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Introduction

Optimization problems deal with the selection of the best element (with re-
spect to a certain criterion) from a set of available alternatives. Many en-
gineering problems related to manufacturing, such as the design of machine
tools, airplanes and automobiles, are multi-criteria optimization problems.
The manufacturing industry [151] has a profound impact on the economy and
societal progress through its development of technological changes and inno-
vations. In the paradigm of Industry 4.0 [67], solving optimization problems
through Operations Research (OR) and building decision support systems
(DSSs) for the manufacturing industry are crucial.

Additive manufacturing (AM) is a manufacturing process that consists
of depositing material layer-by-layer to create three dimensional objects [96].
The ability to produce customized products and complex and lightweight
designs makes AM one of technology trends of Industry 4.0. The technology
has attracted the interest of the research community in the past few years;
for example, researchers have examined repeatability and reproducibility [49],
lack of control over certain defects [135] and process planning [87]. One of the
most studied problems in the field of process planning has been the tool-path
problem [41] [126]. To this point, studies of tool-path generation in AM have
mainly been based on geometric analysis, but this is not usually optimal from
a manufacturing engineering point of view. There is a need to further examine
the optimization of the tool-path in AM technology.

The Hamiltonian cycle problem (HCP) [19] is a problem of Graph Theory
with many applications in OR, especially because of its close relationship
with the traveling salesman problem (TSP) [74]. The HCP consists of finding
a cycle in a given graph that passes through every single vertex exactly once,
or determining that this cannot be achieved. Most approaches to solve the
problem only work for undirected graphs, or those considered for directed
graphs are not fully implemented and not tested for large graphs.

One of the approaches to solve the HCP in directed graphs is the Branch-
and-Fix (BF) method [51], an exact method based on linear programming
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that uses embedding to convert the discrete optimization of the HCP into
a continuous one. It is a versatile algorithm because, while using directed
graphs for its internal representation, it can also solve undirected graphs by
representing them as double connected, without the need of adding extra ver-
tices. However, one of the limitations of linear programming based methods
is that the number of constraints increases with the size of the problem. An-
other limitation is that they consume time exploring solution spaces that lead
to infeasible solutions. The BF consists of constructing a logical tree, where
at each node of the tree, two linear programs (LPs) are solved. In previous
research, this method has been tested using graphs with a small number of
vertices (the maximum number of vertices considered is 64 [19]). Since the
method has not been tested in large graphs, the weaknesses and the parts of
the algorithm where enhancements can be applied have not been studied. The
efficiency of the algorithm is related to the LPs and how the tree structure and
the recursive calls are implemented. Proper exploitation of the characteristics
of the graphs can improve the efficiency of the algorithm in terms of time and
computational cost.

One important point to consider in the design of the algorithm is the
branching rule, as the BF belongs to the family of branching algorithms. This
means that the search space is recursively split into smaller spaces [107]. The
branching rules proposed in the literature are based on the results obtained
from the LPs [19], but exploiting more global characteristics of the BF is
probably a better option. To the best of our knowledge, this has not yet been
proposed. In addition, no previous research on an in-depth investigation of the
role played by the branching methods (based on LPs and more global ones)
in the behavior of the BF has been conducted.

Finally, in many real-world problems, including manufacturing optimiza-
tion problems, various criteria should be considered simultaneously, turning
optimization problems into multi-objective (MO) optimization problems. The
importance of the MO optimization has attracted the interest of scholars [36]
[112]. Thus, we can find MO variants of well-known optimization problems,
such as the TSP. The HCP has a close relationship with the TSP, but, finding
cycles in a graph can be difficult depending on the number of vertices and spar-
sity. Essentially, it is desirable to define the MO HCP and to find an efficient
method to solve it. Here, the graph density plays a major role. Depending on
the density of a graph, an HCP instance can be less or more similar to a TSP
instance. With higher density, the graph is closer to a complete graph, so that
to the TSP.

To summarize, this dissertation will start with the optimization problem
of the tool-path and continue with a contribution of a DSS to generate opti-
mal tool-paths in AM technology. Then, it will address the HCP giving the
following four methodological contributions: 1) enhancement of the efficiency
of the BF in various aspects; 2) the global branching method; 3) a BF collapse
algorithm; 4) an extension of the BF to deal with the MO HCP.
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1.1 Layout of the dissertation

This dissertation is divided into four parts. Part I introduces basic notions
related to the context and the theoretical framework. It defines the objectives
of the research, and lists the main contributions. Part I is divided into four
separate chapters. Chapter 2 gives some context of manufacturing industry
related to the dissertation. Chapter 3 explains mathematical optimization,
some basics of Graph Theory, the embedding of the HCP in a continuous
problem and the BF method. Chapter 4 gives some context of the HCP by re-
viewing the relevance of the problem and the approaches to solve it. Chapter 5
describes the purposes of the research. Part II (Chapter 6) describes a con-
tribution related to a manufacturing optimization problem. Part III focuses
on methodological contributions to the BF method. This part also is divided
into four chapters. Chapter 7 proposes an improvement in the efficiency of
the algorithm in terms of time by adding an early subcycle detection step
and a degree-based simplification step. Chapter 8 proposes the global branch-
ing method and compares different branching rules. Chapter 9 proposes a BF
collapse algorithm, whose some of the components were proposed in previ-
ous chapters. Chapter 10 introduces the MO HCP and a method to solve
it. Part IV gives the main conclusions of the research and suggests future
research.





Part I

Preliminaries
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Manufacturing industry

The manufacturing industry has a profound impact on the economy and so-
cietal progress [16]. Starting with the Industrial Revolution, technological
changes have mainly taken place in the manufacturing sector. Technological
changes and innovations are essential sources for social and economic progress,
as more profitable and efficient sectors and firms displace less productive and
less profitable ones. Thus, technological change is at the center of modern
economic growth. With global competition, change and innovation become
even more essential, as there is a need for fast adaptation of production to
the ever-changing market requests [130].

The concept of Industry 4.0, or the fourth industrial revolution, is now
well understood by companies and research community [67]. It originally was
a strategic initiative introduced by the German government to transform the
manufacturing industry through digitization and exploitation of new tech-
nologies. At this point, Industry 4.0 has been extensively studied in academic
research for many years and is also well accepted in industry [123]. On the
one hand, academic research focuses on conceptualizing the development of
related technologies, business models and methodologies. On the other hand,
the industrial sector is interested in changes in industrial machines, intelligent
products and potential customers.

This chapter explains the background of AM technology and gives some
insights into DSSs in manufacturing environments.

2.1 Additive manufacturing

Technological trends related to Industry 4.0 [66] include: Internet of things,
cloud computing, big data and analytics, blockchain, augmented and virtual
reality, automation and industrial robotics, cybersecurity, AM, simulation and
modeling techniques and cyber physical systems.
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Additive manufacturing or 3D printing consists of depositing material
layer-by-layer to create a three dimensional object. AM technologies will be
widely used to produce customized products and complex and lightweight
designs [83]. They offer manufacturers the opportunity to produce prototypes
and proof of concept designs, processes which used to slow down product
design and manufacturing. There are a variety of processes that belong to
the family of AM technologies that can be classified depending on how the
material is deposited, the material used and the feedstock state [128].

These new emerging technologies will enable mass production while re-
ducing the costs and increasing the parts functionality [75]. However, physical
phenomena have a considerable impact on the product quality that is not yet
under control [149] [98]. This occurs mainly because the manufacturing paths
are not considered from the beginning when the parts are in the design stage.
Moreover, the high variability of AM technologies makes the process of creat-
ing general automated design and manufacturing processes more difficult, as
the physical phenomena differ from one technology to other.

2.2 Decision support systems in manufacturing

DSSs are information systems that enable decision-making activities, such as
operations and planning, and decisions about problems that are not easily to
predict in advance. There has been a growth in recent years of the need for
quick and precise decision-making; this has made it essential to embrace new
technologies [150]. To have insight into operations and assets, firms need to
have suitable DSSs, but, it is almost impossible to run a business without
using OR to optimize activities and resources. OR deals with advanced ana-
lytical methods for decision making. It can be understood as the application
of systematic and mathematical systems to study and investigate problems
and support humans with data to make correct decisions [148].

There has been an increase of computing capacity and developments in
machine learning and big data. Consequently, Artificial Intelligence (AI) has
been embraced by research on DSSs [14]. Common AI techniques used to de-
velop DSSs are fuzzy logic, genetic algorithms (GAs), agent-based systems,
data mining and neural networks. In the digital era and Industry 4.0 scenario,
more and more businesses are implementing AI in their DSS and improving
their OR capabilities. AI-based DSSs are used to solve OR problems in man-
ufacturing, including product and process design, scheduling of machines and
equipment for optimal utilization, quality, maintenance and fault identifica-
tion.

The adoption of computer-integrated manufacturing (CIM) offers manu-
facturers innumerable benefits, allowing them to produce high quality prod-
ucts at low cost [27]. Nevertheless, selecting a suitable CIM is a complex task,
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as it involves many parameters to assure that it meets the requirements of a
company. DSSs are good approaches to design suitable CIM systems. CIM in-
cludes the following stages: design, planning, manufacturing and distribution
[64]. It represents the highest level of automation in manufacturing. The next
section discusses planning, as this stage is related to the dissertation.

2.2.1 Planning

Process planning is one of the most complex phases of the manufacturing
process, as it comprises several sequences that depend on the type of product
to be manufactured. For example in AM technologies, the process planning
should include 2D slicing into layers, bead geometry, tool-path generation
and process parameter selection [117]. Traditional manufacturing technolo-
gies, such as machining operations, include design interpretation, selection of
machining operations, machine tools and cutting tools and determination of
cutting conditions.

Automated process planning is a key factor achieving effectiveness in the
era of smart manufacturing in Industry 4.0 [2]. Automated process planning
involves connecting computer-aided design (CAD) and computer-aided man-
ufacturing (CAM). Scholars have worked on developing automated process
planning systems to provide high production quality and a quick response to
firms [133].

Tool-path generation problem is an engineering problem that consists
of planning the cutter trajectory relative to the part. It is based on the part
model, machining method and a tolerance requirement [76]. The engineer-
ing problem has been extensively studied for industrial processes [103], [28],
including machining and cutting operations [122], and it can be posed as a
multicriteria optimization problem. It is a necessary stage in the automation
of control programs of computer numerical control (CNC) systems [55]. De-
pending on the field, it can be called the tool-path planning problem, cutting
path problem, drilling path problem or tool routing problem.

The tool-path cutting problem is directly applicable to a number of pro-
cesses, including laser cutting operations, where optimal torch path generation
has a considerable impact on production time. In this case, the problem con-
sists of finding the path that minimizes the total time required to cut all the
parts from a sheet while respecting the precedence constraints [40]. Conse-
quently, several commercial CAD/CAM packages offer automatic torch path
sequencing [110]. This problem is studied in other machining operations as
well, because optimizing the process has the potential to minimize the finan-
cial and environmental costs of producing a part. For instance, in a multi-hole
drilling process [39], most of the total time is employed in tool movement
and switching. Thus, tool-path optimization is important in cost minimiza-
tion. Another important factor to consider in optimizing the process is the
minimization of the idling time [55].
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Theoretical background

This chapter gives a theoretical background for the principal methods used
throughout the dissertation. First, it presents some notions related to math-
ematical optimization and common methods to solve the optimization prob-
lems. Then, it offers insights into Graph Theory. Finally, it explains the BF
method, as well as the embedding used to convert the discrete optimization
of the HCP into continuous optimization problem.

3.1 Mathematical Optimization

Mathematical Optimization or Mathematical Programming is a subfield of
applied mathematics that deals with the selection of the best element (with
respect to a certain criterion) from a set of available alternatives. It is used to
solve problems in different disciplines, such as Physics, Biology, Engineering,
Economy and Business.

Given a vector space of dimension n Cn, x ∈ Cn is a vector of decision
variables, where b is the number of inequality constraints (gj) and c is the
number of equality constraints (hl). F is the objective function F (x) : Cn →
C1. An optimization problem can be posed as follows:

optimize F (x)

subject to gj(x) ≤ 0, j = 1, 2, ..., b,

hl(x) = 0, l = 1, 2, ..., c.

(3.1)

Linear programming is a subfield of Mathematical Programming. When
F (x) is a linear function and the restrictions are linear, we have a linear
programming problem. The most common method to solve this problem is
the Simplex method [13].
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Integer programming is a specific type of linear programming, where some
decision variables can take integer values instead of continuous ones. A spe-
cific case of integer programming is the 0-1 programming, where the decision
variables take value 0 or 1. These programs are constructed adding extra re-
strictions that limit the decision variables to values lower than or equal to 1.
Branch-and-bound (BB) methods [100] are used to solve these type of prob-
lems.

3.1.1 Multi-objective optimization

In many real-world problems, various criteria should be considered simul-
taneously, turning the problem into an MO optimization problem. An MO
optimization problem [112] is posed in a similar way to a single-objective op-
timization problem. The difference is that there are m objective functions and
F (x) ∈ Cm is a vector of objective functions, where Fi(x) : Cn → C1. It can
be stated as:

optimize F (x) = [F1(x), F2(x), ..., Fm(x)]T

subject to gj(x) ≤ 0, j = 1, 2, ..., b,

hl(x) = 0, l = 1, 2, ..., c.

(3.2)

In MO optimization, however, there is not usually a globally optimal so-
lution, thus the following concepts are used to represent optimal solutions. A
point is Pareto optimal, if there is no other point that improves at least one
of its objectives without detriment to another objective. A Pareto set (PS) is
the set of all Pareto optimal points [112]. These concepts are mathematically
formulated as follows.

Definition 1. A point, x∗ ∈ Cn, is Pareto optimal if there does not exist
another point, x ∈ Cn, such that F (x) ≤ F (x∗), and Fi(x) < Fi(x

∗) for at
least one function Fi.

Definition 2. A Pareto set is the set of all Pareto Optimal points.

Definition 3. A vector of objective functions, F (x∗) ∈ Cm, is non-dominated
if there does not exist another vector, F (x) ∈ Cm, such that F (x) ≤ F (x∗)
with at least one Fi(x) < Fi(x

∗). Otherwise, F (x∗) is dominated.

3.1.2 Methods to solve optimization problems

There are numerous methods to solve optimization problems. These, can be
classified depending on the problem type that they solve. The following sec-
tions give an overview of some of the methods used in this dissertation.
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3.1.2.1 Branch-and-bound methods

BB methods [22] are commonly used to solve integer programming problems,
but they can be applied to numerous problems. BB is based on the principle
that the total space of feasible solutions can be partitioned into subsets of
solutions. These subsets are evaluated systematically in an efficient way (the
evaluation is not exhaustive), with the minimization objective function until
reaching the optimum solution. The method is usually combined with a linear
programming technique, such as Simplex [152].

The entire search space is called the root node, and a decision tree or logi-
cal tree is built with branches that lead to nodes corresponding to the subsets.
Each child node is a partial solution and belongs to the solution set. Before
constructing the logical tree, the upper and lower bounds of a given problem
are set based on the optimal solution. In the case of integer programming
problems, a relaxation is applied (the restrictions that imply that some deci-
sion variables must be integers are not considered). When solving the linear
programming problem of the relaxed problem, the upper and lower bounds
are calculated. At each level, a decision is made about which node to include
in the solution set, the node with the best bound. Hence, the optimal solution
can be found by discarding subspaces proved not to contain optimal solutions.
The logical tree is illustrated in Figure 3.1.

Fig. 3.1: A logical tree based on Yes/No questions where the root and the
nodes are shown.

3.1.2.2 Metaheuristic methods

Combinatorial problems have been solved by both exact and metaheuristics
methods [26] [119], but in the case of the MO combinatorial problems, the
latter method predominates. MO combinatorial optimization problems have
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commonly been addressed using metaheuristic techniques because of the com-
putational complexity of MO combinatorial optimization problems [85]. The
main advantages of metaheuristics are that they are computationally efficient,
general and simple to implement.

Evolutionary algorithms (EAs) are population-based optimization meth-
ods based on the theory of natural evolution [50]. The main types of EAs are:
GA [70], genetic programming [12], evolutionary programming [9] and estima-
tion of distribution algorithms [99]. This dissertation applies GAs which make
use of genetic operators such as selection, crossover and mutation. The idea
of these methods is to bias the search process to more promising regions of
the search space. There are different kinds of GAs depending on the elements
of the population (individuals). The dissertation uses permutation-based GAs
[65]. They share the general characteristics of GAs, but have particular char-
acteristics related to the type of solution representation used (permutation-
based).

3.2 Graph Theory

Many real-world situations can be represented by a diagram consisting of a set
of points joined by certain lines. A mathematical abstraction of that diagram
gives rise to the concept of graph.

A graph is an ordered triple (V (G), E(G), ψG) consisting of a nonempty
set V (G) of vertices, a set E(G) disjoint of V (G), of edges, and an incidence
function ψG that associates with each edge of G an unordered pair of (not
necessarily distinct) vertices ofG. A directed graph is a graph with an incidence
function that associates with each arc an ordered pair (not necessarily distinct)
vertices. In the context of directed graphs, we substitute E(G) with A(G)
where its elements are called arcs instead of edges.

If e is an arc and i and j are vertices such that ψG(e) = ij, then e is said
to join i and j; the vertices i and j are called the ends of e. For an arc (i, j),
the first vertex i is its tail and the second vertex j is its head. We say that
the arc (i, j) leaves i and enters j. For a vertex i, the out-degree, d+

G(i), is the
number of arcs with tail i and the in-degree, d−G(i), is the number of arcs with
head i. We define outgoing vertices of a vertex i, O(i), as the set of heads of
the arcs that leave i. The ingoing vertices of a vertex i, I(i), are defined as
the set of tails of the arcs that enter i.

An arc with identical ends is called a loop, and an arc with distinct ends
a link. A graph is simple if it has no loops. This dissertation considers simple
graphs. A simple graph in which each pair of distinct vertices ij is joined by
two arcs (i, j) and (j, i) is called a directed complete graph.

The adjacency matrixA(G) = [aij ] is anN×N matrix, whereN = |V (G)|,
defined in Equation (3.3).
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aij =

{
1 for (i, j) ∈ A,
0 otherwise.

(3.3)

Graph H is a subgraph of G (written H ⊆ G) if V (H) ⊆ V (G), A(H) ⊆
A(G), and ψH is the restriction of ψG to A(H).

The graph density of a simple graph is the ratio of the number of arcs
|A(G)| to the maximum number of possible arcs. A dense graph is a graph
in which the number of arcs is close to the maximal number. The opposite
is a sparse graph. For directed simple graphs the graph density is defined in
Equation (3.4).

D =
|A(G)|

|V (G)|(|V (G)| − 1)
(3.4)

A walk in G is a finite non-null sequence W = {i0e1i1e2...ekik}, whose
terms are alternately vertices and arcs, such that, for 1 ≤ l ≤ k, the ends of
el are il−1 and il. We say that W is a walk from i0 to ik, or a (i0, ik)-walk.
The vertices i0 and ik are called the origin and terminus of W , respectively.
The integer k is the length of W .

If the arcs e1, e2, ..., ek of a walk W are distinct, W is called a trail. If, in
addition, the vertices are also distinct, W is called a path. A walk is closed if
it has positive length and its origin and terminus are the same. A closed trail
whose origin and internal vertices are distinct is a cycle.

The HCP consists of finding a cycle in a given graph that passes through
every single vertex exactly once, or determining that this cannot be achieved
[19]. These cycles are called Hamiltonian cycle (HC)s. If a graph contains
at least one HC, we call it a Hamiltonian graph. Hamiltonicity is a graph’s
possession of an HC [57].

Figure 3.2 shows a Hamiltonian graph of six vertices. For instance, one
of the HCs of the graph is 1 → 2 → 3 → 6 → 5 → 4 → 1 that
can be represented as h = (1, 2, 3, 6, 5, 4, 1). The set of arcs in the cycle is
{[1, 2], [2, 3], [3, 6], [6, 5], [5, 4], [4, 1]}.

3.3 Embedding the Hamiltonian cycle problem in a
Markov decision process

There are innumerable investigations [77] [19] [56] that relate stochastic and
discrete optimization by embedding the HCP in an Markov decision process
(MDP). An MDP is a particular stochastic process that provides mathematical
framework for modeling decision making. In aforementioned research works,
it is proven that some classical optimization problems can be analyzed by
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34

5 6

Fig. 3.2: A Hamiltonian graph of six vertices.

embedding suitably in MDPs and building on this basis, new algorithmic
approaches are proposed that take advantage of MDPs.

Let M be an MDP where S is the state space, and A is the action space.
The embedding of the HCP is defined in such a way that the vertices in
the graph G correspond to the states in M, S = V (G), and the arcs in G
correspond to the actions in the MDP, A. The set of arcs or actions is defined
as A = {(i, a) | i, a ∈ S and (i, a) ∈ E(G)}, where A(i) is the set of states
that can be reached by the actions (i, a).

We define transition probabilities as {p(j|i, a) = δaj | (i, j) ∈ A}, where
δaj is the Kronecker delta. This is interpreted in the HCP context as the
probability of entering vertex j in one step by traversing arc (i, a).

We define ζ(i, a) as the probability of selecting action a in state i. For
each state i, we define the vectors ζ(i) = (ζ(i, 1), ζ(i, 2), ..., ζ(i,N)). The set
of those N vectors constitute a stationary policy (ζ). In the HCP context,
ζ(i, a) is the probability of traversing arc (i, a) when node i is reached. As at
every state an action must be selected, then the components of ζ(i) add up
to 1.

Any stationary policy ζ induces a probability transition matrix P (ζ), of
dimension N ×N .

P (ζ) = [p(j|i, ζ)]N,Ni,j=1

where for all i, j ∈ S,

p(j|i, ζ) =

N∑
a=1

p(j|i, a)ζ(i, a).

Let r(i, a) be the reward associated to each action a taken in state i. When
the actions are prescribed by a policy, we can define,
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r(i, ζ) =

N∑
a=1

r(i, a)ζ(i, a), i ∈ S

.
The reward vector of M is the vector containing r(i, ζ) for each state.

r(ζ) = [r(1, ζ), r(2, ζ), ..., r(N, ζ)]T .

In the context of HCP, the reward vector is used to distinguish between
visiting the home vertex (vertex 1 for the sake of simplicity). We define r(ζ) =
[1, 0, , , 0]T .

There are different ways to evaluate the rewards, but in this case the
discounted MDP is used, where β is the discounted factor. The discounted
factor is the rate at which rewards depreciate with time. That is, a desired
policy is the one that achieves the largest reward in short time. β takes values
between (0, 1).

We define ν = [ν1, ..., νN ] as the initial probability distribution. For every
stationary policy ζ, we define xia(ζ) as the discounted occupational measure
of the state-action pair (i, a) induced by ζ.

xia(ζ) = {ν[I − βP (ζ)]−1}iζ(i, a)

where I is the identity matrix.

We define xi(ζ) as the discounted occupational measure of the state i,
where xi(ζ) =

∑
a∈A(i)

xia(ζ).

Feinberg [56] proved that every HC corresponds to an extreme point in a
polytope Xβ defined by Equations (3.5-3.7) that uses the described embedding
for µ = 0. Later, it was proved that an extreme point of the defined polytope
by Equations (3.5-3.7) is an HC (Proposition 4.2. by Borkar et al. [19]).

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a))xia = νj , j ∈ S (3.5)

∑
a∈A(1)

x1a =
(1− (N − 1)µ)(1− β) + µ(β − βN )

(1− β)(1− βN )
(3.6)

xia ≥ 0, i ∈ S, a ∈ A(i). (3.7)

where ν = [ν1, ..., νN ] is the initial probability distribution defined as fol-
lows for µ ∈ (0, 1

N ). The selection of µ as a small positive parameter is to
ensure the mapping between the policies and discounted occupational mea-
sures.

νi =

{
1− (N − 1)µ, if i = 1,

µ, otherwise.
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3.4 Branch-and-Fix method

The BF method is based on the embedding of the HCP in an MDP; it uses the
polytope Xβ defined by Feinberg [56]. In that investigation, it was shown that
the extreme points of the defined polytope correspond to HCs. Later, it was
found by Nguyen that the extreme points can also be 1-randomized policies
[121]. Let x be an extreme point in Xβ , the associated policy is either a
deterministic policy (thus it is an HC by Proposition 4.2 , Borkar et al. [19]),
or it is a 1-randomized policy. This policy has N + 1 positive entries, instead
of having N . So that, there is exactly one i ∈ {1, ..., N} and two different a,
a′ ∈ A(i) satisfying that xia, xia′ > 0.

The BF method avoids arriving at extreme points that induce 1-randomized
policies by solving sequences of LPs, two at each branching point of the logical
tree. The splitting node is the node (state) where randomization occurs when
the first LP is solved. When the solution is a 1-randomized policy (instead of
deterministic), for one i ∈ {1, ..., N} there are two positive entries xi,a, xi,a′

where a, a′ ∈ A(i). In other words, there is one node i and two arcs that
emanate from it. That node is called the splitting node. The BF method is
compound in the following stages.

1. Initialization. The first LP is solved to find x ∈ Xβ . If the feasible
solution x0 induces a deterministic policy ζ0, the solution is found; if not,
ζ0 is a 1-randomized policy.

2. Branching. The 1-randomized policy ζ0 serves to identify the splitting
node i. Let d be the number of arcs that leave i. d subgraphs G1, G2, ..., Gd
can be constructed, where in each Gk, (i, ak) is fixed k = 1, ..., d. No-
tice, that the subgraphs are identical to G in all other vertices and
arcs. Fixing an arc implies eliminating other arcs as it is explained in
Update Adjacency Matrix function.

3. Fixing. Some rules are applied to fix more arcs in the current subgraph.
This is explained in greater detail in Update Fixed Arcs function.

4. Iteration. The second LP is solved to check the feasibility of the current
subgraph. If it is found feasible, the algorithm returns to Step 1 with the
updated graph. If not, the algorithm returns to Step 2, fixing the following
arc that leaves i. When all the branches are explored without finding any
HC, the algorithm terminates.

The algorithm finishes when an HC is found or when all the branches have
been explored. In this last case, the graph is not Hamiltonian. It takes as an
input the adjacency matrix defined in Equation (3.3).

The first LP includes the constraints defined in Equations (3.5-3.7) and
the objective function defined in Equation (3.8). The optimization problem
consists of minimizing the objective function F (x).
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F (x) =
∑

(i,j)∈U

 ∑
a∈A(j)

xja − βxij

 (3.8)

where U is the set of fixed arcs.

In the first iteration, as U is an empty set, no objective function is con-
sidered. When the set of fixed arcs contains the final arc (iN , 1), the term in
Equation (3.9) has to be added to the objective function.

−βN
∑

a∈A(1)

x1a + βxiN1 (3.9)

The second LP includes constraints defined in Equation (3.5) and (3.7)
and the additional constraints of the fixed arcs defined in Equation (3.10).

Let (ik, ik+1) be a fixed arc from U . Next, for each fixed arc, we add the
constraint posed in Equation (3.10).


∑

a∈A(ik+1)

xik+1a − βxikik+1
= µ if ik+1 6= 1,

−βN
∑

a∈A(1)

x1a + βxiN1 = µβ(1−βN−1)
1−β Otherwise.

(3.10)

In this LP, the objective function is defined by Equation (3.11). The op-
timization problem consists of minimizing the objective function.

F (x) =
∑

a∈A(1)

x1a (3.11)

The feasible regions of the optimization problems (the first and second
LPs) are related to the polytope Xβ proposed by [51]. In the case of the
first LP, the constraints of the optimization problem are defined by Equa-
tions (3.5-3.7), whereas, for the second LP, the constraints are defined by
Equations (3.5), (3.7) and (3.10).

The pseudocode of the implemented BF algorithm is shown in Algorithm 1.
It takes as an input an adjacency matrix and an empty set of fixed arcs (∅). It
returns value True of the boolean variable found and the HC, or value False
of the boolean variable found and ∅, when all the branches have been explored
without finding an HC. In the following lines, the constructed functions of the
pseudocode are explained in a high level of detail.

• Second LP: implements the second LP mentioned in this section.

• First LP: implements the first LP mentioned in this section.
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• Identify Splitting Node: identifies the node where the branching oc-
curred (splitting node).

• Identify HC: converts the obtained solution from the first LP, x to a
deterministic policy ζ.

• Get ith Outgoing Arc calculates the i-th arc leaving the splitting node.

• Update Adjacency Matrix: implements graph reduction by eliminating
arcs. If the fixed arc is (i, j), all other arcs that leave i are eliminated.
All other arcs that enter vertex j are also eliminated, as well as the arc
(j, i) if it exists.

• Update Fixed Arcs: updates the set of fixed arcs U by applying the fol-
lowing rules: 1) if there is only one arc leaving a vertex, that arc is fixed;
2) if there is a vertex that can be entered from only one arc, that arc is
fixed. This update is performed every time that the adjacency matrix is
updated.

• Refined Fixed Arcs: computes the set of arcs added to U after calling to
Update Fixed Arcs.

The output of the LPs are the status (feasible/infeasible), the vector of
decision variables (x) and the objective function (F ). The variable found

takes two values, True or False, depending if the HC is found or not.

The bound refers to the right-hand term of Equation (3.6) that appears
in Step 4 of Algorithm 1.

bound =
(1− (N − 1)µ)(1− β) + µ(β − βN )

(1− β)(1− βN )

3.4.1 Extensions to the Branch-and-Fix

An extension of the BF by adding some additional constraints was proposed in
[19]. This method also uses the embedding of the HCP in an MDP described
in Section 3.3. The main difference is that the parameter µ that appears
in the initial probability distribution takes value 0 and has some additional
constraints apart from those in Equations (3.5-3.7).

There are some additional constraints proposed by Eshragh et al. [53]
that allow using µ = 0, still ensuring the mapping between the policies and
discounted occupational measures.∑

a∈A(i)

xia ≤
β

1− βN
, i = 2, ..., N, (3.12)
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Algorithm 1 Branch-and-Fix

Input: adjacency matrix, ∅
Output: True/False, HC/∅

1: function Branch and Fix(adjacency matrix, U)
2: status, x2, F (x2) ← Second LP(adjacency matrix, U)
3: if status 6= feasible or F (x2) > bound then
4: return False,∅
5: status, x, F(x) ← First LP(adjacency matrix,U)
6: if status 6= feasible then
7: return False,∅
8: splitting node ← Identify Splitting Node(x)
9: if splitting node = ∅ then

10: HC←Identify HC(x)
11: return True,HC
12: else
13: d← |A(splitting node)|
14: found ←False
15: i← 0
16: while (found = False) and (i < d) do
17: fixed arc ← Get ith Outgoing Arc(splitting node,i)
18: new adjacency matrix ← Update Adjacency Matrix(fixed arc)
19: U ← Update Fixed Arcs(new adjacency matrix)
20: last fixed arcs ← Refined Fixed Arcs(U)
21: while |last fixed arcs|> 0 do
22: for arc ∈ last fixed arcs do
23: new adjacency matrix ←Update Adjacency Matrix(arc)

24: U ← Update Fixed Arcs(new adjacency matrix)
25: last fixed arcs ← Refined Fixed Arcs(U)

26: found, HC ← BRANCH AND FIX( new adjacency matrix, U)
27: i← i+ 1

28: if found=True then
29: return True, HC
30: else
31: return False, ∅

∑
a∈A(i)

xia ≥
βN−1

1− βN
, i = 2, ..., N. (3.13)

The authors of the BF extension refer to the constraints (3.12-3.13) as
wedge constraints. For this reason, we will refer to this extended BF as wedge
constraints-based BF.

The wedge constraints, could be added in the original LP. However, these
constraints would destroy the 1-randomized policies obtained in the solution,
which is undesirable. For that reason, the wedge constrains are included in
the second LP which attempt to fathom a branch earlier than in the case



22 3 Theoretical background

that wedge constraints are not used. The second LP in the case of the wedge
constraints-based BF is comprised by Equations (3.14-3.19).

F (x) =
∑

a∈A(1)

x1a (3.14)

N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a))xia = δ1,j , j ∈ S, (3.15)

xia ≥, i ∈ S, a ∈ A(i), (3.16)

∑
a∈A(i)

xia ≤
β

1− βN
, i = 2, ..., N, (3.17)

∑
a∈A(i)

xia ≥
βN−1

1− βN
, i = 2, ..., N, (3.18)


∑

a∈A(ik+1)

xik+1a − βxikik+1
= 0, if ik+1 6= 1,

−βN
∑

a∈A(1)

x1a + βxiN ,1 = 0, Otherwise.

(3.19)

Note that the objective function (3.14) and constraint (3.16) are the same
as in the BF method. In the case of constraints (3.15) and (3.19), they are the
same as in the BF method for µ = 0. Constraints (3.17-3.18) are the wedge
constraints introduced before. The bound in this case, is the same as in the
BF, but for µ = 0,

bound∗ =
1

1− βN

The authors of [19] carried out some tests to compare the performance of
the wedge constraints-based BF with the BF. It was observed that for smaller-
size graphs there was no improvement for the wedge constraints-based BF,
respect to the BF. However, for larger-size graphs, specially for 30-40 vertices,
the improvement was noticeable.

In the dissertation we did not consider the wedge constraints, because
for the BF they are only applicable in the second LP. As mentioned before,
including them in the first LP involves destroying the 1-randomized policies,
and hence the branching nature of the BF. These constraints have lead to
an improved polytope of the Xβ [53]. This polytope at the same time was
used to build an algorithmic approach called the Cross-entropy/optimization
hybrid approach that will be presented in Section 4.2.2.
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Hamiltonian cycle problem

The HCP is an important combinatorial problem with applications in many
areas. This chapter gives some context of the HCP by reviewing its relevance
and the approaches used in the literature to solve it.

4.1 Applications of the problem and relevance

The HCP is a Graph Theory problem which is related to other problems such
as the Icosian game and the Knight’s tour, but the most closely related and
best-known problem is the TSP.

4.1.1 Traveling salesman problem

The TSP is the problem of finding the shortest route to N different cities vis-
iting each city once and returning to the city of origin [33]. The distances
between all pairs of cities are known. It has often been formulated as a
permutation-based problem. A solution of the TSP problem can be repre-
sented by a permutation σ of length N , where σ(i) = j indicates that the
city j is visited at the i-th stage. The HC presented in Section 3.2 related to
Figure 3.2 can be represented as a permutation, σ = (236145).

Given a matrix C = [cij ] of dimension N ×N , with the distances between
all pairs of cities, the objective function F is the sum of the distances between
all pairs of cities in the order specified by σ:

F (σ) =

N∑
i=2

cσ(i−1)σ(i) + cσ(N)σ(1) (4.1)

The TSP has also been modeled as a graph-based problem. Let G be an
undirected graph of N vertices with a weight cij for each arc (i, j). Then, the
solution for the TSP corresponds to an HC of minimum total weight [102].
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The total weight is the sum of the weights of arcs comprising the HC. We use
the term distance in the context of the TSP, but we refer to the weights of
an arc when we define the TSP as a graph-based problem.

The TSP is by definition a symmetric problem. That is, the distance be-
tween cities i and j is the same as the distances between cities j and i, cij = cji.
For this reason, it is defined in an undirected graph. However, the asymmetric
variant of the TSP, where cij 6= cji, is defined in a directed graph. A directed
graph can be converted to an undirected graph; however, this process involves
doubling the number of vertices [92].

An important difference between the HCP and TSP is that finding an HC
in a given graph might not be trivial. Therefore, traditional search methods
that minimize the total weight by generating and evaluating a large number
of TSP routes are not necessarily efficient approaches. Moreover, minimizing
the total weight of a tour constitutes a simple, linear objective function and
it can be argued that much of the difficulty of the TSP is embedded in the
HCP [11].

There are numerous applications of the TSP beyond the route planning
problem, and they span different areas, such as Mathematics, Computer Sci-
ence, OR, Genetics, Engineering and Electronics [129]. An efficient solution of
the TSP would have an enormous impact in OR, Optimization and Computer
Science [11].

There are several approaches to address the TSP, and software implemen-
tations are also available, although most of them [6] [21] [142] [113] focus on
the symmetric TSP. As mentioned before, converting the asymmetric TSP to
the symmetric one involves doubling the number of vertices.

4.1.1.1 Application of the Concorde solver to directed HCP
instances

Concorde [5] is a program implemented in ANSI C programming language for
the symmetric TSP and some related Graph Theory optimization problems.
This solver has been applied to TSP instances with up to 85900 vertices and
is the best TSP solver at the moment.

To apply the Concorde TSP solver to directed HCP instances, the adja-
cency matrices must be transformed. Jäger and Zhang [84] proposed a trans-
formation to convert a directed HCP instance into a symmetric TSP instance
using the 2-point reduction [92]. Considering a directed graph G of N vertices,
the transformation consists of the following steps.

• Create a copy of the vertex set V , called V ′, such that V ′ = {i′1, i′2, ..., i′N}.
• Define a new undirected graph G′, whose vertex set is V ∪ V ′ with sym-

metric distance function c′ : V ∪ V ′ → {0, 1, 2} for k, l ∈ {1, ..., N}, where
c′ is defined in Equations (4.2-4.3).
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c′(ik, i
′
l) =


0, k = l;

1, k 6= l and (ik, i
′
l) ∈ A;

2, k 6= l and (ik, i
′
l) 6∈ A.

(4.2)

c′(ik, il) = 2 and c′(i′k, i
′
l) = 2 (4.3)

Then, a directed HC exists on G if and only if the optimal tour of G′ has
total distance N .

4.1.2 Other scenarios with the HCP

Other scenarios apart from the TSP are related to the HCP.

• Icosian game. This game was designed by Sir William Rowan Hamilton
in 1857. It consists of 20 connected cities, each represented by a hole in a
wooden pegboard. The aim is to visit each city exactly once and return
to the city of origin. If we formulate the problem as a graph-based prob-
lem, the resulting graph is the dodecahedral graph (see Figure 4.1). The
mathematically generalized version of the Icosian game is the HCP.

Fig. 4.1: The dodecahedral graph.

• Knight’s tour. A Knight’s tour is a collection of movements made by a
knight to visit every square of an N × N chessboard. The Knight’s tour
problem is the problem of constructing such a tour. A Knight’s graph for an
N×N chessboard is a graph G = (V,E), where V = {(i, j) | 1 ≤ i, j ≤ N}
and E = {(i, j), (o, p) | {|i−o|, |j−p|} = {1, 2}}. This graph hasN2 vertices
and 4N2 − 12N + 8 edges [124].
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Mathematically, a closed Knight’s tour (a tour that returns to the origin
position on the chessboard) is defined as an HC on a Knight’s graph. The
formal study of the Knight’s tour problem started in 1759 with Euler, who
considered a standard chessboard of dimension 8× 8.

4.2 Approaches to solve the Hamiltonian cycle problem

This section reviews some approaches to solve the HCP. The algorithms can
be broadly classified as deterministic and stochastic.

4.2.1 Deterministic algorithms

The following algorithms are deterministic.

• Snakes and ladders heuristic. This algorithm for solving HCP on undi-
rected graphs has polynomial complexity. It is a heuristic method, as it is
not theoretically guaranteed to find an HC [11].

All vertices of the graph are located in a circle in some order. This heuristic
uses transformations similar to the ones employed by the k-opt algorithms
[81] to reorder the connections in the circle. If two adjacent vertices of the
circle are connected in the graph, these vertices are connected by arcs in the
circle. In contrast, all the other connections of the graph are represented as
chords. The arcs of the graph, are classified as snakes (arcs of the circle) or
ladders (chords of the circle), and the algorithm transforms some ladders
into snakes and vice versa. If two adjacent vertices on the circle have
no snake between them, there is a gap between them. An HC is found
when there is no gap in the circle. The stopping criterion is the lack of
improvement in N3 iterations.

Baniasadi et al. [11] carried out a number of experiments in order to mea-
sure the performance of the algorithm on many Hamiltonian graphs. The
algorithm succeeded in finding HCs in all of them. The maximum number
of vertices considered in the experiments was 5000. Recent experiments
with the snakes and ladders heuristic [140] has shown that the time and
memory can significantly increase for challenging graphs of moderate size.

• Determinant interior point algorithm. This algorithm solves a Math-
ematical Programming problem shown to be equivalent to the HCP [77].
The Mathematical Programming problem is posed as follows:

min
P∈DS

−det

(
I − P +

1

N
J

)
where P is the probability transition matrix, I is the N × N identity
matrix and J is an N × N matrix with unit entries. The DS is the set
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of probability transition matrices induced by doubly stochastic policies.
A doubly stochastic policy is a stationary policy in which the probability
transition matrix induced also has column sums of 1.

It has been proven that the optimization problem is bounded from below
by 0 and from above by s, where s is the length of the longest cycle in the
graph. For Hamiltonian graphs, s = N , and for non-Hamiltonian graphs,
s < N .

Until now, no algorithm has been designed to solve the posed optimization
problem. However, Haythorpe [77] used a logarithmic barrier by adding
logarithmic terms to the objective function, thus applying a convex func-
tion to the objective function. An interior point method to solve the prob-
lem used a special lower-upper decomposition of the matrix.

This approach was tested in Hamiltonian graphs with different numbers
of vertices (20, 40, 60, 80-vertices graphs). For each number of vertices, 50
randomly generated graphs were considered. Researchers found the num-
ber of unsolved instances and the average run time increased as the number
of the vertices increased.

4.2.2 Stochastic algorithms

The following methods feature stochasticity in some of their components.

• Variance of first hitting times. This approach is related to a research
line that maps discrete problems into a convex domain where continu-
ous analysis can be carried out. This convexification of domains is done
by assigning probabilistic interpretation to some elements of the original
problem.

This method uses the embedding of the HCP in a singularly perturbed
MDP. The embedding employed in the methods presented in Section 4.2.2
is slightly different, as the HCP is embedded in a discounted MDP. The
subgraphs traced out by deterministic policies (including HCs if any) are
the extreme points of a convex polyhedron [58]. More precisely, the HCs of
a given graph correspond to the global minima of an indefinite quadratic
program. This method has never been fully implemented or tested with a
set of Hamiltonian graphs.

• Random walk approach. The approach is based on the polytope Hβ

defined by Feinberg and introduced in Section 3.3. This polytope contains
all the HCs among its extreme points. The random walk approach consists
of constructing two smaller polytopes, WHβ and WHp

β , where WHp
β ⊂

WHβ ⊂ Hβ . This method is a random walk that pivots on the extreme
points ofWHp

β andHβ [52]. It has been proven that the algorithm detects
the Hamiltonicity of the graph in a finite number of iterations.
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This approach has been tested with random Hamiltonian undirected
graphs of different density. Twelve graphs with 10-200 vertices considered
to be dense were used. The approach solved the HCP in one iteration in
these graphs. Sparser graphs were also considered in the analysis: precisely
ten graphs with 10-80 vertices. The analysis found the number of itera-
tions of the algorithm increasead when the number of vertices increasead.
Finally, some non-Hamiltonian graphs have been used to test the method.
The executions of the algorithm were terminated when no HC was found.

• Cross-entropy/optimization hybrid approach. The approach con-
sists on hybridizing the cross-entropy method [34] and analytical methods
based on MDPs [53]. It uses the polyhedral domain proposed by Ejov et al.
[51] addressing two deficiencies of it. This improved polytope considers two
normalized constraints of Xβ and includes additional constraints (wedge
constraints introduced in Section 3.4.1).

The cross-entropy method is usually applied to the TSP. As this is a special
case of the HCP, it can be also applied to the latter problem. When applied
to the TSP, the cross-entropy consists of generating random samples of
tours and constructing sequences of transition probability matrices. The
entries of these matrices will finally be concentrated on the arcs of the
optimal tours.

The analytical method relies on solving a global optimization problem in
the frequency space of MDPs, using a polytope constructed by embedding
the HCP in an MDP. The hybrid approach consists of two parts, one
involving cross-entropy and the other involving the optimization approach.
The cross-entropy component can be used separately or in conjunction
with the optimization approach.

The method was tested using directed Hamiltonian graphs of 6-256 ver-
tices. It was shown that for graphs with a smaller number of vertices (less
than 50 vertices), the cross-entropy part of the algorithm was enough to
solve the problem. However, for larger graphs, the optimization part of the
algorithm was needed to terminate the execution.

• Wedged-MIP heuristic. This method uses a mixed (non-linear) integer
program to formulate the HCP. This formulation uses the embedding of
the HCP in an MDP described in Section 3.3 and the wedge constraints
introduced in Section 3.4.1. The IBM ILOG OPL-CPLEX solver was used
by the authors to solve the proposed formulation [19]. This solver produces
different solutions with different running times, making it a heuristic ap-
proach.

This approach was tested in graphs with different numbers of vertices. The
largest graph considered was a 2000-vertex graph. It was compared with
two TSP formulations, the modified single commodity flow model and the
third stage dependent model. The wedged-MIP heuristic performed much
better than the TSP formulations.
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4.2.3 Other approximations

Methods such as genetic theory or fractal-like structure also exploit spe-
cific characteristics of cubic graphs giving interesting information about those
graphs, but without solving the HCP [121].

In addition, linear feasibility models are an indirect method to address
HCP, as they identify non-Hamiltonian graphs by infeasibility of suitable con-
structed linear systems [77].

Table 4.1: Summary of the reported methods to solve the HCP.

Method Graph Max. |V | Reference Type

Snakes and ladders heuristic Undirected 5000 [11] Determinant
Determinant interior point Directed 80 [78] Determinant

Variance of first hitting times Directed - [58] Stochastic
Random walk approach Undirected 80 [52] Stochastic

Cross-entropy/optimization hybrid approach Directed 256 [53] Stochastic
Wedged-MIP heuristic Unspecified 2000 [19] Stochastic

Table 4.1 presents an overview of the reviewed methods. It should be noted
that although some methods are defined using directed graphs, the experimen-
tal results are derived from directed graphs that are doubly connected. From
a practical point of view, this kind of graphs can be considered undirected.
An implementation of the code is not available for any of the methods, to the
best of our knowledge. In the case of the snakes and ladders heuristic, a web
interface 1 is available to apply the algorithm to a problem.

1 Available at: https://sites.flinders.edu.au/flinders-hamiltonian-cycle-project/
snakes-and-ladders-heuristic-web-interface/
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Purpose and objectives of the research

The main objective of this dissertation is to contribute methodologically to
the fields of Mathematics and Computer Science. Specifically, it contributes to
a linear programming based method to solve the HCP, a Graph Theory prob-
lem whose main applications are in OR. It addresses two main limitations
that present linear programming based methods: reduction of the number
of constraints of the LPs and fathoming solution spaces that lead infeasi-
ble solutions. The dissertation focuses on optimization problems with direct
application to the manufacturing industry.

First, it addresses the solution of the optimal tool-path problem in AM.
The AM technology was selected because it is one of the technology trends of
Industry 4.0. The dissertation poses an optimization problem to build an AI-
based DSS that generates the optimal tool-path for AM. With this purpose
in mind, it describes the AM tool-path problem and discusses the approaches
used in the literature to solve it. Based on the discussion, it introduces a novel
problem called sequence strategy generation and solves the problem using a
benchmark of parts that have different characteristics.

Second, the dissertation makes methodological contributions to the HCP
and the BF. The contribution to optimization problems in manufacturing was
an inspiration and starting point for investigating the HCP. Therefore, the
methodological contributions with the following specific objectives represent
the core of the research:

1. Enhance the efficiency of the BF method.
2. Investigate the role of branching strategies for the BF approach to solve

the HCP.
3. Introduce a new method that addresses the limitations of previously re-

ported linear programming based methods.
4. Extend the BF to deal with the MO HCP.

Two main components can be identified in the BF. One is related to the
solution of the LPs, where the main role is played by the LP solver. The other
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is related to the way branching is implemented and how the recursive calls to
the LPs are invoked. The efficiency of this second component is closely related
to the choice of the data structure and other design decisions of the algorithm.
The first two objectives are related to this second component.

To address the first objective, two enhancements are applied to the BF:
an early subcycle detection step and a graph simplification based on vertices
of degree two. To address the second objective, a novel branching method is
proposed. The BF is based on the principle that the search space or total
set of feasible solutions can be partitioned into small subsets of solutions.
This operation is called branching; it is done recursively by minimizing the
corresponding objective function. The proposed branching method is adaptive
within the tree evolution and depends on the subgraph built on each level
of the logical tree. The dissertation carries out an exhaustive analysis of the
performance of different branching methods in the literature and the proposed
branching method.

To address the third objective, the dissertation proposes a BF collapse
algorithm that takes into account some of the limitations of previous HCP
algorithms based on linear programming. The BF collapse algorithm is built
on the BF and incorporates a number of enhancements developed throughout
the dissertation.

Apart from single targets, advanced decision-making ecosystems need to
address multiple-objective problems. Hence, an MO HCP is defined as the
problem of finding HCs that minimize determined multiple criteria. Note,
that although the HCP and TSP are closely related, and some investigations
deal with an MO variant of the TSP, finding an HC in a graph is not always
trivial. For this reason, the dissertation considers that the MO HCP needs a
different treatment. Once the problem has been defined, a method to solve
the MO HCP is developed to address the fourth objective.

5.1 Research questions

Based on the defined objectives, the following research questions (RQs) were
formulated.

• RQ 1 Is it possible to improve the efficiency (mainly in terms of time) of
the BF method? Is it possible to apply it to larger graphs than the ones
addressed in the literature?

• RQ 2 How does the employed branching rule influence the performance
of the algorithm? Does any branching method outperform the other meth-
ods?

• RQ 3 Is it possible to extend the BF into an MO scenario? Is it more
efficient than an MO GA commonly used to solve the MO TSP?

Table 5.1 shows the chapters in which the RQs are addressed.
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Table 5.1: Relationship between RQs and chapters of the dissertation.

RQs Chapter 7 Chapter 8 Chapter 9 Chapter 10

RQ 1 X X
RQ 2 X
RQ 3 X
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Contributions to manufacturing optimization





6

Tool-path problem in additive manufacturing

6.1 Introduction

AM or 3D printing is an emerging technology with an array of possibilities
to manufacturing technology [139]. Despite its early promise, the technology
still has some weaknesses. One is the lack of control over certain defects, such
as pores or lack of fusion; another is the repeatability and reproducibility of
the part quality [4]. A third major constraint is the amount of time required
to fabricate parts [1]. To rectify the latter problem, researchers have proposed
the application of better process planning algorithms [44] [46] [48]. In the
process planning of CAM, the selection of an appropriate tool-path is critical
[101], and, for that reason, the tool-path generation problem is dominating
research. In AM, the manufacturing series are shorter than in other technolo-
gies employing mass production [62]. AM allows more than one part to be
manufactured in the same substrate (batches of workpieces), therefore it is
important to generate optimal sequences.

The tool-path required for AM technologies is a predefined trajectory of
the nozzles to deposit material in the boundary and interior of each sliced
layer [90]. Some AM technologies have several features in common with ex-
isting CNC milling machines. The machines are given the instructions in a
similar way, the movements are similar, and they both have a rigid tool inside
the machine [117]. Accordingly, the approaches used to generate tool-paths
in milling can be adapted for AM processes. To this point, tool-path gener-
ation in AM has mainly been based on geometric analysis, but this is not
usually optimal from a manufacturing engineering point of view [101]. Geo-
metric analysis involves following the boundary of a trend to generate paths
without considering an optimality criterion. In actual CAM software, for ex-
ample, standard tool-paths are generated, such as zig, zigzag or radial, and
these are far from optimal [111].

This chapter analyzes the tool-path problem for AM technologies, specif-
ically direct energy deposition (DED) technology. It describes the AM tool-
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path problem, and discusses the approaches used in the literature to solve it.
Based on the discussion, it introduces a novel problem called sequence strat-
egy generation and solves it using a benchmark of parts that have different
characteristics.

6.2 DED process characteristics and analysis of the
state-of-the-art

AM or 3D printing consists of depositing material layer-by-layer [30] to cre-
ate a three dimensional object. The American Society for Testing Materials
(ASTM) [128] divides AM processes into seven categories: binder jetting [116],
DED [23], material extrusion [141], material jetting [35], powder bed fusion
[71], sheet lamination [105] and vat photopolymerization [125]. These pro-
cesses vary in how the material is deposited (binder, laser, heated), what
material is employed (plastics, metals, ceramics) and whether the feedstock
state is, solid (powder, wire, sheet) or liquid. This dissertation considers only
DED technology. In DED, a nozzle mounted on a multi axis arm, deposits ma-
terial layer-by-layer. This process can be divided into three main groups: arc
welding-based, laser-based and electron-beam based [93]. Wire arc additive
manufacturing (WAAM), an arc welding-based technology, employs different
types of electrogenic weldings; gas tungsten arc welding (GTAW), gas metal
arc welding (GMAW) and plasma arc welding (PAW). The parts in the bench-
mark used to solve the problem are manufactured by PAW. Fig 6.1 shows the
torch and wire of a PAW process.

Fig. 6.1: A plasma arc welding process showing the metallic wire and the
torch.
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6.2.1 Tool-path problem characteristics

This section explains the technical characteristics of the processes defined
above. The total time plays a major role in WAAM technology, as a long
cooling time is needed. The deposition must be performed at a fixed tempera-
ture to ensure consistent deposition conditions [138]. The total time is divided
into adding time, cooling time and machine movement time. The cooling time
can be reduced by applying optimal tool-paths, as the deposition can be car-
ried out in a bead that has already been cooled.

The literature identifies two precedence constraints to DED processes
[145]. The first is accessibility constraints related to the nozzle. These depend
on the process itself and the capabilities of the machine used [138]. The second
is heat dissipation. Different WAAM technologies have significant differences
in torch movement limitations. For instance, in PAW technology, the torch
is more limited in movements than in GMAW or GTAW technology, as the
wire is coaxial to the torch. For that reason, the trajectories of the path
can be predefined for a technology and machine. The process of finding the
predefined trajectories is currently not automated. Figure 6.2 shows the head
of the machine and the predefined trajectories, indicated in blue, for a specific
part. The machine will follow the traces indicated in blue in the xy-plane to
deposit material.

Fig. 6.2: Tool-paths generated for a workpiece following the boundary trend.

Figure 6.3 shows the geometry of a part compounded by three beads in X,
Y and Z axis. The lines of the walls represent the layers of the part and the
colour indicates the temperature reached by those layers. The temperature
was monitored by a pyrometer. The adding sequence is connected with the
temperature, because the heat propagates differently depending on the loca-
tion of the beads. As indicated in Figure 6.3, the temperature in the central
bead is lower than in the extremities. Figure 6.4 shows the time required by
each bead to cool (until it reaches 400◦C). The time to reach a given temper-
ature varies depending on the bead and layer (Figure 6.4).
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Fig. 6.3: A part manufactured using PAW technology and with the temper-
ature monitored by a pyrometer.

Fig. 6.4: Time to reach 400◦C (in this particular example the bead is cooled at
400◦C) after performing a deposition. The notation employed (m,n) referres
to the bead m and layer n.

For optimality, AM requires a better weld bead geometry and surface
accuracy, as significant differences, related to the quality of the part, can
appear at the start and the end of a weld path [45]. Optimality can be achieved
by generating tool-paths that optimize both quality characteristics.

6.2.2 Proposed approaches in the literature

An automated process planning algorithm for AM should take into account
the 2D slicing into layers, the bead geometry, tool-path generation and process
parameter selection. A slicing algorithm is a method of converting each trian-
gular facet into each respective line segment. The steps of the process planning
of all AM technologies are identical, but it is difficult to design an optimal
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algorithm to generate the tool-paths for all AM technologies [117]. For that
reason, the CAM packages for AM offer only slicing algorithms rather than
specialized algorithms that include the bead geometry, tool-path generation
and process parameter selection. Another difficulty is that more mature CAM
approaches, such as CNC, require an experienced user to make decisions.

Many CAD/CAM packages offer automatic torch-path sequencing for con-
ventional manufacturing, but several constraints in AM are difficult to satisfy
using an optimization algorithm; these include the surface quality and the
effect of the workpiece heating on the adding sequence. AM’s limited capa-
bilities depend, among other things, on the characteristics of AM processes,
the current capacity of AM machines and the impact of the AM technology
on the material properties [138].

There are some software packages for metal AM, but this is an emerging
technology with a wide variety of processes. Most of this software is related
to 3D design (CAD) and not to manufacturing (CAM). To be optimal, the
software should include such options as changing the process parameters and
simulating the piece that will be manufactured. However, a fully automated
CAD/CAM software has not been developed for WAAM technology, as there
is not yet an automatic way to link the generation of robotic welding paths
to the CAD model [43].

One of the AM processes for which the tool-path problem has been studied
is fused deposition modeling (FDM). FDM, a popular AM technology, uses
a plastic filament as feedstock extruded through a nozzle [89]. In an investi-
gation of the path generation for FDM [91], researches compared FDM and
conventional milling. They analyzed the specific features of FDM, identified
the three most critical ones and proposed a parallel-based tool-path generation
method. In another study Jin et al. [88] proposed a novel tool-path generation
method for FDM for thin-wall structures, noting that it is difficult to obtain
the desired quality using the commonly employed tool-paths.

The literature has proposed various types of path patterns for AM tech-
nologies, including raster, zigzag, contour or spiral [48]. Although these pat-
terns are suitable for powder-based technologies, they have limitations for
wire-feed AM technologies, because in these technologies, the deposition width
is thicker. In addition, it is important to avoid frequent start/stop points and
to avoid changing the deposition path direction as the welding process requires
a certain time to stabilize [44].

These path patterns (raster, zigzag, contour and spiral) are based on scan
lines [131] and follow the geometrical trend of the boundary [45]. They are
not suitable for WAAM because WAAM must meet the following require-
ments: geometrical accuracy, minimization of the number of tool-path passes
and minimization of line segments representing the travel path. Given these
requirements, several investigations [46] [44] [47] have used medial axis trans-
formation (MAT) to generate tool-paths. This technique allows the geometry
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to be filled from the inside to the boundary (as opposed to the contour path
pattern), avoiding the narrow gaps. The extra material is removed in post-
process machining.

To conclude, in WAAM technology, the approaches proposed to solve the
tool-path problem are geometric-based and do not consider optimality cri-
teria. The techniques do not take the sequence strategy into account; for
example, in the MAT approach, the generated paths for each domain go in
a counter-clockwise direction [46]. To the best of our knowledge, no research
has addressed the other main DED technologies. Moreover, there is a lack of
commercial software for AM technology, especially software related to CAM.
To fill the gap in the research, we propose a novel problem, sequence strategy
generation, in which we consider the previously defined problem characteris-
tics.

6.3 Multicriteria optimization approach to solve the
tool-path problem in DED

As previously mentioned, some research on machining and cutting opera-
tions has used multicriteria optimization approaches to address the tool-path
generation problem. Castelino et al. [24] proposed an algorithm to minimize
non-productive time in milling by optimally connecting the segments of the
tool-path. This work indicates a possible path for the design of AM strategies;
the problem was formulated as a generalized TSP and solved using a heuristic
algorithm. Similarly, Chan and Na [25] presented a tool-path algorithm based
on simulated annealing; the model improved on the previous TSP model. It
included the incorporation of the heat into the cost function, together with
the minimization of the tool-path length and the effect of the minimum heat.

Nassehi et al. [120] formulated a tool-path optimization model for a milling
process considering three different objective functions: optimization of the
cutting time, minimization of the changes in acceleration and constant cutter
engagement. Other researches considered the tool-path optimization problem
for a drilling process to increase productivity and reduce costs [127]. They
reduced the optimization problem to the TSP. Still, other researches modeled
the problem of finding the optimum path for a CNC turret typing system
using an asymmetric TSP [106]. The aim was to enhance the productivity of
the machine by reducing tool changes and optimizing tool routes. A GA, a
heuristic optimization approach inspired by natural selection, was used in all
of these studies. Together, they suggest that the TSP model is relevant for
AM, as some AM technologies have several features in common with CNC
machining machines.

A review [40] of tool-path algorithms for laser cutters identified six types of
problems: continuous cutting problem, endpoint cutting problem, intermittent
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cutting problem, touring polygons problem, TSP and generalized TSP. Most
were solved using heuristics and metaheuristics (74%); a few (17%) used exact
algorithms and the remainder used approximation algorithms or constraint
programming techniques.

Bearing all this in mind, we propose a mathematical framework that mod-
els various relevant aspects of DED processes. Using this framework, we for-
mulate a multicriteria optimization problem for DED and solve it for parts
manufactured by PAW technology.

6.3.1 Graph representation of DED

A graph is used to represent the part to be manufactured; a graph can express
relationships between pairs of variables and show other interesting structures,
such as cycles and paths, making it a very useful tool for abstraction. In the
following lines, we offer some definitions before introducing the problem.

Definition 4. A bead S is defined as a set comprising two elements, a vec-
torial function g that takes a real variable as argument and a layer number
l:

S = {g, l | g : [a, b] ⊆ R→ R2, l ∈ N∗} (6.1)

where g is the parametrization of a curve C, a continuous line traced on the
plane. The initial point (a, g(a)) and the final point (b, g(b)) are called extreme
points.

Definition 5. An intersection of a bead Si is a point p, an extreme point of
Si that belongs to another bead Sj for i, j = {1, ..., nl} i 6= j where nl is the
total number of beads in the part.

Definition 6. A segment is a bead in which at least one extreme point is an
intersection.

Figure 6.6 is the graph representation of a part manufactured by PAW,
shown in Figure 6.5. The blue lines represent the segments, the red circles
represent the intersections and the black arrows are the beads. In this fashion,
the part can be represented as a graph with vertices and edges. For instance,
for the first layer, the first bead, S1, is S1 = {g1, 1 | g1 : [−150, 150] ⊆ R →
R2, 1 ∈ N∗}. The extreme points of S1 are (−150, 250) and (150, 250).

Definition 7. Given a part, a part decomposition graph (PDG) is a planar
graph where each vertex is an intersection and an edge represents a segment.
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Fig. 6.5: Part manufactured by PAW technology.

Fig. 6.6: Graph representation of the part where the vertices in red are the
intersections and the edges in blue are the segments.

Definition 8. An adding option, Ii,j, is a (i, j)−walk in the Part decompo-
sition graph (PDG) where i is the origin vertex and j is the terminus vertex.

Definition 9. A manufacturing scheme, MS = {Ii,j i, j = 1, ..., N}, is a set
of adding options fixed before a workpiece is manufactured.

Definition 10. A manufacturing graph, Gm, is a complete graph where the
set of nodes is equivalent to the manufacturing scheme V (Gm) =MS.

Figure 6.7 shows the PDG of the previously introduced part (Figure 6.5).
The manufacturing scheme,MS , is expressed in Equation (6.2). For each part,
these (i, j)− walks are predefined, minimizing the number of the starts and
stops of the machine by joining the segments in which the machine can add
the material without stopping. Predefining the adding options of the graph
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Fig. 6.7: A part decomposition graph of the part shown in Figure 6.5.

in such a way helps to achieve better quality parameters such as weld bead
geometry and surface accuracy (see Section 6.2.1).

MS = {I1,4, I1,13, I2,6, I3,8, I4,13, I5,9, I7,11, I10,12} (6.2)

Note that a PDG is a graph showing the predefined trajectories (adding
options). The set of adding options, MS , is used to build the Gm. The se-
quence strategy problem is formulated in the Gm, as shown in Section 6.3.2.

6.3.2 Formulation of a novel problem

This framework allows us to propose a novel scenario related to the tool-path
generation for every part manufactured by DED. It takes into account the
particular specifications of the tool-path problem described in Section 6.2.1.

Definition 11. The sequence strategy problem consists of finding a cycle of
length N = |MS | in a manufacturing graph Gm, which is optimal with respect
to one or more predefined criterion.

The solution space of the problem, Ω, is the set of all variable assign-
ments that satisfies the constraints of the problem. In this specific problem,
any combination of all the adding options in the manufacturing scheme, or in
other words, a permutation of the vertices in the manufacturing graph, Gm is
a feasible solution. A feasible solution corresponds to the previously men-
tioned geometric-based approach, as it does not consider the order in which
the material is deposited.

Ω = {(i1, i2, ..., iN ) | k, l ∈ {1, 2, ..., N} and ik 6= il ∀ k 6= l}

as the order in which the deposition is carried out means |Ω| = N !
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A vector of objective functions, F (x) = [F1(x), F2(x), ..., Fm(x)] as-
sociates m real values with each feasible solution x. When m = 1, an opti-
mal solution to the problem (Definition 11) optimizes the objective func-
tion F1. When m > 1, as mentioned in Section 3.1, there is no global opti-
mum solution and the concept of PS is used. Different objective functions can
be considered depending on the process characteristics. In this specific case,
F (x) = (F1(x), F2(x)), where F1 and F2 are defined as follows.

• Distance (F1): The distance between two adding options is computed as
the Euclidean distance from the final vertex of the first adding option to
the initial vertex of the second adding option: c(Ii,j , Ik,l) = deuclidean(j, k).
The distance between the adding options is traveled by the machine with-
out adding material, and for that reason, the torch has freedom to make
movements. This distance was chosen because there is no limitation on
the torch’s movements, and it represents the shortest distance between
two points.

• Waiting time (F2): The waiting time of two adding options depends on the
distance between them. The adding options that are nearer to each other
have a longer waiting time (as the temperature has to decrease to a certain
value after deposition), while adding options which are further apart have
less waiting time. In this study, the waiting time is computed using the
temperature monitored by the pyrometer in realistic process conditions.
This is made using empirical research based on experience. The machine
and monitoring system employed to perform the experiments are detailed
in [7].

6.3.3 An evolutionary optimization approach to the formulated
problem

Any combination of the elements inMS is a feasible solution, but the optimal
one(s) can be found using two optimization criteria: distance and waiting time.
In this case, the problem is posed as a bi-objective minimization problem, in
the solution space of permutations, where the PS of the solutions is computed.

The problem is addressed as a multi-objective TSP. Traditional meth-
ods used to solve single-objective TSPs cannot be directly applied to the
bi-objective case. Therefore, we use a GA [70] based on the permutation rep-
resentation. The genetic operators employed in the MO-GA do not violate the
restrictions of the multi-objective TSP. Some GA approaches to permutation
problems have been tested on large instances (e.g., up to N = 500 in [8] [20]).
The fact that GA approaches can deal with permutation problems of this
large dimensionality enables the possibility of addressing tool-path problems
in very complex parts.

Algorithm 2 shows the pseudocode of the algorithm used to solve the
problem. The algorithm starts from a set of randomly generated solutions
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Algorithm 2 Permutation-based MO-GA

1: D0 ← Generate M individuals randomly and evaluate them using the objective
functions.

2: l = 1
3: while stopping criterion not met do
4: Select a population Ds

l from Dl−1 using NSGA-II selection method
5: Create a population Dl applying ordered crossover to individuals in Ds

l with
a given probability

6: Apply shuffle mutation to individuals in Dl with a given probability
7: Evaluate the individuals in Dl
8: l→ l + 1

and evaluates them using the objective functions. Non-dominated sorting ge-
netic algorithm (NSGA-II) is used as selection algorithm, with the addition of
a crowding distance step [37]. This efficient method of selection sorts solutions
according to the non-dominated front which they belong to; the first solutions
belong to the set of non-dominated solutions. Solutions within each front are
also sorted, taking into account the crowding distance, a metric that deter-
mines how isolated solutions are in the Pareto front. Prioritizing solutions in
a less crowded region promotes the spread of the solutions in the Pareto front.

The ordered crossover, a specialized crossover operator that guarantees
the offspring will be valid permutations, is applied, and the shuffle mutation
operator is applied to the offspring. The latter works by shuffling two posi-
tions of the permutation and thus guarantees valid permutations. The overall
complexity of Algorithm 2 for a problem of m objectives is O(g · m · N2),
where g is the number of generations and m is the number of objectives. This
cost is governed by the selection operator used by the algorithm, as it has
complexity O(m(2N)2) [37]. For the optimization problems addressed in this
chapter, we use a population of 500 individuals and 100 generations. The EA
is implemented using the DEAP library programmed in Python [59].

6.4 Experiments

The main objective of the experiments is to illustrate the possibility to opti-
mize the tool-paths using the carried out formalization in PAW technology.
For that purpose, parts of different geometry and number of beads are used.
Note, that the objective is not to find the best optimization method. This sec-
tion, starts posing the sequence strategy generation problem for the example
shown in Section 6.3.1, introduces the benchmark used in the experiments and
presents the obtained results. The analysis of the results will be performed
analyzing the spread of the obtained PSs and the computation times of the
proposed EA approach.
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6.4.1 Example of how to pose the optimization problem

The sequence strategy generation problem for the example shown in Sec-
tion 6.3.1 can be posed as follows. To make the notation of the formulation
easier, the adding options are renamed.

• i1 = I1,4
• i2 = I1,13

• i3 = I2,6
• i4 = I3,8
• i5 = I4,13

• i6 = I5,9
• i7 = I7,11

• i8 = I10,12

The objective functions corresponding with the example are presented in
Equations (6.3-6.4). The constraints are shown in Equation (6.5).

min F1 = 250i1i2 + 158.11i1i3 + 70.71i1i4+

0i1i5 + 213.6i1i6 + 111.8i1i7+

230.49i1i8 + 291.54i2i1 + 304.13i2i3+

304.13i2i4 + 269.25i2i5 + 201.56i2i6+

200i2i7 + 90.14i2i8 + 111.8i3i1+

111.8i3i2 + 141.42i3i4 + 158.11i3i5+

55.9i3i6 + 50i3i7 + 125i3i8+

213.6i4i1 + 213.6i4i2 + 160.08i4i3+

90.14i4i5 + 150i4i6 + 55.9i4i7+

141.42i4i8 + 291.55i5i1 + 291.55i5i2+

304.13i5i3 + 304.13i5i4 + 201.56i5i6+

200i5i7 + 90.14i5i8 + 261.01i6i1+

261.01i6i2 + 195.26i6i3 + 134.63i6i4+

75i6i5 + 103.08i6i7 + 180.28i6i8+

212.13i7i1 + 212.13i7i2 + 206.16i7i3+

206.16i7i4 + 180.28i7i5 + 292.62i7i6+

55.9i7i8 + 250i8i1 + 250i8i2+

223.61i8i3 + 200i8i4 + 158.11i8i5+

167.71i8i6 + 111.8i8i7

(6.3)
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min F2 = 11i1i2 + 24i1i3 + 49i1i4 + 49i1i5+

11i1i6 + 30i1i7 + 11i1i8 + 6i2i1+

6i2i3 + 6i2i4 + 6i2i5 + 11i2i6+

24i2i7 + 49i2i8 + 30i3i1 + 30i3i2+

30i3i4 + 24i3i5 + 49i3i6 + 49i3i7+

30i3i8 + 11i4i1 + 11i4i2 + 24i4i3+

49i4i5 + 24i4i6 + 49i4i7 + 30i4i8+

6i5i1 + 6i5i2 + 6i5i3 + 6i5i4+

11i5i6 + 24i5i7 + 49i5i8 + 6i6i1+

6i6i2 + 24i6i3 + 30i6i4 + 49i6i5+

30i6i7 + 24i6i8 + 11i7i1 + 11i7i2+

11i7i3 + 11i7i4 + 24i7i5 + 6i7i6+

49i7i8 + 11i8i1 + 11i8i2 + 11i8i3+

24i8i4 + 24i8i5 + 24i8i6 + 30i8i7

(6.4)

{(i1, i2, i3, i4, i5, i6, i7, i8)|k, l = {1, 2..., 8} and ii 6= ij

∀k 6= l}
(6.5)

6.4.2 Benchmark definition

The benchmark employed in these experiments consists of ten parts: the part
shown in Section 6.3.1 and other nine parts. Table 6.1 gives the information
about the parts, including the manufacturing schemes for each part, the figures
of the PDGs (indicated in Figures 6.7 and 6.8) and the number of vertices in
each of the manufacturing graphs, (|V (Gm)|). Note that |V (Gm)| is also the
length of the permutations in the solution space of each of the graphs.

The manufacturing schemes were built to minimize the start and end
points of the sections where the machine can add material without stopping,
taking into account the movement limitations of a PAW torch. As Figure 6.8
shows, the segments joined by a straight line can be considered adding op-
tions. This is noticeable in the graph in Figure 6.8a; the graph has 24 edges,
but only eight adding options are in the manufacturing scheme. In contrast, in
the graphs shown in Figure 6.8b and Figure 6.8d, all the segments correspond
to a different adding option. The objective functions of distance and waiting
time are generated for each of the parts as explained in Section 6.3.2.

6.4.3 Results and discussion

In this section, we present the results from the experiments using a benchmark
compound by ten parts and described in Section 6.4.2.

The PSs obtained by applying Algorithm 2 to the bi-objective problems
defined for each of the parts are shown in Figure 6.9 and Figure 6.10. The
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Fig. 6.8: The PDGs of the parts from the benchmark.
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Table 6.2: Summary of the information on the PSs, showing the figures
related to PSs, execution time in seconds and the minimum and the maximum
values related to the two objectives in the PSs.

Graph Figure Time [s] Min (F1) Min (F2) Max (F1) Max(F2)

1 Fig. 6.9a 105.08 1022.14 99 1883.57 234
2 Fig. 6.9b 105.65 1212.10 48 2175.17 220
3 Fig. 6.9c 130.32 1018.17 318 1591.76 410
4 Fig. 6.9d 151.06 1030.46 265 2540.52 503
5 Fig. 6.9e 83.40 1042.68 140 1106.48 152
6 Fig. 6.10a 103.30 1013.05 260 1130.41 277
7 Fig. 6.10b 136.82 1016.81 378 1727.92 451
8 Fig. 6.10c 168.83 1312.25 405 2601.72 582
9 Fig. 6.10d 100.22 1048.67 217 1354.72 258
10 Fig. 6.10e 109.67 1007.19 269 1348.18 315

legends in the figures indicate the number of individuals in the PSs that reach
the same values in the objective functions. For instance, for the PS of the
Graph 1, shown in Figure 6.9a, the points in red indicate that those values
are reached by only one individual in the PS, whereas the crosses in blue
indicate they are reached by two individuals in the PS.

The distribution of the points in the PSs varies significantly from one case
to another. The most significant case is the one related to Graph 5 (shown
in Figure 6.9e), with some noticeable gaps between the points represented in
the PS. In comparison, in Graph 4 (Figure 6.9d), the points cover almost the
whole PS. It should be noted that in almost all cases, with the exception of
Graph 1, one point is repeated several times (from 4 to 91), indicating that
those values are reached by many individuals.

To clarify the results, Table 6.2 links each graph with its corresponding
PS figure, indicating the execution time of the MO-GA and minimum and
maximum values related to the two objectives in the PSs. In all cases, the
execution time is quite similar with a mean value of 119.44 seconds. The
minimum execution time is achieved in Graph 5 and the longest execution
time in Graph 8. As observed in Table 6.1, the number of vertices in the
manufacturing graphs, therefore the length of the permutations in the solution
spaces, are the lowest and the highest for the Graphs 5 and 8, respectively.
Accordingly, the execution time of the problems is related to the length of the
individuals in the solution space. The minimum and maximum values of the
two objectives for all the PSs are also indicated in the table.

For illustrative purposes, a solution with the minimum waiting time in
the PS for Graph 1 is given. x1 = (4, 1, 8, 3, 5, 6, 2), where F1(x1) = 99 and
F2(x1) = 1883.57. The solution translated to the sequence of adding options
is shown in Equation (6.6).
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            (a) (b)

                (c)    (d) (e)  

Fig. 6.9: The PSs obtained for the Graphs 1-5 for the objectives of distance
and waiting time.

I3,8 → I1,4 → I10,12 → I2,6 → I4,13 → I7,11

→ I5,9 → I1,13

(6.6)

From the performed experiments, it was shown that our proposed formal-
ization serves to optimize the tool-paths. It is possible to compute the PDGs
of the parts and finding the corresponding manufacturing schemes, following
the criterion of minimizing the starts and stops of the machine in PAW tech-
nology. It can be observed in the PSs that a nice spread is obtained in most
of the cases with the exception of Figure 6.9e and Figure 6.10a, where more
gaps between the Pareto points can be seen.

This analysis suggests it is feasible to compute the optimization before
manufacturing a part, as the computation times shown here are affordable.
Although the algorithm offers more than one choice for each part, the user can
select the most appropriate solution in the PS according to his/her criteria.
For example, depending on the material or geometry, one objective function
may be more critical than another, and the user could select the solution
with minimum value in the preferred criterion. Moreover, the minimum and
maximum values of the two objectives indicate the limits of the solutions
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            (a)             (b)

            (c)    (d) (e)

Fig. 6.10: The PSs obtained for the Graphs 6-10 for the objectives of distance
and waiting time.

obtained in the PSs. Solutions that are better than the minimum one will not
be reached, nor will solutions that are worse than the maximum one.

6.5 Conclusions

This chapter has introduced a sequence strategy generation problem for DED
processes that can be used to solve the tool-path optimization problem. Be-
fore this, it has proposed a mathematical framework to model a DED process
based on a critical review of the previous work. The experiments carried out
with ten parts related to the specific technology of PAW, showed that it is
possible to address the sequence strategy generation problem with the pro-
posed mathematical framework. It was also found that the problem can be
solved using parts with different geometry and number of beads by a MO-GA
approach.

On the one hand, in the obtained PSs from the experiments it was observed
a nice spread of them. This helps the decision-maker to get a better overview
of the available solutions. Regarding to the execution times obtained for the
ten parts, affordable execution times were found when applying the MO-GA
approach. On the other hand, some limitations of the methodology were also
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observed. The construction of the PDGs from CAD files is not automated,
and to construct the manufacturing schemes, the need of an expert person in
the process is essential.

This study reveals the need to go deeper into the tool-path problem in
DED and to extend the proposed framework to specific characteristics of other
DED processes. Moreover, the proposed novel problem can be solved using a
preference-based EA, where, at each iteration, the decision maker is asked
to give preference information in terms of optimality. Finally, the limitations
that appeared in this contribution lead to two future research lines. The first
limitation is the automated construction of a graph given a CAD file. The
second one is related to the construction of the manufacturing scheme from a
given PDG based on the specific characteristics of the DED technology.
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7

An early subcycle detection step and other
enhancements

7.1 Introduction

Most of the algorithms described in the literature to solve the HCP only
work for undirected graphs [11], or those considered for directed graphs are
not fully implemented or tested for large size graphs [58]. The BF is a linear
programming based method to solve the HCP that can be applied to directed
graphs. In previous research conducted on the BF [51] [19] [77], the authors
did not analyze how different characteristics of a given graph influence on the
algorithm. Therefore, the features of a graph, such as the degree of the vertices
and its density [72] were not exploited in the BF. This chapter focuses on the
second limitation related to linear programming based methods, on fathoming
solution spaces [146] that will not lead to HCs.

One of the aspects that was not considered before is the effect of increasing
the number of vertices of the graph to be solved by the BF. The authors in
[19], only considered graphs up to 64 vertices. Related to the density of a
graph, the effect of the third step (Fixing) of the BF has not been previously
addressed in the literature. It could be thought that in a denser graph, when
an arc is fixed in the second step (Branching), more arcs could be fixed in the
third step than in a sparser graph. Another aspect that was not studied before
is how the labeling of the vertices of a graph influences on the BF. In other
words, it is not clear whether two adjacency matrices that use two different
labeling of the vertices of the same graph will obtain different execution times
of the BF.

Since the BF was not tested in large graphs, we conducted a number of
preliminary experiments in graphs with this characteristic. However, we ob-
served that the method was not scaling well to those graphs. Consequently,
after conducting this analysis and to improve the efficiency of the BF, we
have introduced two enhancements. It has been shown in the literature that
enhancements and modifications to the components of different optimization
methods can result in important gains in terms of efficiency, extending the
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applicability of the algorithms [17] [32]. This chapter describes an investiga-
tion of the BF for large graphs and proposes enhancements to improve the
efficiency of the BF. In addition to the two enhancements, we investigate
the role of using different adjacency matrix representations depending on the
labeling of the vertices.

The first enhancement is an early subcycle detection step that fathoms
the branches that lead to subcycles. The presence of subcycles can lead the
algorithm to spend a long time before rejecting a branch, a phenomenon that
is particularly unfavourable for large graphs. The second one consists of a
simplification of the graph by eliminating arcs that are not compatible with
other arcs that must be on any HC. In graphs related to real-world problems,
a simplification can give on to important improvements, although rarely, can
even avoid the use of the BF method. To conduct the experiments, we use
graphs with more than 192 vertices, tripling the number of vertices considered
in previous investigations. Also, we apply these enhancements to two specific
graphs of 400 and 1123 vertices.

The remainder of this chapter is organized as follows. First, Section 7.2
describes the first enhancement of early subcycle detection. Then, Section 7.3
introduces the second enhancement of degree-based simplification. After, Sec-
tion 7.4 describes the permutation-based BF. Next, Section 7.5 introduces the
benchmark of Hamiltonian graphs that will be employed throughout the dis-
sertation, the evaluation metrics in the comparison of the approaches and the
experiments carried out to analyze the effect of the proposed modifications.
Finally, in Section 7.6, we present the main conclusions of the chapter.

7.2 The impact of subcycles and an algorithm for their
early detection

This section analyzes the effect of the subcycles generated in the execution of
the BF and introduces a method to address them.

7.2.1 Subcycle generation in the BF

The second LP used by the BF (Step 4) checks whether it is possible to
continue exploring the current branch. If the LP is infeasible or the objective
function is higher than the right-hand side of Equation (3.6), then there is no
HC with the arcs of U . However, subcycles can be generated by adding an arc
to the set U in Step 2.

If the subcycle contains an arc returning to the home node, the second LP
is able to detect it; however, if such an arc is not included in the subcycle, the
algorithm will continue exploring the branch until the infeasibility is detected
later in a deeper level of the tree. Figure 7.1 illustrates those two kind of
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subcycles that can be generated in the set U . Figure 7.1a shows a subcycle
generated by arcs [2, 4], [4, 7] and [7, 2]. In this case, as there is no any arc
returning to the home node, the second LP will not detect an infeasibility.
However, in Figure 7.1b the subcycle is generated by arcs [1, 4], [4, 7] and [7, 1]
(including an arc that is returning to the home node). So, in this latter case,
the infeasibility will be detected by the second LP.

2 4 7

(a) Subcycle without an arc return-
ing to the home node

1 4 7

(b) Subcycle that includes the arc
returning to the home node

Fig. 7.1: Two different kind of subcycles that can be generated in the set U .

7.2.2 An early subcycle detection step

The phenomenon described in Section 7.2.1 influences in the execution time
of the algorithm; therefore, we propose an additional checking step where
some branches are fathomed. This step is based on the following theorem and
conjecture.

Theorem 1. Let {(i1, i2), (i2, i3), ..., (ik, i1)} ⊂ U be a subcycle of length k in
the set of fixed arcs, where i1, i2, ..., ik−1 6= 1 and xi1i2 , xi2i3 , ..., xiki1 are the
entries of the solution vector x of the second LP. Then, xi1i2 = xi2i3 = ... =
xiki1 = µ

1−β .

Proof. If we write Equation (3.5), for the defined subset U , taking into account
that the arcs are fixed, then

xi1i2 − βxiki1 = µ,

xi2i3 − βxi1i2 = µ,

...

xiki1 − βxik−1ik = µ.

(7.1)

We write Equation (3.10), as the arcs are fixed and i1, i3, ..., ik−1 6= 1,
xi1i2 − βxiki1 = µ,

xi2i3 − βxi1i2 = µ,

...

xiki1 − βxik−1ik = µ.

(7.2)
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These constraints (Equation (7.2)) are redundant, as they are the same as
the system in Equation (7.1). Each variable appears in successive constraints
with coefficients 1 and −β. Therefore, the solution of the system must be

xi1i2 = xi2i3 = ... = xiki1 =
µ

1− β
.

ut

Remark 1. If entries of vector x take value µ
1−β , the arcs related to them

create a subcycle, but they do not necessarily belong to U . This phenomenon
is illustrated in Example 1.

6

10

12

9

2

1

3

5

7

8

Fig. 7.2: One possible solution of the second LP for a Hamiltonian graph
with 12 vertices.

Example 1. Let G be a 12-node Hamiltonian graph. In the second iteration,
when the only fixed arc is (9, 6), the second LP returns the solution shown
in Figure 7.2. The variables related to the arcs {(6, 10), (9, 6), (10, 12), (12, 9)}
take value µ

1−β , but not all of them belong to the set of fixed arcs.

Conjecture 1. Let x = (..., xi1i2 , xi3i4 , ..., xikik+1
, ...) be the solution of the sec-

ond LP, where xi1i2 = xi3i4 = ... = xikik+1
= µ

1−β and {(i1, i2), (i3, i4),

..., (ik, ik+1)} ⊂ U . Then, {(i1, i2), (i3, i4), ..., (ik, ik+1)} is a subcycle of length
k in the set U .

We include a function (Algorithm 3) after the second LP to check (when
the second LP is feasible) whether there are arcs related to entries that take
the value µ

1−β . A branch is fathomed if those arcs belong to U .

As this step of the BF is not proved mathematically (it is a conjecture), a
number of experiments will be conducted in Section 7.5 to analyze its validity.
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Algorithm 3 Inspect-subcycles

1: function Inspect Subcycles(x)
2: val ← µ

1−β
3: candidates ← {xia |xia = val and xia ∈ x}
4: arcs in loops ← {(i, a) related to xia ∈ candidates}
5: return arcs in loops

7.3 Exploiting fixed arcs with a degree-based
simplification algorithm

In this section, we analyze the effect of fixing arcs in the BF and how some
vertices with a specific degree contribute to that fixing. We also propose, a
degree-based simplification step to exploit those mentioned effects.

7.3.1 Effect of the fixed arcs in the BF

The Fixing step of the BF aims to fix as many arcs as possible, when in
the Branching step, one specific arc is added to the set U . This process is
carried out iteratively as described in the Algorithm 1. It is important to
fix as many arcs as possible at every stage of the algorithm to simplify the
graph, and hence making the problem simpler. The degree of a vertex plays
an important role in this Fixing step. It is clear that in an undirected graph,
an arc connected to a vertex of degree two, it must be in any HC, hence fixed.
This means that only two arcs are connected to the 2-degree vertex, one of
them must be the one reaching the vertex and the other arc must be leaving
it.

In a previous research work [29], an algorithm for undirected graph sim-
plification was presented. It was shown that an arc for which at least one of
the connected vertices has degree 2 must appear in any HC. In order to apply
BF to an undirected graph, an auxiliary directed graph has to be constructed
where each edge is represented by two arcs with different directions. There-
fore, the algorithm introduced in [29] is not of direct application within BF,
neither to original directed graphs nor to undirected graphs. For this reason,
we introduce a variant of this algorithm to deal with directed graphs. The
simplification process is more cumbersome, since the directions of the arcs
determine more possible combinations to be treated.

7.3.2 Degree-based simplification algorithm

After analyzing in Section 7.3.1 the role of the fixed arcs in the BF, a
degree-based simplification algorithm is proposed here. The pseudocode of the
method for the simplification of graphs based on 2-degree vertices is shown in
Algorithm 4. The algorithm consists of recursively eliminating arcs and thus,
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Algorithm 4 Degree-based simplification

1: function Degree Simplification(G)
2: eliminated←True
3: feasible←True
4: while eliminated=True do
5: eliminated ← False
6: for i ∈ V (G) do
7: O(i)← Outgoing(i)
8: I(i)← Ingoing(i)
9: O2(i)← 2-Degree(O(i))

10: I2(i)← 2-Degree(I(i))
11: if |O2(i)| > 2 or |I2(i)| > 2 then
12: eliminated←False
13: feasible←False
14: return feasible, G

15: if |O2(i)| = 2 then
16: arcs leave ← Elim(O(i),O2(i))
17: G ← Update Graph(G,arcs leave)
18: eliminated ← True
19: if |I2(i)| = 2 then
20: arcs enter ← Elim(I(i), I2(i))
21: G ← Update Graph(G,arcs enter)
22: eliminated ← True

return feasible, G

updating the graph. This degree-based simplification is performed in Step 4
of the BF algorithm before solving the second LP. In the following lines, its
main steps are summarized:

• For every vertex, the sets of outgoing O(i) and ingoing I(i) vertices are
computed. Their 2-degree vertices are identified, O2(i) and I2(i), respec-
tively (lines 6-10 of the pseudocode).

This is explained in a deeper extend in Definition 12 and Figure 7.3. Defini-
tion 12 is summarized in Table 7.1, where for each condition an illustrative
example (Figure 7.3) is indicated for the four conditions involving 2-degree
vertices.

• If there are more than two vertices in O2(i) or I2(i) with 2-degree, it is
not possible to find an HC in the current graph. The algorithm would
terminate and return that it is not feasible. In this case, the BF would
fathom the current branch (lines 11-14 of the pseudocode).

• If there are two vertices in O2(i), j and m, with 2-degree, then all arcs
that leave i are eliminated, with the exception of arcs (i, j) and (i,m).
The graph is updated removing those arcs. A similar process is carried out
when there are two vertices in I2(i) with 2-degree (lines 15-22).
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Fig. 7.3: Illustrative example of different casuistries for degree-2 vertices in
directed graphs.

Definition 12. A vertex i is considered a 2-degree vertex if one of the follow-
ing conditions are fulfilled:

1. d+
G(i) = 2 and d−G(i) = 2

2. d+
G(i) = 1 and d−G(i) = 1

3. d+
G(i) = 2 and d−G(i) = 1

4. d+
G(i) = 1 and d−G(i) = 2

Table 7.1: Combinations of in-degree and out-degree of a vertex that define
a 2-degree vertex. A figure that illustrates each casuistry is also indicated.

In-degree Out-degree Example

2 2 Figure 7.3a
1 1 Figure 7.3b
2 1 Figure 7.3c
1 2 Figure 7.3d

The worst computational complexity of Algorithm 4 is O(N3). The exter-
nal while loop is repeated N times maximum, as it is not possible to fix more
than N arcs belonging to the HC. The internal for loop is repeated N times
as we have N vertices. In the worst case, the complexity of the Update Graph

function is O(N) when only one arc is eliminated. In the average case, the
computational cost of Algorithm 4 is much less since within each internal loop
several arcs can be removed. The effect of the simplification in the quantity
of removed arcs will be analyzed in depth in Section 7.5.3.
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The pseudocode of the BF algorithm with the carried out modifications
(subcycle detection and degree-based simplification) is shown in Algorithm 5.
It takes as an input an adjacency matrix and an empty set of fixed arcs (∅).
It returns value True of the boolean variable found and the HC, or value
False of the boolean variable found and ∅, when all the branches have been
explored without finding an HC.

The main functionalities of the algorithm were explained in Section 3.4.
The candidate vertices are calculated using the Algorithm 3 created by a
result of Conjecture 1. This algorithm and the following ones related to the
BF presented in the dissertation were implemented in Python programming
language (version 3.5.2) and CPLEX (version 12.7.1) was used to solve the
LPs.

7.4 The role of the labeling of the vertices and a
permutation-based BF

We observed that different representations of the graph (different orderings
of the labels of the vertices) could produce different outputs of the original
BF (different computational times or even not succeeding to find an HC in a
given period of time).

In the construction of the HCs, candidate arcs are selected according to the
order of the labels of the vertices; therefore, the BF is sensitive to the way the
vertices of the graph are labeled. Different label assignments to the vertices
will generate different results. We create a variant of the BF, a permutation-
based BF, that receives as an input the adjacency matrix and a permutation
of length |V | = N .

This permutation is used to sort the rows and the columns of the origi-
nal adjacency matrix in the order indicated by the permutation and the BF
is applied on the rearranged matrix. This permutation-based BF is used to
implement it as a parallel approach. First, t random permutations are gen-
erated; then, each of them is used as an input for a BF instantiation. The
t instances of the BF algorithm start at the same time and run in parallel,
hence the output of each individual algorithm can contribute a solution. This
permutation-based BF is illustrated in Figure 7.4.

7.5 Experiments

The main goal of our experiments is to evaluate how the enhancements made
to the BF algorithm impact its performance and to analyze the effect of us-
ing different adjacency matrix representations in the BF. To this end, we
use a benchmark of Hamiltonian graphs of different complexity. This section
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Algorithm 5 Enhanced Branch-and-Fix

Input: adjacency matrix, ∅
Output: True/False, HC/∅

1: function Enhanced Branch and Fix(adjacency matrix, U)
2: simp matrix, status ← Degree Simplification(adjacency matrix)
3: if status 6= feasible then
4: return False, ∅
5: status, x2, F (x2) ← Second LP(simp matrix, U)
6: if status 6= feasible or F (x2)> bound then
7: return False, ∅
8: candidate vertices ← Inspect Subcycles(x2)
9: if |candidate vertices|> 0 then

10: if candidate vertices ⊂ U then
11: return False, ∅
12: status, x, F (x) ← First LP(simp matrix, U)
13: if status 6= feasible then
14: return False, ∅
15: splitting node ← Identify Splitting Node(x)
16: if splitting node = False then
17: HC ← Identify HC(x)
18: return True,HC
19: else
20: d← |A(splitting node)|
21: found ←False
22: i← 0
23: while (found = False) and (i < d) do
24: fixed arc ← Get ith Outgoing Arc(splitting node, i)
25: new adj matrix ← Update Adjacency Matrix(fixed arc)
26: U ← Update Fixed Arcs(new adj matrix)
27: last fixed arcs ← Refined Fixed Arcs(U)
28: while |last fixed arcs|> 0 do
29: for arc ∈ last fixed arcs do
30: new adj matrix ←Update Adjacency Matrix(arc)

31: U ← Update Fixed Arcs(new adj matrix)
32: last fixed arcs ← Refined Fixed Arcs(U)

33: found, HC ← ENHANCED BRANCH AND FIX( new adj matrix, U)
34: i← i+ 1

35: if found=True then
36: return True, HC
37: else
38: return False, ∅
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Perm 1 A1

Perm 2 A2

Perm t At

Fig. 7.4: Permutation-based BF, where t permutations are used to obtain t
adjacency matrices of the same graph and contribute to the HCP.

presents the benchmark used in the experiments, the metrics employed for the
evaluation of the experiments and compares the algorithm’s performance in
those graphs with and without applying the proposed enhancements. Finally,
an analysis with the permutation-based BF is presented.

7.5.1 Benchmark definition

Two main benchmarks of Hamiltonian graphs are used throughout the disser-
tation. The first set comprises 500 random Hamiltonian graphs. To study the
behavior of the methods on a diverse set of graphs, we create a benchmark
of instances by generating graphs defined by two parameters, the number of
vertices, |V | and the graph density, D. We have selected the parameter |V |
because in NP-complete problems, the size of the problem is a critical param-
eter. The density was selected as the sparsity of a graph plays an important
role when solving the HCP [60]. The values for both parameters are presented
below. Twenty five graphs are created for all possible combinations of both
parameters.

• |V |: 60, 70, 80, 90 and 100.
• D: 0.15, 0.25, 0.44 and 0.64.

First, to generate the adjacency matrices, a random permutation of length
N is created, this is because an HC can be represented by a permutation.
Secondly, a random symmetric matrix of 0s and 1s of dimension N × N is
created. This matrix represents the adjacency matrix of a graph. We use
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probabilities p and 1− p to distribute 1s and 0s in the matrix respectively. In
this case, D = d× 0.5. Finally, the permutation (by definition it is a cycle) is
used to connect the arcs that are part of it in the adjacency matrix. In this
way, we can guarantee the existence of at least one HC. Algorithm 6 shows the
pseudocode describing the steps in the generation of the adjacency matrices.

Algorithm 6 Random Adjacency Matrix

Input: N, p
Output: A

1: function Random Adjacency Matrix(N, p)
2: σ ← Random perm(N) . Random permutation of length N
3: M ← Random Matrix(N, p, 1− p) . Random matrix N ×N
4: for row ∈ {1, ..., N} do
5: for column ∈ {1, ..., N} do
6: M [row, column] = M [column, row] . Symmetric matrix

7: for i ∈ {1, ..., N} do . At least one HC using the permutation
8: M [i, σ[i]] = 1
9: M [σ[i], i] = 1 . Symmetric matrix

10: A ← Fill Diagonal Zeros(M)
return A

The second set of Hamiltonian graphs includes graphs that belong to a
collection called the challenge set. These Hamiltonian graphs are designed
to be difficult to solve using standard HCP heuristics [79]. There are several
sets of HCP instances available in the literature. However, none of the in-
stances are designed to be difficult to solve with algorithms such as Concorde
[6], Lin-Kernighan heuristic [80] and snakes and ladders heuristic [11]. This
set includes four type of instances: 1) graphs from the literature; 2) modi-
fied graphs from the literature; 3) graphs obtained by converting from other
discrete problems; 4) combinations of the graphs in 1), 2) and 3).

The main characteristics of the first 30 graphs are summarized in Table 7.2.
As can be observed in Table 7.2, the first 30 graphs have between 66 and 234
vertices and 198 to 702 arcs. More vertices in the graph implies more arcs.
The densities of the graphs are also indicated; D slightly decreases when the
number of vertices increases. The values of D are lower than those considered
for random graphs. In this particular chapter, Graph 59 and Graph 188 are
also used, which both present D = 0.5. Graph 59 has 400 vertices and 80002
arcs and Graph 188 has 1123 vertices and 630566 arcs.

7.5.2 Metrics for the comparison of the approaches

In this section, we introduce the metrics employed in the chapter to evaluate
the algorithms. First, the number of unsolved instances (UIs) is used to mea-
sure the ability of a method to solve the instances. An instance is considered
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Table 7.2: Characteristics of the first 30 graphs of the challenge set, indicat-
ing the number of vertices and arcs and the density.

G |V | |A| D

1 66 198 0.09
2 70 212 0.09
3 78 234 0.08
4 84 254 0.07
5 90 270 0.07
6 94 284 0.06
7 102 306 0.06
8 108 326 0.06
9 114 342 0.05

10 118 356 0.05

G |V | |A| D

11 126 378 0.05
12 132 398 0.05
13 138 414 0.04
14 142 428 0.04
15 150 450 0.04
16 156 470 0.04
17 162 486 0.04
18 166 500 0.04
19 170 780 0.05
20 174 522 0.03

G |V | |A| D

21 180 542 0.03
22 186 558 0.03
23 190 572 0.03
24 198 594 0.03
25 204 614 0.03
26 210 640 0.03
27 214 644 0.03
28 222 666 0.03
29 228 686 0.03
30 234 702 0.03

unsolved if the approach is not able to find an HC in a determined period of
time. Second, the number of calls to the algorithms are compared to analyze
which of them is more efficient. The approaches employed here are recursive
algorithms, and the number of recursive calls is the metric we compute for the
comparison. The algorithm’s efficiency is related to the number of calls; the
algorithm is more efficient when there are fewer calls. From both metrics, the
first one is more critical, and the number of calls has a secondary importance.

7.5.3 Evaluation of Branch-and-Fix enhancements

In this section, we carry out the experiments to evaluate the performance
of the two proposed enhancements. Three variants of the BF algorithm are
executed:

1. Original BF
2. Original BF with the subcycle detection step (BF SD)
3. Original BF with both the subcycle detection step and the graph simpli-

fication step (BF SD GS).

In the first part of the experiments, we compare the three approaches in
two sets of Hamiltonian graphs. In the second part, we carry out additional
experiments to analyze the effect of the degree-based simplification on the
BF. Each experiment is executed for 24 hours.

Regarding the first part of the experiments, Figure 7.5 shows the distri-
butions of the number of calls performed by each algorithm. The comparison
is performed by differentiating the graphs by density; the original BF is com-
pared to BF SD and BF SD GS. Higher numbers of calls are shown for the
original BF than for BF SD, this is more noticeable for D = 0.44. It should
be noted that when D = 0.64, the number of calls decreases significantly for
both. Similar distributions are observed for BF SD and BF SD GS, in all the
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Fig. 7.5: Number of calls required by different enhancements to the BF for
random graphs of different D.

cases. When D = 0.44 and D = 0.64, the number of calls decreases signifi-
cantly for both. The difference in the number of calls is lower if we compare
BF SD and BF SD GS than for the original BF and BF SD. This indicates
that as expected, when the density of the graphs increase it is easier to the
BF finding an HC.

Table 7.3 shows the number of UIs and the mean value (µ) and stan-
dard deviation (σ) of the calls for the instances that were solved by the three
variants. They are compared in graphs of a different number of vertices and
densities, with the lowest value of each of the performance parameters consid-
ered indicated in bold. The lowest number of UIs is achieved by BF SD GS.
The number of UIs decreases significantly from the original BF to BF SD and,
to a lesser extent, from BF SD to BF SD GS. The number of UIs decreases
when the density increases. The lowest mean values of the number of calls are
achieved with BF SD, with the exception of D = 0.64.

To determine whether there are significant differences between the ap-
proaches in the number of UIs and the number of calls, we apply a statistical
test, the Friedman test, which is a non-parametric test. This test can be
applied to paired samples, making it suitable here, as the instances are the
same. It tests whether repeated measurements of the same observation have
the same distribution. Thus, the null hypothesis is that the median difference
between pairs of observations is zero. To measure the differences between the
number of UIs, the solved instances are represented by 1 and those that are
unsolved by 0. To measure the differences between the number of calls, the
instances that have all the methods in common are considered. The signifi-
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Table 7.3: Comparison of original BF, BF SD and BF SD GS, showing the
number of UIs and the mean and standard values of the algorithm’s calls to
the common solved instances by the three variants.

D BF variants UI µ σ

0.15
Original BF 89 178297.83 342316.93
BF SD 85 150872.46 299329.45
BF SD GS 81 150894.91 299375.96

0.25
Original BF 82 90421.41 287970.08
BF SD 69 75592.80 261357.22
BF SD GS 67 75599.93 261378.37

0.44
Original BF 57 79506.02 260109.99
BF SD 17 8776.53 33905.13
BF SD GS 13 8776.67 33905.35

0.64
Original BF 73 23306.59 107704.87
BF SD 10 16368.60 80900.22
BF SD GS 5 16368.56 80900.22

cance threshold is p = 0.05. A correction function is applied to the p-values
for multiple testing, in this case Shaffer’s procedure [61].

The Friedman test is applied to the random Hamiltonian graphs with
different densities. Figure 7.6 shows the critical difference diagrams after ap-
plying the Friedman test to the distributions that represent solved and UIs
in graphs of different densities. It can be observed that significant differences
were achieved for D = 0.44 and D = 0.64 with p-value=2.36e − 05 and
p-value=5.91e − 12, respectively. In both cases, the highest number of UIs
were for the BF continued by BF SD and BF SD GS. The horizontal bold
line joining two or more methods represent groups of methods that are not
significantly different, in this case BF SD and BF SD GS.

Figure 7.7 shows the critical difference diagrams after applying the Fried-
man test to the number of calls in graphs of different densities. It can be
observed that significant differences were achieved for all the densities, where
the highest number of calls was for the BF in all the cases. Also in this case,
significant differences were not found between BF SD and BF SD GS (they
are joined by a bold line).

Table 7.4 shows the UIs, µ and σ for the three algorithms in graphs from
the challenge set of 66-234 vertices. In this case, the permutation-based BF
was used (also for the variants) with t = 30 (t is the number of permutations
employed in the permutation-based BF). From the 30 computed graphs, there
were 22 graphs that were solved at least once. For nine graphs, Graphs 7, 13,
17, 20, 22, 24, 27, 28 and 30, the results were identical for the three variants.
Therefore, Table 7.4 shows the information for the remaining 13 graphs with
the lowest values indicated in bold.
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Fig. 7.6: Critical difference diagram of the Friedman test for the UIs with
the graphs with different D.
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Fig. 7.7: Critical difference diagram of the Friedman test for the number of
calls with the graphs with different D.
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Table 7.4: Comparison of the original BF, BF SD and BF SD GS showing
the number of calls on some graphs of the challenge set with 66-234 vertices.

Graph BF variants UI µ σ

1
Original BF 0 247856.70 221704.57
BF SD 0 115160.60 108984.01
BF SD GS 0 115160.83 108984.87

2
Original BF 0 303654.77 383504.28
BF SD 0 131587.57 162707.84
BF SD GS 0 131586.40 162704.88

3
Original BF 16 1167130.36 961860.93
BF SD 4 924064.00 688305.75
BF SD GS 4 885305.11 672574.57

4
Original BF 24 1111592.33 520706.40
BF SD 24 745149.83 349902.09
BF SD GS 23 894914.42 489405.62

5
Original BF 27 239861.67 316787.71
BF SD 21 652495.56 385162.23
BF SD GS 21 652485.33 385158.92

6
Original BF 29 81706.00 0
BF SD 25 828703.00 428252.19
BF SD GS 25 828707.60 428256.93

9
Original BF 25 16410.40 32702.84
BF SD 25 16330.20 32542.44
BF SD GS 25 16330.20 32542.44

10
Original BF 29 55 0
BF SD 28 311661.50 311606.50
BF SD GS 27 632900.33 520699.66

11
Original BF 27 7658.00 10827.22
BF SD 27 7129.00 10079.10
BF SD GS 27 7129.00 10079.10

14
Original BF 28 6337.50 4825.50
BF SD 28 5416.50 3904.50
BF SD GS 28 5416.50 3904.50

15
Original BF 28 1436.50 1434.50
BF SD 28 1434.50 1432.50
BF SD GS 28 1434.50 1432.50

18
Original BF 26 4980.75 3163.07
BF SD 26 3951.75 2068.12
BF SD GS 26 3951.75 2068.12

23
Original BF 26 8690.75 4659.57
BF SD 26 7620.75 3397.02
BF SD GS 26 7620.75 3397.02
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It can be observed that for four graphs, the number of UIs is higher for
the BF than for the other two variants (Graph 3, 5, 6 and 10). The number
of calls to the BF is higher than for the BF SD and BF SD GS for the same
number of UIs (Graphs 1, 2, 4, 9, 11, 14, 15, 18 and 23). Regarding the BF SD
compared to the BF SD GS, very similar results are found in terms of UIs or
µ (Graphs 1-6 and Graph 10). This is expected, as when the density decreases
the number of arcs also decreases, hence arc removal might not be necessary.
Identical results are obtained for the BF SD compared to BF SD GS (Graphs
9, 11, 14, 15, 18 and 23).

The three variants were also tested in two specific graphs (Graph 59 and
188) of the challenge set. These graphs were selected due to their high den-
sity (D = 0.5) and large number of vertices. On the one hand, Graph 59 has
400 vertices and 80002 arcs and it was solved by the BF SD GS in 2657.32
seconds for all the t = 30 permutations. The degree-based simplification func-
tion removed iteratively 79202 arcs in a single call. On the other hand, Graph
188 has 1123 vertices and 630566 arcs and it was solved by the BF SD GS
in 330504.56 seconds for all the t = 30 permutations. The degree-based sim-
plification function removed iteratively 628,320 arcs in a single call. The BF
and BF SD were not able to solve these graphs with none of the t = 30
permutations.

In the second part of the experiments, we investigate the simplification
process from a different perspective. The aim of these experiments is to an-
alyze how the degree-based simplification contributes to eliminate arcs from
the graph. For this purpose, we employ Graph 2 of the challenge set and
permutation-based BF with t = 30 and variant BF SD GS.

First, the metrics of the number of eliminated arcs are analyzed. Figure 7.8
shows three metrics related to the degree-based simplification method for
the 30 permutations. The first consideration is the number of calls to the
simplification function where at least one arc is eliminated. For each execution
related to a permutation, the maximum and mean numbers of eliminated arcs
are shown in Figures 7.8a and 7.8b, respectively. Figure 7.8c shows the ratio
of the calls where at least one arc is eliminated out of the total number of
calls to the simplification function. The figure indicates that the maximum
values (Figure 7.8a) are much higher than the mean values (Figure 7.8b). In
general, the number of eliminated arcs is quite low, but, for some calls, the
number of eliminated arcs increases considerably. For some executions, the
maximum number of eliminated arcs is much lower than for others. The ratio
of the number of calls where at least one arc is eliminated is considerably low
(mean value of 0.06). This means that the arcs are eliminated in few calls to
the algorithm (taking into account the total amount of calls), but when the
arcs are eliminated the number of eliminated arcs is considerably high.

Second, the number of arcs eliminated using the degree-based simplifica-
tion method is analyzed taking into account the levels in the logical tree. This
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Fig. 7.8: Metrics related to the degree-based simplification method for the
permutations employed.

provides us with a more detailed view of the impact of the simplification and
the nature of the BF algorithm. As the same level of a tree can be revisited
more than once, the numbers of eliminated arcs are added per level. The deep-
est level explored among all the permutations used by BF SD GS is 50. As not
all the executions reach this level, the number of eliminated arcs is indicated
by α = −10000. Figure 7.9 shows the heatmap of the number of arcs elim-
inated by the degree-based simplification method for each level of the tree.
The black boxes of the heatmap indicate that those levels are not reached
by the specific execution of the BF SD GS. As can be observed, the highest
number of eliminated arcs is achieved in the central levels of the search tree.
This is more noticeable for permutation 13. This effect of a higher number of
eliminated arcs in the central levels is related to the fact that those levels are
more often revisited.

7.5.4 Effect of the labeling of the vertices

In this section, some insights into the effect of the labeling of the vertices
is given. In the previous section (Section 7.5.3), we have already seen that
there is a difference when using different representations of the adjacency
matrix when solving a graph. If we observe Table 7.4, there is a difference in
the number of UIs and also in the number of calls to the BF. Moreover, in
the second part of the experiments, it was seen that the simplification has a
different effect when using a different matrix representation by the BF SD GS.
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Fig. 7.9: Heatmap of the number of eliminated arcs using the degree-based
simplification method for the levels in the logical tree.

For some permutations employed by the algorithm, the number of removed
arcs was much higher than for other permutations.

Figure 7.10 shows the probability density function of the execution time
by the permutation-based BF. The BF SD GS algorithm was used in this
case. The Graph 2 of the challenge set and 30 permutations were employed.
In this case, all the instances were solved, however it is possible to appreciate
a variation in the execution time of the 30 permutations employed by the BF.

7.6 Conclusions

In this chapter, we have proposed two enhancements to the BF algorithm to
solve the HCP. The first enhancement is related to early subcycle detection
and addresses a limitation that, when fixing arcs, presents the BF. We have
proved mathematically that subcycles can be generated when an arc is added
to the set of fixed arcs and that will not be detected by the second LP. We
have introduced a conjecture related to this issue to detect the generated sub-
cycles. The experiments with random Hamiltonian graphs clearly show that
our approach decreases the number of calls to the BF when solving an in-
stance, and it solves more instances than the original BF. In more challenging
graphs with lower densities and up to 234 vertices, it was observed that for
some of the graphs there was also a gain in terms of the number of solved
instances and calls to the BF.
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Fig. 7.10: Density plot of the execution times of the permutation-based BF
for t = 30 and Graph 2 of the challenge set.

The second proposed enhancement builds on a previous proposal for undi-
rected graphs [29] and simplifies the graph by eliminating some arc connections
using an iterative method. This enhancement is not related to a limitation of
the BF, but to a characteristic that the graph to be solved may present. It was
found that a simplification can result in a reduction of a substantial number
of arcs, even if the percentage of calls where at least one arc can be removed
is relatively low. The experiments show an improvement in the number of
solved instances for the BF with the simplification step compared to the BF
with subcycle detection step in random graphs, although significant differ-
ences were not found. To a lesser degree, there was an improvement in some
challenging graphs with lower densities, as when the graph’s density decreases
so does the number of arcs, hence hindering the simplification step. In two
graphs of the challenge set with D = 0.5 and 400 and 1123 vertices, this
method succeeded in solving them, in contrast to the original method and the
one with the subcycle detection step.

Finally, it was seen in the experiments the advantage of employing the
permutation-based BF. Thanks to this variant, there are more choices to solve
a challenging instance and it allows to find, from a set of permutations, the
most efficient matrix representation of a given instance.
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Branching methods for the Branch-and-Fix

8.1 Introduction

BB methods play an essential role in the solution of a variety of (mixed)
integer programs and other constraint satisfaction problems. Recent research
[10, 95, 107] has highlighted the convenience of devising strategies for learning
to branch instead of using fixed branching schedules. However, the conception
of such adaptive branching schemes requires the study of the particular do-
main where the BB method is going to be applied. It is also important to
understand the benefits and limitations of branching methods presently used
in that domain [118].

Branching is one of the main operations of BB algorithms, the best known
exact algorithms for discrete optimization problems [107]. Branching consists
of recursively splitting the search space into a smaller space and minimizing
the objective function in the subspace [10]. In these operations, it is crucial
the branching rule employed to determine which branch of the tree is used to
generate the children [82]. An efficient branching rule can considerably reduce
(several orders of magnitude) the size of the search tree.

The most important decisions associated with BB are variable selection
and node selection [107]. The first involves selecting one of two variables re-
lated to a node to branch on; the second involves selecting a node to proceed.
In the context of BF, the node selection is determined by the solution of the
first LP, as the selected node will be the splitting node. However, the variable
selection depends on the number of arcs emanating from a vertex called the
splitting node, as d arcs will emanate from vertex i, in contrast to the two
variables in BB algorithms.

To have a better understanding of the branching step in the BF, Figure 8.1
shows an example for the Hamiltonian graph shown in Figure 3.2. Figure 8.1a
shows the solution of the first LP, which in this case corresponds to a 1-
randomized policy. The splitting node is the vertex 5, the vertex in which the
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randomization occurs, and it branches on arcs (5,1) and (5,6). The branching
options are shown in Figure 8.1b, where the arcs that emanate from vertex 5
(d = |A(5)|), are three: (5,1), (5,4) and (5,6). The branching step consists on
determining the order in which the algorithm will proceed.

1 2

34

5 6

(a) 1-randomized solution from the
first LP. The splitting node 5
branches on (5,1) and (5,6).

5

4 61
(b) The splitting node 5,
where d = 3 arcs emanate from
it.

Fig. 8.1: Example of a branching in the Hamiltonian graph of six vertices
introduced in Figure 3.2.

One of the most efficient branching strategies is strong branching (SB) [3],
despite its huge computational cost. SB evaluates the dual bound for every
candidate variable by computing the LP relaxation resulting from the branch-
ing of that variable. Some branching approaches [69, 94] collect information
on the BB performance. Lookahead branching consists of measuring the im-
pact of the candidate variable on LP gains [69]. This approach offers a new
branching rule, as well as tools to fix the bounds.

Fathom-based branching methods are also proposed motivated by the need
to minimize the number of explored nodes and the fact that branching de-
cisions are more important in the first levels of the tree. Entropy branching
was proposed by Gilpin and Sandholm [68], based on the idea of removing un-
certainty from the search tree by measuring uncertainty/certainty of a node
using entropy. Lodi and Zarpellon [107] summarized the ideal properties of a
branching method as follows: 1) node-efficiency; 2) increased importance of
the top levels of the search tree; 3) time-efficiency; 4) adaptiveness within the
tree evolution.

In this chapter, we investigate the effectiveness of various branching meth-
ods in the solution of the HCP using the BF. We compare several branching
strategies from the literature and propose a novel one that consists of per-
forming the branching by maximizing the quantity of fixed arcs in the third
step of the BF algorithm.

The remainder of the chapter is organized as follows. Section 8.2 provides
the context of the analyzed branching methods and presents the proposed
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one. Section 8.3 is devoted to the evaluation of the methods in a number of
experiments. Finally, Section 8.4 draws some conclusions.

8.2 The global branching method

Branching is one of the main operations for BB algorithms and the BF. As
mentioned, it is very important the branching rule employed, as it can consid-
erably reduce the size of the search tree. This section reviews some branching
methods for the BF reported in the literature and proposes the global branch-
ing method.

8.2.1 Branching methods for the Branch-and-Fix reported in the
literature

The authors of BF [78], proposed five branching methods based on the solution
of the first LP. We will denote them local methods, as they take into account
only the arcs where the branching has occurred. If vertex i is the splitting
node that branches on (i, j) and (i, k), where xij ≤ xik, these are the methods
considered:

1. Uninformed: The branching is carried out in the numerical order of the
labels of the vertices.

2. Local-1: First branch on arcs (i, j) and (i, k), and then the rest of the
arcs in vertex order.

3. Local-2: First branch on arcs (i, k) and (i, j), and then the rest of the
arcs in vertex order.

4. Local-3: First branch on arcs in vertex order. The last arcs are (i, j) and
(i, k).

5. Local-4: First branch on arc (i, k), then the rest of arcs in vertex order
and finally arc (i, j).

These methods are explained with an example in Figure 8.2. For the Un-
informed branching method (Figure 8.2a), the arcs that emanate from the
splitting node follow the numerical order of the labels of the vertices: (5,1),
(5,4) and (5,6). For the rest of them, the solution of the first LP is taken into
account. The components of the solution involved are x51 and x56 (the split-
ting node branches on (5,1) and (5,6)), where in this case x56 ≤ x51. In the
following lines the branching order for the rest of the methods is indicated:

• Local-1: (5,6), (5,1) and (5,4) (Figure 8.2b).
• Local-2: (5,1), (5,6) and (5,4) (Figure 8.2c).
• Local-3: (5,4), (5,6) and (5,1) (Figure 8.2d).
• Local-4: (5,1), (5,4) and (5,6) (Figure 8.2e).
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5

4 61

(a) Uninformed

5

4 61

(b) Local-1

5

4 61

(c) Local-2

5

4 61

(d) Local-3

5

4 61

(e) Local-4

Fig. 8.2: Different orders to perform the branching depending of the branch-
ing method. The arrow in black refers to the first branching arc, the dash in
pink to the second, and the dash in blue to the last.

Some preliminary research has analyzed the performance of these meth-
ods. In one investigation [19], the methods were evaluated in 50 randomly
generated Hamiltonian cubic N -node graphs, where N ∈ {20, 30, 40, 50}. A
specialized computer program (GENREG [115]) was used to create the cu-
bic graphs that were used as a benchmark to evaluate different branching
strategies. For the evaluation, the authors considered the number of branches
explored by the BF among the five branching methods. In this benchmark,
the Local-2 method performed best, with the lowest average number of ex-
plored branches. The same graphs and branching methods were employed to
compute the BF using wedge constraints. The Local-4 performed well when
wedge constraints were included, in contrast when the original BF was used.
Local-2 and Local-4 were the most efficient; they both first branched on arc
(i, k). For cubic graphs generated by this computer program, the branching
arc should be (i, k) when using wedge constraints.

8.2.2 The global branching method

In this section, we propose the global branching method that takes into ac-
count the number of fixed arcs in the third step of the BF algorithm. The aim
of this branching method is to select first the branch that leads to a more sim-
plified subgraph. The pseudocode of the algorithm is shown in Algorithm 7. It
takes as an input the splitting node and returns a set of branching candidates
ordered using the mentioned criterion. In the following lines, its main steps
are summarized:

• Each branching candidate has associated an empty set Li (line 5 of the
pseudocode).
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• The arc that emanates from the splitting node is computed and the ad-
jacency matrix is updated according to it. The set of fixed arcs of the
updated adjacency matrix is computed and the arcs are added to Li. The
Update Adjacency Matrix and Update Fixed Arcs follow the same rules
as the ones described in Section 3.4. This is performed in lines 6-9 of the
pseudocode.

• The function Refined Fixed Arcs checks whether there are or not new
elements in U . These elements are saved in the variable last fixed arcs

(line 10 of the pseudocode). Afterwards, a loop is performed to iteratively
update the adjacency matrix and fixed arcs (lines 11-15 of the pseudocode).
The new fixed arcs computed in each step are added to Li (line 16 of the
pseudocode).

• The fixed arcs associated to the i-th emanating arc from the splitting node,
are added to L (line 17). The function Sort Arcs orders the emanating
arcs from the splitting node according to the cardinality of the subset
Li ⊂ L (line 18 of the pseudocode).

Algorithm 7 Global branching method

Input: splitting node
Output: sorted branching candidates

1: function GLOBAL(splitting node)
2: L = {}
3: d← |A(splitting node)|
4: for i in d do
5: Li = {}
6: arc ← Get ith Outgoing Arc(splitting node,i)
7: new adjacency matrix ← Update Adjacency Matrix(arc)
8: U ← Update Fixed Arcs(new adjacency matrix)
9: Li ∪ U

10: last fixed arcs ← Refined Fixed Arcs(U)
11: while |last fixed arcs|> 0 do
12: for a ∈ last fixed arcs do
13: new adjacency matrix ←Update Adjacency Matrix(a)

14: U ← Update Fixed Arcs(new adjacency matrix)
15: last fixed arcs ← Refined Fixed Arcs(U)
16: Li ∪ last fixed arcs

17: L ∪ Li
18: sorted branching candidates ← Sort Arcs(L,A(splitting node))

return sorted branching candidates

The global branching method is illustrated in Figure 8.3. In this case, the
splitting node is vertex 3, where three arcs emanate from it, d = |A(3)| = 3.
The cardinality of L1 associated to the first arc (3,2) emanating from the
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splitting node is |L1|=4. This means that fixing the arc (3,2) implies fixing
other four more arcs. The cardinality of L2 associated to (3,4) is |L2| = 6
and the cardinality of L3 associated to (3,6) is |L3| = 6. The branching order
in this case is the following: (3,4), (3,6) and (3,2) (in the case of a tie the
numerical order of the labels of the vertices is followed.)

3

4 62

4
6

6

Fig. 8.3: The splitting node where the three branching candidates and the
cardinality of the L1, L2 and L3 are indicated. The arrow in black refers to
the first branching arc, the dash in pink to the second, and the dash in blue
to the last.

Section 8.1 mentions the properties that a branching method should ac-
complish. The methods proposed in the literature (except for the uninformed
method) and the global are adaptive within the tree evolution. They depend
on the splitting node that comes from the solution of the first LP, and this
is related to the subgraph built on the specific level of the tree. The main
difference between the methods in the literature and the global one is that
the nodes in the top levels have more importance in the latter. The global
method prioritizes the arcs that will lead to a simplified subgraph of G. In
the top levels, the graph can be more simplified by eliminating arcs that in
deeper levels.

There are some issues that may have an influence on the behaviour of the
branching strategies.

• The interaction between the parameters of the BF and the branching
method.

• The particular characteristics of a graph (density and degree of the ver-
tices).

• The permutation employed in the permutation-based BF.

Regarding the first item, there are some components of the BF such as the
initial probability distribution or the discounted factor that may influence on
the branching. Also, other components that were included in the dissertation,
such as the simplification may have an impact on the branching strategy.
Moreover, the impact may be different to one strategy to other. It could be
useful to analyze the effect of these parameters, however the computational
cost of the experiments would be high.
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With respect to the second item, the particular characteristic of a graph
can influence on the branching strategy. In a denser graph, more branching
candidates will be available for the splitting node than in a sparser graph.
Also, if there are some vertices in the graph with higher degree, and as a
result of the first LP lead to splitting nodes, more branching candidates will
be available. These characteristics of the graph will influence more on the
global branching method, in comparison to the rest of the methods, as the
computational cost of the global one will be higher. The number of Lis to be
computed increases with the available branching candidates.

For the third item and in regard to the permutation-based BF, the em-
ployed permutation will have a clear effect on the branching strategy. For the
uninformed branching method, that uses the numerical order of the labels, us-
ing a different labeling indicated by the permutation, will affect to the result.
But even for the rest of the strategies, there is an influence of the permutation
as they use at any time the numerical order of the labels. The local methods
use to order the branching candidates, except for the two arcs where the ran-
domization occurs ((i, j) and (i, k) where i is the splitting node). In the case
of the global method, the numerical order of the labels is used when there is
a tie among the candidates.

To summarize, there could be several factors that have influence on the
branching, but it is very difficult to measure their effect without doing an
exhaustive evaluation of each of the factors.

8.3 Experiments

The main goal of our experiments is to analyze the performance of different
branching methods. In particular, we would like to assess the efficiency of the
global method introduced in this dissertation. To this end, we use a benchmark
of Hamiltonian graphs of different complexity; Graphs 1-10 from the challenge
set and the 500 random Hamiltonian graphs introduced in Section 7.5.1.

This section describes the experiments to analyze the differences between
the branching methods. For the evaluation of the experiments, the metrics
introduced in Section 7.5.2 are used. The analysis includes the five branching
methods proposed (uninformed method and four local methods) and the pro-
posed global one. For the graphs in the challenge set, the permutation-based
BF is used with t = 30. Each run of the BF is executed for a maximum time
of 24 hours. The BF algorithm used to solve the problem incorporates the two
enhancements mentioned in Section 7 (BF SD GS).

8.3.1 Results and discussion

In this section, the analysis of the results of the experiments and a discussion
are carried out. First, the number of UIs through different branching strategies
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is analyzed. Then, the distributions of the number of calls to the algorithm
are analyzed.

8.3.1.1 Analysis of the number of unsolved instances

The distributions of the number of UIs are compared for the six branching
methods. Table 8.1 shows the number of UIs in the graphs from the challenge
set for the six branching methods. The lowest values are indicated in bold.
For the first two graphs of the set, all instances are solved for all branching
methods. The BF SD GS has more difficulty solving the rest of the graphs.
The Local-2 method solves more instances; the lest efficient method is the
uninformed method.

Table 8.1: Number of UIs for the 10 graphs from the challenge set and six
branching methods.

Graph Uninformed Local-1 Local-2 Local-3 Local-4 Global

G1 0 0 0 0 0 0
G2 0 0 0 0 0 0
G3 9 2 0 7 3 8
G4 23 17 20 22 22 24
G5 21 25 18 21 24 20
G6 25 11 19 21 12 26
G7 26 30 22 28 29 24
G8 30 30 29 29 30 29
G9 25 29 24 26 29 24
G10 27 25 24 27 24 27

Table 8.2 shows the number of UIs for the random Hamiltonian graphs
with different numbers of vertices and density. The number of UIs decreases
when the density of the graph increases. This change in the number of UIs is
more noticeable between D = 0.25 and D = 0.44. The global method solves
more instances, and the least efficient method is Local-4.

To determine whether there are significant differences between the meth-
ods in the number of UIs, we apply the Friedman test [38], with p = 0.05
and using the Shaffer’s procedure [61] as a correction function. The solved
instances are represented by 1 and the unsolved ones by 0. There are no sig-
nificant differences between the methods for any of the instances in the set
of random Hamiltonian graphs and the challenge set except for Graph 6. In
this particular case, the best method was the Local-1 and the worst one the
global method.



8.3 Experiments 87

Table 8.2: Number of UIs for each of the branching methods for graphs with
different D and |V |.

D |V | Uninformed Local-1 Local-2 Local-3 Local-4 Global

0.15

60 10 9 11 9 9 6
70 13 18 17 15 18 17
80 19 22 19 20 21 15
90 17 20 20 20 22 19
100 22 23 20 24 24 22

0.25

60 11 6 7 8 6 11
70 14 12 11 14 11 9
80 15 13 13 14 17 12
90 15 12 13 12 12 10
100 12 15 11 13 18 15

0.44

60 1 2 1 1 2 2
70 3 2 7 2 2 4
80 2 4 3 6 8 3
90 2 5 3 2 7 4
100 5 2 6 5 3 5

0.64

60 0 2 1 0 2 0
70 1 1 1 1 1 1
80 1 2 1 1 0 1
90 2 2 2 0 2 2
100 1 3 1 0 2 0

8.3.1.2 Analysis of the number of calls

The distributions of the number of calls are compared for a subset of graphs
solved for all the branching methods. In the challenge set, only Graphs 1, 2 and
3 have a subset of permutations for which BF has been able to solve the prob-
lem with all branching methods. This means that only some BF executions are
solved by the six branching methods. The Friedman test is applied in this case
as well, and significant differences appear for Graph 1 (p-value=7.05e-03) and
Graph 3 (p-value=3.35e-01). The critical difference diagrams for these graphs
are shown in Figure 8.4. In the figure, B1 corresponds to the uninformed
method, B2 − B5 to Local-1–Local-4, and B6 to the global method. In both
cases, the best method was the global one and the worst ones the Local-1 and
Local-3.

The Friedman test is applied to the random Hamiltonian graphs with
different densities. Significant differences are only found for the highest den-
sities, D = 0.44 and D = 0.64 with p-value=2.78e-03 and p-value=5.44e-03
respectively. The critical difference diagrams for these graphs are shown in
Figure 8.5. In both cases, the worst method is the Local-1, and the best one
is the uninformed for D = 0.44 and Local-2 for D = 0.64.
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Fig. 8.4: Critical difference diagrams of the distributions of the number of
calls for Graphs 1, 2, and 3 from the challenge set. The p-values obtained from
the Friedman test are indicated.
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(c) D = 0.44
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(d) D = 0.64

Fig. 8.5: Critical difference diagrams of the distributions of the number of
calls for random Hamiltonian graphs. The p-values obtained when applying
the Friedman test are indicated.

For eight graphs from the challenge set, there are no executions of
the permutation-based BF solved by all the branching methods for all the
instances, making comparison impossible. For some random Hamiltonian
graphs, these subsets are small (few graphs are solved by all the branching
methods). For that reason, the branching methods are compared (in terms of
number of calls) in pairs, taking the graphs solved in both cases. The Wilcoxon
signed-rank test [38] is used to find significant differences between methods.
This statistical test is a non-parametric test that can be applied to paired sam-
ples. This test is applied to Graphs 3-10 from the challenge set (for Graphs 1
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and 2, all instances are solved by all methods) and the random Hamiltonian
graphs, considering them in groups differentiated by density. This means that
to compare two branching methods in random graphs the subset of common
solved instances is considered for a given density. The number of these com-
mon instances is shown in Table 8.3. It can be observed that the number
of common instances solved by two branching methods increases when the
density gets higher.

Table 8.3: Number of common instances for the branching methods consid-
ered in pairs for the four densities.

Common instances

Method 1 Method 2 D = 0.15 D = 0.25 D = 0.44 D = 0.64

Uninformed Local-1 18 27 98 109
Uninformed Local-2 16 33 92 113
Uninformed Local-3 20 27 98 117
Uninformed Local-4 18 30 91 112
Uninformed Global 27 42 102 119
Local-1 Local-2 14 39 90 110
Local-1 Local-3 12 34 96 112
Local-1 Local-4 24 49 98 110
Local-1 Global 18 37 93 110
Local-2 Local-3 13 31 89 116
Local-2 Local-4 14 32 85 111
Local-2 Global 16 34 87 114
Local-3 Local-4 13 34 90 115
Local-3 Global 24 33 94 118
Local-4 Global 15 36 88 113

Table 8.4 shows how many times there are significant differences between
two methods in all explored graphs. The numbers above the principal diagonal
indicate that the methods in the rows are significantly better than those in
the columns. The numbers below the principal diagonal indicate that the
methods in the rows were significantly worse than those in the columns. The
uninformed branching method is frequently found to be significantly better.

8.4 Conclusions

In this chapter, we have analyzed the branching methods in the literature
and introduced the global branching method. This latter method takes into
account other specific aspects of the BF than those proposed in the literature.
We have considered two aspects to evaluate the performance: the number of
UIs and the number of calls to the algorithm.
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Table 8.4: Number of times when one method is significantly different from
other method (in terms of the number of calls) when applying the Wilcoxon
signed-rank test for the graphs from the challenge set and random Hamilto-
nian graphs.

Uninformed Local-1 Local-2 Local-3 Local-4 Global

Uninformed − 3 1 0 3 1
Local-1 1 − 0 1 1 0
Local-2 0 2 − 0 2 0
Local-3 0 3 0 − 3 0
Local-4 1 1 1 0 − 0
Global 0 2 0 0 1 −

In the case of the number of UIs, the global method was the method solving
most instances for the random Hamiltonian graphs, specially for D = 0.15 and
D = 0.25. However, for the graphs from the challenge set, that have smaller
densities than the random graphs, the Local-2 was the method able to solve
more instances. There were not found significant differences in the number UIs
except for one graph, for which the global method was the one that solved the
smallest number of instances. There was not found a method outperforming
others, so depending on the density of the graph to be solved the global or
the Local-2 could be selected.

Regarding the number of calls to the algorithm, for two graphs from the
challenge set, the global method was found to be significantly faster. In the
case of random Hamiltonian graphs and densities D = 0.44 and D = 0.64 the
uninformed and the Local-2 were the best. As occurred with the number of
UIs, there was not found a method clearly outperforming others.

To summarize, adding specific characteristics of the BF algorithm to a
branching rule has not brought any clear advantage compared to the methods
reported in the literature. Moreover, there was not found any significant gain
when using a branching rule instead of using the numerical order of the labels
of the vertices. This indicates that much more work is required in the design
of branching strategies for the BF.
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Branch-and-Fix collapse algorithm

9.1 Introduction

Linear programming based methods present some limitations when applied to
discrete optimization problems. One of them is that the number of constraints
increases with the size of the problem, making it computationally expensive
to the LP solver [63]. Another limitation is that these methods consume time
exploring solution spaces that lead to infeasible solutions [109]. In Chapters 7
and 8 we have focused on the second limitation and proposed strategies to
fathom the branches of the logical tree constructed by the BF, thus reducing
the size of the logical tree [68]. In this chapter, we will focus on reducing
the size of the problem (number of vertices of the graph) to decrease the
computational cost when solving the LPs.

To face the aforementioned limitations, we build our proposal on the BF
algorithm. In BF [51], two main components can be identified: one related to
the solution of the LPs, where the main role is played by the LP solver. An-
other component is the way branching is implemented and how the recursive
calls to the LPs are invoked. The efficiency of this second component is closely
related to the choice of the data structure and other design decisions of the
algorithm.

In order to make the BF a more efficient approach, it is not only impor-
tant to improve the performance of the LP solver, but also to make the second
component more agile, decreasing its time and memory requirements [97]. In
this chapter, a BF collapse algorithm is proposed that addresses some of the
limitations of the BF by using the following strategies: 1) degree-based sim-
plification; 2) a more efficient matrix representation; 3) the global branching
method; 3) a matrix collapse step by finding paths. Some of the components,
such as the degree-based simplification and the global branching method,
were introduced in previous chapters. Here, we will introduce a more efficient
matrix representation and the matrix collapse step related to decreasing the
number of constraints in the LPs.
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One possible approach to solve the HCP is to convert an instance into a
TSP instance [84]. Nevertheless, most of the methods to solve the TSP are
originally conceived for symmetric instances [114], including the very well-
known Concorde TSP solver [5]. Solving asymmetric TSP instances requires
transforming them into symmetric TSP instances by doubling the number of
the vertices [92].

This chapter proposes a new algorithm called BF collapse which incor-
porates the four components. It evaluates the behaviour of its components
and makes a comparison to the original BF. Moreover, the algorithm is com-
pared to the Concorde solver in some challenging instances. For that purpose,
a particular benchmark is built to evaluate the efficiency of the BF collapse
algorithm.

The remainder of this chapter is organized as follows. In Section 9.2 the
BF collapse algorithm is introduced and details about the implementation are
given. Afterwards, in Section 9.3 an experimental validation of the method is
carried out. Finally, Section 9.4 draws some conclusions.

9.2 Branch-and-Fix collapse algorithm

In this section, we present a new algorithm that addresses some of the limi-
tations of linear programming based methods. Although the introduced algo-
rithm shares the embedding of the HCP in an MDP [56] with the BF, it has
fundamental differences.

1. Degree-based simplification.
2. A more efficient matrix representation.
3. The global branching method.
4. The matrix collapsing step by finding fixed paths.

Regarding the first component, the degree-based simplification was ex-
plained in Section 7.3. The second component will be presented in Section 9.2.1
of this chapter. In relation to the third component, the global branching
method was introduced in Section 8.2. Although in the previous chapter no
clear conclusion was drawn about the branching methods, the global branch-
ing method prioritizes fixing arcs, which is convenient for the matrix collapsing
step. Finally, the matrix collapsing step will be presented in Section 9.2.2 of
this chapter.

Before introducing the algorithm, we present the two components that
have not been previously discussed in the dissertation, a more efficient ma-
trix representation and a strategy to reduce the problem by collapsing the
adjacency matrix.
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9.2.1 Efficient matrix representation

Challenging HCP instances usually have low density, and consequently have
associated sparse adjacency matrices. This means that the adjacency matrices
of dimension N ×N , have a lot of zero entries. For high values of N , it is not
efficient to have big data structures with redundant information; above all,
taking into account the recursive nature of the BF algorithm. For this reason,
we consider a more efficient matrix representation, S(G), instead of using the
adjacency matrix as input of the BF algorithm.

S(G) = [sij ] is an N × M matrix, where N = |V (G)| and M =
max(d+G(i)), i ∈ V (G). The columns of the matrix are filled by the outgoing
vertices of each vertex i. As the out-degree of each vertex might be different,
the rest of the positions are filled with zeros. Each row is represented in a way
that the non-null values appear in the first positions.

As M ≤ N , the number of columns of S(G) will be less than or equal to the
number of columns ofA(G). For large graphs, this difference can be noticeable
in terms of execution time and the required memory of the algorithm. An
example of the difference between the matrices A(G) and S(G) is shown in
Example 2.

Example 2. Consider the directed graph G of 6 vertices shown in Fig. 3.2. The
adjacency matrix A(G) and matrix S(G) are shown in Equation (9.1).

A(G) =


0 1 0 1 1 0
1 0 1 0 0 1
0 1 0 1 0 1
1 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0

 S(G) =


2 4 5
1 3 6
2 4 6
1 3 5
1 4 6
2 3 5

 (9.1)

One of the limitations of the presented representation is that the presence
of a vertex i with d+(i) = N − 1 destroys the efficiency of S. However, it is
not common to have that casuistry in challenging instances of the HCP.

9.2.2 Matrix collapsing by fixing arcs

In this section, the employed approach for matrix collapsing is presented. In
the construction of an HC, the BF algorithm often fixes arcs that constitute
a path. In these cases, it is clear that new arcs can not reach or leave the
internal vertices of that path. However, in the constraints of the LP, those
vertices are considered by keeping N+1 constraints (first LP) throughout the
recursive calls. The collapse strategy allows the original number of vertices of
a graph to be iteratively reduced. As the number of constraints is related to
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the number of vertices, a decrease in the number of vertices would reduce the
computational cost.

We say that an arc (i, j) ∈ A(G) is a fixed arc if the following three
conditions are simultaneously fulfilled:

1. (i, j) is the only arc that leaves vertex i
2. (i, j) is the only arc that enters vertex j
3. There is no an arc (j, i)

A fixed path is a path P = {i0a1i1a2...akik}, where a1, a2, ..., ak are fixed
arcs. i0 and ik are called extreme vertices, whereas the rest of the vertices are
called intermediate vertices. k − 1 is said to be the length of the fixed path.

A deflated graph (B) is a graph created from G, where, for each fixed
path, the intermediate vertices are eliminated. Suppose that there are l fixed
paths P1, ..., Pl of length k1 − 1, ..., kl − 1. The number of vertices in B is of
N − ((k1 − 1) + ... + (kl − 1)) = m. In the deflated graph, the vertices are
re-labelled from 1 to m using a bijection. The reduced matrix is the S matrix
of B, S(D). The extreme vertices of a fixed path constitute a fixed arc in B.

A reduced cycle is an HC that belongs to B. An inflated cycle is a cycle in
G that is constructed from the reduced cycle using a bijection of the labels of
the vertices and by considering the intermediate vertices of the fixed arcs in
B. The way of creating an inflated cycle from the reduced cycle is explained
in the following lines.

h = (v0, v1, ..., vm−1, v0) is a reduced cycle in B. If there are l fixed paths
in G, |V (B)| = N − ((k1 − 1) + ... + (kl − 1)) = m. We build a bijection
between the vertices in B and the vertices in G, such that v0 = v′0, v1 =
v′1, ..., vm−1 = v′m−1. It is possible to construct h′′ = (v′0, v

′
1, ..., v

′
m−1, v

′
0). If

there are l fixed paths in G, there will be 2× l extreme vertices in h′′, where
(k1 − 1) + ...+ (kl − 1) intermediate vertices can be added. Thus, the inflated
cycle is built with length N .

Theorem 2. If h is an HC in B, there exists another HC h′ in G.

Proof. Let h = (v0, v1, ..., vm−1, v0) be an HC in B. As B is a reduced graph
of another graph G, there exists at least one fixed path P1. Without loss of
generality, suppose that there is one fixed path of vertices i0, ...., ik of length
k − 1, so that m = N − (k − 1).

Using the bijection between the vertices of B and G, we construct
h′′ = (v′0, v

′
1, ..., v

′
m−1, v

′
0). Suppose that (v′t, v

′
t+1) are the extreme vertices

of the fixed path P1, where v′t = i0, v′t+1 = ik and t ∈ {0, ...,m − 1}. Thus,
h′ = (v′0, ...v

′
t, i1, ..., ik−1, v

′
t+1, ..., v

′
m−1, v

′
0) is an HC if the following three

conditions are fulfilled:

1. h′ has N vertices. This is accomplished, because m+ (k − 1) = N .
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2. All the vertices of h′ are distinct.

h contains different vertices because it is an HC in B. h′′ also contains
different vertices, as it is constructed using a bijection (by definition it
is one-to-one correspondence). i1, ..., ik−1 are distinct as they constitute
a path by definition. Additionally, they are distinct to the rest of the
vertices, as B is constructed by eliminating those vertices.

3. All the arcs of h′ belong to G.

(i0, i1), (i1, i2),...,(ik−1, ik) belong to G as they were fixed arcs in G.
(v′0, v

′
1), (v′1, v

′
2) , .., (v′m−1, v

′
0) belong to B. They are not extreme ver-

tices (there were not eliminated to construct B), thus they also belong to
G.

ut

Corollary 1. Given a graph G, if its deflated graph B exists and B is a
Hamiltonian graph, G is also a Hamiltonian graph.

Proof. If B is a Hamiltonian graph, there exists at least one HC, h. From
Theorem 2, its inflated cycle h′ exists in G, so that G is a Hamiltonian graph.

ut

Example 3. In this example, the matrix collapsing method is illustrated. Let
U = {[1, 2], [2, 3]} be the set of fixed arcs of a directed graph G of 12 vertices
shown in Fig. 9.1. This graph was constructed based on the graph shown in
Fig. 3.2. The S(G) is shown on the left-hand side of Equation (9.2). In this
case, there is one fixed path.

• P1 = {v0a1v1a2v2}, where v0 = 1, v1 = 2, v2 = 3, a1 = (1, 2), a2 = (2, 3).
The length of the fixed path is 1.

In the deflated graph (Fig. 9.2), the intermediate vertex of the fixed path
is eliminated and the vertices are re-labelled. |V (B)| = N − (1)=11. The
bijection between the vertices of G and vertices of B is shown in Table 9.1.
The reduced matrix constructed taking into account the bijection is shown in
the right-hand side of Equation (9.2).

V (G) 1 2 3 4 5 6 7 8 9 10 11 12

V (B) 1 - 2 3 4 5 6 7 8 9 10 11

Table 9.1: Vertices of G and vertices of B after applying the bijection. The
eliminated vertices are indicated with −.

A reduced cycle of B is h = (1, 2, 6, 7, 3, 11, 10, 9, 5, 4, 8, 1). After using
the bijection described in Table 9.1, h′′ = (1, 3, 7, 8, 4, 12, 11, 10, 6, 5, 9, 1). Its
inflate cycle in G is h′ = (1, 2, 3, 7, 8, 4, 12, 11, 10, 6, 5, 9, 1).
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1 2 3 4

109 1211

5 6 7 8

Fig. 9.1: Original graph.

1 2 3

98 1110

4 5 6 7

Fig. 9.2: Deflated graph.

S(G) =



2 0 0
3 0 0
4 7 11
8 12 0
1 6 9
5 10 0
8 11 0
4 7 12
1 5 10
6 11 0
7 10 12
4 8 11



S(B)



2 0 0
3 6 10
7 11 0
1 5 8
4 9 0
7 10 0
3 6 11
1 4 9
5 10 0
6 9 11
3 7 10


(9.2)

The pseudocode of the implemented BF collapse algorithm is shown in
Algorithm 8. It takes as an input an adjacency matrix and an empty set of
fixed arcs (∅). It returns value True of the boolean variable found and the
HC, or value False of the boolean variable found and ∅, when all the branches
have been explored without finding an HC.

The functions that this algorithm uses were described in Section 3.4, Sec-
tion 7.3.2 and Section 8.2. Some of the functions were adapted to take as
an input the S(G) instead of the adjacency matrix. The function Get Arc
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computes the arc that emanates from the splitting node to the i-th branching
candidate. The functions Deflate Graph and Inflate Graph implements the
matrix collapsing method presented in this section.

9.3 Experiments

The main goal of the experiments is to evaluate the different components of
the BF collapse algorithm and to compare it with another HCP approach in
directed graphs. The analysis of the results is performed using two criteria: 1)
the number of UIs by each method; 2) the time needed to solve the instances
by each method. Each method will comprise different components of the BF
collapse, and we will refer to them as BF variants. We also apply the BF
collapse to a manufacturing problem for illustrative purposes.

This section first presents the application of the BF collapse algorithm to
a manufacturing problem. Next, it introduces the benchmark used to perform
the experiments. Later, the effect of the simplification, matrix collapsing and
the branching method are analyzed. Finally, our algorithm is compared to the
TSP Concorde solver.

9.3.1 Application of the HCP to a manufacturing problem

Digital 3D objects are widely used in many different industries including vir-
tual reality, CAD and AM. This is a fast-growing area of research that applies
concepts of Applied Mathematics, Computer Science and Engineering. In 3D
computer graphics, a polygon mesh is a collection of vertices, edges and faces
that defines the shape of a polyhedral object. The faces can be triangles (tri-
angle mesh), quadrilaterals or other simple convex polygons.

A cubic graph is a graph in which every vertex has degree three. These
graphs are of special interest in the generation of 3D computer images, as they
are built from triangle meshes. One of the main drawbacks of such represen-
tations is the difficulty that they present to feed the hardware [143]. Combin-
ing the triangles into a single triangle strip would significantly accelerate the
process of feeding the hardware. Finding a single strip that incorporates all
triangles in the mesh is equivalent to finding the HCP in the corresponding
dual graph in which every triangle is a vertex. A dual graph of a planar graph
G is a graph that has a vertex for each face in G.

Figure 9.3 shows a sphere and its dual graph after applying a triangle
mesh. The graph has 40 vertices, 120 arcs and D = 0.15. We apply the BF
collapse to find an HC in the graph shown in Figure 9.3b using the global
branching method, the degree-based simplification and the matrix collapsing.
The execution time of the algorithm was 0.70 seconds. The HC with the set
of arcs that constitute the cycle is given in Equation (9.3).
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Algorithm 8 Branch-and-Fix collapse

Input: S(G), ∅
Output: True/False, HC/∅

1: function branch and fix collapse(S(G), U)
2: updated S(G), status ← Degree Simplification(S(G))
3: if status 6= feasible then
4: return False,∅
5: status, x2, F (x2) ← Second LP(updated S(G), U)
6: if status 6= feasible or F (x2)> bound then
7: return False,∅
8: candidate vertices ← Inspect Subcycles(x2)
9: if |candidate vertices|> 0 then

10: if candidate vertices ⊂ U then
11: return False,∅
12: status, x, F (x) ← First LP(updated S(G), U)
13: if status 6= feasible then
14: return False,∅
15: splitting node ← Identify Splitting Node(x)
16: if splitting node = ∅ then
17: HC ← Identify HC(x)
18: return True,HC
19: else
20: d← |A(splitting node)|
21: found ←False
22: i← 0
23: sorted candidates ← GLOBAL(splitting node)
24: while (found = False) and (i < |sorted candidates|) do
25: fixed arc ← Get Arc(sorted candidates,i)
26: new S(G) ← Update S(G)(fixed arc)
27: U ← Update Fixed Arcs(new S(G))
28: last fixed arcs ← Refined Fixed Arcs(U)
29: while |last fixed arcs|> 0 do
30: for arc ∈ last fixed arcs do
31: new S(G) ←Update S(G)(arc)

32: U ← Update Fixed Arcs(new S(G))
33: last fixed arcs ← Refined Fixed Arcs(U)

34: circuit,red S(G) ← Deflate Graph(Update S(G))
35: if circuit=True then
36: HC ← Get HC(Update S(G))
37: return True, HC

38: if |red S(G)| > 0 then
39: found,red HC ← BRANCH AND FIX COLLAPSE(red S(G), U)

40: if found=True then
41: HC ← Inflate Graph(red HC)

42: else
43: pass

44: found, HC ← BRANCH AND FIX COLLAPSE(new S(G), U)

45: i← i+ 1

46: if found=True then
47: return True, HC
48: else
49: return False, ∅
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HC = {[1, 33], [33, 25], [25, 17], [17, 18], [18, 19], [19, 20], [20, 21], [21, 12], [12, 13], [13, 4],

[4, 5], [5, 36], [36, 37], [37, 38], [38, 39], [39, 40], [40, 32], [32, 24], [24, 16], [16, 8],

[8, 7], [7, 6], [6, 15], [15, 14], [14, 23], [23, 22], [22, 31], [31, 30], [30, 29], [29, 28],

[28, 27], [27, 26], [26, 35], [35, 34], [34, 3], [3, 2], [2, 11], [11, 10], [10, 9], [9, 1]}
(9.3)

(a) Sphere (b) Dual graph

Fig. 9.3: A sphere and its dual graph obtained after applying a triangle mesh.

9.3.2 Benchmark definition

The employed benchmark is compound by two different sets of Hamiltonian
graphs. Here, in comparison to Chapters 7 and 8, we use directed graphs that
are not necessarily doubly connected. The first set includes graphs from the
Knight’s tour problem of dimension 8× 8 introduced in Section 4.1.2.

The second set includes challenging directed Hamiltonian instances, which
were generated in two steps. First, the Hamiltonian directed graphs are created
randomly. Then, some modifications are made to the adjacency matrices with
the aim of being challenging for the Concorde to solve them. Concorde is
currently considered among the state-of-the-art software for solving the TSP.
Our objective is to compare the BF collapse algorithm with the Concorde
solver in instances that are challenging for the Concorde.

To study the behavior of the algorithm on a diverse set of graphs, we
create a benchmark by generating graphs of N = 100 vertices and different
densities, D = 0.15, 0.25, 0.44 and 0.64. Four instances were created for each
different value of the parameter.

To generate the adjacency matrices, a random permutation of length N is
created because an HC can be represented by a permutation. Next, a random
asymmetric matrix of zeros and ones of dimension N × N is created. We
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use probability p and 1 − p to distribute ones and zeros in the adjacency
matrix respectively. In this case, p = D×0.5. Finally, the permutation is used
to connect the arcs in the adjacency matrix that are part of the HC. This
procedure is similar to the one described in Algorithm 6, with the difference
that the matrix is not filled symmetrically (lines 4-6).

Regarding the creation of challenging instances, we use a method that tries
to construct graphs that maximizes the time spent by Concorde to solve them.
It is a way of identifying HCP instances that are challenging for Concorde.
The following steps were repeated until satisfying a termination criterion.

1. Execute Concorde for the generated random adjacency matrix (M0) and
save the execution time T0.

2. Apply u random arc connection changes to M0 to obtain M . If an arc
already exists, it is eliminated, otherwise it is added to the graph.

3. Execute Concorde for M and save the execution time T .
4. If T > T0, then T0 = T and M0 = M . Otherwise, return to Step 2.

In this case, as termination criterion, we considered 24 hours execution
and u = 5.

9.3.3 Evaluation of the components of the BF collapse algorithm

The effect of the degree-based simplification (simp), the global branching
method and the matrix collapsing (collapse) are evaluated, as they are the
main proposed components of the BF collapse algorithm to address the limi-
tations of the previous methods. For that purpose, we replace different com-
ponents of the BF collapse algorithm, independently and in combination. We
also considered a combination that does not include any of the four compo-
nents. This combination would correspond to the basic BF setting.

The experiments also allow us to evaluate the impact of the branching
method (global versus uninformed) in the introduced BF collapse method.
These experiments are carried out in the Knight’s tour of 64 vertices, using
the permutation-based BF collapse (t = 30). The experiments were executed
for a maximum time of 48 hours.

First, the number of UIs are analyzed between the two branching methods
that include different combinations of simp and collapse. Table 9.2 shows the
number of UIs and the mean and standard deviation of the execution time for
all the considered BF variants. It can be observed that the lower number of UIs
was achieved by the global method when applying collapse. The lowest mean
and standard deviation values were achieved with the uninformed method
and collapse. On the contrary, the worst results were for the original BF
and uninformed method. It can be observed that, rather than applying them
together, it is better to apply simplification or collapse separately.
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Branch Simp Collapse UI µ σ

Uninformed 17 36063 44900
Uninformed X 9 9074 16934
Uninformed X 8 8323 16892
Uninformed X X 9 15267 28844

Global 20 31605 47713
Global X 8 9525 18616
Global X 5 13726 22802
Global X X 15 18611 40377

Table 9.2: The number of UIs, the execution mean time (µ) and standard de-
viation (σ) for all the considered BF variants. The lowest values are indicated
in bold.

A statistical test is used to determine whether there are significant dif-
ferences between the global branching method and the uninformed branching
method, for equal configurations of simp and collapse. The Wilcoxon signed-
rank test is used with a significance threshold of p = 0.05. The solved instances
are represented by 1 and the unsolved ones by 0, and we call them {0, 1} dis-
tributions. Only the instances that have been solved by the methods to be
compared are taken into account.

Table 9.3 shows the p-values after applying the statistical tests to know
whether or not there are significant differences between the branching methods
in terms of the number of UIs among different methods. Significant differences
were not found in any of the cases. That is, when using different variants of the
algorithm regarding the simplification or collapse, it does not matter which
branching rule to use to have more or less solved instances.

M1 M2
p-value

branch simp collapse branch simp collapse

Uninformed global 0.43
Uninformed X global X 0.70
Uninformed X global X 0.32
Uninformed X X global X X 0.10

Table 9.3: p-values obtained from the Wilcoxon signed-rank test to measure
significant differences between {0, 1} distributions of the global and unin-
formed branching methods.

Similarly, Table 9.4 shows the p-values to know whether or not there
are significant differences between the different methods for the uninformed
branching method and the global branching method. It can be observed that
for the uninformed branching method, there are significant differences be-
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tween the original BF and the components applied by us in favour of our
proposals. For the global one, significant differences were found between the
original BF and the simplification and collapse in favour of these last two.
However, applying the simplification and the collapse together compared to
applying only collapse significantly reduces the number of solved instances for
the global method.

Uninformed Global
M1 M2

p-value
M1 M2

p-value
simp collapse simp collapse simp collapse simp collapse

X 0.01∗ X 0.00∗

X 0.00∗ X 0.00∗

X X 0.03∗ X X 0.17
X X 0.32 X X 0.18
X X X 1.00 X X X 0.05

X X X 0.74 X X X 0.01+

Table 9.4: p-values obtained from the Wilcoxon signed-rank test to measure
significant differences between {0, 1} distributions of the components for the
global and uninformed branching methods. The p-values lower than 0.05 are
indicated in bold. The symbols ∗ and + indicate that the differences are in
favor of Method 1 and Method 2, respectively.

It can be concluded that the proposed components improved the original
BF in terms of the number of solved instances, with the exception of using
simplification and collapse together for the global method. As the number of
solved instances for the original BF are lower compared to the other methods
and we need a common subset of instances to compare the time; therefore, in
the following analysis the original BF has not been considered.

Secondly, the analysis of the execution times is carried out. Table 9.5
shows the p-values obtained from the statistical tests to measure significant
differences between uninformed and global branching methods for different
configurations of simp and collapse. It can be observed that significant differ-
ences were found when applying simplification and collapse together in favor
of the global branching method. Note, that although not significantly, for the
global branching method less instances were solved with this method than for
the uninformed method.

Table 9.6 shows the p-values obtained from the statistical tests to measure
significant differences between distributions of time executions for different
combinations of simp and collapse. This comparison is carried out indepen-
dently for global and uninformed branching methods. It can be observed that
for the uninformed branching method there are significant differences in terms
of time when applying only simplification, than both simplification and col-
lapse, in favour of the first one. For the global method, it is better in terms
of time considering only simplification or collapse instead of combining both.
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M1 M2
p-value

branch simp collapse branch simp collapse

Uninformed X global X 0.24
Uninformed X global X 0.17
Uninformed X X global X X 0.00∗

Table 9.5: p-values obtained from the Wilcoxon signed-rank test to measure
significant differences between distributions of time executions between global
and uninformed branching methods. The p-values lower than 0.05 are indi-
cated in bold. The symbols ∗ and + indicate that the differences are in favor
of Method 1 and Method 2, respectively.

Uninformed Global
M1 M2

p-value
M1 M2

p-value
simp collapse simp collapse simp collapse simp collapse

X X 0.61 X X 0.96

X X X 0.04+ X X X 0.01+

X X X 0.06 X X X 0.01+

Table 9.6: p-values obtained from the Wilcoxon signed-rank test to mea-
sure significant differences between distributions of time executions between
different components for the global and uninformed branching methods. The
p-values lower than 0.05 are indicated in bold. The symbols ∗ and + indicate
that the differences are in favor of the right side method and left side method,
respectively.

It can be concluded that the proposed main components have a positive
effect both in terms of the number of solved instances and execution time. It
was found that it is more efficient to apply collapse or simplification separately
than in a combined way, above all for the global branching method.

9.3.4 Comparison to Concorde solver

In this section, the results of the experiments carried out with the Concorde
and BF collapse algorithm in the defined challenging directed Hamiltonian
instances are presented. In order to apply the Concorde to them, the directed
HCP instances are converted into symmetric TSP instances, as explained in
Section 4.1.1.1. These instances have 2N = 200 vertices and the distance
matrices are built as described in Equations (4.2) and (4.3).

Also in this case, the BF collapse algorithm is executed using the permuta-
tion-based variant with t = 30. The experiments were executed for a maximum
time of 24 hours. The BF collapse is considered with the uninformed branching
method, without degree-based simplification and with the matrix collapsing
as it was found to be the fastest method in the previous experiments. Note,
that the global branching method was the variant that solved more instances;
however the uninformed branching method was faster. The resulting minimum
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time of the 30 parallel executions of the BF collapse is considered the best
time for each graph.

D 0.15 0.25

Graph 1 2 3 4 1 2 3 4
BF 32.00 12.99 15.12 13.86 19.05 10.69 20.15 19.77
Concorde 10.40 9.22 11.44 11.48 12.15 8.86 11.54 10.21
D 0.44 0.64

Graph 1 2 3 4 1 2 3 4
BF 17.51 17.22 27.74 28.30 23.96 22.97 39.85 40.79
Concorde 21.83 13.57 19.40 11.03 12.26 22.40 15.93 14.16

Table 9.7: Execution time in seconds of the Concorde and BF collapse al-
gorithm for random challenging Hamiltonian graphs. The lowest values are
indicated in bold.

Table 9.7 shows the execution time for the Concorde and the BF collapse
algorithm (minimum time of the 30 parallel executions) in the challenging
graphs with the best results indicated in bold. All the challenging instances
were found to be Hamiltonian, as the cost of the routes was N = 100 when
executing Concorde and the BF collapse succeeded in finding the HCs. In this
case, all the instances were solved by both Concorde and BF collapse. It can
be observed that the time required by the Concorde to solve the instances
was smaller than the time required by the BF collapse with the exception
of D = 0.44 and Graph 1. It should be noted that an implementation in C
programming language can be 45 times faster than the same program imple-
mented with the Python programming language.

9.4 Conclusions

In this chapter, we have proposed a new approach to deal with the HCP in
directed graphs by addressing some limitations that present linear program-
ming based algorithms. Specifically, we have focused on reducing the number
of constraints and variables in the LPs to decrease the computational cost
and fathoming solution spaces that lead to infeasible solutions. For that pur-
pose, we have employed four components: 1) degree-based simplification; 2)
more efficient matrix representation; 3) the global branching method; 4) ma-
trix collapsing step by fixing arcs. The degree-based simplification and the
global branching methods presented in previous chapters focuses on rejecting
the branches that lead to non-HCs, thus reducing the number of variables.
The matrix collapsing step by fixing arcs focuses on reducing the number of
constraints of the LPs.

In the case of the matrix collapsing, we have proved mathematically that
it is possible to solve the problem in a deflated graph with smaller number of
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vertices than the original graph, hence decreasing computational cost. This
was corroborated in the conducted experiments, as it was observed that the
proposed components have a positive effect in the execution time. We have
also observed that it was possible to apply the BF collapse method to a
manufacturing problem where the HCP arises. In the experiments carried
out to compare our approach to the Concorde TSP solver, promising results
were obtained. Our algorithm, with an implementation in C programming
language, could be an efficient alternative for the solution of both directed
and undirected instances of the HCP.
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An extension to the Branch-and-Fix to solve
the multi-objetive Hamiltonian cycle problem

10.1 Introduction

In many real-world problems, various criteria should be considered simulta-
neously, turning optimization problems into MO optimization problems. The
TSP is by definition a single-objective optimization problem, but there is some
research [65, 18] that investigates the MO TSP. George and Amudha [65] de-
fined the MO TSP as an expanded instance of the TSP by considering more
than one objective function and solved the problem using a GA [70].

Lianshuan and Zegyan [104] formulated the MO TSP as a bi-objective
optimization problem. The problem consisted of searching for the best route
by balancing between the distance and the cost, and it was solved using a
GA. Similarly, Bock and Klamroth [18] addressed a bi-objective optimization
problem by balancing cost minimization (TSP) and arrival time minimization
(traveling repairman problem) [42]. The traveling repairman problem consists
of visiting all nodes in a graph in order to collect time-dependent profits.
The objective is to minimize the sum of arrival times. The authors combined
the optimization problems in an MO scenario and solved it using a dynamic
programming approach.

The TSP has been solved by both exact and metaheuristic methods, but
in the case of MO TSP, the latter method predominates [26, 119]. MO com-
binatorial optimization problems have commonly been addressed using meta-
heuristic techniques because of their computational complexity [85]. The main
advantages of metaheuristics are that they are computationally efficient, gen-
eral and simple to implement.

To the best of our knowledge, there is no other approximation for the MO
HCP in the literature and, although the HCP is closely related to the TSP,
often it is not trivial to find HCs in a graph. Minimizing the total weight of
a tour constitutes a simple, linear objective function and some authors have
argued [11] that much of the difficulty of the TSP is embedded in the HCP.
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There are several specific methods for the TSP that take into account the
sparsity of a graph [147] [15], hence it could be argued that those methods
could serve to address the HCP. However, there is a gap in the literature
related to the MO variant of the TSP focused on sparse graphs, as there are
no straightforward methods to address this MO problem, which has specific
constraints. The most common alternatives for MO problems with constraints
are to repair the solution [108] or to enforce the solution space to be feasible
[137]. A solution (tour) of the MO TSP is feasible for the MO HCP if it is
an HC. As previously mentioned, in the literature there are no ways to repair
non-HC solutions or to enforce the tours to be always HCs.

Therefore, in this chapter, we present a framework for the MO HCP and
a heuristic approach to solve it. In the experimental section, we focus on MO
problems defined on undirected graphs. However, the introduced algorithm
could also be applied to optimize multiple objectives related to HCs defined
on directed graphs. This is an important difference over strategies that present
the HCP as a special case of the TSP on undirected graphs, and apply efficient
TSP solvers on the transformed problem. This was explained in more detail
in Section 4.1.1.1. Therefore, it is important to introduce the MO scenario,
and in particular propose methods to solve it.

Simply stated, the MO HCP is the problem of finding HCs that minimize
determined multiple criteria. The problem encapsulates two other problems:
1) finding an HC (solving the HCP); 2) finding an HC that minimizes a given
objective (a single-objective HCP). This idea is explained in the diagram
shown in Figure 10.1.

Let G be a Hamiltonian graph of N vertices with an associated set of
matrices W 1, ...,Wm where the entry wli,j l ∈ {1, ...,m} represents the lth

weight associated with the arc (i, j). Each matrix represents a different way
to evaluate HCs in G. The approximate PS will comprise HCs that minimize
the sum of the weights for the different matrices. We use the term of approx-
imation as it is not practical to determine the whole PS [134]. Notice that
we simultaneously address the problems of finding an HC and minimizing the
weights associated with the arcs in the HC.

Our heuristic approach consists of extending the BF algorithm [51] to deal
with the MO HCP. The problem addressed in this chapter consists of finding
the set of non-dominated HCs (HCs with associated non-dominated objective
functions) using the BF algorithm. A number of modifications are made to the
algorithm to avoid exploring dominated solutions and promote the exploration
of different search areas.

The remainder of this chapter is organized as follows. Section 10.2 presents
the MO HCP and explains the modifications performed to the BF algorithm.
Section 10.3 gives the context of the experiments by describing the benchmark
instances, methods and measurements employed to evaluate the performance
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HCP

Single-objective HCP

Multi-objective HCP

Fig. 10.1: Explanatory diagram of the proposed approach. The single-
objective HCP encapsulates the HCP, and the multi-objective HCP, the HCP
and single-objective HCP.

of the approach. Section 10.3.3 is devoted to the experimental results and
discussion. Finally, Section 10.4 draws some conclusions.

10.2 Multi-objective Hamiltonian cycle problem

Let G = (V (G), A(G)) be a graph, where V (G) is the set of nodes |V (G)| = N ,
and A(G) is the set of arcs. This scenario can be defined for both di-
rected and undirected graphs. We define m asymmetric weight-matrices, W l,
l ∈ {1, ...,m}. We use asymmetric weight-matrices because the BF internally
considers arcs with direction. Every arc in the graph has associated a positive
weight wlij in each l matrix. The objective function associated with a matrix

W l and a specific HC is denoted as δHCl and is defined in Equation (10.1).

δHCl =

|A|∑
k=1

skw
l
k sk ∈ {0, 1} (10.1)

where sk = 1 if the kth arc belongs to the HC and sk = 0 otherwise. wlk rep-

resents the entry of W l corresponding to arc k. Finally, δHC is the multiple-
objective function associated with the HC, as defined in Equation (10.2).

δHC = {δHC1 , ..., δHCm } (10.2)

An important constraint in this framework is that G is not a complete
graph; therefore, finding an HC is not trivial. A straightforward approach
for finding the non-dominated HCs is to enumerate all possible solutions and
select the optimal ones. This is illustrated in Example 4. However, complete
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enumeration is not a feasible approach, even for small values of N . The BF
algorithm searches the space of the HCs by pruning those branches guaranteed
not to lead to a valid HC. We extend this rationale but add a new criterion
to fathom the possible dominance of a point.

Example 4. Consider the Hamiltonian graph of 6 vertices shown in Figure 3.2
and two asymmetric weight-matrices. The graph contains the following 6 HCs
that we represent them as permutations.

{(4 6 2 3 1 5), (2 6 4 5 1 3), (2 3 6 1 4 5), (4 1 2 5 6 3), (5 3 4 1 6 2)

(5 1 6 3 4 2)}

For instance, for the first HC1 = (4 6 2 3 1 5), the set of arcs belonging
to the HC is {(1, 4), (2, 6), (3, 2), (4, 3), (5, 1), (6, 5)}. To calculate the first ob-
jective function associated to the HC, the entries of the first cost matrix W 1

corresponding to each arc in the set are added.

δHC1
1 = w1

14 + w1
26 + w1

32 + w1
43 + w1

51 + w1
65

In the same way, the second objective function associated to the HC is
constructed using the second cost matrixW 2. The bi-objective function δHC1

is compounded by δHC1
1 and δHC1

2 . Suppose that the following bi-objetive
functions are considered:

δHC1 = {5309, 613.4} δHC2 = {6416, 514.3} δHC3 = {5347, 516.98}

δHC4 = {4338, 516.98} δHC5 = {5256, 613.4} δHC6 = {5422, 514.3}

.

The PS approximation and non-dominated HCs can be calculated using
the evaluations of the two objectives for the six solutions. The non-dominated
HCs are HC4 and HC6, as the vectors of objectives δHC4 and δHC6 are
non-dominated.

PS = {(4338, 516.98), (5422, 514.3)}

10.2.1 Multi-objective Branch-and-Fix

The algorithm solves the MO HCP for a given graph. It takes as input the
adjacency matrix of the graph and the corresponding weight-matrices and
returns the PS. As the purpose is different from the original BF algorithm, this
revised algorithm is called the MO-BF. The original BF is modified by making
to stop exploring solutions which can be proved to be dominated partial HCs
even before they are completed. In principle, the algorithm allows as many
objectives as the user specifies. However, for problems with many objectives,
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the storage and time requirements of the algorithm may increase considerably,
as these problems have very large PSs. The algorithm focuses on minimization
problems. A maximization problem can be transformed into a minimization
problem and can be solved by the algorithm. The main modifications to the
original BF are explained in the following lines:

1. Initialization: Save an HC whenever it is found without stopping the
search and continuing to explore the tree.

2. Initialization: Compute the objective functions for every HC found and
calculate the PS.

3. Iteration: Stop exploring a branch that will return an HC dominated by
any solution already in the PS. A branch will be fathomed, if the δU is
dominated by a δHC , U is the set of fixed arcs at the current stage. This
check is performed in the fourth stage of the method (Iteration), after the
second LP is computed.

Algorithm 9 shows the pseudocode of the MO-BF algorithm. It takes as
an input an adjacency matrix and an empty set of fixed arcs (∅). It returns
the sets of HCs and the PS. Most of the functions from the algorithm were
previously explained in Section 3.4. The function Dominance Current Arcs

stops exploring a branch that will lead to a dominated HC. The pseudocode
of the function is shown in Algorithm 10. In function Update Pareto Set the
approximated PS is updated taking into account the set of all HCs.

The MO-BF can be executed as an anytime algorithm. An anytime al-
gorithm is an algorithm whose quality of results enhances progressively as
computation time increases. One of the main properties of these algorithms
is interruptibility, as the algorithm can be stopped at any time and provide
a solution [86]. If at least one HC has been found, the MO-BF can be un-
derstood as an anytime algorithm, as a PS approximation is returned at any
time, and it improves or remains constant as computation time increases.

In the construction of the HCs, candidate arcs are selected according to
the order of the labels of the vertices. Therefore, both the original and the
MO-BF algorithms are sensitive to the way the graph nodes are labeled. Dif-
ferent label assignments to the vertices will generate different results. We
create a variant of the MO-BF , a permutation-based MO-BF, by introducing
a previous stage of generating t random permutations to use as different ini-
tial representations. Each permutation is used to sort the rows and columns
of the original adjacency matrix in the order indicated by the permutation.
Next, an MO-BF instance is initiated for each permutation. This variant of
the MO-BF can be naturally implemented as a parallel algorithm, where the
t instances of the MO-BF algorithm start at the same time, and the out-
put of the individual algorithms can contribute a solution to the global PS
approximation. This is similar to the variant presented in Section 7.4. The
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Algorithm 9 Multi-objective-Branch-and-Fix

Input: adjacency matrix, ∅
Global variables: All HCs, PS
Output: All HCs, PS

1: function MO BF(adjacency matrix, U ,Max Time)
2: while time < Max Time do
3: status, x2, F (x2) ← Second LP(adjacency matrix, U)
4: if status 6= feasible or F (x2)> bound then return False,∅
5: dominated ← Dominance Current Arcs(U)
6: if dominated=true then return False, ∅
7: status, x, F (x) ← First LP(adjacency matrix, U)
8: if status 6= feasible then return False,∅
9: splitting node ← Identify Splitting Node(x)

10: if splitting node = ∅ then
11: HC=Identify HC(x)
12: All HCs=HC ∪ All HCs
13: Update Pareto Set(δHC) return True, ∅
14: else
15: d← |A(splitting node)|
16: i← 0
17: while i < d do
18: fixed arc ← Get ith Outgoing Arc(splitting node,i)
19: new adjacency matrix ← Update Adjacency Matrix(fixed arc)
20: U ← Update Fixed Arcs(new adjacency matrix)
21: last fixed arcs ← Refined Fixed Arcs(U)
22: while |last fixed arcs|> 0 do
23: for arc ∈ last fixed arcs do
24: new adjacency matrix ←Update Adjacency Matrix(arc)

25: U ← Update Fixed Arcs(new adjacency matrix)
26: last fixed arcs ← Refined Fixed Arcs(U)

27: found, HC ← MO BF(new adjacency matrix, U)
28: i← i+ 1

return False, ∅
29: All HCs ← ∅
30: PS ← ∅
31: MO BF(adjacency matrix, U , Max Time)

MO-BF is a heuristic method as can be stopped at anytime and can be used
with different initiations. In this chapter, we consider the MO-BF from the
enhanced variant of the BF including subcycle detection and degree-based
simplification, introduced in Chapter 7.
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Algorithm 10 Dominance Current Arcs

Input: U
Global variables: All HCs, PS
Output: dominated

1: function Dominance Current Arcs(U)
2: dominated ← false
3: if U 6= ∅ & All HCs 6= ∅ then
4: for δHC ∈ PS do
5: if δU1 ≥ δHC1 & δU2 ≥ δHC2 & ... & δUm ≥ δHCm then
6: dominated ← true

return dominated

10.3 Experiments

The main goal of our experiments is to evaluate MO-BF’s ability to solve the
MO HCP problem in graphs of a different number of vertices and densities. To
this end, we compare its results to those of an MO-GA. We use the MO-GA as
a baseline method because EAs are the most commonly used heuristics to solve
the MO combinatorial optimization problems [136]. A second goal is to eval-
uate the influence of the graphs’ characteristics on the MO-BF performance.
This section presents the benchmark instances used in the experiments, gives
details on the MO-GA, and explains the metrics used to evaluate the proposed
approach, as well as presents the obtained results.

10.3.1 Benchmark definition

In this chapter, we consider the 500 random Hamiltonian graphs introduced in
Section 7.5.1 and the first 513 graphs of the challenge set, containing less than
3000 vertices. In addition, the MO problem that we consider is bi-objective.
For that reason, for each graph in each set, we create two weight-matrices,
W 1 and W 2, of dimension N ×N . The entries of the matrix that correspond
to an arc that it is not in the graph, they will take value 0. At the time of
generating the instances, we will consider a slight negative correlation between
the values of both matrices to guarantee that there will be some elements in
the PS.

• W 1: Weights (w1
ij) are sampled from a normal distribution and multiplied

by a constant c. We use µ = 10 and σ = 3 for the normal distribution and
c = 10.

• W 2: Weights (w2
ij) are created using the following linear function w2

ij =

α × w1
ij + |ε|. The parameter ε is sampled from a normal distribution of

µ = 0 and σ = 100 and α = 0.01.
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10.3.2 Evaluation of the performance of the MO-BF

EAs are the most commonly used heuristics to solve the MO TSP [136],
and, for that reason, we use an MO-GA that incorporates genetic operators
specifically suited to deal with permutation-based MO problems as a baseline
method of comparison to evaluate the proposed MO-BF.

10.3.2.1 Description of the MO-GA approach

An initial population of 500 individuals is used in the solution space defined
by permutations (Equation (10.3)). The MO-GA uses an ordered crossover,
a shuffle operator as a mutation, and a NSGA-II selection to select the so-
lutions that are recombined to generate the new population. The employed
termination criterion is the maximum execution time; this criterion creates
equal conditions for the two approaches, thus facilitating comparison.

Ω = {(i1, i2, ..., iN ) | k, l ∈ {1, 2, ..., N} and ik 6= il ∀ k 6= l} (10.3)

Regarding the fitness function that evaluates the quality of the HC candi-
dates, we should take into account the constraints that feasible HCP solutions
should fulfill. Therefore, we propose a penalty approach.

A strong restriction of the HCP problem is that not every permutation
is valid as an individual, as it must be an HC in the given graph. In a valid
permutation, the pair of vertices (σi−1, σi) and (σN , σ1) are connected in the
graph i ∈ {2, ..., N}. We address this by penalizing in the fitness function those
solutions that do not satisfy the restriction. The fitness function is shown in
Equation (10.4).

fitness(σ) =

{
δ(σ) if σ is a HC in G,

|Aσ| × c+ δ(σ) otherwise.
(10.4)

where σ is an individual, |Aσ| is the number of arcs in σ that are not in
G and c is a penalty parameter c = 1000. δ(σ) is the multiple-objective
function associated to the permutation. The objective function associated to
a permutation given a distance matrix is computed as in Equation (4.1).

As can be observed in Equation (10.4), the fitness function promotes fea-
sible solutions of the HCP, and then optimizes the total value of the weights.
Note that we implement the described MO-GA using DEAP library [59] im-
plemented in Python programming language. More details about the MO-GA
were given in Section 6.3.3 and Algorithm 2.
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10.3.2.2 Metrics for the comparison of the approaches

The corresponding PS approximations obtained by the MO-BF and MO-GA
are compared by hypervolume (HV), a metric of m-dimensional volume of
the region in the objective space enclosed by the solutions in the PS approx-
imation and a dominated reference point [132]. Also, the number of UIs is
employed, which was introduced in Section 7.5.2. A set of non-dominated so-
lutions with higher HV can be considered as a better set of solutions. The
PS approximations obtained by the MO-BF and the MO-GA are denoted as
PSBF and PSGA, respectively. The reference point for each of the graphs is
determined as (r1, r2) = (max(δHC1 ),max(δHC2 ) + 1) for every HC belonging
to PSBF and PSGA.

Each independent run of the MO-GA and MO-BF algorithms is allowed
a maximum running time of 24 hours. For the MO-BF, we save partial
results (non-dominated solutions) every 4 hours, so we have information
for six time periods. The partial results are used to evaluate the perfor-
mance of the algorithm through time. The reference point is determined as
(r1, r2) = (max(δ1(x)), max(δ2(x)) + 1), where x ∈

⋃6
T=1 PST . PST is the

PS approximation obtained in the T -th time period.

10.3.3 Results and discussion

This section presents the results of the experiments carried out with the men-
tioned benchmark of instances. The first part explains the results for random
graphs, and the second part provides the results for the graphs in the challenge
set.

10.3.3.1 Random graphs

The proposed MO-BF and the MO-GA are applied to the 500 random Hamil-
tonian graphs. Figure 10.2 shows the distributions of the HV values of the
PS approximations obtained from graphs with different numbers of vertices
and different densities. The logarithmic function is applied to the HV val-
ues. As can be observed, the differences between the distributions are more
related to the density of the graphs than to the number of vertices. When
D = 0.15 (Figure 10.2a), higher values of the HV are achieved for the MO-BF
than the MO-GA. This pattern is consistent for all numbers of vertices, but
the difference is more notable in the graphs with fewer vertices (60 and 70
vertices). When D = 0.25 (Figure 10.2b), both algorithms exhibit a similar
performance, but when D = 0.44 (Figure 10.2c) and D = 0.64 (Figure 10.2d)
the MO-GA outperforms the MO-BF .

To clarify the results, Table 10.1 shows the number of UIs and the mean
HV value for the 25 instances of the graphs with different numbers of vertices
and different densities. An instance is considered unsolved if no HC is found



116 10 An extension to the BF to solve the MO HCP

60 70 80 90 100
|V|

0
2
4
6
8

10
12
14
16

Lo
g(
HV

)

BF GA

(a) D = 0.15

60 70 80 90 100
|V|

0
2
4
6
8

10
12
14

Lo
g(
HV

)

BF GA

(b) D = 0.25

60 70 80 90 100
|V|

0
2
4
6
8

10
12
14
16

Lo
g(
HV

)

BF GA

(c) D = 0.44

60 70 80 90 100
|V|

0
2
4
6
8

10
12
14
16

Lo
g(
HV

)

BF GA

(d) D = 0.64

Fig. 10.2: Comparison of the HVs obtained for PSBF (in brown) and PSGA
(in blue) for the random graphs with different numbers of vertices and different
densities.

by the algorithm. As can be observed, the number of UIs increases when D
decreases. A total of 152 and 179 instances out of 500 instances are not solved
for the MO-GA and the MO-BF, respectively.

To determine whether there are significant differences between the ap-
proaches in the number of UIs, we apply a statistical test, the Wilcoxon
signed-rank test, with the significance threshold of p = 0.05.

Table 10.2 shows the p-values obtained when the statistical test is applied
to the random graphs for both methods. For the p-values lower than 0.05,
we find significant differences between MO-BF and MO-GA distributions.
When D = 0.15, there are significant differences for all numbers of vertices
with the exception of 100. When D = 0.25, there are significant differences
for 80 and 100 vertices. For the highest densities 0.44 and 0.64, significant
differences are only found in graphs with 80 and 70 vertices, respectively. It
can be concluded that significant differences appear between the MO-BF and
the MO-GA when D = 0.15, with the MO-BF performing better (indicated
by the ∗ symbol). For the remainder of the densities, differences appear as the
number of vertices increases, this time in favor of the MO-GA (indicated by
the + symbol). In graphs with higher density, it is more probable to find an
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Table 10.1: The number of UIs and mean HV for MO-BF and MO-GA for
each graph with different numbers of vertices and different densities.

UI Mean HV

D |V | GA BF GA BF

0.15

60 24 13 84007 2282395
70 25 15 26354 3487455
80 25 15 8746 742745
90 25 19 50015 50015

100 25 20 56903 266940

0.25

60 5 9 384084 487353
70 9 14 495350 145442
80 5 14 376878 100473
90 7 12 1242895 175742

100 2 15 2013127 45442

0.44

60 0 4 3464489 241593
70 0 3 5566105 231729
80 0 3 6668915 161899
90 0 3 10132446 191363

100 0 3 13537552 195399

0.64

60 0 2 6889402 240116
70 0 5 10006568 243567
80 0 5 12155360 187568
90 0 3 15564132 181360

100 0 2 20326602 186357

HC, hence they are easier problems to solve. For these problems, the MO-BF
is not the recommended approach.

Table 10.2: The p-values obtained from the Wilcoxon signed-rank test ap-
plied to the graphs with different numbers of vertices and different densities.
The p-values lower than 0.05 are indicated in bold. The symbols ∗ and + in-
dicate that the differences are in favor of MO-BF and MO-GA , respectively.

D |V | p-value D |V | p-value

0.15

60 0.00∗

0.44

60 0.05
70 0.00∗ 70 0.8

80 0.03∗ 80 0.01+

90 0.03∗ 90 0.08
100 0.16 100 0.08

0.25

60 0.21

0.64

60 0.16

70 0.13 70 0.03+

80 0.00+ 80 0.3
90 0.17 90 0.08

100 0.01+ 100 0.08
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10.3.3.2 Graphs from the challenge set

At first, the proposed MO-BF and the MO-GA are applied to 10 graphs
from the challenge set using five runs of the permutation-based MO-BF with
t = 30, for a total of 150 executions. For all the runs, if at least one of the
30 parallel executions finds an HC, the performance is considered a 100%
success. To carry out a fair comparison, 150 executions are also considered for
the MO-GA.

The permutation-based MO-BF achieves a 100% success rate for 8 of the
10 graphs (1,2,3,4,5,6,7,9), 80% for one graph (10) and 40% for one graph (8).
From this analysis, we conclude the MO-BF has more difficulty finding HCs
when the densities decrease. However, it clearly outperforms the MO-GA,
which is not able to find any HC in 150 executions.

For further analysis, we consider 30 permutations of the five MO-BF runs
independently as 150 different representations (labelings) of the same graph.
Figure 10.3 shows the evolution of the HV mean value for the 150 represen-
tations of the graphs for the MO-BF throughout the six time periods.

As Figure 10.3a shows, the highest HV values are achieved for Graph 2.
The barplot reveals that the mean HV increases as time goes by, as the number
of HCs increases, thus enhancing the quality of the PS approximations. Fig-
ure 10.3b zooms in on Figure 10.3a to highlight the details of all the graphs,
with the exception of Graph 2. The HV mean value also increases as time
goes by for Graphs 1, 3, 4 and 6 (in all time periods) and for 5, 8 and 10 (in
some time periods). The low values appear because, for some representations,
the algorithm is not able to find any HC, and, for that reason, there are no
elements in the corresponding PS approximations. For Graphs 7 and 9, the
mean HV value remains constant; thus, there is no evolution throughout the
six time periods. This means the algorithm is able to find one or more HCs
in the first four hours, and no other solution improves the quality of the PS
approximation in the remaining time.

Figure 10.4 shows the distributions of the HV values for the 150 represen-
tations of each of the graphs obtained for the MO-BF and the MO-GA. To
represent these values in a figure, we apply a logarithmic function to the ob-
tained HVs. As previously mentioned, for the MO-GA, since no HC is found
for any of the 150 representations of the graphs, the obtained HV values are
significantly lower than those obtained by the MO-BF. The results reveal that
the MO-BF outperforms the MO-GA; the difference is clear in Graphs 1 and
2. It should be noted that when the MO-BF does not find any HC, the HV
cannot be computed, whereas in the case of the MO-GA, there are always
elements in the PS approximation whether there are HCs or not.

For the remaining 503 graphs from the challenge set, the MO-BF (with
only one initialization) and the MO-GA were executed. The MO-GA has not
found any HC in any of the graphs. In the case of the MO-BF , 276 graphs
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Fig. 10.3: Evolution of the mean value of the HV of the 150 representations
of the graphs for the six time periods for MO-BF.

from 503 were solved. Note that 17 executions were not terminated due to
the fact that the program exceeded the allocated RAM memory (90GB), thus
486 graphs were executed for 24 hours.

Figure 10.5 shows the mean number of HCs found by the MO-BF in the
six time periods for the mentioned 486 graphs. It can be observed that in the
first time period (T1), which corresponds to the first six hours of execution,
the lowest mean value is obtained. This arises from the fact that in the first six
hours for many instances there are no HCs found. As time goes by, the number
of HCs increases. Note, that in this case we did not execute the permutation-
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Fig. 10.4: Comparison of the HVs obtained for PSBF (in brown) and PSGA
(in blue) for the graphs in the challenge set.

based MO-BF, this is because of the high number of experiments required to
solve the 503 graphs. This variant of the algorithm would have increased the
success rate of the experiments.

10.4 Conclusions

In this section, we introduced the MO-BF, an algorithm to address the MO
HCP. To the best of our knowledge, there was not a previously proposed
method to solve MO variants of the HCP. We built it on the BF algorithm
originally proposed for HCP. It should be noted that in previous works [51, 19],
the BF had not been tested in a large benchmark of graphs and the maximum
number of vertices considered in the trials was of 64. In this chapter, the MO-
BF was applied to graphs with up to 3000 vertices. In addition, we introduced
a variant of the algorithm (permutation-based MO-BF) to use with graphs
of low density and a high number of vertices. The proposed approach allows
us to simultaneously find HCs and minimize the weights related to the arcs
in the HC. As in MO optimization with conflicting objectives, there is no
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Fig. 10.5: Evolution of the mean number of HCs in the six time periods for
the 486 graphs from the challenge set.

global optimal solution; the PS approximation was computed for each graph,
comprising HCs that minimize the sum of weights for the different matrices.

To evaluate the performance of the MO-BF in graphs with a different
number of nodes and densities, we compared it to an MO-GA that uses NSGA-
II selection. The applied genetic operators in the design of the MO-GA were
reported in the literature to be successful, but we introduced a specific fitness
function that considers the constraints of the HCP.

Experiments showed that the density of the graphs was critical to the
problem difficulty and the MO-BF performance. The MO-BF had more diffi-
culty in solving the random graphs with lower density than those with higher
density. The results also indicated that the number of the graph’s vertices
influences the effectiveness of the algorithm, but to a lesser extent than the
density. Clearly, the MO-BF outperformed the MO-GA for lower densities,
whereas for high densities, it is the other way around. The difficulties that the
BF has to solve relatively easy graphs of high density is worth noting. One
possible explanation is that it might spend a long time exploring a wrong
branch (a branch that does not lead to an HC), whereas the MO-GA is able
to find the HCs faster.

The effect of the density was reasserted in experiments with the graphs
from the challenge set. These graphs represent a challenging set of Hamilto-
nian graphs, and the lower densities associated with them make the instances
less like the TSP. It is noteworthy that 513 graphs were used in these ex-
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periments with a maximum number of 3000 vertices, where the MO-BF was
better than the MO-GA.

The MO-BF can simultaneously find several HCs and continuously com-
pute a remarkably improving PS approximation when it is used as an any-
time algorithm. The results show that the obtained PS approximations are
enhanced as time goes by, as the HV values increase or remain constant. Our
algorithm can be an efficient alternative for the solution of hard MO HCP
arising in many real-world problems related with Production and Energy In-
dustries, Finance or Agriculture and Forestry.
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Conclusions and future work

This chapter condenses the main conclusions obtained throughout this disser-
tation. It suggests lines for future research that emerged from the dissertation
and concludes by enumerating the scientific publications and submissions in
the last section.

11.1 Conclusions

This dissertation has made some methodological contributions to solve the
HCP based on the previously proposed BF method. The contributions are
related to two main issues in linear programming based methods: 1) reducing
the number of constraints of optimization problems; 2) fathoming solution
spaces that lead to non-HC solutions. In particular, it has proposed two en-
hancements and a new branching method. It has also proposed a new algo-
rithm, called BF collapse algorithm, taking into account the enhancements,
the branching method and a matrix collapsing step. Finally, it has introduced
a new problem, MO HCP, together with an extension of the BF to solve it. The
starting point for these contributions was the optimization of the tool-path in
an AM process.

The first contribution has been a mathematical framework to model a
specific AM technology, based on an extensive literature review. Once the
mathematical framework has been proposed, a new problem called sequence
strategy generation has been introduced. We have concluded that it is pos-
sible to address the sequence strategy generation problem with the proposed
mathematical framework. In addition, when the problem involves parts with
different geometry and different numbers of beads, it can be solved with an
MO-GA approach.

In this context, the dissertation has reviewed the most frequently reported
strategies used to solve the HCP. We have found that most of them are fo-
cused on undirected graphs. The few that focus on directed graphs have not
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been fully implemented or tested in large size graphs. One of the methods
reported in the literature that can be applied to directed graphs is the BF
method. In Chapter 7, we have presented two enhancements. The first has ad-
dressed a limitation in the BF when fixing arcs, and the second has exploited
a characteristic that graphs may present. The first enhancement consists of
detecting subcycles that can be generated when adding a fixed arc to the set of
fixed arcs. This phenomenon has been proven mathematically in the chapter.
We have introduced a conjecture related to this issue to detect the generated
subcycles, and the conducted experiments have shown that our approach out-
performs the BF. The second enhancement is a degree-based simplification
step that eliminates arcs from the graph that are infeasible to be in an HC.
We have found that a simplification can result in a reduction of a substantial
number of arcs, and in some graphs, it makes a difference compared to the
BF. In the experiments, we have used graphs with more than 192 vertices,
tripling the number of vertices considered in previous investigations. In addi-
tion, we have proposed a permutation-based BF with the clear advantage of
parallelizing the BF naturally.

One of the main characteristics of the BF is that it belongs to the family
of branching algorithms. In Chapter 8, after analyzing the branching rules
proposed in the literature, we have proposed the global branching method
where the nodes in the top levels have more importance, prioritizing the arcs
that will lead to a simplified subgraph of the original graph. Several experi-
ments we have conducted to compare the methods in two sets of Hamiltonian
graphs showed that adding the specific characteristic of the BF algorithm to
the branching rule does not give any clear advantage over the methods re-
ported in the literature, in terms of the number of UIs and number of calls
to the algorithm. In addition, several issues can affect the branching strate-
gies: 1) the interaction between components of the BF and the branching; 2)
particular characteristics of a graph; 3) the effect of the permutation used to
rearrange the matrix.

These contributions, together with a matrix collapsing step, have led to
the BF collapse algorithm. In Chapter 9, we have proposed four components
to address the limitations of previously reported linear programming based
methods: 1) degree-based simplification; 2) more efficient matrix represen-
tation; 3) the global branching method; 4) matrix collapsing step by fixing
arcs. In our experiments, we have observed that the proposed components
have a positive effect in the execution time in comparison to the original BF,
especially the matrix collapsing step. Moreover, when compared to the time
required for the Concorde TSP solver, and considering the characteristics of
the implementation, the results could be considered competitive in terms of
time.

Since most of the real-world problems are multi-objective optimization
problems, in Chapter 10 we have proposed the MO HCP. We have also intro-
duced the MO-BF algorithm and built on the BF to address the MO HCP.
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We have compared the performance of the algorithm to an MO-GA algorithm
in two sets of Hamiltonian graphs. For the first set of random Hamiltonian
graphs, the MO-BF had more difficulty solving the random graphs with lower
density than those with higher density. The MO-BF outperformed the MO-
GA for lower densities, but for higher densities, it was the other way around.
In the second set, where more challenging graphs are included, the MO-BF
was better than the MO-GA. We have used graphs with up to 3000 vertices
in the experiments.

In the following lines, we answer the RQs in Section 5.1. With respect
to RQ1, Chapter 7 has shown it was possible to improve the efficiency of
the BF by adding an early step of subcycle detection. By incorporating this
modification, the BF was able to solve more instances and was faster than the
original BF. Related to the efficiency of the algorithm, Chapter 9 has reported
that the BF collapse method, especially the matrix collapsing component,
solved more instances and was faster than the original BF. Chapter 7 has
shown that the BF together with the subcycle detection step and degree-based
simplification step was able to solve challenging instances with more than 192
vertices. It also solved two specific instances of 400 and 1123 vertices. With
respect to RQ2, Chapter 8 has shown no branching method outperformed
the others. It has compared the five methods reported in the literature and
the one proposed in this dissertation. With respect to RQ3, Chapter 10 has
shown that it was possible to extend the BF into an MO HCP scenario. Our
approach outperformed the MO-GA in random graphs of lower densities, but
for higher densities it was the other way around. In a benchmark of challenging
graphs, our approach clearly outperformed the MO-GA.

To summarize, the dissertation has started with the tool-path problem for
a specific AM technology, making a contribution by proposing a mathematical
framework and a novel problem. Then, it has made several methodological
contributions to the HCP: enhancements to the BF method, a new branching
method that takes into account specific BF characteristics, a new BF collapse
algorithm to solve the HCP and an extension to the BF to solve the MO HCP.

11.2 Future work

This section presents the future research lines derived from this dissertation.

• As discussed in Chapter 6, there is no automatic way to link a CAD model
to the generation of welding paths in WAAM. This requires the automatic
generation of the PDGs from a CAD and posterior automatic generation
of the manufacturing scheme. In addition, the proposed framework can
be extended to other DED technologies. The contributions performed in
this chapter, can lead to a way to generate CAM packages to AM tech-
nologies. It would be interesting to use a preference-based EA to solve the
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sequence strategy generation problem, thus allowing the decision-maker to
give preferences in terms of optimality.

• Chapter 8 has observed that the proposed branching method did not im-
prove the previously reported branching methods. There are a number of
issues that can affect the branching strategies that were not considered
in this analysis. An interesting future research line would be to study the
effect that the mentioned issues have (other components of the BF, the
characteristics of the graphs and the effect of the permutation used to
rearrange the matrix) in the branching strategies, especially in the global
branching method. More sophisticated methods can be created that make
use of learning to branch strategies. For instance, there are models, such
as the Mallow’s model, that can be used to learn the distribution of per-
mutations. This could allow a specific permutation to be used to follow a
branching order for a given graph G. This permutation would be sampled
from a model learnt from other permutations with graphs that share some
characteristics with G.

• Chapter 9 has introduced a new linear programming based algorithm that
builds on previous BF. The experiments carried out show promising re-
sults; however, the algorithm could be tested in challenging larger graphs.
An interesting research line could be to apply the BF collapse algorithm
to larger graphs and to compare it to other methods reported in the liter-
ature, such as the Concorde solver or the snakes and ladders heuristic.

• Eshragh et al. [53] improved the polytope Xβ used in this investiga-
tion and proposed a hybrid approach to solve the HCP, called Cross-
entropy/optimization hybrid approach. Then, Eshragh and Filar [52] and
Eshragh et al. [54] analyzed different aspects related to the extreme points
of the polytope proposed by Eshragh et al. [53]. This dissertation reveals
the need to go deeper into the construction of new algorithmic approaches
that exploit the embedding of the HCP in an MDP and to compare their
performance to the proposed BF collapse algorithm. Those approaches
could use as a basis the polytope defined by Eshragh et al. [53] and exploit
the characteristics discovered for the extreme points.

• Chapter 10 has concluded that the MO-BF outperforms the MO-GA in
challenging graphs. Nevertheless, there are specific methods reported in the
literature that deal with the sparse TSP instead of considering the TSP
in a complete graph. Our method could be compared to a specific method
for sparse TSP extended into a MO scenario. The results presented in the
dissertation could raise the interest in the MO HCP and lead to methods
specifically tailored for MO on sparse graphs.

• The BF could be combined with a metaheuristic method such as a GA.
This hybrid approach could be generated in two different ways: 1) first
apply the GA and then the BF; 2) first apply the BF and then the GA.
In the case of variant 1), the GA can be used to generate a population
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of partial HCs. A partial HC is a sequence of arcs that may include arcs
that do not exist in the graph. Taking from the sequence only the arcs
belonging to the graph, the BF can be applied from a deeper level of the
tree using those arcs as an initial set of U . The permutation-based BF
can be computed for each individual (partial HC) of the population. In
the case of variant 2), the permutation-based BF can be computed by a
certain time, and the set of Us obtained in each run can be used as the
individuals of the initial population of the GA.

11.3 Publications

The research work carried out during this period has associated the following
publications and submissions:

11.3.1 Publications and submissions derived from this dissertation

• M. Murua, A. Suárez, D. Galar & R. Santana (2020). Tool-path prob-
lem in direct energy deposition metal-additive manufacturing: sequence
strategy generation. IEEE Access, 8: 91574-91585.

• M. Murua, D. Galar & R. Santana (2020). Adaptation of a Branching
Algorithm to Solve the Multi-Objective Hamiltonian Cycle Problem. Op-
erations Research Proceedings 2019. Springer. Pp. 231-237.

• M. Murua, D. Galar & R. Santana (2021). Solving the multi-objective
Hamiltonian cycle problem using a Branch-and-Fix based algorithm. Jour-
nal of Computational Science. Accepted for publication.

• M. Murua, D. Galar & R. Santana (2021). An enhanced Branch-and-
Fix method to Hamiltonian cycle problem on directed graphs. Operations
Research Letters. Submitted.

• M. Murua, D. Galar & R. Santana (2022). A Branch-and-Fix collapse
algorithm for solving the Hamiltonian cycle problem in directed graphs.
European Journal of Operational Research. In preparation.

11.3.2 Publications not directly related to this dissertation

• M. Murua, A. Suárez, L.N. López de Lacalle, R. Santana & A. Wretland
(2018). Feature extraction-based prediction of tool wear of Inconel 718 in
face turning. Insight-Non-Destructive Testing and Condition Monitoring,
8: 443-450.

11.3.3 Conference and workshop communications

• M. Murua, R. Santana, D. Galar, A Suárez (2017). Tool routing problem
based on the Hamiltonian cycle problem for Wire Arc Additive Manufac-
turing. Poster presented at: 2nd Bilbao Data Science Workshop, Bilbao,
Spain, 16-17 November.
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• M. Murua, D. Galar, R. Santana (2019). Adaptation of a Branching
Algorithm to Solve Discrete Optimization Problems. Operations Research
2019 (OR2019), Dresden, Germany, 3-6 September.
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FindHC: A Python package to solve the HCP

The different algorithms implemented throughout this dissertation have been
included in a software repository called FindHC. This repository is publicly
available at https://github.com/maialenmurua/FindHC which is written
using Python programming language [144]. A large part of the code was in-
spired by the BF algorithm. We used an implementation proposed by Ejov
et al. [51] and we were provided a Matlab code by the authors. In the following
lines some details of the code are given.

• Auxiliary functions: aux bf.py and aux bf mo.py.
• Branching methods: aux branching6.py and branching methods.py. The

five branching methods reported in [19] (page 129) have been implemented
as well as the global branching method shown in Algorithm 7.

• Solvers: two solvers are available CPLEX (cplex solver.py) and Gurobi
(gurobi.py).

• Linear programs: constraints class.py and linear programs.py.
• Structure of the graph: graph class.py.
• Degree-based simplification: degree based simp.py. This was explained

in a deeper extent in Section 7.3 and Algorithm 4.
• Enhanced BF: BF classes branching.py. This was explained in further

detail in Section 7.3.2 and Algorithm 5.
• Collapse BF: simplification.py and BF classes collapse.py. This

was developed in Section 9.2 and Algorithm 8.
• MO-BF: BF multi objective HCP.py and pareto set.py. This was ex-

plained in Chapter 10 and Algorithm 9.
• Main functions: main.py and main mo.py.

Table A.1 shows the functionalities that are available for the BF and MO-
BF. For both cases, it is possible to use a permutation-based variant by indi-
cating the name of the file with the permutation. The six branching methods
are available for BF and MO-BF, as well as the degree-based simplification.
The solvers of CPLEX [31] and Gurobi [73] are available for both cases. The
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Permutation Branch Simp Solver Collapse Max. time

BF X {1,2,3,4,5,6} X CPLEX/Gurobi X
MO-BF X {1,2,3,4,5,6} X CPLEX/Gurobi X

Table A.1: Functionalities that are available for BF and MO-BF.

matrix collapsing can be activated for the BF, and in the case of MO-BF, a
maximum time can be given. In this last case, partial results of the PS are
returned divided in six time periods, so that every max.time/6.

A.1 Installation

This program has been tested in the operating system Ubuntu 20.04.3. The
first step consists of downloading the code by cloning the repository.

g i t c l one https : // github . com/maialenmurua/FindHC
cd FindHC

In order to install the dependencies, the Anaconda distribution should
be installed which is available at https://www.anaconda.com/products/

individual.

bash ˜/Downloads/Anaconda3−[ e d i t i o n ]−Linux−x86 64 . sh

Create a conda environment for the software. Note, that the Python pro-
gramming language version must be compatible with the solver to be installed.

conda c r e a t e −n FindHC python =3.5 anaconda
conda a c t i v a t e FindHC

Once in the folder where the software was downloaded, and after creating
and activating the conda environment, install the dependencies.

pip i n s t a l l −r FindHC/ requi rements . txt

The last step is to install the IBM ILOG CPLEX solver. Our software also
allows the Gurobi Optimizer as solver, however, in the following lines the in-
structions to install IBM ILOG CPLEX are given. It is available at: https://
www.ibm.com/support/pages/downloading-ibm-ilog-cplex-optimization

-studio-v1290.

chmod +x c p l e x s t u d i o [ e d i t i o n ] . l inux−x86−64. bin
. / c p l e x s t u d i o [ e d i t i o n ] . l inux−x86−64. bin

The installation path in Ubuntu should be /opt/ibm/ILOG/CPLEX Studio

[edition].
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A.2 Usage

In the following lines, some examples of how to execute the software for dif-
ferent configurations is given. The adjacency matrix is given in a .txt file, as
well as the permutation and the weight matrices. An example can be found
in the repository.

Example 5. Execution of the BF without using a permutation, with the
branching method 4, using the degree-based simplification and collapse and
the CPLEX solver.

cd FindHC
python3 main . py graph1 No 4 Yes cp lex Yes

It will generate a file solution graph1.txt with the HC and the time
required to find the HC.

Example 6. Execution of the BF with a permutation, with the branching
method 6, using the degree-based simplification but not collapse and the
Gurobi solver.

cd FindHC
python3 main . py graph2 perm graph2 6 Yes gurobi No

It will generate a file solution graph2 perm graph2.txt with the HC
and the time required to find the HC.

Example 7. Execution of the MO-BF without using a permutation, with
the branching method 1, without using the degree-based simplification, the
CPLEX solver and 1 hour execution. The files with weight matrices for the
bi-objective functions must be indicated.

cd FindHC
python3 main mo . py graph3 No 1 c1 c2 No cp lex 3600

It will generate six files, one every ten minutes with the number of HCs
found and the elements of the PS. For instance, for the first time period it
will generate the file partial output graph3 1.txt.
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