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1. Introduction

Shape memory alloys (SMAs), in comparison to other materials, have the exceptional
ability to change their properties, structures, and functionality, depending on the thermal,
magnetic, and/or stress fields applied. As is well-known, in recent decades, the develop-
ment of SMAs has allowed innovative solutions as alternatives in biomedical applications,
advanced engineering structures for aerospace and automotive industries, as well as in
sensor and actuation systems, among other sectors. Irrespective of this, design and engi-
neering with these special smart materials requires a solid background in materials science
in order to consolidate their importance in these fields and to broaden their relevance in
other new applications. The goal of this Special Issue is to foster the dissemination of some
of the latest research devoted to these special materials from different perspectives.

2. Contributions

Raising the martensitic transformation temperature of SMAs (above 100 °C) is still a
challenge, although there are already some materials that are used in different applications.
In this Special Issue, Yamabe-Mitarai reviewed TiPd and TiPt-based alloys as important
families of high-temperature SMAs [1]. In the context of a detailed investigation it was
concluded that multi-component alloys can be good candidates for HT-SMAs, indicating
as well that the limitations that need to be overcome entail the suppression of the trans-
formation strain reduction and temperature hysteresis increment. In the search for other
alternative high-temperature alloys a great deal of work has been devoted to the study
of the CuZr intermetallic. In regards to this system, Biffi et al. [2] introduced interesting
work on the effects of Al addition to CuZr-based SMAs in terms of the evolution of the
martensitic transformation upon thermal cycling and elucidated important conclusions
from a practical point of view.

Other smart alloys that have attracted a great deal of attention in recent years are
ferromagnetic SMAs. Among several candidates that have been investigated recently,
Co-V-(Si, Al) Heusler alloys are considered an inexpensive SMA for high-temperature
applications. In this context, Nakamura et al. [3] provided an interesting investigation of
a CogaV15(Sip1—xAly) alloy and proposed it as a new multifunctional magnetic material.
Another remarkable group of ferromagnetic SMAs are the so-called metamagnetic ones
and, paying attention to their critical role in material properties, the influence of structural
defects in Niy5CosMn3;In;3 alloy was investigated by Pérez-Landazabal et al. [4]. In addi-
tion, keeping in mind potential applications, the refrigeration capacity of micro-particles
of this alloy as well as the damping properties of the designed SMA-polymer composites
have been tested.

It is well-known that the emergence of additive manufacturing technologies has
enabled the layer-by-layer production of components. SMAs are not an exception and
such techniques have attracted a great deal of interest, although crack formation is still the
main challenge. Against this background and paying attention to the latest developments,
Ewald et al. [5] innovatively applied laser powder bed fusion to produce crack-free samples
of a low-cost Fe-based SMA and achieved a good shape recovery by means of an optimized
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heat treatment route. Applying a different approach to achieve optimized materials,
Brailovski et al. [6] demonstrated that simulation-driven processing maps can be used to
relate the main laser powder bed fusion parameters to the control of density and grain
structure of superelastic Ti-18Zr-14Nb alloys. To complete this section of the Special Issue,
NiTi, as the most successful SMA, also produced via additive manufacturing could not be
absent. Many works have been dedicated to this SMA, and here Biffi et al. [7] provided
an experimental comparison of the properties of complex 3D structures and bulk samples,
highlighting the main differences.

Characterization techniques are crucial for the development and optimization of new
SMAs and production methodologies. In addition to the traditional ones, further advances
that shed light on the materials’ properties is necessary. In line with this, Sedlak et al. [8]
discussed the suitability of laser-based resonant ultrasound spectroscopy (RUS) for the
characterization of soft shearing modes in single crystals using three typical examples
of SMAs (Cu-Al-Ni, Ni-Mn-Ga, and Ni-Ti), showing special access to high-temperature
analysis due to the contactless character of the laser-based arrangement.

To conclude the Special Issue, two very practical situations were introduced as exam-
ples of the wide variety of possible SMA applications. On the one hand, taking into account
the importance of a precise characterization, Sun et al. [9] clarified the influence of texture
type and intensity on the shape memory effect in NiTiNb SMA pipe joints, revealing the
causes for the anisotropy of SME via texture changes. Recommendations about the texture
effect on the shape memory effect for potential engineering applications were provided.
The last contribution, by Gonzalez et al. [10], investigated the hysteretic behavior and the
ultimate energy dissipation capacity of large-diameter NiTi bars subjected to low- and
high-cycle fatigue, keeping an eye on the real-life importance of protection from seismic
actions. The model was validated with tests conducted on a concrete prototype equipped
with large diameter NiTi bars as energy dissipation devices.
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