
mathematics

Article

Approximating Solutions of Matrix Equations via Fixed
Point Techniques

Rahul Shukla 1,† , Rajendra Pant 1,*,† , Hemant Kumar Nashine 1,2,† and Manuel De la Sen 3,†

����������
�������

Citation: Shukla, R.; Pant, R.;

Nashine, H.K.; De la Sen, M.

Approximating Solutions of Matrix

Equations via Fixed Point Techniques.

Mathematics 2021, 9, 2684. https://

doi.org/10.3390/math9212684

Academic Editor: Janusz Brzdęk

Received: 12 September 2021

Accepted: 19 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics & Applied Mathematics, University of Johannesburg, Kingsway Campus,
Auckland Park 2006, South Africa; rshukla.vnit@gmail.com or rshukla@uj.ac.za (R.S.);
drhknashine@gmail.com or hemant.nashine@vit.ac.in (H.K.N.)

2 Department of Mathematics, Vellore Institute of Technology, School of Advanced Sciences,
Vellore 632014, Tamil Nadu, India

3 Faculty of Science and Technology, Institute of Research and Development of Processes IIDP,
University of the Basque Country, Barrio Sarriena, 48940 Leioa, Bizkaia, Spain; manuel.delasen@ehu.eus

* Correspondence: rpant@uj.ac.za or pant.rajendra@gmail.com
† All authors contributed equally to this work.

Abstract: The principal goal of this work is to investigate new sufficient conditions for the existence
and convergence of positive definite solutions to certain classes of matrix equations. Under specific
assumptions, the basic tool in our study is a monotone mapping, which admits a unique fixed point
in the setting of a partially ordered Banach space. To estimate solutions to these matrix equations,
we use the Krasnosel’skiı̆ iterative technique. We also discuss some useful examples to illustrate
our results.

Keywords: nonexpnasive mapping; enriched nonexpansive mapping; banach space; matrix equations

MSC: Primary: 47H10; Secondary: 54H25; 47H09

1. Introduction

Matrix equations are often used in the study of ladder networks, control theory,
stochastic filtering, dynamic programming, statistics, and other fields, according to Ander-
son [1]. Consider the linear matrix equation below [2].

U − A∗1UA1 + · · ·+ A∗mUAm = Q (1)

where A1, . . . , Am are arbitrary matrices of order n× n, for each i, A∗i is adjoint of Ai and
Q is a positive definite matrix of order n × n. Next, consider the following nonlinear
matrix equation:

U = Q±
m

∑
j=1

A∗j F(U)Aj (2)

where F is continuous mapping in the set of all positive definite matrices to itself, under
certain assumptions on F (order-preserving or order reversing).

Ran and Reurings [2] obtained positive definite solutions of matrix Equations (1) and (2)
using the aid of the Banach contraction principle in partially ordered sets. Nieto and
Rodríguez-López [3] also used partially ordered spaces and fixed point theorems to find
solutions of some differential equations [4]. The advantage of this strategy is that the
mapping requirements only need to be satisfied for comparable elements, and the relevance
of this viewpoint is to govern the essence of the solutions, whether they are negative or
positive, which leads to a variety of interesting applications. For more details on the
applications of fixed point theory in partially ordered spaces, one may refer to [5–8] and
references therein.
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Berinde [9], on the other hand, recently developed a new form of contraction map-
pings called as (b, θ)-enriched contraction mappings, which generalize contraction and
nonexpansive mappings.

The purpose of this work is to investigate the existence and convergence of solutions
of matrix equations. To accomplish this, we use the idea of monotone enriched contraction
mapping in partially ordered Banach spaces. More specifically, we extend the concept
of (b, θ)-enriched contraction mapping in the setting of partially ordered Banach spaces
and establish some existence and convergence results. Thereafter, we use these findings
to solve the matrix Equations (1) and (2). To approximate the solutions of these matrix
equations, we use the Krasnosel’skiı̆ iterative technique. Some useful examples discussed
herein illustrate our results.

2. Preliminaries

Let B be a Banach space and � is a partial order on B. We say that ϑ, ν ∈ B are
comparable whenever ϑ � ν or ν � ϑ. Let partial order � be compatible with the linear
structure of B, that is, for every ϑ, ν, ζ ∈ B and λ ≥ 0, we have

ϑ � ν implies ϑ + ζ � ν + ζ,

ϑ � ν implies λϑ � λν.

This implies that all order intervals [ϑ,→] = {ζ ∈ B : ϑ � ζ} and [←, ν] = {ζ ∈ B :
ζ � ν} are convex. Further, we suppose that each [ϑ,→] and [←, ν] is closed.

A sequence {ϑn} is monotone increasing if ϑn � ϑn+1 for all n ∈ N. We shall utilize
the observation considered in [5] (Lemma 3.1). Assume that {ϑn} is a monotone sequence
that has a cluster point, that is, there is a subsequence {ϑnj} that converges to g. Since the
order intervals are closed, it follows g ∈ [ϑn,→) for each n, that is, g is an upper bound
for {ϑn}. If g1 is another upper bound for {ϑn}, then ϑn ∈ (←, g1] for each n, and hence
g � g1. It implies that {ϑn} converges to g = sup{ϑn}. If {ϑn} is a monotone increasing
(resp. monotone decreasing) sequence that converges to p, then ϑn � p (resp. p � ϑn).

Definition 1 ([10] (p. 27)). A mapping ξ : B → B is said to be nonexpansive if for all ϑ, ν ∈ B

‖ξ(ϑ)− ξ(ν)‖ ≤ ‖ϑ− ν‖.

Definition 2 ([11]). A mapping ξ : B → B is said to be quasi-nonexpansive if for all ϑ ∈ B and
ϑ† ∈ F(ξ) 6= ∅,

‖ξ(ϑ)− ϑ†‖ ≤ ‖ϑ− ϑ†‖.

where F(ξ) is the set of all fixed points of ξ.

It is well-known that a nonexpansive mapping with a fixed point is quasi-nonexpansive.
However, the converse need not be true.

Let B be a Banach space and ξ : B → B a mapping. The following iterative method is
known as the Krasnosel’skiı̆ method (see [12]):{

ϑ1 ∈ B
ϑn+1 = αϑn + (1− α)ξ(ϑn)

(3)

where α ∈ (0, 1).

Lemma 1 ([13]). Let B be a Banach space and ξ : B → B a mapping, define S : B → B as follows:

S(ϑ) = (1− λ)ϑ + λξ(ϑ)

for all ϑ ∈ B and λ ∈ (0, 1). Then F(S) = F(ξ).
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3. Main Results

Berinde [9] recently introduced a new type of contraction mapping, which is de-
scribed below:

Definition 3. Let (B, ‖.‖) be a Banach space. A mapping ξ : B → B is said to be (b, θ)-enriched
contraction mapping if there exist b ∈ [0, ∞) and θ ∈ [0, b + 1) such that for all ϑ, ν ∈ B

‖b(ϑ− ν) + ξ(ϑ)− ξ(ν)‖ ≤ θ‖ϑ− ν‖. (4)

Remark 1.

• It is shown in [9] that every contraction mapping ξ is a (0, θ)-enriched mapping.
• The class of nonexpansive mappings and the class of (b, θ)-enriched contraction mappings are

independent in nature.

Example 1 ([9]). Let C = [0, 1] ⊂ R and ξ : C → C be a mapping defined as ξ(ϑ) = 1− ϑ Then
F(ξ) = { 1

2}. It is nonexpansive mapping and ξ is a (b, 1− b)-enriched contraction mapping for
any b ∈ (0, 1).

Example 2 ([13]). Let C =
[

1
2 , 2
]
⊂ R and ξ : C → C be a mapping defined as ξ(ϑ) = 1

ϑ .

Then F(ξ) = {1}. It can be seen that ξ is a
(
2, 5

2
)
-enriched contraction mapping. Indeed, for all

ϑ, ν ∈
[

1
2 , 2
] ∣∣∣∣2− 1

ϑν

∣∣∣∣ ≤ 5
2

.

Thus, for all ϑ, ν ∈
[

1
2 , 2
]

∣∣∣∣2− 1
ϑν

∣∣∣∣|ϑ− ν| ≤ 5
2
|ϑ− ν|

⇔
∣∣∣∣2(ϑ− ν) +

1
ϑ
− 1

ν

∣∣∣∣ ≤ 5
2
|ϑ− ν|

⇔ |2(ϑ− ν) + ξ(ϑ)− ξ(ν)| ≤ 5
2
|ϑ− ν|.

On the other hand, ϑ = 1
2 and ν = 1, we have

|ξ(ϑ)− ξ(ν)| = |2− 1| = 1 >
1
2
=

∣∣∣∣12 − 1
∣∣∣∣.

Thus, ξ is not a nonexpansive mapping (or not even quasi-nonexpansive).

Example 3. Let B = R be the Banach space equipped with the usual norm and ξ : B → B be a
mapping defined by ξ(ϑ) = ϑ for all ϑ ∈ B. Then F(ξ) = B and ξ is an isometry (or nonexpansive)
mapping. On the other hand for all ϑ, ν ∈ B

|b(ϑ− ν) + ξ(ϑ)− ξ(ν)| = (b + 1)|ϑ− ν| > θ|ϑ− ν|

for all b ∈ [0, ∞) and θ ∈ [0, b + 1). Thus, ξ is not a (b, θ)-enriched contraction.

Definition 4. Let (B, ‖.‖,�) be a partially ordered Banach space and a mapping ξ : B → B is
said to be monotone if

ϑ � ν implies ξ(ϑ) � ξ(ν),

where ϑ, ν ∈ B.
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Now, we extend Definition 3 in the setting of partially ordered Banach spaces as
follows:

Definition 5. Let (B, ‖.‖,�) be a partially ordered Banach space. A mapping ξ : B → B is said
to be monotone (b, θ)-enriched contraction mapping if ξ is monotone and there exist b ∈ [0, ∞),
and θ ∈ [0, b + 1) such that

‖b(ϑ− ν) + ξ(ϑ)− ξ(ν)‖ ≤ θ‖ϑ− ν‖ (5)

for all ϑ, ν ∈ B with ϑ and ν are comparable.

It can be seen that every monotone contraction mapping with constant θ is a (0, θ)-
monotone enriched contraction mapping.

Example 4. Let B = {1, 2, 3} be the Banach space equipped with the usual norm and the order
�:= {(1, 1), (2, 2), (3, 3), (3, 1)}. Let ξ : B → B be a mapping defined by ξ(1) = 1, ξ(2) =
3, ξ(3) = 1. It can be easily seen that ξ satisfies Definition 5 for all comparable elements, and 1 is
a unique fixed point of ξ. On the other hand, if ϑ = 1 and ν = 2, then

‖b(ϑ− ν) + ξ(ϑ)− ξ(ν)‖ = ‖b(1− 2) + ξ(1)− ξ(2)‖
= b + 2 > b + 1 = (b + 1)‖1− 2‖ = (b + 1)‖ϑ− ν‖

for any b ∈ [0, ∞). Hence ξ is not a (b, θ)-enriched contraction mapping.

Theorem 1. Let (B, ‖.‖,�) be a partially ordered Banach space and ξ : B → B a monotone
(b, θ)-enriched contraction mapping. Suppose that there exists a point ϑ1 in B such that ϑ1 and
ξ(ϑ1) are comparable. Assume that one of the following holds:

(i) ξ is continuous.
(ii) For all ϑ, ν ∈ B, the order intervals [ϑ,→) and (←, ν] are closed.

Then, ξ admits a fixed point.

Proof. We distinguish the following two cases:
Case 1. If b > 0. By the definition of monotone (b, θ)-enriched contraction, we have

‖b(ϑ− ν) + ξ(ϑ)− ξ(ν)‖ ≤ θ‖ϑ− ν‖ (6)

for all ϑ � ν. Take µ = 1
b+1 ∈ (0, 1) and put b = 1−µ

µ in (6), then the above inequality is
equivalent to

‖(1− µ)(ϑ− ν) + µ(ξ(ϑ)− ξ(ν))‖ ≤ µθ‖ϑ− ν‖. (7)

Define the mapping S as follows:

S(ϑ) = (1− µ)ϑ + µξ(ϑ) for all ϑ ∈ B. (8)

Since ξ is monotone, for all ϑ � ν, we have

S(ϑ) = (1− µ)ϑ + µξ(ϑ) � (1− µ)ϑ + µξ(ν) � (1− µ)ν + µξ(ν) = S(ν)

so, the mapping S is also monotone. Then from (7), we get

‖S(ϑ)− S(ν)‖ ≤ k‖ϑ− ν‖ (9)

for all ϑ � ν, where k = µθ. Since µ = 1
b+1 ∈ (0, 1), k ∈ (0, 1). Thus from (9) S is a

monotone contraction mapping. Since ϑ1 � ξ(ϑ1)

ϑ1 = (1− µ)ϑ1 + µϑ1 � (1− µ)ϑ1 + µξ(ϑ1) = S(ϑ1).
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Next, for given ϑ1 ∈ B consider the sequence

ϑn+1 = S(ϑn) = (1− µ)ϑn + µξ(ϑn). (10)

Now we show that
ϑn � ϑn+1 for all n ∈ N.

Since ϑ1 � S(ϑ1), by the monotonicity of S,

ϑ2 = S(ϑ1) � S2(ϑ1) = S(ϑ2) = ϑ3,

and successively, we can write ϑn � ϑn+1 = S(ϑn) for all n ∈ N. Take ϑ = ϑn and ν = ϑn−1
in (9), we have

‖ϑn+1 − ϑn‖ ≤ ‖ϑn − ϑn−1‖ for all n ≥ 2. (11)

Successively from (11), we can obtain

‖ϑn+m − ϑn‖ ≤ kn−1
(

1− km

1− k

)
‖ϑ2 − ϑ1‖ (12)

for all n ≥ 2 and m ∈ N. It implies that {ϑn} is a Cauchy sequence and must converge to a
point in Banach space B. Take

u = lim
n→∞

ϑn.

First, we assume that ξ is continuous, then from (10)

lim
n→∞

ϑn+1 = lim
n→∞
{(1− µ)ϑn + µξ(ϑn)}

and
u = (1− µ)u + µξ(u).

Therefore, ξ(u) = u, and ξ has a fixed point in B. If we assume that (ii) is true, then it
can be seen that

ϑn � u for all n ∈ N.

Take ϑ = ϑn and ν = u in (9), we get

‖ϑn+1 − S(u)‖ ≤ k‖ϑn − u‖ → 0 as n→ ∞.

Thus S(u) = u, from Lemma 1, F(S) = F(ξ), u is a fixed point of ξ.
Case 2. If b = 0, then ξ is a monotone contraction mapping and following the similar steps
for ξ in place of S, we can complete the proof.

In the next theorem, we prove the uniqueness of the fixed point and the global
convergence of the Krasnosel’skiı̆ iterative method.

Theorem 2. If all the hypotheses of Theorem 1 hold. In addition, one of the following holds:

(X1) Every pair of elements has an upper bound or lower bound.
(X2) If F(ξ) (the set of fixed points of ξ) is totally ordered.

Then ξ has a unique fixed point. Moreover, if (X1) is true then the sequence {ϑn} defined by

ϑn+1 =

(
1− 1

b + 1

)
ϑn +

1
b + 1

ξ(ϑn)

converges to a point in F(ξ) for any initial guess ϑ1 ∈ B.
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Proof. Let ϑ ∈ B be another fixed point of ξ. First, we suppose that hypothesis (X1) is true.
We follow the same technique as in [3]. Let

ν = lim
n→∞

{(
1− 1

b + 1

)
ϑn +

1
b + 1

ξ(ϑn)

}
for given ϑ1 ∈ B (given point as in Theorem 1). We consider the following two cases:
Case 1. If ϑ is comparable to ν then ϑ = Sn(ϑ) is comparable to ν = Sn(ν) for all n ∈
N∪ {0}, where S is a mapping defined in (8). Thus,

‖ϑ− ν‖ = ‖Sn(ϑ)− Sn(ν)‖ ≤ kn‖ϑ− ν‖ → 0 as n→ ∞

which implies that ϑ = ν.
Case 2. If ϑ is not comparable to ν, from (X1) there exists either a lower or an upper bound
of ϑ and ν, that is, there is a z ∈ B such that z is comparable to ϑ and ν. Since S is a
monotone, Sn(z) is comparable to ϑ = Sn(ϑ) and ν = Sn(ν) for all n ∈ N∪ {0}. Now

‖ϑ− ν‖ = ‖Sn(ϑ)− Sn(ν)‖ ≤ ‖Sn(ϑ)− Sn(z)‖+ ‖Sn(z)− Sn(ν)‖
≤ kn‖ϑ− z‖+ kn‖z− ν‖ → 0 as n→ ∞.

Thus ϑ = ν. Next, we show that

lim
n→∞

Sn(p) = lim
n→∞

Sn(ϑ1) = ν = lim
n→∞

{(
1− 1

b + 1

)
ϑn +

1
b + 1

ξ(ϑn)

}
for all p ∈ B.

If p is comparable to ν. Since S is a monotone, Sn(p) is comparable to ν = Sn(ν) for
all n ∈ N∪ {0}. Then

‖Sn(p)− ν‖ ≤ kn‖p− ν‖ → 0 as n→ ∞.

Therefore, lim
n→∞

Sn(p) = ν. Again p is not comparable to ν, then from (X1), there exists

z ∈ B such that z is comparable to p and ν. Since S is a monotone, Sn(z) is comparable to
Sn(p) and ν = Sn(ν) for all n ∈ N∪ {0}. Thus

‖Sn(p)− ν‖ = ‖Sn(ϑ)− Sn(ν)‖ ≤ ‖Sn(p)− Sn(z)‖+ ‖Sn(z)− Sn(ν)‖
≤ kn‖p− z‖+ kn‖z− ν‖ → 0 as n→ ∞.

Hence lim
n→∞

Sn(p) = ν. If F(ξ) is totally ordered, then following the same technique as

in Case 1, we can complete the proof.

4. Solutions to Linear Matrix Equation

In this section, we discuss the solution of the matrix Equation (1). We define a mapping
G onH(n) (the set of all Hermitian matrices of order n× n) as follows:

G(U) = Q +
m

∑
j=1

A∗mUAm (13)

where A1, . . . , Am, A∗i (for each i) and Q are the same as in (1). It can be seen that solutions
of (1) are the fixed points of G. Let A ∈ M(n) (set of all matrices of order n× n), then

‖A‖1 =
n
∑

j=1
sj(A), where sj(A) are the singular values of A for j = 1, 2, . . . , n. For given

Q+ ∈ P(n) (the set of all positive definite matrices of order n× n), the following norm can
be defined:

‖A‖1,Q+ = ‖Q
1
2
+AQ

1
2
+‖1.
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It is can be seen that H(n) equipped with the norm ‖.‖1,Q+ is a partially ordered
Banach space for any Q+ ∈ P(n). We write U ≥ V (or U > V) if U−V ≥ 0 (or U−V > 0).
We denote by I an identity matrix of order n × n, and ‖.‖, the spectral norm, that is,
‖A‖ =

√
λ+(A∗A) where λ+(A∗A) is the largest eigenvalue of A∗A.

Lemma 2 ([2]). Let A and B of order n× n with A, B ≥ 0. Then

tr(AB) ≤ ‖A‖tr(B).

Theorem 3. Let Q ∈ P(n) and for some Q+ ∈ P(n), we have∥∥∥∥∥bI +
m

∑
j=1

Q
−1
2
+ AjQ+A∗j Q

−1
2
+

∥∥∥∥∥ < θ,

where b ∈ [0, ∞) and θ ∈ [0, b + 1). Then

(1) Mapping G admits a unique fixed point inH(n).
(2) For given U0 ∈ H(n), the sequence {Uk} defined by

Uk+1 =

(
1− 1

b + 1

)
Uk +

1
b + 1

G(Uk) for all k ∈ N∪ {0}, (14)

converges to the unique solution of (1), which is in P(n).

Proof. It can be seen that for all U, V ∈ H(n), there exist a lower bound or an upper bound.
For U0 = 0, G(0) = Q > 0, so U0 ≤ G(U0). Now we show that G satisfies condition (5).
Let U, V ∈ H(n) with U ≤ V, then G(U) ≤ G(V). Thus,

‖b(U −V) + G(U)− G(V)‖1,Q+ =

∥∥∥∥∥b(U −V) +
m

∑
j=1

Aj(U −V)A∗j

∥∥∥∥∥
1,Q+

= tr

{
Q

1
2
+(b(U −V) +

m

∑
j=1

A∗j (U −V)AjQ
1
2
+

}

= tr{Q
1
2
+b(U −V)Q

1
2
+}+

m

∑
j=1

tr{Q
1
2
+A∗j (U −V)AjQ

1
2
+}

= tr{Q
1
2
+b(U −V)Q

1
2
+}+

m

∑
j=1

tr{AjQ+A∗j (U −V))}

= tr{Q
1
2
+b(U −V)Q

1
2
+}+

m

∑
j=1

tr{AjQ+A∗j Q
−1
2
+ Q

1
2
+(U −V)Q

1
2
+Q

−1
2
+ }

= tr{Q
1
2
+b(U −V)Q

1
2
+}+

m

∑
j=1

tr{Q
−1
2
+ AjQ+A∗j Q

−1
2
+ Q

1
2
+(U −V)Q

1
2
+}

= tr{Q
1
2
+b(U −V)Q

1
2
+}+ tr

{
m

∑
j=1

(Q
−1
2
+ AjQ+A∗j Q

−1
2
+ )(Q

1
2
+(U −V)Q

1
2
+)

}

= tr

{
Q

1
2
+b(U −V)Q

1
2
+ +

m

∑
j=1

(Q
−1
2
+ AjQ+A∗j Q

−1
2
+ )(Q

1
2
+(U −V)Q

1
2
+)

}

= tr

{(
bI +

m

∑
j=1

(Q
−1
2
+ AjQ+A∗j Q

−1
2
+

)
(Q

1
2
+(U −V)Q

1
2
+)

}
.
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Thus from Lemma 2, we have

‖b(U −V) + G(U)− G(V)‖1,Q+ ≤
∥∥∥∥∥bI +

m

∑
j=1

Q
−1
2
+ AjQ+A∗j Q

−1
2
+

∥∥∥∥∥‖U −V‖1,Q+

From the assumptions on theorem

‖b(U −V) + G(U)− G(V)‖1,Q+ ≤ θ‖U −V‖1,Q+

Therefore, from Theorems 1 and 2, mapping G has a unique fixed point and the
sequence {Uk} converges to the solution of (1). It is evident that G maps P(n) into the set
{U ∈ H(n)|Q ≤ U}; therefore, the solution lies in this set and is positive definite.

Example 5. Consider the liner matrix Equation (13) for m = 3, n = 4, i.e.,

U = Q + A∗1UA1 + A∗2UA2 + A∗3UA3, (15)

where

Q = 1× 10−3 ×


0.1009 0.0009 0.0006 0.0006
0.0009 0.1014 0.0008 0.0007
0.0006 0.0008 0.1008 0.0006
0.0006 0.0007 0.0006 0.1006

,

A1 =


0.0435 0.0153 0.0423 0.0735
0.0779 0.0248 0.0671 0.0346
0.0827 0.0702 0.1104 0.0991
0.0871 0.0826 0.0099 0.0587

,

A2 =


0.1963 −0.0649 −0.0362 0.1658
−0.0584 0.0267 0.0403 −0.0801
−0.0281 0.1720 0.1877 0.1126
−0.0929 0.0691 −0.0616 0.1999

,

A3 =


0.0223 0.0214 0.0174 0.0929
0.0437 0.0473 0.0868 0.0728
0.0303 0.0735 0.0168 0.0600
0.0099 0.0544 0.0139 0.0655

.

The conditions of Theorem 3 can be checked numerically by considering different particular
values of matrices involved. For instance, it can be tested (and verified to be true) for

U =


0.0683 −0.0284 −0.0070 0.0104
−0.0284 0.0129 0.0022 −0.0117
−0.0070 0.0022 0.0747 0.0225
0.0104 −0.0117 0.0225 0.0542

,

To see the behavior of convergence of the sequence {Uk} defined in (14), we take-up the
initial value:

U0 =


0.0809 −0.0188 0.0118 0.0224
−0.0188 0.0246 0.0238 0.0003
0.0118 0.0238 0.1121 0.0454
0.0224 0.0003 0.0454 0.0751

.
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If we consider b = 5, then after 10 successive iterations, the approximations of the unique
positive definite solution of the (15) is the following

Û ≈ U10 =


0.8459 −0.0006 0.0018 0.006
−0.0006 0.8440 0.0069 0.0068
0.0018 0.0069 0.8447 0.0038
0.0060 0.0068 0.0038 0.8533

.

It can also be verified that the elements of each sequence are order-preserving. The convergence
behavior is shown in Figure 1.

5 10 15 20 25 30 35 40 45 50

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 1. Convergence behavior.

5. Solutions to Nonlinear Matrix Equations

In this section, we consider the following nonlinear matrix equations:

U = Q±
m

∑
j=1

A∗j F(U)Aj (16)

where F : P(n) → P(n) is a continuous mapping. For more details of these class of
equations, see [14]. In view of different conditions on mapping F, we consider the follow-
ing cases:
Case 1. If F is order-preserving and considering the following equation:

U = Q +
m

∑
j=1

A∗j F(U)Aj. (17)

We can define

G(U) = Q +
m

∑
j=1

A∗j F(U)Aj.

The mapping G is well-defined on P(n) and order-preserving. For all U ∈ P(n),
Q ≤ G(U). In particular, Q ≤ G(Q). Since G is order-preserving

Q ≤ G(Q) ≤ G2(Q) ≤ G3(Q) ≤ . . .

Thus, {Gj(Q)} is an increasing sequence.
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Proposition 1. Suppose that there exists an U0 such that G(U0) ≤ U0. Then G maps the set
{U : Q ≤ U ≤ U0} into itself. The sequence {Gj(Q)} converges to a point U− which is the
smallest solution of (17). Further, the sequence {Gj(U0)} is a decreasing sequence, which is the
largest solution in the set [Q, U0].

Proof. Let G(U0) ≤ U0, then Q ≤ G(U0) ≤ U0. If Q ≤ U ≤ U0, from the order-preserving
property of G,

Q ≤ G(Q) ≤ G(U) ≤ G(U0) ≤ U0

and for all n ∈ N

Q ≤ G(Q) ≤ G2(Q) ≤ G3(Q) ≤ . . . Gj(Q) ≤ Gj(U0) · · · ≤ G2(U0) ≤ G(U0) ≤ U0.

Thus, {Gj(Q)} is an increasing sequence and bounded above by Gp(U0) for any p ∈ N.
Further, the sequence {Gj(U0)} is bounded below the decreasing sequence. Let

U− = lim
j→∞

Gj(Q)

and
U+ = lim

j→∞
Gj(U0).

Suppose U is any solution of (17), then Q ≤ U = G(U). For all j ∈ N

Q ≤ G(Q) ≤ G2(Q) ≤ G3(Q) ≤ . . . Gj(Q) ≤ U

Thus U− ≤ U. If U ∈ [Q, U0], then for all j ∈ N

U ≤ Gj(U0) · · · ≤ G2(U0) ≤ G(U0) ≤ U0.

Hence U ≤ U+.

The following theorem ensures the uniqueness of the solution of (17).

Theorem 4. Assume that for all U, V ∈ H(n) with U ≤ V, we have∣∣∣∣∣tr{b(U −V) +
m

∑
j=1

Aj A∗j (F(U)− F(V))}
∣∣∣∣∣ ≤ θ|tr(U −V)|

where θ ∈ [0, b + 1). Then (17) has a unique solution which is positive definite. Moreover, for

given U0 ∈ H(n) with U0 ≤ Q +
m
∑

j=1
A∗j F(U0)Aj the sequence {Uk} defined as

Uk+1 =

(
1− 1

b + 1

)
Uk +

1
b + 1

G(Uk) for all k ∈ N∪ {0} (18)

converges (in sense of norm ‖.‖1) to the solution of (17).
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Proof. Let U, V ∈ H(n) with U ≤ V

‖b(U −V) + G(U)− G(V)‖1 = tr

{
(b(U −V) +

m

∑
j=1

A∗j (F(U)− F(V))Aj

}

= tr(b(U −V)) +
m

∑
j=1

tr(A∗j (F(U)− F(V))Aj)

= tr(b(U −V)) +
m

∑
j=1

tr(Aj A∗j (F(U)− F(V)))

= tr{b(U −V) +
m

∑
j=1

(Aj A∗j )(F(U)− F(V))}.

From the assumptions in the theorem, all the hypotheses of Theorem 2 are fulfilled
and we obtain the desired result.

Example 6. Consider the nonlinear matrix Equation (17) for m = 3, n = 3, F(U) = U1/3, i.e.,

U = Q + A∗1U1/3 A1 + A∗2U1/3 A2 + A∗3U1/3 A3, (19)

where

Q =

11.1151 0.6001 0.9889
0.6001 10.5468 0.8197
0.9889 0.8197 11.3649

, A1 =

0.0728 0.1080 0.1934
0.0787 0.0477 0.1978
0.2027 0.0800 0.0378

,

A2 =

0.0224 0.0290 0.0330
0.0470 0.0314 0.0368
0.0490 0.0478 0.0318

, A3 =

0.5500 0.8600 0.2700
0.4600 0.2400 0.5200
0.9600 0.3600 0.5600

.

The conditions of Theorem 4 can be checked numerically by considering different particular
values of matrices involved. For instance, it can be tested (and verified to be true) for

U =

1.1150 0.5998 0.9888
0.5998 0.5396 0.8192
0.9888 0.8192 1.3648

, V =

10.0001 0.0003 0.0001
0.0003 10.0072 0.0005
0.0001 0.0005 10.0001

.

To see the behavior of convergence of the sequence {Uk} defined in (18), we take-up three initial
values considered below:

U0 =

10.0031 0.0076 0.00253
0.00756 10.01903 0.0064
0.00253 0.0064 10.0023

,

V0 =

2 0 0
0 2 0
0 0 2

, W0 =

6 0 0
0 6 0
0 0 6

.

For b = 0, then after 10 successive iterations, the approximations of the unique positive
definite solution of (19) is the following

Û ≈ U10 =

15.0766 3.2581 3.5772
3.2581 13.0707 2.4963
3.5772 2.4963 13.3121


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V̂ ≈ V10 =

15.0766 3.2581 3.5772
3.2581 13.0707 2.4963
3.5772 2.4963 13.3121



Ŵ ≈W10 =

15.0766 3.2581 3.5772
3.2581 13.0707 2.4963
3.5772 2.4963 13.3121

.

For b = 30, then after 10 successive iterations, the approximations of the unique positive
definite solution of (19) is the following

Û ≈ U10 =

1.3809 0.0548 0.0673
0.0548 1.3426 0.0484
0.0673 0.0484 1.3613



V̂ ≈ V10 =

15.0766 3.2581 3.5772
3.2581 13.0707 2.4963
3.5772 2.4963 13.3121



Ŵ ≈W10 =

15.0766 3.2581 3.5772
3.2581 13.0707 2.4963
3.5772 2.4963 13.3121


The convergence behavior is shown in Figure 2.
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Figure 2. Convergence behavior for b = 0 (left) and b = 30 (right).

Case 2. Consider the following equation

U = Q−
m

∑
j=1

A∗j F(U)Aj. (20)

We can define

G(U) = Q−
m

∑
j=1

A∗j F(U)Aj.

Assume that F is order-reversing in (20), then G is order-preserving. Assume that
there exists U0 ≤ Q such that U0 ≤ G(U0). Then

U0 ≤ G(U0) ≤ G(Q) ≤ G(Q).
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One can easily see that [U0, Q] is mapped into itself.

Proposition 2. Suppose that there exists a U0 such that U0 ≤ G(U0). Then G maps the set
{U : U0 ≤ U ≤ Q} into itself. The sequence {Gj(Q)} converges to a point U+ which is the
largest solution of (20). Further, the sequence {Gj(U0)} is an increasing sequence and converges
to a point U−, which is the smallest solution in the set [U0, Q].

Theorem 5. Let Q ∈ P(n) and suppose that there exists U0 ≤ Q such that U0 ≤ G(U0).
Further, assume that for U0 ≤ U ≤ V ≤ Q, we have∣∣∣∣∣tr{b(U −V) +

m

∑
j=1

Aj A∗j (F(V)− F(U))}
∣∣∣∣∣ ≤ θ|tr(U −V)|

where θ ∈ [0, b + 1). Then (20) has a unique solution, which is positive definite. Moreover, given

U0 ∈ H(n) with U0 ≤ Q−
m
∑

j=1
A∗j F(U0)Aj, the sequence {Un} is defined as

Uk+1 =

(
1− 1

b + 1

)
Uk +

1
b + 1

G(Uk) for all k ∈ N∪ {0}, (21)

converges (in the sense of norm ‖.‖1) to the solution of (20).

Example 7. Consider the nonlinear matrix Equation (20) for m = 3, n = 4, F(U) = U−1/100 i.e.,

U = Q− A∗1U−1/10 A1 − A∗2U−1/100 A2 − A∗3U−1/100 ∗ A3, (22)

where

Q =


1.0006 0.0008 0.0010 0.0012
0.0008 1.0011 0.0014 0.0017
0.0010 0.0014 1.0018 0.0021
0.0012 0.0017 0.0021 1.0026

, A1 =


0.0061 0.0121 0.0182 0.0242
0.0121 0.0182 0.0242 0.0303
0.0181 0.0242 0.0303 0.0364
0.0242 0.0303 0.0363 0.0423

,

A2 =


0.0182 0.0364 0.0545 0.0727
0.0364 0.0544 0.0727 0.0909
0.0545 0.0727 0.0902 0.1091
0.0727 0.0909 0.1091 0.1252

, A3 =


0.0045 0.0091 0.0136 0.0182
0.0091 0.0136 0.0182 0.0227
0.0136 0.0182 0.0227 0.0273
0.0182 0.0227 0.0273 0.0318

.

The conditions of Theorem 5 can be checked numerically by considering different particular
values of matrices involved. For instance, it can be tested (and verified to be true) for

U =


0.0198 0.0264 0.0330 0.0394
0.0264 0.0357 0.0448 0.0538
0.0330 0.0448 0.0566 0.0681
0.0394 0.0538 0.0681 0.0823

, V =


0.0223 0.0297 0.0371 0.0443

0.02974 0.0401 0.0504 0.0606
0.0371 0.0504 0.0637 0.0767
0.0443 0.0606 0.0767 0.0927

.

To see the behavior of convergence of the sequence {Uk} defined in (21), we take-up three
initial values:

U0 =


0.0110 0.0147 0.0183 0.0219
0.0147 0.01981686727 0.0249 0.0299
0.0183 0.0249 0.0314 0.0379
0.0219 0.0299 0.0379 0.0458

,

V0 = 1× 10−3 ×


0.0551 0.0734 0.0916 0.1094
0.0734 0.0991 0.1245 0.1496
0.0916 0.1245 0.1573 0.1895
0.1094 0.1496 0.1895 0.2288

,
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W0 =


0.0005 0.0007 0.0009 0.001
0.0007 0.001 0.0012 0.0014
0.0009 0.0012 0.0016 0.0019
0.0011 0.0015 0.0019 0.0023

.

For b = 1010, then after three successive iterations, the approximations of the unique positive
definite solution of the (22) are the following

Û ≈ U10 =


1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000



V̂ ≈ V10 =


1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000



Ŵ ≈W10 =


1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000

.

The convergence behavior and solution graph are shown in Figures 3 and 4.
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Figure 3. Convergence behavior for b = 0 (left) and b = 1010 (right).
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Figure 4. Surface graph of solution for b = 1010.

6. Conclusions

In this paper, we studied new existence and convergence conditions for solutions of
linear and nonlinear matrix equations.
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