

• Extracellular purines and tumor growth: 

 

Another significant example of metabolic reprogramming is observed with the purinergic 

signaling, mediated through adenosine and purine derivative nucleotides. These extracellular 

analytes have been revealed to have similar implications to those mentioned in Trp metabolism, 

such as switching the functions of immune cells. The concentration of this group of metabolites, 

which are metabolically connected, is physiologically low in the interstitial fluids of unstressed 

tissues. However, within cancer tissues, a significant increase has been reported and the 

expression of a family of ectonucleotidases on the outer surface of cancer cells (CD39 and CD73) 

is well documented to be a key determinant in the response to these extracellular metabolites. 

These ectonucleotidases are plasma membrane-bound enzymes that degrade purine derivative 

metabolites with different affinities: converting adenosine triphosphate (ATP), adenosine 

diphosphate (ADP) and adenosine monophosphate (AMP) into adenosine (Ado) and 

hypoxanthine (HX), and therefore controlling their fluctuations within the TME. The activity of 

these ectonucleotidases, in combination with other cell receptors, allows purine metabolites to 

exert either immunosuppression or immunostimulation on the host, while inducing either growth 

stimulation or cytotoxicity effects on tumor cells.36–41  

 

Following similar mechanisms, new groups of metabolites are gaining more and more attention 

in the manner they can influence the fate of other cells in their vicinity. Moreover, different 

metabolic alterations are only observed in specific types of cancer cells. For instance, 

homozygous deletion of methylthioadenosine phosphorylase (MTAP) enzyme is one of the most 

frequent genetic alterations in glioblastoma, the most common and malignant type of brain 
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tumors.42 This specific depletion causes the release of high concentrations of the metabolite 

methylthioadenosine (MTA) to the extracellular media, which may potentially trigger different 

responses in the TME.43 In summary, all these effects reinforce the significance of metabolic 

interactions for tumor progression and their study is likely to fuel the discovery of novel druggable 

targets. 

 

• Tumor secretome in cell death and resistance: 

 

One emerging mechanism that allows tumor cells to overcome the described stressing conditions 

within the TME (such as chemotherapy or starvation) is the tumor cell secretome, an array of 

factors (including diverse metabolites) released by tumor cells. Moreover, the exposure to 

different stressing factors will alter the final composition and abundance of tumor secretome 

components, which can promote events such as tumor relapse and the formation of an 

immunosuppressive tumor microenvironment (TME).44 In this direction, recent studies have 

demonstrated the important role of the activated cell death pathways in shaping the released 

secretomes and its impact on the TME.45 Depending on the treatment variables of conventional 

chemo-, radio- and immunotherapy, as well as the genetic composition of the tumor cells, 

particular cell death pathways are activated and, therefore, an associated response in the TME. 

  

In recent years, multiple cell death modalities have been identified and characterized concerning 

their corresponding stimuli,  the molecular mechanisms involved, and the elicited impact on the 

neighboring cells. Cell death mechanisms are typically categorized into programmed cell death 

(PCD) or non-PCD, based on their signal dependency.46 PCD can be further classified as apoptotic 

cell death or non-apoptotic cell death. In particular, multiple mechanisms and phenotypes can be 

defined as programmed non-apoptotic cell death, including autophagy, iron-dependent cell death 

(ferroptosis) or immune-reactive cell death (pyroptosis and NETosis), among many others such 

as necroptosis. Finally, necrosis represents a form of non-programmed cell death. In this context, 

much effort has been devoted toward controlling the activated mechanisms of cell death upon 

therapy, which can then be utilized to modulate the TME through the released secretome. By 

following this strategy, meaningful advances have been reported in the field of novel anti-cancer 

treatments that were capable, for example, of inducing an intense immune system activation.47 
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1.4 Emerging technologies to recreate and image the Tumor environment 

 

Despite the growing knowledge on metabolism within the TME, a detailed understanding of the 

involved mechanisms is still required. The main complexity lies in the fact that metabolic 

signaling within the TME occurs in a temporally and spatially regulated manner, i.e. it is 

developed and sustained from one cell to its neighbors. Hence, this paracrine communication can 

barely be addressed experimentally. Therefore, the development of new cancer models, which 

more closely recreate the physiological conditions of the TME, combined with new imaging 

technologies appear as a key step towards expanding current knowledge on the TME and 

associated therapeutic vulnerabilities.  

 

1.4a Bioengineering of 3D cancer models 

 

The strong implications of heterocellular communication in the TME have motivated a 

reconsideration of the in vitro models employed so far. Conventionally, cancer models have been 

carried out in isolation and did not include the interactions with other cell types (stromal, immune 

cell types). Such models have been normally grown in “petri dish”-based cell cultures, meaning 

that cell-cell and cell-extracellular matrix (ECM) interactions were very limited.48 Flat cell 

cultures not only compromise cell shape, motility, and polarity but also lack important secondary 

tissue-specific stimuli. One of the most meaningful differences is the mechanical environment: 

the stiffness of plastics used in 2D models is orders of magnitude higher than that sensed in soft 

tissues.49 Additionally, the ECM of different tissues is capable of sequestering biomolecules, 

creating gradients of soluble factors, whereas in 2D models cell metabolites would diffuse freely 

into the culture medium.50 Likewise, tissues present internal 3D structures that model many 

morphogenesis and development processes, including cancer, which cannot be mimicked in flat 

systems.51,52 Arguably, the integration of a third dimension into cancer models, as depicted in 

Figure 1.4a, is crucial to bridge the gap between cell culture models and live tissues.  

 

Novel cancer models proved essential in many cell studies, in which the generation of in vitro 

3D cell cultures markedly affect cell behavior, in comparison with 2D assays.53,54 For example, 

numerous studies have demonstrated the effect of matrix stiffness on metabolism regulation, by 

controlling the incorporation of L-arginine into either creatine or phosphocreatine, or by 

enhancing glycolysis.55,56 Furthermore, based on their more physiological response against tumor 

treatments, sophisticated 3D models are also gaining significance as tools for anticancer drug 

discovery, while avoiding animal experimentation.57-59  
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With the aim of better mimicking the different features of the TME, different models for 3D cell 

culture have been deployed. Cellular spheroids represent the first attempt to tackle the third 

dimension in routine experimentation and are considered as the most simplified reductionist 

model (an illustrative spheroid is presented in Figure 1.4b). Cellular spheroids originate from the 

natural tendency of many cell types to form aggregates; they can also contain miscellaneous cell 

types (mono- or multicellular spheroids) or even include cells that have been previously isolated 

from patients.60 In cases where cell proliferation is large enough, gradients of oxygen and nutrients 

are created through the spheroids, so that a necrotic core is formed (in a similar manner as it 

occurs within central regions of poorly vascularized tumors). Spheroids offer therefore a certain 

degree of heterogeneity in cell stages, which are of high interest in physiological models – 

proliferative cells are present in the outer layers while in the central core, cells tend to acquire a 

quiescent or dying phenotype.61-63  

  

Figure 1.4. a) Engineered 3D in vitro models recreate, as closely as possible, cell-cell and cell -ECM interactions 

while enabling the recapitulation of diverse microenvironmental cues within human tumors. These 3D models are 

most likely to resemble the response against anti-cancer drugs in vivo, determining the impact of different cancer 

niches on the efficacy of a therapeutic approach. Modified from ref. 57. b) Tumor spheroid built by two different 

cell lines (green and red fluorophore), withe arrows point out cell migration in a collective mode. Adapted from 

ref. 60. c) Generation of a vascularized system to recreate metastasis in a cancer-on-a-chip device. Modified from 

ref. 69 

 

a)

b)

c)
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The next steps toward a better recreation of 3D tissue architectures endow the incorporation of 

natural and synthetic materials with the ability to mimic the extracellular matrix, those most 

routinely employed include: collagen, laminin, hyaluronic acid and the reconstituted basement 

membrane hydrogel (Matrigel). These 3D matrices not only offer an inherently high 

cytocompatibility, but also improved cell adhesion properties that facilitate the formation of self-

organizing organotypic structures, the so-called organoids.64-66 In a similar manner, recent studies 

have described that decellularized matrices from malignant tissues have the ability to recapitulate 

the features of native tumor.67,68 Nevertheless, the quality control of these animal-based ECM is 

very arduous. Examples of such irreproducibility are the batch-to-batch variability, the high 

molecular complex composition, and the uncontrolled degradation of these materials. To 

overcome these limitations, synthetic biopolymers (i.e., human-made copies of biopolymers) can 

be customized to better fulfill the quality requirements. These artificial matrices can be otherwise 

3D printed toward the fabrication of cellular scaffolds, which allow the replication of biological 

structures and higher reproducibility standards. Particularly, the direct printing of hydrogel inks 

has become a common approach that allows the design of porous, aqua-based environments, thus 

supporting nutrients and oxygen transportation across cell cultures. Similar models as the one 

presented in Figure 1.4c can also be perfused with nutrient-rich medium or anticancer drugs, 

incorporating essential biochemical and mechanical cues for a more realistic cell behavior.69 

Overall, the increasing reliability of current cancer models will enable more accurate in vitro 

studies of the TME, in which the tumor heterogeneity and its metabolism could be exhaustively 

interrogated. 

 

1.4b Optical methods to monitor tumor environments 

 

Owing to their physiological relevance, the 3D cell models presented in the previous section 

emerge as promising tools in cancer biology. However, the included third dimension is still a 

significant hurdle to successfully monitor cancer cells and their associated processes in situ, 

especially for the detection of small metabolites. Conventionally, laboratory assays for 

metabolomics studies have been carried out by means of techniques that entail tissue-destructive 

procedures, such as immunohistochemistry or liquid chromatography coupled to mass 

spectrometry (LC-MS). Even though a wide variety of components have been identified in 

biological fluids, both techniques cannot be deployed to assess different samples without 

irreversible damage; their ability to capture dynamic and heterogeneity profiles at the point of 

interest in 3D cell cultures is therefore limited. Other alternatives such as nuclear magnetic 

resonance (NMR) spectroscopy, which do not require elaborate sample preparation, are prone to 

low sensitivity and complex interpretation, in addition to bulky instrumentation and low 
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portability. In this context, optical methods, which use light to non-invasively probe matter, offer 

a valuable alternative to unravel the presence of specific metabolites with high spatiotemporal 

resolution, as well as representing a cheaper and faster approach.70,71  

 

Among all available optical techniques, fluorescence microscopy arguably represents the most 

popular, commercially available technology to advance toward non-invasive monitoring of 

biological samples. The combination of a great variety of fluorescent probes with confocal 

techniques has been extensively employed to visualize the TME. Accordingly, the development 

of novel fluorescence probes with different binding properties has attracted widespread interest.72 

Thus, with the adequate molecule, this method is capable of capturing cancer and related 

metabolic processes in the TME, with high resolution and enhanced contrast. Examples of such 

fluorescence applications range from well-established live/dead assays and pH sensors to specific 

labelling of metabolic events.73  

Figure 1.5. a) Intensity ratios between the endogenous fluorescence signals of NAD(P)H and FAD are 

employed as an optical source of contrast to evaluate metabolic alterations under various conditions. b) 

Multispectral and volumetric optoacoustic images of O2 saturation of the tumor, showing the presence of a hypoxic 

core and its highly oxygenated feeding vessels. c) Metabolic imaging of lipid distribution at the single-cell scale, 

using mid-infrared photothermal microscopy. d) Metabolic imaging of single cells using Raman scattering 

microscopy, protein (blue) and lipid (violet) maps of living HeLa cells are shown. e) Time-lapse images of DNA 

and lipids in a HeLa cell during mitosis, directly monitored by Raman microscopy. Reproduced from ref. 70. 

 

 

 

a)

b)

c)

d)
e)
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Unfortunately, confocal fluorescence microscopy still presents many drawbacks that limit the 

conditions under which growing cells and metabolic processes can be monitored in real time. 

Generally, the range of illumination lasers is only within visible wavelengths, which implies 

phototoxicity upon extended periods of illumination and restricts the penetration depth in 3D 

biological samples (over 1-2 mm for light in the visible).74 Additionally, the strong dependency 

on fluorescent dyes, which may suffer from photobleaching and be degraded by chemicals inside 

the cells, impairs long-term TME monitoring.75,76 With a view of avoiding the use of fluorescent 

dyes, the auto-fluorescence of FAD and NADH molecules has been traditionally utilized to screen 

different events in the TME, as represented in Figure 1.5a.77 Nevertheless, auto-fluorescence 

from cells is typically weak and very unspecific in complex measurements, containing other 

naturally occurring fluorophores that emit in similar wavelengths. Label-free optical techniques 

with high specificity and sensitivity are thus in high demand, and therefore, non-traditional 

modalities are being explored for biological analysis.78  

 

Among the different optical modalities, optoacoustic imaging is one of the emerging fields in 

TME imaging. Photoacoustic technology is a powerful approach that relies on the illumination of 

samples containing optical absorbers, and the subsequent conversion of light into acoustic waves 

due to thermoelastic expansion. The resulting acoustic signal is finally detected by an ultrasound 

sensor.79,80 Label-free applications can be performed by optoacoustics thanks to its ability to detect 

and separate oxygenated and deoxygenated hemoglobin, melatonin, lipids, water and other optical 

absorbers. For instance, remarkable results are shown in Figure 1.5b for gradients of oxygenation 

along the TME, based on specific changes in the spectra from oxygenated to deoxygenated 

hemoglobin.81 Nevertheless, while different responses were successfully monitored even at 

penetration depths over 2-3 cm, major difficulties arise when applying this label free mode at the 

cellular and subcellular levels. 

 

Beyond fluorescence and optoacoustics, other label-free optical techniques that have attracted 

significant attention in the context of biomarker monitoring include mid-infrared (mid-IR) and 

Raman spectroscopies, which can specifically and directly detect a number of metabolites 

according to their vibrational modes, with sub-micrometer spatial resolution.82 On one hand, mid-

IR imaging/spectroscopy can be used to record vibrational information from histological samples, 

which was proven effective for fast cancer diagnosis.83 However, the strong absorption of mid-IR 

radiation by water compromises its applications in routine monitoring of the TME in cancer 

models, and thus few examples can be found in the literature (see Figure 1.5c). 
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Alternatively, the inelastic Raman scattering cross section is very low for water. Hence, this 

technique can in principle be applied to record the vibrational fingerprints of metabolites under 

conditions with high water content (e.g., biofluids or intracellular compartments). This technology 

has shown the capability of imaging numerous metabolites in living cells, as has been reported 

through different studies about lipid composition and DNA imaging in cancer cells (see images 

in Figure 1.5d, 1.5e).84-86 Unfortunately, the Raman cross sections for most metabolites are also 

very low and therefore the usual limits of detection in Raman spectroscopy are above 1 mM, 

posing a major drawback against monitoring of biomolecules at lower concentrations. 

Consequently, approaches toward increasing the intensity in Raman measurements have been 

implemented (for example, Resonance Raman and Tip-enhanced Raman). Arguably, the surface-

enhanced Raman scattering (SERS) effect, a modality of Raman involving the presence of 

plasmonic materials, has been the most successful of these techniques, with plenty of examples 

of application in the biomedical field. Thanks to enhancement of the Raman signal when 

molecules are adsorbed onto metal surfaces, SERS is a very sensitive technique with the capacity 

to generating intensity values that exceed those recorded in Raman in many orders of magnitude, 

as depicted in Figure 1.6.87-91 Since the main subject of this thesis consists of monitoring 

Figure 1.6. a) Fluorescence spectroscopy has a great sensitivity; however, it has limited chemical specificity, 

so that the distinction between signals from overlapping molecules is typically hard. Conversely, Raman 

spectroscopy offers information of vibrational states that facilitates multiplex detection, but the efficiency of the 

process is low; the differences in efficiency between Raman scattering and fluorescence are more than twelve 

orders of magnitude. b) Plasmonic nanoparticles are known to amplify Raman scattering, with sensitivities that 

render single molecule detection feasible. For example, in c), the enhancement effect can be observed in 

comparison with a control sample, i.e., without gold nanoparticles (AuNPs). A significant increase is observed in 

the SERS spectra enhanced by the presence of plasmonic nanoparticles. Adapted from ref. 87. 
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metabolic alterations within tumor niches by SERS, we present in what follows an overview of 

the state of art in SERS technology.  

 

1.5 Surface-enhanced Raman scattering: a powerful tool for biomedical 

sensing 
 

The discovery of surface-enhanced Raman scattering (SERS) and its subsequent development and 

application is relatively recent. The initial evidence of the SERS effect was accidentally observed 

in the early 1970’s, when Fleischmann and co-workers registered the Raman signal of pyridine 

on rough silver electrodes and obtained intensity values that exceeded by far those previously 

considered as standard.92 Such unexpectedly high intensities were subsequently investigated and 

rapidly identified as a potential solution to the main hurdle in Raman spectroscopy: poor 

sensitivity hindering molecular detection at low concentrations.93,94 On this account, 

understanding the basis of SERS to achieve suitable Raman signal enhancement became one of 

the major study subjects in the field. Although significant progress has been made toward 

mechanistic understanding, it remains under intense investigation -as explained below in section 

1.5.b.  

 

The ability to enhance the Raman signal of molecules adsorbed onto metal surfaces, while 

preserving the rich vibrational information, has raised further interest on SERS technology toward 

its integration into functional sensors. Recent advances in SERS have thus been closely connected 

to the development of purposely devised plasmonic structures toward optimal amplification of 

the Raman signal – up to 11 orders of magnitude.95 The fabrication of such tailored substrates, 

typically comprising nanostructured metals such as gold or silver, has allowed the detection of 

extremely low molecular concentrations within multiple environments.96 SERS thus comprises 

an extensive area of research ranging from theoretical studies of the mechanisms underlying 

signal enhancement, to the development of plasmonic substrates and devices for real-world 

applications. The wealth of progress in SERS technology has laid the foundation toward its future 

expansion into different disciplines (e.g., biomedicine, food safety, or environmental 

monitoring).97,98 Notwithstanding, additional developments are still required to achieve a 

successful and reliable implementation, in which all the variables that influence the SERS 

performance are properly considered, especially in biomedical applications. Hereunder, the 

fundamentals of the technique are introduced; subsequently, the applications of SERS in biology, 

with special emphasis on the sensors design, are covered. 
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1.5a The Raman effect 

 

When light interacts with matter, the oscillating electro-magnetic (EM) field of light perturbs 

the charge distribution in the matter, and therefore leads to different processes that involve the 

exchange of energy (see Figure 1.7a). Within this scenario, the incident photons may not only be 

absorbed, populating an excited state, but they may also interact with matter by distorting the 

electron cloud around the nuclei, this creates a higher energy state - typically referred as “virtual 

state”. Indeed, the “virtual state” is not stable, and the photons are rapidly re-radiated, generating 

the phenomenon of light scattering. Such emitted photons can be classified in three different 

groups according to their derived frequencies: the first term and the most likely event, known as 

Rayleigh scattering, corresponds to the elastic dispersion of light that occurs when, upon the 

system being excited to a “virtual state”, it drops back to the same initial state and thus the 

frequency of scattered light is equal to that of the incident beam. The second and third terms 

(Stokes and anti-Stokes Raman scattering) represent inelastic dispersion of light, in which the 

energy of the scattered photon is different from that of the incident one, as a result of a molecular 

vibration of the molecule.99 This phenomenon provides characteristic information of the chemical 

nature of the illuminated molecules. However, the low probability of the involved spectroscopic 

events largely hindered their study; it has been estimated that only one in every 108 photons 

undergoes inelastic scattering upon light-matter interaction.100 Therefore, the Raman effect is 

considered to be a very inefficient process, and the acquired intensities are typically lower than  

in the other light-matter interaction events, e.g. when the energy of the scattered photon is 

conserved – Rayleigh scattering – or real excited states are involved – as in fluorescence emission. 

The light path followed through these processes has been schematically depicted in Figure 

1.7b.101  

 

To better view all these elements, a complete Raman spectrum can be observed in Figure 1.7c. 

Excitation of molecules at their ground states typically leads to scattered radiation photons of 

lower energies than the original one (Stokes radiation), whereas excited states produce scattered 

photons of higher energy (anti-Stokes radiation). Noteworthily, molecules are mainly populating 

the ground state at room temperature (Boltzmann distribution), so that anti-Stokes scattering is a 

relatively rare event and its corresponding intensity is weaker than that of Stokes scattering, which 

explains why Stokes radiation is typically the main subject of study in Raman spectroscopy.86 The 

wavenumber of the Raman response only depends on the vibrational energy states within the 

molecule and is not affected by the wavelength of the incident light source. The region of the 

Raman spectra captured by a spectrograph is called the spectral range and it typically displays 

vibrations within 0-4000 cm-1.102 In summary, the Raman signal involves the initial interaction of 
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an incident photon of frequency 𝜔𝑖𝑛, which couples to an internal degree of freedom of the 

molecule (typically, a molecular vibration of frequency 𝜔𝑣𝑖𝑏), and finally reemission at different 

frequencies, 𝜔𝑒𝑚. Equation 1 implies that a single excitation wavelength, which must not 

necessarily be in resonance with the molecule, is sufficient to obtain the entire spectrum. 

 

𝜔𝑒𝑚 =  𝜔𝑖𝑛 ±   𝜔𝑣𝑖𝑏                                   (Equation 1) 

 

In contrast with IR spectroscopy, where the dipole moment is crucial for the activity of the 

vibration, a Raman active vibration is determined by a change in polarizability during the 

vibration. Polarizability refers to the ease of distorting electrons from their original position.  

 

Figure 1.7. a) Energy diagram showing different physical phenomena resulting from light-matter interactions. 

b) Schematic of light scattering after laser irradiation on a sample surface. When photons interact with the sample, 

electrons are excited to virtual energy levels. Subsequently, they return to the original energy level by emitting a 

photon of light, known as Rayleigh scattering, or can undergo an energy shift and return to lower (stokes) or higher 

(anti-Stokes) energy levels, which is known as Raman scattering. Adapted from ref. 99 c) A typical Raman 

spectrum displaying the relative intensities of the different scattering processes. Modified from ref. 89.  

 

 

 

a)

b)

c)a)

b)

c)a)

b)

c)
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Thus, the polarizability of a molecule decreases with increasing electron density, increasing bond 

strength, and decreasing bond length. Bonds with a weak dipole moment display a low IR activity, 

whereas they present a higher degree of polarizability that boosts Raman scattering. This effect 

explains the previously mentioned low Raman signal of water and its high activity in IR 

spectroscopy.103 In addition, each chemical bond has a different Raman scattering wavelength; 

multiplexing detection of several molecules is therefore more easily achieved in Raman, which is 

very valuable for molecule identification. Both Raman features, low water activity and 

multiplexing capability, facilitate a great number of applications to extract biological 

information.104,105  

 

However, it should be noticed that not all molecules display Raman scattering; this effect follows 

some selection rules that depend on molecular symmetry. Additionally, in the absence of a 

structured environment (e.g., in solution), the Raman process is considered a low probability 

phenomenon, quantified in terms of the optical cross-section (i.e., the value that describes the 

amount of incident light that is effectively converted into emitted photons) as 1031-1029 

cm2/molecule.106 In this context, different strategies are deployed to boost Raman signal. For 

example, Resonance Raman spectroscopy is a common approach for specific molecules in which 

the laser excitation frequency is close to the frequency of its electronic transition, enhancing 

thereby the Raman scattering intensity from these molecules by a factor of 102-106. In contrast to 

the limited application of resonance Raman (restricted to molecules absorbing within the 

excitation wavelength), the use of plasmonic materials to promote the enhancement of Raman 

intensities is most beneficial for general applications. The interactions of light with surface 

plasmons in metals generate additional effects, as detailed below, which allow an increase in the 

scattering cross-section of nearby molecules.107,108  

 

1.5b Mechanisms of SERS 

 

The ability of plasmonic materials to dramatically enhance the Raman effect renders SERS a very 

promising spectroscopic tool. Plasmonic properties of metallic materials are related to their 

electronic structure, presenting a strong delocalization of electrons.109 Therefore, under a static 

electric field, the response of metallic materials depends on the behavior of such free electrons, 

which move toward the positive poles and create positive and negative net charges at the surface 

of the bulk. As a consequence, in those cases where the size of metallic particles is lowered to 

dimensions smaller than the wavelength of the incoming light, the light interacts with the 

conduction band electrons of nanoparticles (NPs) and induce a coherent oscillation.110-112 This 

effect creates the so-called Localized Surface Plasmon Resonance (LSPR), which amplifies the 
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local electric field intensity, as represented in Figure 1.8a. Additionally, the LSPR resonance 

frequency, which results in a spectral peak, is strongly influenced by the type of metal, the size 

and the shape of the NPs (for instance, between gold nanospheres (AuNPs) and nanorods 

(AuNRs)) and their dielectric environment. Silver and gold nanoparticles are most commonly 

utilized for plasmonic materials because of their large LSPR extinction cross sections in the 

visible range, whereas for other metals, the LSPR is usually shifted to the UV regime; examples 

of nanoparticles with different size and shape, along with their corresponding LSPR are displayed 

in Figure 1.8b.113,114  

 

Particularly for SERS spectroscopy, the intensity of the registered signal is proportional to the 

intensity of the local electric field around the molecule. In this manner, it is widely accepted that 

the enhancement of the local electric field by LSPR alters the polarizability of adsorbed 

molecules, which in turns leads to a higher probability of inelastic scattering events and increased 

Raman signals. Moreover, the scattered light from the molecule is also boosted by the plasmon 

resonance. Taken together, the sum of these effects in the SERS emission can be expressed as: 

 

𝐼𝑆𝐸𝑅𝑆 = 𝛼𝑚𝑜𝑙
2 × |𝐸𝑝(𝜔𝑖𝑛)|

2
× |𝐸𝑝(𝜔𝑖𝑛 − 𝜔𝑣𝑖𝑏)|

2
                          (Equation 2) 

 

Where 𝛼𝑚𝑜𝑙 is the polarizability of the molecule, 𝐸𝑝(𝜔𝑖𝑛) is the induced plasmonic electric field 

at the wavelength of the incident light, and 𝐸𝑝(𝜔𝑖𝑛 ± 𝜔𝑣𝑖𝑏) is the resulting electric field after the 

interaction with the probe molecule. In addition to the electromagnetic enhancement, the adsorbed 

molecule on the metallic surface can also get excited through charge transfer from the metal to 

the molecule, resulting in the phenomenon known as chemical enhancement. Another important 

aspect is that, the SERS intensity exhibits a strong power dependence on the distance to the metal 

surface, which clearly evidences that is a surface selective effect. As a consequence, SERS spectra 

Figure 1.8. a) Localized surface plasmon resonance in metal nanoparticles. The scheme represents the oscillating 

electrons under influence of an electromagnetic radiation. b) UV-vis-NIR spectra and TEM images of gold 

nanoparticles with various morphologies, displaying LSPR tunability within the visible and NIR spectral range. 

 

 

a) b)
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are determined by the orientation of the molecules relative to the surface, thus involving different 

spatial components of the molecule’s polarizability.87,115  

 

Quantification of the signal enhancement by a plasmonic structure, compared to the non-enhanced 

Raman signal, constitutes one of the main challenges of SERS spectroscopy. These measurements 

require the calculation of SERS and Raman signals per molecule (NSERS and NRaman), which in 

practice turns out to be experimentally complex, not only due to the requisite of precise control 

over the number of molecules per irradiated area, but also because a uniform distribution of 

plasmon resonances is needed to generate field enhancements of same magnitude (Figure 

1.9a).116,117 Consequently, the SERS Enhancement Factor (EF), which indicates the efficiency of 

the process, can be represented as: 

 

𝐸𝐹 =  
𝐼𝑆𝐸𝑅𝑆 𝑁𝑆𝐸𝑅𝑆⁄

𝐼𝑅𝑎𝑚𝑎𝑛 𝑁𝑅𝑎𝑚𝑎𝑛⁄
                          (Equation 3) 

 

Although effective SERS can be directly obtained from the electric field enhancement at a single 

NP, it is advantageous to involve a more sophisticated structure that, for instance, could consist 

of assembled nanoparticles with nanometer-sized gaps in between (so-called hotspots). These 

structures enable routinely reaching EF ≈ 105-106. Whereas the EF of colloidal plasmonic 

nanospheres is in the order of 103, it may increase up to 1010-1011 inside hotspots (represented in 

Figure 1.9b).118-120 Such a dramatic increase in the EF is created as a result of a high confinement 

of the electromagnetic field at the junction of nanoparticles. When the distance between two 

nanoparticles is in order of their radius, the plasmon coupling between the nanoparticles leads to 

a higher electric field enhancement that impacts the SERS signal.121 In this context, the fabrication 

of accurate plasmonic substrates with multiple hotspots is therefore of significance within the 

field of SERS sensing for medical and environmental applications (i.e., the structure of plasmonic 

substrates has an impact on the signal enhancement). Therefore, biosensing represents one of the 

main motivations for the intense research on fabrication, functionalization and self-assembly of 

metal nanoparticles.122-124   

 

1.5c Plasmonic heating 

 

In addition to their use for Raman signal amplification, plasmonic nanoparticles have been 

employed as heating agents to elevate the temperature of selected system under optical excitation.  

Plasmonic heating occurs as a result of the increased absorption cross-section of metallic 

nanoparticles at their plasmonic resonance.125 On the basis of the amplified movement of electrons 

32



at resonance, heating by Joule dissipation is largely amplified and temperature can thereby 

increase over 70ºC in solution. Notably, applications of plasmonic heating for cancer treatment 

are already in clinical trials, while expanding its implementation to other fields, such as drug 

delivery or gene-expression.126,127 

 

1.5d SERS substrates, the main pillar for technological advancement 

  

Based on their ability to concentrate the electric field within a nanoscale volume, a wide variety 

of metal nanoparticles and nanostructured films have been explored as plasmonic substrates. Such 

plasmonic structures may differ in composition, morphology, size, and spatial arrangement, 

pursuing higher enhancement factors and fine tuning of their LSPRs.128,129 Many efforts are still 

being devoted to this line of research, through the fabrication of increasingly more sophisticated 

sensors, as introduced below.  

 

Figure 1.9. a) The formation of hotspots between gold nanoparticles that are separated by small distances leads 

the molecules located at this position to feel an increase of the electric field up to ten orders of magnitude. As a 

consequence, high EF can be achieved allowing for detection of small molecule concentrations. Adapted from ref 

87. b) Schematic representation of the induced electric dipole in two gold spheres by an incident electromagnetic 

radiation (upper picture) and hotspot formation in the gap between two nanoparticles (lower picture). Adapted from 

ref 147. c) SEM image of assembled particles on PDMS templates. The inset displays a schematic side view of the 

traps. Adapted from ref 160.   
 

a)

b)
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Fabrication methods of efficient plasmonic substrates are typically classified within two 

categories (see Figure 1.10a). On one hand, i) nanostructures that are directly built on the surface 

of solid materials by top-down approaches, such as electron beam lithography.130,131 On the other 

hand, ii) bottom-up approaches comprising nanoparticles that can be applied either in a colloidal 

dispersion or as various types of supported substrates.132-134 Representative examples from these 

categories usually exhibit significant differences regarding homogeneity of the geometrical 

structure, instrumentation and know-how required for fabrication/synthesis, as well as the 

potential to scale-up.135-140 Top-down approaches can yield high-resolution nanostructures on 

demand, but upscaling these processes is arduous and hinders their final integration into 

biosensors. Still, compelling examples of application of such top-down structures have endowed 

valuable biological information in some scenarios.141-143 Of note, densely spaced nanometer-sized 

pillars have been used as SERS substrates with meaningful biological applications.144 Upon 

exposure to a liquid sample and subsequent evaporation, metal-coated nanopillars can form 

clusters due to collective leaning of the pillars, thereby creating hotspots with high electric field 

enhancement. A reasonable uniformity in the arrangement of plasmonic structures renders such 

substrates attractive toward the detection of various biomolecules, such as beta amyloids in 

Alzheimer’s disease or small oligonucleotides.145,146 

 

Notwithstanding, most applications have been developed by using substrates that were obtained 

from colloidal nanoparticles, i.e. through the bottom-up approach. As already mentioned, the 

assembly of metal nanoparticles to build plasmonic substrates typically gives rise to plasmon 

coupling/hybridization effects, which are responsible for the greatest SERS enhancement 

factors.147,148 Extremely high electric fields are confined within tiny interparticle distances in such 

structures; even if such hotspots represent a small fraction of the irradiated surface, they contribute 

most significantly to the recorded SERS signal.149-151 Methods as simple as drop casting or 

precipitation of colloidal dispersions enable the production of plasmonic substrates with hotspots 

that can efficiently amplify the Raman signals from analyte molecules.152,153 However, the nature 

and efficiency of hotspots are strongly dependent on the specific arrangement of the individual 

NPs, interparticle spacing and orientation. In turn, as has been commented, small changes or 

perturbations in electric field enhancement would drastically alter SERS intensity.154-156 

Unfortunately, the source of SERS sensitivity may also be the predominant cause of poor 

reproducibility. Sensors based on random nanoparticle aggregation typically exhibit a poor 

performance, in terms of repeatability and reproducibility. Hence, the development of procedures 

aiming to define ordered nanoparticle architectures has acquired strong relevance. In this context, 

self-assembly processes can be used to drive dispersed colloidal systems into organized structures 

or patterns, without additional guidance.157 By tailoring the functionality and affinity between 
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nanoparticles and solvent, the self-assembly of individual components in solution can be precisely 

controlled.158-160 On the other hand, nanostructured templates can also be used to guide the self-

assembly of nanoparticles into predefined structures, ranging from thin films (2D) to colloidal 

crystals or supercrystals (3D).161-163 Custom-made molds of different materials,  such as poly-

dimethylsiloxane (PDMS) or poly-methylmethacrylate (PMMA) (Figure 1.9c), have been used 

to trap NPs inside the wells of the template, thereby forming organized nanostructures that 

replicate the mold.164 As a result, not only a higher reproducibility in the SERS signal can be 

obtained, but also an exquisite definition of the optical response toward achieving maximum 

enhancement.165 Purposely matching the plasmon resonances of the substrate to the incoming 

 
Figure 1.10. a) Schematic representation of top-down and bottom-up fabrication of plasmonic substrates: top-

down strategies yield metal nanostructures with high resolution; bottom-up strategies provide the simplicity and 

scale-up possibilities of colloidal nanoparticles. The scalability of bottom-up substrates, obtained by self-assembly 

of individual nanoparticles, makes them appealing as sensors in biological applications. As the main responsible 

component for SERS signal enhancement, optimization of plasmonic substrates is constantly being reported. 

General improvements are mainly oriented to increasing the enhancement factor, i.e. generating more intense 

electric fields around nanoparticles, or to better control hotspot formation and plasmonic tunability. Substrates 

aimed for biological applications have additional requirements (stability, biocompatibility, etc.) due to their 

constant interaction with biological media. Current efforts attempt to maximize substrate stability and full sensor 

integration, while minimizing the undesired perturbations induced during the acquisition of SERS spectra. 

Controlling the binding affinity between nanoparticles and biomolecules may also facilitate detection at low 

concentrations, even when other biomolecules are present at orders-of-magnitude higher. b) Engineering plasmonic 

nanoparticle arrays to tune lattice plasmon modes, i) SEM images of AuNP arrays with variation of the distance 

between NP clusters. Reproduced with permission from ref. 176 ii) Extinction spectra of different AuNP cluster 

arrays displaying variations in the lattice parameter (L). i) Adapted from ref. 175. b) The optical response of AuNP 

arrays can be dynamically tuned by applying extension or contraction forces onto flexible plasmonic substrates. 

Reproduced with permission from ref. 177. 
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photon (laser) wavelength is of especial interest for biomedical applications. SERS spectra should 

be collected upon irradiation with an excitation wavelength that is harmless to cells and, ideally, 

that can propagate through tissue, typically within the first transparency window, between  680 

nm and 920 nm.166,167 Modulation of plasmon resonances has been primarily realized by varying 

either the chemical nature or the morphology of the nanostructured plasmonic component (the 

NP).168-170 Other strategies can be used to dynamically dictate plasmon resonances, based on 

application of external electrical,171 magnetic,172 thermal,173 or light stimuli.174 In a recent 

example, a template-assisted self-assembly process was used to obtain hierarchical 

nanostructured substrates, comprising square arrays of hexagonally packed AuNP clusters. These 

highly ordered substrates generate intense lattice plasmon resonances, which can be engineered 

by tuning geometrical parameters, in particular the lattice parameter or separation distance 

between AuNP clusters.175 This effect was deployed to extend the spectral window, from the 

visible to the near-infrared, without variation of the NP building blocks (Figure 1.10b).176 In a 

variation of the same method, the plasmonic substrates were transferred onto elastomeric PDMS-

based supports, thereby allowing real-time modification of the lattice plasmon resonances by 

extension or contraction of the substrate, upon application of macroscopic strain (Figure 

1.10c).177 

 

During the development of this thesis, diverse methods for the fabrication of plasmonic substrates 

have been used. On this account, we describe hereafter some additional features of SERS sensors 

for biomedical applications (Figure 1.10a), especially when in situ measurements are targeted. 

 

1.5e Monitoring of biomolecules and optimization of substrates for biological 

applications  

 

1.5e I) Label-free and indirect SERS 

 

Label-free SERS applications – also known as direct SERS – have been primarily used for the 

detection of small molecules, ranging from relevant metabolites in bacteria or eukaryotic cells to 

diverse neurotransmitters and drugs.178-183 Although macromolecules can also be detected by 

SERS, larger biomolecules (usually about 10−2 m) are formed by combinations of the same 

building blocks, thus registering very similar SERS spectra among members of the same class 

(e.g., proteins or DNA).184-187 As a consequence, specific labels must be incorporated for accurate 

SERS identification. The resulting indirect approaches, in which the detected SERS signal comes 

from a probe or label, typically involve traditional immunoassays or oligo-microarrays and allow 

the detection of both proteins and nucleic acids.188,189 Regarding indirect sensors, SERS probes 
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must comprise, in their simplest version, a noble metal (again, typically Au or Ag) nanoparticle 

and a monolayer of reporter molecules acting as fingerprint labels. The background produced by 

biological fluids can be systematically reduced by carefully designing the nanoprobe (e.g., by 

including a protecting outer shell) and including washing steps. Thus, only few modifications are 

required on conventional assays – for instance, a SERS probe instead of a fluorescence dye – and 

therefore indirect sensors are closer to being integrated into commercial diagnostic tools.  

 

In contrast to macromolecules, the characteristic fingerprint of small metabolites can be recorded 

and distinctly recognized by SERS, as long as these species can get in contact with the plasmonic 

substrate.190 Each chemical bond has a characteristic vibrational frequency, which determines a 

Raman scattering wavenumber, so that SERS barcodes can be defined for specific metabolites, 

thereby facilitating their identification in complex mixtures. Thus, small molecules of interest are 

more likely to be accurately traced in the absence of a tag, reporter, or indicator molecule. The 

number of molecules ultimately adsorbed onto the plasmonic structure is otherwise controlled by 

their surface affinity, which in combination with the identity of the sample – its Raman scattering 

cross-section – determine the SERS spectral fingerprint.191 However, it should also be taken into 

account that the high complexity of biological samples, containing a wide and dynamic range of 

biomolecules that interfere with each other as well as interacting with the plasmonic substrate, 

may compromise the prediction of SERS spectra resulting from the contribution of individual 

components (Figure 1.11a). In other words, quantification of analytes, especially in complex 

 
Figure 1.11. a) The SERS spectra of biological samples are defined by a combination of four main parameters, 

as indicated in the scheme. The nature of the interrogated biomolecules and the plasmonic substrate control the 

interplay between both components, via their binding affinities. Biomolecules present within the irradiated area of 

the plasmonic substrate, as well as their intrinsic Raman cross sections, will eventually determine the recorded 

signal. Biomolecules that adsorb weakly onto the metallic surface, or which feature low Raman cross-sections, are 

unlikely to be detected (pink dots in the scheme). Optimization of plasmonic substrates and measurement settings 

are commonly required for an efficient response of SERS platforms in various label-free scenarios. b) Silica 

coating of dispersed AuNPs and overcoating of core-satellite superstructures, as observed in the TEM images of 

3D self-assembled plasmonic superstructures. Silica shells enhance the stability and allow SERS monitoring of 

molecules in the proximity. Reproduced with permission from ref. 198. c) Hydrogel polymerization in a colloidal 

dispersion result in polymeric nanocomposites that can be adapted to different shapes, while enhancing the stability 

of the embedded nanoparticles. Reproduced from ref. 204. 
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biological mixtures, poses a great challenge, as the composition of the analytes adsorbed on the 

metallic structure might largely differ from those observed in solution.192 

Additionally, unlike indirect measurements, the sensitivity of label-free experiments cannot be 

modulated by either varying the type or the number of reporter molecules (e.g., increasing dye 

concentration or other attempts with different reporter molecules). On this account, the Raman 

intensity in label-free approaches can only be boosted by optimizing the plasmonic nanostructures 

for different scenarios – apart from modifying instrument settings, common for all types of Raman 

measurements. Overall, optimization of plasmonic substrates to the specific running application 

is an early-stage strategy that can significantly improve SERS performance for monitoring of 

biomolecules. The following characteristics have been considered as the most relevant 

requirements for biomedical applications, and thus will be accordingly discussed through this 

thesis: i) efficiency must be maintained within biological media, along extended exposure times; 

ii) the sensor must be fully integrated at the point of interest, while avoiding the presence of 

external cytotoxic agents that could harm living tissues; and iii) the possibility of controlling 

binding affinities between biomolecules and the surface of the plasmonic substrate. While bearing 

these concepts in mind, the development of plasmonic substrates should always pursue a 

sensitivity matching the specific problem at play, in this case typically the physiological 

concentration range of the biomolecules of interest. 

 

1.5e II) Stability and reproducibility in biological media 

 

When plasmonic nanostructures are immersed in biological media, their physicochemical 

properties may dramatically change over time.193 The combination of multiple factors affects the 

stability of the system through degradation of surface functionalities, adsorption of proteins and 

other (bio)molecules, and even morphological changes.194,195 These unwanted effects lead to 

changes in the plasmonic response and are prone to providing misrepresentative and 

irreproducible results. This phenomenon particularly hinders the use of nanoparticles in 

suspension as SERS sensors in biomedicine. Uncontrolled aggregation of nanoparticles occurs 

frequently within biological environments, resulting in the formation of clusters with largely 

variable SERS signal enhancements. Several studies have demonstrated that biological media can 

also induce the release of ions from metallic particles, which in turn would modify their 

biocompatibility.196 Hence, it should be stressed that significant differences can be found in SERS 

platforms, between their ideal behavior in pure water and their practical performance in biological 

media, even if compared with commonly used isotonic buffers (e.g., phosphate-buffered saline 

(PBS) solution). The stability and performance of substrates should be carefully evaluated in the 

selected biological environment under defined characteristics, as an intermediate step prior to the 

real-world, uncontrolled sample. Different approaches have been explored to enhance the 
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biological stability of Au NPs, such as coating with silica or polymer shells (Figure 1.11b).197,198 

However, enhanced stability may come at the expense of compromising the interaction of 

nanoparticles with the target molecules, thus hindering the SERS monitoring performance.199 On 

the other hand, the routine approach of immobilizing the nanoparticles on solid supports (mainly 

glass, silicon or quartz, but even paper), is still sustaining innovation, with novel strategies based 

on sophisticated functionalization, to strongly retain the nanoparticles.200-202 Recent approaches 

have succeeded in tailoring polymer nanocomposites to function as SERS substrates displaying 

highly tunable features. Plasmonic nanocomposites are formed by embedding plasmonic 

nanoparticles in polymeric materials, which further assist in preserving the intrinsic properties of 

the NPs in complex environments (Figure 1.11c).203 The polymer would act by enhancing the 

robustness of the whole sensor over time, while preventing aggregation of the embedded 

nanoparticles204, fostering a new generation of SERS sensors.205-208 

  

 1.5e III) Integration into biological systems 

 

Key features of direct SERS are its noninvasive character and the absence of sample preparation 

requirements, which promise the potential of implementing measurements at the point of care 

(POC), i.e., in the clinic or in cell cultures and artificial organs. However, conventional substrates 

are rigid and thus barely adaptable to be used in the context of arbitrary surfaces, which 

dramatically limits their complete integration into real-world scenarios. In this context, emerging 

SERS substrates formed by materials with soft, flexible, and transparent features, open new 

avenues toward exploiting a rapid screening of analytes within the complexity of real systems. 

Specifically, flexible substrates allow an intimate contact with surfaces that are barely accessible 

to rigid platforms, to an extent that the sensor could provide real-time information on nearby 

perturbations in a non-invasive manner. Multiple strategies have been explored to adhere metal 

nanoparticles on different flexible supporting materials, including polymers, graphene oxide, and 

nanowires.209-211 In a recent example of application, a paper-based substrate in which NPs were 

adsorbed onto cellulose fibers, was used to collect human tears directly from the human eye and 

monitor their composition by SERS. Of particular interest are applications of flexible plasmonic 

materials as wearable devices – also known as smart tattoos – to monitor biomolecules directly 

in the body, while maintaining their plasmonic activity under various deformations (Figure 

1.12a). These SERS substrates can be attached onto the skin or other body surfaces (e.g. the 

eyeballs), to uncover the presence of trace molecules in sweat and other biofluids (Figure 

1.12b).212-214 By engineering such plasmonic tattoos with microneedle structures, one could even 

register intradermal information by SERS.215,216 It should be emphasized that, the precise 

thickness control and high transparency of SERS platforms are also required for in situ 

measurements, as laser radiation must penetrate through the support layer before reaching the 
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sample. Recent outcomes underpin such devices as powerful tools to bridge the daunting gap 

between personalized therapy and real-time tracking of meaningful molecules inside the body. 

 

Other plasmonic substrates have also been devised to evaluate cell activity, adapting their design 

to the challenges imposed by the interaction with cells and other biological components. Initial 

attempts involved the internalization of nanoparticles by cells, followed by the acquisition of 

SERS spectra.217-219 Unfortunately, this strategy often results in considerably altered cell behavior, 

as well as low control on nanoparticle stability and location within the ever-changing intracellular 

milieu. Recent studies have explored the specific interactions between certain nanoparticles and 

cells, to achieve more uniformly enhanced SERS signals at defined locations, e.g. at cell 

membranes or in lysosomes (Figure 1.12d).220,221 However, nanoparticle internalization itself is 

a complex step, due to a strong dependence on variable aspects, such as the state of the cells or 

the specific cell line.222 Therefore, as intracellular particles are the source of signal enhancement, 

significant differences are typically encountered in SERS spectra from different cells. To 

 
Figure 1.12. On body SERS: a) Sketch depicting the operation of smart tattoos to monitoring metabolites in 

sweat. The flexible character of the sensor enables a suitable implant on human skin, therefore contacting the sensor 

with the secreted sweat and the present metabolites. Adapted with permission from ref. 212 b) Schematic 

illustration of a contact lens combined with a plasmonic nanostructure for their final integration on an eyeball via 

transfer printing for in situ detection. Comparison of SERS spectra before and after dropping glucose solution over 

the contact lens sensor, showing their ability to register changes in glucose concentration. Adapted with permission 

from ref. 214. c) On-cell sensors to monitor intracellular environments by plasmonic nanopipettes, with similar 

shapes as that in the SEM image (scale bar 1 µm), which can pierce cell membranes with minimum invasion or be 

used to monitor extracellular gradients in the vicinity of cells, as plotted for ATP and ADP gradients, or in d) by 

internalized nanoparticles, which typically accumulate into vesicles such as lysosomes. For the example 

represented in (d), the SERS images are reconstructed from two SERS spectral windows at two different times; the 

red color is the average Raman intensity from endogenous molecules, and the green color is the average SERS 

intensity from 1960 to 2010 cm−1 assigned to the traced lysosomal drug, which contains alkyne peaks. Adapted 

with permission from refs. 225, 221. 
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overcome this source of inaccuracy, the development of plasmonic nanotips or nanopipettes 

proved essential to interrogate intracellular compartments with minimum cell damage, while 

controlling the nature of the plasmonic components. Optimization of the geometry in plasmonic 

tips, so that nanoparticles are adhered on the surface, facilitates cell membrane penetration toward 

intracellular compartments in living cells (Figure 1.12c).223,224 The position of the plasmonic 

component is thus directed by an external operator, thereby reducing signal variability. This setup 

configuration was also used to monitor metabolites in extracellular media, capturing the formation 

of chemical gradients near cells. 225 

 

The integration of efficient Raman signal enhancers inside cellular environments is still in its 

infancy, which impairs capturing by SERS real-time events that influence cell responses and 

phenotypes. SERS-active cell culture platforms, which combine different 3D-culture strategies 

(mentioned in section 1.4a) with the presence of plasmonic NPs, are foreseen to provide devices 

where different cell types, or even human explants (e.g., organoids grown from patients’ tumor 

samples) could be monitored over extended growth times, with high spatial resolution. As a result, 

multiple drugs could be tested on these 3D-printed devices, revealing by SERS how the cultured 

cells would respond to each treatment.  

 

1.5e IV) Control over biomolecular fouling 

 

Notwithstanding the ability of SERS toward the direct detection of different analytes at the 

point of interest, various steps of sample enrichment and isolation are frequently used prior to 

collecting SERS measurements.226,227 Such prerequisites (e.g. centrifugation or chromatography 

purification) are typically needed to remove, or significantly lessen, those components in 

biological media that may end up masking the presence of target analytes/biomarkers.228 The 

adsorption of biomolecules at high concentrations will likely block the access of target analytes 

to plasmonic hotspots. Such a competitive adsorption drastically impairs the enhancement of the 

Raman signal, and, as a result, reduces assay sensitivity and specificity. It is well-known that 

native proteins in biofluids are particularly prone to binding onto bare nanoparticles, forming a 

so-called protein corona that yields substantial background noise and may even prevent the 

detection of smaller-size biomolecules.229 Numerous strategies have been developed to modulate 

the adsorption of biomolecules onto metallic surfaces, according to their size and charge, and 

even to regulate such interactions upon controlled exposure of the substrate. At this point, it is 

important to emphasize that SERS is a surface technique: a SERS spectrum consistently results 

from the interaction between sample and substrate, so that, for the same biofluid sample, 

substrates with different characteristics – e.g., built by nanoparticles stabilized with different 

ligands (citrate, CTAB…) – may yield different spectra. 
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A common approach to prevent competitive binding while promoting the interaction of target 

analyte molecules with the sensor, involves tailoring the surface chemistry of the plasmonic 

substrate. Many studies have reported the conjugation of plasmonic surfaces with different 

molecular probes that specifically react with target analytes, which are then detected through the 

vibrational changes derived from their interaction with pre-tagged Raman reporters.230-231 

Although such sensor configurations successfully repress signal overlap, they are limited to the 

established target-binding entities and can hardly be applied to multiplexed detection, a valuable 

feature of SERS sensing (Figure 1.13a). A broadly applied strategy involves self-assembled 

monolayers (SAM) to promote the binding of analytes with distinct affinities to SERS sensors, as 

well as minimizing non-specific fouling.232-235 SAM functionalized substrates lead to specific 

physicochemical interactions between plasmonic substrates and different sample constituents. 

Figure 1.13. a) Schematic representation of the modification of plasmonic surfaces to prevent fouling by 

proteins present in biological media, while containing: i) probes that interact directly with the target analyte, 

thereby inducing changes in SERS spectra upon reaction of probe molecules with target analytes; or ii) molecules 

that only promote the adsorption of a group of targets with similar characteristics. Adapted with permission from 

ref. 233. b) Arrays of plasmonic surfaces for label-free SERS with different self-assembled monolayers which are 

depicted as brushes on the metallic support with different color, they also reflect that different sets of metabolites 

interact with the metallic surface as a function of the deposited SAM. Hence, a range of molecular interactions 

takes place within complex biological media at each sensor unit, where mildly selective SERS enhancement of 

the constituents yields multiplex spectral datasets. Such an effect occurs in the presented example with the cell 

lysates of Hs578Tfibroblast, obtaining a SERS spectrum from each functionalized Au-nanopillars. This strategy 

enables to diversify the detectable SERS signatures in complex environments and to increase data dimensionality. 

Reproduced with permission from ref. 235. c) Schematic view of the direct detection of small, charged molecules 

using oppositely charged hydrogels containing nanoparticles. Large proteins and like-charged molecules are 

excluded from the microgel, while concentrating oppositely charged molecules, thereby facilitating SERS 

monitoring. Adapted from ref. 239. d) Creation of a plasmonic platform based on the combination of a molecularly 

imprinted polymer (MIP) thin film with Au nanoparticle (NPs) assemblies. While the MIP allows the trapping of 

diverse polycyclic aromatic hydrocarbons close to the Au surface, which endows high specificity, the plasmonic 

NPs enhance the molecule’s Raman signal. Reproduced from ref. 240. 
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The nature of the selected SAM can be tailored to either improve specificity – the SAM may 

enhance binding of a small subset of molecules233 – or to increase multiplexing capabilities.235 

For the latter approach, SAMs providing interactions with low specificity (i.e., biasing the 

diffusion of molecules with different properties to the proximity of the SERS substrate) can be 

used to diversify the SERS signatures that can be detected in complex environments (Figure 

1.13b).  

 

Other strategies exploit the coverage of plasmonic substrates with shells made of porous materials 

that exclude the diffusion of certain molecules toward the plasmonic nanostructure. In these 

systems, contamination of the plasmonic surface with macromolecules can be avoided by using 

mesoporous silica coatings, which block the transport of molecules larger than their pore size. 

236,237 In addition to size-dependent impediments, hydrogel networks can additionally facilitate 

the selective penetration of molecules by electrostatic attraction, while preventing like-charged 

small molecules from reaching the plasmonic component (Figure 1.13c).238,239 In particular, the 

combination of molecularly imprinted polymers (MIPs) – which can be devised to display a 

predetermined selectivity for a given analyte – with SERS sensors, has attracted a significant 

interest (Figure 1.13d).240-242 In this configuration, the MIP layer renders the SERS substrate 

capable to deliberately capture target molecules on the surface with high selectivity, thereby 

mimicking the interaction between bioreceptors and antibodies. 

 

1.6 SERS in cancer metabolomics and artificial intelligence diagnosis 
 

By the implementation of the described procedures, different studies have already been used for 

the interrogation of dynamic events in cancer cells by SERS. Examples of such SERS applications 

for cancer metabolomics range from the description of an increase in phenylalanine metabolites 

upon plasmonic hyperthermia,217 to the recording of metabolic gradients in the vicinity of 

malignant cells.225 Furthermore, a recent study has efficiently reported the use of plasmonic 

nanostructures (also named as goldnanofève, GNF) to monitor metabolic alterations across tumor 

xenografts by SERS, thus representing an illustrative example of SERS for direct visualization of 

unknown metabolic events in the TME.143 By a careful characterization of the signals obtained 

from cryo-sections of different tissues, key metabolites in TME as glutathione or hypotaurine 

were identified. Remarkably, a subsequent SERS analysis of different tumors models revealed 

that increases in the levels of glutathione correlated with more aggressive cancer metastases (see 

Figure 1.14a  for more details). 
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Although SERS has been applied to monitor different metabolites in cancer, direct addition of 

such complex biological media to the plasmonic substrate – even if it has been thoroughly 

optimized – may yield spectra from which individual biomarkers cannot be easily identified. 

Indeed, as reported above, most successful studies are typically based on the screening of 

biomarkers displaying both high affinity to gold surfaces and high Raman cross-sections (e.g. 

metabolites with aromatic moieties). When such molecules are present in the probe solution, they 

can readily dominate the SERS signal, meaning that they significantly mask the presence of other 

analytes and their characteristic fingerprint is directly peeked in the spectra. This screening – even 

at very low concentrations – is then largely advantageous, therefore reaping the reward of fast 

SERS monitoring. This is the underlying explanation for reporting similar biomolecules in most 

ongoing applications; many other studies have demonstrated that SERS can become extremely 

effective for monitoring nitrogenous bases (mainly purine derivatives or the nicotinamide ring), 

aromatic amino acids or metabolites (tryptophan, phenylalanine, tyrosine, and their derivative 

products, and thiolated biomolecules (glutathione, cystine, among others).243,244 In contrast, the 

identification of other metabolites with implications in cancer disease (e.g., lactate) has not been 

achieved in similar terms so far. In this scenario, there are studies that, instead of following 

specific metabolites, seek to determine whether a patient is prone to suffer from cancer, using 

SERS analysis of selected biofluids, even including additional predictions such as the stage of the 

tumor and its origin. 245-247 In this approach, classical methods for SERS spectral analysis, in which 

one can establish a direct correlation between vibrational peaks and the presence of individual 

metabolites, are no longer sufficient. Chemometrics methods have therefore emerged as a reliable 

and attractive alternative to be combined with SERS monitoring.248 

 

A wide range of multivariate statistic and machine learning methods are currently available in 

order to decipher the optically rich and complex information contained in SERS spectra from 

cancer patients. To this end, multiple strategies from a ‘simple’ exploratory analysis, up to 

machine learning methods have been exploited for pattern-recognition and classification of SERS 

spectra.249,250 In particular, unsupervised methods, such as principal component analysis (PCA), 

are routinely used in the first place, to visualize variations in the data by compressing the 

dimension of the SERS spectra – with minimal loss of information. Remarkably, by applying 

PCA, one could discover hidden patterns in the original data with a minimal intervention (see 

Figure 1.14b). 251-253 However, as long as labeled data have been available, which is most of the 

cases in normal and altered conditions (e.g. classification of normal vs cancer cells), supervised 

algorithms displayed more reliable results in SERS analysis. Indeed, the separation of classes is 
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Figure 1.14. a) Results registered by gold-nanofève (GNF) substrates, imaging large-area of different cancer 

tissue cryosections (5 µm thickness) by SERS. Three representative sections of tissues with (Normal and 

shControl) or without (shCD44) CD44 expression, a molecule stabilizing and controlling cystine transporter 

(xCT), are shown. SERS mappings were generated in every case using the characteristic peaks of glutathione (GS) 

and hypotaurine (HT) at 298 and 897 cm-1, respectively. These results uncover a decrease in glutathione density 

in tumor lacking CD44, which was exhibited along with significant tumor suppression. Adapted from ref 143 b) 

Unsupervised analysis of SERS spectra obtained from 3 bacterial strains of L. monocytogenes, revealing the 

existence of different clusters and their proximity. Strains represented by blue and red dots express a similar set of 

genes, while the green strain does not. Reproduced with permission from ref. 253. c) General scheme of a 

supervised, machine-learning-based approach to analyze data sets of SERS spectra. Training data are initially fed 

into the system to create the network. At this point, each data point is labeled according to its metabolites or 

condition. Subsequently, unknown data are classified by the trained machine-learning algorithm. Reproduced from 

ref. 254. d) VAE latent space depicting the SERS spectra of bacteria after a rapid antimicrobial susceptibility test. 

The method achieves a high accuracy (≥95%) in discriminating between susceptible versus resistant to antibiotic 

cultures. Modified from ref. 256.  
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not a trivial task because even spectra from the same class may vary significantly, for example, 

one single metabolite might exhibit different spectra depending on its molecular orientation on 

the SERS substrate. On the other hand, vibrational features from various classes are likely to 

overlap, which would hamper the visualization of the classes by simple unsupervised analysis 

(Figure 1.14c).254 Sophisticated machine learning methods, such as deep-learning, have been 

widely adopted by the SERS community as a result of being less harsh for a non-specialist and 

the accessibility of a large number of friendly and open-source frameworks and libraries- unlike 

other strategies based on shallow artificial neural networks, which requires extensive feature 

extraction procedures to avoid over-fitting.  

 

Noteworthily, a number of studies have robustly shown the ability of deep learning to outperform 

other approaches, due to intrinsic interpatient variability, without needing feature extraction or 

reduce-variance methods, as illustrated, for example, in the analysis of spectra obtained from 

exosomes of cancer patients.255 In this direction, a recent study about drug susceptibility in 

bacteria cultures(Figure 1.14d),256 applied a machine learning method that was not only able to 

discriminate the metabolome after treated from untreated with an accuracy greater than 95%, but 

also to identify some important vibrational features in the outputs obtained from the trained 

model. Still, there is a need for new methodologies to open the access to high-throughput 

approaches for SERS screening in cancer diagnosis, which will be relevant towards its clinical 

translation. In this way, combining a portable SERS spectrometer with deep-learning was proved 

effective as a point-of-care automatic approach, making an early diagnosis of multiple diseases 

in a single run, including breast cancer.257 A combination of supervised and unsupervised analysis 

were implemented along this thesis, so that all the information contained in the SERS spectra 

could be fully explored. 

 

In the following chapters, we will address the topics presented throughout this introduction, with 

the intention to expand the application of SERS sensors for upcoming challenges in biomedical 

disciplines, but particularly, in cancer metabolomics for 3D cell environments. 
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CHAPTER 2 

“Multiplex SERS Detection of Metabolic Alterations in Tumor 

Extracellular Media” 

 

 

 

The composition and intercellular interactions of tumor cells within tissues dictate the 

biochemical and metabolic properties of the tumor microenvironment, to an extent that 

monitoring such perturbations could harbor diagnostic and therapeutic relevance. Growing 

interest on these phenomena has inspired the development of novel technologies with sufficient 

sensitivity and resolution to monitor metabolic alterations in the tumor microenvironment. In this 

context, surface-enhanced Raman scattering (SERS) can be used for the label-free detection and 

imaging of diverse molecules of interest among extracellular components. We present in this 

chapter the application of nanostructured plasmonic substrates comprising ordered gold 

nanoparticle superlattices, to the SERS detection of selected tumor metabolites. We demonstrate 

the potential of this technology through the analysis of kynurenine, a secreted immunomodulatory 

derivative of the tumor metabolism and the related molecules tryptophan and purine derivatives. 

SERS enabled the unambiguous identification of the metabolites of interest and allowed the 

multiplexed detection of their characteristic fingerprints under different conditions. Finally, we 

combined the effective plasmonic SERS substrate with a hydrogel-based 3D system, as a model 

of the tumor microenvironment, for real-time imaging of metabolite alterations and cytotoxic 

effects in tumor cells.  
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2.1 Introduction 

 

Cancer cells and the stroma create dynamic pseudo-organs that contain a unique niche with 

distinct biochemical and physiological properties.1 Mutations and signaling alterations in tumor 

cells modify the composition of the microenvironment, whereas changes in the microenvironment 

can also influence the fitness of cancer cells, eventually reprogramming cancer cell metabolism 

(examples of such metabolic interactions were explained in section 1.3a).2,3,4 Consequently, the 

assessment of tumor-secreted metabolites becomes instrumental for monitoring the response of 

tumors upon therapeutic challenges, the stratification of cancer patients and the identification of 

novel therapeutic strategies. In this regard, imaging and fast detection of metabolites may play a 

critical role to accomplish these aims.5,6,7 

 

Conventionally, extracellular metabolic studies have been carried out by means of colorimetric 

techniques, which involve the addition of chemical groups that specifically react with the 

molecule of interest. This method is rapid and convenient but also has significant drawbacks, as 

it is invasive and does not allow the long-term simultaneous detection of multiple analytes.8 More 

recently, LC- MS, and at a lesser extent NMR, have been the techniques of choice for the majority 

of high- and low-throughput metabolic analysis, due to their robustness and multiple detection 

capability. However, LC-MS involves time-consuming, expensive, and destructive procedures,9 

while NMR suffers from weak sensitivity.10,11 Hence, the development of alternative label-free 

methods to rapidly detect multiple tumor-secreted metabolites in extracellular media is required 

toward understanding metabolic alterations in the extracellular environment of tumor cells.12 

 

In this scenario, SERS can be applied non-invasively for label-free detection and imaging of a 

wide range of analytes, standing as a promising technique that fulfills several of the above 

mentioned requirements.13 SERS facilitates the identification of vibrational fingerprints of probe 

molecules in contact with a plasmonic nanostructure, to the extent that it can be used to 

characterize biological molecules in solution and within cells, for cancer diagnosis.14-16 This 

chapter abounds in a SERS-based strategy that succeeded in monitoring the extracellular 

accumulation of metabolites relevant to tumor biology, by applying nanostructured plasmonic 

substrates comprising a superlattice of gold nanoparticles (AuNPs), as the source of enhancement 

for the Raman signal from the analytes. 

 

The employed plasmonic superlattices were previously reported to display an intense plasmon 

resonance, thanks to the periodic arrangement of the constituent AuNPs (see section 1.5c). This 

physical phenomenon emerges when, arrays of AuNPs into particular gratings diffract light in-
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plane (also known as Rayleigh-Wood anomaly). Due to this in-plane diffraction event, a sudden 

drop in reflectivity is observed at a wavelength dictated by the lattice period (L) of the 2D 

crystalline array. In addition, such in-plane diffracted waves interact with AuNPs clusters at each 

lattice spot, resulting in an enhancement of the plasmon resonance around the wavelength of the 

Rayleigh anomaly, which in turn creates an additional increase of the electric field within each 

AuNP cluster, boosting the SERS signal (this is also known as lattice plasmon resonance).17 

Hence, by varying the lattice period, we can have an additional handle to manipulate the 

plasmonic behavior of such SERS substrates (see Equation 2.1), leveraging their use under 

different excitation wavelengths. 

 
Figure 2.1 a) Sketch of the deployed strategy to monitor extracellular metabolites by SERS. b,c) Representative 

optical image of LBL (b) and superlattice substrates (c), with the corresponding SEM images of AuNPs distribution 

on a glass support. The inset in (c, lower panel) shows the structure of a representative NP cluster. d) Vis-NIR 

spectra, normalized at 400 nm, for both LbL and superlattice plasmonic substrates; the vertical line indicates the 

excitation wavelength used for SERS measurements (785 nm). e,f) SERS spectra for kynurenine (Kyn) measured 

in 100 µM aqueous solution deposited on LBL (e) and superlattice (f) substrates. Red spectra show the background 

signal of both pristine substrates All measurements were performed with a 50× objective, 10 s acquisition time, 

maximum power of the 785 nm laser 8.48 mW. 
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By using these plasmonic superlattices (along with substrates fabricated by alternative strategies), 

we monitored the activity of the commonly overexpressed IDO-1 enzyme in solid tumors, which 

consumes Trp to generate Kyn, thereby reducing Trp and increasing Kyn concentrations in the 

extracellular environment. This metabolic process has attracted much attention due to the recently 

discovered association between high Kyn/Trp ratios in plasma from cancer individuals and poor 

patient prognosis.18,19 We consider that the implementation of a SERS detection platform can offer 

an efficient tool to perform a fast monitoring of Kyn/Trp ratio in the extracellular environment, 

and in turn to evaluate the extrapolation of IDO-1 expression. On the basis of the crucial role 

elicited by purine derivative metabolites within the TME (see section 1.3b),20,21 we also envision 

the biological value of monitoring variations of such purine derivatives by SERS. For the 

screening of such metabolites, we devised a SERS-based detection system to image the 

accumulation of metabolites in 3D cancer-on-a-chip models, which would retrieve spatial 

information about different cell events over time. The quality of the recorded SERS spectra 

reinforced confidence on the efficiency (i.e., the ability to detect µM-concentrations of target 

analytes in complex media) and versatility of the method for the label-free molecular detection of 

small metabolites, and its potential contribution to understanding the fluctuations of such 

molecules within the tumor microenvironment (see Figure 2.1a).22,23  

 

2.2 Results and discussion 

 

2.2 I) Plasmonic substrates for SERS detection of kynurenine and tryptophan 

 

As a starting point, we tested two types of plasmonic substrates, which had been optimized, prior 

to the realization of this thesis, for the detection of bacterial Quorum Sensing signaling molecules 

and offered a high stability in biological media (see section 1.5.d II in Chapter 1).24,25 Although 

both strategies involved the deposition of 30 nm spherical AuNPs on glass substrates, the different 

methodologies and concentrations resulted in radically different distributions on the substrate (see 

images of both plasmonic substrates in Figure 2.1b,c). The standard polyelectrolyte-based layer-

by-layer (LbL) assembly methodology was followed to fabricate homogenous (disordered) 

multilayers of AuNPs on a glass cover slip (see Chapter 6 for experimental methods, in particular 

𝑎) 𝜆0 = 𝐿𝜂𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒  

b) 𝜂𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑟𝑎𝑡𝑒 sin( 𝜃𝑖𝑛𝑐) +
𝜆0

𝐿⁄ = 𝜂𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 sin( 𝜃𝑑𝑖𝑓) 

Equation 2.1. a) Given a specific light wavelength (𝜆0), we can calculate the periodicity of the superlattice (L) 

that originates in-plane light diffraction (𝜂 represents the refractive index of the substrate, 1.5 for glass supports). 

It should be taken into account, however, that this simplified equation can only be applied for Rayleigh anomaly, 

when the diffractive angle is 90º (𝜃𝑑𝑖𝑓 = 90°), and with excitation light at normal incidence (𝜃𝑖𝑛𝑐 = 0). Original 

granting equation found in (b) 
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section 6.2 for SERS substrates fabrication) a schematic description of the process can be found 

in Figure 6.1a (Chapter 6). In contrast, the fabrication of plasmonic superlattices, was carried out 

via a template-assisted method that guides the self-assembly of AuNPs into hierarchical 

nanostructured substrates (the protocol is depicted in Figure 6.1b) 

 

The different AuNP organization resulted in significant variations in the extinction spectra of the 

substrates. Comparison of the spectra (normalized to the amount of gold) for both substrates in 

Figure2.1d unveiled that the plasmonic superlattices endowed a sharp resonance around 760 nm, 

which closely matched the 785 nm SERS excitation laser wavelength, whereas LbL films 

exhibited a much broader extinction band, while retaining a maximum within the same 

wavelength range. This significant difference is explained due to the Rayleigh anomalies 

occurring in periodic plasmonic structures, as previously explained.17,26 The lattice plasmon 

resonance was thus devised to match the excitation wavelength of the 785 nm laser, by selection 

of plasmonic substrates with a lattice period (L) of 500 nm (based on Equation 2.1). Upon 

incubation with the selected metabolite (Kyn), both substrates (Figure 2.1 e,f) demonstrated their 

responsiveness by revealing additional vibrational modes that were not present in the background 

signal of pristine SERS substrates (red spectra in Figure 2.1 e,f). 

 

Shown in Figure 2.2a are Raman and SERS spectra of commercial Kyn and Trp, recorded in the 

solid state and in solution, respectively. For SERS measurements, 100 µL of a 100 µM analyte 

solution was drop-casted on the corresponding nanostructured plasmonic substrate and 

subsequently illuminated with the 785 nm laser. The obtained results showed that the Kyn SERS 

spectrum is dominated by a narrow peak at 560 cm-1, corresponding to the aminophenyl group.27 

The SERS spectrum of Trp was otherwise characterized by broader peaks, including one localized 

around 760 cm-1, which corresponds to the indole moiety.28 Moreover, SERS spectra of 

commercial Kyn at different concentrations were collected and compared to the SERS spectrum 

of phosphate buffered saline (PBS) on the same plasmonic support, used as a blank (namely, 0 

µM). As noted in Figure 2.2b, 1µM was the lowest concentration that could be safely 

distinguished from the blank, which was sufficient for its detection in the extracellular space at 

physiological concentrations (10-100 µM).29 To determine the ratio between Kyn and Trp 

(Kyn/Trp) by SERS, solutions of the commercial metabolites were co-incubated on superlattice 

substrates at varying relative concentrations. The characteristic SERS spectral features enabled 

simultaneous determination of both metabolites, using the peak at 560 cm-1 for Kyn and that at 

760 cm-1 for Trp, which were sufficiently well differentiated despite being a closely related pair 

of analytes. As shown in Figure 2.2d, the relative contribution of the selected peaks gradually 

changed for different Kyn/Trp ratios. We could therefore approximate the Kyn/Trp coefficient as 

a function of the ratio between the SERS intensities of these main peaks. Our results confirmed 
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that semi-quantitative monitoring of both analytes could be achieved, at least within the selected 

combinations of Kyn-Trp (Figure 2.2c), which were further employed to determine IDO-1 

activity in cancer cells by SERS.  

 
Figure 2.2. a) Comparison of Raman and SERS spectra for kynurenine (Kyn) and tryptophan (Trp), measured 

in the solid state and in 100 µM aqueous solutions deposited on superlattice substrates. b) Kynurenine SERS 

spectra at gradually increasing concentrations (0 µM, 1 µM, 5 µM, 1 µM, 50 µM, 100 µM, 500 µM, 1000 µM) in 

PBS, measured on superlattice substrates. c) Calculated ratio (I560/I760) between SERS spectra intensities at 560 

cm-1 and 760 cm-1, obtained from the different tryptophan-kynurenine combinations, the error bars show the 

standard deviation of three independent assays (n=3). d) SERS spectra of kynurenine-tryptophan mixtures with 

different ratios; the kynurenine characteristic peak (560 cm-1) is highlighted with an orange bar, the tryptophan 

peak (760 cm-1) with a pink bar. e) SERS spectra from different plasmonic substrates, in PBS and cell media. The 

presence of cell media masks the signal of the kynurenine peak at 560 cm-1 (orange label) and prevents its 

quantification in LbL substrates. All SERS measurements were performed with a 50× objective, 10 s acquisition 

time, maximum power of the 785 nm laser 8.48 mW. 
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It should be noted, however, that these experiments were carried out in PBS solutions, far from 

the complexity found in real biofluids, where Kyn and Trp are a minor fraction and the likelihood 

of interferences from other components would significantly increase. Indeed, detection of specific 

metabolites within complex environments is still considered as one of the major challenges to be 

addressed by optical detection systems. Although both plasmonic substrates (LBL and 

superlattices) were sufficiently efficient to identify Kyn in PBS, we observed discrepancies 

between the spectra obtained using both substrates when incubating different concentrations of 

Kyn in cell media (Dulbecco's Modified Eagle Medium, DMEM, in 10% fetal bovine serum, 

FBS). As shown in Figure 2.2e, only the superlattice substrate was reliable toward the detection 

of Kyn in complex media, whereas no significant bands at 560 cm-1 could be easily peeked using 

LBL substrates. This result could be due to the combination of different factors such as the 

improved performance of plasmonic superlattices, as well as the preferential adsorption of Kyn 

onto these metallic structures. For the latter, it should be noted that both substrates differ in their 

surface chemistry, owing to the different functionalization of the employed nanoparticles (see 

section 6.1 for details of nanoparticles synthesis and their use in substrate fabrication). Moreover, 

as specified in section 6.2, a combined cleaning step with oxygen plasma followed by UV-ozone 

was carried out for plasmonic superlattices (just before sample incubation), intended to remove 

the organic molecules remaining on metallic structures, and thus altering their surface chemistry 

(note the impact of this procedure on final SERS signal in Figure 6.2). Importantly, when we 

employed plasmonic superlattices, the detection of Kyn was confirmed at concentrations as low 

as 10 µM in cell media. 

 

2.2 II) Analysis of metabolic alterations induced by IDO-1 expressing cells 

 

We therefore selected the superlattice substrates to monitor extracellular metabolic alterations, as 

well as screening the activity of IDO-1 in tumor cells under different conditions. For this purpose, 

HeLa cells (cell line derived from cervical cancer) were challenged with interferon-gamma (IFN-

𝛾) which reportedly activates IDO-1 expression, as depicted in Figure 2.3b ( see section 6.7, for 

cell culture procedures).30,31 IFN-𝛾 has long been recognized as a pro-inflamatory cytokine that 

can induce, upon binding to the target cell surface repector, the expression of a battery of genes 

in the interior of the cell, including that encoding for the IDO-1 enzyme.32 Noteworthily, those 

HeLa cells that had been treated with IFN- 𝛾 (100 ng/mL) consistently induced IDO-1 expression 

(Figure 2.3a). Cells challenged with IFN-𝛾 were rinsed and fresh media was supplemented with 
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Figure 2.3. a) Changes in IDO expression in the control, compared to IFN- 𝛾 activation, observed by RT-qPCR. 

Results show that, the expression of IDO was significantly increased (p<0.001), 18-fold compared to non-activated 

cells. Error bars represent the standard deviation of three independent experiments. b) Schematic view of the 

catalytic activity of IDO-1 enzyme overexpressed in tumor cells, upon incubation with IFN- 𝛾, which consumes 

tryptophan (Trp) and releases kynurenine (Kyn). Fluctuations of Trp and Kyn concentrations in extracellular media 

can be then tracked by SERS. c) SERS spectra of cell supernatants after 24h. Cells were harvested, upon IFN- 𝛾 

activation (100ng/mL), except in control, and varying the initial tryptophan concentrations. The orange bar marks 

the kynurenine peak while the tryptophan signal is indicated by a pink bar. The spectra are the average of 25 

measurements from a representative sample. d) SERS spectra of cell supernatants extracted at different times. 

Cells were previously activated with IFN-𝛾 and incubated with 100 µM of Trp. e) Ratio between Kyn (560 cm-1) 

and Trp (760 cm-1) in control and after 3 days of IFN-𝛾 conditions (100ng/mL) and Trp supplementation from 25 

to 200 µM, as calculated from SERS data. The error bars show the standard deviation of three independent cell 

assays (n=3). f) SERS spectra of cell supernatant after 24h, namely as CS (IFN-𝛾, 100 µM Trp). Once the cell 

supernatant was measured by SERS, a defined concentration of kynurenine was added to the samples and measured 

again (+ Kyn 50 µM).  
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varying Trp concentrations, to later monitoring its conversion to Kyn. It should be noted that 

media was also supplemented with 10 µM of Hemin, a cofactor of IDO-1 enzyme, which is 

necessary for the tryptophan catalytic conversion.33 LC-MS-based metabolic measurements of 

Trp and Kyn confirmed the IFN-𝛾-elicited conversion of Trp to Kyn, owing to induced IDO-1 

expression (see Appendix S2.1-S2.4). As shown in Figure 2.3c, consistent differences were 

observed among SERS spectra acquired from media at various conditions. IFN-𝛾 treatment of 

HeLa cells resulted in the detection of a molecular vibration indicating the presence of Kyn (560 

cm-1), whereas no signal could be identified in control experiments. In addition, the absence of 

supplemented Trp in media prevented the accumulation of Kyn, in line with the lack of IDO-1 

substrate. Subsequently, we calculated the Kyn/Trp ratio as described above, obtaining 

semiquantitative data for the ratio between both metabolites (Figure 2.3e). Increasing Trp was 

consistently accompanied by lower Kyn SERS signal. Additionally, SERS measurements allowed 

us to study time-dependent changes in a straightforward manner over 24 hours, observing thereby 

a gradual increment in the collected intensity from the peak at 560 cm-1 (Figure 2.3d). Finally, to 

fully validate these results, we enriched the supernatant of HeLa cells overexpressing IDO-1 (CS), 

with commercial Kyn (+ 50 µM). As expected, the results in Figure 2.3f showed an increase in 

the SERS intensity only at the characteristic wavenumbers of Kyn, as compared with the results 

obtained before Kyn supplementation. In a similar manner, consistently higher values for the 

Kyn/Trp ratio were obtained for Kyn-enriched supernatants. 

 

As a complementary strategy to trigger the production of Kyn, we chose to challenge HeLa cells 

with increasing doses of an IDO-1 co-activator analog, Hemin, which is a commercial analog of 

the heme group - a non-polypeptide unit required for the biological function of IDO-1 (enzymatic 

activity represented in Figure 2.4a).33 As illustrated in Figure 2.4b, we confirmed that Hemin 

supplementation is required for Kyn production, since it is involved in the activation of IDO-1. 

We additionally noticed that Hemin supplementation affected the SERS profile in a dose-

dependent manner, beyond the sharp signal at 560 cm-1. Figure 2.4c shows that high Hemin 

concentrations (100 µM) result in an intense SERS band at 725 cm-1, typically assigned to purine 

derivative metabolites.34 We also noted an increment in cell death at high Hemin concentration, 

which suggested a cytotoxic effect of this co-factor (Figure 2.5a). This process drove us to 

speculate that both events, cell death and the release of purine derivatives, were correlated and 

could be investigated by SERS. 

 

 From the unexpected SERS band collected at 725 cm-1 in the above described experiments, we 

performed the measurements of a number of representative purine derivative metabolites, such as 

ATP, adenine (A), adenosine (Ado), inosine (Ino), and hypoxanthine (HX), which had been 
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reported to display intense bands in similar regions of the SERS spectra.35 The recorded SERS 

signals facilitated a moderate distinction between A and HX, as shown in Figure 2.5c. 

Specifically, a mild shift was observed in the main peak, from 735 cm-1 in adenine-related 

molecules (black) to 725 cm-1 in HX derivatives (red), attributed to the deamination process 

between both nitrogenous bases.36 These results suggest that the SERS fluctuations in Figure 2.4c 

could in principle be attributed to the accumulation of extracellular HX under stressing high 

concentrations of Hemin. 

  

 
Figure 2.4. a) Schematic view of the catalytic activity of IDO-1 enzyme. Functional activity might be regulated 

at the level of substrate concentration and holoenzyme assembly (that is, incorporation of the heme prosthetic 

group) by cofactor availability. b) SERS spectra of cell supernatants obtained from cells which were challenged 

with 100 µM of Trp and Hemin concentrations (0 or 10 µM), under control or IFN-𝛾 conditions. c) SERS spectra 

of cell supernatants of IFN-𝛾 activated cells and incubated with 100 µM of Trp and varying concentrations of 

Hemin (0, 10, 20, 40, 100 µM). The brown bar marks the peak at 725 cm-1. SERS measurements were performed 

with a 50× objective and 10s acquisition time, the maximum power of the 785 nm laser was 8.48 mW. 
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2.2 III) Detection of extracellular Hypoxanthine accumulation during cell death 

events 

 

To further examine whether SERS can be employed for the detection of purine bases in the 

extracellular milieu, we exposed HeLa cells to different stress conditions, such as high 

concentrations of hydrogen peroxide (H2O2) and Staurosporine (STP), which are well-defined 

inducers of cell stress and death (see stress conditions assays in section 6.7).37 We measured the 

SERS spectra from cell supernatants after 24 hours under the selected conditions. We found that, 

indeed, SERS signals corresponding to the accumulation of purine derivatives were markedly 

altered under both conditions, in an analogous manner as previously observed in Hemin addition 

experiments (Figure 2.5d). We then tested whether drug concentration would correlate with the 

intensity of the peak at 725 cm-1, which, as previously stated, can be partly attributed to 

extracellular HX accumulation. From the results displayed in Figure 2.5e, we observed a rising 

trend, which reached a maximum at 10 µM of STP, when a high percentage of the cells were dead 

(Figure 2.5b). It should be mentioned that the percentage of cell death obtained from cell viability 

assays showed a good correlation with the trend observed from the SERS intensity of the peak at 

725 cm-1 (see section 6.8 for details about cell viability quantification) This similarity, together 

with the results obtained by LC-MS analysis (see Appendix S2.5-S2.6), reinforced the idea that 

both events were connected.  

 

In view of these positive results, we moved toward the application of SERS for in situ sensing of 

analytes in hydrogel-based cancer models. To this end, we devised a configurable cancer-on-a-

chip system containing a more physiologically relevant 3D structure of collagen,38,39 and then 

explored the combination of this platform with plasmonic substrates (Figure 2.5f). We initially 

deposited HeLa cells, which had been embedded in collagen, inside printed silicone chambers, 

which were then filled with cell media (see 3D cell culture protocols in section 6.7). At selected 

times, the chamber was stacked with a plasmonic substrate and illuminated with the 785 nm laser 

for SERS measurements (images of the final chip configuration can be found in the section 6.4, 

Figure 6.3). We found that SERS signals corresponding to the accumulation of HX in the 

extracellular media could still be tracked with this system under stressing conditions, namely 5 

µM STP (Figure 2.5g). On the other hand, SERS mapping of control cells (no STP addition) did 

not reveal any significant signal of HX release after 24 hours. SERS monitoring of HX molecules 

could be performed by following the intensity of the peak at 725 cm-1 over millimeter-scale 

regions of the extracellular environment (Figure 2.5h). The uniformity of HX levels in the 

recorded maps indicated a suitable diffusion of HX from the hydrogel-based cancer model to the 

plasmonic substrate. 
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2.2 IV) Imaging of Hemin cytotoxic effect in 3D cell culture  

 

We finally exploited the developed system to monitor Hemin concentration and its cytotoxic 

effect by SERS. As shown in Figure 2.6a, Hemin molecules exhibited a broad absorption band 

  

Figure 2.5. a,b) Dose-effect curve of Hemin (a) and STP (b) represented as number of live cells attached (Crystal 

Violet staining method) normalized to control conditions; error bars represent the standard error of three 

independent experiments (n = 3). Bright-field (scale bar of 50 µm, 100x magnification) images of control HeLa 

cells and those exposed to 1 µM STP. c) SERS spectra of A and HX derivative metabolites, brown and yellow bars 

identify the characteristic peak of HX (725 cm-1) and A (735 cm-1) respectively. SERS measurements were 

performed with a 50× objective, the maximum power of the 785 nm laser was 8.48 mW, and 10 s of acquisition 

time. d) SERS spectra of cell supernatants extracted after 24 hours of cell culture, under different stress conditions. 

The contribution to the averaged spectra of HX related molecules is highlighted by a brown bar. The spectra are 

the average of 25 measurements on a representative sample. e) SERS spectra of cell supernatants after 24 hours of 

cell incubation with different STP concentrations. The spectra are the average of 25 measurements on a 

representative sample. f) Schematic view of the methodology used to combine a 3D cell culture inside a silicon 

chamber with SERS measurements. g) Average of SERS spectra recorded after 24 hours of control and 5 µM STP 

incubation. h) SERS mapping (725 cm-1) acquired with an excitation laser wavelength of 785 nm, 10× objective 

and a laser power of 15.15 mW, for 5 s. 
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in the visible, which dropped at 700 nm, so that illumination of an aqueous solution of commercial 

Hemin with a 633 nm laser led to resonant Raman conditions (explained in section 1.5a). Thus, 

SERRS (surface-enhanced resonance Raman scattering) rather than SERS spectra of Hemin were 

recorded (Figure 2.6d). Our choice of plasmonic superlattices as SERS substrates offered the 

possibility of modifying the lattice parameter (L) to obtain a lattice plasmon mode in resonance 

with the 633 nm laser. By changing the lattice parameter from 500 nm to 400 nm (Figure 2.6b), 

the lattice plasmon mode approached the laser excitation of 633 nm (see Figure 2.6c for 

comparison between both plasmonic superlattices).17 The results plotted in Figure 2.6e 

demonstrated the achieved improvement in Hemin detection when the lattice plasmon wavelength 

of the substrate matched the 633 nm excitation laser, through the SERRS pyrrole ring vibration 

signal of Hemin. Importantly, such a measurement configuration facilitated the monitoring of 

Hemin at different concentrations in complex media, as shown in Figure 2.6f. Hence, in the 

  

Figure 2.6. a) Normalized Vis-NIR spectrum and chemical structure of Hemin. b) SEM images of two 

plasmonic superlattices with different lattice parameters, i.e. the distance between AuNPs clusters denoted as “L”. 

c) Normalized Vis-NIR spectra of plasmonic superlattices with different lattice parameters, as labeled. The dotted 

vertical line indicates the excitation wavelength (633 nm) used for the SERRS measurements of Hemin. d,e) 

SERRS spectrum of Hemin, 100 µM (d) and the corresponding intensities of the peak at 755 cm-1 (purple bar), as 

a function of the lattice parameter (e). The measurements were recorded with a 50× objective, maximum laser 

(633 nm) power of 6.54 mW and acquisition time of 10 s. The spectrum is the average of 25 measurements. f) 

SERRS spectra of cell media after addition of different Hemin concentrations: 1 (0 µM), 2 (75 µM) and 3 (150 

µM), displayed spectra are the average of 25 measurements taken from a representative sample, acquired with a 

50× objective, a maximum power of 6.54 mW of 633 nm laser and an acquisition time of 10 s. The plasmonic 

superlattices used as SERRS substrates presented a lattice parameter of 400 nm, to be in resonance with the 633 

nm laser.  
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following experiments, we had to reconfigure the cancer-on-a-chip system over the course of the 

experimental protocol, alternating plasmonic substrates with different lattice parameters (L = 400 

nm or 500 nm), to efficiently match the different laser wavelengths (633 nm and 785 nm), and 

thereby facilitating the detection of both metabolites - Hemin and HX. 

 

We challenged the 3D cell cultures with different Hemin concentrations (Control, 75, 100 µM) 

and measured them in the cancer-on-a-chip platform by SERRS (633 nm laser; L = 400nm), as 

shown in Figure 2.7a. After 24 hours, we reconfigured the system by replacing the plasmonic 

substrates (L=500 nm) and subsequently irradiated with the 785 nm laser. The results shown in 

Figure 2.7b illustrate the effect of Hemin on the extracellular HX concentration (average SERS 

spectra in Figure 2.7d), again confirming that higher Hemin concentrations correlated with higher 

  

 Figure 2.7. a) SERRS mapping (755 cm-1) after addition of different Hemin concentrations: 1 (0 µM), 2 (75 

µM) and 3 (150 µM) into the cancer-on-a-chip, over an area of 100x100µm2 on plasmonic superlattices (L = 400 

nm). Acquired with a 50× objective, a maximum power of 6.54 mW of 633 nm laser and an acquisition time of 

10s. b) Optical image of 24-hours hydrogel-based cancer models captured with a cell observer microscope and 

superimposed with the corresponding HX SERS mapping (725 cm−1) of a selected area. Numbers at upper corner 

indicate different initial Hemin concentrations: 1 (0 µM), 2 (75 µM) and 3 (150 µM); scale bar: 2 mm. c) 

Fluorescence image of tumor cells embedded in collagen at varying Hemin concentrations, namely 1 (0 µM), 2 

(75 µM), 3 (150 µM). Live cells were stained with Cytocalcalcein (blue), images were taken with a 100x 

magnification. Scale bar is 2.5 mm. d) Average of the SERS spectra (200 measurements) recorded in the hydrogel-

based cancer models after 24 hours of treatment with varying Hemin concentrations with 785 nm laser and L = 

500 nm e) Relative SERS intensities at 725 cm−1, recorded at 0, 5, 15 and 24h of incubation with the highest Hemin 

concentration (150 µM); error bars refer to standard deviation of three different measurements (n=3). All 

measurements were acquired with an excitation laser wavelength of 785 nm, 10× objective, and a laser power of 

15.15 mW for 10 s. f) Average of the SERS spectra (25 measurements) recorded over the time in the hydrogel-

based cancer models at 150 µM Hemin. 
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cytotoxicity, measured by fluorescence microscopy in Figure 2.7c (live cells were labeled with a 

blue probe). We finally evaluated the impact of the highest Hemin concentration over time. 

Notably, the SERS fingerprint of HX was clearly identified as early as five hours after initiating 

the treatment, and the signal intensity increased over time, as can be seen in the SERS spectra 

recorded at 15 and 24 hours (Figure 2.7e and 2.7f). These results indicated that high Hemin 

concentrations can also have an early cytotoxic effect on cancer cells, which eventually altered 

the extracellular milieu. 

 

2.3 Conclusions 

 

The present chapter demonstrates the application of SERS for the detection of extracellular tumor 

metabolites under diverse cell culture conditions. Significantly, IDO-1 activity in tumor cells was 

monitored by SERS, measuring simultaneously extracellular changes in both the substrate and 

the product of its enzymatic activity (Trp and Kyn, respectively). By using highly efficient 

nanostructured plasmonic substrates, we were able to estimate by SERS the Kyn/Trp ratio, which 

is well known to correlate with bad prognosis in cancer patients. Moreover, we observed that the 

cofactor of the IDO-1 enzyme, Hemin, affects the SERS profile in a dose-dependent manner and 

this SERS signal was further associated with the induction of cell death at toxic concentrations of 

Hemin. Additionally, the levels of purine derivative metabolites were directly related to cell death 

induction, thus working as a suitable biomarker of cell death. We consider that the tools and 

methods presented throughout this chapter can be incorporated into the next-generation diagnostic 

SERS technologies. 

 

The reported approach notably provided an additional tool for the spatiotemporal analysis of 

metabolite alterations and their response under different conditions. We demonstrated that these 

label-free studies can be extended to in situ imaging of metabolite exchanges in tumor 

microenvironments. This sensitive and cost-effective plasmonic substrate was therefore 

effectively combined with 3D cell culture models, which more closely recreate the biochemical 

and biophysical cues in the TME and are considered as paramount tools for future diagnosis and 

therapy. Still, more complex cell models are required to better examine metabolic interactions 

among different cell types. Moreover, although this approach has validated the use of SERS as 

an alternative strategy for metabolomics, the focus was only centered on known metabolic 

processes, already described by other technologies (e.g., LC-MS or fluorescence). Given the fast 

assessment and high sensitivity that SERS technology has shown, we foresee that different co-

cultures of cancer and stromal cells could be established on purposely devised cancer-on-a-chip 

platforms to elucidate novel mechanisms of cell-to-cell communication. 
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Additionally, the development of standardized protocols and data processing programs for 

multiple metabolite quantification in complex environments is still a pending challenge. The 

implementation of multivariate and artificial intelligence AI (machine learning in particular) 

algorithms appears, at this moment, as a crucial advancement to extend these SERS-based 

metabolomics studies to a greater variety of applications. To take steps in this direction, we will 

cover in Chapter 4 the analysis of similar SERS spectra by methods based upon machine learning 

techniques, unveiling additional information contained in such spectra. 

 

2.4 References 
 

1. Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. 

Trends Cell. Biol. 27, 863–875 (2017). 

2. Martinez-Outschoorn, U. E., Peiris-Pagés, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer 

metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2017). 

3. Arruabarrena-Aristorena, A., Zabala-Letona, A. & Carracedo, A. Oil for the cancer engine: The 

cross-talk between oncogenic signaling and polyamine metabolism. Sci. Adv. 4, eaar2606. (2018). 

4. Wegiel, B., Vuerich, M., Daneshmandi, S. & Seth, P. Metabolic switch in the tumor 

microenvironment determines immune responses to anti-cancer Therapy. Front. Oncol. 8, 284 

(2018). 

5. Wang, H., Franco, F. & Ho, P. C. Metabolic regulation of Tregs in cancer: opportunities for 

immunotherapy. Trends Cancer 3, 583–592 (2017). 

6. Murray, P. J. Amino acid auxotrophy as a system of immunological control nodes. Nat. Immunol. 

17, 132–139 (2016). 

7. Anastasiou, D. Tumour microenvironment factors shaping the cancer metabolism landscape. Br. J. 

Cancer 116, 277–286 (2017). 

8. Yamazaki, F. & Kid, R. Mechanism of interferon-gamma action. Characterization of indoleamine 

2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the 

enzyme-mediated tryptophan degradation in its anticellular activity. J. Biol Chem 263, 2041-2048. 

(1988). 

9. Yong S, L. S. Rapid separation of tryptophan, kynurenines, and indoles using reversed-phase high-

performance liquid chromatography. J Chromatogr. 175, 343–346 (1979). 

10. Edison, A. S. et al. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 43, 34–40 

(2017). 

11. Lu, W. et al. Metabolite measurement: Pitfalls to avoid and practices to follow. Annu. Rev. 

Biochem. 86, 277–304 (2017). 

12. Ntziachristos, V., Pleitez, M. A., Aime, S. & Brindle, K. M. Emerging technologies to image tissue 

Metabolism. Cell Metab. 29, 518–538 (2019). 

13. Langer, J. et al. Present and future of surface-enhanced Raman scattering. 14, 28–117 (2020) 

14. Bodelón, G. et al. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm 

communities by surface-enhanced resonance Raman scattering. Nat. Mater. 15, 1203–1211 (2016). 

76



15. Feliu, N. et al. SERS quantification and characterization of proteins and other biomolecules. 

Langmuir 38, 9711–9730 (2017). 

16. Kang, B., Austin, L. A. & El-sayed, M. A. Observing real-time molecular event dynamics of 

apoptosis in living cancer cells using. ACS Nano 8, 4883–4892 (2014). 

17. Matricardi, C. et al. Gold nanoparticle plasmonic superlattices as surface-enhanced Raman 

spectroscopy substrates. ACS Nano 12, 8531–8539 (2018). 

18. Cheong, J. E. & Sun, L. Targeting the IDO1/TDO2–KYN–AhR pathway for cancer 

immunotherapy – challenges and opportunities. Trends Pharmacol. Sci. 39, 307–325 (2018). 

19. Nguyen, N. T. et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity 

via a kynurenine-dependent mechanism. Proc. Natl. Acad. Sci. 107, 19961–19966 (2010). 

20. Antonioli, L., Blandizzi, C., Pacher, P. & Haskó, G. Immunity, inflammation and cancer: A leading 

role for adenosine. Nat. Rev. Cancer 13, 842–857 (2013). 

21. Hernandez, C., Huebener, P. & Schwabe, R. F. Damage-associated molecular patterns in cancer: A 

double-edged sword. Oncogene 35, 5931–5941 (2016). 

22. Renner, K. et al. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. 

Front. Immunol. 8, 248 (2017). 

23. Singer, K., Cheng, W.-C., Kreutz, M., Ho, P.-C. & Siska, P. J. Immunometabolism in cancer at a 

glance. Dis. Models Mech. 11, dmm034272 (2018). 

24. Bodelón, G. et al. Imaging bacterial interspecies chemical interactions by surface-enhanced Raman 

scattering. ACS Nano 11, 4631–4640 (2017). 

25. Hanske, C. et al. Solvent-assisted self-assembly of gold nanorods into hierarchically organized 

plasmonic mesostructures. ACS Appl. Mater. Interfaces 11, 11763–11771 (2019). 

26. Lenzi, E., Jimenez de Aberasturi, D. & Liz-Marzán, L. M. Surface-enhanced Raman scattering tags 

for three-dimensional bioimaging and biomarker detection. ACS Sen.s 4, 1126−1137 (2019). 

27 Nie, C. G. Castillo, K. L. Bergbauer, J. F. R. Kuck, I. R. Nabiev & N. T. Yu. Surface-Enhanced 

Raman Spectra of Eye Lens Pigments. Appl. Spectrosc. 44, 571 (1990). 

 

28 Q. Tu, J. Eisen, C. Chang, Surface-enhanced Raman spectroscopy study of indolic molecules 

adsorbed on gold colloids J. Biomed. Opt. 15, 20512 (2010).  

29 Munn, D. H. & Mellor, A. L. IDO in the tumor microenvironment: Inflammation, counter-

regulation, and tolerance. Trends Immunol. 37, 193–207 (2016). 

30. De Ravin, S. S. et al. Tryptophan/kynurenine metabolism in human leukocytes is independent of 

superoxide and is fully maintained in chronic granulomatous disease. Blood 116, 1755–1760 

(2010). 

31 Walter, D. et al. A new, simple , bioassay for human IFN-y. J. Immunol. Methods 205, (1994). 

32. Nelp, M. T. et al. Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively 

inhibited by targeting its apo-form. Proc. Natl. Acad. Sci. 115, 3249–3254 (2018). 

33. Basran, J. et al. The mechanism of formation of N-formylkynurenine by heme dioxygenases. J Am. 

Chem. Soc. 133, 16251–16257 (2011). 

34. Premasiri, W. R. et al. The biochemical origins of the surface-enhanced Raman spectra of bacteria : 

a metabolomics profiling by SERS. Anal. Bioanal. Chem. 408, 4631–4647 (2016). 

77



35. Chiang, S., Chen, S. & Chang, L. A dual role of Heme oxygenase-1 in cancer cells. Int. J. Mol. Sci. 

20, 39 (2019). 

36 Premasiri, W. R., Lee, J. C. & Ziegler, L. D. Surface-enhanced Raman scattering of whole human 

blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing. J. Phys. 

Chem. B 116, 9376–9386 (2012) 

37. Kabir, J., Lobo, M. & Zachary, I. Staurosporine induces endothelial cell apoptosis via focal 

adhesion kinase dephosphorylation and focal adhesion disassembly independent of focal adhesion 

kinase proteolysis. Biochem. J. 367, 145–155 (2002). 

38. Yi, H. et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific 

responses to chemoradiotherapy. Nat. Biomed. Eng. 3, 509–519 (2019). 

39. Yu, J. et al. Reconfigurable open microfluidics for studying the spatiotemporal dynamics of 

paracrine signalling. Nat. Biomed.l Eng. 3, 830–841 (2019). 

  

 

 

 

 

 

 

 

 

 

 

 

78



CHAPTER 3 

“Preventing Memory Effects in SERS Substrates by Polymer 
Coating and Laser-Activated Deprotection with Time and Space 

Resolution” 
 

 

This Chapter abounds in the potential of SERS for in situ biomonitoring, through the analysis of 

cell events at the point of interest, to retrieve accurate metabolic information in real time. Such in 

situ measurements are often accompanied by underlying problems when recording successive 

measurements within complex environments. A common source of uncertainty in real-time SERS 

measurements originates from the irreversible adsorption of (analyte) molecules onto the 

plasmonic substrate, which may interfere in subsequent measurements. This so-called “SERS 

memory effect” leads to measurements that do not accurately reflect varying conditions of the 

sample over time. We introduced a strategy that overcomes this detrimental effect, by applying a 

thermolabile sheathing layer of poly(lactic co-glycolic acid) (PLGA) over state-of-the-art 

plasmonic substrates. The presence of the PLGA layer prevents unwanted adsorption of analyte 

molecule(s) from solution, whereas SERS measurements can be subsequently made by locally 

etching the sheathing layer. By using this approach, we could not only perform real time sensing 

of multiple analytes flowing into microfluidic devices, but we were also able to improve the 

detection of metabolites in real time. 
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3.1 Introduction 

 

SERS spectroscopy has been proven to facilitate the identification of trace analytes through the 

detection of their characteristic vibrational fingerprints, even in a multiplex fashion.1 On this 

account, SERS has emerged as a promising chemical monitoring method, with applications in 

various fields including biosensing,2 food control,3 and detection of hazardous materials,4 among 

others. As explained in detail in Chapter 1, SERS relies on the plasmonic properties of noble 

metal nanostructures to enhance the Raman signal of adsorbed molecules. The confinement of 

light at nanoscale volumes by plasmonic nanomaterials is thus responsible for a dramatic increase 

in sensitivity, which can go as far as single-molecule detection.5 

 

Indeed, key features of SERS are its non-invasive character and label-free detection, which 

promise the potential of performing in situ measurements, e.g. in the clinic or in the field. Still, to 

achieve in situ monitoring not only further development in portable Raman spectrometers is 

required, but also long-term SERS detection in real time represents a complex challenge. An 

example of application would be the implementation of real-time SERS measurements in flow 

for monitoring water pollutants.6,7,8 On the other hand, we have demonstrated that SERS detection 

of biomolecules released by living organisms uncovers highly valuable information, e.g. on their 

cellular state and function.9 Thus, real-time measurements are likely to impact a wide variety of 

fields, from medical diagnosis to the biotechnology industry. However, an additional drawback 

arises when molecules adsorb strongly on the surface of the plasmonic substrate,10,11 so that their 

corresponding Raman signal would remain in subsequent measurements, even at later stages of 

incubation with different analytes. This so-called “memory effect” limits real-time detection using 

standard SERS strategies, in which analyte solutions are continuously in direct contact with the 

plasmonic substrate. A common approach to reliably monitor changes in the chemical 

composition of a solution involves the use of a freshly-made substrate every time a measurement 

is to be made. Even if it works, this strategy does not allow continuous in-flow SERS 

measurements without operator intervention, or automation. Arguably, using a fresh SERS 

substrate for every measurement imposes a heavy economic handicap, particularly when 

measurements for extended periods of time or detection of different analytes are required. 

 

Different solutions have been proposed to fabricate re-usable SERS substrates and thus eligible 

for real-time sensing. The main strategy typically consists of cleaning the substrate to remove 

molecular adsorbates. Some cleaning techniques based on physicochemical treatments, such as 

UV-ozone, or incubation with different solvents have allowed the recycling of plasmonic 

substrates for SERS measurements.12,13 It should be noted that such techniques still do not allow 

for in situ measurements, since the substrates must be removed from the solution of interest during 

80



the cleaning process. Different examples utilize photocatalytic materials to degrade sulfur bonds 

between the analyte and the metallic surface by photocatalysis.14,15 Other authors have otherwise 

shown in situ SERS measurements in microfluidic channels by electrical regeneration of silver 

wires.16 Whereas these methods enable the monitoring of chemical species in real time, they can 

barely be translated into efficient plasmonic systems. In addition, these procedures typically entail 

long cleaning periods, which slows down the detection process and thereby the likelihood of 

affecting the quality of the substrate. A different strategy, followed by Gao and coworkers, 

comprises the in situ synthesis of plasmonic nanoparticles inside a microfluidic channel, meaning 

that a specific synthesis must take place for each measurement point. Although it does resolve the 

SERS memory effect, such an approach requires a high consumption of material and leaves 

“useless” nanoparticles in the microfluidic outlet, causing an additional limitation for real-time 

sensing.17,18 

 

We propose in this chapter an alternative concept, based upon the initial covering of the entire 

plasmonic surface with a thermolabile sheathing layer, which not only would allow long-term 

monitoring through the identification and/or quantification of analyte(s), but also efficient spatial 

and temporal control over the adsorption of biomolecules (see section 1.5d IV). The devised 

method  involves as a first step the spin-coating of a layer of poly(lactic co glycolic acid) (PLGA) 

– a polymer that has been broadly utilized for biological applications – on a selected plasmonic 

substrate.19,20 Besides its biocompatibility, it has been previously demonstrated that site-selective 

PLGA degradation can be achieved by laser irradiation.21 In this particular implementation, 

photodegradation was attained by first embedding AuNRs within the polymeric material, so that 

PLGA could be disrupted by photothermal heating caused upon the irradiation of AuNRs with a 

resonant laser (see section 1.5c).22 In a similar context, other studies have demonstrated that the 

photothermal effect can be exploited to alter the permeability of different polymers, such as poly-

(N-isopropylacrylamide) (pNIPAM), upon NIR irradiation.23 

 

We hypothesized that the deposited PLGA layer should protect the SERS substrate by preventing 

the adsorption of analyte molecule(s) from solution. Upon laser irradiation at a sufficiently high 

fluence, the plasmonic photothermal effect would open a micron-sized hole in the PLGA layer. 

The so-created cavity would then act as an open window in the PLGA layer, rendering the 

plasmonic substrate underneath accessible to the target analyte(s) at that particular spot. By 

repeated irradiation at different locations (and different times), multiple windows can be opened 

at will, so that freshly exposed areas of the plasmonic substrate are used each time for new SERS 

measurements and chemical analysis of the solution. The versatility of this technique would 

warrant its implementation into multiple experimental setups, including real-time measurements 
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of fluids within microfluidic channels or monitoring of metabolite fluctuations in biological 

environments. 

 

Conventionally, the design and optimization of plasmonic substrates has been one of the major 

subjects of study in the field, underpinning the development of sensors with greater SERS 

performance.24,25 Such substrates are intended to provide high and uniform near-field 

enhancements, so that intense SERS signals can be recorded from arbitrary spots, even for low 

concentrations of the target analytes.26,27 However, sensitivity enhancement is often accompanied 

by limitations in reproducibility, multiplexing ability and reusability in practical applications. 

Whereas the optimization of enhancement factors has been extensively studied, issues connected 

with real-time measurements and reusability have not been adequately addressed so far. Hence, 

although current technology allows the ultrasensitive detection of multiple analytes,28 its practical 

implementation for continuous monitoring is still in its infancy. In this context, we introduce a 

simple methodology that allows the transformation of state-of-the-art SERS substrates into long-

term detection platforms for in situ sensing applications (Figure 3.1) 

 

3.2. Results and discussion 

 

Figure 3.1. Requisites for real-time SERS substrates. An ideal SERS-based system would allow for continuous 

monitoring of chemical variations in solution, with time and space resolution.  
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3.2 I) Plasmonic superlattices coated with PLGA for SERS sensing 

 

We initially aimed at providing additional features to the plasmonic substrates described in 

Chapter 2 – known as plasmonic superlattices –, which comprise regular arrays of clusters made 

of hexagonally packed nanospheres (Figure 3.2b).29 However, they also suffered from the above-

described shortcomings, related to reliable measurements over time (Figure 3.2a). This issue 

could be directly observed in Figure 3.2c. Upon incubation with a 100 M solution of 4-

mercaptobenzoic acid (4-MBA), its characteristic vibration at 1078 cm-1, corresponding to the 

ν12(C-C) ring stretching mode30 (pink highlighted region in Figure 3.2c), was unequivocally 

detected. However, the SERS memory effect did not allow us to re-use the same plasmonic 

superlattice. Therefore, the 4-MBA peak still dominated the SERS spectrum, even after extensive 

rinsing with water and incubation with 100 M nicotinamide (NAm). In contrast, no peak 

associated to NAm (expected at the position marked by the orange bar in Figure 3.2c) could be 

identified under these conditions. Similarly, when adding a mixture of 4-MBA + NAm after 4-

MBA incubation, only the signal of 4-MBA was registered. We interpreted these results in terms 

of 4-MBA molecules remaining anchored on the superlattice substrate; the irreversible adsorption 

of 4-MBA not only leads to an intense SERS signal, but also compromises the adsorption of NAm 

molecules onto the AuNPs. Such an unsatisfactory performance was repeatedly observed with 

different types of plasmonic substrates, analytes and concentrations, even with various 

biomolecules (see Figure 3.2d,e), indicating a widespread impact of the observed phenomenon.  

 

As a solution to this commonly unwanted effect, and in general to the single-use limitation of 

SERS substrates, we proposed the deposition of a polymer coating to protect the plasmonic 

substrate. The dispensed cover should then act as a sheathing layer that can be readily disrupted 

by laser irradiation and photothermal degradation. Removal of the polymer layer at the irradiation 

spot would render the underlying AuNPs available for interaction with the probe solution, thereby 

avoiding potential interferences derived from continuous exposition. To this aim, we first selected 

PLGA with a lactic/glycolic content ratio of 75:25 because of its well-described thermal 

degradation31 and biocompatibility.32 For the deposition of a PLGA thin film over the superlattice, 

we spin-coated a solution of 12 wt% PLGA/ethyl acetate (200 µL; 1500 rpm; 30s) on top of the 

plasmonic substrate. Of note, the solvent of the PLGA solution was found to strongly affect the 

degree of sample coverage. Whereas the use of PLGA/acetone solutions only provided 
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Figure 3.2. a) Scheme of an uncoated plasmonic substrate: the adsorbed red analyte prevents the attachment of 

subsequently added green analyte. b) Representative SEM image of a plasmonic superlattice. c) SERS spectra from a 

superlattice, upon the sequential addition of 100 M solutions of 4-MBA, nicotinamide, and finally a 50:50 mixed 

solution of 4-MBA and NAm. All measurements were performed with a 50× objective, 1 s acquisition time, and a 

maximum power of the 785 nm laser of 0.018 mW/µm2. d) e) Example of SERS memory effect after incubation with 

various analytes; a sequential combination of 4-NTP with NAm (d) and MB followed by TBZ. The dotted red lines 

indicate the signal of the analytes NAm and TBZ. acquired on pristine substrates. f) PLGA-SERS strategy: a plasmonic 

superlattice is covered with PLGA by spin coating. SEM images of PLGA coatings made from PLGA dissolved in 

acetone and ethyl acetate. Besides, SEM image of the cross section of a PLGA coating film made from PLGA dissolved 

in ethyl acetate. In g) the signal of the incubated analyte (Adenosine, 100 𝜇M) is observed at various areas over the 

plasmonic superlattice spin-coated with PLGA dissolved in acetone, due to the inhomogeneous coverage of the 

plasmonic component by the PLGA film. On the other hand, a perfect coverage was obtained by spin-coating from 

PLGA dissolved in ethyl acetate. In this case, the SERS spectra show no trace of adenosine from the same solution 

incubated on top of the substrate.  

 

84



a partial coating of the plasmonic surface, PLGA/ethyl acetate solutions yielded homogenous 

films with a uniform thickness of 1.5 µm on the whole substrate (measured by cross-sectional 

SEM images, see Figure 3.2f). Homogenous PLGA coatings made the plasmonic substrates 

inaccessible to analytes in solution, as demonstrated by the absence of SERS signals from 

arbitrary spots on the sample, upon incubation with a 4-MBA solution (Figure 3.2g). Conversely, 

irregular coating of the plasmonic substrates by PLGA yielded some impermeable regions, while 

others areas of the substrate were accessible to the probe solution, as exemplified by the 

corresponding SEM image and SERS spectra of PLGA/acetone solutions in Figure 3.2f,g. Hence, 

we prepared all the following samples by using ethyl acetate as the solvent, which consistently 

resulted in complete coverage of the gold nanoparticle superlattices. 

 

PLGA is a thermodegradable polymer, meaning that it can be degraded into its building blocks 

(glycolic acid and lactic acid) upon heating.33 In our experimental design, heat is generated by 

photothermal conversion upon irradiation of the plasmonic superlattice with an intense laser beam 

–as generally described in Chapter 1 for plasmonic nanomaterials. In the designed configuration, 

such a plasmonic heating effect would eventually cause a localized degradation of the PLGA layer 

at the illumination area, leading to local diffusion of dissolved molecules toward the underlying 

plasmonic substrate.34,35 By using a laser excitation with a high enough irradiance, we can provoke 

a sufficient increase in local temperature to degrade the PLGA layer, precisely at the irradiated 

area. On this account, plasmonic heating was assessed by means of an infrared camera, which 

showed a local temperature increase from 30 ºC to 38 °C on the plasmonic superlattice, during 

the excitation with a 785 nm laser at an irradiance of 0.064 mW/µm2 (Figure 3.3a). In contrast, 

no temperature increase was observed when the laser beam was focused outside of the plasmonic 

superlattice, which confirmed that both the Au nanoparticles and the laser are required to cause 

the heating. It should be however noted that, even if a consistent temperature increase was 

measured by the thermal camera, such measurements did not reflect the actual temperature next 

to the AuNPs at the nanoscale, which has been reported to be considerably higher.36–38 

 

The proposed SERS-PLGA strategy is depicted in Figure 3.3b. As a first experimental 

demonstration of this method, we incubated a plasmonic substrate, which had been covered with 

a PLGA (75:25) film, into a 100 µM 4-MBA aqueous solution. Subsequently, the substrate was 

irradiated with a 785 nm laser at 0.018 mW/µm2 for 1 s through a 50x objective (the same 

conditions for SERS measurements as in Figure 2.2c). This laser irradiance was not of sufficient 

intensity to induce a plasmonic heating that degrades the polymeric chains of the PLGA layer. As 

a result, no trace of 4-MBA signal was registered in the SERS spectra (see spectrum i in Figure 

3.3c). The sample was again irradiated with a higher laser power, 0.064 mW/µm2 for 1s, leaving 
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an open window in the PLGA film because of polymer degradation by plasmonic heating. As 

soon as the hole was created, the SERS signal from 4-MBA was acquired (spectrum ii in Figure 

3.3c), owing to molecular diffusion through the open window toward the uncovered area of the 

AuNP superlattice. Although a consistent SERS signal of 4-MBA was recorded after 1s of 

irradiation at 0.064 mW/µm2, the laser illumination was prolonged until the SERS signal was 

stabilized, which was usually achieved after 5 s. The irradiance of the 785 nm laser could then be 

lowered, back to 0.018 mW/µm2, and used to evaluate the detection of 4-MBA with a lower laser 

power, at the created measurement window (spectrum iii in Figure 3.3c). A SERS map of a 

PLGA-covered substrate was captured upon creating the measurement window by recording the 

 

 
Figure 3.3. a) Infrared thermal camera images of a plasmonic substrate under laser irradiation at 0.064 mW/µm2, 

out of the plasmonic area (left) and inside the plasmonic area (right). A temperature increase is detected at the laser 

spot when focused inside the plasmonic area. b) Upon spin coating the substrate with PLGA, only laser irradiation at 

a high fluence leads to local degradation of the PLGA layer, rendering the nanoparticles available to analytes present 

in the solution; finally, SERS is measured at a low laser fluence. c) SERS spectra from a PLGA-superlattice incubated 

in 100 M of 4-MBA solution, at each step described in (b), as labeled; the 4-MBA vibrational fingerprint is registered 

just after opening a window by laser irradiation. d) SEM images of a window created in the PLGA layer by laser 

irradiation (0.064 mW/µm2, 785 nm), at different magnifications. e) SERS spectra from a PLGA-coated superlattice, 

overcoming the memory effect that occurred after sequential addition of 4-MBA, NAm and a 50:50 mixed solution of 

4-MBA and NAm. Each SERS spectrum was recorded after addition of a new analyte solution, first creating a window 

in the PLGA layer and then measuring SERS on the same spot.   
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intensities of the indicated peak at the region around the irradiated spot – with a laser power of 

0.018 mW/µm2, confirming that the signal is circumscribed to the open window (Figure 

3.4a,b,c). SEM imaging of the same area unveiled an opening in the PLGA film, with an elliptical 

shape of around 20x10 µm2, as illustrated in Figure 3.3d. It should be also noted that changes of 

the irradiation time (e.g, 5s or 50s) induce variations in the accumulated heat, which affected in 

turn the shape of the cavity. As observed in Figure 3.4d, longer exposition times enlarged the 

size of the forming window in comparison with the cavity created at initial moments, which more 

closely matched the laser spot size. Importantly, higher magnification SEM images of windows 

created after 5s (Figure 3.3d) clearly revealed the lattice of plasmonic clusters underneath the 

PLGA film. No reshaping39 or melting of the nanoparticles was observed, which is paramount to 

achieving an enhanced SERS signal. 

 

 

 
Figure 3.4. a) Schematic view of the scanning process with lower laser power over a previously created 

measurement window, generating the corresponding SERS map. b) SERS mapping of the selected area, presenting a 

measurement window within the sheathing layer. The signal from the incubated analyte (Adenosine, 100 𝜇M) was 

monitored by the presence of a SERS signal at 735 cm-1 and could be recorded only over the region where the window 

was created. The SERS map was acquired with a 785 nm laser power of 0.018 mW/µm2 to prevent unnecessary PLGA 

degradation. c) Representative SERS spectra of selected spots over the mapped area. d) Optical microscopy image of 

the laser spot illuminated through a 50x objective and focused on a silicon substrate. The impact of such a laser spot 

upon different irradiation times on the size of the forming windows. Two different areas were irradiated with the same 

0.064 mW/µm2 irradiance and through 50x objective, while varying the exposure time of the laser from 5s to 50s. 

Subsequently, the two areas were scanned with a 785 nm laser power of 0.018 mW/µm2, imaging the created windows 

by the signal observed from the incubated analyte (NAm, 100 𝜇M) at 1030 cm-1. As illustrated, longer irradiation 

times (50s) originate windows with larger areas. e) Illustration of the efficiency of the PLGA-SERS method for other 

pair of analytes. In this case, Methylene Blue (MB) was first added, followed by the addition of thiabendazole (TBZ) 

and finally by the addition of a MB:TBZ 50:50 mixture. Using the PLGA-SERS method, all analytes were perfectly 

identified. 
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Once the performance of the SERS-PLGA method was established, we carried out the same 

sequence of incubations with different analytes, following the method described above for the 

uncovered plasmonic substrate – no sheathing PLGA layer. During the sequential incubations of 

4-MBA, NAm and a 50:50 4-MBA/NAm mixture, we created different measurement windows 

for each analyte, at a different position of the PLGA layer. By using the PLGA-SERS strategy, 

we could monitor accurately the sequential presence of the analytes, as shown in the 

corresponding SERS spectra (Figure 3.3e). Therefore, upon incubation with NAm, only its 

 

 
Figure 3.5. Transferability of the PLGA-SERS method to simple systems wherein plasmonic substrates were 

produced by drying a 50 𝜇L droplet solution of AuNPs (2 mM) in CTAC (500 𝜇M). a) Representative SERS obtained 

from random NP clusters at spots out (i) or on (ii) of the created window, which is imaged on the right panel by SEM 

microscopy. b,c) Acquired spectra for the calculation of the analytical SERS enhancement factor. Raman spectra of a 

1M solution of NAm, and the corresponding SERS spectra of 100 µM NAm, using (b) a plasmonic superlattice with 

or without PLGA or (c) a random NP cluster. d) Modification of the polymer coating-SERS method, using PMMA as 

a coating polymer instead of PLGA. Upon laser irradiation at 0.128 mW/µm2 for 5 s, SERS mapping (left panel) of 

the irradiated region by illumination at 0.018 mW/µm2 indicated the creation of a measurement window in the PMMA 

film. The SERS map only registered the signal of the incubated analyte (4-MBA, 100 𝜇M) at the specific spot where 

higher irradiance had been previously applied. At all other points, we only recorded background spectra (right panel), 

demonstrating the impermeable character of spin-coated PMMA films 

 

a)

b)

d)

c)
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vibration at 1030 cm-1 (assigned to an aromatic ring bending40) was monitored, despite of having 

incubated the substrate with 4-MBA. Furthermore, irradiation and measurement in the presence 

of both 4-MBA and NAm (50:50) revealed the SERS signature of both analytes. We additionally 

validated that a similar performance of the PLGA-protected plasmonic substrate could be 

obtained with different pairs of analytes (an example is shown in Figure 3.4e), in agreement with 

our initial hypothesis and assessing the efficacy of the method in avoiding memory effects in 

SERS substrates. Additionally, we witnessed no decrease of the analytical SERS enhancement 

factor using the PLGA SERS method, as shown in Figure 3.5b. Specifically, the EF using the 

PLGA SERS method with plasmonic superlattices is of 3.38x106, which lies in the upper range 

found in the literature41 (see calculation of EF in Equation 3.1). 

 

 

 

We determined above a specific irradiance threshold, which was required to reach a sufficient 

temperature for PLGA degradation and formation of a measurement window. Such a threshold 

strongly depended on the light-to-heat conversion efficiency of each specific substrate and thus 

on its optical absorption properties. On this account, the selected plasmonic material, made of 

hexagonally packed AuNP clusters gave rise to higher temperatures than single gold nanoparticles 

under the same laser irradiation conditions. Still, the process could be equally applied to other 

plasmonic substrates, such as random NP clusters created by simple drop casting of a colloidal 

dispersion on top of a glass slide, as the one presented in Figure 3.5a. Such samples displayed a 

lower SERS enhancement of 5.8x105, almost an order of magnitude less than plasmonic 

superlattices, as can be seen in Figure 3.5c. However, their simpler fabrication, with no 

templating process required, rendered them very easy to reproduce and, hence, to be implemented 

in a variety of applications. This result showed the broad transferability of the PLGA-SERS 

method, even with arbitrary plasmonic substrates, thus endowing it with a general character.  

 

We additionally noted that other polymers, such as poly(methyl methacrylate) (PMMA), could 

be spin-coated on top of plasmonic substrates, in line with previous studies.42,43  PMMA layers 

𝑬𝑭 =
𝑰𝑺𝑬𝑹𝑺

𝑪𝑺𝑬𝑹𝑺

𝑪𝒓𝒂𝒎𝒂𝒏

𝑰𝑹𝒂𝒎𝒂𝒏
 

 

with 𝑪𝒓𝒂𝒎𝒂𝒏 = 1𝑀  𝑪𝑺𝑬𝑹𝑺 = 100 µ𝑀 

 

 𝑰𝑹𝒂𝒎𝒂𝒏 = 42                𝑰𝑺𝑬𝑹𝑺(𝑃𝐿𝐺𝐴) = 14200              𝑰𝑺𝑬𝑹𝑺(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑃𝐿𝐺𝐴) = 14450 

 

EF( PLGA)= 3.38x106 & EF(without PLGA)=3.44x106 

Equation 3.1. The analytical SERS enhancement factor of pristine plasmonic superlattices (without PLGA) and 

of a plasmonic superlattice covered with the PLGA sheathing layer on a recently created measurement window. 

More information on this calculation can be found in Chapter 1 (section 1.5b). 
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showed a similar behavior as that of PLGA, meaning that a measurement window could be created 

upon laser irradiation, thereby allowing SERS detection (Figure 3.5d). As a result, multiple 

designs, which combine different plasmonic substrates and different polymers, can be purposely 

devised. However, it should be taken into account that additional drawbacks may arise, either 

from substrates with low photothermal efficiency or from highly thermostable polymers, and 

therefore these characteristics must be carefully considered for each selected material. For 

example, polymers with higher thermal resistance would require a higher photothermal heating 

for the window to be opened, which in turn could cause damage on the plasmonic component.44  

Such damages, e.g., reshaping or degradation, would impact the performance of the plasmonic 

substrate as a SERS platform in subsequent measurements.  

 

3.2 II) Real-time detection mediated by localized PLGA degradation 

 

The controlled size of the measurement windows created via laser irradiation, along with the 

precision of the microscope stage, provided a sufficient spatial resolution to perform a large 

number of sequential measurements at different times. The example displayed in Figure 3.6a 

showed that two windows could be created in close proximity to each other (20 µm), without 

noticeable perturbation. Moreover, in agreement with the above results for a single window, the 

SERS signal of NAm was only identified within the two open windows. 

 

We thus propose that such a micron-scale control over PLGA degradation could be beneficial to 

create multiple windows at defined positions -every time SERS measurements are demanded. 

This idea was developed in Figure 3.6, for the multiplex SERS detection of different analytes. In 

this example, the analytes – 4-mercaptobenzoic acid (4-MBA), crystal violet (CV), thiabendazole 

(TBZ) and nicotinamide (NAm) – were sequentially injected at 100 M concentration inside a 

silicone chamber ensembled with the plasmonic substrate (similar to that in Chapter 2, see section 

6.4). Then, we proceeded as follows: the analyte was added, a laser irradiance of 0.064 mW/µm2 

was applied for 1 s, so that a measurement window was created. Subsequently, the analyte was 

washed out from the silicone chamber and, the following analyte was injected. It should be 

stressed that after each incubation, a new window was formed in a selected different spot of the 

PLGA layer. Finally, we mapped the whole area by using a laser power of 0.018 mW/µm2. The 

map was generated by considering the SERS intensities of the characteristic peaks for each 

analyte (Figure 3.6c). The SERS map in Figure 3.6b displays four regions (corresponding to the 

laser-irradiated regions) with meaningful and different signals, which we represented by different 

colors. Note that, on account of the strong SERS memory 

90



 

Figure 3.6. Spatial control on the formation of the measurement window in the PLGA layer. a) SERS map recorded 

at 0.018 mW/m2 of a PLGA-coated AuNP superlattice, with two windows created by laser irradiation (0.064 mW/µm2) 

in the presence of a NAm solution (100 𝜇M). The high resolution achieved in this process can be appreciated by a 

distance of 20 𝜇m between both measurement windows. The lower panel shows SERS spectra recorded at different 

positions of the map, whre the signal from NAm was only identified at the created measurement windows. b,c) 

Multiplex SERS detection with high spatial resolution. b) SERS map of a AuNP superlattice on which 4 windows were 

created in sequence by laser irradiation and degradation of the PLGA film (see text for details). The map was generated 

by integration of the characteristic vibrational modes of 4-MBA at 1084 cm-1 (1), CV at 1183 cm-1 (2), TBZ at 1015 

cm-1 (3) and NAm at 1032 cm-1 (4). We used a laser power of 0.018 mW/µm2 with 1s integration time and a 50x 

objective. c) Representative SERS spectra obtained at created windows, only the characteristic Raman signals of the 

analyte present at the time of laser irradiation were detected in the corresponding new hole. d) SERS map of a AuNP 

superlattice with 2 unshielded areas of ca. 200x200 m2, created by consecutive laser irradiation through a 10x 

objective, with a power of 0.026 mW/µm2. e) SERS spectra from each hole in d). Area 1 was created during incubation 

with 4-MBA; area 2 during incubation with both MB and NAm. 
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effect, only the characteristic Raman signals of the analyte present at the time of laser irradiation 

were enhanced in the corresponding new hole (no additional analytes were adsorbed on previously 

opened areas). This result also indicates that both the plasmonic substrate and the PLGA coating 

were sufficiently stable to play their corresponding roles during consecutive window opening and 

SERS mapping steps. As exemplified, four different SERS measurements were recorded from an 

area of 120x40 µm2, which could potentially translate into thousands of measurements on a 

substrate with an area of 1 cm2. Arguably, this strategy could largely expand the reusability and 

lifetime of SERS substrates. By using larger plasmonic substrates and smaller laser spots, we 

could make even more measurements on a single substrate.  

 

Figure 3.7. a) Optical microscopy images of holes created on a PLGA coating film, captured at 5x magnification. 

This window was created by irradiation through a 10x objective, with a power of 0.026 mW/µm2 during 5 s, over an 

area of 400x400 m2. In this case, the space between multiple irradiation points was 20 m. b) Impact of time and 

laser irradiance on the process of creating windows by illumination through a lower magnification objective of 10x. 8 

different areas of 100x200 µm2 were irradiated on the PLGA-plasmonic substrate. In each area the sample was 

irradiated 30 times, moving the spot of 10 µm both in x and y between each successive irradiation. For each area a 

different irradiation time and intensity was chosen to modify the cumulated irradiation energy. As indicated in the 

image, every area was illuminated with a specific intensity (dotted lines) and for a defined period of time (the time 

display at every area). Finally, when the scanning was completed, a SERS map was acquired using a 10x with 1 s 

integration time, at 0.0039 mW/µm2 laser power to avoid additional PLGA degradation. c) Average SERS spectra of 

4-NTP at different concentrations (between 1 µM and 1 nM with tenfold-increase steps), recorded on measurement 

windows of 100x100 µm2 created by consecutive laser irradiation (5s per measurement point) through a 10x objective, 

with a power of 0.026 mW/µm2. d) SERS map showing a window created during incubation with 0.1 µM of 4-NTP. 

To avoid additional PLGA degradation, the scanning was performed using a 10x objective with 1 s integration time, 

at 0.0039 mW/µm2 laser power. 
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On a different example, we demonstrated that PLGA-coated substrates could still be used for 

multiplex sensing. We show in Figure 3.6d the detection of 4-MBA in area 1, while subsequent 

incubation with a mixture of NAm and Methylene Blue (MB) is readily registered in area 2. In 

this example, we show not only the high spatial control that can be achieved with our PLGA-

coated substrates, but also the simultaneous detection of multiple analytes from each hole (Figure 

3.6e). In Figure 3.7a, we additionally demonstrate that the windows in the PLGA film can be 

easily tailored to different sizes and shapes. Therefore, we created larger holes by reducing the 

objective magnification through which the laser beam was focused, and then scanning multiple 

points at the desired area of the substrate. In these particular examples, the irradiance as well as 

the illumination time were selected based on the results obtained in Figure 3.7b. In addition, this 

strategy facilitated the detection of molecules at concentrations as low as nM (see Figure 3.7c for 

4-nitrothiophenol (4-NTP) detection). Larger windows in combination with a 10x magnification 

objective guaranteed that a greater number of molecules were accurately enhanced, so that typical 

sampling errors at such lower concentrations could be reduced (see Figure 3.7d). 

 

3.2 III) Long term SERS monitoring: From microfluidics to cancer-on-a-chip 

 

The spatial and temporal control on SERS measurements of different analytes, enabled by the 

PLGA-SERS method, can be applied to continuous monitoring of solutions, even in complex 

environments. As a proof of concept, a microfluidic device was attached on top of a PLGA-coated 

NP superlattice. The resulting microfluidic plasmonic device was mounted along with a syringe 

pump system to modulate the flow of an analyte solution in the chip (see section 6.9 for details). 

A schematic representation of the experiment is shown in Figure 3.8a. For each new SERS 

measurement, we changed the position of the sample using a piezoelectric stage, to find a pristine 

region of the sample. A new measurement window was then created at this spot and SERS was 

measured to detect the analytes present in the solution at that precise time. In this manner, changes 

in the injected solutions with different analytes - here 4-MBA and TBZ - or water, were monitored 

by SERS, based on the most intense SERS peaks from 4-MBA (1080 cm-1) and TBZ (1014 cm-

1). As can be observed in Figure 3.8c, the sequential presence of TBZ or 4-MBA in the 

microfluidic channel was readily identified by the PLGA-SERS method over various cycles of 

injection. Accordingly, no SERS signal was detected when water was flowing in the microfluidic 

channel. As a control, we used an uncoated plasmonic superlattice (without PLGA layer), in 
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which case we found that the signal of the first molecule attaching to the substrate (4-MBA) was 

persistently recorded, even after flowing water or TBZ solution (Figure 3.8b).  

 

In the previous experiments, the versatility of the detection system was probed for short periods 

of time, i.e. time frames of minutes or few hours. However, other interesting applications of this 

technology, such as monitoring the extracellular milieu of cell cultures, would likely involve 

analyses during longer time periods. For such long-term experiments, we proposed to employ a 

different PLGA (95:5) solution, on account of its higher stability in water.45 As shown in Figure 

3.9a.i, PLGA 95:5 films maintained their impermeability over longer times, at least for several 

days. A threshold laser irradiance of 0.064 mW/µm2 was also found to be appropriate for this 

polymer formulation, allowing the molecules in solution to pass through the PLGA 95:5 layer 

after irradiation (Figure 3.9a.ii). For experiments with cell cultures, we used the same silicone 

chamber that was manufactured in the previous Chapter 2. HeLa cells (1x106 cell/mL) were then 

 

Figure 3.8. a) Scheme of the setup for sensing in flow. The plasmonic substrate was mounted on a microfluidic 

chip, and the fluid flow was provided by a syringe pump at 20 mL/h. Introduction of water or analyte solutions in the 

microfluidic channel was also performed by syringe pumps. The control experiment of the microfluidic flow system 

is also represented on the right, showing the microfluidic channel when containing a fluorescent solution inside (FITC). 

For b) and c), we plotted the SERS intensity of the characteristic mode of thiabendazole (1014 cm-1) and 4-MBA (1080 

cm-1), as a function of the introduction cycles by the syringe pump. The black arrows on top of the plots represent the 

introduction of a different analyte solution (water (W), TBZ or MBA) in the microfluidic channel. SERS intensity of 

the characteristic mode of thiabendazole at 1014 cm-1 (blue line) and 4-MBA at 1080 cm-1 (red line), as a function of 

the introduction cycles (n) by the syringe pump, for a plasmonic superlattice coated with a PLGA sheathing layer. 
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laden inside the silicone chamber and, again, the whole system was assembled with the plasmonic 

substrate, placing the side with the AuNP clusters directly in contact with the extracellular milieu 

(Figure 3.9b). In Chapter 2, we have shown that this configuration was capable to accurately 

monitor changes in a cell milieu, as long as the plasmonic component were renewed prior to every 

measurement, which was likely to alter the sample under investigation, even if moderately. In this 

regard, we came up with the PLGA-SERS strategy as a smarter solution to such an invasive 

procedure.  

 

As a proof of concept and on the basis of previous results, we investigated purine derivative 

fluctuations in the cell milieu of the cancer-on-a-chip system.46,47 As stated earlier, the continuous 

 

Figure 3.9. a) SERS measurements of an MBA solution (100 M) recorded on a plasmonic substrate covered with 

a film of PLGA with a lactic acid/glycolic acid ratio of 95:5. The spectra in (i) were recorded by using a lower laser 

irradiation (0.018 W/µm2) and indicated a high stability of the impermeable PLGA layer over time. ii) SERS spectra 

recorded before (blue) and after (black) laser heating at 0.064 W/µm2 and subsequent creation of a measurement 

window in PLGA 95:5 at different times. b) Schematic view of the methodology used to combine a silicone chamber 

with a plasmonic superlattice to perform SERS measurements, with the laser radiation passing through the support 

layer. The AuNPs-PLGA side of the plasmonic substrate must be oriented toward the inner compartment. We represent 

in the inset the incorporation of HeLa cells inside the silicone chamber, thereby generating a cancer-on-a-chip model. 

The bioactive environment causes the conversion of Adenosine (Ado) and Hypoxanthine (Hx). c) SERS spectra 

recorded in situ from plasmonic superlattices with and without PLGA sheathing layer, at different times (0 and 24 h) 

after Ado (200 M) supplementation into the bioreactor containing HeLa cells. SERS spectra of the extracellular 

supernatant extracted from the chip and measured on fresh substrates without PLGA layer. d) Confirmation of the 

metabolic conversion between initial Ado into HX by LC-MS, estimated as the ratio between HX and Ado 

concentrations, at time 0h and 24 h after 200 M Ado supplementation. 
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monitoring of extracellular purine levels can provide valuable information about the cellular state 

within biological systems (e.g., bioreactors or other cancer-on-a-chip devices). To this end, we 

initially challenged the culture media with Ado, reaching a high extracellular concentration of 

200 M. Under such conditions, the presence of active enzymes in the bioreactor caused a quick 

decrease of the extracellular Ado, converting it into HX,48 as validated by high-performance liquid 

chromatography (LC-MS) (see Appendix Chapter, Figure S3.1). For SERS studies, we measured 

in situ the spectra of the cultured medium at different incubation times (0 and 24 hours) after Ado 

supplementation. As detailed below, we followed three different strategies for recording these 

measurements, the results of which are presented in Figure 3.9c. For completeness, the SERS 

spectra of the pure metabolites: adenosine and hypoxanthine can be found in Figure 2.5c. For the 

experiments performed with the cancer-on-a-chip model and 95:5 PLGA coating of the plasmonic 

substrate (with PLGA), irradiation with a 785 nm laser at 0.064 mW/µm2 for 5 s, through a 50x 

objective, ensured complete degradation of the sheathing layer at the selected spots. Once this 

procedure was completed, we could readily monitor by SERS the high concentration of Ado at 

time zero, responsible for an intense peak at 735 cm-1 in the SERS spectrum. After 24 hours and 

upon generation of a new measurement window, the metabolic conversion of Ado was recorded, 

as indicated by a significant peak shift to 725 cm-1. On the other hand, SERS spectra of cell devices 

without the protective PLGA layer were still dominated by the characteristic Ado peak after 24 

hours and could not sense any metabolic activity in the medium surrounding the cell culture 

(without PLGA in Figure 3.9c). To verify these contradictory results, cell supernatants were 

collected and re-evaluated on fresh plasmonic sensors, which were not found to present 

interferences from adsorbed molecules. As observed, SERS spectra of collected supernatants 

were in agreement with those obtained by 95:5 PLGA-coated plasmonic substrates, while 

confirming the lack of accuracy of the results obtained without the PLGA layer, attributable to a 

SERS memory effect. Such results validate SERS-PLGA as a strategy to consistently measure 

varying conditions inside cell cultures, monitoring the conversion of Ado into HX over time, with 

similar accuracy but much less time-consuming than the LC-MS measurements presented in 

Figure 3.9d. The obtained metabolic parameters may offer highly valuable information on cell 

environments – without perturbances-, with potential applications in not only TME research, but 

also in biotechnology processes, such as a remote control of manufacturing requirements.  

 

3.3. Conclusions 

 

The present chapter provides compelling evidence supporting the use of PLGA-coated plasmonic 

substrates as suitable novel SERS platforms, which will allow the implementation of more 

versatile sensors in future applications. Thanks to the impermeable PLGA sheathing layer, such 
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structures were capable to overcome the common problem of “SERS memory effect”, which 

represents a source of uncertainty in real-time measurements. Laser irradiation at high fluence 

induces plasmonic heating of the underlying nanoparticles, so the sheathing layer degrades under 

high local temperature and opens a measurement window at the selected measurement time and 

location. As a result, this system allowed a higher control over the exposed area of a plasmonic 

surface to the incubated solution, obtaining valuable information regarding the evolution of 

dynamic systems.  

 

Unlike other previously deployed methodologies, major strengths of our PLGA-SERS strategy 

are its simplicity and broad transferability that will allow others to easily adopt and exploit this 

technology. On one hand, the same lasers lines present in conventional Raman equipment were 

used to raise the local temperature over AuNP clusters, albeit at a higher fluence than in typical 

SERS measurements, meaning that no additional instrumentation is required for this 

implementation. On the other hand, this approach has been demonstrated to work successfully 

with plasmonic substrates or polymers, different to those used in this proof of concept. Based on 

its wide applicability, we anticipate that other improvements could be readily introduced in the 

design, for instance, a variation of the developed method could provide a better control over the 

attained temperatures. Of especial interest would be those modifications in the sheathing layer 

that might yield lower temperature resistance while maintaining its impermeable character over 

extended periods of time. 

 

We consider that, in general, this study could contribute to accelerate the development of real-

time SERS systems, specially (but not only) in relation to biological applications where this 

PLGA-SERS approach could facilitate the monitoring of cellular states over time. Still, the final 

implementation of such PLGA-covered substrates on the ground will be intimately tied to the 

development of next-generation portable Raman devices, which are indented to provide 

convenient, flexible hand-held capabilities. Current Raman spectrometer must be adapted to 

collect continuously high-standard data within a wide range of environments, including outdoor 

and remote measurements, which may drastically differ from the conditions found at the 

laboratory,  

 

Finally, we envision that the accuracy in the spatial distribution of created cavities in the sheathing 

layer might also serve for other applications, such as the selective functionalization of plasmonic 

substrates with targeting molecules (e.g., antibodies or aptamers). Although not covered in this 

this thesis, this approach may  rguably facilitate the rapid creation of multiplex assays for indirect 

SERS sensors (introduced in Chapter 1.5d.I), such as immune assays, with multiple possibilities. 

Hence, an interesting example of application could be the simultaneous quantification of multiple 
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biomarkers at different spatial positions. For this configuration, each of the recently created 

windows would be modified with a specific antibody, so that only the targeted antigens woud be 

immobilized on predefined areas. 
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CHAPTER 4 

“Label-free SERS Detection of Secreted Metabolite Profiles during 
Cell Death and Resistance Using Chemometrics Methods” 

 

  
 
In the previous chapters, we have shown how the characteristic fingerprints of relevant 

metabolites can be traced through SERS spectroscopy, to an extent that we could monitor 

variations in their relative concentrations. However, for most metabolites, this strategy, based on 

the direct correlation between SERS intensities and the presence of individual metabolites, is no 

longer sufficient. Therefore, chemometrics methods have emerged as a more accurate alternative 

to conventional approaches, specifically when measurements are made in complex biological 

media. In this context, we have implemented multivariate and artificial intelligence (AI, machine 

learning in particular) algorithms to screen variations in the cell secretome, i.e. the subset of 

metabolites released to the extracellular milieu, under different stressing conditions. In this 

chapter, we demonstrate that these methods can be devised to substantially improve SERS spectra 

processing, not only allowing a better classification between control and dying cells – compared 

to Chapter 2 – but also the identification of specific metabolic profiles for different cell death 

mechanisms or upon anti-cancer therapy resistance. These results only represent a first approach 

to this topic, but they consistently show that more sophisticated analysis (supervised or 

unsupervised) can make the stride to extract complex information contained in the SERS spectra, 

which will expand current applications and facilitate the analysis of larger data.  
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4.1 Introduction 
 

Cells respond to stress in a variety of ways, which may conclude with the elimination of the 

damaged cell. At the dawn of the field of cell biology, cell death had no more implications beyond 

the absence of cell activity. The valuable insights gained over the last decade, however, unveiled 

the role of cell death in the process of homeostatic regulation and the overall maintenance of life.1 

In this manner, individual cells have been found to activate different cell death mechanisms to 

sculpt life in the whole organism, e.g., through preventing uncontrollable cell proliferation.2 

Therefore, by adjusting the cell numbers and eliminating cells with aberrant features, multicellular 

life forms can modulate physiological events, including embryogenesis or tissue inflammation.3 

In contrast, multiple pathologies will arise under the inhibition of the regulatory checkpoints in 

such cell death processes.4 As explained in section 1.3a, the mechanisms orchestrating cell death 

are typically classified in two general subgroups: programmed cell death (PCD) and accidental 

cell death (ACD) or non-PCD. Whereas programmed cellular pathways are specifically executed 

in PCD, therefore generating a time-dependent response to stress (for example, as occurring in 

apoptosis or ferroptosis), ACD is dominated by an instantaneous cell collapse against unfavorable 

conditions (non-programmed necrosis by osmotic forces, pH variations, severe oxidative damage, 

etc.).5 

 
In this context, recent reports have supported the notion that, upon triggering cell death, different 

soluble metabolites are released to the extracellular milieu by a combination of regulated 

processes and passive diffusion through impaired membranes.6 This secretome, the subset of 

molecules released, varies among different types of cell death, and can function as an extracellular 

messenger with the ability to influence neighboring cells. These released metabolites have been 

described to transmit either danger signals -alerting the organism about potential threats-, or 

messages to promote cell proliferation and suppress inflammation within a tissue.7,8 To this end, 

cells can regulate (or “program”) their death to tailor the responses of nearby cells according to 

the received stimuli, thereby changing the impact their death would have on the surroundings. 

Particularly, the secretome of dying cells could play a vital role on the fate of malignant tumors 

during treatment, transforming immunologically “cold” environments – those that limit immune 

activity-, into “hot” environments that are capable to stimulate anti-tumoral responses.9 In this 

context, the development of new analytical tools for the fast identification of metabolic profiles 

under different death mechanisms is required. Importantly, accurate classification of varying 

secretomes could pave the way toward better cancer treatments.10–13  

 
The methods currently used for the identification of different cell death mechanisms and related 

secretomes typically require a set of combined techniques to reach a complete characterization, 
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such as fluorescence microscopy, western blotting, mass spectrometry, genetic analysis, etc.14 

Still, these techniques are time-consuming and may involve invasive procedures, while relying 

on experts to handle and interpret the results. In addition to these drawbacks, most of them are 

expensive and prone to offering poor sensitivity and specificity. Therefore, new strategies are 

needed to provide a fast, reliable, and straightforward determination of the different cell death 

types and their associated metabolic profiles. SERS has the potential to overperform current 

methods on account of its high, label-free sensitivity, which enables the acquisition, within 

seconds, of the characteristic molecular fingerprint of cell secretomes.15 In Chapter 2, we have 

demonstrated that multiplex monitoring of metabolites in the extracellular tumor environment can 

be carried out by SERS.16 By using this approach, we could monitor cell death events as a function 

of the SERS intensity of the peak at 725 cm-1 (breathing mode of HX ring), suggesting that specific 

metabolic profiles can be used as biomarkers of cell death. In a similar direction, other studies 

have tracked intracellular changes during cell death by SERS, identifying peaks associated with 

protein denaturation, amino acid residues, changes in protein conformation, and/or lipid 

degradation. However, as detailed in Chapter 1, an efficient uptake of nanoparticles by cells is 

required for intracellular monitoring, which may affect cell behavior and ignores the information 

contained in the extracellular metabolites.17,18 Overall, although SERS proved its potential for 

metabolic profiling,19 the development of new protocols in synergy with advanced data processing 

is required toward a better classification of secretomes during cell death.20 

 
Here, we present different methods for the classification of secretomes, by using SERS and a 

combination of multivariate and machine learning algorithms for data processing (see scheme in 

Figure 4.1). In particular, a deep-neural network (DNN) framework was developed for this 

approach.21 We initially demonstrated the release of a characteristic metabolite secretome 

depending on the stressing stimuli, which eventually induce cell death in HeLa cells. The results 

were validated by a set of supervised methods, among which, our DNN classification model 

showed the highest accuracy, sensitivity, and specificity (≈99%). Second, upon challenging 

HT1080 cells with two anti-cancer drugs (STP and Erastin), we observed that variations in SERS 

spectra (and thus in extracellular metabolites) display a time-dependent pattern. Finally, in a 

different implementation of the developed SERS method, we carried out a long-term study of 

those breast cancer cells that had shown resistance to radiotherapy treatment, monitoring 

radiation-induced release of specific metabolites. The recorded metabolic fluctuations over time 

provided additional insights into the biochemical response of tumors, which may foster future 

SERS studies to monitor processes associated to tumor cell death or resistance. 
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4.2 Results and discussion 
 

4.2 I) Secretome monitoring under stress  
 

To induce the release of a distinct subset of metabolites, we challenged HeLa cells with different 

stress conditions. In the same manner as described in Chapter 2, we initially selected treatments 

with STP (10 µM) and H202 (50 µM) because of their well-known properties as strong cytotoxic 

agents. Specifically, STP is a potent inductor of apoptosis, whereas H202 activates other molecular 

pathways that induce cell death by a combination of programmed (necroptosis) and non-

programmed necrosis. Interestingly, the apoptotic secretome has been recently described to drive 

anti-inflammatory responses,6 while H202 cell-death was found to elicit the release of certain 

metabolites that act as mediators of stress-associated inflammation.22,23 Hence, on the basis of such 

reported opposite effects, we aimed to monitor differences between the SERS spectra recorded 

upon incubation with STP and H202. 

 
For the determination of metabolic profiles in the extracellular medium, we collected the 

supernatant of HeLa cells after 24 hours of treatment (see section 6.7 for the description of stress 

assays) and spiked the SERS substrate prior to measurements. Cytotoxicity tests in Figure 4.2a 

showed no significant differences in the percentage of dying cells (≈100%) after 24 h under both 

conditions (MTT assay, see section 6.8). By using plasmonic superlattice substrates, for which a 

good reproducibility was demonstrated in previous chapters, we collected approximately 50 

spectra per assay and carried out 5 independent biological replicates, using a 785 nm laser through 

a 50× objective, with 1 s of acquisition time. Next, SERS mappings (50 spectra in an area of 

 

 
Figure 4.1. Scheme depicting the implemented procedure to evaluate by SERS secretome variations produced under 
different stress conditions.  
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250x500 µm2) were analyzed, and the corresponding average spectra are displayed in Figure 

4.2b. Although the acquired SERS metabolic profiles are not associated to a single compound 

and/or biomolecule, but to a combination of them,24,25 we could demonstrate that consistent 

vibrational fingerprints were distinctly observed for each condition. In addition, as observed in 

Figure 4.2d, successful discrimination among the three selected conditions (control, STP, and 

H202) could be visualized by t-Distributed Stochastic Neighbouring Entities (t-SNE) unsupervised 

analysis. 

 
On the other hand, numerous studies have also reported the role of environmental conditions on 

the final set of secreted metabolites, not only as a function of the applied treatment. For example, 

the combination of starvation –lack of nutrients- and certain chemotherapies that typically induce 

apoptosis, could turn into intense pro-inflammatory responses (known as immunogenic cell 

death).26 Therefore, we examined SERS spectra obtained under starvation conditions, with or 

without addition of STP. It should be noted that a Hanks′ Balanced Salt solution (HBBS) buffer, 

 
Figure 4.2. a) MTT assays quantifying the % of metabolically active cells (i.e., live cells) in comparison with 
control conditions b) Average SERS profiles of HeLa cells in control conditions and after 24 hours of Staurosporine 
10 µM (STP) or H202 application. SERS measurements were performed with a 50× objective and 10 s of acquisition 
time, the maximum power of the 785 nm laser was 8.48 mW. c) Average SERS spectra of HeLa cells in starvation 
for 24 hours, with or without additional STP (10 µM) incubation. d) t-SNE plot providing separation among 
secretome classes, control (blue), STP (red), and H202 (black). e) t-SNE analysis did not offer an accurate 
clusterization of the different conditions: control (blue), STP (red) and H202 (black), starvation (orange) and 
starvation + STP (green). SERS measurements were performed with a 50× objective and 1 s of acquisition time, the 
maximum power of the 785 nm laser was 8.48 mW. 
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without nutrients supplied, was used as starvation media in these experiments. In this manner, 

some of the differences observed in SERS spectra could be directly attributed to changes in cell 

media; however, the presence of some peaks (or the ratio between different vibrations) could not 

be explained only through the change of media (Figure 4.2c). We thus interpreted this result in 

terms of a different release of metabolites when both conditions (STP + starvation) are combined. 

However, by increasing the number of different conditions, vibrational features of various classes 

may overlap, which significantly hampers the visualization of classes by simple unsupervised 

analysis (Figure 4.2d). Hence, we analyzed the registered SERS profiles by means of machine 

learning methods, which better address the complexity found during the classification of 

secretomes as a function of the cell death stimulus (see section 1.6). 

 

4.2 II) DNN architecture optimization   
 

At this step, we deployed a deep neural network (DNN) as a proof-of-concept approach to classify 

cell secretomes and then compared the performance of our model with those obtained by other 

supervised methods. In Figure 4.3a, we show a scheme of the created network, which comprises 

a framework based on the input layer (1 × 855) and 4 convolution layers devoted to extract the 

principal features of SERS spectra. Three of these convolution layers were followed by 1 

normalization batch, Relu, and MaxPool (common functions applied in neural networks for 

 

 
Figure 4.3. Schematics displaying the workflow of the employed deep neural network (DNN)-based 
classification method.  
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feature extraction, which are oriented to introduce non-linearity while reducing the number of 

parameters in the network). The last convolution layer presents an extra dropout of 50% to 

improve the generalization of the models and a fully connected layer; this fully connected layer 

represents the last stage in the DNN´s basic architecture, where all the different channels 

previously created for feature extraction (26) are combined to influence the final predictions for 

data classification. Finally, a softmax layer, which normalizes the output to a probability 

distribution across the 5 classes, is applied and the maximum is taken as the predicted class. This 

step contains the five classes that relate to the different stress conditions that induce cell death: 

Control (live cells), Staurosporine, Starvation media, H202 treatment, Starvation media + 

Staurosporine; assigned to their respective SERS spectra. Subsequently, we tested the accuracy 

of the developed strategy to accurately classify secretomes, which could prove the influence of 

each stress stimulus on the profile of released metabolites. 

 

To build a robust and stable DNN model, its performance was evaluated by changing the sampling 

ratio between training and validation sets (Figures 4.4). A total of 941 SERS spectra from the 

five different stress conditions were used in this step. For this strategy, we randomly sampled our 

data set and then split them into training and validation data sets, varying the sampling ratio (e.g., 

55% training and 45% validation). Then, the randomly selected training data set was sent to the 

DNN architecture, so as to optimize the model and subsequently quantify, with the validation data 

sets, the accuracy (the percentage of samples that were correctly classified) and the loss (the 

summation of errors made for each sample) values. This process was carried out twenty times (n 

= 20), meaning that, each time, we changed the SERS spectra selected in the training or the 

validation groups. The boxplots in Figure 4.4 thus represent the variability in these outcomes 

(loss and accuracy), among the 20 repetitions. As expected, the models designed with low ratio 

 
Figure 4.4. Performance evaluation of the different strategies used to build the DNN models for evaluation of 
their performance. Sampling strategy to select the training and validation data sets and their respective boxplot 
results, (left panel).  

 

a)

b)
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sets (5% training, 95% validation) demonstrated low median accuracy and high median loss 

values (≤95% and ≥0.2, respectively), whereas the model deployed with 95% of the spectra for 

training presented large variations among the 20 repetitions (i.e., the outcomes strongly depend 

on the data selected as training or validation). As a consequence, the best results were obtained 

with the data sets for 75:25 and 85:15 ratios.  

On the basis of the previous outcomes, we separated our data into 671 training (75%) and 223 

validation (25%), containing examples of all cell death types, and then we carried out a 

classification task using the previously optimized DNN framework. This model achieved an 

accuracy of ~99% and a root mean square error of validation (RMSEV) of 4.3%, which indicates 

the high quality of our classification DNN models. We also reported our results in terms of 

confusion matrix, a table that provides a comparison between actual and predicted classification, 

for each individual class (Figure 4.5c) The “off-diagonal” values (in gray) represent the false-

positive rates of each individual class of the misclassified samples. Overall, we observed high 

percentages (close to 100%) in the figures of true positive rates: 98.1%, 94.1% and 98.6% for 

Apoptosis, Autophagy, and Control classes, respectively, despite of presenting a slightly low 

 

 
Figure 4.5.. a) Decision Trees; Bag – Bootstrap Aggregation; SVM – Support Vector Machine; DNN – Deep 
Neural Network. Average of twenty repetitions varying the member of the group training and validation b) Outputs 
of the last convolution layers from our DNN framework, we plotted the 64 channels contained within the 4th 
convolutional layer. In addition, to improve visualization, we combined this data in a colormap matrix in the lower 
panner, shown in red is a SERS spectrum from Apoptosis class used to perform the activations. c) Confusion 
matrix for the validation data set. 

a)

b) c)
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sensitivity with false positive rates of 1.9%, 5.9% and 1.4%, for the classes of STP, starvation and 

control, respectively 

 

After building the DNN models for classification, we compared the performance of our DNN 

architecture with other standard supervised methods, such as discriminant analysis (DA),27 

decision trees (DT),28 bootstrap aggregation (Bag),29 and support vector machine (SVM)30 (Table 

4.5a). Our results clearly indicated that all models were able to perform the classification task 

with high accuracy. However, slightly superior figures of merit were obtained for the DNN model, 

which was able to perform a classification with sensitivity and specificity of ~99% of all 

secretome types. Notwithstanding, Bag and SVM could reach comparable results to those from 

our DNN method. As expected, they can also deal with the variability present in complex SERS 

 
Figure 4.6. Comparison of the outputs of the last convolutional layers (Conv 4 = 64 channels, see Figure 
4.3a) after activation of all channels with one validation data from the classes Starvation, STP + Starvation, 
Control, and H202. The highlighted area in green shows a trend of our DNN framework to give higher weights 
for the region around 725 cm-1, which could be associated with cell death mechanism.  

 

Starvation Starvation + STP

H2O2Control
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spectra, but those methods are more time-consuming, which would be a relevant drawback for 

future cases in which a more complete analysis with larger data sets is projected. 

 

In an attempt to extract more information contained in our DNN architecture, which would help 

in the identification of specific metabolic profiles, we quantitatively estimated the activation of 

hidden convolutional layers. This strategy is similarly used to extract features from images by 

Google DeepDream,31 but we translated this approach to remove spectral features, aiming at the 

acquisition of precise information about class assignment in the model. For example, Figure 4.5b 

shows the outputs obtained in the last convolution layer, containing 26 (64) different channels, 

upon testing one sample from the Apoptosis class through our DNN architecture. In the upper 

panel of Figure4.5b, we plotted all of the 64 channels contained within this convolutional layer. 

In addition, to improve visualization, we combined this data in a colormap matrix at the lower 

panel, as follows: colors represent the output of each channel (grey scale; values between -4 and 

+4), likewise, values in the X-axis reflect the wavenumber in the SERS spectra and, in the Y-axis, 

each of the 64 channels in the convolutional layer. Remarkably, we can observe, through brighter 

colors in the matrix, that some bands are being extracted, meaning that the optimized DNN 

architecture gives higher weight to these vibrations within the SERS spectra. Especially, the 

region around 725 cm-1 obtained higher absolute values for mostly all channels. This result 

indicates that, this region was also meaningful for other classes, such as Necrosis (H202 treatment) 

and slightly for Apoptosis + Autophagy (Starvation conditions + STP) (highlighted in Figure 

4.6). However, not for the Control class; these results are in accordance whit previous results in 

Chapter 2, where we observed that stress conditions were associated with an increment in the 

SERS band at 725 cm-1. 

 

4.2 III) Time-dependent evolution of secretomes  
 

In previous experiments, all measurements were recorded from supernatants taken after 24 hours 

of inducing stress conditions. However, the frequency of death-specific molecules is highly 

variable and thus dependent on the selected time-point. Different types of regulated cell death 

mechanisms were thus probed to display characteristic and varying metabolic profiles over time. 

Interestingly, unlike apoptosis, ferroptosis (a programmed necrosis cell death) has been reported 

to exert a unique time course with wave-like propagation (i.e., the death of some cells initiates a 

chain reaction that kills neighboring cells).32,33 Therefore, Erastin-elicited ferroptosis exhibits a 

well-characterized timing that dramatically differs from that found in apoptosis – as previously 

investigated in the literature. In this context, we also carried out experiments to compare the 

changes in extracellular SERS metabolites profiles between ferroptosis and apoptosis, over time. 

For these experiments, HT1080 cell lines were used as a cell model, owing to their well-described 
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sensitivity to both STP and Erastin, which induce ferroptosis (Figure 4.7a). Initially, we 

challenged HT1080 by adding Erastin, while also performing control and STP experiments. It 

should be noted that cell supernatants were collected from these experiments at 30 min, 4h, 16h 

and 24h, so that changes in the metabolic profile could be registered over time. More information 

regarding these procedures is provided in the section 6.7 (stress conditions assay). From the 

previous optimization, we decided to separate the collected data into 2460 samples for training, 

819 samples for validation. These data were collected from two different biological experiments 

(n=2) (3 mappings of approximately 50 spectra in areas 250x500 µm2 for each time and 

condition). Subsequently, a classification task was carried out by means of our previously 

optimized DNN framework.  

 
Figure 4.7. a) MTT assay quantifying the percentage of live cells, compared to control conditions (n=3) after 
24 hours of Erastin administration with or without Ferrostatin (Ferroptosis cell death inhibitor). b) DNN analysis 
for the classification of three different conditions: STP (Apoptosis), Erastin (Ferroptosis), and Control in HT1080 
cells, combining the spectra collected at different times. c) Total number of misclassified samples among the three 
classes by DNN architecture, but calculated over each time (30 min, 4h, 16 h and 24h). d) Median of the accuracy 
acquired in twenty DNN models; N = 20 is the number of DNN models built with randomly sampling the original 
data set as training:validation (75:25). e) t-SNE analysis of the spectra acquired at successive times: 30 min, 4 h, 
16 h, and 24 h. SERS measurements were performed with a 50× objective and 1 s of acquisition time, the maximum 
power of the 785 nm laser was 8.48 mW. 
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The results for the classification of selected stress conditions (Control, STP and Erastin) in 

HT1080 cells are shown in Figure 4.7b. Higher numbers (~30%) of misclassified samples were 

obtained, compared to previous results in Figure 4.5. Notwithstanding, for each group, we 

included all SERS spectra obtained at different times. Conversely, Figure 4.7c plots the average 

results for the total number of misclassified samples from the Apoptosis, Control and Ferroptosis 

classes, as a function of time, by running a single DNN model at each point in time. At 30 min, 

we observed that about 30% of the samples were classified to a wrong class. However, this 

number of misclassified samples can be reduced by half, after 4 h of having induced the stress 

conditions, and further reduced to only ≤3% after 24 h. We also quantified the accuracy for each 

individual class, as the median of 20 DNN models (see boxplots Figure 4.7d), to display the 

variability of the model. The results demonstrated a better agreement with the accuracy presented 

in Figure 4.5 at 24 h. As could be expected, after 30 min of experiment, the combined results from 

DNN models reached a median classification accuracy of ~70%, which could be improved at 

longer times, resulting in an accuracy improvement from 85 to 98% for 4 h and 24 h, respectively. 

To investigate the effect of each individual sample in the separation of the classes, we carried out 

a multivariate analysis of the acquired spectra, by using t-SNE method – described in section 6.10. 

Notably, at starting points (30 min) in Figure 4.7e, the samples look very similar, and only a few 

samples could be distinguished from the others. Then, after 4 hours, different classes start to 

separate from each other (mostly STP), until they form well-defined clusters at 24 hours. It should 

be noted that these results could provide meaningful information about the timing of different cell 

death events. While a clear separation can be obtained with STP after 4 hours – apoptosis occurred 

in early stages – Erastin triggered a slower dying process, thus registering spectra that are more 

similar to the control at initial stages. 

 

4.2 IV) Metabolic alterations in tumor resistance upon radiotherapy 
 

Recent studies have explored the use of Raman spectroscopy to monitor variations in the 

intracellular environment after the application of radiotherapy, providing valuable insights 

regarding metabolic features capable of conferring radiation sensitivity. Particularly, the 

accumulation of high concentrations of glycogen has been reported within surviving cells, and 

then proposed as a prognostic factor of radio-resistance.34,35 Although Raman spectroscopy has 

elegantly revealed unique radiation-related signatures in the intracellular milieu, it could not 

provide information on extracellular metabolites, owing to their lower concentrations. In this 

context, we aimed at using SERS to account for such biochemical variations in the extracellular 

milieu after radiotherapy, which may further assist with the elucidation of complementary 

biomarkers in mechanisms of resistance.  
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Following previous Raman-based studies, we cultured MCF-7 breast cancer cells, selected by 

their reported high radio-resistance radiotherapy (see section 6.7, radiotherapy treatment). We 

then exposed them to clinically relevant single fractions of 5 and 20 Gy radiation, while 

maintaining a group of non-irradiated cells as control. On day 1 post-irradiation, cells were 

harvested at a density of 15x104 cells/mL in 12 well plates. Subsequently, cultured cells were 

challenged with fresh media (cDMEM, 10% FBS), and allowed to grow for three days. We 

selected this period of time (3 days) to guarantee a sufficient impact of cell activity on the starting 

extracellular conditions. Finally, 4-day supernatants were collected and deposited onto plasmonic 

substrates fabricated by drop-casting (see section 6.3 for fabrication details). As shown in the 

average spectra of Figure 4.8a, we observed marked differences in SERS features for the MCF-

7 supernatant after radiation treatment (Gy5). Moreover, the representative point-by-point 

difference spectrum (Control – Gy5) and the PCA component (see section 6.10) from the entire 

 
Figure 4.8. a) Mean spectra from supernatants of control and irradiated cells (Gy5) at 4th day post irradiation. 
The difference spectrum (Control – Gy5) is shown for comparison with the first PCA component from the entire 
dataset. b)Visualization of the collected signatures in the t-SNE map, each point representing an individual 
spectrum; two clusters can be distinguished. c) Boxplots representing the mean PCA scores for the first PCA 
component of Gy5 and Gy20 conditions at 4th day post irradiation. c) Mean spectra of supernatants from control 
and irradiated cells (Gy5, Gy20) at 17 days post-irradiation. The difference spectra (Control – Gy5; Control – Gy20) 
are presented, along with the first and second PCA components from the entire dataset. d) t-SNE analysis allows 
the identification of three different clusters. e) Boxplots representing the mean PCA scores for the first PCA 
component of Gy5 and Gy20 conditions after 17 days post-irradiation (p< 0.001). SERS measurements were 
performed with a 50× objective and 1 s of acquisition time, the maximum power of the 785 nm laser was 8.48 mW.  

***

a)

b)

c)

d)

e)

f)
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data set are both dominated by spectral features around 650 cm-1 and 1000 cm-1. From the 

literature,36 we could interpret these variations in terms of a higher release of glutathione to the 

extracellular compartment (principal vibration located at 655 cm-1), as a response to radiotherapy. 

A meaningful increase (4.7 fold) in glutathione levels after irradiation has also been reported by 

others groups,37,38 which reinforces our initial hypothesis. The complete SERS data set represented 

in Figure 4.8b comprised 405 single spectra, recording each condition in 3 different substrates. 

The first PCA component accounts for 80% of the total variance and represents the dominant 

observation of variability in the peak around 650 cm-1 within the entire SERS data set. It should 

be noted that the mean PCA scores for the first PCA component (Figure 4.8c) do not present any 

significant differences between radiation doses (5 and 20 Gy), only when comparing with non-

irradiated cells. The same conclusion can be drawn from the outcome of t-SNE analysis in Figure 

4.7b, in which only two clusters were created – one for control and the other for radiotherapy with 

both doses. 

 

To continue with the screening of biochemical adaptations over time, we repeated the same 

protocol two weeks after radiotherapy. Cells were again harvested at a concentration of 15x104 

cells/mL in 1 mL of fresh media for three days. We then interrogated the collected 3-day 

supernatant by SERS, and analyzed the acquired spectra using the same methodology (Figure 

4.8d). We still observed variations in SERS features among the different conditions, with the peak 

at 650 cm-1 displaying higher intensities only upon treatment. In contrast, an intense peak was 

registered this time at 725 cm-1, mainly for the 20 Gy dose. This vibration has been typically 

attributed to purine derivative metabolites in various assays along this thesis and could thus 

indicate a late cell death for the highest radiotherapy dose, among other causes. Three defined 

clusters were created in the t-SNE analysis of Figure 4.8e, meaning that consistent differences 

can be registered between groups. Remarkably, representation of the mean PCA scores for each 

dose in Figure 4.8f revealed significant differences between 5 Gy and 20 Gy after 2 weeks.  

 

4.3 Conclusions 
 

Undoubtedly, a need remains for new approaches that can trace the information contained in the 

extracellular milieu, which would avoid time-consuming protocols. In this chapter, we have 

introduced different applications resulting from the combination of label-free SERS monitoring 

and either multivariate analysis (such as t-SNE or PCA) or machine learning approaches. The 

presented studies showed that SERS can readily monitor and distinguish specific biochemical 

signatures under different conditions, even being capable of registering time-dependent 

variations. A key feature of our observations was that the deployed DNN model could perform a 

classification with high sensitivity and specificity of 99%, for different secretomes. Such a high 
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accuracy demonstrates the efficacy of SERS for assessing changes in extracellular metabolite 

levels. However, despite of the positive results, further research is still required toward a sufficient 

validation of the obtained results. In this regard, we discuss in what follows different 

improvements that could be implemented in the near future. 

 

An important aspect of this study was the initial selection of the stress conditions, which was 

based on the previous results in Chapter 2, as well as literature analysis that recapitulated stress 

conditions according to their pro-inflammatory or anti-inflammatory effects. Hence, the selected 

conditions have already been reported to trigger different responses in the TME. However, 

validation is still needed by means of additional experiments, for instance, by supplementing the 

collected supernatants from cancer cells undergoing cell death to other stromal cells (such as 

macrophages or fibroblasts). Subsequently, we could test whether the metabolites derived from 

dying cells alter the gene expression of those stromal cells (by RNA sequencing, for example). 

To further determine whether the influenced gene programs are related to pro- or anti-

inflammatory processes, and validate what has been previously reported in the literature.  

 

We have only shown so far the capacity of the DNN algorithms to identify different secretomes. 

However, once the DNN was optimized, it would be compelling to assess the SERS spectra upon 

different stress conditions that originate similar secretomes; to then evaluate whether they are 

classified as a part of the same group by the DNN. In case of positive results, meaning that the 

algorithm is not only capable of discerning between different secretomes, but also of identifying 

similar secretomes created in different conditions, SERS monitoring (+ DNN) could potentially 

lead to a new type of cell death studies, in which the impact of secretomes on the neighboring 

environment would be more easily accessible (compared to other cumbersome alternatives as the 

one explained above of RNA sequencing).  

 

In addition, despite of being consistently reported in the literature, further viability studies are 

required to confirm the different timing between apoptosis or ferroptosis processes. Likewise, the 

quantification of the registered fluctuations should be performed by other techniques (e.g., LC-

MS). In particular, we should investigate the reported increment in the SERS signal associated 

with glutathione in Figure 4.8. This event could have significant implications both to monitor 

biochemical changes within a TME environment upon therapy, and to identify new mechanisms 

responsible for radiotherapy resistance. Overall, we consider that this chapter opens up new 

challenges to be explored in the future. 
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CHAPTER 5 

“Nanocomposite Scaffolds for Monitoring of Drug Diffusion in Three-
Dimensional Cell Environments by SERS” 

 

 

The strategies described in previous chapters entailed 2D plasmonic substrates supported on rigid 

materials, primarily glass coverslips. However, to better capture dynamic processes in complex 

cellular environments, the integration of flexible detectors with a homogenous distribution within 

well-defined three-dimensional (3D) networks would be required, to an extent that the sensor 

could provide more precise information about nearby perturbations in a non-invasive manner. In 

this context, the development of 3D-printed structures that can function as both sensors and cell 

culture platforms emerges as a promising strategy, not only for mimicking a specific cell niche 

but also toward identifying its characteristic physico-chemical conditions, such as concentration 

gradients. We present in this chapter a 3D cancer model that incorporates a hydrogel-based 

scaffold containing gold nanorods. In addition to sustaining cell growth, the printed 

nanocomposite inks display the ability to uncover drug diffusion profiles by SERS, with high 

spatiotemporal resolution. We additionally demonstrate that the acquired information could pave 

the way to designing novel strategies for drug discovery in cancer therapy, through correlation of 

drug diffusion with cell death.  
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5.1 Introduction 

 

As emphasized throughout this thesis, the extracellular environment and its impact on cell fitness 

is a growing area of research, which has initially focused on mimicking microenvironments by 

tissue-like cell-culture systems in three dimensions (3D).1,2,3 However, monitoring parameters of 

interest within these structures, such as spatio-temporal heterogeneity or molecular gradients, 

imposes additional experimental challenges. Hence, not only more realistic in vitro models are 

required, but also new imaging technologies should be implemented to assess them 

accurately.4,5,6,7  

 

In section 1.4, we discussed the limitations of 2D cell cultures, including the lack of  the cell-cell 

and cell-extracellular matrix interactions that are required to generate specific 3D 

microenvironments.8,9 Whereas biomolecules can diffuse freely in the extracellular milieu of 2D 

cell culture models, gradients of soluble molecules are established along  tissues by a combination 

of cellular activity and restricted extracellular diffusion.10,11 Such gradients, along with the 3D 

internal structure, strongly influence cell responses and phenotypes in solid tissues, including 

tumors.12,13  

 

Indeed, during the design of  3D cell environments, biological structures can be tailored through 

the technology used to build them.14,15,16 Thus, different approaches can be combined to improve 

the outcome and better mimic the features of a native niche.17,18 Recent experiments involving 

hydrogels and scaffold-based systems have  reproduced with high precision the 3D physiology of 

selected human tissues.19 Still, even though these approaches have revealed new elements in cell 

biology,20 the incorporated third dimension drastically hampered the efficient capture of dynamic 

aspects, such as drug or nutrient transport, by optical methods. For instance, the ability of optical 

microscopy to map large extracellular concentration profiles in 3D is limited, especially if other 

fluorescent labels are present, which may cause signal overlap – e.g., in combination with cell-

viability dyes.21,22 Ordinary sensing techniques involve otherwise invasive procedures, which 

prevent continuous monitoring of gradually evolving processes. As a consequence, dynamic 

parameters are not routinely registered in 3D experiments and their potential effects on cell 

behavior are thus ignored. The development of alternative analytical methods to rapidly detect 

gradients in extracellular media is therefore required toward a better understanding of cellular 

niches and their implications in the effectiveness of therapeutic methods. 

 

In this context, we have demonstrated in previous chapters that SERS can be employed to evaluate 

changing environments. By enhancing the Raman signal of molecules adsorbed onto plasmonic 

nanostructures, we could identify the trace analytes upon laser irradiation, in a fast and label-free 
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manner.23,24 However, the complete integration of efficient Raman signal enhancers inside cellular 

environments was not achieved; in most of the previous cases the sensor was not in intimate 

contact with the cells, thereby hindering the spatiotemporal resolution in SERS bioimaging.25,26 

In this direction, the fabrication of SERS-active scaffolds from inks containing plasmonic gold 

nanoparticles has been recently reported by our laboratory, as highly efficient platforms for SERS 

monitoring in 3D.27 We thus hypothesized that similar systems could be employed to screen 

biorelevant compounds in 3D environments, while analysing the extracellular gradients created 

upon drug exposure by SERS. For this purpose, we selected Methylene Blue (MB) as a drug 

candidate, because it features a high Raman cross-section and has been used as a photosensitizer 

agent in antitumor therapy.28,29,30  

 

 

Figure 5.1. a) Scheme of a 3D-printed nanocomposite hydrogel scaffold comprising gelatin and alginate, 

represented by purple and orange fibers respectively (monomer structures shown on the right).  The homogenous 

distribution of gold nanorods (AuNRs) within the polymer matrix is represented by yellow bars. b) Photographs of 

an illustrative nanocomposite scaffold from the front, a 5-€ cent coin is incorporated in the picture for comparison, 

and higher magnification image of the scaffold obtained through a Greenough stereo microscope. In the lower 

panel, SEM images of the grid-like scaffolds with mesh size of 600 µm. c) Vis-NIR spectrum of a gelatin-alginate 

(10% and 2%, respectively) ink containing 1 mM of AuNRs 
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We formulated a biocompatible gelatin-alginate hydrogel containing gold nanorods (AuNRs), 

which could be 3D-printed to fabricate cell culture scaffolds (see Figure 5.1a).31,32 As briefly 

introduced in section 1.4, 3D-printing strategies can be particularly efficient at recreating the 

tumor niche, due to their ability to control geometric structures with milli-/microscale resolution. 

Specifically, 3D-printed grid-like scaffolds can recapitulate the architecture of tissues while 

creating porous inks, which support nutrients and oxygen transport for water-based environments 

in cell cultures.33,34 Hence, using biocompatible hydrogels renders printed structures suitable for 

cell growth, with a tailored physiological architecture, so that complex in vitro systems can be 

accurately reconstructed. Among various natural polymers typically employed in biomedicine, 

we selected alginate-gelatin mixtures because of their outstanding water retention, facilitated by 

alginate content, and cell adhesion, promoted by the peptide-binding domains of gelatin.35 

Moreover, alginate is a polysaccharide formed by the blocks of β-D-mannuronate and α-L-

guluronate that provide a strongly anionic character to the hydrogel ink, which enhances the 

adsorption – and subsequent SERS detection – of oppositely charged molecules through 

electrostatic interactions. The resulting fast and sensitive response to MB would yield a suitable 

spatiotemporal resolution. Our results demonstrate real-time monitoring of drug diffusion in 3D 

cell cultures, through the detection of MB gradients within different environments. 

 

5.2 Result and discussion 

 

5.2 I) SERS performance of nanocomposite scaffolds 

 

Since our objective requires SERS-active inks, we incorporated AuNRs within selected mixtures 

of gelatin-alginate hydrogels. A representative extinction spectrum of the nanocomposite inks is 

shown in Figure 5.1c. The AuNRs loading resulted in an extinction band over 800 nm, which 

closely matched the 785 nm SERS excitation laser wavelength. It is important to keep in mind 

that the SERS-active nanoparticles were embedded in a porous matrix, and therefore we could 

not take advantage of nanoparticle aggregation effects, so that the selection of AuNRs (instead of 

AuNPs) as single NP enhancers was found to better match the laser excitation. Moreover, gelatin 

and alginate are optically transparent at this wavelength, which was required for near-IR light 

penetration and therefore for the acquisition of the SERS signal within the hydrogel (see section 

1.5d). Upon printing, the obtained nanocomposite scaffolds were crosslinked with CaCl2, so 

divalent cations (Ca2+) bind anionic blocks in different chains of alginate, resulting in stable 3D 

grid-like networks with a mesh size between 500 and 700 µm according to SEM measurements 

(Figure 5.1b; note that the dimensions of the scaffold varied from hydrated to drying state).  
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We then evaluated the SERS performance of printed scaffolds, as a function of two key parameters 

of the ink composition: concentration of AuNRs and percentage of alginate (maintaining always 

constant the percentage of gelatin at 10%). MB was thus incubated with the scaffolds at 1 µM 

concentration. It should be noted that prior to using the AuNRs suspension, the nanoparticles were 

gently washed to remove excess CTAB, which might impair cell viability. Furthermore, during 

 

Figure 5.2. a) SERS intensity of 1 µM Methylene Blue (MB) at 450 cm-1 registered by scaffolds (10% gelatin 

+ 2% alginate) with varying concentrations of AuNRs, from bare scaffolds (no nanoparticles) to 1000 µM AuNRs 

solution. Error bars show standard deviations from ten different measurements with three different scaffolds (N=3, 

n=10). b) SERS intensity of 1 µM MB obtained from scaffolds with 500 µM AuNRs and an increasing alginate 

percentage up to 2%, (N=3, n=10). c) SERS intensity (at 450 cm−1) as a function of MB concentration. The yellow 

bar is a linear fit in the quantitative detection region, including a regression line (dotted line) and 95% confidence 

interval. Each data point corresponds to the signal from 10 spectra collected from three different scaffolds (N=3, 

n=10). d) SERS spectra of MB at different concentrations (between 10 nM and 10 µM with tenfold-increase steps) 

in cell media, DMEM 10% FBS. e) SERS intensity of MB at 450 cm−1 (the red line is a linear fit with 95 % 

confidence interval) in the presence of cell media components (N=2, n=10). An excitation laser at 785 nm through 

a 10 objective, with a power of 15.15 mW for 1 s, was used for all measurements. f) 3D Z-stack reconstruction of 

SERS intensity at 450 cm−1 upon MB incubation at 10 µM, recorded with a 785 nm excitation laser through a 20 

immersion objective in confocal mode, with a power of 7 mW and 10 ms of integration time. g) SERS signal of 10 

µM MB solution in cell media (DMEM, 10% FBS) scanned within the area labelled by the red square in the left-

hand optical microscope image. The measured cube presented the following dimensions in X, Y and Z: (1.5 x 1.5 

x 0.5) mm3. The SERS map in the right-hand panel was again acquired with a 20x immersion objective and a 

spatial resolution of 10 in XY and 20 µm in Z. To visualize the 3D image, the different Z-stacks were reconstructed 

to produce a three-dimensional rendering. 
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the cleaning step, comprising centrifugation and resuspension in Mili-Q water, the amount of 

AuNRs was adjusted to reach the desired final concentration within the hydrogel inks.  Increasing 

AuNR concentrations inside the hydrogel was found to directly correlate with higher SERS 

intensities of the MB vibration at 450 cm-1 (C-N-C skeletal bending36). The SERS results in 

Figure 5.2a are consistent with an increase in the number of plasmonic hotspots for Raman signal 

amplification, so that the MB signal was negligible for an ink formulation without nanoparticles. 

On the other hand, when the percentage of alginate was increased from 0% to 2%, with constant 

AuNR concentration, the registered SERS intensities were significantly affected. As illustrated in 

Figure 5.2c, scaffolds containing 2% alginate showed the greatest SERS performance for MB 

detection. Although a low MB signal could be acquired by inks lacking alginate, the influence of 

this polymer component on signal enhancement was even more intense than that observed at 

varying AuNR concentrations. We interpreted these results in terms of electrostatic interactions 

between positively charged MB and the anionic alginate-based ink, facilitating analyte 

penetration through the scaffold. As a consequence, MB molecules are more likely to adsorb on 

the plasmonic nanoparticles embedded within the hydrogel, resulting in a higher SERS signal 

enhancement.37,38 All scaffolds were thus prepared using inks containing 2% alginate and 1 mM 

AuNRs, thereby achieving a fast, sensitive detection of MB signal – no long pre-incubation times 

with the analyte were needed, in contrast with previous studies using different analyte-polymer 

combinations.27 

 

SERS spectra collected from varying MB concentrations showed that semi-quantitative detection 

could be achieved in the range from 1 mM down to 0.1 nM (see Figure 5.2c). Within this range, 

MB concentration could be approximated with SERS intensity, by the empirical Equation 5.1a. 

Interestingly, the negatively charged hydrogel may additionally hinder the interaction of large 

proteins with AuNRs,39 which in combination with the above-mentioned electrostatic attraction 

effect would facilitate a reproducible detection of MB in complex cell media (DMEM, 10% FBS). 

As shown in Figure 5.2d, the characteristic peak of MB at 450 cm-1 dominates the SERS spectra, 

even at low concentrations and when other biomolecules are present at orders of magnitude higher 

concentration than that of MB. We proposed that our scaffolds can be used for direct, real-time 

 

(a) log(ISERS) = 0.31xlog([MB]) + 4.48 

 
(b) log(ISERS) = 0.33xlog([MB]) + 4.39 

 

 

Equation 5.1.  Formulae correlating the concentration of MB with recorded SERS intensity in Mili-Q water 

(a) and in cDMEM (b). [MB] is the molar concentration of MB and ISERS is the SERS intensity (expressed in 

counts). 
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analysis of biological samples with no need for pre-treatment separation and concentration steps, 

which are common requisites for SERS analysis in complex media.40 Although a decreased 

sensitivity was observed as compared to aqueous samples, semi-quantitative measurements could 

be recorded between 100 mM and 10 nM, covering the therapeutic window range for MB, i.e. the 

drug dosage typically used for therapy.41 Therefore, changes in MB concentration would 

 

Figure 5.3. SERS signal decay of MB (10 µM) solution at deeper imaging planes along the Z-axis in gelatin-

alginate (2%) scaffolds: a) Bright-field (reflection) image of the scaffold. b) Confocal MB SERS profile up to 800 

µm scaffold depth, recorded along a 1.26 mm line corresponding to the black line indicated in (a), with a 785 nm 

excitation laser, power of 30 mW, integration time of 10 ms and using a 20x (NA=0.4) air objective. The scanning 

step size was set to 10 µm in XZ. c) Cross section profile of the MB signal averaged within the area marked by the 

white rectangle in (b) showing the SERS intensity with increasing depth. d) MB SERS images recorded from 

different planes (depths) with excitation at 785 nm, laser power of 30 mW, integration time of 10 ms and using a 

20x (NA=0.4) air objective. Scanning step size was set to 10 µm in XZ. The SERS signal was normalized for each 

image individually. Additionally, three different high magnification images were acquired with 63x water 

immersion objective (NA=1) and 785 nm laser: e) MB SERS imaging along Y-axis (scale bar = 4 µm) and f) Z-

axis (profile map) recorded both by 20 mW power and integration time of 10 ms and scanning step sizes of 1  µm 

in XY and 5 µm in Z (scale bar = 9 µm). g) High resolution SERS imaging of MB by 3D reconstruction of a Z-

stack. The images were recorded with a 785 nm laser, power of 10 mW, integration time of 10 ms and with a 

scanning step size of 0.333 µm in XY and 2 µm in Z. The dimensions of the recorded cube were (25 x 25 x 60) 
µm3. 
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correspond to changes in SERS intensity in a predictable manner, which in turn was found to 

follow a slightly different trend (see Equation 5.1b), as illustrated in Figure 5.2e. 

 

We show in Figure 5.2f the result of scanning the SERS signal of 10 µM MB (within the 

therapeutic range for cancer treatment) in Mili-Q water. 29,41 A confocal Raman microscope with 

a 20x water immersion objective and scanning steps of 13.3, 10 and 20 µm in X,Y and Z, 

respectively, were employed for precise MB 3D screening throughout a total volume of (2.0 x 1.5 

x 0.3) mm3. The intensity recorded along the XY-plane in Figure 5.2g showed that constant 

intensity values were also obtained for 10 µM MB in cDMEM, thus not only accounting for a 

homogenous distribution of MB, but also of AuNRs within the hydrogel at this measurement scale 

– 10 µm of spatial resolution. On the contrary, a SERS intensity decay was registered at deeper 

imaging planes, due to laser spot broadening, decrease of collection efficiency and other factors, 

as illustrated in Figure 5.3a-c. Generally, whereas the highest SERS intensity was observed close 

to the surface of the scaffold - depicting its morphology, the acquired signal decreased as the focus 

of the laser is located deeper in the sample; small alterations of this behavior can be due to local 

structure inhomogeneities and/or to the presence of bigger aggregates within the scanned area. 

Interestingly, large pores and cavities within the scaffold below the surface can still be imaged by 

SERS. The morphology of the scaffolds at different heights was also investigated in more detail 

in Figure 5.3d by recording different planes with a step size of 100 µm in Z-axis, up to a depth 

of 0.5 mm. A higher spatial resolution could be otherwise obtained using a 63x water immersion 

objective, allowing us to visualize the local AuNR hot-spots distribution along the scaffold 

(Figure 5.3e-f). However, this strategy restricted imaging to much smaller (µm -sized) areas, since 

longer measurement times were required to obtain high spatial resolution at large scales.  

 

5.2 II) Nanocomposite scaffolds as cell culture platforms 

 

Aiming at the integration of the nanocomposite scaffolds into 3D cell environments, we 

characterized the rheological behavior of the hydrogels to be used as inks for 3D printing, 

followed by the biocompatibility and mechanical stability of the scaffolds for extended periods 

of time (more than one week in vitro). On one hand, the results presented in Figure S5.1 of the 

Appendix section demonstrated a shear-thinning behavior of the inks within the usual shear rate 

range for 3D printing, thus rendering them readily extrudable. These mechanical properties 

facilitated the injection of inks with high spatial resolution owing to their viscous behavior upon 

shear stress application, which makes them flow under modest pressure and set rapidly at the 

target site. In addition, the printed scaffolds offered consistent stability over time: maximum 

swelling was recorded after 7 days of incubation in cDMEM and hydrolytic degradation was only 

noticeable after 14 days of incubation.  
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On the other hand, MCF-7 cancer cells, which exhibit features of mammary epithelium, were 

selected as the biological model based on their well-described behavior in 3D cell cultures and 

their sensitivity to MB therapy.29,42 Using a purposely devised cell culture device was essential, 

in this scenario, toward successfully implementing a homogenous cell distribution within 3D-

printed plasmonic scaffolds. The system represented in Figure 5.4a comprised a central chamber 

where the supporting scaffolds could be fixed, while using a commercial extracellular matrix 

 

 
Figure 5.4. a) Scheme of a custom-made device to integrate nanocomposite scaffolds within a 3D tumor cell 

environment, comprising MCF-7 cells and Matrigel. The presence of a lateral reservoir (see inset) allows for 

controlled MB delivery. b) 3D reconstruction of confocal images of growing MCF-7 cells embedded in Matrigel 

within the supporting scaffold. Dimensions XYZ = 2700 x 2700 x 300 µm. c) Higher magnification image showing 

cancer cell clusters formed under these conditions. Dimensions XYZ = 900 x 900 x 300 µm. d) MCF-7 cell 

aggregates embedded in Matrigel were formed in 3D after 3-4 days in vitro within the nanocomposite scaffold. 

MCF-7 cells with eGFP were labeled with NucBlue for visualization of individual nuclei. 
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(Matrigel) to uniformly sustain the cells. A lateral reservoir was incorporated into the device 

(Figure 5.4a, inset) to challenge the 3D cell environment with reproducible MB gradients. 

Meanwhile, the media well, located above the scaffold/hydrogel chamber, provided the necessary 

nutrients to the 3D culture and supported the use of dip-in immersion objectives during SERS 

measurements (dimensions of the device can be found in the section 6.5). Following this 

approach, MCF-7 cells were efficiently seeded in the device and remained viable for several days, 

forming tumor-like cell aggregates after 3-4 days in vitro, throughout the entire 3D extracellular 

matrix (see confocal microscopy images in Figures 5.4b,c). Moreover, the labelling of individual 

nuclei in Figure 5.4d confirmed the formation of such aggregates with more than one cell – 

observing multiples nucleus, stained in blue, in confocal images of cell aggregates. 

 

 
Figure 5.5. a) Schematic view of the experimental setup to monitor MB diffusion by SERS. Two neighboring areas of 

the plasmonic scaffold, separated from each other by 1 mm in X, were selected to register the SERS intensity at successive 

times upon MB administration. Maps were recorded with a 785 nm laser through a 20x objective with laser power of 15 

mW, 10 ms integration time and a step size of 16 µm. Scale bars: 200 µm b) Time-resolved mapping, every 20 minutes, 

of the MB-SERS signal in the XZ plane (profile). MB (10 µM) was delivered to the scaffold at the compound reservoir 

incubated in Mili-Q water. SERS profiles were measured at laser excitation of 785 nm with a power of 15 mW, integration 

time of 10 ms and a scanning step size of 10 µm, using a 20x air objective (NA=0.4), scale bars: 200 µm. c) SERS 

mappings were registered through successive times upon MB (10 µM) administration from the top media well. SERS 

signals were recorded with a 785 nm excitation laser through a 20x immersion objective in confocal mode, with a power 

of 7 mW, 50 ms of integration time, and a step size of 10 m. Scale bars: 200 µm 
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As a first example of application, we assessed the potential of the deployed system to visualize 

MB diffusion. In these experiments, scaffolds were placed within our home-made devices, 

followed by addition of MB from the lateral reservoir. As illustrated in Figure 5.5a, the localized 

drug delivery created a MB gradient that could be imaged by SERS. We initially selected two 

neighboring areas in the plasmonic scaffold, separated by 1 mm from each other, to register SERS 

intensity upon MB administration (10 µM). The area located closer to the compound reservoir – 

labeled as 1 – showed a rapid response to MB (shorter than 30 minutes), whereas the farthest area 

-labeled as 2- exhibited a significant delay (one hour) to reach a comparable signal. These results, 

in addition to those presented in Figure 5.5b for X and Z axis, demonstrated a suitable spatio-

temporal resolution in SERS imaging, which may account for MB gradients along the scaffold, 

in three dimensions. Of note, different gradients in X and Z axis were created if the MB was 

administrated from the top media well (Figure 5.5c), rather than at the compound reservoir.  

 

We then analyzed the impact of the ECM, in this case Matrigel, and of the presence of cells, on 

MB diffusion. To this end, we performed a similar experiment (localized drug delivery from the 

compound reservoir), but incorporating Matrigel, either with or without embedded MCF-7 cells. 

Upon MB administration, we scanned sufficiently large areas (8 mm x 3 mm) of the scaffold at 

different incubation times (1h, 2h and 24 h). The corresponding maps in Figure 5.6a unveiled the 

formation of MB gradients (at different conditions and times) with meaningful and varying SERS 

profiles. In contrast to the control conditions, significantly restricted MB diffusion occurred in the 

presence of both Matrigel and MCF-7 cells. We observed in the SERS profiles of Figure 5.6b 

that such a hindered diffusion strongly affects MB distribution profiles at early time points – 1 

and 2 hours. Notwithstanding, a similar equilibrium situation (homogenous distribution of MB 

along the X and Y axes) was reached for all experimental conditions within 24 hours, meaning 

that no significant variations were registered in SERS intensities at different spots of the same 

scaffolds (Figure 5.6c). Similar effects are shown in Figure 5.6e, in which the administration of 

MB was directly performed from the top of the media well, so as to establish a gradient along the 

Z-axis. Using the confocal microscopy mode, we additionally observed that the presence of MCF-

7 not only hindered MB diffusion but also originated a more heterogeneous distribution along the 

XZ-plane, clearly noticeable in comparison with control conditions in Figure5.5c. Besides, the 

total SERS intensity at 24 hours was consistently lower in experiments with cells (Figure 5.6d). 

To clarify these results, we investigated whether MCF-7 cells were effectively taking up MB from 

the extracellular milieu, thereby affecting its diffusion. In this context, MB could also serve as a 

fluorophore probe with emission around 690 nm, so that cells uptaking MB would display higher 

emission intensities at this wavelength. We thus interrogated MCF-7 cells upon Matrigel 

depolymerization and subsequent cell retrieval, via flow cytometry (Figure 5.6f). To do so, the 

obtained cell solution was measured using a 695/40 filter (PerP-CY5) that discerned between cells 
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with or without intracellular MB. In this manner, we could measure an increase in cell 

fluorescence at higher MB concentrations, monitoring thereby a dose-dependent accumulation of 

 
Figure 5.6. a) MB diffusion patterns along the X-axis in pristine nanocomposite scaffolds, scaffolds embedded 

in Matrigel, and Matrigel loaded with high cell density (2x106 cells/mL). The SERS signal (at 450 cm-1) was 

acquired at indicated times (1 hour, 2 hours and 24 hours). An excitation laser at 785 nm through a 10x objective, 

with a power of 15.15 mW for 0.1 s was used for all measurements. Scale bars: 600 µm. b) Diffusion profiles of 

MB along the X-axis after 2 hours of its administration. Each point represents the average and the standard deviation 

obtained from SERS intensities along the Y-axis. The step size is 100 m. c) Plot comparing the differences in 

SERS intensity between two areas of the scaffold located at 3000 m away in the X-axis from each other. Each 

point denotes the average value from three independent experiments. d) Average of the SERS intensity at 450 cm-

1 after 24 hours of MB administration (10 M) at the compound reservoir, once equilibrium was reached. Each data 

point corresponds to the average signal from 200 collected points within two independent experiments (n = 200, N 

= 2). e) SERS profile maps (XZ plane) of the nanocomposite scaffold within Matrigel and cell-containing Matrigel, 

after MB administration from the top media well. Confocal SERS mappings were recorded with a 785 nm excitation 

laser through a 20 water immersion objective, 7 mW power, 50 ms integration time, and a step size of 10 µm. 

Scale bars: 200 µm. f) Flow cytometry analysis of the uptake of MB by cells retrieved from the 3D culture. The 

fluorescence from MB increased in a dose-dependent manner. The gating indicates positive and negative cell 

populations after applying the PerCP-Cy5.5 emission filter (670/40). 
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MB inside MCF-7 cells. Finally, on the basis of the recorded SERS mappings, we interpreted the 

creation of different diffusion profiles as the result of 3 main factors: drug diffusivity, extracellular 

matrix permeability and intracellular accumulation of MB.43,44 

 

5.2 III) Monitoring drug distribution and cell death  

 

We finally sought to monitor the SERS signal at different MB concentrations over time, and their 

consequences on cell viability. It should be noted that the use of MB as an anti-cancer drug 

requires an extra step of drug activation by light exposure at an appropriate wavelength (close to 

640 nm).45 Upon illumination, the photosensitizer (MB molecules) would start generating reactive 

oxygen species (ROS), eventually inducing cell death (see Figure 5.7a). In the experiments 

discussed so far, MB was applied without light activation (dark conditions) so that no significant 

cytotoxic activity was observed. This was further tested by cell viability studies with different 

 
Figure 5.7. a) Sketch of the photoactivation procedure of MB by irradiation with 640 nm light, generating reactive 

oxygen species (ROS) from O2. b) Luminescence output 24h after MB challenging at two different concentrations 

(5 µM and 20 µM), with or without red-lamp irradiation for 1 hour. For this viability assay, cell supernatants were 

mixed with CellTiter-Glo reagent. The resulting luminescence, which correlates with the number of live cells, was 

recorded by means of a 965 Luminometer. c) ROS generation by MB (20 µM) after 60 min of red lamp illumination 

(640 nm). The production of ROS acted by reducing ABDA molecules, present in the solution at 0.2 mM, which 

eventually leads to a decay in the absorbance at 380 nm. d) Viable cells under control conditions, 1 µM, 20 µM of 

MB after 24 hours of MB administration at the compound reservoir; MB was previously activated by red lamp 

illumination for 60 min. The images were acquired by confocal microscope and then processed to represent in two 

dimensions the Z-stack projection of 3D live confocal images and quantify the distribution of GFP (green) and PI 

(red) signal. Lines indicate columns into which the images were divided to study the measured area. The obtained 

results did not display a well-defined gradient of cell death along the X-axis 
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concentrations of photoactivated MB (Figure 5.7b). Specifically, we compared the effects of MB 

on cell viability when the light photoactivation step occurred before or after drug administration 

to the cell culture. Non-irradiated MB had a negligible impact on cell viability at this 

concentration range, showing similar viability to that obtained for control conditions. On the 

contrary, 20 µM of illuminated MB exhibited an intense cytotoxicity in both photoactivation 

procedures, owing to the generation of oxidizing species. For assessing the formation of such 

ROS, we traced the absorbance of a 9,10-Anthracenediyl-bis(methylene)dimalonic acid (ABDA) 

solution, a dye sensitive to the presence of reactive species (Figure 5.7c). Unlike under dark 

 
Figure 5.8. a) SERS intensity at increasing doses of MB (control, 1 µM and 20 µM), registered by scaffolds at 

different points from the reservoir after 2 h (upper panel) and 24 h (lower panel). Gray lines represent the standard 

deviation from 6 spectra (N=3 samples, n=2). An excitation laser at 785 nm through a 10 objective, with a power 

of 15.15 mW for 1 s, was used for all measurements. b) Luminescence output 24 h after MB administration 

monitored with CellTiter-Glo 3D Cell Viability Assay. Error bars indicate the standard derivation of multiple wells 

measured from the same experiment. c) Flow cytometry analysis representing quantified single cells labeled with 

PI after treatment with 1 µM and 20 µM MB. The gating indicates the positive and negative cell population after 

applying a PE emission filter (585/42). d) Maximum intensity projection (XY) images of a representative live 

confocal image. 3D cells growing in Matrigel and within the nanocomposite scaffold were labeled with PI for 

visualizing cytotoxic effects 24 h after dispensing 1 µM MB. Images correspond to a 400 µm thick Z-stack. Scale 

bar: 500 µm. e) Images were acquired after 2 h MB of treatment to visualize the cytotoxicity gradient. Lines 

indicate columns into which the images were divided to study the distribution of PI (red) and GFP signals (green). 

f) Automated quantification of cell death percentage for control and 20 µM samples, segmented by columns, dotted 

line indicates the profile of cell death with the distance. 
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conditions, a decay in ABDA absorption could be readily recorded upon MB illumination, 

indicating thereby the consistent formation of ROS species in the solution.  

Once we had screened MB photoactivation, we monitored both the distribution of MB and its 

cytotoxicity by challenging 3D cell cultures with increasing doses of photoactivated MB solution 

(control, 1 µM and 20 µM). Free MB was illuminated by a red-light lamp prior to administration 

from the lateral reservoir of the cell culture device. Subsequently, drug diffusion was imaged 

through the SERS fingerprint of MB at two different time points (2 h and 24 h), followed by 

evaluation of cell viability at the end of the experiment (24 h). The patterns of MB distribution 

through the scaffold at the selected times are plotted in Figure 5.8a. As expected, the amount of 

MB was found to dictate both the recorded SERS intensities and the number of dying cells. 

Whereas no SERS signal was detected upon addition of 1 µM MB at far areas – more than 5 mm 

– from the lateral reservoir during the first two hours, high SERS intensity could be readily 

 
Figure 5.9. Quantification of cell viability (%) under control conditions and with 20 µM of MB delivered by 

means of the following approach. Cells were challenged with MB, applied at the lateral reservoir for 2 hours. Then 

cell media containing the diffusing compound was replaced, 3D images from each sample were computationally 

segmented in columns separated by 0.5 mm. Error bars show the standard deviation of four independent cell assays. 

The yellow and purple bars are linear fits showing the correlation of cell cytotoxicity (%) with the distance (mm) 

in control and 20 µM of MB, respectively. Both bars include a regression line (dotted line) and 95% confidence 

interval. In addition, the corresponding Pearson´s correlation coefficients (r) between the two variables are 

indicated in the inset. The images in the lower panels display the automated quantification of cell viability 

percentage from illustrative control and 20 µM.  

133



 

 

registered when 20 µM MB was administrated. Quantification of cell viability by CellTiter-Glo 

test (Figure 5.8b) and flow cytometry (Figure 5.8b) after recovery of cellular aggregates from 

Matrigel, demonstrated the dose-dependent cytotoxic effect of MB at both population and single-

cell level. Both viability studies revealed extensive cell death when challenging cells with 20 µM 

of photoactivated MB, registering a decay of luminescence as well as a higher percentage of 

propidium iodide (PI) positive cell (see section 6.7 for further details). Likewise, live confocal 

imaging (Figure 5.8d) was conducted by following dead cells labelled with PI. Images of the 

entire culture volume around the scaffold were captured to examine the spatio-temporal location 

of affected cells and to correlate drug gradients with the distribution of dying cells in 3D. The 

images obtained by 3D live confocal microscopy were later processed to create two-dimensional 

representation of the Z-stack projection and automatize the recognition of PI (red) and green 

fluorescent protein (GFP, green) signals. 

 

Initially, cytotoxic gradients were attempted by fluorescent labeling, 24 hours after the addition 

of photoactivated MB. However, homogeneous cell death across the 3D culture was observed at 

this time by confocal microscopy imaging (Figure 5.7d). This result is in agreement with SERS 

results for drug distribution over 24 hours (Figures 5.6a and 5.8a), showing uniform drug 

distribution throughout the scaffold. Therefore, we developed an alternative approach to enhance 

the cell death gradient, based on our previous MB transport studies. This strategy consisted of 

replacing cell media 2 hours after MB administration from the lateral reservoir, thereby rinsing 

extracellular MB from the 3D culture. By subsequent irradiation with the red lamp, we 

photoactivated primarily MB that had been uptaken by cells, as well as any remaining MB present 

in the area closest to the reservoir upon the initial 2 hours of exposition. Finally, automated 

quantification of fluorescence images after 24 hours (Figure 5.8e) revealed a well-defined 

gradient of dying cells along the X-axis (Figure 5.8f) - comparable to the distribution of the MB 

after 2 hours. For these experiments, confocal images were computationally divided into columns 

separated by 0.5 mm, to better analyze and represent the cell viability along the measured area. 

In contrast, the results obtained under control conditions or without extracellular drug removal 

showed no correlation between proximity to the compound reservoir and cell viability (see Figure 

5.9 for statistical analysis).  

 

5.3 Conclusions 

 

The present study provided compelling evidence supporting the use of plasmonic scaffolds as 

suitable SERS platforms for drug transport monitoring, potentially fostering a new generation of 

SERS sensors. As discussed in section 1.5d, the selected alginate-gelatin ink not only acted by 

creating a 3D polymeric network, but also by enhancing the robustness of the whole sensor over 
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time. The combination of high stability, through restricted nanoparticle aggregation, along with 

the high nanoparticle accessibility attained, thanks to the features of high porosity and water-

retention, supported the excellent performance of the nanocomposite scaffolds for in situ 

measurements. Moreover, by integrating 3D-printed composite scaffolds within a customized cell 

culture device, we could achieve a closer recreation of different compound gradients. Arguably, 

its specific design effectively assisted in the process of monitoring different parameters of drug 

diffusion, towards a better understanding of its cytotoxic effect on cell culture model. In particular, 

the combination of homogenous cell distribution along the scaffold with the selection of MB as a 

photoactivated drug candidate allowed us to demonstrate that label-free SERS studies can be 

performed in 3D, under various conditions. Of note, the real-time SERS images acquired clearly 

evidenced the value of this system to study the extracellular environment in vitro, thereby 

deciphering the biochemical and biophysical factors involved in drug transport, which might 

harbor therapeutic relevance. 

 

As already mentioned, a particular benefit offered by this technology is that the plasmonic 

structure sustaining 3D cell growth can simultaneously function as the SERS sensor, thereby 

facilitating the acquisition of information in the near vicinity of cells. This approach is foreseen 

to provide devices where different cell types, or even human explants (e.g. organoids grown from 

patients’ tumor samples) could be monitored over extended periods of time, with high spatial 

resolution. As a result, the effect of drugs could be tested on these 3D-printed devices, so that 

SERS analysis would reveal the response of cultured cells against each treatment. Not only that, 

further improvements in such nanocomposite sensors will be oriented to also monitoring the 

released secretomes upon specific treatments. Overall, the prospect of combining this technology 

with the analysis presented in Chapter 4 may laid the foundation to the final expansion of SERS 

into precision medicine. 

 

In a different direction, additional complexity could be added, by incorporation of AuNPs carrying 

Raman-active molecules sensitive to different stimuli with well-defined SERS peak shift or 

intensity changes at each condition, so that environmental changes such as pH or hypoxia can be 

recorded, again with spatial and temporal resolution. In this scenario, we have recently obtained 

promising data for the monitoring of local pH in encapsulated cells.46 In this preliminary step, the 

polymeric component acted as a microcontainer for the cells, instead of adopting the previous 

grid architecture. By registering the intensity changes for each protonation state of 4-MBA 

adsorbed on gold nanostars, we could screen variations in extracellular pH that correlated with 

the overall state of the embedding cells. We envisage that, in addition to pH, other parameters 

influencing several cell mechanism and processes could be robustly monitored by the vibrational 

changes derived from their interaction with pre-tagged Raman reporters (see section 1.5d for 
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further explanation), or even introducing other types of nanoparticles (such as luminescent 

nanoparticles based on rare-earth doped materials) to measure small temperature changes at 

cellular scale.47 
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CHAPTER 6 

“Experimental Methods” 

 

 
In this chapter, we describe the materials and methods utilized throughout this thesis, ranging 

from the synthesis of nanoparticles to cell viability tests. To favor readability, we have classified 

the methods in different sections according to the field of expertise, rather than following the 

order of the chapters in which they are used. Thus, for instance, the section describing the 

fabrication of plasmonic substrates includes both substrates on flat glass supports (Chapter 2) and 

nanocomposite scaffolds (Chapter 5), in which the nanoparticles are embedded within a hydrogel-

network. 
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6.1 Chemicals 

 

The reagents required for AuNPs synthesis and SERS substrates fabrication were purchased as 

indicated: HAuCl4·3 H2O (≥99.9%, trace metal basis) was purchased from Alfa Aesar.  Sodium 

borohydride (ReagentPlus®, ≥99%, NaBH4), L-ascorbic acid (ACS reagents, ≥99%, AA), 

poly(ethylene glycol) methyl ether thiol average Mn 6000 (PEG-6K), sodium hypochlorite (6-

14% active chlorine, Emplura®), cetyltrimethylammonium chloride (≥98%, CTAC),  

poly(diallyldimethylammonium chloride) (PDDA, average Mw 100 000−200 000), poly(acrylic 

acid, sodium salt) (PAA, Mw 15 000), hydrogen peroxide (H2O2, 28%), sulfuric acid (H2SO4, 

98%), ethanol (EtOH, 99.8%), 5-bromosalicylic acid ( 90%, 5-BrSA) were purchased from 

Sigma-Aldrich. All solutions, except HAuCl4 and CTAB, were prepared immediately before use. 

Purified Milli-Q water was used in all experiments (Millipore, 18.2 MΩ cm). Glassware (Menzel-

Gläser 24x24 #1) was cleaned with aqua regia and rinsed extensively with Milli-Q water before 

use. Poly-methylmethacrylate (PMMA A2 950) was purchased from EM Resist and used as 

supplied. Poly lactide co-glycolide 75:25 25000 Mn, acid endcap and poly lactide co-glycolide 

95:5 25000 Mn, acid endcap, were purchased from Polysciences.  

 

Commercial metabolites and probe molecules: 4-mercaptobenzoic acid (90%, 4-MBA), 4-

nitrothiophenol (80%, 4-NTP), (thiabendazole (> 99% powder, TBZ), Crystal Violet (dye content 

> 90%) Methylene Blue (> 95%, MB), and nicotinamide (> 98% powder, NAm), were purchased 

from Sigma-Aldrich. Commercial samples of Kynurenine (25 mg, Kyn), Tryptophan (1g, Trp), 

Adenosine triphosphate (1g, ATP), adenosine (1g, Ado), adenine (1g, A), hypoxanthine (1g, HX), 

inosine (1g, Ino), IFN-ϒ, staurosporine (STP), hemin,  and erastin drug were supplied by Sigma-

Aldrich.  

 

For cell culture, cell media was Gibco Dulbecco's Modified Eagle Medium (DMEM) (Thermo 

Fisher) with 10% (v/v) of fetal bovine serum (FBS), 1% (v/v) of Penicillin-Streptomycin 

(PenStrep, 11548876,), 1% Trypsin-EDTA solution were purchased from Thermo Fisher. 

Biopolymer hydrogels for 3D cell culture: Matrigel from Corning™, and collagen bioink from 

rat tale type, was purchased from Sigma. Gelatin from porcine skin and sodium alginate from 

Sigma. Salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) from Thermo 

Fisher, Propidium iodide (PI) and Cytocalcalcein, from Sigma-Aldrich. Cell recovery solution 

was from Corning, with CellTiter-Glo 3D Cell Viability Assay kit. Polydimethylsiloxane 

(Sylgard 184) for cancer-on-a-chip devices was bought from Dow Corning. 
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6.2 Synthesis of Gold Nanoparticles  

 

Citrate-AuNPs (30 nm): Citrate-stabilized Au NPs (30 nm in diameter) were synthesized 

according to a previously reported seeded growth method.1 150 mL of 2.2 mM trisodium citrate 

water was heated to boiling under vigorous stirring. After 15 min, 1 mL of 25 mM HAuCl4 was 

injected into the boiling reaction mixture and incubated for 10 min, and then the reaction mixture 

was cooled to 90 °C. Subsequently, 1 mL of a 25 mM HAuCl4 aqueous solution was injected into 

the reaction mixture. After 30 min, the addition of HAuCl4 was repeated. After 30 min, the sample 

was diluted by extracting 55 mL of sample and adding 53 mL of water and 2 mL of aqueous 60 

mM sodium citrate solution. This final solution was used again as a seed, and the process (adding 

2mL of 25 mM HAuCl4, 1 mL every 30 min and subsequent dilution) was repeated again six times 

to yield 60 nm Au NPs. To remove the excess of reactants, the colloidal dispersions were 

centrifuged at 1520g for 20 min and redispersed in the same volume of water 

 

PEG-AuNPs (30 nm): Gold nanospheres were synthesized by seeded growth, as previously 

described.2 First, 2 nm seeds were prepared by adding 50 µL of a 0.05 M HAuCl4 solution to 5 

mL of a 100 mM CTAC solution. Subsequently, 200 µL of a 0.02 M NaBH4 (0.75 mg/mL) was 

added under vigorous stirring. After 3 min, the mixture was diluted 10 times with a 100 mM 

solution of CTAC. The seeds were then overgrown to 10 nm nanospheres. For this purpose, 900 

µL of seeds was added to a mixture of 40 µL of a 0.1 M AA solution and 10 mL of a 25 mM 

CTAC solution. Next, 50 µL of a 0.05 M HAuCl4 solution was added under vigorous stirring. The 

10 nm seeds showed a localized surface plasmon resonance (LSPR) at 520 nm. The dispersion 

was left undisturbed for at least 1 h. Thereafter, the nanospheres were centrifuged at 19300 g and 

washed at least 3 times with CTAC 25 mM, to obtain a narrower size distribution prior to 

overgrowth into larger nanospheres. Therefore, 125 µL of 10 nm nanospheres was added to a 

solution containing 40 µL of a 0.1 M AA solution and 10 mL of a 25 mM CTAC solution. 

Subsequently, 50 µL of 0.05 M of HAuCl4 was added. The resulting nanoparticles had rough 

edges, which were removed by oxidative etching. To this end, 10 µL of a dilute solution of sodium 

hypochlorite (1 to 1.5% of available chlorine), and 10 min later, 5 µL of a 0.05 M solution of 

HAuCl4 was added under stirring. After 30 min, the nanospheres were centrifuged at 1600 g for 

15 min and redispersed in 500 µM CTAC. The particles were then concentrated to 5 mM Au0 in 

a 500 µM CTAC solution. PEG functionalization was carried out by addition of 1 mg/mL of 

PEG6K and stirring overnight at room temperature. Excess of unbound PEG was removed by 4-

fold centrifugation at 1600 g for 15 min and redispersion of the sedimented NPs (30 nm) in CTAC 

500 µM. 
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AuNRs (plasmon band at 800 nm): AuNRs were prepared following a well-established 

procedure.3 First, seeds were prepared following the standard CTAB/NaBH4 procedure at 30 °C. 

25  µL of a 50  × 10−3 M HAuCl4 solution was added to 4.7 mL of 0.1 M CTAB solution and the 

mixture was stirred for 5  min. Then, 300  µL of a freshly prepared 10 ×10−3 M NaBH4 solution 

was injected under vigorous stirring. The seeds were kept for 30 min at room temperature until 

excess borohydride was consumed. For the preparation of AuNRs, 45  mg of 5-BrSA was added 

to 25 mL of 0.1 M CTAB. After complete dissolution of 5-BrSA, 480 µL of 0.01 M AgNO3 was 

added and the solution stirred for 15 min at room temperature. Then, to perform the pre-reduction 

of Au (III) to Au (I), 500 µL of 50 × 10−3 M HAuCl4 solution was added to the mixture. Pre-

reduction was monitored by UV–vis spectroscopy until the value of the absorbance at 396 nm 

was 0.8–0.85, to obtain AuNRs with a longitudinal plasmon band around 800 nm. At this time, 

130 µL of 100 × 10−3 M AA solution was added and the solution turned colorless within a few 

seconds. After 30 s, 80 µL of seed solution was added under vigorous stirring. After 30 s, the 

stirring was stopped, and the mixture was left undisturbed for 4 h. The resulting solution was 

centrifuged at 8000 rpm for 30 min to purify the AuNRs.  

 

6.3 Fabrication of plasmonic substrates 
 

LBL methodology: The production of randomly deposited AuNP multilayers was based on the 

well-known layer-by-layer (LBL) assembly methodology (see Figure 6.1a).4 Following this 

protocol, glass slides were sequentially immersed in polyelectrolyte solutions of PDDA 

(1 mg/mL, 0.05 M NaCl), PAA (1 mg/mL, 0.05 M NaCl), and PDDA (1 mg/mL, 0.05 M NaCl) 

for 15 min. AuNP layers were then formed by immersing the polyelectrolyte-coated glass slides 

in a 0.9 mM citrate-stabilized 30 nm AuNP solution for at least 3 h, followed by rising with water 

and drying under nitrogen flow. For the deposition of a second and third AuNP layers, the same 

procedure described above was repeated.  

 

Template assisted self-assembly: a 2 µL droplet of nanoparticle dispersion (50 mM of PEG-

AuNPs of 30 nm, calculated from the absorbance at 400 nm, 66% EtOH, 200 µM CTAC) was 

casted on a nanostructured PDMS stamp. Soft PDMS molds were replicated by pouring a 10:1 

mixture of prepolymer and curing agent either onto patterned silicon masters or OrmoStamp® 

(Microresist Technology) replica thereof (that were kindly provided by Nanopto group, 

ICMBA).4 The PDMS stamp featured a square lattice of 270 nm holes, with a center to center 

spacing of 500 nm or 600 nm (according to the final use and the laser excitation employed for 

SERS/SERRS). After 40 s, a glass slide (24x24 mm2 and a thickness of 0.13 mm - 0.16 mm) was 

placed on top of the droplet, creating a NP dispersion film between the glass substrate and the 
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PDMS stamp. After 2 h and complete evaporation of the solvent, the glass slide was carefully 

lifted off the PDMS template, resulting in transfer of the plasmonic superlattice onto the glass 

substrate, displaying the inverse shape of the nanostructured mold, as depicted in Figure 6.1b. 

Immobilization and cleaning of the nanoparticle clusters onto a glass slide was achieved by 

oxygen plasma treatment for 20 s, followed by UV-ozone cleaning (ProCleanerTM chamber) for 

5 minutes. The oxygen plasma process was operated using a Diener Electronic nanoplasma 

cleaner at 100 W and 0.4 mbar oxygen pressure. We observed that these cleaning treatments may 

alter the final SERS results, so it was crucial to optimize the exposure time and check the 

absorbance spectra of the substrate before and after cleaning (reported in Figure 6.2). 

 

Drop-casting: To fabricate substrates with a random distribution of AuNPs, as a simple strategy 

to rapidly produce SERS sensors on solid supports, a dispersion of AuNPs (2 mM) in CTAC (500 

𝜇M). 50 µL was drop-casted on a glass substrate, pre-cleaned with a dilute solution of Helmanex 

II, and dried afterwards for 3 hours at room temperature. 

 

Ink preparation for 3D-printed nanocomposite scaffolds: Nanocomposite inks were prepared 

by mixing 1 mL of a 20 wt%. aqueous solution of gelatin with 40 mg of alginate and 1 mL of 

aqueous AuNR solution with a concentration of 2 mM in gold. The samples were thoroughly 

mixed using a Thinky Mixer at 3500 rpm for 1 min. Importantly, AuNRs were washed, by 

Figure 6.1. a) Schematic view of the methodology followed for LbL assembly of citrate gold nanospheres into 

random multilayers on glass substrates. b) Graphical representation of the methodology followed for the deposition 

of ordered 2D superlattices of gold nanospheres, templated by topographically structured PDMS templates. The 

lattice parameter, i.e. the distance between AuNSs clusters was denoted as “L”. 
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centrifugation (8000 rpm) and resuspension in in Mili-Q water, prior to their incorporation to the 

ink formulation to remove excess CTAB. 3D printed scaffolds were prepared using a RegenHU 

3D Discovery Bioprinter at room temperature using a pneumatic pressure-driven cartridge with a 

0.2 mm diameter needle, at a pressure of 0.2 MPa. After printing, the scaffolds were immersed in 

a calcium chloride bath for 5 minutes, to cross-linke the polymers in the alginate, attaching them 

to each other at many points. 

 

6.4 Fabrication of platforms for cell culture and SERS analysis 

 

Cancer-on-a-chip (silicone chamber): To print the cancer-on-a-chip device, a silicone ink was 

prepared using an elastomer base (Shin-Etsu Silicone) with curing agent at a 10:1 volume ratio 

and the mixture was loaded into a 10-mL clear syringe (PSY-E; Musashi Engineering, Ltd.) and 

printed with a diameter of 2 cm by a multi-headed 3D Discovery bioprinter (RegenHU, 

Switzerland) on a glass micro slide (26x76 mm) (see Figure 6.3 for optical image of the device). 

 

Microfluidic chip for flowing analytes: For the microfluidic chip, the channels were etched into 

PDMS Sylgard® 184, purchased from Sigma-Aldrich. Microdevices were fabricated according 

to a previously reported protocol.6 Soft lithography was used to develop positive SU8 240-µm 

relief patterns with the desired geometry on a silicon wafer. Subsequently, PDMS was mixed at 

a 10:1 weight ratio of base to curing agent. The mixed solution was poured into the SU8 master 

and cured in the oven. Finally, the replica-molded layer was trimmed and perforated. The PDMS 

devices were then exposed to a plasma cleaning treatment (2 min) and subsequently bound to the 

Figure 6.2. Vis-NIR spectra, normalized to 400 nm, of the corresponding plasmonic substrates obtained after 

different times of cleaning (plasma cleaning, UV-O3), black spectra correspond to the result obtained after an 

optimized cleaning procedure (5s plasma cleaning, 5 min UV-O3), whereas red spectra were measured after longer 

times, resulting in excessive cleaning and depletion of the plasmonic properties. The observed changes correlate 

with different SERS enhancing ability of hypoxanthine at 10-4 M. SERS measurements were performed with a 50× 

objective, 20 s of acquisition and a maximum power of the 785 nm laser of 8.50 mW. 
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plasmonic substrate by applying a soft pressure on the device with a sterile pair of tweezers, 

finally presenting a capacity of 10 µL. The flow in the microfluidic channel was generated using 

a Cetoni Nemesys syringe pump with a low-pressure module. The flow was set at 10 mL/h and 

the outlet was connected to another syringe pumping at the same flow rate of 10 mL/h. 

  

Diffusion device fabrication to be combined with nanocomposite scaffolds: Custom diffusion 

devices were designed with Autodesk Inventor Software and fabricated using an Ultimaker 2 

printer. The devices were printed with black Polylactic acid (PLA) with 90% filling density, 

employing a 0.4 mm Print Core AA nozzle (9529, Ultimaker) heated to 210 ºC prior to cell 

culture, PLA devices were rinsed with distilled water, dried, and sterilized with UV light. 

Biocompatible adhesive was employed to bind the devices to the cover glass substrate with the 

scaffold attached. The dimensions of the device can be found in Figure 6.4. 

 

6.5 Fabrication of SERS substrates covered by a polymer sheathing layer 

 

Fabrication of polymer films: Commercially available, solid PLGA (75:25 or 95:5) was 

dissolved in ethyl acetate by mechanical stirring of PLGA granules in the selected solvent for 1 

hour. Stock solutions were prepared at 12 wt% in ethyl acetate and kept in the fridge at 8°C, each 

vial was wrapped with parafilm© to avoid solvent evaporation. PLGA films were created by spin 

coating (Laurell WS-400B-6NPP LITE) the 12 wt% PLGA/ethyl acetate solution on top of the 

Figure 6.3. a,b,c) Deposition of the HeLa cells, embedded in a collagen bioink at 3mg/mL, inside printed silicone 

chambers. After collagen polymerization in the incubator chamber, the device was completely filled with cell media. 

d,e) At the selected time, plasmonic superlattice substrates were combined with the tumor on a chip device, resulting 

in a direct contact between extracellular milieu and plasmonic structures. 
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nanoparticle superlattice. To this end, a 300 µL droplet was placed on top of the superlattice, such 

that it wetted the whole surface of the sample. The spin coating process was then started at a speed 

of 1500 rpm for 30s. The thickness of the PLGA film was measured to be 1.5 µm by SEM cross 

section analysis using 5kV acceleration voltage. PMMA coatings were created by spin coating 

300 µL of the commercial solution at 1500 rpm for 30 s.  

 

6.6 Equipment for SERS measurements: 

 

Two different Raman microscopes were employed for the different experiments, according to the 

required spatial resolution.  

 

Standard SERS measurements: SERS spectra were acquired with an InVia Reflex Raman 

microscope (Renishaw plc) when high spatial resolution was not required (e.g, SERS 

measurements of cell supernatants in which the scanning step size was above 20 µm in X and Y 

axes). The Renishaw instrument comprises an optical microscope (Leica) with a XYZ scanning 

stage coupled to a high-throughput Raman spectrometer equipped with a 1024x512 front-

illuminated CCD detector and a grating of 1200 grooves/mm. A line-shaped 785 nm laser 

excitation source (maximum 119.50 mW) was used, recording in static mode at standard 

confocality through either 50x or 10x objectives, as indicated for each case, (numerical aperture 

Figure 6.4. Dimensions of the cell culture device. Illustrations of the custom cell culture device designed with 

AutoCAD software (Illustrator) indicating the main dimensions. Summarized in the table are the area and volumes of 

the various compartments. The 3D culture had a thickness of 0.8 mm and was nourished with a minimum of 300 µL of 

media. Additional media could be poured to fill the whole device and perform SERS measurements with immersion 

objectives. The device also supported the addition of the compound in a controlled compartment to study its diffusion 

through the 3D culture. 
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NA = 0.5 (50x) and 0,25 (10x) ) with integration time ranging from 10s to 0.1s, for large diffusion 

gradients in Chapter 5, at typically 10% of maximum power was used.  

 

For the experiments performed with collected supernatants (mostly in Chapter 2 and 4), the liquid 

derived from different assays was typically deposited on a plasmonic substrate circumscribed  by 

the lines created with a hydrophobic pen (sigma), which prevented from liquid spreading. For 

biological assays, we performed three independent cell assays which were spiked on three 

independent plasmonic substrates. If the measurements where otherwise performed through the 

cancer-on-a-chip strategy, the chip was directly assembled with the plasmonic substrate, placing 

the gold nanoparticle assembly in contact with the extracellular milieu. In these cases (addressed 

in Chapter 2 and 3), the laser radiation passed through the glass support layer. 

 

Thanks to the XZY scanning stage, control over the Z-axis could be achieved, which enabled 

focusing the laser on the surface of the plasmonic substrate, whereas XY displacement governed 

the location of the laser beam over the plasmonic substrate. Once focus is achieved on a specific 

area of the substrate selected by an optical image, the SERS measurements were carried out, as 

indicated above. On the other hand, XY scanning allows acquisition of multiple SERS spectra at 

varying positions. As a common rule, 25 points from different substrate areas were measured 

every time to sample the plasmonic substrate at different spots. Besides, this procedure was used 

to generate a SERS map of the scanned area. SERS maps can be processed to detect areas of the 

substrate which were exposed to the analyte solution and where the characteristic SERS 

fingerprint of the absorbed molecules can be recorded (revealing in certain cases the structure of 

the plasmonic sensor, as reported in Chapter 5). 

 

High resolution imaging: To image areas with higher resolution (scanning step size 6 µm or less) 

and 3D imaging, SERS maps were recorded with a high-resolution confocal Raman microscope 

alpha 300R (Witec GmbH) comprising an optical microscope (Zeiss) with a motorized XY 

scanning stage and linked piezo scanner fiber-coupled to an ultra-high-throughput Raman 

spectrometer (UHTS400-NIR) equipped with a 1024x128 back-illuminated deep depleting CCD 

detector (DU401 BR-DD, Andor) and a 300 groves/mm grating. As excitation source, a 785 nm 

laser with tunable output power was used, and spectra were collected through 20x (NA=0.5) or 

63x (NA=1) water immersion dip-in objectives, with 10 or 50 ms integration times at 7 mW laser 

power (if not otherwise stated). The XY scanning stage was used for all confocal SERS mappings 

except for the high-resolution XZ profile and Z-stack maps for the 3D image, which were acquired 

using the piezo-scanner. 3D SERS images were created by reconstruction of Z-stack images with 

ImageJ software. 
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6.7 Cell culture procedures 

 

Cell culture: All cell lines employed in this thesis (HeLa, MCF-7 – with or without GFP 

transfection-, and HT-1080) were obtained from ATCC. Cells were cultured using DMEM 

medium supplemented with 10% fetal calf serum and 1% (v/v) of Penicillin-Streptomycin. For 

the cell passages, adhered cells growing on a T-75 flask were trypsinized with 1% Trypsin-EDTA 

solution and incubated for 3 minutes after rinsing with PBS solution. Once detached, the cells 

were diluted 1:3 and resuspended in cell media before planting them in a fresh T-75 flask. For 

cell counting, 10 µL of cell suspension was mixed with 10 µL of Trypan Blue and dispensed in a 

Neubauer chamber. 

 

Induction of IDO-1 enzyme expression in HeLa cells: In order to control the activation of IDO-

1 in HeLa cells, we harvested HeLa cells in the presence or in the absence of IFN-𝛾 (100ng/mL) 

for 48 hours. This activation process has been reported to correlate with the expression of large 

amounts of IDO protein.7 As soon as the activation process was finished, cell media was 

exchanged and defined concentrations of diverse metabolites were added. This cell media 

contained varying concentrations of Trp depending on the cell experiment, 10 µM of Hemin, 2% 

FCS and 20% of DMEM diluted in HBBS buffer (Hank´s balanced salt solution). After 24 h of 

cell culture under these conditions, the cell supernatant was collected and measured by SERS. 

 

PCR: With the aim of studying IDO-1 induction by IFN-𝛾 activation, we harvested HeLa cells in 

the presence or the absence of IFN-𝛾 (100 ng/mL) for 72 hours. RNA was extracted using 

NucleoSpin® RNA isolation kit from Macherey-Nagel (Ref: 740955.240C). 1 μg of total RNA 

was used for cDNA synthesis using qScript cDNA Supermix from Quanta (Ref: 95048). 

Quantitative Real Time PCR (qRTPCR) was performed as previously described.[50] Universal 

Probe Library (Roche) primers and probes employed are: For: GTGTTTCACCAAATCCACGA, 

Rv: CTGATAGCTGGGGGTTGC; probe: 20. All qRTPCR data presented were normalized 

using GAPDH (Hs 02758991_g1 from Applied Biosystems). 

 

3D cell culture: Dissociated 3D cell cultures were prepared from the cell line Hela and MCF7 in 

Chapters 2 and 5. Once that the cells were detached and resuspended in cell media at the desired 

concentration, we mixed them 1:1 with Matrigel or collagen (3 mg/mL final concentration) 

hydrogels. The hydrogel-cell solution mixture was kept in ice and the pipette tips pre-chilled to 

avoid polymerization. Around 70-80 µL of the hydrogel-cell solution was then dispensed in the 

central chamber (of the silicone chamber or of the diffusion device) and immediately incubated 

for 2 h at 37 ºC to promote gelation. After polymerization, plating media was added on top, in the 

media well, for nourishing the 3D culture.  
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Stress condition cell assays: We performed different assays that intended to generate stressing 

environments to the tumor cells. The followed protocols can be classified as a function of the 

platform where cells were harvested 

 

• Collected cell supernatants: For these assays carried out in Chapters 2 and 4, selected 

cells were harvested in a 12-well plate, at a concentration of 6×104 cell/mL and let 24 h 

for cell attachment. Subsequently, cell media was exchanged to recreate the stress 

conditions. We added 50 µM of H2O2 , 10 µM of Staurosporine, 15 µM of Erastin, to a 

control cell media containing DMEM (10% FBS) or to a starvation media that do not 

contain nutrients (we used for these cases a media consisting only a HBBS buffer). After 

24 h of cell culture under these conditions, the cell supernatants were collected, 

centrifuged (3500 rpm, 5 min) and measured by SERS. Within this group of stressing 

conditions, special considerations were made for the radiotherapy treatment of Chapter 

4, as explained below. For the time-course experiments, in section 4.2III, each condition 

(Control, STP, Erastin) was performed with 4 replicates, one for each time at which the 

supernatants are collected (30min, 4h, 16h and 24h)   

 

• Cancer-on-a-chip: In the experiments with the silicone chamber (cancer-on-a-chip) of 

Chapter 2, the cell media contained different Staurosporine/Hemin concentrations and 

were subsequently incubated for 24 hours. The cell device was then assembled with the 

plasmonic substrate, placing the gold nanoparticle assembly directly in contact with the 

extracellular milieu. 

 

• Diffusion device: On the contrary, for the experiments with the diffusion device hosting 

nanocomposite scaffolds (Chapter 5), a different protocol was followed. In these assays, 

Methylene Blue (MB) was used to assess the diffusion of cancer drug in the 3D cell 

culture model. Final concentrations of MB ranged from 1 µM to 20 µM in cell media. Of 

note, cells were incubated for 24 h within the 3D Matrigel network prior to the treatment 

with MB. For XY diffusion assessment, 10x the final concentration of pre-irradiated MB 

was added to the lateral reservoir, whereas for studying the diffusion in Z, MB was 

applied on top of the 3D culture, in the media well. As explained in Chapter 5, MB needs 

a preactivation step by red light irradiation. Irradiation of MB solution was performed for 

one hour with a light-emitting diode (LED) array, with an emission wavelength of 640 

nm and an energy density of 3.5 mW. To visualize the cytotoxicity gradient effect by 

confocal imaging, MB was applied to the lateral reservoir, incubated at 37 ºC for 2 h, and 
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rinsed twice with media. Then, the whole media well was filled, and the entire device was 

irradiated for 1 h. Control experiments with non-exposed MB or without MB were 

conducted to confirm the specific effect of irradiated MB. 

 
• Radiotherapy treatment: MCF-7 were harvested and incubated for 4 days in T75 flasks 

at an initial cell density determined to achieve 50% confluency at the time of irradiation. 

One hour prior to irradiation, cells were detached and transferred to 15 mL centrifuge 

tube (Sigma) filled with fresh media. Cells were then irradiated with a single fraction of 

6 MV photons from a Varian 21EX linear accelerator (Varian Medical Systems, Palo 

Alto, CA, USA) at a dose rate 6 Gy/minute. Single fractions of 0, 5 and 20 Gy were 

delivered to 3 different cultures. 

 

6.8 Cell viability quantification 

 

Cell viability assays: we implemented different viability assays throughout this thesis, according 

to the ongoing experiment, which can be divided into two groups (cells attached on cell plates or 

3D cell culture within hydrogel-based networks) 

 

▪ On cell plates: Once the cells were challenged under the selected conditions in 12 well 

plates, the following procedures were carried out: 

 

• Quantification of cells attached by Crystal Violet staining: Cells were seeded at a 

density of 6×104 cell/mL in 12 well plates and let 24 h for cell attachment. Subsequently, 

cell media was exchanged to recreate stress conditions, varying either Hemin or STP 

concentrations (Chapter 2). After 24 hours, cells were fixed in formalin (1mL/well) and 

washed with PBS. We then added 0.5 mL of 0.1% CV (Crystal Violet), which bound to 

the cells in 20% methanol. The plate was cleaned with DI-water and CV interacting with 

the cells was resuspended in 10% acetic acid. Finally, this volume was transferred to a 

spectrophotometer cuvette, to measure the absorbance at 595 nm, which correlates with 

the number of live cells. 

 

• MTT assay: The MTT assay measures cellular metabolic activity as an indicator of cell 

viability. For this colorimetric assay, cells cultured on 12 well-plate (under different 

conditions) were incubated with a yellow tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide or MTT, adding 10µM of 1x solution to 1 mL of 

cDMEM. Cells were then placed in the incubator for 2 hours, so as to let active cells 

transform the initial yellow compound into purple formazan crystals. The viable cells 
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contain NAD(P)H-dependent oxidoreductase enzymes which reduce the MTT to 

formazan. Subsequently, the 1 mL solution is removed, and the remaining formazan 

crystals are dissolved using DMSO. Finally the resulting colored solution is quantified 

by measuring absorbance at 500-600 nanometers using a multi-well spectrophotometer. 

The darker the solution, the greater the number of viable, metabolically active cells. 

 

▪ 3D cytotoxic assay: For those cases in which cancer cells were embedded within polymer 

matrices (collagen or Matrigel), the previous protocols were not as accurate as in 2D models. 

Thus, different procedures were implemented, which we classified depending on whether 

the hydrogel must be depolymerized: 

 

▪ Fluorescence microscopy (no depolymerization required): The media in the device was 

replaced for complete plating media containing fluorescent probes that selectively label 

dead cells (1:100 of propidium iodide (PI)), or live cells (1:200 of Cytocalcalcein solution). 

Both solutions were incubated for 2 h prior to imaging assessment. Images were then 

acquired with a confocal microscope Zeiss LSM 880, using ZEN software (X, ZEISS). To 

monitor the spatial cytotoxic effect of drugs, large images of the whole scaffold dimension 

(5.5x5.5 mm) and approximately 400 µm thickness were acquired with 10x objectives. For 

a more detailed analysis of cell aggregates, 20x and 40x magnifications were employed. 

After acquisition, images were processed with ZEN software (ZEN 3.4 (blue edition), 

ZEISS) and exported by individual channels and Z stacks for precise quantification by 

CellSENS software (Olympus).  

 

• Flow cytometry and CellTiter-Glo (CTG) (required hydrogel depolymerization): For 

these cell viability assays, cell aggregates must be first retrieved from the 3D structure. 

Thus, cell media was rinsed with PBS solution and the media well filled with 300 µL of 

cell recovery solution. The device with cell recovery solution was incubated for 20 

minutes at 4 ºC and complete depolymerization of Matrigel was promoted by pipetting 

carefully up and down. The solution was then pipetted into an Eppendorf tube and the 

device rinsed with PBS to recover all remaining cells. Subsequently, recovered cells 

were counted using a Neubauer cell chamber and divided for flow cytometry analysis 

and cell viability assay. 

 

Flow cytometry: Cell viability was monitored using the FACSCanto II flow cytometer 

and FACSDiva 6.0 software (BD Bioscience).  Collected cell solution expressing eGFP 

and stained with PI was centrifuged (5 min, 3500 rpm and resuspended in 200 µL of 
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PBS). A minimum of 5000 cells was analyzed. Illumination was performed with a 20-

mW 488-nm argon-ion laser. Viable cells labeled with GFP were detected with a 530/30 

filter and non-viable cells stained with PI with a 575/26 filter. The cell solution was also 

measured by flow cytometry for assessment of MB cell uptake, using a 695/40 filter. 

Posterior analysis was performed with Flow Jo v10.7. 

 

CellTiter-Glo (CTG) 3D Cell Viability Assay kit (354253, Corning). Collected cell 

culture after hydrogel depolymerization was centrifuged (5 min at 775g), resuspended in 

PBS, and dispensed in 96 opaque-well plates. Each well containing 50 µL of cell solution 

was mixed with 50 µL of CellTiter-Glo 3D reagent and incubated at RT for 30 minutes. 

The solution of each well was vigorously mixed by pipetting up and down and incubated 

for 30 minutes more. This procedure measures viability by means of the concentration 

of ATP, which is only present in active cells. The luminesce signal (as a final event of 

the enzymatic reaction involving ATP as a substrate) generated by this protocol is 

proportional to the number of active cells. Luminescence was measured with an Orion 

II LB 965 Microplate Luminometer (Berthold Technologies GmbH), using an 

integration time of 1 second per well. 

 

6.9 PLGA-SERS strategy 

 

PLGA-SERS method. For the irradiation of plasmonic substrates covered with a PLGA 

sheathing layer, the laser power was regulated as follows: once the laser spot was focused on the 

surface of the plasmonic substrate, the 785 nm laser at 0.064 mW/µm2 was irradiated for 1s, 

through a 50x objective, so as to create a measurement window in the PLGA layer. Although 

already at first exposure a SERS signal was detected, exposure time was extended until the 

intensity of the SERS signal was stabilized. The total irradiation time was ca. 5 s, thereby ensuring 

complete degradation of the PLGA layer over the selected spot. Upon generation of the 

measurement window, the SERS signal of the analytes was recorded using an irradiance of 0.018 

mW/µm2 with the 785 nm laser for 1 s, in static mode and through a 50x objective (numerical 

apertures of NA = 0.5, Leica Microsystems, Wetzlar, Germany). In parallel, SERS spectra from 

control plasmonic substrates (with no PLGA coating) were registered with the same settings: 50x 

objective with 0.018 mW/µm2 irradiance for 1s. 

 

Measurement of the PLGA layer permeability: To measure the ability of the covering layer to 

prevent the analytes in solution from reaching the plasmonic component, a 50 L drop of the 

analyte solution (either 100 M Ado or 100 M 4-MBA solution) was deposited on a PLGA-

coated plasmonic substrate (95:5 lactic/glycolic acid ratio). Fifty SERS spectra were then 
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randomly acquired from different regions at different times (24h and 48h), with a low laser 

intensity (0.018 mW/µm2) at 785 nm through 50x objective, thereby preventing degradation of 

the PLGA layer. The absence of characteristic SERS signals from the analytes indicated 

impermeability of the sample to the solution. This strategy allowed for a quick evaluation of the 

coverage degree of sheathing layers on plasmonic substrates. Thus, it was followed to compare 

the coverages obtained with different solvents of the PLGA solution: ethyl acetate and acetone. 

 

Multiplex SERS mapping: To confirm the spatial control at different times and analytes, a 

PLGA-coated plasmonic substrate was sequentially incubated with different molecules at 100 M 

concentration. Such analytes were chosen such that their characteristic Raman peaks do not 

overlap with each other (4-MBA, CV, TBZ, NAm). Once the silicone chamber was stuck onto 

the plasmonic substrate, 500 µL of the analyte solution was introduced by micropipetting into the 

inner chamber of the device. Upon addition of the analyte, a laser irradiance of 0.064 mW/µm2 

was applied until SERS intensity stabilization, thus creating a measurement window. The analyte 

was then removed from the silicone chamber, by aspiration with a micropipette and, after a 

cleaning step consisting of flowing MiliQ water through the silicone chamber, the following 

analyte was injected. During this process of sequential incubations, a hole was created at a 

different spot of the PLGA layer for each analyte. Control of the hole position was achieved using 

the piezoelectric stage in the Raman microscope. The distribution of holes along the Xaxis was 

chosen with a step of 20 µm without changing their position in the y-axis (with this step size, no 

overlap or interference occurred between holes). Once all the different analytes were sequentially 

incubated and the corresponding PLGA holes created, the whole area was mapped with a laser 

irradiance of 0.018 mW/µm2, thereby detecting the analytes retained in the plasmonic layer. 

Scanning measurements were performed using a 785 nm laser excitation source (maximum 

119.50 mW), recorded in static mode using a 50x objective (numerical apertures of NA = 0.5 ) 

with 1s integration time, at 0.018 mW/µm2 or 0.00390 mW/µm2 laser power. The map of a 

selected area was acquired with a resolution of 10 μm in X and Y.  

 

Larger areas can be irradiated by reducing to 10x (NA = 0.25) the objective through which the 

laser beam is focused.  Despite considerably decreasing the power of irradiation on the plasmonic 

surface when illuminating through this lower magnification objective (0.026 mW/µm2), 

continuous exposure of the selected area to the laser beam rendered larger measurement windows. 

For example, a square shape of 200x200 µm2 was achieved through 40 successive irradiations of 

5s over the defined area by 785 nm laser line-scanning. The resolution between two irradiated 

points was 10 µm in x and y. Finally, when the scanning was completed, a SERS map was 

acquired in static mode using a 10x with 1 s integration time, at 0.0039 mW/µm2 laser power. 
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Cancer-on-a-chip combined with PLGA substrates: HeLa cells (1x106 cell/mL) were laden 

inside the silicone chamber and the whole system was then assembled with the plasmonic 

substrate (obtained as described in previous sections), placing the gold nanoparticles covered with 

a PLGA layer 95:5 directly in contact with the extracellular milieu. Cells were cultured in 500 µL 

of Dulbecco’s modified Eagle medium (DMEM) with 10% fetal bovine serum (FBS), 

supplemented with 200 M of adenosine. SERS measurements were recorded at 0 h and 24 h 

after Ado supplementation to monitor changes in extracellular concentration over time. For this 

experiment, irradiation with the 785 nm laser at 0.064 mW/µm2, for 5 s and through a 50x 

objective, ensured complete degradation of the sheathing layer at the irradiated spots. 

Subsequently, SERS spectra were recorded at these positions by irradiating with the same 785 nm 

laser at 0.018 mW/µm2 for 10 s. 

 

6.10 SERS data analysis and processing 

 

For data processing, we have generally utilized Renishaw's WiRE software and standard Python 

Libraries in JupyterNetwork (such as Pandas for data storage or matplotlib for spectra 

representation). 

 

Once SERS spectra were acquired, each collected spectrum was processed to remove cosmic rays, 

estimated and subtracted the baseline arising from the substrate and biological fluorescence 

(following a polynomial curve of 11th order), and normalized to the most intense signal. Then, 

when so specified, the average spectrum of the collected data was calculated. 

 

Fully processed data sets were typically analyzed by principal component analysis (PCA) and T-

Distributed Stochastic Neighbouring Entities (t-SNE) using standard algorithms of Scikit Learn 

library in Phython. Both are unsupervised algorithms for exploring the data without previous 

training. PCA is a machine learning tool for reducing the number of dimensions in a dataset while 

retaining most information. By applying this algorithm (a linear transformation), we retrieved the 

minimum number of variables that kept the maximum information about how the original data 

was distributed. Having different cell conditions, PCA analysis provided information on the most 

significant shift in SERS spectra wavenumbers among such conditions. t-SNE is another tool for 

reducing data dimensionality that, however, perform a non-linear transformation. t-SNE uses 

probabilistic methods (Student-t distribution) to compute the similarity between two points in the 

low-dimensional space, and was used to visualize subset of data with similarities in the spectra. 

 

The input of the CNN for SERS spectra classification is one dimensional and it contains the entire 

spectrum (600-1500 cm-1). The networks were created in Python (Python Software Foundation. 
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Python Language Reference, Version 3.6.6. Available at http:// www.python.org) and using 

Tensorflow (TensorFlow: large‐scale machine learning on heterogeneous systems, 2015. 

Software available from tensorflow.org) 

 

For building our CNN architecture, we trained one-dimensional convolutional kernels across 4 

convolutional layers with exponential increase (2n) in the number of channels. Formally a 

convolutional layer can be expressed as follows: 

 

𝑦 = 𝑓(𝑏 + ∑  (

𝑖

𝑘 ∗ 𝑥𝑖) 

Where 𝑥 is input map and the 𝑦 output map, respectively. k is a convolutional kernel between the 

maps x and y, and b is the bias parameter. 

 

After each step of convolutional layer, we applied a ReLU nonlinearity defined as: 

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 

 

We applied afterwards Maxpool which calculates the maximum valued for each patch of the 

feature map, in addition, to avoid overfitting the model to the data, we applied batch normalization 

after each layer and 50% dropout prior to the fully connected layer. 

 

 

6.11 Other equipment and procedures 

 

LC-MS: 

Adenosine and Hypoxanthine identification and quantification were performed on an Acquity 

UHPLC chromatograph equipped with a photodiode-array system and coupled to a LCT Premier 

XE ESI-TOF mass spectrometer (Waters, Milford, MA, USA). Chromatographic separation was 

carried out using an Acquity BEH C18 (100x2.1mm, 1.7μm) reverse phased column (Waters, 

Mildford, USA). The elution buffers were 0.1% formic acid in water (A) and acetonitrile (B), and 

the linear gradient method consisted of 99% A over 1.5 min, 99-1% over 1.5-6 min, 1% for 2 min 

and 99% for 2 min before next injection. Total run time was 10 min, injection volume was 5 μL 

and the flow rate was set at 300 μL/min. Both metabolites were detected and quantified after 

monitoring the UV signal at 254 nm of wavelength.  

 

Kynurenine and tryptophan samples separation was performed in reversed-phase chromatography 

using an ACQUITY UPLC BEH C18 1.7μm (2.1x100 mm) column (Waters, Manchester, UK) 

155



which was maintained at 30 ºC. The injected sample volume in all cases was 10 µL and the 

autosampler was set at 4 ºC. For Kyn and Trp, the mobile phase was designed as phase A, 

consisting of a mixture of 0.1% formic acid-H2O and phase B, ACN. The method used a gradient 

at constant flow rate (0.3 mL/min) combining solvent A and solvent B, programmed as follows: 

0-0.5 min, linear change from A–B (95:5 v/v) to A–B (1:99 v/v) in 2.5 min and finally returning 

to 95% A at 3.7 min for column re-equilibration, which was completed at 5 min.. The peaks were 

characterized by comparing the retention time and UV-vis absorbance at λ = 363 nm for 

Kynurenine, λ = 277 nm for Tryptophan. 

 

Scanning electron microscopy: images of the nanoparticle distribution on glass-based support 

were captured using an environmental SEM (FEI Quanta 250). 5-20 kV acceleration voltages 

were used to take the images. 

 

UV-VIS-NIR spectroscopy: Extinction spectra of colloid dispersions were acquired with a 

Agilent 8453 UV/vis spectrometer, using polystere cuvettes. Extinction spectra of plasmonic 

substrates were collected via a Carry 500 UV-vis spectrometer (Agilent) 

 

ROS species generation after MB irradiation: The production of 1O2 was measured after 

irradiation of a 20 µM MB solution, containing the dye 9,10-Anthracenediyl-

bis(methylene)dimalonic acid (ABDA). ROS production was followed by a decrease in ABDA 

absorbance (at 380 nm), which occurred upon reacting the dye with the oxidant species. A stock 

solution of ABDA in Dymehtyl sulfoxide (~10 mM) was subsequently used in the preparation of 

0.4 mM ABDA in PBS. The experiments were carried out in 96 well-plates. ABDA solutions (100 

µL) were then mixed with 100 µL of MB (40 µM), to a final concentration of 20 µM, and then 

irradiated for 60 min with an emission wavelength of 640 nm and an energy density of 3.5 mW 

for 60 min. The absorbance of ABDA was finally collected, comparing the results with those 

obtained without MB or without lamp irradiation 

 

Scaffolds characterization: The rheological properties of the inks were characterized using a 

Physica MCR 302 rheometer (Anton Paar, Spain). All tests were carried out in triplicate at room 

temperature using a 25 mm parallel plate geometry and a solvent trap to prevent water 

evaporation. Frequency sweeps were carried out from 0.1 to 500 rad/s at 0.1% strain, determined 

by previously performed amplitude sweep assays, with a gap of 1 mm. Flow curves were also 

obtained for shear rates from 0.01 to 1500 s-1. Finally, oscillatory-rotational-oscillatory tests were 

performed by applying a shear rate of 10 s-1 and studying the recovery of the inks at rest. The 

microstructure of the scaffolds was analyzed using a JEOL JSM-6490LV scanning electron 
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microscope (SEM), operating at an acceleration voltage of 15 kV and at a working distance of 15 

mm. 

The stability of the scaffolds in cell culture media (cDMEM) at 37 ºC was assessed after recording 

the swelling of the material by a general gravimetry method at selected time intervals. The swollen 

hydrogels were removed, the excess of liquid absorbed with filter paper and the scaffold weighed. 

The swelling ratio (SR) was calculated using the following equation 1: 

                                          SR=  (Ws-Wd)/Wd ∙100                                                  

where Ws is the weight of the swollen sample and Wd is the weight of the dried hydrogel sample. 
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CHAPTER 7 

“Conclusion and Outlook” 
 

The detection of cancer biomarkers represents a pivotal stage in the evaluation and diagnosis of 

cancer patients, so that more precise treatments can be selected according to measured features. 

Such prognostic biomarkers commonly include proteins and nucleic acids via genomics and 

proteomics-based analysis. Notwithstanding, the detection of metabolites (metabolomics), 

produced as the result of altered biochemical processes in tumors, is gaining relevance, owing to 

the information that can be obtained about the pathophysiology of the disease. To this end, 

multiple sensing strategies are under development, not only to detect such biomarkers in different 

biofluids, but also to image their distribution within tissues, including in vivo, ex vivo and in vitro 

models. Arguably, the advent of improved technologies for biomarkers monitoring will guide the 

evolution toward a better precision biomedicine, which will eventually drive clinal decision 

making at different stages of cancer disease. 

 

In this thesis, we set the focus on surface-enhanced Raman spectroscopy, as a promising 

technology for biomedical monitoring in the context of cancer. This is considered to be a 

promising application of this Raman spectroscopy modality and has thus fueled recent research 

on the interplay between biomolecules and plasmonic components. Hence, the experiments 

performed throughout this thesis sought to demonstrate the suitability of SERS for the screening 

of extracellular cell environments, including 3D models. We have provided illustrative examples 

of the use of SERS for monitoring cancer-related biomarkers, with a particular emphasis on 

identifying those directions that may drive widespread integration into biomedical sensors. 

Special attention was also paid to those requirements needed for improving in-situ measurements, 

introducing strategies based on artificial intelligence or responsive materials, thereby creating 

platforms with a wider versatility to address future exciting opportunities and challenges lying 

ahead. 

 

In Chapter 2, SERS substrates fabricated by two different strategies were compared according 

to their capacity to enhance the signal of secreted immunomodulatory metabolites, in particular 

kynurenine, tryptophan and purine derivative metabolites. Although two selected types of SERS 

substrates (LbL films and 2D superlattices), could accurately screen such biomarkers at the micro-

molar concentration range in a buffer solution (PBS), significant discrepancies were noticed when 

the spectra obtained in the presence of cell media: only the superlattice substrate provided reliable 
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results for metabolites monitored in this environment. Subsequently, a systematic study was 

performed to monitor the activity of IDO-1 enzyme (overexpressed in various types of cancer 

cells) under diverse cell culture conditions (varying activation with interferon-𝛾, and initial 

tryptophan concentrations). SERS allowed the multiplex analysis of extracellular fluctuations in 

both the enzymatic substrate and the product of its enzymatic activity (Trp and Kyn, respectively). 

Using plasmonic superlattices, we were able to estimate by SERS the Kyn/Trp ratio, as a function 

of the vibrational bands at 562 cm-1 and 760 cm-1. Moreover, we observed that the levels of purine 

derivative metabolites were directly related to cell death, induced upon challenging the cells with 

high Hemin concentration. Purine derivatives were thus found to work, in general, as suitable 

biomarkers of cell death. For this study, we devised a cancer-on-a-chip device that allowed 

recording the SERS signal while tumor cells were allowed to grow within a 3D collagen matrix. 

In this implementation, we additionally showed that the plasmonic component of the device could 

be reconfigured over the course of the experimental protocol, to match on-demand the lattice 

plasmon resonance of the substrate with the wavelength of the excitation laser light. 

 

Following this line of work, Chapter 3 abounds in additional improvements for such cancer-on-

chip devices, to allow continuous SERS measurements without operator interventions (i.e., using 

a fresh substrate for each measurement) and without the underlying problems derived from SERS 

memory effects. We first reported this detrimental effect in a wide range of plasmonic substrates, 

analytes and concentrations, revealing the widespread impact of such a SERS memory effect. To 

resolve this extended flaw, we proposed the deposition of a micron-think, thermolabile polymer 

layer on top of the plasmonic substrates, which would act as a physical barrier against molecular 

diffusion and adsorption. Subsequently, a laser beam could be focused on the underlying AuNPs 

and its power modulated to induce a sufficient temperature increase by plasmonic heating.  Above 

a certain temperature threshold, the sheathing layer was degraded and opened a measurement 

window at the desired time and target location. As soon as a micrometer-sized window was 

created in the polymer layer, the molecules in solution could reach the plasmonic surface and be 

subsequently registered by SERS. We additionally demonstrated that this process can be repeated 

as many times as required for monitoring the event of interest, with no interference from earlier 

measurements/molecular adsorption, which was finally applied to obtain continuous information 

about the evolution of tumor extracellular environments. 

 

In Chapter 4, we explored the implementation of artificial intelligence methods to interpret 

complex spectral signatures. In the literature, machine learning has already shown the potential 

to identify and classify different SERS profiles. Thus, we intended to evaluate the superiority of 

this method compared to conventional classification techniques (employed in previous chapters), 
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using them to analyze SERS spectra collected from cells exposed to different stress conditions. 

The choice of a convolutional neural network (CNN) architecture, rather than other types of deep 

learning methods, was made because of its well-known ability to extract both global and local 

features, prior to the classification step. Final results showed that the proposed CNN architecture 

slightly outperformed other conventional classification methods, such as decision trees (DT) and 

support vector machine (SVM). As a result, the deployed DNN model could perform a 

classification with sensitivity and specificity of 99% for the different secretomes, which 

demonstrated the release of different subsets of metabolites under each condition. Additionally, 

the employed strategies were capable of deciphering time-dependent variations in short (hours) 

and longer (weeks) time scales. Still, this Chapter can only be considered as a preliminary 

approximation to this topic, working as a pilot demonstration of the potential integration of SERS 

monitoring + DNN into the next generation of cell death studies, 

 

Finally, in Chapter 5, we introduced the transition from 2D to 3D models by incorporating 3D 

nanocomposite scaffolds that allowed detailed monitoring of the cell environment and its impact 

on drug penetration and cell death. The first objective involved the design of suitable alginate-

  
Figure 7.1. a) SERS spectra of HeLa, MDA-MB231, DU145 and U87 cells supernatants after 24 h of incubation 

with 10 µM of MTA. b) t-SNE analysis of the spectra collected from (a), the inset displays the gene expression of 

MTAP across such cell lines. c) t-SNE analysis of SERS spectra collected from either monocultures of MDA-MB-

231 or human dermal fibroblast (HDF), or co-cultures of both cell lines after 24 hours of incubation with 10 µM 

MTA. SERS measurements were performed with a 50× objective and 5 s of acquisition time, the maximum power 

of the 785 nm laser was 295.13 kW cm-2. d) Schematic illustration of the SERS-based system to detect the metabolic 

interaction between cancers cells and fibroblasts in MTAP depleted tumor environments.  
 

a) b)

c) d)
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gelatin scaffolds containing AuNRs, for cellular growth in 3D, which not only allowed the 

proliferation of tumor cells in a suitable environment (mimicked by a Matrigel© 3D network), 

but also offered the possibility to create and monitor drug diffusion gradients, over extended 

periods of time. The final devised structure also provided continued control over 

nutrients/humidity/etc., thereby maintaining tumor growth and a homogenous cell distribution 

across the scaffolds. We then proceeded to monitor the dynamics of an anti-cancer drug 

(methylene blue) upon administration in the manufactured cell device, so that the distribution of 

the drug within the created tissue can be readily recognized over time, by means of 3D SERS 

imaging. In particular, the retrieved diffusion profiles provided a wealth of information about both 

drug distribution and the response of tumor cells to the treatment, correlating parameters of drug 

diffusion with its cytotoxic effect on cell culture models. 

 

Although still in its infancy, we have explored different strategies toward unraveling the presence 

of specific biomarkers with spatiotemporal resolution. Sensors integrated with cell culture models 

have been developed to read extracellular signals, which facilitated the acquisition of additional 

knowledge about the tumor microenvironment. The landscape of applying nanomaterials to cell 

cultures seems promising; however, as noted throughout the thesis, limitations exist (such as the 

SERS memory effect) that deserve close attention. Notwithstanding, by combination of the 

advances reported in the various Chapters, we have at hand multifaceted SERS sensors for 

addressing upcoming challenges. We anticipate that the tools and methods presented throughout 

this thesis will carry over into the future. For instance, by SERS interrogation of supernatants 

from cells with different mutations in methylthioadenosine phosphorylase (MTAP, see section 

1.3), we are currently deciphering novel mechanisms that governs extracellular MTA fluctuations 

over time (see Figure 7.1). We have obtained so far unexpected results in the role of stromal cells 

(fibroblast, macrophages) towards controlling MTA extracellular concentrations and related 

derivatives metabolites (such as adenine). This result represents, to the best of our knowledge, the 

first exploration of metabolic interactions by SERS technology, and enables us to predict that 

other cell-to-cell communication events can be similarly described by SERS in the future.  
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APPENDIX 
 

 

We present herein supplementary experimental data that, albeit significant for accurate 

characterization, were not performed by the main author of this thesis.  
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Figure S2.1. HPLC chromatograms of the detection of kynurenine (detection at I363 nm) (see section 6.11 for 

details) in extracellular media of control HeLa cells or induced HeLa cells treated with IFN-ϒ (100 µM) and with 

varying Tryptophan concentration (25, 50, 100, 150 and 200 µM). (HPLC experiments performed by Javier García 

Calvo, platform manager in CICBiomaGUNE) 
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Figure S2.2 LC/ESI-HRMS chromatogram of peak at 1.9 min retention time assigned unequivocally to Kyn; 

205.0979 ([M + H]+ calcd 205.0977). 
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Figure S2.3. HPLC chromatograms of the detection of Tryp metabolite (detection at I363 nm) (see section 6.11 for 

details) in extracellular media of control HeLa cells or induced HeLa cells treated with IFN-ϒ (100 µM and with varying 

Tryptophan concentration (25, 50, 100, 150 and 200 µM). 
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Figure S2.4. LC/ESI-HRMS chromatogram of peak at 2.1 min retention time assigned unequivocally to Trp;  

209.0926 ([M + H]+ calcd 205.0926). 
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Figure S2.5. HPLC chromatograms of the detection of Hx metabolite (detection at I249 nm) in extracellular media 

of HeLa cells treated with varying Staurosporine concentrations (0, 0.1, 0.5, 1, 5, 10 µM). Inosine peaks were not 

detected. 

  

S
ta

u
ro

s
p

o
ri

n
e

0 µM

0.1 µM

0.5 µM

1 µM

5 µM

10 µM

HX peak (1.08 min)

168



 
 

Figure S2.6. LC/ESI-HRMS chromatogram of peak at 1.08 min retention time assigned unequivocally to HX;  

137.0448 ([M + H]+ calcd 137.0463). 
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Figure S3.1. a) Representative HPLC chromatograms for the detection of Adenosine (Ado) and Hypoxanthine (HX) 

in the extracellular media of HeLa cells. The insets show the characteristic LC/ESI-HRMS chromatograms of the peaks 

located at the retention times indicated for each analyte, which were assigned unequivocally to Ado and HX 

respectively.  b) Calibration curve for determining the Ado and HX concentrations by LCMS. c) The concentrations of 

Ado and Hx in the extracellular media of bioreactors, measured by LCMS at different times and conditions: control, 

without prior Ado supplementation or cell media with 200 M of Ado supplementation.  
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Figure S5.1. Rheological characterization of the hydrogels used as inks for 3D printing (see 6.11 for details). 

a) Strain sweeps for gelatin (10%) and alginate (2%) with different AuNRs concentrations. b) Frequency sweeps 

at 0.1% strain. c) Storage moduli values at f = 1 Hz, for gelatin-alginate inks. The storage moduli of the inks were 

in the range of 2000 Pa and were reduced after addition of AuNRs, indicating that the particles disrupt the gel 

transition recovery of gelatin chains. d) Flow curves at different AuNRs concentrations, as labeled. e) Thixotropy 

tests show a quick recovery ability of the viscoelastic properties, thereby ensuring a good printing fidelity of the 

scaffolds with 75% recovery of the viscosity after a few seconds. f) Swelling studies of printed scaffolds during 

20 days of incubation in cDMEM. (Rheological characterization was performed by Clara García-Astrain, 

Postdoctoral researcher in Bionanaoplasmonics group) 
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