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Abstract 

Slewing bearings are large bearings mainly used for heavy structure 

orientation. Given the nature of this purpose, they have to support a 

combination of axial, radial and tilting moment loads. To cite some application 

examples, these bearings are used to rotate the nacelle and blades of wind 

turbines, heavy machinery, cranes, radio telescopes or tunnelling machines. 

Regarding the rolling elements, there are different configurations depending on 

the application. The most common configurations consist of balls or rollers in 

one or various rows, crossed rollers or even a combination of both. It is true 

that they are not the most used type of bearing in the industry. Nevertheless, 

the research interest of these kind of components has increased in recent years, 

mainly motivated by the rise of the wind energy. 

Wire-race slewing bearings are a special type of slewing bearings. In this case, 

the raceways are not machined over the rings, but over cylindrical section wires. 

These wires, in turn, are embedded on the rings. This layout increases the 

complexity of the component, and also provides several unique characteristics. 

For example, the wires and the rolling elements must be manufactured in 

hardened steel, since they have to support high contact pressures and must be 

resistant to wear. However, the rings can be manufactured in any other material. 

Aluminium is typically the material used for the rings, but bronze, plastic, 

carbon fibre or 3D printing are also possible alternatives. As a result, the weight 

of the component decreases significantly, which is the main advantage of this 

layout. Besides, its performance supporting shock loads is better and it also has 

more travelling vibrations absorption capacity. Because of this, wire-race 

bearings can be found in high added value applications such as the medical 

industry, robotics, astronomy, aeronautics, renewable energy or defence. 

Despite the fact that the market for wire-race bearings is growing, only a few 

specialized manufacturers or big corporations include these bearings in their 

product catalogues. Therefore, almost no research work has been published in 
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this area, in contrast with the conventional slewing bearings. In order to make 

this technology available to more modest manufacturers, a research line to study 

and characterize the structural behaviour of wire-race slewing bearings was 

established. The resulting work will lay the foundations for the technology and 

will be used as reference for future research work. In the first chapter of this 

Doctoral Thesis, all the aforementioned information is included and developed. 

Besides, it also includes a technical background necessary to understand the 

following chapters, a review of the state-of-the-art and a general overview of 

the document. 

Among the different rolling element configurations, four-point contact 

slewing bearings is one of the most common. Because of that, the first part of 

the research work is focused on these. As a first approach to the component, a 

study of the structural behaviour is carried out and its performance compared 

with an equivalent conventional slewing bearing. To this end, several FE (Finite 

Element) simulations are performed, where the bearings are subjected to axial 

load. After studying the results, several physical phenomena are identified, with 

the wire twisting phenomenon being the most relevant. The influence of several 

design parameters is also evaluated. Because of the important implications of 

the wire twisting phenomenon, two analytical formulae for the calculation of 

the wire twisting stiffness are developed. One formula can be used for non-

machined wires and another one for race-shaped wires. Once the structural 

behaviour of the component is known, an analytical model to perform static 

structural calculations under axial or tilting moment loads is conceived. The 

first step consists of defining a system of equations that represent the structural 

response of one bearing sector with one rolling element under axial load. Then, 

each bearing sector can be solved independently and the response of the whole 

bearing obtained by the summation of all of them. Of course, results obtained 

with the analytical model are compared with FE reference results. It was 

determined that the analytical model is accurate after observing good 

correlation in terms of stiffness, wire twist, contact force and angle.  

Crossed roller wire-race slewing bearings are another common bearing 

configuration, where the rolling elements are oriented in two directions and 

alternatively disposed. In this case, a more ambitious objective is established, 

which consists in developing an analytical calculation tool to obtain the bearing 

response under any load combination. As a first step, the structural behaviour 

of the bearing must be studied in order to identify the physical phenomena and 

define the necessary simplifications for the conception of the analytical model. 
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The development of the analytical model is similar to the previous one, where 

all the bearing sectors were solved independently to obtain the response of the 

bearing. Nonetheless, to obtain the analytical calculation tool, an algorithm 

must be developed based on the analytical model. This algorithm does not only 

obtain the static load capacity and stiffness curves under pure loads, but also 

performs an iterative process to solve the load distribution problem under 

combined load cases. Finally, the analytical calculation tool is validated via a 

comparison with FE results. 

The use of FE models is intensive throughout the Doctoral Thesis, since they 

are used to study the structural behaviour of the bearings and to validate the 

analytical models. Because of this, it is essential to carry out any kind of 

experimental validation. To this end, an experimental test campaign is 

performed on a tension-compression test bench. The test specimens are four 

crossed roller wire-race bearings of two different bearing designs. Experimental 

tests are processed and compared with FE results, obtaining good correlation. 

Finally, it can be said that all the FE models developed in this Thesis are 

accurate, since the modelling strategy is the same for all of them. In addition, 

some relevant conclusions related with the behaviour of the bearings are 

obtained. 

It is true that FE calculations are accurate, but they have a high computational 

cost and usually present convergence problems. To address these problems, 

several efficient FE modelling strategies are proposed. Regarding four-point 

contact wire-race slewing bearings, a simplification that is already used for 

conventional slewing bearings is implemented. After some modifications, it is 

proved to be an efficient and accurate FE modelling strategy. Two other 

efficient FE modelling strategies are also proposed for crossed roller wire-race 

slewing bearings. The first one consists of implementing the analytical 

formulation developed for these kind of bearings into an FE model. This is 

made by means of a matrix element, which represents the structural behaviour 

of one roller with its corresponding wire sections. The second alternative also 

consists in the replacement of the latter elements with a non-linear spring, 

which represents the stiffness of the contacts. Both FE modelling strategies are 

accurate and efficient, being the first one more tedious to implement but also 

obtaining slightly better results. 

In order to finish the research work of the Thesis, the procedure to obtain 

some design guidelines for four-point contact and crossed roller wire-race 

slewing bearings is explained. To this end, an FE analysis campaign based on a 
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DoE (Design of Experiments) is performed. The variables of the DoE are the 

ones that define the bearing contact geometry. After studying the influence of 

these parameters on several performance indicators, several conclusions about 

the bearing design criteria are obtained.  
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Resumen 

Los rodamientos de vuelco son rodamientos de gran tamaño utilizados 

principalmente con fines de orientación de grandes estructuras. Debido a la 

naturaleza de este propósito, han de soportar una combinación de cargas axial, 

radial y de momento de vuelco. Por citar algunas áreas de aplicación, este tipo 

de componentes se emplean en orientación de la góndola y palas de turbinas 

eólicas, en maquinaria pesada, grúas, radiotelescopios o tuneladoras. 

Dependiendo de la aplicación, se pueden encontrar configuraciones cuyos 

elementos rodantes son bolas en una o varias hileras, dos o tres hileras de 

rodillos, rodillos cruzados o incluso mixtos. Si bien no son el tipo de 

rodamiento más empleado en la industria, el auge de la energía eólica durante 

los últimos años ha hecho que se inviertan recursos en investigar y desarrollar 

este tipo de componente. 

Un tipo especial de rodamiento de vuelco son los rodamientos con pista de 

rodadura alámbrica (o wire-race bearings). En este caso, las pistas de rodadura 

no están mecanizadas sobre los anillos, sino sobre unos alambres de sección 

cilíndrica. Estos alambres, a su vez, van embebidos en los anillos. Si bien esta 

innovación aporta complejidad al componente, también proporciona una serie 

de características únicas. En lo relativo a la selección de materiales, cabe destacar 

que los elementos rodantes y los alambres han de ser fabricados en acero 

endurecido, debido que han de soportar grandes presiones de contacto y resistir 

el desgaste. Sin embargo, los anillos pueden ser fabricados en cualquier otro 

material. Lo más habitual es encontrar rodamientos de alambre con anillos de 

aluminio, pero también se pueden fabricar en bronce, plástico, fibra de carbono 

o por impresión 3D. Como resultado, el peso del componente disminuye de 

forma considerable, siendo esta su principal ventaja. Además, su 

comportamiento es mejor frente a cargas de impacto y tienen mayor capacidad 

de absorber vibraciones. Por esto, los rodamientos de alambre se pueden 

encontrar en aplicaciones de alto valor añadido como la industria de 
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dispositivos médicos, robótica, astronomía, aeronáutica, energías renovables o 

aplicaciones militares. 

A pesar de que el mercado de los rodamientos con pista de rodadura 

alámbrica está creciendo en los últimos años, sólo unos pocos fabricantes 

especializados o grandes corporaciones disponen de estos componentes en sus 

catálogos. Debido a esto, y a diferencia de los rodamientos de vuelco 

convencionales, apenas existen trabajos de investigación publicados en este 

área. Por este motivo, y con el fin de hacer esta tecnología accesible a empresas 

más modestas del sector, se planteó como objetivo abrir una línea de 

investigación para estudiar y caracterizar el comportamiento estructural de 

rodamientos con pista de rodadura alámbrica. El trabajo resultante sentará las 

bases de esta línea de investigación y servirá como referencia para futuras 

investigaciones. En el primer capítulo de la tesis doctoral se incluye y desarrolla 

toda la información mencionada hasta ahora junto con los antecedentes 

necesarios para el desarrollo de los capítulos posteriores, una revisión del estado 

del arte y una vista general del trabajo desarrollado. 

Si bien existen diferentes configuraciones, una de las más comunes son los 

rodamientos de bolas de cuatro puntos de contacto. Por ello, en ella se centran 

los primeros capítulos del presente documento. Como primera labor de 

investigación, se lleva a cabo un estudio del comportamiento estructural de 

dicho componente y se compara con su equivalente convencional. Para ello se 

realizan varias simulaciones por EF (Elementos Finitos) sometiendo a los 

rodamientos a carga axial. Tras observar los resultados se identifican varios 

fenómenos físicos relevantes, como es el giro del alambre bajo carga. Además, 

se estudia la influencia de algunos parámetros de diseño y se lleva a cabo la 

comparativa en términos de varios indicadores. Debido a la relevancia del giro 

del alambre, se desarrollan dos fórmulas analíticas para la obtención de su 

rigidez torsional. Una fórmula sirve para alambres sin mecanizar y la otra para 

alambres con pista de rodadura mecanizada. Una vez el comportamiento del 

componente es conocido, se desarrolla un modelo analítico para realizar 

cálculos estructurales estáticos bajo cargas axiales y de momento de vuelco. Para 

ello, se define un sistema de ecuaciones que representa el comportamiento bajo 

carga de un sector de rodamiento con un elemento rodante. Tras resolver todos 

los sectores de forma independiente se obtiene la respuesta del rodamiento 

completo. Por supuesto, los resultados del modelo analítico se comparan con 

resultados de modelos de EF de referencia. Tras observar una buena 
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correlación en términos de rigidez, giro del alambre y fuerzas y ángulos de 

contacto, se determinó que el modelo analítico es satisfactoriamente preciso. 

Otra configuración común son los rodamientos de rodillos cruzados con 

pista de rodadura alámbrica, donde los elementos rodantes son rodillos 

orientados en dos direcciones y dispuestos de forma alternativa. En este caso, 

se planteó un objetivo más ambicioso, que consiste en el desarrollo de una 

herramienta de cálculo analítica, capaz de hacer frente a cualquier caso de carga. 

Para ello, se estudia de la respuesta estructural del componente. De este modo 

se entiende su comportamiento y se pueden definir las simplificaciones 

necesarias para la concepción del modelo analítico. El desarrollo del modelo 

analítico es análogo al anterior, donde se resuelven todos los sectores 

independientemente para obtener la respuesta del rodamiento completo. Sin 

embargo, para obtener una herramienta de cálculo es necesario desarrollar un 

algoritmo basado en dicho modelo analítico. Este algoritmo no solo obtiene las 

curvas de rigidez y capacidad estática bajo cargas puras, sino que también lleva 

a cabo un proceso iterativo para resolver el problema de distribución de carga 

cuando se aplican cargas combinadas. Finalmente, la herramienta de cálculo se 

valida mediante una comparativa con resultados de EF. 

A lo largo de la tesis se utilizan modelos de EF de forma extensiva, ya que 

por medio de ellos se estudia el comportamiento de los rodamientos y se validan 

los modelos analíticos. Por ese motivo, se hace indispensable algún tipo de 

validación experimental. Para ello, se lleva a cabo una campaña de ensayos 

experimentales en una máquina de tracción-compresión. Los especímenes de 

ensayo son cuatro rodamientos de rodillos cruzados con pista de rodadura 

alámbrica correspondientes a dos diseños diferentes. Los resultados 

experimentales se procesan y comparan con resultados de EF. Como la 

correlación obtenida es buena, se puede afirmar que los modelos de EF son 

precisos, ya que todos se han desarrollado siguiendo la misma estrategia de 

modelado. Adicionalmente, de los resultados también se obtienen conclusiones 

relevantes en cuanto al comportamiento del componente. 

Si bien se demuestra la validez de los modelos de EF, estos son 

computacionalmente costosos y, a menudo, presentan problemas de 

convergencia. Para paliar esto, se proponen varias estrategias para el modelado 

eficiente mediante EF. En primer lugar, una simplificación ya utilizada en 

rodamientos de vuelco convencionales se implementa en rodamientos de bolas 

con pista de rodadura alámbrica. Tras algunas modificaciones, se comprueba 

que también tiene validez en estos componentes. Por otra parte, se proponen 
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dos alternativas para rodamientos de rodillos cruzados con pista de rodadura 

alámbrica. La primera consiste en implementar en EF la formulación analítica 

propuesta en capítulos anteriores. Esto se lleva a cabo de forma que un 

elemento matriz representa el comportamiento de un rodillo con sus respectivas 

secciones de alambre. La segunda alternativa consiste en sustituir esto último 

en vez de por una matriz, por un elemento muelle que simula la rigidez de los 

contactos. Ambas alternativas resultaron ser precisas y muy eficientes, siendo la 

primera alternativa algo más tediosa de implementar pero con ligeramente 

mejores resultados. 

 Para cerrar el ámbito de investigación de la tesis, se expone el procedimiento 

llevado a cabo para la obtención de una serie de directrices de diseño para 

rodamientos con pista de rodadura alámbrica de bolas y de rodillos cruzados. 

Para ello, se realiza una campaña de simulaciones de EF basada en un DoE 

(Diseño de Experimentos), donde las variables son los parámetros geométricos 

que definen la geometría interior del rodamiento. Tras estudiar la influencia de 

estos parámetros sobre varios indicadores, se obtuvieron conclusiones sobre 

cómo tomar decisiones a la hora de diseñar estos componentes. 
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Nomenclature 

𝐴𝑒𝑞. Equivalent bolt stress area. 

𝑎 Major contact ellipse semi-axis. 

𝑎∗ Dimensionless tabulated parameter. 

𝑏 Minor contact ellipse semi-axis. 

𝑏∗ Dimensionless tabulated parameter. 

𝐶 Constant determined via FE. 

𝐶𝑠 Coefficient for the bearing stiffness calculation iterative process. 

𝐶0 Static load capacity. 

𝐶0𝑎 Axial static load capacity. 

𝐶0𝑟 Radial static load capacity. 

𝐶0𝑚 Tilting moment static load capacity. 

𝐶𝑡𝑒1 Tabulated constants for the contact calculations. 

𝐶𝑡𝑒2 Tabulated constants for the contact calculations. 

𝑐 Coefficient for the calculation of 𝑘1, 𝑘2 and 𝑘3. 

𝑐𝐷𝑤 Coefficient for the calculation of 𝑘1, 𝑘2 and 𝑘3. 

𝑐𝜆 Coefficient for the calculation of 𝑘1, 𝑘2 and 𝑘3. 
𝑐𝑅𝑓 Coefficient for the calculation of 𝑘1, 𝑘2 and 𝑘3. 

𝑐𝐷𝑤𝜆 Coefficient for the calculation of 𝑘1, 𝑘2 and 𝑘3. 
𝑐𝐷𝑤𝑅𝑓 Coefficient for the calculation of 𝑘1, 𝑘2 and 𝑘3. 

𝑑 Projection of the ball-wire contact spring. 

𝑑0 Depth of reference. 

𝑑𝑛 Nominal bolt diameter. 

𝐷𝑐𝑤 Diameter between wire centres. 

𝐷𝑤 Rolling element diameter. 

𝐷𝑤𝑛 Normalized rolling element diameter. 
𝐷𝑝𝑤 Bearing mean diameter. 

𝐸´ Elastic modulus. 

𝐸 Equivalent elastic modulus. 

𝑒𝑖 Total contact interference of sector 𝑖. 

𝑒𝐴
𝑖  Contact interference generated by axial load in sector 𝑖. 

𝑒𝑅
𝑖  Contact interference generated by radial load in sector 𝑖. 

𝑒𝑡
𝑖 Contact interference generated by tilting load in sector 𝑖. 

𝛴𝜌 Curvature sum. 

𝑓0 ISO-76 tabulated value. 
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𝐹𝑎 Axial force. 

𝐹𝐴
𝑖𝑛𝑝𝑢𝑡

 Input axial force. 

𝐹𝐴
𝑜𝑝𝑡

 Axial force resulting from the optimization process. 

𝐹𝐵 Ball-wire normal contact force. 
𝐹𝑒𝑞𝑤 Force of the equivalent spring (𝑘1, 𝑘2). 

𝐹𝑁
𝑖  Normal contact force of the sector 𝑖. 

𝐹𝑟 Radial force. 

𝐹𝑅
𝑖𝑛𝑝𝑢𝑡

 Input radial force. 

𝐹𝑅
𝑜𝑝𝑡

 Radial force resulting from the optimization process. 

𝐹𝑇𝑔
𝑖  Tangential contact force of the sector 𝑖. 

𝐹𝑇𝑜𝑡.
𝑖  Total contact force of the sector 𝑖. 

𝐹𝑥 Bearing force in the 𝑥 direction. 
𝐹𝑦 Bearing force in the 𝑦 direction. 

𝐹𝑧 Bearing force in the 𝑧 direction. 

𝐻 Bearing housing. 
𝐻𝑔 Standard ring geometry parameter. 

𝑖 Bearing sector number. 

𝑗 Number of iteration. 

𝑘 Ratio of equivalent radius. 

𝐾 Wire twisting stiffness constant. 

𝑘𝐵 Ball-wire stiffness constant. 

𝒌𝒄𝒃𝒏 Combin39 equivalent spring stiffness. 
𝑘𝑒𝑞𝑤 Stiffness of the equivalent spring (𝑘1, 𝑘2). 

𝑘1 Contact 1 normal stiffness constant. 

𝑘2 Contact 2 normal stiffness constant. 

𝑘3 Contact 3 normal stiffness constant. 

𝑘𝑡𝑤 Wire twisting stiffness constant. 

𝐾𝑠 Stiffness of the spring. 

𝐾𝑂𝑟𝑖𝑔𝑖𝑛 First load step wire twisting stiffness constant. 

𝐾𝐴𝑛. Analytical wire twisting stiffness constant. 
𝐾𝑓 Coefficient of friction of the bolt. 

𝐿 Length of the line contact. 

𝐿𝑛𝑠 Length of the no-separation contact. 

𝐿𝑅𝐶  Distance between wire and raceway centres. 
𝐿𝜌𝜃 Undeformed wire arc. 

𝐿𝜌𝜃,𝜑 Deformed wire arc. 

𝑀𝐵 Twisting moment generated by the contact force. 
𝑀𝑓 Friction torque. 

𝑀𝑓0 Idling friction torque. 

𝑀𝑡 Tilting moment. 

𝑀𝑡
𝑖𝑛𝑝𝑢𝑡

 Input tilting moment. 

𝑀𝑡
𝑜𝑝𝑡

 Tilting moment resulting from the optimization process. 
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𝑀𝑤 Wire twisting moment. 

𝑁1
𝑖 Normal contact force in the contact 1 of the sector 𝑖. 

𝑁2
𝑖 Normal contact force in the contact 2 of the sector 𝑖. 

𝑁1𝐴
𝑖  Normal contact force in the contact 1 of the sector 𝑖 type A roller 

𝑁1𝐵
𝑖  Normal contact force in the contact 2 of the sector 𝑖 type B roller 

𝑁2𝐴
𝑖  Normal contact force in the contact 1 of the sector 𝑖 type A roller. 

𝑁2𝐵
𝑖  Normal contact force in the contact 2 of the sector 𝑖 type B roller. 

𝑁𝐵 Number of balls. 

𝑁𝑅 Number of rollers. 

𝑛 Number of springs. 

𝑃𝑚𝑎𝑥 Maximum contact pressure. 

𝑄 Normal contact force. 

𝑄𝑚𝑎𝑥 Maximum normal contact force. 

𝑅 Wire mean radius. 

𝑅𝑤ℎ Wire housing radius. 

𝑅𝑐 Raceway radius. 

𝑅𝑓 Raceway factor. 

𝑅𝑓𝑛 Normalized raceway factor. 

𝑅𝑥 Equivalent radius perpendicular to the rolling direction. 
𝑅𝑦 Equivalent radius in the rolling direction. 

𝑅𝐻 Standard ring geometry parameter. 

𝑅𝐿 Standard ring geometry parameter. 
𝑅𝐿𝑔 Standard ring geometry parameter. 

𝑅1 Contact force in the contact 1. 

𝑅2 Contact force in the contact 2. 

𝑅3 Contact force in the contact 3. 

𝑠 Osculation ratio. 

𝑇 Wire twisting moment. 

𝑡 Thickness of the outer race section. 

𝑇2 Wire-ring tangential contact force. 

𝑇𝑏 Bolt preload. 

𝑇𝑚𝑎𝑥. Bolt maximum allowable torque. 

𝑊𝑃𝐶 Dimensionless load. 

𝑊𝑛𝑠 Width of the no-separation contact. 

𝑥𝑅𝐶  Raceway centre horizontal displacement. 

𝑥𝑤 Wire centre horizontal displacement. 

𝑦𝑅𝐶  Raceway centre vertical displacement. 

𝑦𝑤 Wire centre vertical displacement. 

𝑦𝐵 Axial displacement input. 

𝛼 Contact angle. 

𝛼0 Initial contact angle. 

𝛼𝑏 Bolt thread angle. 

𝛼𝑇𝑜𝑡.
𝑖  Angle of the total contact force of the sector 𝑖. 

𝛽 Span angle. 
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𝛾0 Half-included roller centre line angle. 

𝛾 Wire-raceway position angle. 

𝛿 Normal contact deformation. 

𝛿∗ Dimensionless tabulated parameter. 
𝛿𝑒𝑞𝑤 Deformation of the equivalent spring (𝑘1, 𝑘2). 

𝛿𝑝 Diametrical rolling element preload. 

𝛿𝑥1 Node 1 DoF in the 𝑥 direction. 

𝛿𝑥2 Node 2 DoF in the 𝑥 direction. 
𝛿𝑦1 Node 1 DoF in the 𝑦 direction. 
𝛿𝑦2 Node 2 DoF in the 𝑦 direction. 

𝛿𝑧1 Node 1 DoF in the 𝑧 direction. 

𝛿𝑧2 Node 2 DoF in the 𝑧 direction. 

∆𝐴 Axial displacement imposed to the bearing. 

∆𝐴0 Initial axial displacement imposed to the bearing. 

∆𝛼 Contact angle variation. 

∆𝑅 Radial displacement imposed to the bearing. 

∆𝑅0 Initial radial displacement imposed to the bearing. 

∆1
𝑖  Contact interference in the contact 1 of the sector 𝑖. 

∆2
𝑖  Contact interference in the contact 2 of the sector 𝑖. 

∆3
𝑖  Contact interference in the contact 3 of the sector 𝑖. 

∆𝐴
𝑖  Axial displacement imposed to sector 𝑖. 

∆𝑅
𝑖  Radial displacement imposed to sector 𝑖. 

휀 Coefficient for the load distribution problem optimization process. 

𝜂 Constant determined via FE. 

𝜃𝑖 Angular position of sector 𝑖. 

𝜃𝑅 Orientation of the radial load. 

𝜃𝑅
𝑖𝑛𝑝𝑢𝑡

 Input orientation of the radial load. 

𝜃𝑡 Orientation of the tilting load. 

𝜃𝑡
𝑖𝑛𝑝𝑢𝑡

 Input orientation of the tilting load. 

𝜃𝑤 Wire centre twisting angle. 

𝜆 Wire diameter. 

𝜆𝑛 Normalized wire diameter. 

𝜆𝑟 Normalized wire diameter with respect to 𝐷𝑤. 

𝜇 Coefficient of friction. 

𝜇′ Coefficient of friction between the bolt head and the surface. 

𝜈 Poisson’s ratio. 

𝜎 Contact pressure. 
𝜎𝑦𝑝 Yield stress. 

𝜑 Twisting angle. 

𝜑𝑡 Tilting angle imposed to the bearing. 

𝜑𝑡0 Initial tilting angle imposed to the bearing. 

𝜔 Angle related with the wire twist. 
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1 Introduction 

1.1 Context and motivation 

Slewing bearings are a kind of bearing whose diameter is far greater than the 

rolling element diameter. These bearings are widely used for orientation 

purposes, so they are designed to rotate at slow speeds and under an oscillatory 

regime. The nature of the applications where they are used usually makes them 

subject to large tilting moments and axial and radial loads. They can be found 

in a wide variety of applications, such as cranes, heavy-duty machinery, 

renewable energy and defence among others. However, the wind energy sector 

has been the main research driving force in this field, since these components 

are key and this is a pushing technology sector. Figure 1.1a shows a four-point 

contact slewing bearing and the loads they have to withstand. 

Wire race bearings are a different concept of slewing bearing as can be seen 

in Figure 1.1b, since the rolling element runs over race-shaped wires embedded 

within the rings. Rolling elements and wires support large loads and high 

contact pressures, so they must be manufactured in hardened steel, or less 

frequently, in ceramic. Moreover, this design offers a concept that opens a wide 

range of materials for the rings, such as aluminium, bronze, carbon fibre, plastic 

or even 3D printed rings, reducing a considerable amount of weight. Figure 1.2 

shows the weight comparison between bearings with the same cross-section 

and different ring materials performed by the manufacturer Franke [1]. Other 

manufacturers such as SKF or Rothe Erde agree that weight reductions of up 

to around 60% can be achieved with an equivalent bearing if the rings are made 

of aluminium [2,3]. Another advantage of the race shaped wires is that they can 

be placed anywhere, even embedded in the design of the machine. This helps 

to reduce the mounting space and increases compactness. This layout also 

provides maintenance and reparation advantages with the possibility of 

replacing wires when they suffer race damage instead of replacing the whole 

bearing. 
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(a) 

 

(b) 

Figure 1.1 Four-point contact slewing bearing: (a) Conventional; (b) Wire-race. 

 

Figure 1.2 Wire-race bearings weight comparison with different ring materials (300 mm 
diameter and identical load characteristics) [1]. 
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These kind of bearings are not as popular as conventional slewing bearings, 

but their presence in specific applications is increasing [4] and more 

manufacturers are including them into their catalogues. There are many areas 

where these bearings provide substantial advantages that are not so evident at 

first glance; these are shown in Figure 1.3 and are going to be enumerated 

together with the advantages these bearings provide in each application. In 

robotics there is a constant pursuit to achieve higher accelerations and 

decelerations; for this reason, wire bearings are a good choice since they can 

provide a more integrated design and weight reductions. This property is also 

welcomed in a sector aware of weight reductions, such as aeronautics. Besides, 

the fluctuation of the temperature with the height creates contractions and 

expansions of the bearing rings, resulting in a non-constant torque. Wire 

bearings also provide constant torque in a range of temperatures, since the wires 

are open and the existing gap absorbs the length variations [2]. For those 

reasons, new camera systems placed in helicopters and drones implements this 

technology. Another sector that is committed to wire bearings is the medical 

industry, where noise and travelling vibrations are a common issue. Wire 

bearings are implemented in X-Ray and Computer Tomography machines with 

an innovative vibration damper made of elastomer placed between the wires 

and the rings [5]. Moreover, the low elastic modulus and the higher damping 

provided by the additional contacts, make these bearings excellent to use, 

absorbing the eventual shock loads that could damage the races. For that 

reason, wire race bearings are also employed in the defence industry, rotating 

turrets and guns. Furthermore, building the component with non-corrosive 

materials is a huge differentiating factor in the shipping industry. Besides this 

fact, shock loads generated by waves hitting ships' hulls can be better absorbed 

by wire-race bearings. For those reasons, wire-race bearings are an interesting 

alternative for on-board equipment such as radars and antennas. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 1.3 Applications of wire-race bearings [6]: (a) robotics; (b) aeronautics; (c) medical 
devices; (d) shipping industry; (e) radars and antennae; (f) renewable energy. 

The performance of wire race bearings is therefore different from that of 

conventional slewing bearings. Nevertheless, little literature can be found that 

addresses this topic. This fact makes it difficult to characterize these 

components or foresee their mechanical response. Moreover, the 

manufacturing process of wire race bearings is complex because of the inherent 

difficulty of producing ring-shaped hardened wires. For that reason, there are 
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not so many manufacturers, and only the most powerful bearing manufacturers 

like SKF and Rothe Erde, or specialized labels like Franke, can afford to include 

this product in their catalogues. These bearings are usually custom made (95% 

according to Franke [6]) rather than mass-produced, and for that reason it is 

difficult to find technical data sheets. Another possible reason regarding the 

lack of information can be related to occultism among manufacturers, who save 

their technology for themselves. There are also smaller companies interested in 

commercializing wire-race bearings, but they have to face an unknown world. 

In terms of product development, wire race bearings are currently being applied 

in high tech applications as well as in renewable energy sources. For these 

reasons, wire-race bearings manufacturers are making efforts towards 

developing new solutions to adapt these components to the future. The path to 

follow is through sustainability, where energy efficient machines which weigh 

less and optimized designs are a major concern. There is also a trend in the 

reuse philosophy, where remanufacturing and reuse instead of manufacturing 

new components is a rising reality. This attitude not only reduces the waste, 

saves resources and energy, but is also a much cheaper solution. The aim of this 

work is to provide knowledge in this area and lead the way in this technology, 

making the know-how accessible for the industry, promoting the 

competitiveness and the continuous improvement of these components. 

The ADM Mechanical Design research group [7] of the University of the 

Basque Country started a research line in the scope of slewing bearings several 

years ago meeting the demand for research in the field. Many research articles 

have been published since then; mainly analytical approaches for the static 

characterization of slewing bearings [8–15] and friction torque [16–18] in 

addition to Finite Element modelling techniques [19]. The research group also 

has a close relationship with Iraundi S.A., participating in research projects and 

providing mutual technical support. This relationship states that the research 

group is aware of the current interests of the industry and that the developed 

work is also valuable for the industry. The research presented in this Doctoral 

Thesis gathers the results of the research work carried out in the field of wire 

race bearings under the guidance of the ADM Mechanical Design group. 
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1.2 Wire-race and conventional slewing bearing 

description 

Wire race slewing bearings are the topic of this thesis, so they must be 

described in great detail. As they are slewing bearings, they share many 

similarities with conventional slewing bearings. In this section, the components 

of a conventional and wire race slewing bearing shown in Figure 1.4 will be 

described first, and the bearing types afterwards. 

Rings: The main parameter that defines the rings is the mean diameter 

(𝐷𝑝𝑤),which happens to be much larger than the rolling element diameter (𝐷𝑤) 

in slewing bearings. This layout makes the bearings more slender, in relative 

terms, in comparison with standard bearings. Wire-race bearings rings can be 

produced in many types of materials, but they are usually manufactured using 

anodized aluminium; carbon fibre or plastic rings are also produced, but they 

are less common. In conventional slewing bearings, rings are usually 

manufactured with medium carbon steel forging and induction hardened 

raceways. Wire-race bearing rings consist of a one-piece ring, and a two-piece 

ring, this arrangement allows for the mounting process. This strategy can be 

also employed with conventional slewing bearings, but in this latter case it is 

more common to have both solid rings. 

Wires: These are the characteristic elements of wire bearings. Basically, they 

are steel wires with a machined race where the rolling elements run. To avoid 

wear and to support high loads, they are subjected to a hardening process. A 

wire does not form a closed ring, they have a cut with a clearance that allows 

for the mounting process and keeps the friction torque absorbing the thermal 

expansions constant. 

Rolling Elements: Balls or rollers typically manufactured with hardened 

chrome alloy steel can be used for this purpose. The ball-raceway contact shown 

in Figure 1.5 is a point contact (the contact takes place in a point) at a certain 

angle (𝛼0), where the osculation ratio is the ratio between the ball and raceway 

curvatures (𝑠 = 𝐷𝑤/(2 · 𝑅𝑐) < 1). The roller-raceway contact is a line contact 

(the contact take place along a line) perpendicular to a certain angle (𝛼0). 

Besides, there are different roller profiles (crowned, partially crowned 

logarithmic…) that improve the contact pressure distribution and the bearing 

performance. More information about this topic is introduced in Section 0. On 

another note, a typical practice in slewing bearings that involves the rolling 
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elements is preloading, which consists in introducing oversized rolling 

elements. This practice avoids clearances between the rolling elements and the 

raceways, so undesirable vibrations are eliminated [20]. In addition, the stiffness 

of the bearing increases, which also improves accuracy. Preloading does not 

have a relevant effect on the static load capacity [21], but it increases the friction 

torque and consequently the wear rates. 

Spacers and cages: These parts, typically made of plastic materials, are used 

to separate the rolling elements and prevent them from coming into contact, 

banging or rubbing each other. Besides, they assess an evenly rolling element 

position within the races. A spacer is a piece of plastic or metal that is placed 

between two consecutive rolling elements. As shown in Figure 1.4a, spacers are 

specifically designed to accommodate both rolling elements preventing 

undesirable gaps. Another alternative consists of a cage like the one shown in 

Figure 1.4b. This cage consists of a continuous crown made of metal or plastic, 

which contains the rolling elements. 

Mounting holes: Slewing bearings are linked to the surrounding structure by 

means of bolted joints. The holes are equally spaced along the inner and outer 

rings and can be through holes or tapped holes. 

Assembly joints: When a ring is divided into two parts, it becomes necessary 

to fix them by means of a minimum number of bolts. The objective of these 

joints is to maintain the assembly and, once the bearing is mounted, they lose 

their purpose. 

Gear: This makes the relative movement of one ring with respect to the other 

possible when an electric motor transmits movement on the gear. Depending 

on the application, the gear can be placed on the inner or outer ring or there is 

not one if the gear is manufactured in the surrounding structures or another 

actuation system is employed. 

Load plug: if both rings are solid, the only solution for inserting the rolling 

elements into the raceways is by means of a radial drilled hole. Once all the 

rolling elements are in position, the hole is filled with a plug, which is carefully 

placed in order to provide continuity to the races. In 1986 INA-Schaeffler 

patented a technology to apply this methodology to wire-race bearings [22], but 

it is not used currently. 

Grease fitting: lubrication of the raceways is a key aspect in bearing 

operation; for this reason, lubricant or grease is introduced through these 
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radially drilled holes. There are also automated lubrication systems that perform 

this task automatically. 

Seals: seals are an important part in terms of the durability of the bearing. 

They prevent grease leakages and keeps moisture and undesired particles 

outside the bearing. Seals become more relevant when the bearing is subjected 

to extreme conditions such as marine water or desert conditions, among others. 

 

(a) 

 

(b) 

Figure 1.4 Four-point contact bearing components: (a) Conventional slewing; (b) Wire-
race slewing. 
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Figure 1.5 Ball-raceway contact geometry parameters. 

Once the bearing components have been introduced, it would be convenient 

to classify the slewing bearings according to the employed rolling element. The 

proposed classification falls very short considering the number of existing 

slewing bearing designs. Nevertheless, some of the most popular bearing types 

are going to be mentioned. 

Generally, the most popular are the four-point contact slewing bearings and 

the crossed roller slewing bearings, both represented in Figure 1.6. Four-point 

contact slewing bearings are widely used because of their versatility, low friction 

torque and reduced cost in comparison with other bearing types. Crossed roller 

slewing bearings offer greater stiffness and static load capacity, but involve 

larger friction torques and manufacturing costs. 

The number of rows is another key aspect to take into account. More than 

one row of rolling elements can be considered in order to increase the capacity 

of the bearing. Regarding ball bearings, two rows can be arranged with two or 

four contacts on each ball. In the case of roller bearings, two or even three rows 

can be used to deal with particularly high loads. These configurations are shown 

in Figure 1.7. 

When the design specifications are restrictive in terms of weight and the 

application does not demand high stiffness values, light series (also known as 

profile bearings) or custom made rings are more suitable (Figure 1.8). 
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(a) (b) 

 
 

(c) (d) 

Figure 1.6 Slewing bearing types: (a) Four-point contact [23]; (b) Crossed roller [23]; (c) 
Four-point contact wire-race [2]; (d) Crossed roller wire-race [2]. 

 
  

(a) (b) (c) 

   

(d) (e) (f) 

Figure 1.7 Slewing bearing types: (a) Eight-point contact double row ball [23]; (b) Double 
row roller [23]; (c) Three row roller [23]; (d) Four-point contact double row ball wire-race; 

(e) Double row roller wire-race; (f) Three row roller wire-race. 
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(a) (b) 

Figure 1.8 (a) Light series slewing bearing [23]; (b) 3D printed rings wire-race bearing [1]. 

1.3 Slewing bearing selection criteria 

There are several parameters based on the operating performance that 

measure the capabilities of a bearing. These aspects are the base of the design 

or selection criteria of a slewing bearing for a specific application, and they are 

explained in detail in this section. 

1.3.1 Static load carrying capacity 

Static load carrying capacity is closely related with permanent contact 

deformations. Permanent deformation in raceways and rolling elements occurs 

even under light loads, but experience has shown that it has little effect in 

bearing operation under a certain limit. This limit of permanent deformation is 

proposed in the ISO-76 [24,25] standard and universally accepted in literature 

as 0.0001 of the rolling element diameter in the contact centre of the most 

loaded element. This degree of permanent deformation can be tolerated in 

almost all bearing applications, but beyond that value, noise and vibrations 

increases and under poor lubrication surface fatigue can appear. Nonetheless, 

contact permanent deformations are difficult to measure or calculate; for that 

reason, it has been stated in the ISO-76 standard that this limit of permanent 

deformation happens when the contact stresses obtained from a linear elastic 

calculation reach a certain value for each bearing type in a linear elastic 

calculation, which are shown in Table 1.1. 
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Table 1.1 Contact stress that causes 0.0001 rolling element diameter permanent deformation. 

Bearing Type Contact Stress 

Self-aligning ball bearing 4600 [MPa] 

Other ball bearings 4200 [MPa] 

Roller bearings 4000 [MPa] 

However, maximum contact pressure is not a practical indicator when it 

comes to the calculation of the static load capacity. For that reason the ISO 

standard also proposes two simplified formulas to obtain the axial and radial 

static load capacity (𝐶0𝑎 , 𝐶0𝑟), but none for the tilting moment. Moreover, these 

formulas were developed under certain simplifications, assuming for example, 

that the contact angle does not vary with the applied load and that the flexibility 

provided by rings or the surrounding structures has no effect. As an example, 

Equation (1.1) and Equation (1.2) are proposed to calculate the axial static load 

capacity of thrust ball and roller bearings respectively. Where 𝑁𝐵 and 𝑁𝑅are the 

number of rolling elements, 𝑓0 is a tabulated value and 𝐿is the contact length. 

 𝐶0𝑎 = 𝑓0 · 𝑁𝐵 · 𝐷𝑤
2 · 𝑠𝑖𝑛 (𝛼0) (1.1) 

 𝐶0𝑎 = 220 · (1 −
𝐷𝑤 · 𝑐𝑜𝑠 (𝛼0)

𝐷𝑝𝑤
) · 𝑁𝑅 · 𝐿 · 𝐷𝑤 · 𝑠𝑖𝑛 (𝛼0) (1.2) 

The standard was conceived for conventional bearings, which have reduced 

dimensions and completely hardened rings. Because of their dimensions, 

conventional slewing bearing raceways can only be induction hardened, leaving 

the remaining ring material soft. This difference in the material properties can 

lead to a failure mode called core crushing, which consists in sub-surface crack 

nucleation. This phenomenon was studied by Lai et al. for the ball-raceway 

contact [26] and Göncz et al. for the case of roller-raceway contact [27]. Core-

crushing is not a problem in wire bearings, since the whole wire is hardened 

[2,4,28,29] and the ring does not receive thermal treatment. Nevertheless, the 

standards have even more limitations when it comes to application to wire-race 

slewing bearings. 

Another phenomenon related with the static failure of the bearing that affects 

both ball conventional and wire-race slewing bearings is the contact ellipse 
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truncation. It is known that the contact angle tends to increase or decrease 

depending on the applied load. If the applied load is too high, the rings are too 

flexible or the surrounding structures are not stiff enough, the ball can climb 

over the raceway in such a way that the contact ellipse reaches the limits of the 

raceway. This situation leads to a free edge effect that generates a stress 

concentration near the edge far greater than the admissible one, as seen in 

Figure 1.9. Besides, the pressure at the centre of the contact also rises due to 

the contact area reduction. In order to avoid this phenomenon in the design 

stage, FE analysis or analytical tools can retrieve the evolution of the contact 

along the most demanding loading process. There is no standard measure to 

assess when this phenomenon happens exactly, but it can be established that 

truncation occurs when the contact ellipse reaches the raceway edge. 

  

Figure 1.9 Truncation of the contact ellipse. 

From the roller bearings point of view, truncation as it has been described 

does not occur. However, the nature of the roller-raceway contact may generate 

stress concentrations in the vicinity of the cylinder edges. These stress 

concentrations are called free edge effects, which generate an abrupt local stress 

rising that transforms the ideal contact area into a “dogbone” shaped one (see 

Figure 1.10a). In order to prevent this behaviour, it has been proven that the 

best practice consists on applying a geometry correction to the roller profile. 

Four different roller profile examples are presented in Figure 1.10, where the 

contact patch and the pressure distribution along the major axis are compared. 

The “dogbone” contact area and relevant edge effects only appear for the 

straight profile roller, while the corrected roller profiles present smoother 

pressure distributions. Figure 1.11 represents a more realistic case, where FE 
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results for a heavy loaded crowned roller are shown. It can be observed that the 

edge effects and the “dogbone” contact area can also appear in a corrected 

roller profile under heavy load circumstances. For this reason, the roller profile 

design is crucial for preventing or delaying early edge effects, but they may arise 

under eventual high loads. 

The election of the proper roller profile has a significant effect not only on 

the static load capacity but also on the wear damage and the fatigue life. For 

that reason, ISO/TS 16281: 2008 standard [30] provides a logarithmic roller 

profile equation (Figure 1.10c). 

  

(a) (b) 

  

(c) (d) 

Figure 1.10 Contact pressure patch and distribution along the major axis for different 
roller profiles: (a) Straight; (b) Partially crowned; (c) Logarithmic profile; (d) Fully crowned. 
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Figure 1.11 Heavy loaded crowned roller bearing contact [31]. 

1.3.2 Stiffness 

Stiffness can be defined as the relationship between the applied force and the 

consequent deformation in that direction. There are no specific design criteria 

regarding bearing stiffness, but stiff components are usually preferred since they 

stay in position under high loads and minimize the possibility of interfering with 

other structures. This is valuable data for manufacturers and customers in the 

design stage in order to know how the bearing is going to behave under certain 

loads and how it affects the performance of the whole structure or machine 

assembly. 

Providing a reliable stiffness data is not easy because it depends on the 

surrounding structures [32]. It is highly recommended to be very careful with 

the stiffness data and take into consideration the boundary conditions and 

assumptions made for its calculation. An overestimated bearing stiffness can 

lead to unsafe designs and potential failures. Nevertheless, bearing stiffness can 

be obtained by means of Finite Element analysis or analytical model calculations 

within their limitations. 

1.3.3 Friction torque 

Friction on lubricated or non-lubricated rolling contacts is considerably lower 

than on sliding contacts; for that reason, rolling bearings retrieve much less 
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friction in comparison with most fluid film or journal bearings. Friction of any 

magnitude slows the motion and results in energy loss that causes an increase 

in the temperature and in rolling bearings can be measured as a friction torque. 

Friction torque is the required applied moment in the hoop direction that makes 

the relative movement between rings possible. Depending on the bearing type, 

the friction source can be different, but the principal causes under load are the 

sliding motions in the deformed rolling contacts [31]. 

A low friction torque is desirable for many reasons, such as cheaper actuation 

systems and more durability due to the lower loads in the kinematic chain. 

However, despite the beneficial structural properties that retrieves the preload, 

the friction torque is also increased. For that reason, it is important to reach an 

equilibrium between preload values and friction torque. 

Correct estimation of the friction torque of the bearing is crucial to design 

the actuation system and have better control over the rotation. For that reason, 

the estimation of the friction torque is a research field in itself. On the one 

hand, manufacturers usually provide simple formulas with many limitations to 

obtain this parameter. On the other hand, a lot of research work has been 

published with regard to this topic proposing analytical formulations. 

1.3.4 Dynamic load carrying capacity and fatigue 

The working principle of a rolling bearing is closely related with its fatigue 

life. The rotational movement of the rolling elements generates pulsating loads 

over the raceways, so even a stationary load applied to a running bearing will 

generate a fatigue failure. In real operating conditions, a bearing has to 

withstand varying load magnitudes in different directions while rotating at 

fluctuating speeds. These changing conditions can result in a longer or shorter 

bearing life because of wear or fatigue. It is impossible to predict all the loads 

the bearing will be subject to during its life cycle; for that reason, simplified 

procedures are provided by manufacturers [33–36] and standard organizations 

[30,37–39] to estimate the bearing life. These procedures consider several 

bearing constructive parameters, such as the geometry or the surface finish, 

structural parameters, such as the static load capacity, and operational 

parameters, such as the loads, the lubrication and the environmental conditions. 

These procedures were developed for conventional bearings, at continuous 

running speeds and under hydrodynamic lubrication assumption. Therefore, 

they present limitations when it comes to its application to slewing bearings, 

where the rotation is oscillatory and not continuous, thus affecting not only the 
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way the stresses vary in loaded areas but also the lubrication regime. Needless 

to say, more limitations arise when applying these procedures to wire-race 

slewing bearings. Nevertheless, research is being carried out in this area to 

obtain new estimation procedures according to the slewing bearings 

characteristics, as explained in the following section. 

1.4 Slewing bearings literature review 

In this section, a brief literature review of the fundamentals and state of the 

art research in the scope of conventional slewing bearings is presented. As the 

research carried out for these kind of bearings is more extensive, it was 

considered appropriate to place this section prior to the wire race bearing 

literature review, which can be found afterwards. 

As it has been previously introduced, there are standard procedures for the 

calculation of bearings such as ISO-76 [24,25] and ISO-281[37–39], but they 

are only suitable for conventional bearings. Other well accepted and referenced 

work are the books published by Harris and Kotzalas [31,40], which are the 

most extensive guidelines in bearing design, taking into account many aspects 

that do not appear in the standards. Nevertheless, many of the contents are also 

only suitable for conventional bearings and not for slewing bearings. To try to 

solve these limitations, Harris et al. developed a guideline for the design of wind 

turbine jaw and pitch bearings for the National Renewable Energy Laboratory 

of the U.S. Department of Energy (NREL) [41]. Despite this work was 

specifically conceived for slewing bearings and deals with many of the 

limitations other works, it can only be applied for wind turbine bearings or other 

ones that operate under similar conditions. There are some other limitations, 

with the following being the most relevant: 

 Ring flexibility: the deformation of the rings is not taken into account or 

even mentioned in the document. 

 Tilting moment: the consideration of this load is a clear improvement with 

respect to the standards. Nevertheless, its representation in a simpler way 

leads to some limitations for the static load capacity and friction torque 

calculation. 

 Contact preload and clearance: rolling element preload or eventual contact 

clearances generated by manufacturing errors are not considered. These 

parameters have a significant effect on the structural behaviour of bearings 

and are commonly used in the design of slewing bearings. 
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Regarding manufacturers, they have their own guidelines and methodologies 

to design and calculate bearings. This knowledge is part of their own know-how 

and they are quite wary of sharing details of these procedures. They only 

provide some characteristics and properties of their own products in catalogues. 

Due to the limitations of the current standards, the confidentiality of the 

manufacturers and the lack of specialized literature, slewing bearings are a 

growing and interesting topic for the research community. Some of the most 

relevant and latest research works in this area related to the scope of this thesis 

are presented in this section. 

1.4.1 Normal contact problem 

The study of the tribology and contact mechanics is probably the most 

important area in the field of bearings. In this regard, the normal contact 

problem is usually the first issue to deal with. 

The most relevant contacts in the scope of bearings are the ball-raceway and 

the roller-raceway contacts. These contacts are represented in Figure 1.12 and 

because of the shape of the contact pressure distribution, they are commonly 

called point contact and line contact respectively. For the sake of clarity, this 

section is divided in two parts, one for the literature review of each contact type. 

 
 

Figure 1.12 Ball and cylindrical roller raceway contacts [42]. 

Point contact 

The most remarkable contribution regarding the point contact was 

developed by Heinrich Hertz in 1896 [43,44], where he proposed a contact 

theory for non-conformal elastic solids. For this theory, Hertz considered the 

following assumptions: 
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 The deformations are within the elastic limit and small in comparison with 

the curvature radii of contacting surfaces. 

 The dimensions of the contact area are very small in comparison with the 

dimensions of contacting bodies or the curvature radii of the surfaces. 

 Contacting surfaces are non-conformal and smooth (with no roughness). 

 There is no friction, so only normal forces are present in the contact. 

 The materials of both contacting bodies must be isotropic. 

In the case of ball bearings, the ball-raceway contact does not comply with all 

of the aforementioned assumptions. As it can be seen in Figure 1.12, the contact 

is conformal in the radial plane (the 𝑥𝑧 plane) but non-conformal in the 

circumferential direction (𝑦 axis). This leads to a small contact area in the 

circumferential direction but to a large one in the radial direction that can be 

the order of the curvature radii. Besides, friction exists on this contact. 

Nevertheless, Pandiyarajan demonstrated via FE simulations that Hertz’s 

theory can be applied to large ball bearings since it obtains good results [45]. 

Hertz contact theory is not simple and includes calculations that require solving 

elliptic integrals. In an attempt to provide an engineering approach, Brewe and 

Hamrock [46] applied a linear regression by the least squares method on the 

geometric variables of Hertz’s equation. They proposed simplified equations to 

calculate the major and minor contact ellipse semi-axes (𝑎, 𝑏) and the normal 

contact deformation (𝛿). Equations (1.3) to (1.5) are the proposed expressions 

for the calculation of these results assuming both steel contact bodies, where 𝑄 

is the normal contact force, 𝛴𝜌 is the sum of the curvatures and 𝑎∗, 𝑏∗and 𝛿∗ 

are dimensionless parameters that are tabulated. 

 𝑎 = 0.0236 · 𝑎∗ · (
𝑄

𝛴𝜌
)
1/3

 (1.3) 

 𝑏 = 0.0236 · 𝑏∗ · (
𝑄

𝛴𝜌
)
1/3

 (1.4) 

 𝛿 = 2.79 · 10−4 · 𝛿∗ · 𝑄2/3 · 𝛴𝜌1/3 (1.5) 

Houpert also developed an engineering approach avoiding the elliptical 

integrals for ball-raceway contacts [47]. In this work, it was stated that the ratios 

𝑎/𝑅𝑦, 𝑏/𝑅𝑦, 𝛿/𝑅𝑦 and 𝑃𝑚𝑎𝑥/𝐸 can be approached for the point contact case 

with the same functional form; with 𝑅𝑦 being the equivalent radius in the rolling 

direction, 𝑃𝑚𝑎𝑥 the maximum contact pressure and 𝐸´ the equivalent elastic 

modulus. This functional form is represented in Equation (1.6), where 𝑌 
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represents the aforementioned relationships, 𝐶𝑡𝑒1 and 𝐶𝑡𝑒2 are tabulated 

constants, 𝑘 is the ratio of equivalent radius and 𝑊𝑃𝐶  the dimensionless load. In 

this case, 𝐶𝑡𝑒1 and 𝐶𝑡𝑒2 values depend on the type of the bearing (ball, spherical 

roller or tapered roller) and on 𝑘 and 𝑌. In comparison with the work proposed 

by Brewe and Hamrock [46], this alternative is more efficient, since the 

tabulated constants are less and application is less tedious. In the case of the 

point contact, 𝐶𝑡𝑒1 and 𝐶𝑡𝑒2 can have two different values for each ratio 

depending on the value of the osculation ratio (low or high). 

  𝑌 ≈ 𝐶𝑡𝑒1 · 𝑘𝐶𝑡𝑒2 · 𝑊𝑃𝐶
2/3

 (1.6) 

 
1

𝐸′
=
1

2
· (
1 − 𝜈1

2

𝐸1
+
1 − 𝜈2

2

𝐸2
) (1.7) 

 𝑘 =
𝑅𝑦

𝑅𝑥
 (1.8) 

 𝑊𝑃𝐶 =
𝑄

𝐸′ · 𝑅𝑥
2

 (1.9) 

These formulations applied to the ball-raceway normal contact provide good 

results and its application is commonly accepted in literature. In another work, 

Houpert proposed a similar approach for non-hertzian contacts, although it has 

no application to slewing bearings [48]. 

Line contact 

The contact involving cylindrical bodies is a special case of hertzian contact 

called line contact. It is considered as a line contact, the contact between two 

parallel-axis cylinders of infinite length and the contact between a cylinder of 

infinite length and an elastic half-space. If the bodies of each case are 

compressed, each infinitesimal cross-section of the bodies behaves the same 

(plain strain assumption). Besides, the resulting contact patch is a rectangle with 

an infinite side. Because of the length difference between its dimensions, this 

kind of contact is commonly called line contact. The transformation from point 

contact to line contact can be made considering that one of the two curvature 

radii on each contacting body is infinite for two contacting parallel cylinders, 

and the two curvature radii of one body in the case of cylinder-elastic half-space 

contact. Doing so implies singularities according to Hertz’s formulation, so he 

did not derive the formulation to the cylinder-elastic half-space case. The 
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contact deformation (𝛿), relative to a point on the 𝑧-axis at a depth of 𝑑0, is 

given by Equation (1.10)[49]. Where 𝐿 is the length of the contact. 

 𝛿 =
𝑄

𝐿
· [
(1 − 𝜈2)

𝜋 · 𝐸
] · [2 · 𝑙𝑛 (

𝑑0
𝑏
) −

𝜈

(1 − 𝜈)
] (1.10) 

It can be noted that if 𝑑0 increases without a limit, so does 𝛿. This means that 

the line contact between a cylinder and an elastic half-space requires the 

definition of an appropriate depth of reference (𝑑0) at which the local 

deformation is assumed null, which varies depending on the author. Various 

approximations to these problem have been developed over the years, with the 

Prescott [50], Thomas and Hoersch [51] and Lundberg et al. [52] works being 

the early studies on the cylinder to cylinder contact. 

Some of the first strategies followed to represent the behaviour of the line 

contact consisted in obtaining empirical formulas based on experimental 

results. Good examples are those developed by Lundberg [53], Eschmann [54] 

and Palmgren [55] (Equations (1.11), (1.12) and (1.13) respectively, where 𝐿 is 

the length of the contact). The first two formulae are valid for the cylinder-

plane contact and the one proposed by Palmgren for crowned roller-raceway 

contact. These expressions are simple but not so versatile, since both contacting 

bodies were assumed to be made of steel. 

 𝛿 = 3.95 · 10−5 ·
𝑄0.9

𝐿0.8
 (1.11) 

 
𝛿 = 4.05 · 10−5 ·

𝑄0.925

𝐿0.85
 (1.12) 

 𝛿 = 3.84 · 10−5 ·
𝑄0.9

𝐿0.8
 (1.13) 

Years later, the formulae that can be found in the reports provided by Puttock 

[56] and Norden [57] are still widely used today. These formulae are based on 

the pressure distribution for elliptical contact, assuming that one axis of the 

ellipse is infinitely large (𝑅𝑥 = ∞) and the contact area is a rectangle whose 

length is much larger that its width. Puttock defined the line contact case 

between a cylinder and a plane of different materials represented in Figure 1.13 

with Equation (1.14). 
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Figure 1.13 Cylinder-plane contact defined by Puttock [56]. 

 𝛿 =
𝑄

𝐿
· (𝑉1 + 𝑉2) · [1 + 𝑙𝑛 (

𝐿3

(𝑉1 + 𝑉2) · 𝑄 · 𝑅𝑦
)] (1.14) 

 𝑉 =
(1 − 𝜈2)

𝜋 · 𝐸
 (1.15) 

Tripp [58] gathered the more frequent contact expressions based on Hertz 

theory, with Equations (1.16) and (1.17) being the deformations of the elastic 

half-space and the cylinder respectively. The reference depth 𝑑0 is assumed to 

be constant and fixed as 2 · 𝑅𝑥. 

 𝛿1 =
2 · (1 − 𝜈1

2) · 𝑄

𝜋 · 𝐸1 · 𝐿
· [𝑙𝑛 (

2 · 𝑑0
𝑏

) −
𝜈1

2 · (1 − 𝜈1
2)
] (1.16) 

 𝛿2 =
2 · (1 − 𝜈2

2) · 𝑄

𝜋 · 𝐸2 · 𝐿
· [𝑙𝑛 (

4 · 𝑅𝑥
𝑏

) −
1

2
] (1.17) 

 
𝑏 = 2 · (

𝑅𝑥 · 𝑄

𝜋 · 𝐸′ · 𝐿
)
1/2

 (1.18) 

Johnson [59] and Hamrock [60] provided another form of force-deformation 

relationship for the cylinder-plane contact, where there is a constant term that 

these authors determined to be equal to 1. The proposed relationship to obtain 

the contact deformation is defined in Equation (1.19), where 𝑊𝑃𝐶 is the 

“dimensionless load” of Equation (1.20) and 𝐸´ the equivalent elastic modulus 

of Equation (1.7). 
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 𝛿 =
2 · 𝑊𝑃𝐶 · 𝑅𝑥

𝜋
· [𝑙𝑛 (

2 · 𝜋

𝑊𝑃𝐶

) − 1] (1.19) 

 𝑊𝑃𝐶 =
𝑄

𝐿 · 𝐸´ · 𝑅𝑥
 (1.20) 

In the previously mentioned work [47], Houpert developed the formulation 

proposed by Tripp [58] to create specific force-deformation relationships for 

raceway-roller contact. Once again, the curve fitting strategy allowed for simpler 

formulae. These force-deformation relationships are represented in Equations 

(1.21) and (1.22) for the outer raceway-roller and inner raceway-roller contacts, 

respectively. Where 𝛽 and 𝛾0 are coefficients obtained with geometrical 

parameters and 𝑡 is the thickness of the outer race section. 

 𝑄 ≈ 0.2723 · 𝐸 · 𝐿 · (
𝑐𝑜𝑠 (𝛽)

𝐷𝑝𝑤
) · 𝛿1.074 (1.21) 

 𝑄 ≈ 0.27835 · 𝐸 · 𝐿 · (
1 + 𝛾0
𝑡

) · 𝛿1.078 (1.22) 

Harris and Kotzalas [31] suggested Equation (1.23) to obtain the steel-steel 

contact pressure (𝜎) at any point of the contact patch width (𝑦).  

 
𝜎 =

2 · 𝑄

𝜋 · 𝐿 · 𝑏
· [1 − (

𝑦

𝑏
)
2

]
1/2

 (1.23) 

 𝑏 = 3.35 · 10−3 (
𝑄

𝐿 · ∑ 𝜌
)
1/2

 (1.24) 

In all the works presented until this point, it was assumed that the line contact 

was infinite. Consequently, free edge effects were not considered. Because of 

the significant rise in the contact pressure that can lead to the static failure, 

Najjari and Guibault [61] proposed a semi-analytical method to estimate the 

stress distribution on the surface and subsurface. Qiang and Popov [62] also 

developed an analytical equation that solves the normal contact problem by 

approximating numerical results from Boundary Element Method (BEM) 

analyses. All these endeavours are valuable contributions to get to know this 

phenomenon; however, it has been proved that the best practice to avoid free 

edge effects consists in applying a geometry correction to the roller profile. 
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To this regard, the logarithmic roller profile proposed in the ISO/TS 16281: 

2008 standard [30] is quite similar to the expression developed by Lundberg in 

[63]. Some researchers such as Johns and Gohar[64] proposed improvements 

to Lundberg’s logarithmic profile. Based on that work, Fujiwara et al.[65] 

offered a new approach that prevents the eventual edge loading caused by 

misalignment. Recently, Tudose [66] presented a procedure to find the optimal 

roller profile. However, sometimes it is not feasible to apply the optimal 

solution, so a simpler partially crowned profile was also proposed. 

1.4.2 Load distribution 

When external loads are applied to one bearing ring, reaction forces appear 

in the other as a result of load transmission through the rolling elements.  The 

purpose of a load distribution model is to calculate how the external applied 

loads, as shown in Figure 1.14, are distributed among the rolling elements. The 

load distribution is the initial step for further calculations such as the static load 

capacity or the friction torque under a combined load case. Because of the 

amount of research works carried out regarding this topic, this section is divided 

into two parts. Literature review is firstly introduced for ball bearings and 

secondly for roller bearings. 

 

Figure 1.14 Combined external loads applied on a slewing bearing [18]. 
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Ball bearings 

An early approach to solve this problem for conventional ball bearings was 

provided by Stribeck in [67–69]. Later, Sjoväll [70] presented a group of load-

distribution integrals to obtain the load among the balls when a combination of 

axial and radial loads is applied to the bearing. Jones [71,72] proposed a model 

for radial bearings that considered any kind of external load, but consisted of a 

highly significantly non-linear equation system that required numerical methods 

to find a solution. Soon after, Rumbarger [73] introduced another method for 

thrust bearings that considered a combination of axial load and a tilting moment 

generated by an eccentric load. Many years later, Houpert [74] proposed a novel 

analytical approach to solve the load distribution problem considering 5 race 

relative displacements (3 translations and 2 tilting angles). Zupan and Prebil [75] 

applied the formulation proposed by Jones to four-point contact slewing 

bearings and studied the effect of some geometrical parameters and the stiffness 

of the surrounding structures in the static load capacity. To take into 

consideration ring deformations, an FE model was used to obtain the 

equivalent stiffness values in axial and radial directions, which were 

implemented in the analytical model. Later, Jones' approach was also adapted 

by Amasorrain et al. [76] for four-point contact bearings  and a procedure was 

proposed by Olave et al. [77] to implement ring deformations. It is worth 

mentioning that the cited models did not consider any initial preload or 

clearance. Aguirrebeitia et al. [8] proposed a procedure for four-point contact 

slewing bearings that calculates the load combinations that result in static 

failure. Later, some improvements such as the variation of the ball-raceway 

contact [11] and ball preload [13] were added to the four-point contact slewing 

bearing model. 

In recent years, the influence on the performance of manufacturing errors 

has been a subject of research. Starvin and Manisekar [78] and Aithal et al. [79] 

performed FE simulations of large diameter angular bearings with 

manufacturing errors. It was proven that manufacturing errors can significantly 

affect the load distribution among the rolling elements. In this sense, Potočnik 

et al. [80] presented a calculation approach to obtain the contact load 

distribution and static load capacity of ball bearings with irregular geometry, 

clearances or ring deformations. Heras et al. [16,18] also proposed a 

methodology for the calculation of the load distribution problem on four-point 

contact slewing bearings, where ball preload, manufacturing errors and ring 

flexibility can be considered for the calculations. 
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Roller bearings 

Regarding the load distribution problem in roller bearings, the previously 

mentioned methodology proposed by Sjoväll [70] was also valid for roller 

bearings. Later, Lundberg [81] used the integrals proposed by Sjoväll to evaluate 

the maximum rolling element load. Jones [72] and Houpert [74] also considered 

roller bearings in their analytical models. In a more recent study, Oswald et al. 

[82] evaluated the influence of negative and positive clearance on bearing life, 

developing a procedure for the calculation of the roller load distribution based 

on Sjoväll’s equations. Aguirrebeitia et al. [9] presented a unified approach to 

solve the load distribution problem for ball and crossed roller bearings. A 

similar approach was also proposed for three-row roller bearings [12]. 

All the aforementioned load distribution models for roller bearings did not 

consider the effect of manufacturing errors. Chen et al. [83] studied the 

influence on the load distribution of the difference in the roller diameters within 

the manufacturing tolerance. Yu et al. [84] presented an analytical method to 

solve the load distribution problem in radial roller bearings with uneven roller 

sizes due to manufacturing errors. Later, Xiaoli et al. [85] developed a 

mathematical model for the calculation of the load distribution on ball and 

roller bearings under radial load considering positive, negative and zero 

clearance. Recently, Aschenbrenner et al. [86] developed a method for single 

row cylindrical roller bearings to determine the load distribution for the radial 

case considering geometrical deviations. 

1.4.3 Stiffness 

As it has been stated in the previous section, stiffness is an important 

performance indicator for the selection of the adequate bearing for a particular 

application. However, no procedures or methodologies for its calculation can 

be found in the standards or in the NREL guidelines [41]. Manufacturers 

generally provide stiffness curves, which are usually not included in catalogues, 

but the problem is that they do not specify the calculation procedure. This 

secrecy from manufacturers and the lack of standardized procedures to obtain 

stiffness curves makes it unfeasible to make direct comparisons between data 

provided by different manufacturers. 

Early works were developed by Jones and Harris [87] and Harris and 

Broschard [88] for planetary gear-transmission bearings. Many years later, and 

based on the previous works, Mignot et al. [89] proposed a new approach. The 
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development of these approaches was possible because these bearings are 

always subjected to the same loads and boundary conditions. Besides this, the 

flexibility of the surrounding structures was also considered.  It is a fact that 

each slewing bearing application has its own loads and conditions; for this 

reason, it is not so straightforward to develop a robust analytical approach. 

Several works studied the matter of the stiffness for two-point angular 

contact bearings, but assuming rigid rings, that is to say, only considering ball-

raceway contact deformations. Lim and Singh [90], Houpert [74], Hernot et al. 

[91], Liew and Lim [92] and Noel [93] are good examples. Later, Guo and Parker 

[94] proposed a numerical method to compute the stiffness matrix of any rolling 

element bearing considering ring deformations through FE analysis. 

Some of the load distribution models presented in the previous section can 

be used to obtain the stiffness curves in four-point contact slewing bearings, 

such as the analytical model in [76] for rigid rings, or the semi-analytical 

methodology in [77] to consider global deformations. Another example can be 

found in the work presented by Aguirrebeitia et al. [13], where their analytical 

model was used to study the effect of the preload on the stiffness. The analytical 

tool proposed by Heras et al. [18] was also capable of performing the calculation 

of the structural stiffness of four-point contact slewing bearings considering 

not only ring flexibility but also manufacturing errors. The mentioned models 

are hard to implement and require numerical methods to calculate a solution. 

Besides, it is necessary to perform FE analyses to consider ring flexibility. 

Considering the difficulty of this task, a simple engineering formulation for the 

calculation of stiffness in four-point contact slewing bearings considering ring 

deformations was developed by Heras et al. [15]. 

The same happens for roller bearings, it is easy to adapt load distribution 

models to obtain stiffness curves. For example, the methodologies presented 

by Aguirrebeitia et al. in [9] and [12] retrieves the stiffness curves for crossed 

roller and three-row roller bearings respectively. The effect on the stiffness of 

uneven roller sizes or different clearances for a particular bearing design can be 

evaluated with the models proposed by Yu et al. [84] or Xiaoli et al. [85]. More 

recently, Heras et al. [95] proposed a straightforward methodology to calculate 

the stiffness in crossed roller slewing bearings, which was an adaptation of a 

previous work [15]. 
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1.4.4 Friction torque 

The study of the friction torque is one of the most prolific research fields in 

the scope of slewing bearings. Due to its relevancy, a formula for its calculation 

was proposed by the NREL [41]. This is a widely used calculation method, 

which can be found in many product catalogues because of its simplicity. The 

suggested formula is expressed below: 

 𝑀𝑓 = 𝜇 ·
𝐷𝑝𝑤

2
· (𝐴 ·

𝑀𝑡

𝐷𝑝𝑤
+ 𝐵 · 𝐹𝑎 + 𝐶 · 𝐹𝑟) +𝑀𝑓0 (1.25) 

Where 𝑀𝑡 is the tilting moment, 𝐹𝑎 is the axial load, 𝐹𝑟 is the radial load and 

𝑀𝑓0 is the idling friction torque. The apparent friction coefficient 𝜇 depends on 

the type of bearing, being 0.003 for ball bearings with cage and 0.004 for ball 

bearings with spacers and cylindrical crossed roller bearings. Proposed values 

for 𝐴, 𝐵 and 𝐶 are 4.4, 1 and 2.2 respectively. However, some manufacturers 

use different coefficient values and have adapted the coefficient of friction to 

their own product series [96,97]. Despite the accepted use of this formula, it 

also presents several drawbacks. For example, it does not account for the 

contact angle variation and the rolling element preload is considered in a 

simplified manner. Besides, the contact area evolution is non-linear and 

depends on the applied loads, which affect to the friction torque. 

Regarding research contributions for ball slewing bearings, Leblanc and 

Nélias [98,99] adapted, for four-point contact slewing bearings, the approach 

proposed by Jones [100] for angular contact ball bearings. In this works, a full 

sliding condition is assumed on the contacts and the imposed equilibrium of 

forces and moments allows solving the bearing kinematics. Once the load 

distribution problem is solved and knowing the kinematics, the friction torque 

can be directly computed. Later, Lacroix [101] proposed different methods to 

consider ring flexibility. All these works take into account inertial effects, which 

are negligible in slow turning velocities. For this reason, Joshi et al. [102] made 

a particularization for slow speed applications that simplified the calculation. 

Heras et al. [16] recently studied the effect of manufacturing errors on the 

friction torque via FE simulations. A formula for the friction torque estimation 

was also proposed as a function of contact deformations and the osculation 

ratio. The effect of ring flexibility, preload and number of balls was also studied. 

Later, the same authors studied the capabilities and limitations of the analytical 

model developed by Joshi et al. [102] via a comparison with FE results [17]. 
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Finally, a more efficient friction torque approach based on the previous 

contribution was presented [18], which involved the superelement technique. 

Some research has also been carried out for roller bearings, but mainly for 

tapered roller bearings. In an early work, Palmgrem [55] proposed a general 

friction torque model including external load and operating speed. However, 

Palmgren’s model results differed from experimental results. For that reason, 

Witte [103] developed a semi-empirical equation to estimate the friction torque 

in tapered roller bearings under axial and radial loads. Later, Aihara et al. [104] 

proposed an equation to obtain the running torque taking into consideration 

several lubrication phenomena. The efficiency of this model was improved by 

Zhou and Hoeprich [105] and Tong et al. [106], who combined this method 

with a static model that considered inner ring misalignment. Zhang et al. [107] 

also presented a model to calculate the friction torque in dry-lubricated tapered 

roller bearings considering roller skewing. Regarding manufacturing errors or 

contact geometry defects, Liu et al. [108] recently studied their effect on friction 

torque. There are also some publications regarding cylindrical roller bearings. 

Fernandes et al. [109] studied the effect of five similar lubricants on axially 

loaded cylindrical roller thrust bearings. Friction torque and operating 

temperatures were evaluated at different speeds. In another work, Fernandes et 

al. [110] performed a similar study but at a constant temperature. Results 

showed that the formulation of the lubricants has a significant influence on the 

friction torque. Gonçalves et al. [111] studied the influence of different greases 

on the friction torque in cylindrical thrust roller bearings. These tests were 

performed under constant load, varying rotational speed and different 

temperatures. 

1.4.5 Fatigue calculation 

The theory proposed by Lundberg and Palmgren [8,9] is generally accepted 

for the estimation of the bearing minimum life and it is also the basis of the 

ISO 281 standard [37] and ANSI/ABMA 9 and 11 standards [3, 4]. This theory 

was conceived to be applied to continuously rotating bearings and did not 

consider oscillating conditions. The NREL report [41] summarizes several life 

calculation methods and proposes a procedure for the fatigue life estimation in 

yaw and pitch wind turbine bearings. However, the limitations of this guideline 

promoted the development of specific research for slewing bearings. 

Sawicki et al. [112] presented an analytical and FE approach for four-point 

contact slewing bearings fatigue life prediction considering bearing 
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deformation. Regarding manufacturing errors, Potočnik et al. [113] also 

considered possible geometrical irregularities on a double row eight-point 

contact bearing. Generally, the external loads that a bearing supports during its 

life are unknown or uncertain. For this reason, Portugal et al. [114] developed 

a fatigue model for multiaxial randomly loaded cases. This methodology was 

developed for machine components with particular working conditions and no 

specific fatigue calculation procedures, like slewing bearings. Recently, Menck 

et al. compared three approaches for the calculation of the equivalent loads 

required for the current lifetime calculation methods. Two of these approaches 

were obtained from the NREL DG03 [41] and the other one from the ISO/TS 

16281:2008 [30]. It was proven that current calculation methods are 

conservative as they do not take account of the specific characteristics of 

slewing bearings. With all this, there is no accepted procedure for the slewing 

bearing fatigue life calculation yet. 

In terms of contact fatigue, Poplawski [115] compared the bearing life of 

several roller profiles loaded against a flat surface according to different models 

(Weibull, Lundberg and Palmgren, Ioannides and Harris, and Zaretsky), 

assessing the benefits of this practice. Londhe et al. [116] studied the 

implications of raceway induction hardening on the subsurface stress variation 

and discussed its potential implications on bearing fatigue life. To the same 

regard, He et al. [117] studied the effect of the raceway hardened layer depth on 

the fatigue life of a three-row roller bearing. Schwack et al. [118] performed FE 

simulations and experimental tests to predict wear and frictional work on ball 

contacts. There are numerous studies regarding the latter area [119–122] but 

there are still no reliable models to predict rolling contact fatigue failure.  

1.4.6 Finite element modelling 

Finite element modelling of slewing bearings is not simple and entails several 

difficulties. One of the main problems lies in the large number of Degrees of 

Freedom (DoF) of the model, which involves a high computational cost. This 

is mainly caused by two reasons: the slenderness of the component and the 

need for refining on the rolling element-raceway contacts. Bearing FE 

simulations are also highly non-linear, where the sources of non-linearities are 

the frictional contacts and the large displacements. Materials are generally 

assumed to be linear-elastic, so this is not a usual source of non-linearity. 

Frictional contacts are required on rolling element-raceway contacts to properly 

simulate the contact behaviour and large displacements must be considered in 
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order to correctly reproduce the evolution of the contact areas. Reaching the 

convergence in this kind of simulations is also challenging. There is a large 

number of rolling element-raceway contacts in small areas and which suffer 

changes during the simulation; for this reason, it is necessary to create a refined 

mesh in the contact zones. Rolling elements can also lose contact during the 

loading process, causing convergence problems due to insufficiently 

constrained bodies. 

All the aforementioned challenges that arise when modelling these 

components have promoted the development of efficient FE modelling 

strategies. These techniques are based on simplifications that reduce complexity 

with a minimum impact on accuracy. For the sake of clarity, strategies for ball 

bearings are introduced first, followed by strategies for roller bearings.   

Ball bearings 

The simplifications of the FE modelling were conceived in such a way that 

they not only simulate the elastic behaviour of the contact, but also the variation 

of the contact angle. Golbach proposed a method of this kind for angular 

contact ball bearings [123]. Figure 1.15a shows the proposed 4-node user-

defined element that replaces the ball, which was created by a subroutine in 

Abaqus®. This mechanism, or user-defined element, represents the structural 

behaviour of the ball-raceway contacts. In order to replicate the evolution of 

the contact angle, each raceway centre is connected with rigid elements to two 

nodes located on the raceway (but not properly specified). Then, both race 

centres are connected with a non-linear spring that represents the stiffness 

behaviour of the contacts. The formulation proposed by Brewe and Hamrock 

[46] (Equation (1.5)) was applied to the non-linear spring element to model the 

force-deformation behaviour of the two non-conforming elastic bodies. Finally, 

the accuracy of the simplification was assessed via a results comparison with a 

solid meshed model with contact mesh refinements. 

Years later, Smolnicki et al. also proposed another FE simplification for a 

double row two-point contact ball bearing [124,125]. In this case, the ball was 

also removed and replaced by a simplification, which consisted of two rigid 

beams and one non-linear elastic element that represent the structural 

behaviour of the contacts. As shown in Figure 1.15b, rigid beams link each 

raceway with its curvature centre, while the non-linear elastic element connects 

both curvature centres. However, the connection between the rigid beam and 

the raceway is not so clearly explained. The load-deformation 𝑄 − 𝛿 
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characteristic of the non-linear elastic element was defined in the form of 

Equation (1.26); where 𝐶 and 𝜂 are constants and which values are determined 

via FE analyses instead of using the formulation of the hertzian contact. It is 

worth mentioning that the non-linear elastic element has a traction only 

behaviour; this means that it represents the deformation of the contacts under 

load and no force is transmitted when there is no contact. 

 𝛿 = 𝐶 · 𝑄𝜂  (1.26) 

The previous FE simplifications were valuable contributions, but the one 

proposed by Daidié et al. [126] is by far the most popular. The proposed 

method is almost identical to the one proposed by Golbach [123], but was 

explained more in detail and adapted for application to four-point contact ball 

bearings. In this case, the proposed ball simplification consists of two identical 

mechanisms, one for each contact diagonal (𝐶1, 𝐶2 and 𝐶3, 𝐶4 in Figure 1.15c). 

The first step to build the mechanism consists of connecting the raceways 

centres with a traction-only spring element. The force-deformation behaviour 

of the spring element could be defined with Equation (1.5) or Equation (1.26), 

but authors considered it adequate to include the osculation ratio for this 

relationship. For that reason, an analytical formula was derived from the work 

proposed by Houpert [47]. 

Considering that the traction-only spring element represents the behaviour 

of the contacts on its diagonal, it seemed appropriated to stiffen the raceway in 

order to prevent redundant deformations. For this purpose, a rectangular rigid 

surface made of shell elements was placed on the contact zones, as shown in 

Figure 1.15c. The size of the rigid surface is calculated with the major and minor 

semi-axes of the contact ellipse (a, 𝑏), also calculated with the formulae 

proposed by Houpert [47]. 

Finally, each raceway centre is linked to its corresponding rigid shell by means 

of two rigid beam elements. This way, the deformation of the contacts is 

represented by the non-linear spring element and the force transmitted to the 

rings by the rigid beams and rigid shells, which prevent the raceway from 

suffering the deformations already taken into account by the spring element. 

Ball-slewing bearings are usually designed with a high osculation ratio, so 

Daidié et al. developed the formulae to define the behaviour of the traction 

only-spring and to calculate the contact ellipse semi-axes for high osculation 

ratio values. 
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(a) 

 

(b) 

 

(c) 

Figure 1.15 Golbach’s user defined element simplification [123]; (b) Smolnicki’s 
“superelement” [124,125]; (c) Daidié’s mechanism [126]. 

Although the aforementioned elements used in the FE simplifications are still 

non-linear, rigid body motion problems caused by the loss of contact are 

avoided. Besides this, these techniques avoid the need to model the balls, which 

reduce the size of the mesh, and also avoid the need for a ball-raceway contacts 

definition and raceway mesh refinements. These techniques are accepted by the 

research community and widely used in the industry. For instance, Aguirrebeitia 

et al. [21] implemented Daidié’s approach in a FE model to validate their 
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analytical model (Figure 1.16a), and proposed a method to consider ball preload 

by changing the length of the non-linear spring. Heras et al. [18] also 

implemented the mechanism in a calculation methodology involving the 

superelement technique for four-point contact slewing bearings. Śpiewak [127] 

implemented this mechanism in a two-row ball slewing bearing (Figure 1.16b) 

to develop a methodology to obtain the static carrying capacity. Recently, 

Menck et al. [128] also implemented Daidié’s mechanism on a two-row ball 

slewing bearing (Figure 1.16c) to calculate and compare the fatigue life with 

different methods. 

  

(a) (b) 

 

(c) 

Figure 1.16 Daidie’s mechanism: (a) Application on one row ball bearing [21]; (b) 
Application on two row ball bearing [127]; (c) Application on two row ball bearing [128]. 

Roller bearings 

Some efficient FE modelling strategies have also been developed for roller 

slewing bearings. In this case, the absence of contact angle variation makes the 

conception of simplified FE mechanisms easier. However, it is not so easy to 

represent the behaviour of the roller-race contact. In his previously mentioned 
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work [123], Golbach also proposed a method based on a slightly crowned roller 

discretized into a laminae formed by two rows of 𝑛 springs (Figure 1.17a). A 

line of rigid beam elements separates both spring rows, where each one 

represents the behaviour of each contact. In order to prevent possible 

unconstrained DoFs, the springs only transmit force in its axial direction (1 

DoF). The load-deflection relationship of Equation (1.11) proposed by 

Palmgren [55] and included in [129] was found to be the most suitable by the 

author to represent the stiffness of the contacts. As there are 𝑛 springs per 

contact, each one has 1/𝑛 of contact stiffness. However, if both inner and outer 

raceway contacts are equal, both spring rows can be combined on only one row 

with an equivalent stiffness. Finally, the connection between the springs and 

the raceway mesh is made by sharing one node on the raceway surface. 

As has been specified in previous sections, roller profile geometry can be 

diverse. This fact may cause difficulties when it comes to representing the 

contact behaviour with simplified FE elements, since each roller profile 

retrieves a characteristic contact stiffness. To deal with this problem, Kania 

[130] developed a methodology where each roller is replaced by one truss (link) 

element. This truss element is directly connected to the raceway nodes and its 

mechanical characteristics are a function of the roller geometry. The 

methodology is divided into three stages, each one having a different purpose. 

The first stage consists on the analysis of the contact zone of the roller with 

the raceway. The objective lies in obtaining the dependency of the approach of 

the bearing rings on the contact force. To this end, one FE model of the roller 

and raceway was performed for different roller profiles (straight, cylindrical 

crowned, tapered and logarithmic). The second stage is focused on determining 

the deformation of the raceway segment due to the placement of the truss 

element. To evaluate this phenomenon, a FE model of one sector of the ring 

raceway was built. In this model, a punctual force applied on the node where 

the truss element is connected to the raceway simulates its effect. Finally, the 

third stage calculates the equivalent deformation of the truss element as the 

difference between the results of stages one and two. The equivalent 

deformation is a key parameter for the calculation of the mechanical 

characteristics of the truss element depending on the roller geometry. 

The methodology proposed by Kania is interesting and was carefully 

developed and presented. However, its practical application was not compared 

with results from a detailed solid-meshed FE model or experimental test, so 

there is no information about the accuracy of the method. 
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Stammler et al. [131] also proposed a roller FE simplification for the 

calculation of the load distribution problem in a roller-type rotor blade bearing. 

In order to increase the computational efficiency of the FE model, solid rollers 

are replaced by the mechanism shown in Figure 1.17c. This mechanism is 

composed by a row of four traction-only non-linear springs connected by 

means of rigid beams to the raceways along the rectangular contact area. The 

spring-beam mechanism is quite similar to that proposed by Daidié [126], but 

in this case there is no geometrical reason for its definition; however, this 

alternative was considered instead of a simple row of compression-only springs 

(like Golbach’s simplification). According to the authors, one spring 

mechanism stiffens the contact but many springs result in an unstable system. 

Stiffness behaviour was modelled with the expressions proposed in [129] for 

line contacts, assessing that the comparison with contact simulations was 

satisfactory. 

It is worth mentioning some other studies in this scope, such as the FE 

simplifications carried out by Molnar [132] or Claesson [133]. However, these 

works are not as relevant as the ones presented in this section. 

  

(a) (b) 

 
(c) 

Figure 1.17 (a) Golbach’s roller discretization [123]; (b) Kania’s modelling [130]; (c) 
Mechanism proposed by Stammler et al. [131]. 
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Recently, He et al. [117] studied the effect of the raceway hardened layer 

depth in the fatigue life of a three-row roller bearing. For this purpose, they 

implemented the roller discretization proposed by Golbach [123] on a half 

bearing FE model and calculated the maximum contact load. Then this load 

was applied on a one roller reduced FE model to study the contact stresses. As 

well as this, they evaluated the effect of the number of springs per roller. Four 

different combinations with one, two, four and eight springs were analysed, 

where the larger amount of springs gave the best results. 

Other works  

Another point of view regarding efficient FE modelling was provided by 

Olave et al. [77], where the superelement technique was applied to obtain a 

more versatile and well-founded stiffness matrix of the rings and surrounding 

structures. Plaza et al. in [19] also applied this technique to the bearing rings 

and the surrounding structures of an specific wind turbine generator in order 

to solve the load distribution problem. This strategy was proved to be a cost 

effective tool that significantly reduces the computational cost with a negligible 

accuracy loss. A similar method was implemented by Heras et al. [18], where 

the superelement technique was used to obtain the stiffness matrix of the 

bearing rings with the aim of implementing ring flexibility in an analytical 

calculation methodology. 

Efficient FE models are commonly used to obtain the load distribution, 

stiffness, effects of the rolling element preload or bolt preload, inter alia. 

However, contacts are not defined in these models and some results like contact 

pressure distribution, truncation, friction forces, tangential or subsuperficial 

stresses among others cannot be evaluated. To study the behaviour of the 

contacts, they must be modelled using a detailed FE model. As has been 

mentioned, these models have more DoF and present convergence problems, 

such as the rolling element contact loss. This problem arises when the rings 

deform in such a way that the rolling elements lose contact and become 

unconstrained. To deal with this problem, Heras et al. [15] proposed a solution 

based on a very flexible cage that prevents the balls from undergoing rigid body 

motion. 

The works mentioned in this section so far were focused on improving the 

computational cost and analysis convergence, but the FEM is not only a 

powerful tool to make bearing simulations. It can be also used to feed analytical 

approaches dealing with tasks that are not possible or complex to be addressed 
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analytically. One of these tasks, as has been mentioned, is to consider ring 

deformations. Zupan and Prebil [75] used FE simulations to built stiffness 

matrices with the flexibility of the rings and surrounding structures to feed an 

analytical model. Guo and Parker [94] developed a numerical method to 

estimate the bearing stiffness of different bearing types based on FE 

calculations. In terms of friction torque, Aguirrebeitia et al. [134] developed a 

four-point contact bearing sector FE model to measure it. The objective 

consisted of performing a DoE FE analysis campaign to adjust a friction torque 

calculation formula. This model was also used and improved by Heras at al. 

[16–18]. 

1.4.7 Experimental tests 

There are numerous research works involving experimental tests with 

conventional bearings; however, it is more difficult to perform tests when it 

comes to slewing bearings. The large diameter of the majority of slewing 

bearings requires the use of specifically designed test rigs, which are extremely 

large, heavy and expensive. The most advanced ones can apply dynamic axial, 

radial and tilting loads while applying a rotating torque to the bearing. Besides 

this, surrounding structures are also, to a greater or lesser extent, represented. 

This allows for replicating real working conditions and performing tests 

introducing measured field loads. As a result, bearing deflections, wear damage 

and rolling contact fatigue can be accurately tested. These kinds of test rigs are 

located in research centres or in the facilities of the main manufacturers, mainly 

focussed on testing wind energy bearings. Wind power industry is currently the 

most powerful sector demanding this kind of component. 

Test rigs like the one shown in Figure 1.18a or Figure 1.18b are commonly 

used by the main slewing bearing manufacturers such as Schaeffler [135], 

Liebherr [136], Rothe Erde [137] or Rollix [138]. For example, the Astraios 

[135] test bench can reproduce operational axial and moment load conditions 

(static and dynamic) with four axial hydraulic cylinders and simulate the weight 

of a rotor hub with blades by means of another four radial hydraulic cylinders. 

Some test rig layouts integrate all the bearing interfaces (hub, blade, pitch 

drive) of the wind turbine. Figure 1.18c shows the Windbox test rig [139], which 

was designed to perform tests on pitch and main shaft bearings. The test rig of 

Figure 1.18d belongs to the Fraunhofer Institute for Wind Energy and Energy 

System Technology (IWES). This rig was conceived to test bearings of 3 [MW] 

class wind turbines. Its layout permits accurate reproduction of the operating 
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conditions of the pitch bearing. Stammler et al. [140] performed tests to 

measure the friction torque under load and compared the obtained results with 

different calculation models using this test bench. 

Another kind of large slewing bearing test rig arranges the bearings in pairs 

and in a horizontal position. This layout allows for the application of a 

rotational movement with an external or internal pitch drive. The lower bearing 

is bolted to a fixed support while the upper bearing is bolted to the moveable 

upper frame. A force transition element is placed between both bearings to 

connect them and transmit the force from the upper frame to the lower 

support. Several hydraulic actuators act on the upper frame in such a way that 

loads in 6 DoF can be applied to the bearings. One example of this kind of test 

rig can be found in the Korea Institute of Machinery & Materials (KIMM) 

[141,142]. In this case, the transition element was made of steel and loads were 

applied to the upper frame by means of several axial and radial hydraulic 

actuators, as can be seen in Figure 1.18e. The Fraunhofer IWES also has a test 

rig of this kind at their facilities (Figure 1.18d [143]). In this case, the transition 

element aims to reproduce the real supporting structures. To this end, it was 

made of a combination of GFRP rings and steel sections that reproduce the 

behaviour of spar caps and shear webs. Besides this, stiffener plates were 

attached to the bearings in order to counteract the ovalization of the rings. In 

terms of loading, any combination can be applied since the upper frame is 

basically a hexapod (Gough–Stewart platform) with 6 DoF. Finally, the test rig 

of the Nanjing TECH University in China (Figure 1.18e [141]) can drive 

accelerated life tests on slewing bearings. In this case, there is a main bearing 

under study bolted to an accompanying bearing, which serves to allow. The 

main bearing is bolted to the upper frame and the accompanying bearing to the 

fixed lower frame. Axial load and tilting moment are introduced to the upper 

frame by two vertical hydraulic cylinders, radial load by a horizontal hydraulic 

cylinder and a hydraulic motor also provides rotational movement. Loads can 

be introduced in only 3 DoF, so this is not such a versatile test rig compared 

with the others. However, several research studies were conducted using this 

test rig [119,144,145]. 
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(a)  (b) 

  

(c) (d) 

  

(e) (f) 

 

(g) 

Figure 1.18 Large bearing test rigs: (a) Schaeffler Astraios test rig [135]; (b) Liebherr large 
bearings test rig [136]; (c) Windbox test rig [139]; (d) Pitch bearing test rig at Fraunhofer 
IWES [140]; (e) KIMM test rig [141]; (f) BEAT 6.1 hexapod test rig [143]; (g) Nanjing 

TECH University [119]. 
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There are also modest test rigs for smaller slewing bearings, but there are not 

as many and they are not as sophisticated as the ones used for the wind energy 

industry. The test rigs of the Laboratoire de Genie Mecanique of Toulouse [146] 

and the Kunming University of Science and Technology in China [147] are 

some examples. The components of these kind of test rigs are indicated in 

Figure 1.19a, where the loading cylinder can be placed along the loading beam 

to adjust the overturning moment. Only static tests of a combination of axial 

and tilting moment loads can be performed; however, this load combination is 

commonly found in slewing bearings applications. 

Joshi et al. [102] used a test rig to validate a friction torque model for slow 

speeds. The test rig was driven by a servomotor, with two bearings connected 

to the shaft. The outer rings of the bearings were attached to a housing where 

the axial load was applied by tightening six screws. Both the axial load and 

torque were measured with load cells. Another test rig to measure the friction 

torque is shown in Figure 1.19b. This test rig is located at the Aachen University 

(RWTH) and can perform friction torque and fatigue tests on large slewing 

bearings [148]. To allow for the rotational movement, two bearings are arranged 

in each test. Both bearing inner rings are connected by a bolted joint and a 

spacer and a stiffener plate are also placed in between to represent the stiffness 

of the surrounding structures. On the other side, four stiffening plates are 

attached to each outer ring in such a way that 56 hydraulic cylinders placed 

between them apply the axial load. Finally, a pitch drive generates the oscillation 

or continuous rotational movement to perform the tests. Finally, Hou and 

Wang [149] proposed an experimental methodology to measure the radial load 

distribution on a cylindrical roller bearing. For that purpose, they built a 

notched bearing housing in such a way that there were one strain gauge per 

roller. The complete test rig schema is represented in Figure 1.19c. 
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(b) 

 

(c) 

Figure 1.19 Test rigs: (a) Kunming University of Science and Technology test rig [147]; (b) 
RWTH test rig [148]; (c) Test rig developed by Hou and Wang [149]. 

1.5 Wire-race bearings literature review 

As it has been mentioned, wire race bearings markets and manufacturers are 

increasing [4]. Nevertheless, they are far from being as popular as conventional 

bearings and can be considered a niche product. This results in limitations in 

terms of available literature, since manufacturers are obviously not interested in 

revealing their know-how. Besides this, no standards have yet been developed 

for these kind of bearings and the current ones for conventional bearings are 
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not directly applicable. In terms of research publications, this is not so different, 

although some studies can be found. 

The first publication regarding wire-race bearings was provided by Shan et al. 

[150], where an analytical methodology to obtain the optimal preload on a non-

conformal wire-race ball bearing was proposed. Figure 1.20 shows the cross-

section of the bearing under study; as it can be can be seen, ball preload is 

determined by the thickness of the shim. Moreover, the figure shows that the 

cross section of the wire is circular, i.e. it has no race machined, and thus the 

ball-wire contact is non-conformal. The contact formulae proposed by Johnson 

[59] was applied to obtain the minimum and maximum preload values. The own 

mass of the structure can lead to a two-point contact situation, so the minimum 

preload should preserve the four-point contact status. On the other hand, 

maximum preload causes contact failure. 

 

Figure 1.20 Ball wire-race bearing cross-section [150]. 

Some other works were published by the same authors [151–153] and others 

[154–156] in non-indexed journals or congress proceedings with little research 

interest. Besides this, these publications are not well structured, there is a lack 

of explanation and they fall short of scientific rigour. Nevertheless, a brief 

summary of their content is included in following paragraphs. 

The contribution in [151] consists of applying the contact formulations 

developed by Johnson [59] to a ball wire contact and comparing the results with 

a FE simulation. As expected, good agreement was obtained and no novel 

conclusions were provided in this work. 
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An analytical model for the resolution of the radial load distribution problem 

was proposed in [152]. Firstly, they applied the methodology developed by 

Stribeck [67–69] to obtain the contact force on each ball. Then, each ball-wire 

contact was modelled with a spring with an equivalent contact stiffness 

(𝐾1, 𝐾2, 𝐾3, 𝐾4 in Figure 1.21). Two major problems arose at this point; wire-

ring contact stiffness was not being considered, and the spring mechanism was 

not designed to account for contact angle variations (an assumption that was 

not specified in the article). Finally, experimental validation showed that radial 

stiffness is highly dependent on the shim thickness, which was not considered 

in the analytical model. 

 

Figure 1.21  Equivalent spring model [152]. 

A mathematical model to obtain the stiffness matrix of a four-point contact 

wire-race bearing was described in [153]. To this end, a load distribution model 

based on Hertz contact theory is explained. Equations of the load distribution 

problem arranged in a matrix form retrieve the stiffness matrix of the bearing. 

Finally, analytical results were compared with experimental measurements. 

Again, experimental results show that shim thickness has a great effect on 

stiffness, which was not taken into account in the analytical model. Besides this, 

it was assumed that the wire-ring contact stiffness does not affect the bearing 

structural behaviour. Finally, it is stated that the model is valid, but the 

experimental results do not tally with the theoretical ones. In fact, they are very 

different. 

Xiangyang et al. [154] carried out a study to evaluate whether Hertz’s contact 

theory could be applied to the contact between a ball and a wire with no 

machined race, like the one in [150]. To do this, they built a FE model of the 

ball-wire contact and performed an analysis. The content in this publication is 

diffuse, the results comparison of the analytical and numerical models is not 
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clear, and they adduce that the deviations in the comparison are caused by the 

plastic deformation that Hertz did not considered in his formulae. This is an 

erroneous justification, since they assumed linear elastic behaviour for the 

material in the FE model.  Ruixia and Xiangyang [155] also proposed an 

optimization methodology to obtain a better wire bearing design in terms of 

dynamic load rating. The poor explanations and the general lack of quality 

indicated that the contribution was far from good. Besides this, results obtained 

from the optimization process could have been anticipated at first glance (a rise 

in the ball diameter and number of balls increase the dynamic load rating). 

Zhao et al. [156] carried out another optimization process to obtain the 

bearing geometrical parameters within limits that retrieved the minimum 

friction torque under certain axial and radial load values. Of course, the target 

function is the friction torque, which is calculated by means of a given formula; 

and the ball diameter, pitch diameter, contact angle and ball number are the 

design parameters. There are also some constraints regarding the maximum 

allowable contact pressure and a safety factor, amongst others. This kind of 

optimization method could be useful with a complete set of constraints. 

Usually, a designer does not have so much freedom to vary the design 

parameters, since the bearing has to comply with other requirements in terms 

of available mounting space and mechanical capabilities. Nonetheless, the main 

problem in this work lies with the friction torque calculation formula, since it is 

not contrasted or validated. 

More recently, Gunia and Smolnicki carried out a couple of studies regarding 

stress distribution in wire-race ball bearings. Two FE models were developed 

in [157] to evaluate the status of the ball-wire and wire-ring contact. Due to the 

symmetry planes present on the geometry, only a quarter of the ball with its 

corresponding wire and ring sections were modelled. Figure 1.22a shows the 

boundary conditions, which consists of symmetry constraints and an imposed 

displacement in the direction of the contact angle. Various results were 

evaluated, such as pressure patches, contact deformations and Von Mises stress 

(Figure 1.22b). The main conclusion of this study was related to the truncation 

of the contact ellipse caused by a combination of high loads with high 

osculation ratios; under this situation, the ball reaches the wire edge causing a 

stress concentration in that area. Geometrical correction of the wire edge, such 

as a fillet or a logarithmical profile, was suggested to prevent this behaviour. A 

non-specific geometrical correction was also suggested; this statement is 
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questionable, since the wire-ring contact geometry was not properly defined in 

the article. 

Another study was performed in [158], but in this case, new design 

parameters were evaluated. A similar FE model to the one in Figure 1.22a was 

used, considering different values of ball diameter, osculation ratio and a new 

parameter called “fill factor of the raceway (𝑘)”. This parameter measures the 

size of the raceway and is defined by the relation between the raceway chord 

and the wire diameter. In this work, ball-wire contact FE maximum pressure 

and Von Mises stress were compared with calculations performed with Hertz’s 

contact formulation. The descriptions of the study cases were not clear (raceway 

fill factors were not specified), their selection was not the most suitable to study 

the parameter’s main effects and to discriminate the crossed effects. Besides 

this, the results comparison was not the most adequate and apparent 

incoherencies were not successfully justified. However, the introduction of the 

raceway fill factor and the implications that it has in terms of contact pressure 

and stress distribution was a valuable contribution. 

 

 

(a) (b) 

 

(c) 

Figure 1.22 FE model geometry and boundary conditions [157]; (b) Von Mises stress 
results [157]; (c) Stress distribution for different values of raceway fill factor [158]. 
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Finally, the last work presented by Gunia and Smolnicki regarding wire-race 

ball bearings is related to the mentioned wire edge geometry correction [159]. 

Figure 1.23 shows a geometrically non-corrected and corrected wire cross-

section. There are many options by which to perform the edge filleting, in fact, 

the same corrections used for the roller profile (Figure 1.10) could be applied 

to the wire edges. To study the implications of this correction, three FE analyses 

were performed. The first FE model consisted of a regular wire-race ball 

bearing with an 8 [mm] diameter ball, a 2.5 [mm] diameter wire and an 

osculation ratio of 0.96. The other two FE models received the wire edge 

geometry correction in terms of a simple rounded edge fillet with a radius of 

0.2 and 0.4 [mm]. Regarding the results, significant differences were found in 

the maximum contact pressure and Von Mises stress comparison between the 

FE analyses and the analytical Hertz’s calculations. These deviations were 

related to the limitations of the analytical method. In terms of stress 

distribution, wire edge correction retrieved a stress reduction in the edge stress 

concentration, which can lead to fatigue life improvement. However, a higher 

fillet radius reduces the size of the effective raceway, which should lead to 

higher pressuresat the centre of the contact for the same applied load. 

Nonetheless, and according to the stress plots included in the article, the 

observed effect goes in the opposite direction. The concept presented in this 

work is quite relevant, but its materialization in this study could have been more 

rigorous. This is still an interesting research topic to conduct investigations for 

ball and roller wire race bearings. 

 

Figure 1.23 Geometrically non-corrected and corrected wire [159]. 
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The contribution with more scientific rigour in the scope of wire-race 

bearings was presented by Dindar et al. [160]. The objectives of this work 

consisted of studying the friction sources on a double row roller wire race 

bearing and developing a method to estimate the friction torque under different 

load conditions. To fulfil the first objective, several tests with different layouts 

were performed with the test bench of Figure 1.24a. The test campaign 

consisted of combinations of axial and tilting moment load levels at different 

rotational speeds. The results concluded that the contribution of each friction 

source to the friction torque was distributed as: 10.8% upper seal (normal lip 

seal), 54.8% lower seal (lip seal with garter spring) and 34.5% bearing inner 

mechanism. According to this, proper sealing selection is one of the most 

important steps by which to reduce the friction torque. Friction torque also 

increases with growing axial load, tilting moment or rotational speed. 

Regarding the second objective, the calculation procedure to estimate the 

friction torque is described in Figure 1.24c. First, a FE analysis (in Ansys®) must 

be performed to solve the load distribution problem and obtain the roller 

contact forces. The FE model used to this end is shown in Figure 1.24c, where 

it can be seen that the rollers were replaced by compression-only springs and 

the wires were integrated into the rings (i.e. no relative movement is allowed 

between the wires and the rings). Spring stiffness was calculated according to 

[60] and the half width of the contact area was obtained applying Hertz’s 

contact theory [43,44]. This may seem like a good strategy, but its validity was 

not properly assessed. To this regard, the simplification of the wires implies the 

suppression of the wire-ring contacts. This way, the flexibility that the wire-ring 

contacts provide is ignored. Besides this, steel was defined as the material for 

rollers and wires, but the ring material was not specified. After the FE analysis, 

results were imported in a multibody model (in ADAMS®) to simulate the 

rolling friction and the contribution of the seals was estimated with a model 

generated with the results of the experimental tests. Good agreement was 

obtained between experimental tests and the calculation methodology. 
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(b) (c) 

 

(d) 

Figure 1.24 (a) Three wire-race double row roller slewing bearing [160]; (b) Friction torque 
test bench [160]; (c) FE roller simplification [160]; (d) Friction torque calculation procedure 

[160]. 

To bring this section to a satisfactory end, it is worth mentioning that the 

path is open to new scientific work and the numerous research lines available. 

For this reason, this thesis intends to lay the foundations regarding this matter 

and serve as reference for future research work. 
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1.6 Objectives 

Considering the lack of information or scientific publications available for 

wire-race bearings, it was considered appropriate to carry out fundamental 

research about the behaviour of these kind of bearings. This will open the way 

to further research lines and will retrieve a better understanding of the 

components. Besides this, the inapplicability of the current calculation 

methodologies or standards generates a knowledge gap for the industry itself. 

To contribute towards filling that gap, the development of analytical calculation 

methods for the simulation of their structural behaviour and the specification 

of design guidelines are the main purposes of this Doctoral Thesis. As it has 

been presented in this chapter, there are many wire race bearing layouts. For 

this reason, this work is focussed on the two most popular ones: four-point 

contact and crossed roller wire race bearings. Based on this, the following bullet 

points define the specific objectives of the research work presented in this 

Doctoral Thesis: 

The objectives are focused both on four-point contact and crossed roller 

wire-race slewing bearings: 

 Study the structural behaviour by means of FE simulations: 

- Identify the physical phenomena that results in the structural response. 

- Compare the performance with conventional slewing bearings. 

 Develop analytical models for the calculation of the load distribution 

problem, the static load capacity and the stiffness curves. 

 Create efficient FE modelling strategies. 

 Validate the analytical and FE models through experimental testing. 

 Study and quantify the effect of the main design parameters in the 

performance. 

1.7 General overview of the proposed methodology 

In this Doctoral Thesis, various studies were carried out and novel 

approaches developed and validated to meet the proposed objectives. In order 

to structure the document in a simple to follow and clear manner, each study 

or approach is explained in a separate chapter. This section provides a general 

overview of the research work presented in the following chapters. The reader 

may find it convenient to come back to this point whilst reading the document 

as a reminder of which problem is being addressed in each chapter. 



Chapter 1: Introduction  51 

 

In Chapter 2, a study of the structural behaviour of four-point contact wire-

race bearings under axial load is presented. To this end, several FE analyses 

were carried out to evaluate the influence on the performance of the osculation 

ratio, the adequate wire-ring contact lubrication and the boundary conditions. 

Besides this, results were compared with the equivalent conventional slewing 

bearings. This is a proper introductory study, since the structural behaviour is 

evaluated and its performance compared with the equivalent conventional 

slewing bearing. 

Because of the effect the wire has on the wire-race slewing bearings 

performance, an analytical formula to obtain the wire twisting stiffness is 

presented in Chapter 3. This formula could prove useful in some other 

applications, but it was developed with the aim of implementing the wire 

twisting stiffness in wire-race slewing bearings analytical approaches. 

Also related with four-point contact wire-race slewing bearings, Chapter 4 

includes explanations about the analytical approach developed for the 

calculation of the stiffness, static load capacity and contact results. For this first 

approach, only the axial or tilting moment load cases can be considered. Besides 

this, rigid rings boundary conditions were assumed. This approach was 

developed considering the conclusions obtained in the previous chapters and 

consists of equations based on the stiffness of the contacts and compatibility 

of deformations. 

Chapter 5 introduces another analytical approach, in this case for crossed 

roller wire-race slewing bearings. The procedure is similar to the one followed 

in Chapter 4, but more complex. The proposed analytical formulation is 

embedded into a simulation algorithm to calculate stiffness curves in the axial, 

radial and tilting directions together with its related static load capacities. 

Besides this, the load distribution problem can also be solved with any acting 

external load combination, retrieving the contact forces and angles on all the 

rollers and the maximum contact pressure. As it aims to be a complete 

calculation tool, both rigid and flexible rings boundary conditions can be 

considered. 

In order to obtain a functional analytical simulation tool, the analytical 

approach for crossed roller wire-race slewing bearings must be validated 

experimentally. The experimental test campaign was carried out on a tension-

compression test bench located in the Faculty of Engineering of Bilbao. To this 

end, two bearing designs were defined and two specimens of each one 
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manufactured by IRAUNDI S.A. The validation process and the obtained 

results are explained and discussed in Chapter 6. 

As has been explained above, slewing bearing FE models are complex and 

computationally heavy. Needless to say that these problems are more acute 

when it comes to wire-race slewing bearings. For this reason, some efficient FE 

modelling strategies that reduce the complexity and improve the efficiency of 

the FE models are presented in Chapter 7. On the one hand, the simplification 

proposed by Daidié is implemented on a four-point contact wire-race slewing 

bearing. On the other hand, two alternatives are proposed for crossed roller 

wire-race slewing bearings. The first one consists of the implementation of the 

analytical approach proposed in Chapter 5 in a FE model, and the second one 

consists of representing the behaviour of all the contacts with a non-linear 

equivalent spring. 

Since no design criteria is available in the literature for wire-race slewing 

bearings, Chapter 8 is focused on this matter. First, the main geometrical design 

parameters were defined for four-point contact and crossed roller wire-race 

slewing bearings. Then, a FE simulation campaign was carried out based on a 

full factorial DoE (Design of Experiments). Because of the large number of 

analyses and the computational cost related to each one, only the axial load case 

was considered. Finally, to evaluate the effect of each design parameter on the 

bearing structural response, main and crossed effects were evaluated on several 

performance indicators. As a result, some design guidelines were proposed. 

Finally, Chapter 9 summarizes the main conclusions that arise from the work 

carried out in this Doctoral Thesis and suggests the future work to be done to 

this regard.
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2 Structural behaviour of four-

point contact wire-race 

bearings 

2.1 Introduction 

As has been mentioned, there is almost no literature regarding wire race 

bearings and no standards regulating the design or calculation methods. Besides 

this, manufacturers possess all the know-how and are wary about sharing it, 

which is logical from a business standpoint. However, this situation does not 

help promote the application of these bearings. The lack of technical 

information can lead to mistrust from potential customers, since they can 

interpret that wire race bearings are not a mature product. For this reason, it is 

appropriate to start with the foundations and begin the contents of this 

Doctoral Thesis with a study that sheds light about the performance of this 

kind of bearings. 

In this chapter, the subject of the study is the four-point contact wire race 

slewing bearing, since it is one of the most popular layouts. Despite this fact, 

the effect of such an important design parameter as the osculation ratio has not 

yet been evaluated. The effect of this parameter on performance is well known 

for conventional slewing bearings, where a high osculation ratio makes the 

contact more conformal, which leads to a bigger contact ellipse. This effect is 

usually desirable since it increases the contact stiffness and the static load 

capacity. Nevertheless, an increase in the size of the contact ellipse also 

compromises the risk of suffering truncation. This can pose a risk for 

conventional bearings and an even greater risk for wire race bearings because 

of its limited raceway size. Another key aspect that deserves attention is the 

lubrication of the wire-ring contact. Manufacturers recommend lubricating this 

contact with grease [161], but the effects of incorrect lubrication are still 

unknown or not reported. 
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When it comes to perform a study of the structural behaviour of a 

component, boundary conditions play a significant role. Usually, it is desirable 

to represent the most realistic boundary conditions in order to obtain accurate 

results. This involves modelling the surrounding structures and fixing methods. 

However, this cannot be done in a generalist study. For this reason, it makes 

more sense to define different simplified boundary conditions. This way, the 

scope is wider and the conclusions more general. 

Valuable conclusions for the comprehension of the behaviour of wire race 

bearings can be obtained from the study of the aforementioned parameters. 

However, the most interesting question is left unanswered, which is related to 

the performance of the bearing in comparison with conventional slewing 

bearings. For this reason, the results are compared with the results obtained 

from the equivalent conventional slewing bearing for each studied design case. 

Summing up, there are 3 main objectives in this chapter. Firstly, shedding 

light over the working mechanisms involved in four-point contact wire race 

slewing bearings to understand their structural response. Secondly, evaluating 

the effect of the osculation ratio and wire-ring contact friction coefficient on 

the structural behaviour under different boundary conditions. And finally, 

comparing the structural performance of wire race slewing bearings with 

conventional slewing bearings. 

To achieve these goals, several FE simulations were performed considering 

the sector corresponding to one ball. By applying an external axial load to the 

sector FE model, the working conditions of the most loaded ball under an 

applied axial force or a bending moment are simulated. 

2.2 Case studies 

Since the aim of the work was to study and compare the performance of wire 

bearings with conventional bearings, different analyses were carried out varying 

two characteristic parameters: the osculation ratio (𝑠) and the friction 

coefficient (𝜇). In the industry, typical osculation ratio values are close to 0.943 

[162] for conventional bearings and between 0.87 and 0.96 for wire bearings. 

In order to cover a wide spectrum, osculation ratios of 0.87 and 0.943 were 

chosen for this study. Regarding the friction coefficient, 0.1 is a typical value 

for the ball-raceway lubricated steel-steel contact pair [102,163,164]; for wire 

bearings, 0.1 was also used for ball-wire contact, and for wire-ring aluminium-

steel contact two values were studied, 0.1 and 0.3, to evaluate the effect of the 
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presence or absence of lubrication on the performance of the wire bearing. The 

first columns of Table 2.1 summarize the five cases analysed in this work, with 

their corresponding parameter values. 

Even for the same type of slewing bearing (conventional or wire), the axial 

stiffness is not the same for different values of 𝑠 and 𝜇. For this reason, to make 

the comparison feasible, a different axial load had to be applied to each model. 

This axial force was chosen to be the axial static load capacity as calculated by 

the analytical model proposed by Aguirrebeitia et al. [13], summarized in the 

last column of Table 2.1 (according to Table 2.2 geometrical data). The 

analytical model, thoroughly explained and validated in [13], is based on the 

calculation of the ball–raceway interference field caused by axial, radial and 

tilting displacements of the rings due to external loads (in addition to ball 

preload), assuming rigid rings. As the stiffness of the adjacent structures has a 

relevant effect on the behaviour of the bearings, two extreme situations were 

taken into account for each case study in Table 2.1. On the one hand, clamped 

rings, assuming that the rings are fixed to rigid supporting structures; on the 

other hand, unclamped rings, assuming that the supporting structures are rigid 

but the bearing rings can freely slide on them. Of course, real systems behaviour 

falls between these two extreme conditions. In summary, there are five case 

studies with two boundary conditions, which means that ten FE analyses had 

to be carried out. 

Table 2.1 Case studies. 

Case 
Bearing 

type 
𝒔 

𝝁 (ball-

wire) 

𝝁 (wire-

ring) 
𝑪𝟎𝒂 [kN] [13] 

1 Conventional 0.943 0.1 - 1213.1 

2 Conventional 0.870 0.1 - 674.24 

3 Wire 0.943 0.1 0.1 1213.1 

4 Wire 0.870 0.1 0.1 674.24 

5 Wire 0.870 0.1 0.3 674.24 
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Regarding the geometry of the bearings, the two main geometrical parameters 

are the ball diameter (𝐷𝑤) and the bearing mean diameter (𝐷𝑝𝑤), which were 

chosen in such a way that the resulting bearing could be found in both 

conventional and wire bearing commercial catalogues. With regards to the 

geometry of the rings, each manufacturer has its own designs or can custom-

build them depending on the application. In order to create a design criterion, 

Heras et al. performed a DoE based on the ring geometries that appear in the 

most relevant manufacturers’ catalogues and proposed a standard parametric 

geometry for conventional four-point contact slewing bearings in terms of 𝐷𝑤 

and 𝐷𝑝𝑤 [15]. That methodology was applied in this study, even though wire-

race bearing cross-sections are usually larger than conventional bearing 

sections. However, same ring geometry permits making the comparison in 

strictly the same conditions. It is worth pointing out that the wire housing radius 

(𝑅𝑤ℎ) is usually 100 [µm] smaller than the wire radius (𝜆/2). 

Bolts and bolt holes were not considered because the objective of this study 

is to understand the structural behaviour of the component. Bolts are usually 

highly preloaded and this can affect the response of the bearing. For this reason, 

the effect of the number of bolts and the bolt preload can be the subject of 

another study. 

Figure 2.1 shows the cross-section of both bearing types with their 

geometrical parameters, which values are collected in Table 2.2. It is worth 

mentioning that no spacers or cage were considered and the number of rolling 

elements (𝑁𝐵) was the highest possible. 

Table 2.2 Geometrical values. 

𝑫𝒘 𝑫𝒑𝒘 𝑫𝒄𝒘 𝜶𝟎 𝝀 𝑵𝑩 𝑹𝒘𝒉 𝑹𝑳 𝑹𝑯 𝑹𝑳𝒈 𝑯𝒈 

[mm] [mm] [mm] [º] [mm]  [mm]    [mm] 

16 420 - 45 - 82 - 1.9 2.15 0.1 5 

16 420 20 45 6.66 82 3.23 1.9 2.15 0.1 3 
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(a) 

 

(b) 

Figure 2.1 Geometry of the slewing bearings: (a) Conventional; (b) Wire-race. 

2.3 FE models 

As it was stated in the introduction, the basis of this study lies on FE 

simulations. In this section, the multiparametric FE models developed for the 

simulations are introduced together with the submodelling technique, which 

was applied to obtain more accurate results. Everything related with FE was 

performed with the commercial software Ansys®. 

2.3.1 Half sector FE models 

Selecting the axial load case for this study was not random. The axial load 

situation provides a cyclic symmetry load distribution, which, together with a 
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cyclic symmetry geometry, allows for the simplification of the whole bearing 

model into a one sector model. Furthermore, the one sector model has a 

symmetry plane that allows for the analysis of only one half sector model, 

significantly decreasing the number of Degrees of Freedom (DoF) and 

computational cost. It must be also noted that an axially loaded sector model 

also reproduces the load conditions of a ball in a bearing under an applied 

bending moment. 

Regarding the materials of the models, linear elastic steel with an elastic 

modulus of 200 [GPa] was used for the conventional slewing bearing model. In 

the case of wire-race bearings, the most common layout according to 

commercial catalogues consists of constructing the rolling elements and the 

wires in steel and the rings in aluminium. For this reason, the same linear elastic 

steel is used for balls and wires, and linear elastic aluminium with an elastic 

modulus of 71 [GPa] for the rings. 

Figure 2.2 shows the mesh of both bearing models. Models were meshed with 

the same element size in order to make a more accurate comparison between 

results. To this end, several partitions were performed on the geometry. The 

partitions with a contacting surface were meshed with second-order 

hexahedrons; the other partitions were meshed with second-order tetrahedrons 

to enable quick size transitions with high aspect ratio elements. The 

conventional bearing model has 321,813 DoF, whereas the wire bearing model 

has 614,529 DoF. 

All the contacts on both models were defined as frictional with augmented 

Lagrange formulation, allowing for contact stiffness updating for each iteration 

so a maximum penetration tolerance of 1 [μm] is allowed. With regard to the 

friction coefficients, the data of Table 2.1 is considered. 

With regards to boundary conditions, the surfaces which are intended to be 

in contact with the supporting structures are assumed to be rigid. The axial load 

is applied by means of an axial displacement normal to the surface, and, 

depending on the case, clamped or unclamped, on-plane displacements are 

allowed or not, to the rigid faces. Of course, symmetry boundary conditions 

were applied to the symmetry surfaces. 
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Figure 2.2 Half sector FE models 

2.3.2 Submodelling technique 

When accurate stress results are required in a local zone of a large FE model 

or assembly, an option could consist of performing a refined mesh throughout 

the whole model. This strategy is effective but not so efficient. In these cases, 

submodelling technique is proven to be a highly efficient strategy. This 

technique consists of creating a partition of the local zone in the complete FE 

model and performing the analysis with a relatively coarse mesh. This way, force 

and deformation results will be accurate, since the global behaviour is well 

represented. Nevertheless, stress results are not so reliable because of the 

Rigid face

Rigid face

Rigid face

Rigid face
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unrefined mesh. At this point, a new FE model with the local partition is created 

with a finer mesh, which boundary conditions on the interface surfaces are the 

displacements imported from the results of the global analysis. As a result, the 

deformations in the local submodel will be the same as in the global model, but 

the stress results much more accurate. 

In this case, the global behaviour of the bearing could be accurately simulated 

by the half sector models. However, finer mesh is necessary around the contact 

surfaces in order to obtain better local contact results. For this reason, the 

submodelling technique was found to be a good simulation alternative, where 

half sector models were the global models and the contact partitions of the ball-

race contacts the sub-models. Figure 2.3 illustrates the mesh of the submodels, 

where finer contact meshes were performed (2,416,227 DoF in the 

conventional bearing submodel, and 1,167,117 DoF in the wire bearing 

submodel). 

  

Figure 2.3 Submodels. 

2.4 Results and discussion 

In this section, the results obtained from the FE analyses are presented and 

discussed to draw the main conclusions of the study. 

2.4.1 Wire twisting phenomenon 

The most remarkable phenomenon that takes place during the loading 

process is wire twisting. When the axial displacement is applied on conventional 

bearings, the ball climbs the raceway, increasing the ball-raceway contact angle. 
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On wire bearings, the ball-wire contact force generated by the axial 

displacement is not aligned with the centre of the wire cross-section, and 

consequently a twisting moment is induced in the wire. Depending on the 

friction coefficient of the contacting surfaces, this moment promotes the wire 

twist rather than ball climbing, as in a conventional bearing. Figure 2.4a shows 

a detailed view of the undeformed mesh in the contact zone (note the 

coincident nodes along both wire-ring circumferential contact lines), and Figure 

2.4b illustrates wire twist as result of the applied load. The wire twisting has a 

huge influence on the behaviour of the wire bearing, due to its effects on the 

stiffness of the bearing, contact ellipse truncation and contact forces. These 

effects are explained below. 

  

(b) (c) 

Figure 2.4 Wire twist Case 3 (unclamped situation): (a) Undeformed model; (b) Deformed 
model (scale x1.6). 

2.4.2 Axial stiffness and static load capacity 

Axial stiffness curves for each case in Table 2.1 were obtained by means of 

FE analyses of the half sector models in Figure 2.2. Moreover, the analytical 

model [13] used to fix the target axial force, was also used to obtain the stiffness 

curves;  this analytical model assumes that the rings are rigid and only considers 

the deformations of the contacts, so greater stiffness is expected. Figure 2.5 

shows the stiffness curves of the five cases summarized in Table 2.1, as well as 

the points in which the contact ellipse truncates for unclamped (Figure 2.5a) 

and clamped (Figure 2.5b) situations. To this end, truncation was considered to 

begin when the contact ellipse reaches the raceway boundaries. 
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(a) 

 

(b) 

 

Figure 2.5 Stiffness and truncation status: (a) Unclamped situation; (b) Clamped situation. 

Axial stiffness 

First of all, it can be seen that the stiffness provided by the analytical model 

[13] fits very well with the conventional bearing models (cases 1 and 2) with a 

C0a s=0.87

C0a s=0.943

Case 3 (17 % C0a)
Case 5 (36.2 % C0a)

Case 4 (89.9 % C0a)

Case 1 (69.5 % C0a)

C0a s=0.87

C0a s=0.943

Case 5 (23.2 % C0a)

Case 3 (21.6 % C0a)
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clamped configuration, and is slightly larger for the unclamped condition. This 

is because the clamped condition restricts the radial deformation of the rings, 

thus being closer to the rigid rings assumption of the analytical model. 

Wire bearing rings are built with lighter and more compliant materials and 

have an extra contact (wire-ring contact). These aspects, together with the wire 

twisting, makes them more flexible than the rings of conventional bearings. The 

wire twisting effect on the stiffness can be clearly appreciated observing the 

wire bearings with the same conformity factor value (0.87) but different wire-

ring friction coefficients (0.1 and 0.3), i.e. cases 4 and 5; a larger friction 

coefficient decreases wire twisting and subsequently increases the axial stiffness 

of the bearing. 

Another phenomenon to take into account is the different stiffness behaviour 

of each bearing type under different boundary conditions. Conventional 

bearings show exponential stiffness behaviour due to the exponential nature of 

the ball-raceway contact deformation and the variation of the contact angle. 

Wire bearings provide almost linear stiffness behaviour for unclamped 

conditions, mainly caused by the low stiffness of the rings and the slight 

variation of the contact angle due to the wire twisting, as will be explained in 

the following section. For the clamped configuration, the flexibility of the rings 

does not play such an important role, and therefore the response is exponential. 

Axial static load capacity and contact ellipse truncation 

According to Table 2.1, and as illustrated in Figure 2.5, the axial static load 

capacity (𝐶0𝑎) obtained from the analytical model [13] highly depends on the 

contact conformity: the most conformal bearings (𝑠 = 0.943) have 

approximately twice the theoretical capacity of the less conformal ones (𝑠 =

 0.87). However, the analytical model does not consider the truncation of the 

contact ellipse, which can have a huge effect on static capacity. In this context, 

Figure 2.5a shows that for an unclamped configuration, cases 1 and 4 behave 

similarly: in case 1, the conventional bearing with 𝑠 =0.943, started suffering 

truncation at 69.5% of the theoretical static load capacity and did not reach 

complete truncation, whereas in case 3, the wire bearing with 𝑠 =0.87 and 𝜇 =

 0.1 in the raceway-ring contact, started suffering truncation at 89.9% of its 

theoretical static load capacity and neither reached complete truncation. 

As has been mentioned above, as the wire-ring friction coefficient increases, 

so does the axial stiffness because the wire twist decreases, especially in the 
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unclamped configuration; wire-ring friction also affects contact ellipse 

truncation. The wire bearing in case 5 (𝜇 = 0.3), starts truncation at 17% 

𝐶0𝑎 and completes it at 67.6%𝐶0𝑎, which is clearly worse than the response in 

case 4 (𝜇 = 0.1). This fact demonstrates that in terms of static load capacity, the 

wire twisting phenomenon improves the performance since it prevents the 

truncation of the contact ellipse. In the clamped configuration, wire twisting is 

more restricted, so this phenomenon is not so critical. 

Analysing the results of cases 2 and 3, both have clear disadvantages. On the 

one hand, the low conformity conventional bearing (case 2, with 𝑠 = 0.87) is 

less optimal than the high conformity one (case 1, with 𝑠 = 0.943) because it 

has half the static load capacity. On the other hand, the high conformity wire 

bearing (case 3, with 𝑠 = 0.943) started and completed the truncation of the 

contact ellipse at very low static load capacity percentages, both for clamped 

and unclamped conditions. 

2.4.3 Contact forces and contact angles 

Normal contact force is commonly used in analytical models to obtain the 

contact pressure and shear stress distribution. The contact angle (𝛼) is defined 

as the angle of the normal contact force with the horizontal axis. In this study, 

the normal contact force was obtained by means of a post processing macro in 

Ansys®, based on the assumption that the normal contact force is the vector 

sum of the normal forces in each node. In order to validate this procedure, the 

angle between the point of the contact ellipse with the maximum pressure and 

the horizontal axis was measured, and it was found to be identical to the one 

obtained by means of forces. Accordingly, Figure 2.6 illustrates the evolution 

of the ball-raceway contact angle with the normal force for each bearing under 

clamped and unclamped situations. 

It can be seen that, in the case of conventional bearings (cases 1 and 2), the 

contact angle increases with the axial load due to ball climbing, which can finally 

result in ball-raceway contact ellipse truncation. In this sense, if the normal 

contact force and the contact angle are known, the dimensions of the contact 

ellipse can be calculated; if it reaches the raceway limit, then truncation occurs. 

In the case of wire bearings, wire twisting involves that the contact angle not 

always increases with the axial load, as illustrated in cases 3, 4 and 5. In these 

cases, and for low load values, the contact angle increases as in conventional 

bearings, because ball climbing occurs because of the lack of wire twisting; 

however, from an specific axial load onwards, wire twisting starts and 
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consequently the contact angle decreases. Due to this complex behaviour, the 

study of the contact ellipse truncation in wire bearings is not as straightforward 

as it is for conventional bearings. 

 

(a) 

 

(b) 

 

Figure 2.6 Contact forces and angles: (a) Unclamped situation; (b) Clamped situation. 
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2.4.4 Contact pressure distribution 

As the schematic illustration in Figure 2.7 shows, wire twisting involves a 

contact angle decrease. This phenomenon prevents the ball from climbing and 

as a consequence, the contact ellipse remains centred on the wire raceway. This 

statement is demonstrated by the plots in Figure 2.8, which show the contact 

pressure distribution along the major semi-axis of the contact ellipse for 

increasing load values. Each pressure point on the plots corresponds to the 

pressure on one contact element, which was obtained as the average of the 

element nodal pressures (with the ETABLE command in Ansys®). 

Since the studied phenomena are more evident under unclamped boundary 

conditions, only the results for those cases are represented. For conventional 

bearings (case 1 and case 2 in Figure 2.8), contact ellipse moves towards the 

raceway limits as the load increases, and consequently the contact angle 

increases. On the contrary, for the wire bearing in case 4, Figure 2.8c shows 

how the contact ellipse remains centred, even though Figure 2.6a shows that 

the contact angle clearly decreases according to Figure 2.7. Finally, if the wire-

ring friction coefficient is increased (case 5), Figure 2.6a and Figure 2.8d show 

that a larger load is needed for wire twisting to start, which initially tends more 

towards ball climbing and therefore contact ellipse truncation. As a 

consequence, ball-raceway contact angle alone is not enough to study contact 

ellipse truncation in wire bearings. Wire twisting must also be taken into 

account; this aspect is especially critical if simplified analytical models are to be 

developed. 

 

Figure 2.7 Structural response of the wire bearing under axial load. 

𝛼
𝛼
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(a) (b) 

  

(c) (d) 

Figure 2.8 Evolution of the pressure along the major semi-axis of the contact ellipse 
during the loading process (unclamped conditions): (a) Case 1; (b) Case 2; (c) Case 4; (d) 

Case 5. 

Figure 2.9 shows the contact ellipses of the four plots in Figure 2.8 for the 

100% of the target axial load (theoretical static load capacity). Note that, 

according to Figure 2.8, the maximum pressure is not exactly 4200 [MPa] for 

that load value, as it should be. The static load capacity in Table 2.1 was 

calculated using the analytical model, which considers rigid rings; as the rings 

are flexible in the FE model, the contact angles and normal forces are slightly 

different from those predicted by the analytical model, as is the maximum 

contact pressure. 
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(a) (b) 

  

(c) (d) 

Figure 2.9 Pressure contact ellipse 100% of the target axial load (unclamped conditions): 
(a) Case 1; (b) Case 2; (c) Case 4; (d) Case 5. 

2.4.5 Final remarks 

As a final summary, it is worth mentioning that wire race slewing bearings are 

more flexible in comparison with conventional slewing bearings because of the 

wire twisting phenomenon and the aluminium rings. Nevertheless, wire twisting 

prevents the ball from climbing over the raceway, keeping the contact centred 

in the raceway and preventing contact ellipse truncation. For this reason, wire-

ring contact lubrication is so crucial to allow the wire to twist. Despite the 

benefits of this behaviour in terms of ellipse truncation, the short length of the 

raceway is not compatible with high osculation ratios, since the large contact 

ellipse could easily reach the raceway edges anyway. 
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3 Wire twisting stiffness 

analytical formula 

3.1 Introduction 

Wire twisting phenomenon was introduced and explained in the previous 

chapter, with its relevance proved in wire bearings structural behaviour. For this 

reason, the correct modelling of the twisting stiffness of the wire can be decisive 

to correctly assess the load distribution among the rolling elements and 

therefore the overall mechanical behaviour of the bearing in a potential 

analytical model. In addition, this twisting stiffness can be implemented in 

simplified FE models to assess the global mechanical behaviour of bearings and 

their surrounding structures. 

In records such as [165], there are many formulae for the elastic behaviour of 

many elements under several actions, where the case of slender circular rings is 

most similar to the wire geometry. Nevertheless, there are two main reasons 

that underpin the need to develop a specific analytical formula. On the one 

hand, formulae in [165] are frequently tricky and careful implementation is 

needed to avoid eventual mistakes. This does not dismiss the value of the 

current formulations, but emphasizes the need for simpler formulae. On the 

other hand, the results of the FE analyses performed in the previous chapter, 

indicate how the wire behaves under realistic boundary conditions. Besides this, 

the wire twisting phenomenon was identified, so the need to characterize this 

twisting stiffness also arose. To this end, realistic elastic differential deformation 

assumptions can be made to accurately approach the real behavior of the wire. 

Regarding this, the concentrated loads transmitted by the ball-raceway contacts 

exert a quasi-distributed twisting moment. As a result, the wire twists with 

respect to its circumferential axis in such a way that the circumferential “fibers” 

do not bend noticeably and only deform circumferentially. 
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In this chapter, analytical expressions to calculate the twisting stiffness of two 

different wire geometries are presented. The selected geometries are the most 

common for wire-race ball bearings and correspond to the circular and race 

shaped wire section. Finally, in order to validate the proposed formulae, results 

are compared with FE simulations. 

3.2 Twisting stiffness of a circular section wire 

For the first approach, a circular sector wire is considered due to its simplicity. 

Figure 3.1 shows a wire sector with a span angle of 𝛽 = 2 · 𝜋/𝑁𝐵 corresponding 

to the span of one rolling element, where 𝑁𝐵 is the rolling element number. 

This sector has a cyclic-symmetry condition under axial load, in such a way that 

the rest of the sectors behave the same. 

 

Figure 3.1 Wire sector corresponding to one rolling element. 

It will be assumed that a differential element located in polar coordinates 

{𝜌, 𝜃} with a length of 𝐿𝜌𝜃 , will vary in length to 𝐿𝜌𝜃,𝜑 when the wire twists an 

angle of 𝜑 due to a twisting moment: 
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𝐿𝜌𝜃 = 𝛽 · (𝑅 + 𝜌 · 𝑐𝑜𝑠(𝜃)) 

𝐿𝜌𝜃,𝜑 = 𝛽 · (𝑅 + 𝜌 · 𝑐𝑜𝑠(𝜃 + 𝜑)) 

𝛥𝐿𝜌𝜃,𝜑 = 𝐿𝜌𝜃,𝜑 − 𝐿𝜌𝜃 = 𝛽 · 𝜌 · (𝑐𝑜𝑠(𝜃 + 𝜑) − 𝑐𝑜𝑠(𝜃)) 

(3.1) 

The differential force needed to perform this length variation can be 

expressed as the tractive-compressive stiffness differential constant 𝑑𝐾 

multiplied by the length variation 𝛥𝐿𝜌𝜃,φ as follows: 

 

𝑑𝐹𝜌𝜃,𝜑 = 𝑑𝐾𝜌𝜃 · 𝛥𝐿𝜌𝜃,𝜑 

𝑑𝐾𝜌𝜃 =
𝐸 · 𝑑𝐴𝜌𝜃

𝐿𝜌𝜃
 

𝑑𝐴𝜌𝜃 = 𝜌 𝑑𝜌𝑑𝜃 

(3.2) 

And the virtual work contribution of that differential force along the length 

variation: 

 

𝑑𝑊𝜌𝜃,𝜑 = 𝑑𝐹𝜌𝜃,𝜑 · 𝛥𝐿𝜌𝜃,𝜑 

𝑑𝑊𝜌𝜃,𝜑 = 𝐸 ·
(𝛥𝐿𝜌𝜃,𝜑)

2

𝐿𝜌𝜃
· 𝜌 𝑑𝜌𝑑𝜃 

𝑑𝑊𝜌𝜃,𝜑 = 𝛽 · 𝐸 ·
(𝑐𝑜𝑠(𝜃 + 𝜑) − 𝑐𝑜𝑠(𝜃))

2

(𝑅 + 𝜌 · 𝑐𝑜𝑠(𝜃))
· 𝜌3 𝑑𝜌𝑑𝜃 

(3.3) 

The sum of the differential virtual work for all the differential elements over 

the section of the wire must be equal to the virtual work done by the twisting 

moment 𝑇 along the angle 𝜑. From that equality, the twisting moment can be 

expressed as: 

 𝑇 =
𝛽 · 𝐸

𝜑
∬

(𝑐𝑜𝑠(𝜃 + 𝜑) − 𝑐𝑜𝑠(𝜃))
2

(𝑅 + 𝜌 · 𝑐𝑜𝑠(𝜃))
· 𝜌3 𝑑𝜌𝑑𝜃

𝐴

 (3.4) 

For small twisting angles (𝜑) and for a wire mean radius (𝑅) much larger than 

the wire section radius 𝜆/2, the previous expression can be simplified: 

 

(𝑐𝑜𝑠(𝜃 + 𝜑) − 𝑐𝑜𝑠(𝜃))
2
≅ 𝜑2 · 𝑠𝑖𝑛2(𝜃) 

𝑅 + 𝜌 · 𝑐𝑜𝑠(𝜃) ≅ 𝑅 

𝑇 ≅
𝜑 · 𝛽 · 𝐸

𝑅
∬ 𝜌3 · 𝑠𝑖𝑛2(𝜃) 𝑑𝜌𝑑𝜃
𝐴

 

(3.5) 
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This last equation allows defining the twisting stiffness constant as the 

twisting moment (𝑇) over the twisting angle (𝜑): 

 𝐾𝑇 =
𝛽 · 𝐸

𝑅
∬ 𝜌3 · 𝑠𝑖𝑛2(𝜃) 𝑑𝜌𝑑𝜃
𝐴

 (3.6) 

For a circular section, the integral in Eq. (3.6) is easily solved since the 

integration limits are constant and independent: 

 

𝐾𝑇 =
𝛽 · 𝐸

𝑅
∫ 𝑠𝑖𝑛2(𝜃) [∫ 𝜌3 𝑑𝜌

𝜆/2

0

] 𝑑𝜃
2𝜋

0

 

𝐾𝑇 = 𝛽 · 𝐸 ·
𝜋 · (𝜆/2)4

4 · 𝑅
 

(3.7) 

Considering the definition for the span angle (𝛽) as a function of the ball 

number in the bearing, the following expression is obtained: 

 𝐾𝑇 =
𝐸 · (𝜆/2)4

𝑁𝐵 · 𝑅
· (
𝜋2

2
) (3.8) 

3.3 Twisting stiffness of a race shaped section wire 

The wire for most ball bearing applications has a race shaped geometry, which 

consists on a circular section from which another non-centred circle is 

substracted. Figure 3.2 shows the geometric parameters of this section 

expressed in polar coordinates. 

 

Figure 3.2 Geometrical parameters of the race shaped wire section. 
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The integral in Eq. (3.6) must be split into two parts. In fact, definite integral 

𝐼1 in Eq. (3.9) can be easily solved as in Eq. (3.7) since the integration limits are 

independent for the two polar variables, but integral 𝐼2 must be solved for 𝜌(𝜃) 

from 𝜃1 to 𝜃2. 

 

𝐼 = ∬ 𝜌3 · 𝑠𝑖𝑛2(𝜃) 𝑑𝜌𝑑𝜃
𝐴

= 𝐼1 + 𝐼2 

𝐼1 = ∫ 𝑠𝑖𝑛2(𝜃) · [∫ 𝜌3 𝑑𝜌
(𝜆/2)

0

] 𝑑𝜃
2𝜋+𝜃1

𝜃2

 

𝐼2 = ∫ 𝑠𝑖𝑛2(𝜃) · [∫ 𝜌3 𝑑𝜌
𝜌(𝜃)

0

] 𝑑𝜃
𝜃2

𝜃1

 

(3.9) 

Then, integral 𝐼1: 

 

𝐼1 = ∫ 𝑠𝑖𝑛2(𝜃) · [∫ 𝜌3 𝑑𝜌
(𝜆/2)

0

] 𝑑𝜃
2𝜋+𝜃1

𝜃2

=
(𝜆/2)4

4
· [
𝜃

2
−
𝑠𝑖𝑛(2𝜃)

4
]
𝜃2

2𝜋+𝜃1

 

𝐼1 =
(𝜆/2)4

4
· (𝜋 +

(𝜃1 − 𝜃2)

2
+
(𝑠𝑖𝑛(2𝜃2) − 𝑠𝑖𝑛(2𝜃1))

4
) 

(3.10) 

For integral 𝐼2, the equation of a non-centered circumference is derived in the 

form of 𝜌(𝜃) in first place. Applying the law of the cosine to the shaded triangle 

in Figure 3.2: 

 𝑅𝑐
2 = 𝐿2 + 𝜌(𝜃)2 − 2 · 𝐿 · 𝜌(𝜃) · 𝑐𝑜𝑠(𝛾 − 𝜃) (3.11) 

Solving for the first value of 𝜌(𝜃) which fulfills Eq. (3.11), 

 𝜌(𝜃) = 𝐿 · 𝑐𝑜𝑠(𝛾 − 𝜃) − √𝑅𝑐
2 − 𝐿2 · 𝑠𝑖𝑛2(𝛾 − 𝜃) (3.12) 

Therefore, integral 𝐼2 can be solved as: 

𝐼2 =
1

4
· ∫ 𝑠𝑖𝑛2(𝜃) · 𝜌(𝜃)4 𝑑𝜃

𝜃2

𝜃1

 

𝐼2 =
(𝜆/2)4

4
· ∫ 𝑠𝑖𝑛2(𝜃) ·

𝜃2

𝜃1

 

· (
𝐿

(𝜆/2)
𝑐𝑜𝑠(𝛾 − 𝜃) − √(

𝑅𝑐
(𝜆/2)

)
2

− (
𝐿

(𝜆/2)
)
2

· 𝑠𝑖𝑛2(𝛾 − 𝜃))

4

𝑑𝜃 

(3.13) 
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Which must be solved numerically for 𝑅𝑐/(𝜆/2), 𝐿/(𝜆/2) and 𝛾. Regarding 

the integration limits for both integrals, depending on the geometrical 

parameters in Figure 3.2, the values for 𝜃1 and 𝜃2 can be derived, performing 

𝜌(𝜃) = (𝜆/2) in Eq.(3.14): 

 
𝜃1 = 𝛾 − 𝑎𝑟𝑐𝑐𝑜𝑠 (

1 + (𝐿/(𝜆/2))2 − (𝑅𝑐/(𝜆/2))
2

2(𝐿/(𝜆/2))
) 

𝜃2 = 𝛾 + 𝑎𝑟𝑐𝑐𝑜𝑠 (
1 + (𝐿/(𝜆/2))2 − (𝑅𝑐/(𝜆/2))

2

2(𝐿/(𝜆/2))
) 

(3.14) 

At this point, a DoE is planned to obtain an engineering formula in order to 

make a reasonable approximation for integrals in Eq. (3.9). The arranged DoE 

is a full factorial and it was done for the values in Table 3.1. These parameters 

were not randomly chosen, they are within the limits generally adopted by the 

manufacturers. 

Table 3.1 Integral in Eq. (3.10) for geometrical parameters within the common design range, 

valid for 𝛾 = 𝜋/4, 𝜸 = 𝟑𝝅/𝟒, 𝜸 = 𝟓𝝅/𝟒 and 𝜸 = 𝟕𝝅/𝟒. 

𝑹𝒄/(𝝀/𝟐) 𝑳/(𝝀/𝟐) 𝑳/(𝝀/𝟐) − 𝑹𝒄/(𝝀/𝟐) 𝑰/(𝝀/𝟐)𝟒 

2.00 2.25 0.25 0.522088805 

2.50 2.75 0.25 0.513905797 

3.00 3.25 0.25 0.503645074 

2.00 2.50 0.50 0.609857837 

2.50 3.00 0.50 0.604207922 

3.00 3.50 0.50 0.600254386 

2.00 2.75 0.75 0.708211997 

2.50 3.25 0.75 0.705624706 

3.00 3.75 0.75 0.703774932 

2.00 3.00 ≥1 π/4 

2.50 3.50 ≥1 π/4 

3.00 4.00 ≥1 π/4 
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From Table 3.1 it can be reasonably concluded that the value of the Integral 

has a strong linear relationship with parameter (𝐿/(𝜆/2) − 𝑅𝑐/(𝜆/2)) and 

second order dependences can be mispriced. The following equation can be 

derived via Least Squares, forcing the integral to be 𝜋/4 for (𝐿/(𝜆/2) −

𝑅𝑐/(𝜆/2)) = 1: 

 𝐼 ≈ (𝜆/2)4 · (
𝜋

4
− 0,36 · [1 − (

𝐿

(𝜆/2)
−

𝑅𝑐
(𝜆/2)

)]) (3.15) 

Then, the stiffness constant can be expressed as: 

 

𝐾𝑇 = 𝛽 · 𝐸 ·
(𝜆/2)4

𝑅
· (
𝜋

4
− 0.36 · [1 − (

𝐿

(𝜆/2)
−

𝑅𝑐
(𝜆/2)

)]) 

𝐾𝑇 =
𝐸 · (𝜆/2)4

𝑁𝐵 · 𝑅
· (
𝜋2

2
− 0.72 · 𝜋 · [1 − (

𝐿

(𝜆/2)
−

𝑅𝑐
(𝜆/2)

)]) 

(3.16) 

3.4 Correlation with FE models  

3.4.1 Simplified load cases 

The first step to check the validity of the formulae involved both circular and 

race shaped wire sections being modelled in Ansys®, considering the 

assumptions made for the development of the formulae. Table 3.2 shows the 

geometrical parameters used for the validation FE models, which are shown in 

Figure 3.3. It was deemed appropriate to create two FE models per section type, 

one 2D axisymmetric FE model and another 3D cyclic symmetric FE model. 

This way, the effect of the boundary conditions can be evaluated. In the 2D 

models, the twist is imposed to the whole section, while in the 3D models, the 

twist is imposed on both lateral sections. Besides this, symmetry boundary 



76  Iñigo Martín 

 

 

conditions were applied in the 3D model. Finally, in order to prevent rigid body 

motion and avoid convergence problems, the central node of the sections with 

applied boundary conditions is fixed. 

Table 3.2 Geometrical parameters for the validation. 

𝑬 𝑵𝑩 𝑹 𝝀/𝟐 𝑹𝒄/(𝝀/𝟐) 𝑳/(𝝀/𝟐) 𝜸  

[GPa]  [mm] [mm] [mm] [mm] [º] 

210 82 227 3.3 - - - 

210 82 227 3.3 3 3.5 45 

 

  

(a) (b) 

  

(c) (d) 

Figure 3.3 FE models: (a) Circular section 2D model; (b) Circular section 3D model; (c) 
Race shaped section 2D model; (d) Race shaped section 3D model. 
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After performing the FE analyses, the behaviour observed between the 2D 

and 3D models was identical. Because of this and for simplification reasons, 

only the stiffness results of the 2D model are included in Figure 3.4. The 

behaviour of the circular section does not depend on the positive or negative 

direction of the twist. However, the race shaped section shows stiffer behaviour 

when the twist is applied in a counter clockwise direction. The behaviour of 

𝛾 = 45°  was shown only, since the case 𝛾 = 135° behaves the same, but for 

the opposite sign of the twisting angle. 

 

 

Figure 3.4 Twisting stiffness of the 2D axisymmetric FE model. 

Twisting stiffness is very linear for both circular and race shaped sections, so 

it is fair to compare FE and analytical results with stiffness constants and obtain 

the deviation in terms of error. The first stiffness constant defined (𝐾), results 

from the application of a linear regression to the FE results. This stiffness 

constant represents the stiffness along the entire range. The second stiffness 

constant 𝐾𝑂𝑟𝑖𝑔𝑖𝑛 refers to the stiffness of the first load step of the FE model, 

i.e. considering the initial undeformed geometry. As the analytical model is 
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based on this undeformed geometry, 𝐾𝑂𝑟𝑖𝑔𝑖𝑛 coincides with the analytical 

stiffness, and its value is the same for any twisting direction. However, as the 

twisting angle increases, the wire section rotates and therefore its stiffness 

varies. In contrast to the analytical model, the FE model accounts for this 

phenomenon (large displacements), and for that reason FE and analytical 

stiffness values are slightly different. Despite all these considerations, the 

discrepancies between the analytical and FE model are negligible, as can be seen 

in the stiffness constants comparison of Table 3.3 and the relative error 

obtained. 

Table 3.3 Twisting stiffness constants. 

 𝑲 𝑲𝑶𝒓𝒊𝒈𝒊𝒏 𝑲𝑨𝒏. 
𝑬𝒓𝒓𝒐𝒓   

𝑲 

𝑬𝒓𝒓𝒐𝒓 

𝑲𝑶𝒓𝒊𝒈𝒊𝒏 

 [N·mm/rad] [%] [%] 

2D Circular sec. 6596 6602 6602 0.1 0.0 

3D Circular sec. 6591 6598 6602 0.2 0.1 

2D Race 

shaped sec. 

5080 (+) 

4854 (–) 
4975 5089 

0.2 

4.6 
2.3 

3D Race 

shaped sec. 

5075 (+) 

4850 (–) 
4970 5089 

0.3 

4.7 
2.4 

3.4.2 Realistic load case 

To further explore the validity of the stiffness constant calculated using the 

analytical approach, a more realistic load case shown in Figure 3.5 was 

considered. In this case, a rigid support for the wire was modelled, as well as a 

rigid ball as a loading element. The ball approaches the wire in such a direction 

that finally contact occurs almost on the edge of the wire, which is the situation 

in which the distribution of applied torque is the furthest possible from the 

theoretical assumption. Analyses were done for friction coefficients 𝜇 = 0 and 

𝜇 =0.1 for the three contact pairs defined in the model, with the latter case 

being a very typical one for four-point contact wire-race slewing bearings. 
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Figure 3.5 Realistic load case FE model: (a) Mesh; (b) Loads and boundary conditions. 

Figure 3.6 shows the FE results in terms of contact pressure distribution and 

wire deformation. Regarding the contact pressure results, the distribution on 

the top corresponds to the first load step and the one on the bottom to the final 

displacement condition. It can be observed how the load acts on the lower edge 

of the wire generating a twisting torque. The displacement imposed on the ball 

is the same for 𝜇 = 0 and 𝜇 = 0.1 cases, as is the displacement (and twisting 

angle) of the wire.  

  

Figure 3.6 Pressure distribution (in [MPa]) and wire deformation (in [mm]). 

In order to evaluate the influence of the wire-ring contact behaviour, the wire 

twisting stiffness is calculated for both cases. Figure 3.7 shows the 

displacements and reaction forces, where it can be seen that there are friction 

forces only in the 𝜇 = 0.1 case. These friction forces also generate a larger ball-

wire contact force in order to achieve the static equilibrium. 
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(a) (b) 

Figure 3.7 Displacements and friction forces: (a) 𝝁 = 0 case; (b) 𝝁 = 0.1 case. 

As a result, the wire twisting stiffness is obtained in Equations (3.17) and 

(3.18) for the 𝜇 = 0 and 𝜇 = 0.1 cases respectively. Both twisting stiffnesses are 

identical regardless of the friction coefficient, as initially expected. 

 
𝑇 = 153.5 · 3.2538 + 115.7 · 0.55037 = 564 [𝑁 · 𝑚𝑚] 

𝜑 = 0.361 · 3.3 = 0.11 [𝑟𝑎𝑑] 

𝐾 = 𝑇/𝜑 = 5146 [𝑁 · 𝑚𝑚/𝑟𝑎𝑑] 

(3.17) 

 
𝑇 = 180.7 · 3.2538 + 110.3 · 0.55037 − (2.0 + 23.6) · 3.3  

𝑇 = 564 [𝑁 · 𝑚𝑚] 

𝜑 = 0.361 · 3.3 = 0.11 [𝑟𝑎𝑑] 

𝐾 = 𝑇/𝜑 = 5146 [𝑁 · 𝑚𝑚/𝑟𝑎𝑑] 

(3.18) 

Finally, Figure 3.8 shows the comparison between the FE and the analytical 

results. It can be observed that the analytical stiffness approaches satisfactorily 

the FE results for both frictionless and frictional contact conditions. In terms 

of stiffness constants, Table 3.4 features the values of 𝐾 and 𝐾𝑂𝑟𝑖𝑔𝑖𝑛 of both 

FE models and the analytical formulae. The relative error of the analytical 

stiffness constant is also obtained, which is small for 𝐾 but larger for 𝐾𝑂𝑟𝑖𝑔𝑖𝑛. 

There is no evident cause for this behaviour, since the more realistic situation 

can lead to the appearance of eventual hidden phenomena. However, the sound 

overall performance of the analytical formulae assesses the validity of the 

proposed wire twisting calculation method. 
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Figure 3.8 Stiffness constants calculation for: (a) 𝝁 = 0; (b) 𝝁 = 0.1. 

Table 3.4 FE and analytical stiffness constants. 

 𝑲 𝑲𝑶𝒓𝒊𝒈𝒊𝒏 𝑲𝑨𝒏. 
𝑬𝒓𝒓𝒐𝒓  

𝑲 

𝑬𝒓𝒓𝒐𝒓 

𝑲𝑶𝒓𝒊𝒈𝒊𝒏 

 [N·mm/rad] [%] [%] 

FE  𝝁 = 0 5209 5641 5089 2.3 9.8 

FE  𝝁 = 0.1 5215 5641 5089 2.4 9.8 
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4 Four-point contact wire-race 

bearing analytical model  

4.1 Introduction 

Finite Element simulations are a common tool used in the design stage of a 

component, as many results can be obtained accurately. Nevertheless, 

simulations are complex, computationally costly and require experienced 

structural analysts to perform them. Another strategy lies in performing 

simulations with analytical calculation tools. These tools are based on analytical 

models, which represent the physical phenomena that define the structural 

behaviour of the component. These tools are easier to use for the end user, and 

faster and simpler. For these reasons, analytical calculation tools are an 

alternative to take into consideration for preliminary designs or for components 

whose structural behaviour is well known. However, the main disadvantage of 

analytical models lies in the need to assume simplifications for development 

purposes. This means that the tool is applicable and accurate only if all the 

assumptions made are fulfilled by the component being designed. Analytical 

models usually have ranges of applications or preliminary considerations, which 

makes them not as versatile and accurate as FE. 

A four-point contact wire-race slewing bearing analytical model is presented 

in this chapter. Given the complexity of the component, only axial or tilting 

moment load cases are considered for this first approach. In order to consider 

any bearing geometry, the analytical model is based on parametric equations. 

The analytical model can be used to obtain the bearing stiffness, static load 

capacity, contact force and contact angle. In the following sections, the 

foundations and the formulation of the analytical model is explained together 

with the validation carried out via a comparison with a FE reference model. 
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4.2 Analytical model 

4.2.1 Assumptions and simplifications 

As for every analytical modelling, the first step consisted in recognizing the 

underlying phenomena and designing a strategy to screen them in a simple way. 

This work was already carried out in Chapter 2, where it was stated that the 

most relevant phenomena that affects the structural behaviour of the four-point 

contact wire-race slewing bearings are the ball climbing and wire twisting 

phenomena. Of course, the stiffness of the contacts have a significant effect on 

the structural response of the bearings and must be modelled properly. 

Once the structural behaviour of the component has been studied, the next 

step consists of making the necessary number of assumptions and 

simplifications that allow for the analytical model to be developed. Of course, 

these assumptions and simplifications suppress the possibility of calculating 

certain results and may introduce slight errors; however, the advantages of the 

analytical model clearly outweigh these limitations. 

First, it can be assumed that the deformations of one sector with one rolling 

element do not affect the adjacent sectors; the large mean diameter and the 

cyclic symmetry of the geometry allow for this simplification to be made. This 

way, the structural response of the whole bearing can be obtained as the sum 

of the structural response of all the independent sectors. However, this does 

not mean that the twisting stiffness of the wire is not considered. 

The second assumption is related with the loading, where only the axial load 

is considered. This allows for the calculation of the response of the bearing 

under axial load, tilting moment or a combination of both. On the one hand, it 

is only necessary to solve one sector to obtain the whole bearing response under 

axial load. On the other hand, a tilting moment or a combination of tilting 

moment and axial load can be distributed as a different axial load acting on each 

sector.  

Thirdly, a sector supporting axial load always transmits the load through one 

diagonal (two-point contact situation). This happens during the entire loading 

process only if the rolling element is not preloaded. As a result of the two-point 

contact situation, there is no need to model the other two contacts. 

The fourth assumption is related to the stiffness of the inner and outer rings, 

which is almost identical for large mean diameters. As a result, a symmetry can 
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be applied in such a way that only the contacts corresponding to one of the two 

sides of the contact diagonal are modelled, i.e. one ball-wire contact and the 

corresponding wire-ring contact pair. 

Finally, this is a first approach to represent the structural behaviour of these 

kind of bearings. For this reason, the strategy to follow is in line with other 

works introduced included in Section 1.4.2 and related to bearing analytical 

models. In these works, the analytical models are firstly developed considering 

boundary conditions that assume rigid rings, i.e. only considering local 

deformation of the contacts. On this basis, the flexibility of the rings can be 

later implemented in future works. 

4.2.2  Contact stiffness calculation 

To properly represent the structural response of the bearing, it is necessary 

to obtain the expressions that relate the forces and deformations of the 

contacts. In this case, analytical formulae available in the literature were found 

adequate to serve this purpose. The literature review about the normal contact 

problem was carried out in Section 1.4.1, so there is no need on deepen into 

the topic. 

During recent years, the simplified formulation proposed by Houpert [47] has 

been widely used to represent the behaviour of the ball-raceway contact. For 

this reason, the decision to use this formulation for the ball-wire contact was 

almost immediate. Even though the proposed engineering approaches simplify 

the Hertz’s formulation [43,44], some mathematical operations were performed 

in order to simplify even more this formulation. All these mathematical 

procedures are attached in Appendix A, and only the final expressions that were 

used for this analytical model are included here. The contact behaviour in terms 

of force/deformation is represented by Equation (4.1). Because of the nature 

of the problem, there are two possibilities by which to obtain the stiffness 

constant 𝑘𝐵 , which depends on the osculation ratio of the contact (𝑠). 

 

𝑄 = 𝑘𝐵 · 𝛿
3
2 

𝑘𝐵 =

{
 
 

 
 102456.8 · 𝐷𝑤

1/2

(1 − 𝑠)0.2919
𝑓𝑜𝑟 0 < 𝑠 < 0.886

88222.45 · 𝐷𝑤
1/2

(1 − 𝑠)0.3621
𝑓𝑜𝑟 0.886 < 𝑠 < 0.992

 
(4.1) 
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Regarding the wire-ring contacts, plain strain conditions were considered, 

assuming a cylinder-elastic half-space contact under a distributed compressive 

load. This situation does not really happen, but these assumptions must be 

made in order to simplify the model. On the one hand, the large curvature 

radius on slewing bearings allows the cylinder-plane assumption to be taken 

into account. On the other hand, each ball acts as a punctual load over the wire 

raceway. However, a high filling ratio reduces the closure between contacts, 

which allows the contact force to be considered as a distributed load. As was 

explained in detail in the introduction chapter, there are many formulations that 

can be used for the cylinder-plane contact. In order to assess their accuracy, the 

stiffness results obtained with different formulations are compared with 

cylinder elastic half-space contact FE model results. 

The line contact formulations proposed by Puttock [56], Tripp [58] and 

Johnson [59] and Hamrock [60] were considered for the comparison. More 

information about these formulations can be found in the introduction chapter. 

These formulations can be found in Equations (1.14), (1.16) and (1.19) 

respectively. 

 The FE model used for the comparison (shown in Figure 4.1) was built 

considering the 2D plane strain assumption. The surface was divided into 

various partitions to perform a fine mesh in the vicinity of the contacts and 

allow a transition to coarser elements in the interior zones. The contact was 

defined as frictionless, according to the assumptions made in the formulations. 

Defining the contact as frictional would have had no implications, since the aim 

of the analysis is to study the normal contact problem. The Augmented 

Lagrange formulation was defined, contact stiffness was updated each iteration 

and the penetration tolerance was set as 1 [µm]. Symmetry boundary conditions 

were applied to the edges of the symmetry plane, the other two edges of the 

elastic half-space were fixed and load was applied as an imposed displacement 

on the upper cylinder edge. 
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Figure 4.1 2D plane strain FE model for the cylinder-plane formulations validation.  

Table 4.1 features the geometrical parameters and material properties of the 

study case. The proposed analytical formulations allow for the calculation of 

the contact deformation between bodies of different materials, which is quite 

convenient for the wire-ring contact case. As has already been stated, rolling 

elements and wires are manufactured with hardened steel while rings are 

commonly made of aluminium. To be thorough, analytical formulations were 

compared with FE results for two cases: steel-steel and steel-aluminium 

contacts. 

Table 4.1 Geometrical parameters and material properties. 

𝑫𝒘 𝑳 𝑬𝑺𝒕𝒆𝒆𝒍  𝑬𝑨𝒍.  𝝂𝑺𝒕𝒆𝒆𝒍  𝝂𝑨𝒍.  

[mm] [mm] [GPa] [GPa]   

8 4 200 70 0.3 0.33 

At this point, the loading level that must be applied needs to be defined. The 

accepted convention proposed by the ISO-76 standard [24,25] states that 

contact failure occurs at a contact pressure value of 4000 [MPa], which is 

obtained in an elastic calculation. For this reason, the maximum contact force 

in both study cases was the one that reached that pressure value in the steel-

steel contact FE model. It is true that the steel-aluminium contact may fail at a 

lower contact force value, but the purpose of this comparison lies in validating 

some analytical formulations.  
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The results of the steel-steel contact study case are shown in Figure 4.2a. On 

the one hand, a perfect match is achieved between the formulation proposed 

by Puttock [56] and FE results. On the other hand, the formulations of Tripp 

[58] and Johnson [59] and Hamrock [60] present a significant deviation. 

Regarding the results of the steel-aluminium contact study case, the formulation 

proposed by Puttock [56] differs a little from the results obtained using the FE 

analysis and the other two formulations resulted in a more pronounced 

deviation. 

 

(a) 

 

(b) 

Figure 4.2 Validation of the analytical cylinder-plane formulations: (a) Steel cylinder-Steel 
halfspace; (b) Steel cylinder-Aluminium halfspace. 

According to the observed results, it appears appropriate to choose the 

formulation developed by Puttock [56] to represent the stiffness behaviour of 

the wire-ring contact. 
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4.2.3 Description of the analytical approach 

The description and the mathematical background of the analytical model is 

presented in this section. The proposed analytical model is based on a 

mechanism built with rigid beams and springs. Linear springs are used to 

represent the normal contact behaviour and a torsional spring is also used to 

represent the twisting stiffness of the wire. The role of the rigid beams consists 

of transmitting the forces and moments through the structure. 

Figure 4.3 shows the mechanism created for the analytical model. The 

modelling of the ball-wire contact was adapted from the simplified mechanism 

proposed by Golbach [123], Smolnicki et al. [124,125] and Daidié et al. [126]. 

The ball-wire contact behaviour is represented by a tension-only spring. This 

spring is not randomly positioned. It must connect the centres of the raceway 

arcs. In this case, due to the symmetry simplifications, the spring connects one 

raceway arc centre and the centre of the ball. This spring is attached to a rigid 

beam that transmits the forces and moments to the wire centre through a 

torsional spring, which represents the torsional stiffness of the wire. The wire 

is considered to be a rigid body, which, under the action of the transmitted 

forces, compresses the springs that represent the response of the wire-ring 

contacts. 

 

Figure 4.3 Deformed and undeformed (dotted) shapes of the mechanism for the analytical 
model. 

Ring

Wire

Ball
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The deformed shape of the mechanism reveals that the wire twisting 

phenomenon can be represented. Besides, ball climbing is also considered, since 

the contact angle is defined by the angular position of the tension-only spring. 

Regarding friction forces, ball-wire contact is assumed to be rolling, so they 

were considered negligible. However, wire-ring contact friction forces must be 

considered. Otherwise, nothing would counteract the generated twisting 

moment and the equilibrium would be unreachable. Modelling the wire-ring 

friction forces is not straightforward. In preliminary FE simulations, it was 

found that at the beginning of the loading process both contacts are in stick. 

Shortly after, the ball climbs over the raceway and generates the enough twisting 

moment to turn one of the contacts into slip (Figure 4.4a). This situation 

continues until the static load capacity is reached (Figure 4.4b). Eventually, and 

under less restrictive boundary conditions, both contacts may be in slip. 

 

(a) 

 

(b) 

 

Figure 4.4 Wire-ring contact status: (a) One contact starts to slide at 10% 𝑪𝟎𝒂; (b) Contact 

status at 100% 𝑪𝟎𝒂. 

Now it is clear that there are three different alternatives for the wire-ring 

contacts status: stick-stick, slip-stick and slip-slip. The initial stick-stick situation 

is the most problematic, since the friction forces of both contacts are lower 
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than the friction coefficient multiplied by the normal contact forces. This means 

that they are variables of the system. However, it is very complicated to define 

the tangential contact problem and no simple solution was found. 

The difficulty of modelling the tangential problem together with the fugacity 

of the phenomenon, lead to us ignoring this initial situation and assuming that 

the initial situation is slip-stick. This assumption may lead a minor error, but 

makes the definition of the analytical model feasible. In this situation, the 

tangential force of the contact in slip is easily defined with the Coulomb contact 

theory. However, the frictional force of the contact in stick is still a variable. 

For this reason, an additional equation must be included. This equation is based 

on the compatibility of deformations that occur when the wire rolls over the 

stick contact area.  

During the loading process, the contact in stick can switch to slip. This 

happens if the friction force variable reaches the value of the contact normal 

force multiplied by the friction coefficient. If this happens, the friction force is 

modelled this way and the equation that defines the rolling contact is supressed. 

 The previous problem with the status of the wire-race contacts can vary 

depending on the boundary conditions. For example, deformations under rigid 

rings boundary conditions are small, so the predominant situation is the slip-

stick. However, greater deformations occur under clamped or unclamped 

boundary conditions. This leads to more freedom for the wire to twist, so the 

slip-slip situation is reached quickly. 

With the structural behaviour of the analytical model explained, it is time to 

present the equations that define it. To do so, it is appropriate first to present 

Figure 4.5 and Figure 4.6, where geometrical parameters, geometrical variables 

and reaction forces are shown.  

In these drawings, 𝐿𝑅𝐶 is the distance between the centres of the raceway and 

wire and 𝑑 is the vertical and horizontal projection of the ball-wire contact 

spring. 𝑦𝐵 is the axial displacement input (half of the total bearing sector 

deformation). Regarding the displacements of the mechanism, 𝑥𝑤, 𝑦𝑤and 𝜃𝑤 

are the displacements and twisting angle of the wire centre, and 𝑥𝑅𝐶 and 𝑦𝑅𝐶 are 

the displacements of the raceway centre. In terms of forces, 𝑁1, 𝑁2 and 𝑇2 are 

the reaction forces on the wire-ring contacts and 𝐹𝐵 the ball-wire normal 

contact force. 
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Figure 4.5 Geometrical parameters and DoF of the analytical model. 

 

Figure 4.6 Reaction forces in the mechanism. 

The equations that form the system come from well-differentiated sources. 

The first group composed of Equations (4.2)-(4.4) comes from the equilibrium 

of forces and moments. As has been mentioned previously, under the action of 

high loads both wire-ring contacts can slide. This situation occurs when the 

tangential force of the contact in stick (𝑇2) reaches the slip limit defined as 𝜇 ·

𝑁2. Beyond that point, 𝑇2 is no longer a variable and must be replaced by 𝜇 · 𝑁2. 

45 
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The second group of equations is formed by the force-deformation 

relationships. Equation (4.5) represents the behaviour of the ball-wire contact 

and Equations (4.6) and (4.7) the behaviour of the wire-ring contacts. 

Additionally, the wire twisting resistance provided by the torsional spring is 

included in Equation (4.8), where 𝑀𝑤 is the twisting moment and 𝑘𝑡𝑤 the 

twisting stiffness. 

The third group is obtained from the compatibility of deformations 

relationships. Equations (4.9) and (4.10) relate the displacements of both rigid 

beam ends, while Equation (4.11) defines the movement of the ball-wire 

contact spring if one of its ends is displaced vertically. 

Finally, as mentioned in previous sections, slip condition is assumed on one 

wire-ring contact and stick on the other. This assumption implies the need to 

imposethe rolling condition of Equation (4.12), which forces the wire to roll 

over the contact in stick. It is worth remembering that this equation must be 

supressed in case the contact in stick turns to slip. 

 𝐹𝐵 · 𝑐𝑜𝑠(𝛼) − 𝑁2 − 𝜇 · 𝑁1 = 0 (4.2) 

 𝐹𝐵 · 𝑠𝑖𝑛(𝛼) − 𝑁1 − 𝑇2 = 0 (4.3) 

 
𝑇2 · 𝜆/2 − 𝜇 · 𝑁1 · 𝜆/2 + 𝐹𝐵 · 𝐿𝑅𝐶 · [𝑠𝑖𝑛(𝛼) · 𝑐𝑜𝑠(45° − 𝜃𝑊) − 

−𝑐𝑜𝑠(𝛼) · 𝑠𝑖𝑛(45° − 𝜃𝑊)] − 𝑀𝑤 = 0 
(4.4) 

 𝐹𝐵 = 𝑘𝐵 · [√(𝑑 + 𝑦𝐵 − 𝑦𝑅𝐶)
2 + (𝑑 − 𝑥𝑅𝐶)

2 − √2 · 𝑑2]2/3 (4.5) 

𝑥𝑤 =
𝑁2
2 · 𝑎

· (
1 − 𝜈1

2

𝜋 · 𝐸1
+
1 − 𝜈2

2

𝜋 · 𝐸2
) · [1 + 𝑙𝑛(

8 · 𝑎2

(
1 − 𝜈1

2

𝜋 · 𝐸1
+
1 − 𝜈2

2

𝜋 · 𝐸2
) ·

𝑁2
2 · 𝑎 · 𝜆

)] (4.6) 

𝑦𝑤 =
𝑁1
2 · 𝑎

· (
1 − 𝜈1

2

𝜋 · 𝐸1
+
1 − 𝜈2

2

𝜋 · 𝐸2
) · [1 + 𝑙𝑛(

8 · 𝑎2

(
1 − 𝜈1

2

𝜋 · 𝐸1
+
1 − 𝜈2

2

𝜋 · 𝐸2
) ·

𝑁1
2 · 𝑎 · 𝜆

)] (4.7) 

𝑀𝑤 = 𝑘𝑡𝑤 · 𝜃𝑤 (4.8) 

 𝑥𝑅𝐶 = 𝑥𝑤 − 𝐿𝑅𝐶 · [𝑐𝑜𝑠(45° − 𝜃𝑤) − 𝑐𝑜𝑠(45°)] (4.9) 

 𝑦𝑅𝐶 = 𝑦𝑤 − 𝐿𝑅𝐶 · [𝑠𝑖𝑛(45° − 𝜃𝑤) − 𝑠𝑖𝑛(45°)] (4.10) 
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 𝑡𝑎𝑛 (𝛼) =
𝑑 + 𝑦𝐵 − 𝑦𝑅𝐶
𝑑−𝑥𝑅𝐶

 (4.11) 

 𝑦𝑊 = 𝜆/2 · 𝑠𝑖𝑛 (𝜃𝑤) (4.12) 

4.3 FE validation 

Once the system of equations of the analytical model is defined, an algorithm 

was programmed in Matlab® in order to carry out the solution process. The 

results obtained from the algorithm after simulating a reference geometry until 

its static load capacity are compared with FE simulation results. The wire-race 

bearing geometry presented in Chapter 2 was considered to serve as a reference 

geometry for the validation. Table 2.2 contains the most relevant geometrical 

data and material properties of the reference geometry. The FE model used in 

Chapter 2 was also useful to perform the FE simulation for the validation. 

However, in this case, rigid rings boundary conditions are considered, which 

consist of rigid exterior surfaces of the rings. FE model mesh and boundary 

conditions are shown in Figure 4.7 together with the load application method. 

External axial displacement is applied on the rigid surfaces of the model until 

the static load capacity of the bearing, obtained using the methodology 

proposed in [13], is reached (674.24 [kN]). The validation process consists of 

comparing results of both models in terms of bearing stiffness, contact normal 

force, contact angle and wire twist. 

  

Figure 4.7 FE model for the validation. 

Rigid faces

Rigid faces
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4.3.1 Axial stiffness 

Bearing stiffness is one of the most relevant performance indicators that 

represent the structural behaviour of the bearing. For this reason, it is logical to 

present this comparison in the first place. Figure 4.8 shows the bearing force-

deformation curves, where good agreement is observed for moderate loads. 

However, differences in the curvature results in a significant deviation for high 

load values. Table 4.2 gathers the relative errors that exist at different levels of 

the static load capacity. 

 

Figure 4.8 Bearing axial stiffness results. 

Table 4.2 Relative error at different levels of 𝑪𝟎𝒂. 

[%] 𝑪𝟎𝒂 25 50 75 100 

Error 3.9 7.3 9.5 12.2 

4.3.2 Ball-wire contact force and contact angle 

Regarding the ball-wire contact, normal contact force and contact angle are 

relevant results to take into consideration in order to assess the validity of the 

analytical model. Normal contact force can be used to obtain the maximum 

contact pressure and, therefore, the static axial load capacity of the bearing. 

Moreover, the pressure distribution can be calculated in combination with the 

contact angle evolution, which is useful as an indicator of the contact ellipse 

truncation. Ball-wire contact results are shown in Figure 4.9, where identical 

behaviour is observed between normal contact force and bearing stiffness 

results. Regarding the contact angle, FE results show an initial rise followed by 

subsequent stabilization. The initial rise comes from the ball climbing over the 
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race caused by an initial stick situation on both wire-ring contacts, and the 

stabilization from the slip situation in the inner contact and stick in the upper, 

which allow the wire to twist. The analytical model is able to represent the 

second stage, but not the initial rise because it does not consider the initial stick 

situation in both wire-ring contacts. Despite the difference in the contact angle 

plot, it must be pointed out that the maximum error is less than one degree. 

 

(a) 

 

(b) 

Figure 4.9 Ball-raceway contact results: (a) Normal contact force, (b) Contact angle. 

4.3.3 Wire twist 

Wire twist may not be one of the most important performance indicators, but 

it can reveal how the analytical model represents the bearing behaviour. Figure 

4.10 shows how the wire remains at the initial position for a while and starts 

twisting later in the FE results. Once again, this situation results from the initial 

stick-stick situation in both wire-ring contacts. Despite this initial deviation, the 
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analytical model can quite accurately represent the behaviour once the initial 

situation is overcome, given the curves identical trend. 

 

Figure 4.10 Wire twist results. 

4.3.4 Influence of the wire twisting stiffness 

Having provided the results of the validation, it is worth evaluating the effect 

of the wire twisting stiffness on the structural response of the bearing. Wire 

twisting stiffness generates a twisting moment that is in the opposite direction 

to the twisting moment generated by the contact force. For this reason, the 

comparison between these two twisting moments provides information about 

the influence of the wire twisting stiffness.  

According to the geometrical data of the reference bearing, the formulation 

proposed in the previous chapter retrieves a wire twisting stiffness (𝑘𝑡𝑤) value 

of 4,670 [N·mm/rad]. To obtain the twisting resistance provided by the wire 

(𝑀𝑤), it is only necessary to multiply 𝑘𝑡𝑤 by the wire twisting value. 

The twisting moment generated by the contact force (𝑀𝐵) can be easily 

obtained from Equation (4.4) as follows:  

𝑀𝐵 = 𝐹𝐵 · 𝐿𝑅𝐶 · (𝑠𝑖𝑛(𝛼) · 𝑐𝑜𝑠(45° − 𝜃𝑊) − 𝑐𝑜𝑠(𝛼) · 𝑠𝑖𝑛(45° − 𝜃𝑊) (4.13) 

With this information, Table 4.3 compiles the values of both subjects under 

study for different levels of the 𝐶0𝑎. In addition to this, the relative value of 𝑀𝑤 

over 𝑀𝐵 is calculated to evaluate the influence of the wire twisting stiffness. It 

can be observed that the contribution of the wire twisting stiffness is not 

negligible, but not so relevant. However, the wire twisting values obtained with 

the analytical model are larger than the ones calculated using the FE model. 
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This means that the real contribution of the wire twisting stiffness may be even 

lower.  

Table 4.3 Wire twisting moment comparison. 

𝑪𝟎𝒂 𝑴𝑩 𝑴𝒘 𝑹𝒂𝒕𝒊𝒐 

[%] [𝑵 · 𝒎𝒎] [𝑵 · 𝒎𝒎] [%] 

25 288.73 11.63 4.0 

50 679.8 22.15 3.3 

75 1058.5 32.16 3.0 

100 1401.8 41.81 3 

4.4 Simplified formulation 

Because of the relatively low effect of the wire twisting stiffness on the 

bearing structural response, a simplified analytical model was also proposed. 

This simplified formulation do not consider the torsional spring that represents 

the wire twisting stiffness. This way, the rigid beam is fixed to the wire. This 

modification does not involve major modifications, since only the terms related 

to the torsional spring are suppressed. The resulting system of equations of the 

simplified formulation is presented below: 

 𝐹𝐵 · 𝑐𝑜𝑠(𝛼) − 𝑁2 − 𝜇 · 𝑁1 = 0 (4.2) 

 𝐹𝐵 · 𝑠𝑖𝑛(𝛼) − 𝑁1 − 𝑇2 = 0 (4.3) 

 
𝑇2 · 𝜆/2 − 𝜇 · 𝑁1 · 𝜆/2 + 𝐹𝐵 · 𝐿𝑅𝐶 · [𝑠𝑖𝑛(𝛼) · 𝑐𝑜𝑠(45° − 𝜃𝑊) − 

−𝑐𝑜𝑠(𝛼) · 𝑠𝑖𝑛(45° − 𝜃𝑊)] = 0 
(4.14) 

 𝐹𝐵 = 𝑘𝐵 · [√(𝑑 + 𝑦𝐵 − 𝑦𝑅𝐶)
2 + (𝑑 − 𝑥𝑅𝐶)

2 − √2 · 𝑑2]2/3 (4.5) 

 𝑥𝑤 =
𝑁2
2 · 𝑎

· (
1 − 𝜈1

2

𝜋 · 𝐸1
+
1 − 𝜈2

2

𝜋 · 𝐸2
) · [1 + 𝑙𝑛(

8 · 𝑎2

(
1 − 𝜈1

2

𝜋 · 𝐸1
+
1 − 𝜈2

2

𝜋 · 𝐸2
) ·

𝑁2
2 · 𝑎 · 𝜆

)] (4.6) 
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 𝑦𝑤 =
𝑁1
2 · 𝑎

· (
1 − 𝜈1

2

𝜋 · 𝐸1
+
1 − 𝜈2

2

𝜋 · 𝐸2
) · [1 + 𝑙𝑛(

8 · 𝑎2

(
1 − 𝜈1

2

𝜋 · 𝐸1
+
1 − 𝜈2

2

𝜋 · 𝐸2
) ·

𝑁1
2 · 𝑎

· 𝜆

)] (4.7) 

 𝑥𝑅𝐶 = 𝑥𝑤 − 𝐿𝑅𝐶 · [𝑐𝑜𝑠(45° − 𝜃𝑤) − 𝑐𝑜𝑠(45°)] (4.9) 

 𝑦𝑅𝐶 = 𝑥𝑅𝐶 − 𝐿𝑅𝐶 · [𝑠𝑖𝑛(45° − 𝜃𝑤) − 𝑠𝑖𝑛(45°)] (4.10) 

 𝑡𝑎𝑛 (𝛼) =
𝑑 + 𝑦𝐵 − 𝑦𝑅𝐶
𝑑−𝑥𝑅𝐶

 (4.11) 

 𝑦𝑊 = 𝜆/2 · 𝑠𝑖𝑛 (𝜃𝑤) (4.12) 

It can be seen how the system of equations is almost identical, only Equation 

(4.14) has undergone a minor modification and Equation (4.8) has been 

supressed. 

In terms of accuracy, the suppression of the torsional spring has no effect at 

all on the results of the analytical model. For this reason, it seems reasonable to 

continue with future developments based on the simplified analytical model. 

4.5 Final remarks 

This chapter presents an analytical model which was conceived as a 

simulation and design tool. Even though this path seemed to be focussed in the 

right direction, there is still margin for improvement. The adequate modelling 

of the initial contact status and its transition from stick to slip could result in a 

significant quality leap in comparison with the current formulation. Having said 

this, it is worth pointing out that it is no simple task. 

In this case, only axial behaviour is considered. It is true that this analytical 

model could be used to simulate tilting moment loads, since the behaviour of 

one bearing sector is the same, but the radial load case can be quite different. 

Nevertheless, the concepts presented in this contribution can be used as a solid 

foundation for a more complete analytical model where the whole load 

distribution model could be properly solved. 
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5 Crossed roller wire-race 

bearing analytical model 

5.1 Introduction 

The advantages that analytical models provide with respect to FE simulations 

were introduced in the previous chapter. However, they could not be evaluated 

in a practical manner, since the proposed analytical model was only suitable for 

the axial load case. In this case, the purpose of the modelling are the crossed 

roller wire-race slewing bearings. Some of the knowledge and procedures 

explained in the previous chapter are also applied in this one, but some other 

aspects and considerations are completely different. 

The analytical model is based on equations that represent the structural 

response of one sector with one rolling element under imposed external axial 

and radial displacements. These equations can represent the local deformations 

on the contacts or even consider the flexibility of the rings. To this end, a DoE 

with reduced FE models was performed. Once the behaviour of one sector is 

analytically formulated, a simulation algorithm is programmed to obtain the 

stiffness curves of the bearing and solve the load distribution problem. Finally, 

results obtained with the analytical calculation tool are compared with FE 

results with validation purposes. 

The previously described steps are represented in Figure 5.1 together with the 

related work that will be dealt with in Chapter 7. At this point, there is no need 

to explain the advantages of performing analytical calculations considering the 

flexibility of the rings. In addition, the possibility of considering only the 

stiffness of the contacts may also apply. On the one hand, it is useful to compare 

designs of different manufacturers ensuring the same boundary conditions 

whilst, on the other, the analytical formulation can be implemented in a FE 

model to replace the wires and the rollers. This way, not only the flexibility of 

the rings but also the stiffness of the adjacent structures can be also considered. 
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As it has been pointed out, the development of this efficient FE modelling 

strategy will be presented in Chapter 7. 

 

Figure 5.1 Summary of the development, implementation and validation of the analytical 
formulation. 

5.2 Analytical formulation for one sector 

5.2.1 Assumptions and simplifications 

In contrast to the four-point contact wire race slewing bearings, there is no 

previous work in this Doctoral Thesis regarding crossed roller wire-race slewing 

bearings. Therefore, the structural behaviour of this kind of bearings was 

completely unknown at the early stages of development. For this reason, it was 

considered appropriate to perform preliminary FE analysis to evaluate and 

study the phenomena that occur under load. To this end, there was no need to 

create a complex FE model; a half-sector cyclic symmetry FE model subjected 

to axial load was enough. The FE model developed for these analyses is the 

same that was later used in the validation process, which is properly introduced 

in detail in Section 5.5. 

Global 
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Some relevant phenomena were observed during these calculations. For 

example, the roller-wire contact remains in stick. This can be seen in the contact 

status represented in Figure 5.2a. As a result, the wire-roller-wire can be 

considered to behave as a single solid. This assumption significantly simplifies 

the conception of the analytical model. 

 

(a) 

 

(b) 

 

Figure 5.2 Contact status: (a) Roller-wire contact (results on the roller surface); (b) Wire-
ring contacts.  

The latter phenomenon also affects the wire-ring contacts status. When an 

external displacement is applied, the compatibility of deformations forces the 

wire-roller-wire to rotate. As it turns as a single solid, the wire-ring contacts are 

forced to slip (Figure 5.2b). This situation is highly advantageous when it comes 

to the development of the analytical model, since the friction forces can be 

modelled applying the Coulomb friction model. This means that the tangential 

forces are equal to the normal force multiplied by the friction coefficient . 

However, as can be seen in Figure 5.3, the rotation direction of the single solid 

depends on the direction of the external applied displacement. 
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Figure 5.3 Wire-roller-wire rotation and wire-ring friction forces (𝑭𝒇𝒓.) (IR and OR 

indicate inner and outer ring). 

The latter dependency forces to calculate the predominant external applied 

displacement that is exerted on the bearing sector. This can be easily carried out 

if each sector is considered to deform independently, in such a way that the 

deformation of one sector does not affect the adjacent ones. This consideration 

also allows for the development of the analytical model for one sector and to 

solve each one separately to ultimately compile the results and obtain the 

bearing response. 

5.2.2 Description of the analytical approach 

The procedure to develop the analytical model is quite similar to the one 

proposed in the previous chapter. However, the analytical formulation 

developed for one bearing sector is more versatile in this case, as all types of 

loads are considered. It is also based on a geometrical interference model, where 

the system of equations consists of the compatibility of deformations, force-

deformation relationships and equilibrium of forces. These type of bearings are 

composed by rollers in two orientations, so it is necessary to differentiate them. 

Hereinafter, rollers shown in Figure 5.3 will be called type A rollers and the 

ones oriented in the other direction, type B rollers. For the sake of clarity, 

explanations in this section will be made on the basis of type A rollers. The 

procedure by which to obtain the expressions of the analytical model for type 

B rollers is identical, as is the system of equations of the analytical model. The 

only difference lies in the load distribution model and results postprocessing, 

which require special attention. 

IR
OR IR

OR
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Figure 5.4 shows the deformed shape of a generic type A roller sector 𝑖 under 

axial ∆𝐴
𝑖  and radial ∆𝑅

𝑖  displacements. Considering that the analytical model is 

developed for slewing bearings, it is fair to say that the stiffness provided by 

both inner and outer rings is almost the same. Under this assumption, half 

displacement is applied to each ring, since there is a symmetry point at the 

centre of the roller. The sector displacements generate contact interferences 

and the subsequent geometrical deviations: ∆1
𝑖  and ∆2

𝑖  are the wire-ring 

interferences on the horizontal and vertical contacts, respectively, ∆3
𝑖  is the 

roller-wire interference, and 𝛼0 and 𝛼𝑖are the initial (unloaded) and final 

(loaded) contact angles, respectively. In terms of geometrical parameters, 𝐷𝑊 is 

the roller diameter, 𝜆 the wire diameter and 𝐷𝐶𝑊 the distance between wire 

centres (see Figure 5.4). 

 

Figure 5.4 Analytical model for type A roller: Deformations and forces. 

Regarding the forces that appear on the contacts due to the interferences, 

only the wire-ring normal contact forces (𝑁1
𝑖 , 𝑁2

𝑖) are considered to be system 

variables. Friction forces are represented by multiplication by the friction 

coefficient of friction 𝜇, since both contacts are assumed in slip. In a general 

case with both axial and radial displacements, the dominant component must 

be identified and then the direction of the friction forces accordingly defined; 

thus, if ∆𝐴
𝑖 > ∆𝑅

𝑖 · tan (𝛼0), the axial component prevails, and vice versa. If∆𝐴
𝑖 =
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∆𝑅
𝑖 · tan (𝛼0), the friction forces must be set to zero because the wire does not 

twist. The roller-wire contact always remains in stick, so the calculation of the 

contact forces is not so straightforward. Total contact force is the force that 

generates the equilibrium of the system, which is a combination of the latter 

forces and will be addressed later. 

Figure 5.5 shows the deformation compatibility between the imposed sector 

displacements and the resulting contact angle and interferences. 

 

Figure 5.5 Analytical model for type A roller: Geometrical relationships. 

Finally, based on all the considerations already pointed out, the system of 

equations that defines the analytical model can be presented. As friction forces 

direction depends on the prevailing relative displacement between rings, a plus-

minus (±,∓) sign strategy was considered to be appropriate. The upper signs 

correspond to prevailing ∆𝐴
𝑖  and the lower signs to prevailing ∆𝑅

𝑖 . This way, both 

equation systems for each case can be represented as a single set. 

The first group formed by Equations (5.1) to (5.3) consists of force-

deformation relationships, where 𝑘1, 𝑘2 and 𝑘3 are stiffness constants. 

Depending on the value of these constants, they can represent the local or 

global behaviour of the bearing. Local behaviour only considers the local 

deformations of the contacts, while the global behaviour also represents the 

flexibility of the rings. The value of these constants depends on the bearing 

geometry and its calculation method will be explained in the next section, 

together with the reason behind its linear behaviour assumption. 

λ/2

λ/2

)
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Equations (5.4) and (5.5) represent the compatibility of deformations. These 

equations relate the initial geometry with the deformed system under the action 

of imposed external displacements. 

The last Equation (5.6) is obtained from the equilibrium of moments with 

respect to the wire centre. 

 𝑁1
𝑖 = 𝑘1 · ∆1

𝑖  (5.1) 

 𝑁2
𝑖 = 𝑘2 · ∆2

𝑖  (5.2) 

 (𝑁2
𝑖 ± 𝜇 · 𝑁1

𝑖) · 𝑐𝑜𝑠(𝛼𝑖) + (𝑁1
𝑖  ∓ 𝜇 · 𝑁2

𝑖) · 𝑠𝑖𝑛(𝛼𝑖) = 𝑘3 · ∆3
𝑖  (5.3) 

 𝐷𝐶𝑊/2 · 𝑐𝑜𝑠(𝛼0)=∆𝑅
𝑖 /2 − ∆2

𝑖 + (𝐷𝐶𝑊/2 − ∆3
𝑖 ) · 𝑐𝑜𝑠(𝛼𝑖) (5.4) 

 𝐷𝐶𝑊/2 · 𝑠𝑖𝑛(𝛼0)=∆𝐴
𝑖 /2 − ∆1

𝑖 + (𝐷𝐶𝑊/2 − ∆3
𝑖 ) · 𝑠𝑖𝑛(𝛼𝑖) (5.5) 

 𝑁2
𝑖 · ((𝐷𝐶𝑊/2 − ∆3

𝑖 ) · 𝑠𝑖𝑛(𝛼𝑖)) − 𝑁1
𝑖 · ((𝐷𝐶𝑊/2 − ∆3

𝑖 ) · 𝑐𝑜𝑠(𝛼𝑖)) 

±𝜇 · 𝑁1
𝑖 · (((λ/2−∆1

𝑖 ) + (𝐷𝐶𝑊/2 − ∆3
𝑖 ) · 𝑠𝑖𝑛(𝛼𝑖)) ± 

± 𝜇 · 𝑁2
𝑖 · ((λ/2 − ∆2

𝑖 ) + (𝐷𝐶𝑊/2 − ∆3
𝑖 ) · 𝑐𝑜𝑠(𝛼𝑖)) = 0 

(5.6) 

The resolution of this non-linear system of equations obtains the results for 

one individual sector in terms of the system variables. Nevertheless, roller-wire 

contact forces do not form part of the equation system; they are relevant results 

though, since they indicate the static load capacity of the bearing. To obtain 

these forces, simple geometrical relationships can be applied. Total contact 

force and angle are obtained with Equations (5.7) and (5.8). The latter force can 

be projected on the normal and tangential directions. The normal contact line 

is defined by the contact angle 𝛼𝑖, so the projected forces can be obtained by 

means of Equations (5.9) and (5.10). 

 𝐹𝑇𝑜𝑡.
𝑖 = √(𝑁1

𝑖  ∓ 𝜇 · 𝑁2
𝑖)
2
+ (𝑁2

𝑖 ± 𝜇 · 𝑁1
𝑖)
2
 (5.7) 

 𝛼𝑇𝑜𝑡.
𝑖 = 𝑎𝑡𝑎𝑛 (

(𝑁1
𝑖  ∓ 𝜇 · 𝑁2

𝑖)
2

(𝑁2
𝑖 ± 𝜇 · 𝑁1

𝑖)
2) (5.8) 

 𝐹𝑁
𝑖 = 𝐹𝑇𝑜𝑡

𝑖 · 𝑐𝑜𝑠(𝛼𝑇𝑜𝑡
𝑖 − 𝛼𝑖) (5.9) 

 𝐹𝑇𝑔
𝑖 = 𝐹𝑇𝑜𝑡

𝑖 · 𝑠𝑖𝑛(𝛼𝑇𝑜𝑡
𝑖 − 𝛼𝑖) (5.10) 
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5.3 Stiffness constants approach 

5.3.1 Study of the contact behaviour 

The purpose of the analytical model relies on serving as a multiparametric 

simulation tool, where every bearing geometry can be properly simulated. For 

this reason, the formulation includes constants such as geometrical or 

operational parameters, which can change depending on the bearing under 

study. With regard to the latter, stiffness constants 𝑘1, 𝑘2 and 𝑘3 are not an 

exception. 

In general, contact stiffness formulations that can be found in the literature 

were developed considering simple contact geometries under specific loads and 

boundary conditions. In the case of cylinder-plane contact, formulae were 

developed considering plane strain assumption. This means that the applied 

load is distributed along the cylinder and the plane surface is part of an elastic 

half-space. In this case, roller-wire and wire-ring contacts do not match these 

assumptions. Roller-wire contact is a cylinder-plane contact with a distributed 

load, but the wire is far from being an elastic half-space. This means that the 

stress and deformation distribution on the wire is quite different from that 

expected by the formulations. Wire-ring contacts can be considered as cylinder-

plane contacts, but in this case, the load transmitted by the roller cannot be 

assumed as distributed. Besides this, there are rollers in two different directions, 

so a certain wire has a roller contact every two sectors (360°/𝑁𝑅 · 2), which is a 

significant distance between contacts. For all these reasons, the behaviour of 

the contacts had to be studied in greater detail. 

Preliminary FE simulations were carried out in Ansys® with the FE model of 

Figure 5.6(a) to study the response of the contacts. Only one eighth of a sector 

was modelled taking advantage of the cyclic symmetry and symmetry planes. As 

usual for these kind of bearings, steel was selected as the material for the roller 

and wire, and aluminium for the rings. It is worth mentioning that only a 

partition of the ring with a depth of 𝜆/2 was modelled, since it was considered 

enough to contain the local effects of the contact. All contacts were defined as 

frictional (𝜇 = 0.1) with a penetration tolerance of 0.1 [μm]. The external 

surfaces of the ring partition were clamped, and symmetry boundary conditions 

were applied to the cyclic symmetry cutting surfaces. Finally, the load was 

applied to the roller as a displacement 𝛿 in the direction of the contact angle, 

until the static load capacity was reached. 
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The response of each contact in terms of stiffness can be obtained from the 

normal contact forces (𝑁1, 𝑁2, 𝑁3) and normal contact deformations (𝛿1, 𝛿2, 𝛿3) 

shown in Figure 5.6 (b). The deformations of wire-ring contacts are defined as 

the horizontal and vertical displacements of the wire centre, and therefore the 

roller-wire deformation is the difference between the imposed displacement 

and the wire centre displacement. This way, the evolution of the contact 

stiffness can be studied via force-deformation plots. Figure 5.6(c) shows the 

stiffness curve of a wire-ring contact for a given generic bearing geometry, 

which is enough to observe the contact behaviour. This plot revealed that the 

force-deformation response can be divided into two sections; in the first section 

the behaviour is linear and suffers a slight stiffening in the second one. 

  
 

(a) (b) 

 

(c) 

Figure 5.6 (a) Local FE model; (b) Forces and displacements in the reduced FE model; (c) 
Wire-ring contact force/deformation curve. 

This variation in the stiffness behaviour is caused by the modification of the 

wire-ring contact geometry. These bearings are designed with a gap between 

the wire and the ring. When low or moderate loads are applied to the bearing, 

Linear Non Linear
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this gap remains open and the forces are transmitted through two contact lines. 

Figure 5.7(a) shows the contact status of generic wire-ring contacts under this 

condition. Nevertheless, this gap closes as a consequence of the contact 

deformation suffered under high load values. This situation is represented in 

Figure 5.7(b), where the contact status indicates that the gap has disappeared 

and a significant area has turned to stick. 

 

 
 

 

(a) 

 

 
 

 

(b) 

Figure 5.7 Wire-Ring gap closure phenomenon schema and pressure distribution: (a) 
Open gap; (b) Closed Gap. 

There is an inherent difficulty when it comes to representing the contact 

behaviour analytically. For this reason, only the linear section of the stiffness 

curve was considered to represent the stiffness of the contact. In this sense, 

accurate results will be obtained for low and moderate loads, and conservative 

results for high loads. This decision could pose a problem for certain 

applications, but considering the applied safety coefficients and bearings design 

criteria, it is fair to say that accurate results are obtained in the design area. 
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5.3.2 Design of Experiments 

At this point, FE simulations seems to be an appropriate way for the 

calculation of 𝑘1, 𝑘2 and 𝑘3. Nevertheless, the idea of performing FE 

simulations for each bearing geometry and introducing the stiffness constants 

in the analytical model is not practical. For this reason, the best option consisted 

in performing a Design of Experiments (DoE) FE campaign and approach 

polynomial formulae to the results. This way, the values of the stiffness 

constants can be obtained immediately for every bearing geometry within the 

design space. 

 

 

(a)  (b) 

Figure 5.8 Contact geometry parameters. 

The parameters selected for the DoE are directly related with the contact 

geometry definition, as shown in Figure 5.8a. The main geometrical parameter 

that defines the proportions of the bearing cross-section, is the rolling element 

diameter (𝐷𝑤). For this reason, it deserved to be the first parameter of the DoE. 

Besides, the other parameters were normalized with respect to 𝐷𝑤 in order to 

obtain coherent values in the matrix of experiments. The ratio between the wire 

and roller diameter (𝜆/𝐷𝑤) was the second parameter, since it defines the 

contact geometry of the wire-ring contact and the potential size of the raceway. 

Equation (5.11) defines the third parameter, which indicates the size of the wire 

raceway in terms of how much wire material was machined to create it. A null 

raceway factor (𝑅𝑓) value means that no race has been machined on the wire so 

the contact is non-conformal (𝑅𝑓 = 0 → 𝐷𝑤 + 𝜆 = 𝐷𝑐𝑤). Moreover, a 𝑅𝑓 value 

equal to 1 indicates that half of the wire section was removed (𝑅𝑓 = 1 → 𝐷𝑤 =

𝐷𝑐𝑤). 
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 𝑅𝑓 = 1 +
1

𝜆/𝐷𝑤
−

1

𝜆/𝐷𝑐𝑤
 (5.11) 

Once the parameters are defined, the number of design points and the range 

of the parameters must be defined. A 3 level full factorial DoE was considered 

to be good enough to represent the main and crossed effects in addition to non-

linearities. The matrix of experiments shown in Figure 5.8b contains the 27 

design points and the values of the design parameters, which are based on 

catalogue values [28] and information provided by Iraundi S.A. 

5.3.3 FE models 

The multiparametric FE models developed for the simulation campaign are 

addressed in this section. Depending on the method used to obtain 𝑘1, 𝑘2 and 

𝑘3, they can represent the local deformations of the contacts (local behaviour) 

or include the flexibility of the rings (global behaviour). To achieve this, two 

multiparametric FE models were developed (see Figure 5.10), one for the type 

A roller and another one for the type B roller, from where local and global 

stiffness results can be obtained. As will be explained later, this is possible 

because these FE models are basically the local FE model of Figure 5.6a with 

extended ring geometry. 

A problem arose when trying to model the ring geometry, since the same 

bearing geometry can have multiple ring sizes. To deal with this problem, the 

standard ring geometry proposed in [15] was used. This standard geometry 

defines the four-point contact slewing bearing ring geometry according to 𝐷𝑤. 

It is true that it was not designed for wire-race bearings and it is not directly 

applicable; however, it obtains good results if the ring geometry is defined as a 

function of the housing 𝐻, instead on 𝐷𝑤. The standard wire-race bearing ring 

geometry is shown in Figure 5.9, and the parameters that define the dimensions 

in Table 5.1. It was proven that common values of 𝐷𝑝𝑤 and fill factor did not 

have effect the stiffness constant values. 
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Figure 5.9 Wire-race bearing standard geometry according to [15]. 

Table 5.1 Standard geometry parameters [15]. 

𝑫𝒑𝒘 𝜶𝟎 Fill Factor 𝑹𝒘𝒉 𝑹𝑳 𝑹𝑯 𝑹𝑳𝒈 𝑯𝒈 

[mm] [°] [%] [mm]    [mm] 

420 45 100 3.9 1.9 2.15 0.1 3 

Once the ring geometry is established, the multiparametric FE models for the 

calculation of the global stiffness constants can be presented. These two models 

are shown in Figure 5.10, where it can be seen how the models consist of the 

local model mesh with additional ring geometry. This ring add-on was meshed 

with larger second order hexahedrons and connected to the ring contact 

partition via a bonded contact based on a penalty formulation and with a 

penetration tolerance of 3 [μm]. The average DoF of the models was 

approximately 371,535. The load was also introduced as an imposed 

displacement in the direction of the contact angle, until the static load capacity 

[9] was reached. In terms of boundary conditions, the surface in contact with 

the surrounding structures was fixed and symmetry boundary conditions were 

applied to the symmetry faces. 
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(a) (b) 

Figure 5.10 FE models for the calculation of the global stiffness constants: (a) Type A 
roller; (b) Type B roller. 

The procedure to obtain the local force-deformation results was identical to 

the one used in the previous section. The only difference lies in the calculation 

of 𝛿1 and 𝛿2, that, for these models, is the relative displacement between the 

wire centre and the end of the refined ring zone. For the global force-

deformation results, 𝛿1 and 𝛿2 not only represent the local deformations of the 

contacts within the defined refined volume, but also the deformations of the 

ring in its direction. To achieve this, the considered deformations are the 

displacements of the wire centre, which includes the contact stiffness and the 

flexibility of the rings. 

Finally and according to the matrix of experiments, a total of 27 design points 

per FE model results in a 54 FE analyses campaign, with the related pre and 

postprocessing tasks. 

5.3.4 Results and formulae approach 

As has already been mentioned, only the initial linear section of the stiffness 

curves was considered for the approximation. The stiffener non-linearity 

occurred at around 35-53% of the static load capacity, within the scope of the 
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defined DoE. This means that the stiffness constants are accurate from zero 

until that range and more flexible from there on, which can be considered as 

conservative. Figure 5.11 shows the results of the FE simulations and 𝑘1, 𝑘2 and 

𝑘3 approximations for the central point of the matrix of experiments (see Figure 

5.8b). Stiffness constants values for this case, which gave the approximate lines 

in the plots, are compiled in Table 5.2. 

 

 

 

 

Figure 5.11 Comparison between FEM results and 𝒌𝟏, 𝒌𝟐 and 𝒌𝟑 approximated lines. 
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Table 5.2 Stiffness constants values of the DoE central case. 

[𝑵/𝒎] × 𝟏𝟎𝟔 Local 

Global 

Type A roller Type B roller 

𝒌𝟏 411.4 341.5 109.9 

𝒌𝟐 398.5 268.6 147.4 

𝒌𝟑 508.8 502.5 498.3 

As can be expected, 𝑘1 and 𝑘2 local results (which consider only contact 

deformations) are more rigid than the global ones (which also consider ring 

deformations). In addition, type B roller global results are much more flexible 

because of the longer path followed by the load. In contrast, the type A roller 

load path is basically a diagonal between fixed faces. Regarding 𝑘3, local and 

global results tally. This is not surprising, since the flexibility of the rings is 

considered in the wire-ring contacts (𝑘1 and 𝑘2) and not in the roller-wire 

contact (𝑘3). 

Results in all design points of the DoE are quite similar to the latter ones, so 

it was found appropriate to approach one engineering formula to each stiffness 

constant for the local and global cases. This results in a total of seven 

expressions, three for 𝑘1 (local, global for type A rollers and global for type B 

rollers), three for 𝑘2 (idem) and one for 𝑘3. Different functional forms were 

considered to approach the results and obtain a simple and accurate formula. A 

polynomial form that included first order, second order and cross terms was 

finally used. The terms were adjusted to the results by the least squares method 

and the ones that had no relevance were supressed in order to simplify the 

formula. The following polynomial formula was the result of this approach:  

 
𝑘 = 𝑐 + 𝑐𝐷𝑤 · 𝐷𝑤𝑛 + 𝑐𝜆 · 𝜆𝑛 + 𝑐𝑅𝑓 · 𝑅𝑓𝑛 + 

+𝑐𝐷𝑤𝜆 · 𝐷𝑤𝑛 · 𝜆𝑛 + 𝑐𝐷𝑤𝑅𝑓 · 𝐷𝑤𝑛 · 𝑅𝑓𝑛 
(5.12) 

Being: 

 𝐷𝑤𝑛 = (𝐷𝑤 − 13)/(20 − 13) (5.13) 
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 𝜆𝑛 = (𝜆/𝐷𝑤 − 0.65)/(0.75 − 0.65) (5.14) 

 𝑅𝑓𝑛 = (𝑅𝑓 − 0.6)/(0.8 − 0.6) (5.15) 

Where coefficients 𝑐, 𝑐𝐷𝑤, 𝑐𝜆,𝑐𝑅𝑓,𝑐𝐷𝑤𝜆and𝑐𝐷𝑤𝑅𝑓 are listed in Table 5.3. 𝐷𝑤 

must be expressed in [mm] for the proper calculation of 𝐷𝑤𝑛. It was proven 

that second order terms and the cross term between 𝑅𝑓𝑛 and λ𝑛 did not have 

significance, so they were removed. 

Table 5.3 Coefficient values for the stiffness constants formula. 

Local 

[𝑁/𝑚] × 106 𝒄 𝒄𝑫𝒘𝒏 𝒄𝛌𝐧 𝒄𝑹𝒇𝒏 𝒄𝑫𝒘𝛌 𝒄𝑫𝒘𝑹𝒇 

𝑘1 379.0 219.5 58.0 -49.5 34.3 -30.3 

𝑘2 368.4 209.4 54.6 -47.9 33.3 -26.3 

𝑘3 467.1 253.0 50.7 66.2 27.5 35.5 

Global type A roller 

[𝑁/𝑚] × 106 𝒄 𝒄𝑫𝒘𝒏 𝒄𝛌𝐧 𝒄𝑹𝒇𝒏 𝒄𝑫𝒘𝛌 𝒄𝑫𝒘𝑹𝒇 

𝑘1 331.1 189.8 52.4 -40.9 30.4 -25.6 

𝑘2 262.1 150.9 33.7 -27.8 19.8 -17.5 

Global type B roller 

[𝑁/𝑚] × 106 𝒄 𝒄𝑫𝒘𝒏 𝒄𝛌𝐧 𝒄𝑹𝒇𝒏 𝒄𝑫𝒘𝛌 𝒄𝑫𝒘𝑹𝒇 

𝑘1 111.1 66.1 6.1 -8.2 4 -5.2 

𝑘2 150.4 91.1 17.3 -9.5 11.6 -7.4 
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The relative error of the approaches was less than 5% for any case within the 

defined design space. Besides this, linear or almost linear behaviour was 

observed among the main and crossed effects. 

5.4 Simulation algorithm for all the sectors 

All the information presented until now has been focused on representing 

the structural response of one wire-race bearing sector with any geometry. This 

methodology has little applicability on its own, since it can only calculate the 

response of one sector under axial and radial external displacements. However, 

a true simulation tool must obtain bearing stiffness curves and solve the load 

distribution problem for the whole bearing. For this reason, it was necessary to 

build a simulation algorithm with those capabilities. This task may seem simple 

considering that the analytical formulation has already been developed. 

Nevertheless, it is not so straightforward to achieve the proposed goals. 

The first step consisted of developing an algorithm that obtained the 

structural response of the whole bearing under certain external imposed 

displacements. Of course, this algorithm is based on the analytical formulation 

for one sector previously introduced. Once the structural response of the 

bearing can be calculated, a simulation algorithm based on nested functions is 

proposed. In order to simplify understanding, explanations start on the surface 

and expand into the algorithm. The first subsection introduces the main block, 

the most superficial level. Next, two blocks can be found; one to obtain the 

static load capacity and stiffness, and another with the optimization process that 

solves the load distribution problem. 

5.4.1 Bearing solver 

The bearing solver block, as its name suggests, is responsible for calculating 

the structural response of the bearing under external applied displacements. 

The proposed algorithm solves the analytical formulation for each sector and 

gathers the results to obtain the response of the whole bearing. 

The first step to solve the formulation for one sector 𝑖 consists of calculating 

the external displacements that are applied over it. The bearing can be subjected 

to three different external imposed displacements: axial (𝛥𝐴), radial (𝛥𝑅) and 

tilting angle (𝜑𝑡) with their respective orientations (𝜃𝑅 , 𝜃𝑡). Besides this, a rolling 

element preload (𝛿𝑝) can be introduced, where the contact interference can be 

represented as a combination of axial and radial external imposed 



Chapter 5. Crossed roller wire-race bearing analytical model 119 

 

displacements. Finally, sector external applied displacements are calculated with 

Equations (5.16) and (5.17), which are based on the schema in Figure 5.12. The 

first equation calculates the axial displacement applied to one sector (𝛥𝐴
𝑖 ) as the 

contributions of the bearing imposed axial displacement (𝛥𝐴), tilting angle (𝜑𝑡) 

and the axial component of the preload (𝛿𝑝). The second equation distributes 

the radial imposed displacement (𝛥𝑅) to each bearing sector (𝛥𝑅
𝑖 ) and also 

considers the radial component of the preload (𝛿𝑝). 

 𝛥𝐴
𝑖 = 𝛥𝐴 + 𝜑𝑡 · 𝐷𝑝𝑤/2 · 𝑠𝑖𝑛(θ𝑡 − 𝜃

𝑖) + 𝛿𝑝 · 𝑠𝑖𝑛(𝛼0) (5.16) 

 𝛥𝑅
𝑖 = 𝛥𝑅 · 𝑐𝑜𝑠(θ𝑅 − 𝜃

𝑖) + 𝛿𝑝 · 𝑐𝑜𝑠(𝛼0) (5.17) 

 

Figure 5.12 External imposed displacements. 

The next step after calculating the displacements that one sector 𝑖 supports, 

consists of evaluating whether the rolling element suffers compression or loses 

the contact. To this end, the theoretical contact interference (𝑒𝑖) must be 

calculated. The interferences that generate each type of displacement for each 

roller type are indicated in Table 5.4, where the sign of the interference is 

positive if compression occurs and negative if the contact surfaces move away. 

The contact interference (𝑒𝑖) is obtained in Equation (5.18) as the sum of the 

interferences generated by each type of displacement (𝑒𝐴
𝑖 , 𝑒𝑅

𝑖 , 𝑒𝑡
𝑖) and the 

preload; if the value of 𝑒𝑖 is positive, contact happens. 

 𝑒𝑖 = 𝑒𝐴
𝑖 + 𝑒𝑅

𝑖 + 𝑒𝑡
𝑖 + 𝛿𝑝 (5.18) 
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Table 5.4 Contact interferences for pure load cases. 

Axial ring displacement 𝜟𝑨 

Compression direction Tension direction 

Type A roller Type B roller Type A roller Type B roller 

    
Contact (+) Separation (–) Separation (–) Contact (+) 

𝑒𝐴
𝑖 = ∆𝐴 · 𝑠𝑖𝑛 (𝛼0) 

Radial ring displacement 𝜟𝑹 

(𝜽𝑹 − 𝟗𝟎°) < 𝜽
𝒊 < (𝜽𝑹 + 𝟗𝟎°) (𝜽𝑹 + 𝟗𝟎°) < 𝜽

𝒊 < (𝜽𝑹 − 𝟗𝟎°) 

Type A roller Type B roller Type A roller Type B roller 

    
Contact (+) Contact (+) Separation (–) Separation (–) 

𝑒𝑅
𝑖 = ∆𝑅 · cos (𝜃𝑅 − 𝜃

𝑖) · cos (𝛼0) 

Angular ring displacement 𝝋𝒕 

(𝜽𝒕 − 𝟏𝟖𝟎°) < 𝜽
𝒊 < (𝜽𝒕) (𝜽𝒕) < 𝜽

𝒊 < (𝜽𝒕 + 𝟏𝟖𝟎°) 

Type A roller Type B roller Type A roller Type B roller 

    
Contact (+) Separation (–) Separation (–) Contact (+) 

𝑒𝑡
𝑖 = (𝜑𝑡 · 𝐷𝑝𝑤/2) · sin (𝜃𝑡 − 𝜃

𝑖) · sin (𝛼0) 

/2)· 

sin( )

/2)·

( )

( /2)· 

( )

/2)· 

( )
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Both steps explained until this point are carried out for each sector at the 

beginning of the loop, as the flowchart in Figure 5.13 illustrates. After this, the 

path splits in two. If the contact interference is negative, the rings separate from 

each other and contact does not happen. In this case, the variables of the system 

of equations are set to zero and the contact angle to its initial value. This way, 

there is no need to solve the system of equations, which is more efficient in 

terms of computational cost. 

 

Figure 5.13 Solver block flowchart. 

On the other hand, if the contact interference is positive, compression of the 

rolling element occurs and the system formed by Equations (5.1) to (5.6) is 

solved depending on the predominant (𝛥𝐴
𝑖 , 𝛥𝑅

𝑖 ). The sector calculation does not 

Solve equation system

Bearing results calculation:

- Bearing reaction forces.

- Maximum contact pressure.

Solver

Contact interference calculation:

Contact
Yes No

No

Set variables to:

Sector imposed displacements calculation:

Yes

Sector results calculation:

- Contact force and angle: 

- Projected forces: 
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end here, since the results are oriented in the radial direction defined by 𝜃𝑖. In 

order to gather force results and obtain the reactions on the bearing, the results 

of each sector have to be referred to one reference coordinate system. Figure 

5.14 shows the sector reaction forces and the distances to the axes of the 

reference coordinate system for type A and type B rollers (subscripts A or B). 

Based on that, Equations (5.19), (5.20) and (5.21) projects sector reaction forces 

results on the reference coordinate system, and Equations (5.22) to (5.23) also 

calculates the moments generated. It is worth recalling that friction forces 

direction varies depending on the predominant (𝛥𝐴
𝑖 , 𝛥𝑅

𝑖 ), so the same plus-minus 

(±,∓) criterion employed for the sector analytical formulation is used (upper 

signs for predominant 𝛥𝐴
𝑖  and lower signs for predominant 𝛥𝑅

𝑖 ). 

 

(a) 

 

(b) 

Figure 5.14 Inner ring reaction forces and distances to the bearing center: Type B roller; 
Type A roller. 
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𝐹𝑥
𝑖 = (𝑁2𝐴

𝑖 ± 𝜇 · 𝑁1𝐴
𝑖 ) · 𝑐𝑜𝑠 (𝜃𝑖) 

𝐹𝑥
𝑖 = (𝑁2𝐵

𝑖 ± 𝜇 · 𝑁1𝐵
𝑖 ) · 𝑐𝑜𝑠 (𝜃𝑖) 

(5.19) 

 
𝐹𝑦
𝑖 = (𝑁1𝐴

𝑖  ∓ 𝜇 · 𝑁2𝐴
𝑖 ) 

𝐹𝑦
𝑖 = (−𝑁1𝐵

𝑖 ± 𝜇 · 𝑁2𝐵
𝑖 ) 

(5.20) 

 
𝐹𝑧
𝑖 = (𝑁2𝐴

𝑖 ± 𝜇 · 𝑁1𝐴
𝑖 ) · 𝑠𝑖𝑛 (𝜃𝑖) 

𝐹𝑧
𝑖 = (𝑁2𝐵

𝑖 ± 𝜇 · 𝑁1𝐵
𝑖 ) · 𝑠𝑖𝑛 (𝜃𝑖) 

(5.21) 

𝑀𝑥
𝑖 = −𝑁1𝐴

𝑖 · (
𝐷𝑝𝑤

2
−
𝐷𝑐𝑤 · 𝑐𝑜𝑠(𝛼

𝑖)

2
) · 𝑠𝑖𝑛(𝜃𝑖) ∓ 𝜇 · 𝑁1𝐴

𝑖 · 𝑠𝑖𝑛(𝜃𝑖)·  

· (
𝐷𝑐𝑤
2
· 𝑠𝑖𝑛(𝛼𝑖) +

𝜆

2
) − 𝑁2𝐴

𝑖 · 𝑠𝑖𝑛(𝜃𝑖) · (
𝐷𝑐𝑤
2
· 𝑠𝑖𝑛(𝛼𝑖)) ± 

± 𝜇 · 𝑁2𝐴
𝑖 · (

𝐷𝑝𝑤

2
−
𝐷𝑐𝑤 · 𝑐𝑜𝑠(𝛼

𝑖)

2
−
𝜆

2
) · 𝑠𝑖𝑛(𝜃𝑖)  

𝑀𝑥
𝑖 = 𝑁1𝐵

𝑖 · (
𝐷𝑝𝑤

2
−
𝐷𝑐𝑤 · 𝑐𝑜𝑠(𝛼

𝑖)

2
) · 𝑠𝑖𝑛(𝜃𝑖) ± 𝜇 · 𝑁1𝐵

𝑖 · 𝑠𝑖𝑛(𝜃𝑖)·  

· (
𝐷𝑐𝑤
2
· 𝑠𝑖𝑛(𝛼𝑖) +

𝜆

2
) + 𝑁2𝐵

𝑖 · 𝑠𝑖𝑛(𝜃𝑖) · (
𝐷𝑐𝑤
2
· 𝑠𝑖𝑛(𝛼𝑖))  ∓  

∓  𝜇 · 𝑁2𝐵
𝑖 · (

𝐷𝑝𝑤

2
−
𝐷𝑐𝑤 · 𝑐𝑜𝑠(𝛼

𝑖)

2
−
𝜆

2
) · 𝑠𝑖𝑛(𝜃𝑖) 

(5.22) 

𝑀𝑧
𝑖 = 𝑁1𝐴

𝑖 · (
𝐷𝑝𝑤

2
−
𝐷𝑐𝑤 · 𝑐𝑜𝑠(𝛼

𝑖)

2
) · 𝑐𝑜𝑠(𝜃𝑖) ± 𝜇 · 𝑁1𝐴

𝑖 · 𝑐𝑜𝑠(𝜃𝑖)·  

· (
𝐷𝑐𝑤
2
· 𝑠𝑖𝑛(𝛼𝑖) +

𝜆

2
) + 𝑁2𝐴

𝑖 · 𝑐𝑜𝑠(𝜃𝑖) · (
𝐷𝑐𝑤
2
· 𝑠𝑖𝑛(𝛼𝑖))  ∓  

∓ 𝜇 · 𝑁2𝐴
𝑖 · (

𝐷𝑝𝑤

2
−
𝐷𝑐𝑤 · 𝑐𝑜𝑠(𝛼

𝑖)

2
−
𝜆

2
) · 𝑐𝑜𝑠(𝜃𝑖)  

𝑀𝑧
𝑖 = −𝑁1𝐵

𝑖 · (
𝐷𝑝𝑤

2
−
𝐷𝑐𝑤 · 𝑐𝑜𝑠(𝛼

𝑖)

2
) · 𝑐𝑜𝑠(𝜃𝑖) ∓ 𝜇 · 𝑁1𝐵

𝑖 · 𝑐𝑜𝑠(𝜃𝑖)·  

· (
𝐷𝑐𝑤
2
· 𝑠𝑖𝑛(𝛼𝑖) +

𝜆

2
) − 𝑁2𝐵

𝑖 · 𝑐𝑜𝑠(𝜃𝑖) · (
𝐷𝑐𝑤
2
· 𝑠𝑖𝑛(𝛼𝑖)) ±   

± 𝜇 · 𝑁2𝐵
𝑖 · (

𝐷𝑝𝑤

2
−
𝐷𝑐𝑤 · 𝑐𝑜𝑠(𝛼

𝑖)

2
−
𝜆

2
) · 𝑐𝑜𝑠(𝜃𝑖)  

(5.23) 

Once the results for all the sectors have been calculated (𝑖 = 𝑁𝑅), it is time to 

gather the results and obtain the response of the bearing. This is an easy task, 

since the force reaction results for every sector are referred to the same 
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Cartesian coordinate system. Equations (5.24) gathers the results of the sectors 

to obtain the response of the bearing. 

𝐹𝑥 =∑𝐹𝑥
𝑖

𝑁𝐵

𝑖=1

 𝐹𝑦 =∑𝐹𝑦
𝑖

𝑁𝐵

𝑖=1

 𝐹𝑧 =∑𝐹𝑧
𝑖

𝑁𝐵

𝑖=1

 𝑀𝑥 =∑𝑀𝑥
𝑖

𝑁𝐵

𝑖=1

 𝑀𝑧 =∑𝑀𝑧
𝑖

𝑁𝐵

𝑖=1

 (5.24) 

Nevertheless, these results are not the output of the solver. It is more 

convenient for the methodology to retrieve the forces in the direction of the 

imposed displacements, which are the inputs. To this end, Equations (5.25) and 

(5.26) transform the forces and moments in the 𝑥 and 𝑧 directions into the θR 

and θt directions. The force in the 𝑦 direction does not require transformation, 

since it coincides with the axial direction. 

 𝐹𝑅 = 𝐹𝑥 · 𝑐𝑜𝑠(𝜃𝑅) + 𝐹𝑧 · 𝑠𝑖𝑛 (𝜃𝑅) (5.25) 

 𝑀𝑡 = 𝑀𝑥 · 𝑐𝑜𝑠(𝜃𝑡) + 𝑀𝑧 · 𝑠𝑖𝑛 (𝜃𝑡) (5.26) 

The last indicator to be calculated is the maximum contact pressure. To this 

end, the first step consists of identifying the highest loaded rolling element. 

Then, the maximum contact pressure is calculated using Equation (1.23). 

Finally, results are exported as output and the solver block is completed. This 

is the deepest block in the simulation algorithm, but it was considered 

appropriate to introduce it in first place to simplify the understanding of the 

whole algorithm. 

5.4.2 Main block 

Once the bearing solver block is explained properly, the whole structure of 

the simulation algorithm can be introduced. To this end, blocks will be 

explained from the surface to the interior of the algorithm. This block is 

relatively simple, as it can be seen in the Figure 5.15 flowchart. The first part 

consists in collecting and checking the geometrical parameters of the bearing. 

On the one hand, if any of the data is inconsistent, an error message pops up 

and the simulation aborts the calculation. This happens if the number of rollers 

is uneven or if it exceeds the maximum allowable number. Besides this, contact 

may not occur if the roller diameter is too small or the wire cross-section can 

be too small if the roller diameter is too big. On the other hand, there are minor 

inconsistencies that the user must only be notified of by means of a warning 

message. For example, there could be interference between the roller and the 
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ring which can be solved by means of slight machining on the ring. In addition, 

notice must also be provided if the values of the data do not fall within the 

design space of the DoE. Once the data has been checked, the user can select 

the problem to solve, the static load capacity and stiffness, or the load 

distribution problem. The first option obtains the local and global force-

deformation curves for pure axial, radial and tilting moment loads until the 

static load capacity. Besides this, for comparison purposes, static load capacity 

is also calculated with the expressions proposed in the ISO-76 standard [24,25]. 

If the user is interested in solving the load distribution problem, the external 

applied loads must be also introduced. These loads are a combination of axial 

(𝐹𝐴
𝑖𝑛𝑝𝑢𝑡

), radial (𝐹𝑅
𝑖𝑛𝑝𝑢𝑡

) and tilting moment (𝑀𝑡
𝑖𝑛𝑝𝑢𝑡

) loads, with their respective 

angular orientation (𝜃𝑅
𝑖𝑛𝑝𝑢𝑡

, 𝜃𝑡
𝑖𝑛𝑝𝑢𝑡

). The resolution of this problem provides the 

contact status (contact or no contact) of all the rolling elements, the contact 

forces, contact angles and the maximum contact pressure. 

 

Figure 5.15 Main block flowchart. 
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5.4.3 Static load capacity and stiffness block 

This routine is ordered from the main block, and its function consists in 

obtaining the static load capacity and stiffness curve for each pure load case 

(axial, radial and tilting). Figure 5.16 illustrates the flowchart of this block, where 

the first step is focused on calculating the maximum allowable contact force. 

Several explicit formulae can be found in the literature; however, the best results 

were obtained from a formula derived from the reference book written by 

Harris and Kotzalas [31]. These expressions have been previously introduced 

in Section1.4.1 as Equation (1.23) and Equation (1.24), which can be used to 

obtain the steel-steel contact pressure (𝜎) at any point of the contact patch and 

the contact semiwidth (𝑏). These equations can be combined to obtain the 

maximum allowable contact force of Equation (5.27), which happens to be in 

the centre of the contact 𝑦 = 0 [mm] at 4000 [MPa] of contact pressure [24,25]. 

It is also worth mentioning that the units of this formula are [N] and [mm]. 

 𝑄𝑚𝑎𝑥 = 221.5 · 𝑙 · 𝐷𝑊 (5.27) 

 

Figure 5.16 Static load capacity and stiffness block flowchart. 
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The next step consists of calculating the axial, radial and tilting displacements 

imposed on the rings, which generate the maximum allowable contact force. 

To this end, a simple iterative process was programmed for each pure load case. 

This process starts setting an initial approximate solution, which is basically a 

small value of imposed pure displacement (∆𝐴0, ∆𝑅0, 𝜑𝑡0). Then, this 

displacement input is entered in the solver block, which calculates the contact 

forces, contact angles and bearing reaction forces resulting from the application 

of the imposed displacements. After this, the error function of Equation (5.28) 

is evaluated, which consists of the square of the difference between the 

maximum allowable contact force (𝑄𝑚𝑎𝑥) and the normal contact force of the 

most loaded roller (𝐹𝑁). 

 𝐸𝑟𝑟𝑜𝑟 = (𝑄𝑚𝑎𝑥 − 𝐹𝑁)
2 (5.28) 

The first iteration always obtains a significant error, so a new value of 

imposed displacement closer to the solution has to be calculated and entered in 

the solver block again. The new displacement value is calculated by multiplying 

the displacement of the current iteration by the coefficient of Equation (5.29). 

This coefficient (𝐶𝑠) relates the target force (𝑄𝑚𝑎𝑥) with the result of the current 

iteration (𝐹𝑁). The iterative process is repeated until the error is smaller than the 

tolerance (𝑡𝑜𝑙. = 10 [N2]), which happens to be quite quickly. 

 𝐶𝑠 = 𝑄𝑚𝑎𝑥/𝐹𝑁  (5.29) 

Once the iterative process converges to a solution, bearing force-deformation 

plots and the static load capacity are saved. 

5.4.4 Load distribution problem block 

As indicated in the previous section, imposed displacements are the inputs, 

and reaction forces the outputs of the solver block. However, the load 

distribution problem has applied forces as inputs and deformations as outputs. 

Dealing with this issue may seem simple, but solving this problem is far from 

easy, since this is the most complex block of the methodology. 

The non-linear nature of the solver block demands an iterative process to 

solve the load distribution problem. This iterative process is more complex than 

the previous one, where it was only necessary to find the displacement that 

generated the target force in the same direction. In this case, the objective 
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consists in finding the combination of the three displacements that generate the 

desired reaction forces. The fact that three variables appear now calls for a 

robust iterative process. For this reason, a Taylor series based optimization 

process was considered a good option. Equations (5.30), (5.31) and (5.32) are 

the Taylor series that relate the variability of the external forces to the 

deformations of the bearing, where superscript 𝑗 indicates the iteration number. 
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(5.32) 

In the previous equations, forces of iteration 𝑗 + 1 are actually the input 

forces. The terms of the previous equations can be rearranged in the matrix 

form of Equation (5.33). This way, the Jacobian matrix, the vector of 

independent terms and the vector of unknowns, which are the displacements 

of iteration 𝑗 + 1, compose the system of equations.  
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(5.33) 

Partial derivatives were obtained according to the following expressions: 
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(5.34) 

Where 휀 is a coefficient small enough to ensure the convergence. This value 

is initially set to 0.1, but the optimization process do not always converge at 

first. If that happens, 휀 is divided by 10 and the optimization starts again. This 

strategy has shown good results, since convergence is usually achieved in few 

iterations. 

As it can be observed in the flowchart of Figure 5.17, the initial solution 

considered for the first iteration of the optimization (𝑗 = 1) consists on null 

displacements. After this, four simulations are performed: one with the initial 

solution and other three where 휀 is added independently to each displacement 

of the initial solution. Then, the Jacobian matrix and the vector of independent 

terms can be built from the results of the simulations. The resolution of the 

system of Equations (5.33) retrieves the optimized displacements ∆𝐴
𝑜𝑝𝑡

, ∆𝑅
𝑜𝑝𝑡

 and 
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𝜑𝑡
𝑜𝑝𝑡

, which are presumably closer to the desired solution. These optimized 

displacements are introduced in the solver block, and the optimized loads 𝐹𝐴
𝑜𝑝𝑡

, 

𝐹𝑅
𝑜𝑝𝑡

 and 𝑀𝑡
𝑜𝑝𝑡

 calculated. To evaluate if the optimized displacements retrieve 

the desired target loads, the function error of Equation (5.35) is evaluated. This 

equation gathers the squares of the differences between the optimized loads 

and the input target loads. The optimization process is restarted if the error 

function is greater than the tolerance (1% of the input force values), but 

considering the optimized displacements of the current iteration as initial 

solution. In contrast, if the error function is smaller than the tolerance, the 

optimization process is completed. 

𝐸𝑟𝑟𝑜𝑟 = (𝐹𝐴
𝑖𝑛𝑝𝑢𝑡
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 (5.35) 

 

Figure 5.17 Load distribution problem block flowchart. 
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5.5 FE validation 

The validation process followed to assess the accuracy of the simulation tool 

is presented in this section. The procedure is similar to the one used in Chapter 

4, which consisted of a comparison between FE and analytical results. This is a 

good alternative to assess the accuracy of the simulation tool, since the loads 

and boundary conditions considered in the simulation tool can be replicated in 

FE. Nevertheless, it is very difficult to perform FE calculations with combined 

load cases, because of the large size and convergence problems that they imply. 

For this reason, the simulations carried out for the validation consisted of pure 

axial, radial and tilting moment load cases. Besides this, two different cases have 

to be modelled: the local and the global structural behaviour. The local case 

only represents the stiffness of the contacts and the global case includes the 

flexibility of the rings. These two cases have implications on the modelling and 

the boundary conditions of the FE models. 

The first step to start the FE validation process consists of defining a 

reference bearing geometry. Geometrical and operational data of the reference 

bearing geometry are gathered in Table 5.5. These parameters are close to the 

ones used in previous chapters and similar values can be also found in the 

industry. Finally, this geometry is entered in the FE models and in the 

simulation tool to perform the results comparison. 

Table 5.5 Reference bearing geometry data. 

𝑫𝒑𝒘 𝑫𝒘 𝝀 𝑹𝒇 𝜶𝟎 𝜹𝒑 𝑵𝑹 𝝁 

[mm] [mm] [mm]  [°] [µm]   

420 14 8 0.5 45 20 94 0.1 

The first FE models to be presented are the ones used for the axial load case, 

since they are the most simple. Axial load and bearing geometry are cyclic 

symmetric, so a one sector FE model could be modelled to represent the 

behavior of the whole bearing. In addition to this, a sector of the bearing has a 

symmetry plane, so just half a bearing sector is enough for the axial load 

validation. Figure 5.18 shows the FE models developed for the validation of 

this load case and the applied boundary conditions. It is worth mentioning that 

the mesh is identical to the one used in the FE models to obtain the stiffness 

constant values (Figure 5.10). 
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Only the ring contact zones were considered for the local FE model and the 

whole ring for the global FE model. Roller-wire and wire-ring contacts were 

defined as frictional with Augmented Lagrange formulation, a friction 

coefficient of 𝜇 = 0.1, a maximum penetration tolerance of 1 [µm] and updating 

the contact stiffness each iteration. Just in case a preload needs to be applied to 

the rolling element, this can be done by applying a contact offset on the roller-

wire contact in a preliminary load step. The bonded contact defined to connect 

the contact ring partition with the rest of the ring in the global FE model, was 

defined with a maximum penetration tolerance of 3 [µm] and a pure penalty 

formulation. 

In terms of boundary conditions, symmetry boundary conditions were applied 

on all symmetry faces of both FE models. The external load was applied via 

imposed displacements on certain faces of the outer ring. These imposed 

displacements were applied in the axial direction, constraining the DoF in the 

other two directions. These faces were the cutting faces on the local FE model 

and the faces that link the bearing with the surrounding structures on the global 

FE model. The same faces of the inner ring were fixed in order to avoid rigid 

body motion. 

 

 

(a) (b) 

Figure 5.18 Sector FE validation models: (a) Local; (b) Global; 

With the FE models for the axial load case presented, it is time to present the 

FE models for the radial and tilting moment load cases. These load cases are 

not cyclic symmetric, but do have a symmetry plane. This simplification allows 

Rigid faces Fixed faces
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for building only half bearing FE models, which are larger than the previous 

ones but far more efficient than whole bearing models. 

It is simple to build these models after the creation of the half sector FE 

models, since it is only necessary to perform a circular pattern along 180 [°] with 

the revolution axis in the centre of the bearing. To avoid convergence problems, 

only rollers that suffer compression were modelled. It is easy to identify them 

by applying the methodology presented in section 0. Figure 5.19 shows the 

mesh and boundary conditions for each local and global FE model. The radial 

and tilting moment loads are applied by means of a remote node created in the 

centre of the bearing. This remote node is rigidly linked to the surfaces where 

the load is applied, and transmits radial or tilting angle external displacements. 

 

(a) 

 

(b) 

Figure 5.19 Half bearing FE validation models: (a) Local; (b) Global. 

Stiffness curves, normal contact force and contact angle distribution were the 
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capacity computed by the analytical model is compared with the theoretical limit 

of 4000 [MPa]. 

Figure 5.35, Figure 5.36 and Figure 5.37 show the stiffness curves comparison 

for the local and global models of the three pure load cases studied. Stiffness 

curves reach the static load capacity calculated with the analytical simulation 

tool, which happens when the maximum allowable contact pressure is reached 

in the most loaded roller. Since the analytical tool can perform calculations with 

preloaded and non-preloaded rollers, it was considered adequate to validate 

both alternatives. However, preload could only be applied for the axial load 

case, because it was the only load case that did not present convergence 

problems. The other two load cases were unable to converge due to the loss of 

contact when the load started to be applied (all the contacts were loaded initially 

because of the preload). 

Both analytical and FE results match fairly well at first glance. It can be seen 

that the non-linear behavior of the non-preloaded FE results, which are linear 

in the first section and become stiffer at around half of the static load capacity. 

This behaviour is caused by the wire-ring gap closure phenomenon, explained 

in Section 5.3.1. Up to this point, the analytical tool is accurate showing 

excellent compliance; however, a slight deviation can be observed. There are 

some potential root causes for this behaviour. For example, the stiffness 

constants were obtained from an approximate formula that can introduce a 

small error that stiffens the results. In addition to this, all the assumptions and 

simplifications made for the development of the analytical formulation can also 

introduce small errors. It is worth mentioning this phenomenon, but it is not 

significant enough to consider the compliance as not being very good. 

Axial stiffness curves are similar and the static load capacity is the same in all 

cases. The stiffer behaviour that is seen at the beginning of the preloaded case 

is caused by the rollers that will lose contact further on. They are initially loaded 

because of the preload, and the axial force has to deal with it. Once the preload 

is overcome and the rollers lose contact, the trend is equivalent to the non-

preloaded situation. 

Regarding the radial and tilting moment load cases, there is a more significant 

difference between the local and global stiffness curves. Besides, the static load 

capacity is lower in these two load cases under global conditions. The causes of 

these phenomena are easily recognizable observing the next performance 

indicators results. 



Chapter 5. Crossed roller wire-race bearing analytical model 135 

 

 
(a) 

 
(b) 

Figure 5.20 Axial load case stiffness curves comparison: (a) No roller preload; (b) 20 [µm] 
roller preload. 

 

Figure 5.21 Radial load case stiffness curves comparison. 

 

Figure 5.22 Tilting moment load case stiffness curves comparison. 
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After comparing the stiffness curves, it was deemed appropriate to compare 

the normal contact force and contact angle results. These results provide 

important information about the behavior of the bearing and are crucial to 

calculate the static load capacity of the bearing. The plots that represent these 

results can only display them at one load level; for this reason, Figure 5.23 to 

Figure 5.30 show the normal contact force and contact angle on all the rolling 

elements at 50% of the calculated static load capacity. The choice of this load 

level was based on its proximity to the gap closure phenomenon, which was the 

limit until the assumptions made are valid. Nevertheless, similar results are 

obtained for 100% of the static load capacity.  

Regarding the axial load, the four studied cases present almost perfect 

agreement. There is a small deviation of 0.2 degrees in the global condition 

cases, which can be considered negligible. The other two load cases, radial and 

tilting moment loads, also show very good correlation. The effect of the local 

and global behaviour conditions is more evident in these two cases, since type 

A and B rollers are loaded simultaneously. The imposed sector displacement 

must be distributed between contact and ring deformation. On the one hand, 

the contribution of the ring deformation is small for type A rollers, so the 

contact deformation must absorb the external imposed displacement. On the 

other hand, the flexibility of the rings absorbs a significant proportion of the 

external imposed displacement in the case of type B rollers. Since the stiffness 

of the contact is higher than the stiffness provided by the rings (in the global 

models), it is reasonable that type A rollers transmit more force than type B 

rollers. This difference in the force level between type A and B rollers increases 

the gap between the local and global stiffness curves. However, this 

phenomenon is not so evident in the axial load case, since only type A rollers 

are loaded. There is also a fact that confirms the correct representation of the 

stiffness and physical phenomena of the system. The loads are applied as 

external imposed displacements and it was proven that the load distribution was 

obtained properly. Achieving these results is more difficult with imposed 

displacements than with applied forces, where it is easier to obtain the proper 

load distribution regardless of the deformations. 
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Figure 5.23 Axial load case for 50% of the 𝑪𝟎𝒂 with local models: normal contact force 
and angle. 

 

Figure 5.24 Axial load case for 50% of the 𝑪𝟎𝒂 with global models: normal contact force 
and angle. 
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Figure 5.25 Axial load case (20 [µm] preload) for 50% of the 𝑪𝟎𝒂 with local models: 
normal contact force and angle. 

 

Figure 5.26 Axial load case (20 [µm] preload) for 50% of the 𝑪𝟎𝒂 with global models: 
normal contact force and angle. 
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Figure 5.27 Radial load case for 50% of the 𝑪𝟎𝒂 with local models: normal contact force 
and angle. 

 

Figure 5.28 Radial load case for 50% of the 𝑪𝟎𝒂 with global models: normal contact force 
and angle. 
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Figure 5.29 Tilting moment load case for 50% of the 𝑪𝟎𝒂 with local models: normal 
contact force and angle. 

 

Figure 5.30 Tilting moment load case for 50% of the 𝑪𝟎𝒂 with global models: normal 
contact force and angle. 

It can be seen how the maximum normal contact force is the same in all the 

studied cases with both local and global conditions. This is obvious, since the 

maximum allowable contact load is defined by the contact geometry, and all the 

plots were obtained for 50% of the static load capacity. Nevertheless, the static 
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load capacity is different depending on the boundary conditions. The lower load 

level of type B rollers under global conditions reduces the force transmitted by 

the bearing when the static load capacity is reached. Table 5.6 gathers the values 

of the static load capacity calculated with the ISO-76 standard [24,25] and with 

the analytical tool. In line with the comments made in this section, the static 

load capacity obtained with the analytical tool is almost the same for the axial 

load case in both local and global conditions. However, there is a significant 

difference when it comes to the radial and tilting moment load case.  

The results of the standard can only be compared with the analytical tool 

results with local conditions, since the assumptions made for its calculation are 

similar. As a result, it can be stated that the standard is conservative for static 

load capacity calculation. Nonetheless, it must be mentioned this is not the case 

for the global conditions, where the static load capacity for tilting moment loads 

is smaller. 

Table 5.6 Static load capacity comparison. 

 ISO-76 Standard An. Tool Local An. Tool Global 

𝑪𝟎𝒂 [kN] 694.72 753.59 751.79 

𝑪𝟎𝒓 [kN] 277.89 377.70 299.93 

𝑪𝟎𝒎 [kN·m] 72.95 79.32 61.99 

The comparison of the static load capacity is relevant, but no evidence has 

been provided to this point that confirms that the static load capacity is 

calculated properly with the analytical tool. For this reason, Figure 5.31 to 

Figure 5.34 represent the FE pressure lines along the major axis of the most 

loaded contact when the static load capacity is reached. Each pressure point in 

the plots corresponds to the pressure on one contact element, which was 

obtained as the average of the element nodal pressures (with the ETABLE 

command in Ansys®).  

The pressure peaks at the edges of the raceway are probably the first things 

that can be noticed at first glance. The roller-wire contact is always truncated 

on the major axis, and large non-realistic pressure peaks appear because of the 

edge effects and the linear material assumption. These pressure peaks can be 

avoided to a great extent by applying a wire edge geometry correction such as 
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the one suggested by Gunia and Smolnicki [159] and commented in the 

literature review section. Besides this, a small roller crowning could also be 

applied to reduce this phenomenon even more. 

Pressure lines are not uniform, they are slightly tilted. The tangential friction 

forces that appear in the roller-wire contact are the reason for this behaviour. 

It is worth mentioning that the tilt is in one or another direction depending on 

the predominant sector imposed displacement, since the pressure lines tilt in 

one direction for the axial and tilting moment load case and in the opposite for 

the radial load case. 

If the pressure peaks are not taken into account, the pressure along the 

contact does not reach the maximum allowable pressure of 4000 [MPa]. For 

this reason, it can be said that the analytical simulation tool obtains excellent 

results, but slightly underestimates the static load capacity for all the studied 

load cases. This means that the analytical model is slightly conservative but still 

more accurate than the current methodologies. The formula used in the 

analytical algorithm to obtain the pressure (Equation (1.23)) considers a 

cylinder-plane contact with uniform applied load, with no tilt and no edge 

effects. Therefore, a perfect match was not expected. 

 

Figure 5.31 Axial load case roller-wire contact major axis pressure lines. 

 

Figure 5.32 Axial load case (with 20 [µm] roller preload) roller-wire contact major axis 
pressure lines. 
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Figure 5.33 Radial load case roller-wire contact major axis pressure lines. 

 

Figure 5.34 Tilting moment load case roller-wire contact major axis pressure lines. 

This point concludes the validation process of the analytical simulation tool. 

The performance indicators results comparison between the analytical tool and 

FE models tally in all of the study cases. For this reason, it can be asserted that 

the analytical calculation can be used to obtain the bearing stiffness curves and 

the static load capacity, and also to solve the load distribution problem 

accurately. 

5.6 Results 

Up to this point, the performance of the analytical simulation tool was only 

tested with pure load cases. For this reason, the purpose of this section consists 

in showing its complete calculation potential by means of a more complex 

calculation example. 

For the sake of simplicity and coherence, the reference bearing geometry 

presented in the previous section is also used here. The geometrical and 

operational data of Table 5.5 are enough to calculate the stiffness curves and 

the static load capacity of the bearing. Figure 5.35, Figure 5.36 and Figure 5.37 

show the force-deformation results of the bearing until the static load capacity, 

where both local and global boundary conditions results are shown. The axial 

curves are the same ones that were presented in the previous section. However, 
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the radial and tilting moment curves are new, since non-preloaded results were 

provided then. It can also be seen that, in these load cases, the preload produces 

the same behaviour previously shown for the axial load case. 

 

Figure 5.35 Axial stiffness curves. 

 

Figure 5.36 Radial stiffness curves. 

 

Figure 5.37 Tilting stiffness curves. 
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The static load capacity values calculated with the simulation tool are 

compiled and compared with the values obtained with the ISO-76 [24,25] 

formulae in Table 5.7. It can be noticed that the values are very similar to the 

ones shown in Table 5.6. Slightly higher values were obtained in this case as a 

result of the introduction of preloaded rollers. However, the values calculated 

with the standard are the same, since the preload cannot be considered. 

Table 5.7 Calculated static load capacity. 

 ISO-76 Standard An. Tool Local An. Tool Global 

𝑪𝟎𝒂 [kN] 694.72 754.35 752.57 

𝑪𝟎𝒓 [kN] 277.89 388.18 306.97 

𝑪𝟎𝒎 [kN·m] 72.95 81.51 63.45 

To solve the load distribution problem, it is necessary to introduce the load 

values that act on the bearing. Table 5.8 shows the values and orientation of the 

applied forces selected for this simulation. In this table, a drawing of the loads 

orientation is represented together with an indication of the nomenclature of 

the normal contact forces. 

Table 5.8 Load values and orientations for the load distribution problem. 

𝑭𝑨 

[kN] 

𝑭𝑹 

[kN] 

𝜽𝑹 

[°] 

𝑴𝒕 

[kN·m] 

𝜽𝒕 

[°] 

30 130 30 20 110 

  
Outer ringInner ring
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The load distribution problem can be solved considering local or global 

boundary conditions. Surprisingly, very similar results are obtained in terms of 

contact results. This does not mean that the boundary conditions have no 

effect, since the deformation of the rings is very different. However, the applied 

forces are the same, and in order to reach the equilibrium, the loads are 

distributed almost identically. For this reason, only results with the global 

boundary conditions are presented in this section. 

The rollers contact status is the first result that the analytical simulation tool 

obtains. Figure 5.38 represents the applied loads and the contact status of the 

rollers at the end of the simulation. 

 

Figure 5.38 Contact status. 

Figure 5.39 shows the normal contact force distributions at the end of the 

simulation. In this plot, the effect of each load in the load distribution is better 

appreciated. Axial force compresses type A rollers and separates type B rollers, 

but this load is relatively low. On the other side, the higher radial load 

compresses all the rollers between  𝜃𝑅 + 90° and 𝜃𝑅 − 90°, with the maximum 

peak being at 𝜃𝑅. At this point, type A rollers in the vicinity of 𝜃𝑅 should be the 

most loaded rollers. Nevertheless, the applied tilting moment has a significant 

effect. In this case, tilting moment between 𝜃𝑡 and 𝜃𝑡 − 180° induces a tension 

axial force, and a compression axial force between 𝜃𝑡 and 𝜃𝑡 + 180°. This 

compresses type B rollers and unload type A rollers in the 𝜃𝑡 and 𝜃𝑡 − 180° 

section; the opposite behaviour occurs in the section between 𝜃𝑡 and 𝜃𝑡 + 180°. 

The effect of all the applied loads explains the final load distribution. 
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Figure 5.40 represents the contact angle for each rolling element. From this 

plot, information about the sector predominant imposed displacement can be 

deduced. Radial displacement is predominant on all type B rollers and on type 

A rollers between 297 and 107 [°], since the contact angle variations are positive. 

Negative contact variations means that the axial displacement is predominant, 

which is the case for the other half of type A rollers. Some type B rollers do not 

appear on this plot because they lose the contact and there is no point in 

representing a contact angle value. 

 

Figure 5.39 Normal contact force results. 

 

Figure 5.40 Contact angle results. 

Finally, the normal contact force on the most loaded roller reached the 59% 

of the maximum allowable contact force. As a result, a contact pressure of 3080 

[MPa] was generated in that contact.
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6 Experimental validation of 

crossed roller wire-race 

bearing models 

6.1 Introduction 

According to the previous chapters, it can be stated that the methodology of 

this Thesis is highly dependent on FE analyses. The physical phenomena that 

occur during the loading process were observed on FE results and the 

mechanical behaviour of the bearings was obtained by the same means. This 

way, the analytical models developed to represent the mechanical behaviour of 

the bearings under study were conceived after the evaluation of FE analyses 

results. Besides this, the accuracy of the analytical models was assessed via a 

results comparison with an equivalent FE model. With all this, it was deemed 

appropriate to evaluate the validity of the FE models used for the 

aforementioned purposes. This chapter presents the methodology and results 

of the experimental test campaign carried out to validate the FE models, and 

therefore, the analytical formulation, which was developed based on and 

validated by these FE models. 

Some state-of-the-art test benches of different sizes were presented in Section 

1.4.7. Usually, the most versatile test benches are large, complex and very 

expensive. For this reason, they belong to manufacturers [135,136] and 

powerful research centres [119,139–141,143] and are not generally available for 

more modest research organizations. However, less ambitious experimental 

tests can be carried out with simpler test benches [102,160]. In this case, the 

second option was considered to be most appropriate. Besides this, the 

objective of validating the FE models can be achieved with this strategy. 
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In the following sections, the methodology to carry out the setup of the test 

bench and the experimental test campaign are explained. Finally, the results 

obtained are presented and compared with the equivalent FE model results. 

6.2 Methodology of the experimental test 

In this section, the whole process followed to carry out the experimental tests 

is presented. First, the test bench used to perform the tests is introduced. Then, 

the selection process of the bearings to be tested is explained together with the 

design of the specific clamping tools. Finally, the experimental test campaign 

proposed for the validation of the FE models is presented. 

6.2.1 Test bench 

As has been mentioned, the adaptation of an available test bench is a good 

option to validate the FE models used in this Thesis. With that in mind, the 

Servosis ME 405-30 test bench, located in the E.I.B. of Bilbao, was found to 

be a good alternative. This machine was designed to perform tension-

compression tests on different kinds of specimens, depending on the installed 

clamping tools. A picture of the test bench with its main components is 

provided in Figure 6.1. Regarding the test bench features, its mechanical 

transmission system formed by two spindles can apply a maximum load of 300 

[kN]. The distance between the columns allows to test a bearing with an external 

diameter of up to 600 [mm]. In terms of control, the PCD2K software was 

developed specifically by the manufacturer for these kinds of benches. This 

software allows for the tests to be performed by the introduction of loads or 

displacements, depending on the convenience. The load cell placed in the 

middle of the machine bridge provides the reaction force in real time and the 

encoder that measure the deformations have a resolution of 10 [µm]. 

Considering these characteristics and after some preliminary calculations, this 

test bench was considered to be appropriate for performing bearing axial 

compression tests. Nevertheless, this strategy presents a relevant drawback; it 

is necessary to design and manufacture specific clamping tools for the bearings 

under study. Besides this, external measurement devices must be arranged for 

two reasons. Firstly, bearing deformations are very small and the machine 

measuring system does not have enough resolution. Secondly, the machine 

measures the deformation of the whole kinematic chain. 
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It is true that the bearing FE models used in this thesis are also subjected to 

radial and tilting moment loads. However, performing these kinds of tests 

would require a specific bearing test bench like the ones mentioned in the 

introduction. Besides this, the purpose of the experimental tests consist of the 

validation of the FE models, and that can be made with the evaluation of the 

axial load case. Of course, an extended validation including additional load cases 

would be interesting, but not necessary. 

 

 

Figure 6.1 Servosis ME 405-30 test bench. 

6.2.2 Test specimens 

The design of the bearings under study is an important task, since they must 

be able to provide relevant results and also meet the characteristics of the test 

bench. An experimental test campaign is expensive and tedious, so everything 

must be planned in order to obtain the maximum return. In this sense, two 

specimens of two different bearing designs were considered to be tested so as 

to obtain more diverse results. Both bearing designs must be similar, since the 

clamping tools will be the same for both of them; but they must be also different 

enough to obtain conclusions. For this reason, both bearings have the same 

external ring geometry and the only difference between them lies in the 

geometry of the wire-roller-wire subset and the rings housing. To this end, 

1
2

3 3

4

5 6

1. Controller
2. Motor and transmission
3. Spindles

4. Load cell
5. Clamping tolos
6. Manual control
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several FE analysis were performed until both bearing geometries were 

different enough but within the design space considered for the development 

of the analytical model. The geometry of the rings was obtained, as is usual in 

this thesis, with the standard ring geometry [15]. Of course, the geometry of the 

rings was determined with the larger housing bearing (bearings 3 and 4 in Table 

6.1). Finally, this table also shows the geometrical data of the other bearing 

geometry to be tested. To provide a more visual representation of the bearing 

designs, the cross-section of both alternatives are shown in Figure 6.2. It is 

worth also mentioning the layout of the assembly bolts, which were arranged 

in such a way that the tightening process was easily performed from the top 

side. 

Table 6.1 Test bearings geometrical data. 

𝑫𝒑𝒘 𝑫𝒘 𝝀 𝑹𝒇 𝜶𝟎 𝑯 𝑵𝑹 𝑪𝟎𝒂 Label 

[mm] [mm] [mm]  [°] [mm]  [kN]  

400 14 8 0.8 45 19 72 652.6 Bearings 1-2 

400 16 10 0.4 45 25.56 62 660.3 Bearings 3-4 

 

  

(a) (b) 

Figure 6.2 Bearing designs cross-section: (a) Bearings 1-2; (b) Bearings 3-4. 

6.2.3 Clamping tools and test assembly 

As has been mentioned, specific clamping tools had to be designed and built 

to test the aforementioned bearings. The development of the clamping tools 

may seem a simple task, but they should be as light and stiff as possible. Light 

tools simplify the assembly process and the stiffness avoids measurement 

errors. Besides this, any misalignment between the tools can result in non-

desired loads. With all this in mind, some FE analyses were carried out to obtain 
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the final result of Figure 6.3. The whole test assembly is depicted in this figure. 

The lower tool is made of one piece, which is connected to the test machine by 

means of a male-female joint locked with a pin. This connection is relevant 

since the load is transmitted through the pin. The upper tool is similar but more 

complex; it was made of two parts and an axial spherical bearing. The 

installation of an axial spherical bearing aims to reduce problems caused by lack 

of parallelism and prevent the introduction of undesirable tilting moments. The 

three parts that compose the clamping tools were manufactured in AISI 1042 

steel finished with a bluing treatment. Since weight is a relevant issue, both 

upper and lower clamping tools weigh 64 and 48 [kg] respectively. All the 

drawings of the clamping tools can be found in Appendix C. In order to allow 

the assembly-disassembly process and lift the whole tool, a retention bolt 

connected both parts. Additional handles and eyebolts were added to simplify 

the assembly of the tools. 

 

 

Figure 6.3 Bearing test assembly. 
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Regarding the necessary additional measuring equipment to record only the 

deformation of the bearing, four Mitutoyo IP42 543-470B dial indicators were 

applied every 90 degrees, as shown in Figure 6.3. These dial indicators had a 

micrometric resolution and a maximum permissible error of ±3 [µm] 

(certificates of inspection can be found in Appendix D). Finally, the whole test 

assembly is shown in Figure 6.4. 

 

(a) 

 

(b) 

Figure 6.4 Test assembly: (a) Front view; (b) Rear view. 
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6.2.4 Experimental test campaign 

Once the bearings and the components of the test assembly are ready, it is 

time to define the tests to be performed. First, it is important to study if the 

bolt preload affects the FE models and analytical models. For this reason, there 

were two groups of tests: with no bolt preload and with bolt preload. No bolt 

preload tests consisted of bolts tightened with a wrench until the eventual tool-

bearing gaps were removed. Conversely, the same tests were performed but 

applying a bolt preload equivalent to 50% of the maximum allowable preload. 

Bolt preload was applied with a manual torque wrench (Figure 6.5), so the value 

of the torque to be applied had to be calculated. To do this, Equation (6.1) was 

used, where 𝑇𝑚𝑎𝑥. is the maximum allowable torque, 𝐾 is the friction coefficient, 

𝜎𝑦𝑝 is the yield stress, 𝐴𝑒𝑞. is the equivalent stress area and 𝑑𝑛 is the nominal 

bolt diameter. 

 𝑇𝑚𝑎𝑥. = 𝐾 · (𝜎𝑦𝑝 · 𝐴𝑒𝑞.) · 𝑑𝑛 (6.1) 

The friction coefficient of the bolt (𝐾𝑓) can be calculated with Equation (6.2); 

where 𝜇 and 𝜇′ are the friction coefficients between threads and between the 

bolt head and the surface, 𝜆𝑏 is the helix angle and 𝛼𝑏 is the thread angle. 

 
𝐾𝑓 = 0.5 ·

𝜇 + 𝑡𝑔(𝜆𝑏) · 𝑐𝑜𝑠(𝛼𝑏)

𝑐𝑜𝑠(𝛼) − 𝜇 · 𝑡𝑔(𝜆𝑏)
+ 0.625 · 𝜇′ (6.2) 

Bolts data are gathered in Table 6.2, where the M8 bolts correspond to the 

inner ring and the M10 bolts to the outer ring. The friction coefficient was low 

since the bolts were lubricated with WD-40 oil before each assembly. 𝑇𝑏 is the 

bolt preload to be applied for each bolt type. 

Table 6.2 Bolt data. 

 Grade 𝒅𝒏 𝑨𝒆𝒒. 𝝈𝒚𝒑 𝝁 𝝁′ 𝑲𝒇 𝑻𝒃 

  [mm] [mm2] [MPa]    [N·m] 

M8 8.8 8 36.6 640 0.1 0.1 0.145 27.28 

M10 8.8 10 58 640 0.1 0.1 0.144 53.66 

Inner ring bolts were tightened as shown in Figure 6.5, but the outer ring 

bolts were tightened while the bearing was supporting a load of 10 [kN]. This 
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procedure was established to allow the upper clamping tool to accommodate 

the spherical bearing and recover the centred position before bolt tightening. 

 

Figure 6.5 Bolt tightening with the torque wrench. 

Regarding the sources of uncertainty related with the assembly process, it is 

important to control irregular or low bolt preload (non-preloaded bolts case) in 

conjunction with bearing misalignment. In order to control these phenomena, 

each bearing is removed and reassembled in a different position before each 

test. To evaluate this, it was considered enough to perform three tests for each 

bearing and tightening methodology; this makes a total of six assemblies per 

bearing. 

Repeatability for each assembly is another phenomenon that has been taken 

into consideration. For this purpose, each loading process is repeated four times 

for each assembly. The first loading process aims to accommodate the bearing 

for the test and the other three to assess the repeatability of the results. The 

first loading process retrieved non-realistic results in all cases, so it was 

discarded. This way, possible measuring or loading errors can be easily 

discriminated. Each loading process consists of introducing a compressive load 

in steps, reading the deformations on the dial indicators. The maximum load 

was established at 200 [kN], since it was not desirable to reach the maximum 

load of the test bench. Besides this, these tests were conceived to be non-

destructive, and greater loads may generate excessive permanent deformations 

on the races. However, it is a relevant load value considering that the axial static 

load capacity of both bearing designs is around 650 [kN] (calculated with the 

methodology proposed in Chapter 5). Besides this, according to manufacturers, 
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these kind of bearings do not usually exceed 20% of the static load capacity 

during operation. 

At this point, a brief summary together with Figure 6.6 may help to 

understand the experimental test campaign. There are two bearing designs and 

two specimens per design. The same tests must be performed with and without 

bolt preloading. Three tests were planned for each bearing and preload case, 

where the bearing is reassembled on the test rig for each test. Each test consists 

of four loading processes. In summary, each bearing is assembled 6 times and 

subjected to 24 loading processes, making a total of 24 assemblies and 92 

loading processes. 

 

Figure 6.6 Experimental test campaign for one bearing specimen. 

6.3 Results and FE models validation 

The results of the experimental test campaign are presented in this section. It 

was considered appropriate to gather only the most relevant results in such a 

way that everything is clear and understandable. However, all the results 

obtained from the experimental test campaign are included in Appendix B. 

6.3.1 Effect of the bearing assembly 

First of all, it is worth mentioning the effect that the assembly has on the 

bearing load distribution. For example, Figure 6.7 shows the measurements of 

the dial indicators for Bearing 2 at the 4th loading process of tests 1 and 2 for 

the bolt preload case. On the one hand, it can be seen how the deformations of 

the first plot are even and only a compressive force is acting. On the other hand, 

the deformations on the second plot indicate that a tilting moment load was 

introduced in combination with the axial load. This behaviour is most probably 

caused by misalignment between the bearing and the clamping tools.  

No Bolt

Preload

Bearing i

Bolt

Preload

Test 1 - Assembly 4 x Loading process

Test 2 - Assembly 4 x Loading process

Test 3 - Assembly 4 x Loading process

Test 1 - Assembly 4 x Loading process

Test 2 - Assembly 4 x Loading process

Test 3 - Assembly 4 x Loading process
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(a) 

 

(b) 

 

Figure 6.7 Bearing deformation according to the dial indicators measurements: (a) Bolt 
preload-Bearing 2-Test 1-4th loading process; (b) Bolt preload-Bearing 2-Test 2-4th loading 

process. 

There can be two types of misalignment that generate an undesirable radial 

or tilting moment loads. One source of misalignment is related with the bearing 

and the lower clamping tool. The lower clamping tool is threaded, so the bolts 

have to go through the inner ring bolt holes. Of course, the bearing bolt hole 

diameter is greater than the bolt external diameter to allow for assembly. As a 

result, this gap allows a ±1 [mm] radial displacement when all the bolts are in 

place but not tightened, as can be seen in Figure 6.8. 

  
 

(a) (b) 

Figure 6.8 Bearing arrangement: (a) No misalignment; (b) Misalignment. 

Bearing inner ring

Lower clamping tool
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The same phenomenon occurs with the outer bearing ring and the upper 

clamping tool. In this case, the thread is in the bearing outer ring and the upper 

clamping tool is the part that can become misaligned in the way shown in Figure 

6.9. These two sources of misalignment make it very difficult to obtain the 

perfect bearing assembly. Besides this, the misalignment of the axial spherical 

bearing induces an undesired radial load and the eccentricity of the axial load 

also generates a tilting moment. 

  

(a) (b) 

Figure 6.9 Upper clamping tool arrangement: (a) No misalignment; (b) Misalignment. 

Despite the fact that the tilting moment generated by misalignment influences 

the bearing deformation, Figure 6.10 shows that the stiffness curves calculated 

with the average deformation are almost the same for the previous example 

cases. Accordingly, it can be said that the tilting moment arising as a result of 

misalignment does not have a significant effect on the axial stiffness results. 

 

Figure 6.10 Axial stiffness curves obtained with the average deformations. 

 

Axial force Axial
Radial
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6.3.2 Repeatability of the tests 

As has been indicated, each test consisted of four loading processes. Figure 6.11 

and Figure 6.12 show the results of the complete bearing 2 test 1 and test 2. 

 

 

 

 

 

Figure 6.11 Bearing deformation according to the dial indicators measurements: Bolt 
preload-Bearing 2-Test 1. 
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Figure 6.12 Bearing deformation according to the dial indicators measurements: Bolt 
preload-Bearing 2-Test 2. 

It can be seen that in both cases the first loading process differs from the 

following three. This behaviour was caused by the settling of the axial spherical 

bearing. The other three loading processes showed excellent repeatability. 
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6.3.3 Experimental test results 

The purpose of this section is to analyse the results of the experimental tests 

and obtain conclusions of the structural behaviour of the bearings. Because of 

the type of test that was carried out, only stiffness results can be compared. 

However, relevant conclusions can be drawn. As has been indicated, there are 

two specimens per bearing design and they were tested multiple times to check 

the influence of the assembly process and the repeatability. Figure 6.13 and 

Figure 6.14 shows all the obtained experimental stiffness curves with the 

exception of the first loading process of each test, because of the axial spherical 

bearing settlement. Each stiffness curve was obtained with the average 

measurements of the dial indicators for every load level. 

 

 

Figure 6.13 Bearings 1 and 2 experimental results. 
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Figure 6.14 Bearings 3 and 4 experimental results. 

Regarding the repeatability of the experimental results, a slight dispersion 

among the stiffness curves is observed. This is something to be expected and 

unavoidable, since there are several factors of uncertainty, including the human 

factor. However, the repeatability is much better in the tests where the bolt 

preload is controlled.  

The non-linear behaviour shown in all the curves was not expected, since the 

FE results always show a linear behaviour all along this load range. An extensive 

investigation of this behaviour was not carried out, but it can be related to the 

manufacturing errors. Due to these errors, some rollers could be more loaded 

than others at the beginning of the loading process. It is not until a higher load 

level is reached that all the rollers make contact and the linear behaviour starts. 

Also of relevance is the stiffness difference between bearings 1 and 2. 

Extensive research on the cause of this difference was not carried out. 

However, there could be some circumstances that might promote this 

behaviour. Deficient lubrication may impede correct wire-twisting, which 

results in increased stiffness and higher contact pressure on one wire race edge 

(Figure 6.15a). Manufacturing errors can also influence structural behaviour, as 
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shown in Figure 6.15b. The wire housing radius (𝑅𝑤ℎ), which is the radius 

difference between the wire and the ring accommodation is usually fixed to 100 

[µm] to allow some lubrication. On the one hand, the wire-ring contacts 

behaviour is stiffer if this gap is small or does not even exist. On the other hand, 

the behaviour is more flexible if the gap is bigger. 

  
(a) 

  
(b) 

Figure 6.15 Effect on the bearing stiffness: (a) Correct wire-ring lubrication; (b) Correct 
ring machining. 

Another potential effect of the bolt preload is related with the stiffness 

results. This has been left for the end of the section since it is significant enough 

to add new stiffness plots; Figure 6.16 shows the average stiffness curves 

comparison for each bearing with and without bolt preload. After reviewing the 

results, it can be said that an adequate bolt preload has a relevant effect on the 

stiffness behaviour in comparison with low and non-controlled bolt preload. 

Therefore, the lack of bolt preload not only leads to more scattered results but 

also to a more flexible structural behaviour. 

Correct lubrication
Correct wire twist

Pressure peak

Incorrect lubrication
Deficient wire twist

Stiffer wire-ring contact
(Deficient machining)

More flexible wire-ring contact
(Excessive machining)
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Figure 6.16 Averaged stiffness results for preloaded and non-preloaded tests. 

6.3.4 FE models validation 

Finally, the validation of the FE models developed in this thesis consists of 

an axial stiffness results comparison. No specific FE models were developed 

ad-hoc for the validation. Instead of this, the multiparametric FE model 

introduced in the previous section (Figure 5.18b) was used. That model takes 

advantage of the cyclic symmetry of the bearing geometry and a mesh sensibility 

analysis was performed to assess the best accuracy-computational cost ratio. 

Bolts were not modelled, since it is assumed that the bolted joint has been 

designed correctly. 

Regarding the comparison, there are different alternatives by which to carry 

it out. There are two specimens per bearing design and they were tested multiple 

times to check the influence of the assembly and the repeatability. One 

alternative consisted in compiling all the results to obtain the equivalent 

stiffness behaviour. However, experimental results showed some dispersion 

and it was considered to be more illustrative to show the FE stiffness result 

over the area formed by all the experimental results obtained with each bearing. 

No Preload
Preload

No Preload

Preload
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Figure 6.17 and Figure 6.18 show the stiffness comparison between the 

experimental tests and the FE results without and with bolt preload. The area 

that represents experimental test results considered all the obtained 

experimental results with the exception of the first loading process of each test, 

because of the axial spherical bearing settling. 

Regarding the results comparison, the FE results are inside the area created 

by all the experimental results. Accordingly, it can be said that the FE models 

used in this thesis are experimentally validated and they can be used to study 

the mechanical behaviour of the crossed roller wire-race bearings. Additionally, 

they can also be used to evaluate the accuracy of the analytical models 

developed in this Thesis. Based on all of this, it is also fair to say that better 

results could have been obtained with a preliminary study of the friction 

coefficients of the roller-wire and wire-ring contacts, an exhaustive 

measurement of the microgeometry and a more sophisticated system to avoid 

misalignment. As has been mentioned above, manufacturing errors could be 

the root cause of the non-linear behaviour reported by the tests. Considering 

these manufacturing errors in the modelling could lead to better correlation 

with the test and a promising future research line. 

 

 

Figure 6.17 Bearings 1 and 2 FE model experimental validation. 
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Figure 6.18 Bearings 3 and 4 FE model experimental validation. 
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7 Efficient strategies for the 

Finite Element modelling of 

wire-race bearings 

7.1 Introduction 

The Finite Element Method is a simulation tool that has contributed to the 

improvement of the machine element design and research over the years. There 

is a wide spectrum of applications where the FE assists the researchers and 

designers, but FE models can be complex and computationally heavy. For this 

reason, there is a constant pursuit of efficient FE modelling strategies that help 

to reduce the computational cost and convergence problems. A literature 

review of the current slewing bearing FE modelling strategies was made in 

Section 1.4.6. However, no efficient FE modelling strategies have ever been 

proposed for wire-race bearings. It is true that the research force in the case of 

slewing bearings is higher, but wire-race bearings FE models present more 

complexity and size to face. Based on this, it was considered relevant to develop 

efficient FE strategies to fill that gap. 

This section is divided into two parts, one for each wire-race bearing type 

studied in this thesis: four-point contact ball and crossed roller wire-race 

slewing bearings. In each part, explanations about the proposed efficient FE 

strategies are provided and one application example is carried out to illustrate 

the application process. However, this is not enough, since the validity of the 

proposed FE models must be assessed. To this end, the results of the proposed 

efficient FE models are compared with the results of reference FE models. 
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7.2 Ball wire-race bearings 

The structural behaviour of four-point contact ball wire-race slewing bearings 

was studied in previous sections. The wire twisting phenomenon, the limited 

wire-raceway area and the different materials implied difficulties in establishing 

an analytical calculation method. The same problems arise when it comes to 

making simplifications in a FE model. For these reasons, it seems reasonable, 

as a first approach, to implement a FE simplification that currently works for 

conventional slewing bearings. With this in mind, the FE simplification 

proposed by Daidié et al. [126] was found to be a good alternative. The content 

of this work is properly explained in Section 1.4.6, so there is no reason for 

providing any additional explanations. If it is proven that this FE simplification 

is suitable for wire-race slewing bearings, a more complex FE simplification 

that includes the wires can be proposed as future work. 

Daidié et al. developed a simplified mechanism for conventional slewing 

bearings, where the osculation ratio is usually high. However, in the case of 

wire-race slewing bearings the osculation ratio can be either low or high. This 

may not appear to be problem at first glance, but the formulae used for the 

definition of the mechanism depends on the value of the osculation ratio. This 

does not imply any significant problems, but additional formulae must be 

considered from the work developed by Houpert [47] for low osculation ratio 

values. These ranges were defined as 0.886< 𝑠 <0.992 for low osculation ratio 

values and 0.886< 𝑠 <0.992 for high osculation ratio values. Houpert defined 

the formulae in a general form, where two constants (𝐶𝑡𝑒1, 𝐶𝑡𝑒2) must be set 

depending on the osculation ratio range. However, these formulae cannot be 

applied directly and two equations must be derived from this work to create the 

simplified FE mechanism. All the derived equations and all the different values 

of 𝐶𝑡𝑒1 and 𝐶𝑡𝑒2 are gathered in Appendix A. 

The first one (Equation (7.1)) represents the contact interference 𝛿, where s 

is the osculation ratio, 𝑄 is the contact force and 𝐷𝑤 is the ball diameter.  

 𝛿 = 𝐶𝑡𝑒1 · (1 − 𝑠)−𝐶𝑡𝑒2 ·
𝑄2/3

𝐷𝑤
1/3

 (7.1) 

This equation is the first step for the definition of the traction-only non-linear 

spring stiffness behaviour, but it cannot be directly implemented. This equation 

must be rearranged in the form of Equation (7.2), where 𝐾𝑐 is the stiffness of 
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the contact. However, Equation (7.3) retrieves the stiffness of one contact, and 

the non-linear spring used in the simplified FE mechanism represents the 

stiffness of both ball-raceway contacts. Finally, the stiffness of the spring (𝑘𝐵) 

can be obtained with Equation (7.4). 

 𝑄 = 𝑘𝐵 · 𝛿
3/2 (7.2) 

 𝑘𝐵 = 𝐶𝑡𝑒1 · (1 − 𝑠)3/2·𝐶𝑡𝑒2 · 𝐷𝑤
1/2 (7.3) 

 𝐾𝑠 = 0.53/2 · 𝑘𝐵 (7.4) 

The second equation represents the major and minor contact ellipse semi-

axes (𝑎, 𝑏). These parameters are necessary to define the rigid shell surface that 

transmits the contact force to the ring. Both semi-axes can be obtained with the 

same expression, which is represented in Equation (7.5). One more time, the 

selection of the constants defines the semi-axis to calculate and the osculation 

ratio range. 

 𝑎 = 𝑏 = 𝐶𝑡𝑒1 · (1 − 𝑠)−𝐶𝑡𝑒2 · 𝐷𝑤
1/3 · 𝑄1/3 (7.5) 

Once the formulation to define the mechanism has been introduced, the 

method by which to implement the simplified mechanism in the FE model can 

be explained. To this end, the implementation does not differ particularly much 

from the one proposed by Daidié et al. [126]. The only difference lies in the fact 

that the raceway is located on the wires and not on the rings. For this reason, 

the rigid surface that transmits the ball-raceway contact force must be placed 

on the wire. 

Figure 7.1a shows a drawing of one diagonal of the FE simplified mechanism. 

Black lines represent the rigid beams, which are linked by the traction only non-

linear spring element. Two wire-raceway surfaces are coloured in light grey and 

the rigid surfaces in dark grey. In the case under study, the bearing is a four-

point contact wire-race bearing, which means that the ball has four contact 

points. For this reason, the complete mechanism of Figure 7.1b is composed 

of two diagonals. 
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(a) (b) 

Figure 7.1 Ball wire-race bearing simplified FE mechanism: (a) 1 Diagonal; (b) 2 Diagonals 

With the simplified FE mechanism described, the next step consists in 

implementing it on a FE model. In addition, it is also necessary to validate the 

accuracy of the simplification. To this end, two multiparametric FE models 

were created, one with the FE simplification implemented and another one to 

serve as a reference model. A results comparison of both FE models should 

illustrate whether the simplification is valid or not as an efficient FE modelling 

strategy. As has been mentioned, the formulae for the FE simplification 

depends on the osculation ratio, so both high and low osculation ratio 

alternatives must be validated. This makes it necessary to perform two analyses 

with each bearing FE model, with the geometrical data shown in Figure 7.2 and 

its numerical values figuring in Table 7.1. 

 

Figure 7.2 Four-point contact wire-race bearing cross-section. 

a a
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Once again, the geometry of the rings depends on the size of the housing (𝐻) 

and is defined according to the coefficients proposed by Heras et al. [15]. In 

order to complete Table 7.1, the axial static load capacity calculated with the 

methodology proposed in [13] is also included. 

Table 7.1 Geometrical values and static load capacity. 

𝑫𝒘  𝑫𝒑𝒘  𝑹𝒇  𝜶𝟎 𝝀  𝒔 𝑪𝟎𝒂 

[mm] [mm]  [°] [mm]  [kN] 

16 420 0.5 45 7 0.87 674.2 

16 420 0.5 45 7 0.943 1213.1 

𝑵𝒃 𝑹𝒘𝒉 𝑹𝑳 𝑹𝑯 𝑹𝑳𝒈 𝑯𝒈 

     [mm] 

82 3.9 1.9 2.15 0.1 3 

82 3.9 1.9 2.15 0.1 3 

Axial load case was considered to be the best option for the validation of the 

FE strategy because of its simplicity. The FE simplification proposed by Daidié 

has been proven to work correctly for any kind of loads in conventional slewing 

bearings. Therefore, it can be assumed that once this strategy is validated for 

wire-race slewing bearings under the axial load case, it will also be valid for other 

load cases. As has been explained in previous chapters, the geometry and the 

load case are cyclic symmetric, so only half a sector can be modelled. Figure 7.3 

shows the reference and the efficient FE model, where the mesh of the shared 

volumes is identical. Wire-ring contacts and the ball-wire contact in the 

reference FE model were defined as frictional with Augmented Lagrange 

formulation, a friction coefficient of 𝜇 = 0.1, a maximum penetration tolerance 

of 1 [µm] and updating the contact stiffness in each iteration. The bonded 

contact defined to connect the contact ring partition with the rest of the ring 

was defined with a maximum penetration tolerance of 3 [µm]. 

Regarding the boundary conditions, symmetry boundary conditions were 

applied on all the symmetry faces of both FE models. Axial load is applied by 

means of imposed displacements on the surfaces that are in contact with the 
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surrounding structures, while the displacements in the other directions are 

constrained. Axial displacement is exerted until the static load capacity is 

reached. 

The reference FE model does not require additional explanations; however, 

some comments must be made regarding the efficient FE model. COMBIN39 

element (in Ansys®) was used to represent the traction-only non-linear spring 

element, where the stiffness curve defined by Equation (7.4) was introduced as 

an element real constant. The rigid beams of the mechanism were modelled 

with MPC184 elements. These elements were also used to model the rigid 

surface that transmit the load to the raceway. A net of rigid beams was built on 

the raceway surface instead of using a rigid shell. 

 

(a) 

 

(b) 

Figure 7.3 Axial FE models: (a) Reference model (400,000 DoF); (b) Efficient model 
(235,000 DoF). 

Rigid face

Rigid face

Rigid face

Rigid face
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Finally, the size of both FE models must be compared, since the purpose of 

the study consists in obtaining an efficient FE modelling strategy. The reference 

FE model has around 400,000 DoF, while the efficient FE model with the same 

mesh has around 235,000 DoF. This means that 40% of DoF savings are 

achieved. Slightly better efficiency could have been obtained if the wire raceway 

had been meshed with coarser elements. This was not carried out in order to 

perform the comparison with the same mesh for both models. In addition to 

the DoF reduction, the suppression of the ball-wire contacts non-linearity 

improves the convergence of the model and prevents severe convergence 

problems caused by the loss of contact. 

Based on the above, the results of the validation can now be presented. Once 

again, the stiffness, the contact force and the contact angle are the performance 

indicators used to compare the behaviour of both models. Figure 7.4 shows the 

axial stiffness curves obtained in each analysis, where a significant deviation can 

be seen between the reference and the efficient FE model. Figure 7.5 and Figure 

7.6 represent the evolution of the contact force and contact angle, where the 

same deviation occurs. 

 
Figure 7.4 Axial stiffness results. 

 
Figure 7.5 Contact force results. 
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Figure 7.6 Contact angle results. 

According to the stiffness results, the FE model with the simplification 

applied is far more flexible than the reference FE model. The formulation 

introduced in the non-linear springs to represent the stiffness of the contacts is 

reliable, so the source of error can only come from the connection of the 

mechanism with the raceway. Figure 7.7 shows the equivalent elastic strain in 

one wire of the efficient FE model with 𝑠 = 0.943. It can be seen how the rigid 

surface of the mechanism penetrates the wire, generating an indentation that 

should not occur. This mechanism was designed to represent the contact 

deformation with the non-linear spring element. Therefore, the contact zone 

must be properly stiffened or the deformation of the raceway would add extra 

flexibility to the component; which occurs here. 

 

Figure 7.7 Equivalent elastic strain in a wire of the efficient FE model (𝒔 = 0.943). 

The source of error has now been clearly identified, and for this reason, it is 

worth attempting to modify the model in such a way that the problem can be 

solved. If the raceway contact zone was not properly stiffened, the first attempt 

should focus on addressing this issue. To this end, a very rigid material (𝐸 = 

2·105 [GPa]) is defined and assigned to a certain volume of the wire. This 

volume cannot be defined either randomly or very precisely. For this reason, 

Rigid

surface
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the volume of Figure 7.8 was considered enough to contain the local effects of 

the raceway deformation. This volume goes from the raceway to the wire centre 

and from the symmetry plane to half the length of the wire. This improvement 

does not interfere with the wire-ring contact, and also allows a wire twisting 

differential between sectors. 

 

Figure 7.8 Wire rigid material volume. 

Regarding the stiffness and contact force results of Figure 7.9 and Figure 7.10, 

a significant part of the error is corrected with the improvement. Figure 7.11 

shows the contact angle results comparison, which shows good correlation for 

the 𝑠 = 0.87 case and a slight deviation for the 𝑠 = 0.943 case. This difference 

comes from the lack of wire twisting at the beginning of the loading process in 

the reference FE model. However, the deviation is not significant enough to 

affect the overall behaviour of the component. 

 

Figure 7.9 Axial stiffness results. 

Wire

centre

Rigid volume
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Figure 7.10 Contact force results. 

 

Figure 7.11 Contact angle results. 

In order to evaluate whether the FE simplification introduces an error, Table 

7.2 gathers the relative errors in terms of axial deformation at the end of the 

loading process. The direct application of the FE simplification proposed by 

Daidié et al. [126] is not a good alternative, since more flexible behaviour is 

obtained. However, if a volume portion of the raceway is stiffened, very good 

results can be achieved. 

Table 7.2 Stiffness error introduced by the FE simplifications. 

Error [%] 
Initial efficient 

FE model 

Improved efficient 

FE model 

𝑠 = 0.87 20.0 4.5 

𝑠 = 0.943 20.1 1.0 

The proposed FE modelling strategy must be accurate but also efficient. For 

this reason, it is also very important to compare the computational cost of each 
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reference and efficient FE models. All the analyses were performed on a 

workstation with an Intel® Xeon® E5-2697 v3 @ 2.6GHz processor with 14 

physical cores (28 logical), a RAM of 128GB and solid state disks (SSD). Table 

7.3 compiles the CP and elapsed time of each simulation, where the elapsed 

time is greater than the CP time in all simulations. This means that the analyses 

are in I/O bound, which means that the lack of RAM memory is slowing down 

the solution process. However, it can also be seen how the efficient FE model 

involves a smaller computational cost than the reference FE model. With this, 

the efficiency of the FE modelling strategy is assessed and confirmed. 

Table 7.3 CPU and elapsed time of the FE analyses. 

[s] Time 
Reference 

FE model 

Improved 

efficient FE model 

𝑠 = 0.87 
CP 

Elapsed 

788.45 

1268.0 

480.2 

797.0 

𝑠 = 0.943 
CP 

Elapsed 

914.8 

1462.0 

567.2 

1109 

With all of this, it can be said that the improved efficient FE simplification 

proposed in this section is an accurate and efficient FE modelling alternative 

for four-point contact wire-race slewing bearings. It is worth recalling that a 

more efficient FE model can be obtained with a less refined mesh in the roller-

wire contact area. 

7.3 Crossed roller wire-race bearings 

In this section, two efficient FE modelling strategies are proposed for crossed 

roller wire-race bearings. Unlike the strategy described in the previous section, 

in this case, both rolling elements and wires are removed and replaced with an 

equivalent mechanism. This substantial simplification was possible because of 

the previous development of an analytical formulation that represents the 

structural behaviour of these components. In contrast, the implementation 

process is much more complex. For this reason, the theoretical background of 

both alternatives is described separately first. Then, explanations regarding its 
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implementation in a FE model are provided. Finally, the validation process used 

to assess the accuracy of the efficient FE modelling strategies is introduced. 

7.3.1 User-defined matrix element strategy 

As has been mentioned, the efficient FE modelling strategy proposed in this 

section is based on the crossed roller wire-race bearing analytical formulation 

presented in Chapter 5. This analytical formulation represented the structural 

behaviour of one bearing sector for local or global conditions and was 

implemented in an analytical simulation tool. In this case, the purpose is to 

implement the analytical formulation in a FE model. Figure 7.12 summarizes 

the whole process, where the previous and current work is represented. The 

top part shows the concepts introduced in Chapter 5, where the analytical 

formulation was proposed, the stiffness constants (𝑘1, 𝑘2, 𝑘3) calculated and its 

performance validated via FE results comparison. The lower part of the figure 

shows the contribution of this section, where the analytical formulation is 

implemented in a FE model and validated. 

 

Figure 7.12 Summary of the user-defined matrix FE strategy. 

For the sake of clarity, explanations will be made on the basis of type A 

rollers. Additional explanations will be provided with respect to the type B 

rollers at the end of the section. The process for the implementation of the 
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analytical formulation in a FE model starts with the set of equations that it is 

composed of. Equations (5.1) to (5.6) were conceived to represent the structural 

behaviour of one type A roller bearing sector 𝑖. Wire-ring friction forces vary 

depending on the prevailing axial (∆𝐴
𝑖 ) or radial (∆𝑅

𝑖 ) relative displacement 

between rings. To deal with this, a plus-minus (±,∓) sign strategy was used, 

where the upper signs correspond to prevailing ∆𝐴
𝑖  and the lower signs to 

prevailing ∆𝑅
𝑖 . This way, both equation systems for each case can be represented 

in a single set. 

At first glance, it seems complicated to implement the previous set of 

equations in a FE model. However, if the equation system is arranged in a 

matrix form, the resulting matrix can be considered as a kind of stiffness matrix 

that relates the forces and deformations of the wire-roller-wire set. With this in 

mind, the MATRIX27 element (in Ansys®) allows for the introduction of a 

linear user-defined matrix that links forces and displacements between two 

points with six degrees of freedom. This element could meet the requirements 

to represent the relationships defined in the analytical formulation if the set of 

equations is reduced to the degrees of freedom 𝛿𝑥1, 𝛿𝑦1, 𝛿𝑧1, 𝛿𝑥2, 𝛿𝑦2 and 𝛿𝑧2 

shown in Figure 7.13. However, this is not straightforward due to two main 

issues: the equation system is non-linear and it is not related with the degrees 

of freedom of the MATRIX27. These problems can be solved by means of 

mathematical operations, which will be explained in detail below.  

 

Figure 7.13 Degrees of freedom of the MATRIX27 element. 
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The first mathematical operation intends to transform the non-linear system 

of equations into a linear one. To this end, the first step consists in introducing 

Equations (5.1) and (5.2) in Equations (5.3) to (5.6). This reduces the 

complexity of the mathematical operation by reducing the size of the system to 

Equations (7.6) to (7.9). 

  𝑓1(∆1, ∆2, ∆3, 𝛼) = (𝑘2 · ∆2  ±  𝜇 · 𝑘1 · ∆1) · 𝑐𝑜𝑠(𝛼) 

+(𝑘1 · ∆1 ∓ 𝜇 · 𝑘2 · ∆2) · 𝑠𝑖𝑛(𝛼) − 𝑘3 · ∆3 
(7.6) 

 𝑓2(∆1, ∆2, ∆3, 𝛼) = −𝐷𝐶𝑊/2 · 𝑐𝑜𝑠(𝛼0) + ∆𝑅/2 − ∆2 

+(𝐷𝐶𝑊/2 − ∆3) · 𝑐𝑜𝑠(𝛼) 
(7.7) 

 𝑓3(∆1, ∆2, ∆3, 𝛼) = −𝐷𝐶𝑊/2 · 𝑠𝑖𝑛(𝛼0) + ∆𝐴/2 − ∆1 

+(𝐷𝐶𝑊/2 − ∆3) · 𝑠𝑖𝑛(𝛼) 
(7.8) 

 

𝑓4(∆1, ∆2, ∆3, 𝛼) = 𝑘2 · ∆2 · ((𝐷𝐶𝑊/2 − ∆3) · 𝑠𝑖𝑛(𝛼)) 

± 𝜇 · 𝑘1 · ∆1 · (((λ/2 − ∆1) + (𝐷𝐶𝑊/2 − ∆3) · 𝑠𝑖𝑛(𝛼)) 

± 𝜇 · 𝑘2 · ∆2 · ((λ/2 − ∆2) + (𝐷𝐶𝑊/2 − ∆3) · 𝑐𝑜𝑠(𝛼)) 

−𝑘1 · ∆1 · ((𝐷𝐶𝑊/2 − ∆3) · 𝑐𝑜𝑠(𝛼)) 

(7.9) 

Then, first order Taylor series can be applied at the initial point 

(∆1, ∆2, ∆3, ∆𝛼) = (0,0,0,0), where ∆𝛼= 𝛼 − 𝛼0. If the terms are rearranged: 

 [

𝑎 𝑏 𝑐 0
0 −1 𝑑 𝑒
−1 0 𝑓 𝑔
ℎ 𝑖 0 0

] · {

∆1
∆2
∆3
∆𝛼

} = {

0
𝑗 
𝑘 
0

} (7.10) 

𝑎 = ±𝜇 · 𝑘1 · 𝑐𝑜𝑠(𝛼0) + 𝑘1 · 𝑠𝑖𝑛(𝛼0) 

𝑏 = 𝑘2 · 𝑐𝑜𝑠(𝛼0)∓𝜇 · 𝑘2 · 𝑠𝑖𝑛(𝛼0) 

𝑐 = −𝑘3 

𝑑 = −𝑐𝑜𝑠(𝛼0) 

𝑒 = −(𝐷𝐶𝑊/2) · 𝑠𝑖𝑛(𝛼0) 

𝑓 = −𝑠𝑖𝑛(𝛼0) 

𝑔 = (𝐷𝐶𝑊/2) · 𝑐𝑜𝑠(𝛼0) 

ℎ = ±𝜇 · 𝑘1 · λ/2 ± 𝜇 · 𝑘1 · 𝐷𝐶𝑊/2 · 𝑠𝑖𝑛(𝛼0) − 𝑘1 · 𝐷𝐶𝑊/2 · 𝑐𝑜𝑠(𝛼0) 

𝑖 = 𝑘2 · 𝐷𝐶𝑊/2 · 𝑠𝑖𝑛(𝛼0) ± 𝜇 · 𝑘2 · λ/2 ± 𝜇 · 𝑘2 · 𝐷𝐶𝑊/2 · 𝑐𝑜𝑠(𝛼0) 

𝑗 = −∆𝑅/2  

𝑘 = −∆𝐴/2 

(7.11) 
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This mathematical operation could introduce an error if the calculation point 

is far from the initial point. However, for small deformations this error can be 

considered negligible. To demonstrate this assumption, results obtained with 

the non-linear and linear equation systems were compared and no error was 

found. 

With the analytical formulation transformed into a linear equation system, the 

next stage consists of applying a change of variables. This operation aims to 

relate the latter equation system with the degrees of freedom of the MATRIX27 

element (𝛿𝑥1,  𝛿𝑦1, 𝛿𝑥2,  𝛿𝑦2). At this point, the variables of the system are 

(∆1, ∆2, ∆3, ∆𝛼) and there is no direct relationship between them and (𝛿𝑥1, 𝛿𝑦1, 

𝛿𝑥2,  𝛿𝑦2). For this reason, it is necessary to solve the equation system to obtain 

the expressions of ∆1, ∆2, ∆3, ∆𝛼. Applying the Cramer rule to the equation 

system: 

∆1=
𝐷𝑒𝑡. 1

𝐷𝑒𝑡.
 ∆2=

𝐷𝑒𝑡. 2

𝐷𝑒𝑡.
 ∆3=

𝐷𝑒𝑡. 3

𝐷𝑒𝑡.
 ∆𝛼=

𝐷𝑒𝑡. 4

𝐷𝑒𝑡.
 (7.12) 

Where: 

 𝐷𝑒𝑡. = |

𝑎 𝑏 𝑐 0
0 −1 𝑑 𝑒
−1 0 𝑓 𝑔
ℎ 𝑖 0 0

| 𝐷𝑒𝑡. 1 = |

0 𝑏 𝑐 0
𝑗 −1 𝑑 𝑒
𝑘 0 𝑓 𝑔
0 𝑖 0 0

| 

(7.13)  𝐷𝑒𝑡. 2 = |

𝑎 0 𝑐 0
0 𝑗 𝑑 𝑒
−1 𝑘 𝑓 𝑔
ℎ 0 0 0

| 𝐷𝑒𝑡. 3 = |

𝑎 𝑏 0 0
0 −1 𝑗 𝑒
−1 0 𝑘 𝑔
ℎ 𝑖 0 0

| 

 𝐷𝑒𝑡. 4 = |

𝑎 𝑏 𝑐 0
0 −1 𝑑 𝑗
−1 0 𝑓 𝑘
ℎ 𝑖 0 0

| 

So: 

 𝐷𝑒𝑡. = (−1) · ℎ · (𝑏 · 𝑑 · 𝑔 − 𝑏 · 𝑒 · 𝑓 + 𝑐 · 𝑔) + 

+(1) · 𝑖 · (−𝑐 · 𝑒 + 𝑎 · 𝑑 · 𝑔 − 𝑎 · 𝑒 · 𝑓) 

(7.14)  𝐷𝑒𝑡. 1 = 𝑗 · (−𝑐 · 𝑔 · 𝑖) + 𝑘 · (𝑖 · 𝑐 · 𝑒) 

= 𝐷𝑒𝑡. 1𝑗 · 𝑗 + 𝐷𝑒𝑡. 1𝑘 · 𝑘 

 𝐷𝑒𝑡. 2 = 𝑗 · (𝑐 · 𝑔 · ℎ) + 𝑘 · (−ℎ · 𝑐 · 𝑒) = 

= 𝐷𝑒𝑡. 2𝑗 · 𝑗 + 𝐷𝑒𝑡. 2𝑘 · 𝑘 
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 𝐷𝑒𝑡. 3 = 𝑗 · (𝑎 · 𝑔 · 𝑖 − 𝑏 · 𝑔 · ℎ) + 𝑘 · (−𝑎 · 𝑒 · 𝑖 + 𝑏 · 𝑒 · ℎ) = 

= 𝐷𝑒𝑡. 3𝑗 · 𝑗 + 𝐷𝑒𝑡. 3𝑘 · 𝑘 

(7.14) 

 

𝐷𝑒𝑡. 4 = 𝑗 · (ℎ · 𝑏 · 𝑓 − 𝑖 · 𝑎 · 𝑓 − 𝑖 · 𝑐) + 

+𝑘 · (−ℎ · 𝑏 · 𝑑 − ℎ · 𝑐 + 𝑖 · 𝑎 · 𝑑) = 

= 𝐷𝑒𝑡. 4𝑗 · 𝑗 + 𝐷𝑒𝑡. 4𝑘 · 𝑘 

According to Figure 7.13, the following change of variables can be applied: 

 𝑗 = −
∆𝑅
2
= −

1

2
· (𝛿𝑥2 − 𝛿𝑥1) (7.15) 

 𝑘 = −
∆𝐴
2
= −

1

2
· (𝛿𝑦1 − 𝛿𝑦2) (7.16) 

Where 𝛿𝑥1 ,𝛿𝑦1,𝛿𝑥2 and 𝛿𝑦2 are the degrees of freedom of the MATRIX27 

element. Thus, Equations (5.1) and (5.2) can be rewritten as: 

𝑁1
𝑖 = 𝑘1 · ∆1= 𝑘1 ·

𝐷𝑒𝑡. 1

𝐷𝑒𝑡.
 

= 𝑘1 ·
𝐷𝑒𝑡. 1𝑗 · (−1/2 · (𝛿𝑥2 − 𝛿𝑥1)) + 𝐷𝑒𝑡. 1𝑘 · (−1/2 · (𝛿𝑦1 − 𝛿𝑦2))

𝐷𝑒𝑡.
 

(7.17) 

𝑁2
𝑖 = 𝑘2 · ∆2= 𝑘2 ·

𝐷𝑒𝑡. 2

𝐷𝑒𝑡.
 

= 𝑘2 ·
𝐷𝑒𝑡. 2𝑗 · (−1/2 · (𝛿𝑥2 − 𝛿𝑥1)) + 𝐷𝑒𝑡. 2𝑘 · (−1/2 · (𝛿𝑦1 − 𝛿𝑦2))

𝐷𝑒𝑡.
 

(7.18) 

Once again, according to Figure 7.13: 

 𝐹𝑥1 = −𝑁2 ∓ 𝜇 · 𝑁1 (7.19) 

 𝐹𝑦1 = 𝑁1 ∓ 𝜇 · 𝑁2 (7.20) 

 𝐹𝑥2 = 𝑁2 ± 𝜇 · 𝑁1 (7.21) 

 𝐹𝑦2 = −𝑁1 ± 𝜇 · 𝑁2 (7.22) 

Introducing Equations (7.17) and (7.18) into Equations (7.19) to (7.22): 
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𝐹𝑥1 = −𝑘2 ·

𝐷𝑒𝑡. 2𝑗 · (−
1
2
· (𝛿𝑥2 − 𝛿𝑥1)) + 𝐷𝑒𝑡. 2𝑘 · (−

1
2
· (𝛿𝑦1 − 𝛿𝑦2))

𝐷𝑒𝑡.
 

∓ 𝜇 · 𝑘1 ·

𝐷𝑒𝑡. 1𝑗 · (−
1
2 ·
(𝛿𝑥2 − 𝛿𝑥1)) + 𝐷𝑒𝑡. 1𝑘 · (−

1
2 · (𝛿𝑦1 − 𝛿𝑦2))

𝐷𝑒𝑡.
 

(7.23) 

𝐹𝑦1 = 𝑘1 ·

𝐷𝑒𝑡. 1𝑗 · (−
1
2 ·
(𝛿𝑥2 − 𝛿𝑥1)) + 𝐷𝑒𝑡. 1𝑘 · (−

1
2 · (𝛿𝑦1 − 𝛿𝑦2))

𝐷𝑒𝑡.
 

∓ 𝜇 · 𝑘2 ·

𝐷𝑒𝑡. 2𝑗 · (−
1
2 ·
(𝛿𝑥2 − 𝛿𝑥1)) + 𝐷𝑒𝑡. 2𝑘 · (−

1
2 · (𝛿𝑦1 − 𝛿𝑦2))

𝐷𝑒𝑡.
 

(7.24) 

𝐹𝑥2 = 𝑘2 ·

𝐷𝑒𝑡. 2𝑗 · (−
1
2 ·
(𝛿𝑥2 − 𝛿𝑥1)) + 𝐷𝑒𝑡. 2𝑘 · (−

1
2 · (𝛿𝑦1 − 𝛿𝑦2))

𝐷𝑒𝑡.
 

± 𝜇 · 𝑘1 ·

𝐷𝑒𝑡. 1𝑗 · (−
1
2 ·
(𝛿𝑥2 − 𝛿𝑥1)) + 𝐷𝑒𝑡. 1𝑘 · (−

1
2 · (𝛿𝑦1 − 𝛿𝑦2))

𝐷𝑒𝑡.
 

(7.25) 

𝐹𝑦2 = −𝑘1 ·

𝐷𝑒𝑡. 1𝑗 · (−
1
2 ·
(𝛿𝑥2 − 𝛿𝑥1)) + 𝐷𝑒𝑡. 1𝑘 · (−

1
2 · (𝛿𝑦1 − 𝛿𝑦2))

𝐷𝑒𝑡.
 

± 𝜇 · 𝑘2 ·

𝐷𝑒𝑡. 2𝑗 · (−
1
2 ·
(𝛿𝑥2 − 𝛿𝑥1)) + 𝐷𝑒𝑡. 2𝑘 · (−

1
2 · (𝛿𝑦1 − 𝛿𝑦2))

𝐷𝑒𝑡.
 

(7.26) 

Finally, the terms of the previous equations are developed and rearranged 

into Equation (7.27). The matrix of coefficients of this equation system is the 

user-defined matrix that will be introduced in the MATRIX27 element. 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝐹𝑥1
𝐹𝑦1
𝐹𝑧1
𝑀𝑥1

𝑀𝑦1

𝑀𝑧1

𝐹𝑥2
𝐹𝑦2
𝐹𝑧2
𝑀𝑥2

𝑀𝑦2

𝑀𝑧2}
 
 
 
 
 
 

 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 𝑘11 𝑘12 0 0 0 0 𝑘13 𝑘14 0 0 0 0

𝑘21 𝑘22 0 0 0 0 𝑘23 𝑘24 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

𝑘31 𝑘32 0 0 0 0 𝑘33 𝑘34 0 0 0 0

𝑘41 𝑘42 0 0 0 0 𝑘43 𝑘44 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 

·

{
 
 
 
 
 
 

 
 
 
 
 
 
∆𝑥1
∆𝑦1
∆𝑧1
𝜃𝑥1
𝜃𝑦1
𝜃𝑧1
∆𝑥2
∆𝑦2
∆𝑧2
𝜃𝑥2
𝜃𝑦2
𝜃𝑧2}

 
 
 
 
 
 

 
 
 
 
 
 

 (7.27) 
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𝑘11 =
1

𝐷𝑒𝑡.
·
1

2
· (−𝑘2 · 𝐷𝑒𝑡. 2𝑗∓𝜇 · 𝑘1 · 𝐷𝑒𝑡. 1𝑗) 

𝑘12 =
1

𝐷𝑒𝑡.
·
1

2
· (𝑘2 · 𝐷𝑒𝑡. 2𝑘±𝜇 · 𝑘1 · 𝐷𝑒𝑡. 1𝑘) 

𝑘13 =
1

𝐷𝑒𝑡.
·
1

2
· (𝑘2 · 𝐷𝑒𝑡. 2𝑗±𝜇 · 𝑘1 · 𝐷𝑒𝑡. 1𝑗) 

𝑘14 =
1

𝐷𝑒𝑡.
·
1

2
· (−𝑘2 · 𝐷𝑒𝑡. 2𝑘∓𝜇 · 𝑘1 · 𝐷𝑒𝑡. 1𝑘) 

𝑘21 =
1

𝐷𝑒𝑡.
·
1

2
· (𝑘1 · 𝐷𝑒𝑡. 1𝑗∓𝜇 · 𝑘2 · 𝐷𝑒𝑡. 2𝑗) 

𝑘22 =
1

𝐷𝑒𝑡.
·
1

2
· (−𝑘1 · 𝐷𝑒𝑡. 1𝑘 ± 𝜇 · 𝑘2 · 𝐷𝑒𝑡. 2𝑘) 

𝑘23 =
1

𝐷𝑒𝑡.
·
1

2
· (−𝑘1 · 𝐷𝑒𝑡. 1𝑗 ± 𝜇 · 𝑘2 · 𝐷𝑒𝑡. 2𝑗) 

𝑘24 =
1

𝐷𝑒𝑡.
·
1

2
· (𝑘1 · 𝐷𝑒𝑡. 1𝑘 ∓ 𝜇 · 𝑘2 · 𝐷𝑒𝑡. 2𝑘) 

𝑘31 =
1

𝐷𝑒𝑡.
·
1

2
· (−𝑘2 · 𝐷𝑒𝑡. 2𝑗 ∓ 𝜇 · 𝑘1 · 𝐷𝑒𝑡. 1𝑗) 

𝑘32 =
1

𝐷𝑒𝑡.
·
1

2
· (𝑘2 · 𝐷𝑒𝑡. 2𝑘 ± 𝜇 · 𝑘1 · 𝐷𝑒𝑡. 1𝑘) 

𝑘33 =
1

𝐷𝑒𝑡.
·
1

2
· (𝑘2 · 𝐷𝑒𝑡. 2𝑗 ± 𝜇 · 𝑘1 · 𝐷𝑒𝑡. 1𝑗) 

𝑘34 =
1

𝐷𝑒𝑡.
·
1

2
· (−𝑘2 · 𝐷𝑒𝑡. 2𝑘 ∓ 𝜇 · 𝑘1 · 𝐷𝑒𝑡. 1𝑘) 

𝑘41 =
1

𝐷𝑒𝑡.
·
1

2
· (−𝑘1 · 𝐷𝑒𝑡. 1𝑗 ± 𝜇 · 𝑘2 · 𝐷𝑒𝑡. 2𝑗) 

𝑘42 =
1

𝐷𝑒𝑡.
·
1

2
· (𝑘1 · 𝐷𝑒𝑡. 1𝑘 ∓ 𝜇 · 𝑘2 · 𝐷𝑒𝑡. 2𝑘) 

𝑘43 =
1

𝐷𝑒𝑡.
·
1

2
· (𝑘1 · 𝐷𝑒𝑡. 1𝑗 ∓ 𝜇 · 𝑘2 · 𝐷𝑒𝑡. 2𝑗) 

𝑘44 =
1

𝐷𝑒𝑡.
·
1

2
· (−𝑘1 · 𝐷𝑒𝑡. 1𝑘 ± 𝜇 · 𝑘2 · 𝐷𝑒𝑡. 2𝑘) 

(7.28) 

As was explained at the beginning of the section, there are not so many 

differences between type A and type B roller analytical formulations. For this 

reason, all the mathematical operations have been developed for the type A 

roller. However, the user-defined matrix of the MATRIX27 element for type B 

roller must also be provided. The components of this user-defined matrix are 
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identical to the type A roller user-defined matrix with the exception of 𝑘12, 𝑘14, 

𝑘21, 𝑘23, 𝑘32, 𝑘34, 𝑘41 and 𝑘43, whose signs change. 

7.3.2 Non-linear spring element strategy 

The second crossed roller wire-race bearing efficient FE modelling strategy 

consists of a simple compression-only, non-linear spring mechanism. As shown 

in Figure 7.14, the spring replaces the wires and the roller and represents the 

deformation of the set under different axial or radial imposed displacements. 

Despite the fact that the spring replicates the compatibility of deformations 

properly, friction forces are not considered. 

 

Figure 7.14 Schema of the spring based alternative model. 

The stiffness of the equivalent spring (𝑘𝑐𝑏𝑛) is obtained analytically from an 

equation based on the geometrical relationships of 𝑘1, 𝑘2and 𝑘3 (Figure 7.15a). 

To this end, it is first necessary to combine the stiffness of 𝑘1 and 𝑘2 into a 𝑘𝑝. 

This operation is defined in Equation (7.29), which represents the projection of 

𝑘1 and 𝑘2 on the roller-wire contact normal line, defined by the initial contact 

angle 𝛼0. Hereafter, the serial combination of 𝑘𝑝 with 𝑘3 (Figure 7.15b) results 

in the stiffness of the equivalent spring 𝑘𝑐𝑏𝑛, which can be calculated with 

Equation (7.30) and is represented in Figure 7.15c. 

 
 

 

(a) (b) (c) 

Figure 7.15 Geometrical relationships to obtain the stiffness of the spring: (a) 𝒌𝟏, 𝒌𝟐 and 

𝒌𝟑  representation; (c) Serial combination; (c) Non-linear spring element stiffness 𝒌𝒄𝒃𝒏. 
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 𝐹𝑒𝑞𝑤 = √(𝑘2
2·𝑐𝑜𝑠2(𝛼0) + 𝑘1

2 · 𝑠𝑖𝑛2(𝛼0)) · 𝛿𝑒𝑞𝑤 = 𝑘𝑒𝑞𝑤 · 𝛿𝑒𝑞𝑤 (7.29) 

 𝑘𝑐𝑏𝑛 =
𝑘3 · 𝑘𝑒𝑞𝑤

𝑘3 + 𝑘𝑒𝑞𝑤
=
𝑘3 · √(𝑘2

2·𝑐𝑜𝑠2(𝛼0) + 𝑘1
2 · 𝑠𝑖𝑛2(𝛼0))

𝑘3 + √(𝑘2
2·𝑐𝑜𝑠2(𝛼0) + 𝑘1

2 · 𝑠𝑖𝑛2(𝛼0))

 (7.30) 

Despite the equivalent spring stiffness being linear, the spring element must 

be non-linear because of the compression only behaviour. This made necessary 

the election of the COMBIN39 non-linear spring element (in Ansys®). 

7.3.3 Implementation in a FE model 

The MATRIX27 and the COMBIN39 elements were conceived to represent 

the behaviour of the wire-roller-wire set, but they must be properly linked to 

the bearing rings to fulfil their role. To that end, it was considered appropriate 

to study the contact FE results of a loaded wire-ring contact. On the one hand, 

Figure 7.16a shows how the contact happens to be along two parallel lines. 

Accordingly, two rigid surfaces should be created to transmit the force from 

the equivalent mechanism to the ring surface. On the other hand, the pressure 

distribution of Figure 7.16b indicates that the central zones, which are closer to 

the roller-wire contact, are more loaded. 

  

(a) (b) 

Figure 7.16 Wire-ring FE contact results: (a) Contact Status; (b) Contact pressure [MPa]. 

According to the contact results, the conception of the mechanism was not 

simple. However, the final simplified FE mechanism is shown in Figure 7.17. 

MATRIX27 and COMBIN39 nodes are linked through rigid beams to two rigid 

surfaces modelled with shell elements. In turn, a no separation frictionless 
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contact is defined between the rigid shells and ring surfaces to join them 

without adding any circumferential stiffness to the ring. Because of this, the 

displacement and rotation degrees of freedom in the circumferential direction 

must be also constrained on the nodes of the MATRIX27/COMBIN39 

elements. This forces the mechanism to work on the radial plane and prevents 

rigid body motion. 

  

Figure 7.17 MATRIX27 and COMBIN39 simplified FE mechanism. 

Regarding the dimensions of the contact surface, 𝐿𝑛𝑠 is the arc length that 

corresponds to the angle formed by two rolling elements (2·360°/𝑁𝑅). The 

contact surface width 𝑊𝑛𝑠 can be defined as the approximated wire-ring contact 

width when the static load capacity is reached. To obtain this value, the formulas 

for line-contact calculations proposed by Houpert [47] can be used. First, it is 

necessary to obtain the roller-wire normal contact force with Eq. (7.31), where 

𝐿 is the length of the roller-wire contact and 𝑃𝑚𝑎𝑥 is the maximum allowable 

contact pressure (4000 [MPa]). 

 𝑄 = 2 · 𝜋 · 𝐿 ·
𝐷𝑤
2
·
𝑃𝑚𝑎𝑥
2

𝐸
 (7.31) 

Secondly, the projection of this force onto the corresponding direction (e.g. 

the vertical axis in the next formula) is applied to one of the wire-ring line 

contacts to obtain the contact semi-width (𝑏) with (1.18). 

Finally, authors recommend defining 𝑊𝑛𝑠 as two times (𝑏). This statement is 

not trivial, since a wider rigid surface also stiffens the contact area and avoids 

the need to define a rigid volume underneath (unlike the case presented in the 

previous section). Besides this, each rigid volume of each sector would be 
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linked, creating slender rigid rings inside the bearing rings that would add 

unrealistic stiffness to the component. 

As mentioned, the MATRIX27 formulation considers the friction forces in 

the contacts, while the COMBIN39 does not. Therefore, greater accuracy is 

expected using MATRIX27. However, it has been explained that the direction 

of these friction forces depends on the prevailing relative displacement between 

rings, and unfortunately this aspect cannot be reproduced by a unique user-

defined matrix. For this reason, two different matrices must be created: one for 

prevailing axial displacement and another for prevailing radial displacement. 

Therefore, depending on the relative displacement of the sector, one of the two 

matrices should be introduced for each roller. In addition to this, it must be 

recalled that the sign criterion is different for rollers A and B, as explained in 

Chapter 5. Thus, a total of four different user-defined matrices are required for 

the analysis of a bearing, two for each roller type. Obviously, the procedure to 

select the proper matrix must be based on previous FE or analytical calculations 

to obtain the approximate relative displacements. The suggested procedure 

consists of a combination of both MATRIX27 and COMBIN39 strategies. 

First, a FE simulation with the COMBIN39 element obtains the predominant 

relative displacement between rings for each sector with notable accuracy. 

Second, the proper MATRIX27 user-defined matrix is introduced in each 

sector based on the previous results. Accordingly, two FE simulations are 

required, but this procedure has better convergence and is more efficient than 

a detailed solid-meshed FE model. 

7.3.4 FE Validation 

Once the efficient FE modelling strategies have been described, their 

accuracy must be assessed. To this end, two efficient FE models are built, one 

for the MATRIX27 alternative and another for the COMBIN39. Then, the 

results of the efficient FE models and of the reference FE model are compared 

for three pure load cases (axial, radial and tilting moment). The reasons for the 

election of these load cases have been explained in previous sections. Bearing 

geometrical data (Figure 7.18) for the validation are gathered in Table 7.4, where 

the rings are dimensioned following the standard geometry proposed in [15], 

but dependent on the housing 𝐻 rather than on the rolling element diameter 

𝐷𝑤. 
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Table 7.4 Reference bearing geometry data. 

𝑫𝒘  𝑫𝒑𝒘  𝑹𝒇  𝜶𝟎 𝝀  𝑵𝑹 𝑹𝒘𝒉 𝑹𝑳 𝑹𝑯 𝑹𝑳𝒈 𝑯𝒈 

[mm] [mm]  [°] [mm]      [mm] 

14 420 0.5 45 8 94 3.9 1.9 2.15 0.1 3 

 

Figure 7.18 Bearing geometrical parameters. 

Figure 7.19a shows an efficient FE model for the radial and tilting moment 

load case, where the wires and rollers have been replaced with the simplified 

FE mechanisms. Besides this, mesh refinements are not required, which also 

reduces the size of the mesh and the computational cost. Rings were modelled 

with linear elastic aluminium (𝐸 =71 [GPa]), and a penetration tolerance of 1 

[μm] was defined for the no-separation shell-ring contacts. Boundary 

conditions represent rigid supporting structures, while loads are applied as a 

relative displacement between rings using a remote node on the bearing centre. 

Symmetry boundary conditions were applied to symmetry planes and the 

circumferential displacement was constrained for the nodes of the MATRIX27 

or COMBIN39 elements. 

Figure 7.19b shows the reference FE model described in Section 5.5. For 

further information about this FE model, the reader may go back to that 

chapter.  

The mesh comparison between FE models can be observed in Figure 7.19c. 

Despite the evident differences in the mesh, the most relevant data for the 

comparison of two FE models is the number of DoF. In this sense, the efficient 
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FE models retrieve 2,054,625 DoF while the reference FE model has 

26,914,527 DoF. The disparity in the number of DoF gives an idea of the 

efficiency of the proposed FE modelling strategies. Moreover, the suppression 

of the non-linearities generated by the frictional contacts improves the 

convergence and consequently the solution process. 

 
(a) 

 

(b) 

 
(c) 

Figure 7.19 Validation FE models: (a) Efficient FE model; (b) Reference FE model; (c) 
Mesh comparison. 

Having performed the FE analyses, it is time to compare the results to assess 

the validity of the proposed FE modelling strategy. The first performance 

indicator to be evaluated is the bearing stiffness. Figure 7.20 shows the bearing 

stiffness curves for each FE model under the three pure load cases. The upper 

grey area represents load values over 40% of the bearing static load capacity. 
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For the case under study, beyond that load, a stiffer behaviour is observed in 

the reference model. This is caused by the wire-ring gap closure phenomenon 

explained in Section 5.3.1, which is not considered in the efficient models 

formulation or in the calculation of the stiffness constants 𝑘1, 𝑘2 and 𝑘3. 

The stiffness behaviour is quite similar for the three load cases. Below 40% 

of the static load capacity, the MATRIX27 alternative obtains almost perfect 

results, whereas the COMBIN39 shows a slight deviation. As mentioned, the 

gap closure phenomenon leads to a higher accuracy loss as the load magnitude 

increases, especially for the COMBIN39 model. Table 7.5 lists a summary of 

the errors with respect to the reference curve at different values of the static 

load capacity (𝐶0). 

 
(a) 

 
(b) 

 
(c) 

Figure 7.20 Bearing stiffness curves comparison: (a) Axial load case; (b) Radial load case; 
(c) Tilting moment load case. 
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Table 7.5 Error in stiffness curves. 

 MATRIX27 COMBIN39 

[%] 30% 𝑪𝟎 40% 𝑪𝟎 50% 𝑪𝟎 30% 𝑪𝟎 40% 𝑪𝟎 50% 𝑪𝟎 

Axial 3.8 4.8 6.8 12.1 13.4 15.9 

Radial 1.5 3.1 5.4 9.3 11.1 13.8 

Tilting 1.65 2.98 5 8.85 10.4 12.7 

Regarding the other three performance indicators, roller-wire contact results 

are shown in Figure 7.21, Figure 7.22 and Figure 7.23 for the axial, radial and 

tilting moment load cases respectively. The results in these plots were obtained 

for the same load value at 40% of static load capacity, since it is the approximate 

limit of validity of the assumptions made for the development of the FE 

models. In all cases, normal contact load values are similar. In terms of contact 

angle, almost no difference exists. With regard to the tangential contact force, 

the MATRIX27 alternative provides acceptable results, where the deviation is 

caused by the simplifications made for representation of the contacts. On the 

other hand, the tangential behaviour is not considered in the COMBIN39 

model. Therefore, it can be concluded that the omission of the tangential forces 

is the source of the difference in stiffness results shown in Figure 7.20. 
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Figure 7.21 Axial load case contact results. 
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Figure 7.22 Radial load case contact results. 
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Figure 7.23 Tilting moment load case contact results. 

Based on the above, it can be concluded that the MATRIX27 and the 

COMBIN39 efficient FE modelling strategies are accurate until a significant 

percentage of the static load capacity. In the majority of applications, bearing 

operating conditions fall within this region. Even if the design conditions are 

close to the static load capacity, the accuracy of the proposed FE models is 

good enough to perform initial calculations. 

It is also worth also recalling that stress analysts can take advantage of both 

proposed approaches. The COMBIN39 FE strategy can provide useful results 

for fast simulations in initial design stages. Besides this, this approach can also 

be used as a first iteration of a more accurate simulation, obtaining the relative 
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displacements between rings that are required to perform a FE simulation 

according the MATRIX27 FE strategy. 

Finally, once the FE analyses for the validation have been performed and the 

results compared, the true efficiency of the FE modelling strategies is evaluated. 

All the analyses were performed on a workstation with an Intel® Xeon® E5-

2697 v3 @ 2.6GHz processor with 14 physical cores (28 logical), a RAM of 

128GB and solid state disks (SSD). Table 7.6 presents the CP and elapsed time 

for each simulation, where the phenomenon presented in the previous sections 

happens to occur again (analyses in I/O bound). This phenomenon is more 

evident in the reference FE model for radial and tilting moment loads, since it 

has 27M. DoF. Regarding the efficiency of the proposed FE modelling 

strategies, the COMBIN39 FE model was 100 times faster for the tilting 

moment load case in comparison with the reference FE model. MATRIX27 

FE model is almost as efficient, but it is worth remembering that the 

implementation of this strategy for combined load cases requires a previous 

analysis with the COMBIN39 FE model. Even considering this, the 

computational cost savings are exceptional. It is also worth mentioning that the 

relationship between the computational cost and the number of DoF is 

exponential. This means that the savings are more significant as the size of the 

FE model increases. 

Table 7.6 CPU and elapsed time of the FE analyses. 

[s] Time 
Reference 
FE model 

MATRIX27 
efficient FE 

model 

COMBIN39 
efficient FE 

model 

Axial load CP 
Elapsed 

2264 
2275 

198 
678 

205 
753 

Radial load CP 
Elapsed 

40113 
100936 

3365 
4768 

3776 
4302 

Tilting 
moment 

CP 
Elapsed 

30489 
164889 

1651 
1976 

1271 
1554 
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8 Influence of geometrical 

parameters on the structural 

behaviour: design guidelines 

for wire-race bearings 

8.1 Introduction 

Due to the lack of works regarding wire-race bearings, some insight becomes 

necessary when an engineer faces the design problem. Therefore, knowing the 

effects of design parameters on the performance of the bearings is a necessary 

step to optimize the design. To this regard, a study of the effects of several 

geometrical parameters on the performance under axial load is presented in this 

chapter. The results were obtained by means of FE simulations within a DoE 

for both four-point contact and crossed roller wire-race bearings. It can be 

considered that the conclusions obtained from this study are also valid for other 

load cases. Besides this, radial and tilting moment FE analyses are quite costly 

in terms of computational cost. If these load cases would have been considered, 

such an exhaustive study could have not been carried out. 

First, the foundations of the study must be established, which means that the 

geometrical parameters under analysis have to be defined. After this, the 

boundaries of the study, i.e. the design space, must be defined according to 

bearing catalogues, since it is only of interest to study real bearing designs and 

see what happens slightly further beyond; there is no point in studying 

unrealistic geometries. Once the geometrical parameters are defined with their 

maximum and minimum range values, the DoE must be planned and carried 

out, where each Design Point will imply one FE analysis. Finally, the FE results 

are processed in such a way that the physical phenomena can be clearly 

observed and the main and crossed effects evaluated, so a set of design 

guidelines can be properly established. 
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8.2 Design parameters definition 

For the sake of clarity, four-point contact and crossed roller wire-race 

bearings will be referred to as ball and roller bearings from now on, since this 

change in the nomenclature simplifies the understanding of the text. 

As can be seen in Figure 8.1, there are many parameters that define the 

bearing geometry, and there is no sense in studying them all. For this reason, 

only the design parameters relating to the geometry of the contact areas were 

considered for this study. Bearing mean diameter (𝐷𝑝𝑤) and the initial contact 

angle (𝛼0) remained constant because their effects are already known from 

studies on conventional slewing bearings. Besides this, 𝐷𝑝𝑤 is usually dependant 

on the application and cannot be modified. In the case of roller bearings, the 

length of the rollers was also not considered as a design parameter. Roller length 

does not affect the roller-raceway contact area, because it is always larger than 

the raceway width on wire-race bearings. 𝑅 is the radius of the ring groove 

where the wire is placed, and its value is usually 𝜆 minus 0.1 [mm] [4]. Regarding 

the number of rolling elements, a fill factor of 100% [15] was established. This 

means that the number of rolling elements is the maximum allowable. 

In order to obtain generalist results, the parameters of the DoE were defined 

as non-dimensional or dependant on the rolling element diameter. This means 

that it could be assumed that the conclusions obtained from a certain 𝐷𝑤 are 

also valid for smaller or higher 𝐷𝑤 values. However, results may change with 

the scale, so the first design parameter to be considered is the rolling element 

diameter. 

The wire diameter is also another geometrical parameter that is essential for 

the definition of the bearing geometry and its influence must be evaluated. 

However, as was explained in the previous paragraph, it has to be dependant 

on 𝐷𝑤. For this reason, the non-dimensional parameter 𝜆𝑟 was defined as the 

second design parameter, where 𝜆𝑟 = 𝜆/𝐷𝑤. 

In order to evaluate the influence of the raceway size, the non-dimensional 

parameter 𝑅𝑓 (Eq. (5.11)) was selected as the third design parameter. This 

parameter was introduced in Chapter 5, in such a way that 𝑅𝑓 =0 means that 

no material is machined (wire-rolling element non-conformal contact) and 

𝑅𝑓 = 1 means that half of the wire section is removed (𝐷𝑤 = 𝐷𝑐𝑤). 
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 𝑅𝑓 = 1 +
1

𝜆/𝐷𝑤
−

1

𝜆/𝐷𝑐𝑤
 (5.11) 

Apart from the three design parameters defined above (𝐷𝑤 , 𝜆𝑟 , 𝑅𝑓), the 

osculation ratio (𝑠) is a crucial parameter for the definition of the ball-raceway 

contact. For this reason, it must be included as an additional design parameter 

for the ball bearings. 

Regarding the dimensions of the rings, the size of their cross-section is usually 

related to the rolling element diameter. For this reason, it was considered 

unappropriate to keep a constant rings cross-section for all the study cases. The 

solution to this problem was found on the standard bearing ring geometry 

proposed by Heras et al. [15], which is dependant on the size of the housing 

(𝐻) and has already been used in previous chapters. Table 8.1 compiles the 

constant geometry parameters and the coefficients that define the geometry of 

the rings. Regarding the mean bearing diameter, a generalist value was used, as 

well as standard values for the ring geometry parameters. 

 

 

Figure 8.1 Four-point contact and crossed roller wire-race bearing cross-section. 
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Table 8.1 Ring coefficients and constant geometry parameters. 

𝑫𝒑𝒘  𝜶𝟎 Fill Factor 𝑹𝑳 𝑹𝑯 𝑹𝑳𝒈 𝑯𝒈 

[mm] [°] [%]    [mm] 

420 45 100 1.9 2.15 0.1 3 

8.3 Design of Experiments 

A 2 level full factorial design was considered to assess overall main and 

crossed effects, from which Pareto charts are built. Besides this, some 

additional design points were added to account for non-linearities and to 

simplify postprocessing. With all this, the DoE consisted of a total of 25 design 

points for ball bearings and 15 for roller bearings. The ranges of the geometrical 

parameters that appear in the matrices of experiments were defined from values 

found in commercial catalogues. 

 

 

Figure 8.2 Matrices of experiments. 

Figure 8.2 shows the matrices of experiments built for both bearing types, 

where a color code indicates the purpose of each design point. Grey points are 
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those regarding the 2 level full factorial design. Each black point corresponds 

to the reference bearing geometry and acts as a midpoint to account for possible 

non-linearities in main effects. White design points represent geometries where 

the main effects can be independently analyzed and observed. 

8.4 Finite Element models 

One multiparametric FE model for each bearing type was built in Ansys® to 

carry out the simulations of the DoE campaign. As previously mentioned, the 

study was limited to axial load case, so both load and symmetry are cyclic 

symmetric. This means only a half sector model with half a ball is enough for 

ball bearings, and a half sector model with two roller halves is enough for roller 

bearings. As usual, structural steel (𝐸 = 200 [GPa]) was assigned for rolling 

elements and wires, and aluminium (𝐸 = 71 [GPa]) for the rings. Chamfers or 

eventual roller crowning were not considered in the FE models, and neither 

were wire edge fillets, since there is no standard geometry for the wires so far. 

To this respect, Gunia and Smolnicki [159] proposed a wire-edge geometry 

correction. As mentioned in the literature review, this geometry correction 

reduced the stress concentrations due to edge effects, but the behaviour of the 

rest of the contact did not change significantly. This reduction of the stress 

concentration has important implications in bearing fatigue life, but does not 

affect the global behaviour of the contact; therefore nor does the response of 

the bearing in terms of load distribution or global deflections. Consequently, 

the FE model will predict when the contact reaches the limits of the raceway 

for the ball case, for example, but cannot calculate the real stress peaks. These 

areas are quite local and good results can be obtained at a certain distance from 

them. 

Figure 8.3 shows the FE models developed for the study. It can be seen that 

the mesh is not exactly the same as the ones performed for other models 

presented in previous chapters. Nonetheless, it has been proven via mesh 

sensitivity analysis that all the FE models are equivalent in terms of accuracy 

regarding the evaluated performance indicators. In the current FE models some 

partitions were carried out on the geometry that allow meshing of different 

volumes of the same component with different mesh sizes and a continuous 

mesh. The DoF of the model changes from one case to another depending on 

the value of the geometrical parameters, but the total number is always around 

1,500,000 DoF for both bearing types. Contacts are grease lubricated, so they 

were defined as frictional with a coefficient of friction of 0.1 [102,163,164]. The 
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Augmented Lagrange formulation was selected, letting the program 

automatically control the normal contact stiffness and updating it each iteration 

in order to achieve a maximum mesh penetration of 1 [μm]. 

While boundary conditions usually depend on the application or the 

surrounding structures, this work intends to be generalist and aims to study the 

local behaviour of the component. In this sense, rigid boundary conditions were 

imposed to the external faces of the rings and an external axial displacement 

was applied to those faces until the static load capacity was reached. This way, 

the effect of the parameters under study can be evaluated supressing the effect 

of the flexibility of the rings or the boundary conditions. The FE model is also 

more constrained, which improves the convergence and obtains better results 

to isolate the target effects defined in the study. Static load capacity values were 

calculated using the method developed in [13] for ball bearings and in [9] for 

roller bearings. Symmetry boundary conditions were also applied to the cyclic 

symmetric faces. 

 

(a) 

 

(b) 

Figure 8.3 FE models: (a) Ball bearing (b) Roller bearing. 
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8.5 Results 

With the FE analyses of the DoE campaign having been performed, it is time 

to process the results and evaluate the main and crossed effects. In order to 

assess the influence of the geometrical design parameters in the performance 

of the bearing, some performance indicators must be used. These performance 

indicators properly represent the structural behavior of the bearing and its 

capacity to support external loads. The selected indicators are the static load 

capacity, the bearing axial stiffness, the wire twist, the contact angle and the 

pressure contours along the contact major semi-axis. These performance 

indicators have been used throughout this document, so there is no need to 

define them. However, it is worth listing them. The first performance indicator 

is the static load capacity, which is calculated with the formulae proposed in the 

ISO-76 standard (Equation (1.1) and (1.2)) [24,25]. Contrarily, the other 

performance indicators were obtained from the FE simulations. Axial stiffness 

is the key performance indicator that represents the structural behaviour of the 

component. In order to evaluate the wire-roller-wire set, the contact angle and 

wire twist were also defined as performance indicators. Finally, pressure 

contours along the contact major semi-axis were obtained to evaluate the 

behaviour of the contact. 

Since the study consists of two types of bearing, the results of each bearing 

type will be presented in separate sections. Each section starts with explanations 

about the relative weight of the main effects of each design parameter and the 

crossed effects among them on the overall values of the performance 

indicators. Crossed effects can have a significant effect on the performance 

indicators; a study of those crossed effects is necessary to ensure whether the 

conclusions obtained from the analysis of the main effects are sufficient or not. 

Then, those main effects are analysed for each performance indicator and 

finally, a brief summary of the main effects is provided. 

8.5.1  Ball Bearings 

Main and crossed effects 

Figure 8.4 shows a summary of the main and crossed effects of the design 

parameters on the overall values of the performance indicators, where the 

summation of main and crossed effects equals 100%. It can be seen that crossed 

effects do not have a significant effect on the axial static load capacity and the 

stiffness, with a cumulative effect of 12% and 20% respectively. The summation 



206  Iñigo Martín 

 

 

of the crossed effects for the wire twist amounts to 27%, which is also relatively 

low. Regarding the contact angle variation, the cumulative weight of the crossed 

effects rises up to 41%; this reveals a diffuse effect of the design parameters 

and this can be due, in part, to the inherent difficulty of establishing a proper 

overall value to represent the contact angle variation. 

 

 

 

 

Figure 8.4 Ball bearing main and crossed effects. 
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Axial Static Load Capacity  

In this section, the axial static load capacity according to the ISO-76 standard 

[24,25] is compared. The effect of the contact ellipse truncation cannot be 

calculated with this method but will be evaluated later. The axial static load 

capacity is a parameter that can be altered by changes in the osculation ratio (𝑠) 

or in ball diameter 𝐷𝑤 as can be seen in Figure 8.5. A more conformal contact 

can support more load before reaching the maximum allowable contact 

pressure. The same happens with a bigger ball diameter, but we must take 

account of the fact that a larger diameter involves a lower number of rolling 

elements. 𝜆𝑟 and 𝑅𝑓 do not apparently affect the capacity, because they do not 

modify the geometry of the contact. 

 

Figure 8.5 Ball bearing axial static load capacity. 

Axial Stiffness 

Figure 8.6 shows the stiffness curves for the different cases. As could be 

predicted, stiffness slightly increases with the osculation ratio, since a more 

conformal contact is stiffer. 𝑅𝑓 does not affect the stiffness as it does not 

change the contact geometry. A higher 𝜆𝑟 involves a larger wire diameter, which 

makes the wire-ring contact stiffer. Finally, an increase in 𝐷𝑤 results in a more 

flexible bearing. This effect comes from the reduction of the number of rolling 

elements. A contact with a larger ball is stiffer, but fewer contacts have to 

support higher contact forces for the same external applied force. 
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Figure 8.6 Ball bearing stiffness results. 

Wire Twist 

Figure 8.7 shows that larger osculation ratios result in wire twisting starting 

earlier, because in a less conformal contact the ball would not climb over the 

raceway as much. The race factor almost does not affect wire twist; however a 

slight difference can be seen near 𝐶0𝑎. This phenomenon happens because 

larger 𝑅𝑓 values involve larger raceways, stimulating ball climbing and therefore 

a more off-centre contact ellipse that generates more wire twisting moment. 

The effect of increasing 𝜆𝑟 and 𝐷𝑤 is the same since both of them modify the 

size of the housing (𝐻). The smaller the size, the larger the wire twist for the 

same external applied displacement (∆𝑎𝑥𝑖𝑎𝑙) and vice versa, as can be seen in 

Figure 8.8, where (𝜃) is an angle related with the wire twist. Besides this, it has 

been proven that the wire twist varies proportionally with the inverse of 𝐷𝑤. 
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Figure 8.7 Ball bearing wire twist results. 

 

Figure 8.8 Effect of an external applied displacement in wire twist. 

Contact angle 

The contact angle is related to wire twist and to ball climbing phenomenon, 

as it can be derived from the plots in Figure 8.7 and Figure 8.9. As previously 

mentioned, larger osculation ratios result in the ball starting to climb over the 

raceway early followed by later stabilization because of the action of the wire 
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twist. Lower osculation ratios are less likely to climb over the raceway and for 

this reason the evolution of the curves is not as aggressive. The variation with 

𝑅𝑓 is similar at the beginning with a later deviation because of the wire twist. 

The increasing wire twist with the reduction of 𝜆𝑟 keeps the contact ellipse 

centred on the raceway, which results in a fairly constant contact angle. 𝐷𝑤 

seems to have almost no effect on the contact angle. Nevertheless, for smaller 

values, the ball tends to start climbing faster and the contact angle rises, which 

is later counterbalanced by the wire twist. 

 

Figure 8.9 Ball-wire contact angle results. 

Contact pressure contours 

Pressure contours along the contact major semi-axis are relevant since they 

indicate whether the maximum allowable load pressure has been exceeded or if 

the contact ellipse has reached the raceway boundaries causing truncation. Note 
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that, in this case, truncation happens to be in the lesser loaded zone of the 

ellipse. For this reason, the pressure peaks are not as acute as could be expected 

on the edges. The osculation ratio appears to generate the expected behaviour, 

i.e., a more concentrated contact occurs with lower osculation ratio values. The 

effect of reducing the raceway with large values of 𝑅𝑓 or small values of 𝜆𝑟 

increases the risk of suffering ellipse truncation as can be observed in Figure 

8.10b and Figure 8.10c. As a result of varying the values of 𝐷𝑤, it can be stated 

that the behaviour of the contact ellipse is identical but scaled. Another 

conclusion that can be drawn from these graphs is that the static load capacity 

calculated in [13] appears to be a good estimate, and that truncation can be a 

problem with certain small values of 𝑠, 𝑅𝑓 or 𝜆𝑟. 

 

(a) (b) 

 

(c) (d) 

Figure 8.10 Ball bearing contact pressure results: (a) Osculation ratio (b) 𝑹𝒇 (c) 𝝀𝒓; (d) Ball 
diameter. 
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8.5.2  Roller Bearings 

Main and crossed effects 

Figure 8.11 shows a summary of the main and crossed effects of each 

geometrical parameter in the overall values of the performance indicators, 

where the summation of main and crossed effects equals 100%. The summation 

of crossed effects is equal to or less than 20% for all performance parameters, 

specifically 20% for axial static load capacity, 11% for stiffness, 14% for wire 

twist and 17% for contact angle. For this reason, it can be said that the effect 

caused by crossed effects is low.  

 

 

 

 

Figure 8.11 Roller bearing main and crossed effects. 
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Axial Static Load Capacity 

This indicator depends on the contact geometry and is affected by all the 

studied parameters, because all of them modify the contact length. 𝑅𝑓 and 𝜆𝑟 

have less of an effect on 𝐶0𝑎 compared with 𝐷𝑤, as shown in Figure 8.12. 

Regarding the effect of varying 𝐷𝑤 on the static load capacity, another 

important fact must be pointed out. In the DoE arranged for this study, the 

chosen design parameters were 𝐷𝑤, 𝜆𝑟 and 𝑅𝑓. But if the chosen parameters 

had been 𝐷𝑤, 𝜆 and 𝑅𝑓, a strange phenomenon would have occurred. A 

variation in 𝐷𝑤 with constant 𝜆 and 𝑅𝑓 does not have any effect on the static 

load capacity, so it cannot be considered as a valid strategy to increase the static 

load capacity. To prove this, the formula proposed in the ISO-76 standard 

[24,25] to obtain the static load capacity for conventional bearings can be 

analysed: 

 𝐶0𝑎 = 220 · (1 −
𝐷𝑤 · 𝑐𝑜𝑠(𝛼)

𝐷𝑝𝑤
) · 𝑁𝑅 · 𝐿 · 𝐷𝑤 · 𝑠𝑖𝑛 (𝛼) (1.2) 

In the proposed situation, if 𝜆 and 𝑅𝑓 remained constant, so would the 

contact length. Additionally, for slewing bearings the term in brackets is close 

to one, and 𝐷𝑤 is inversely proportional to the number of rollers (𝑁𝑅) with a 

constant fill ratio. This implies that an increase in one of them would result in 

a reduction in the other, maintaining the static load capacity constant. 

 

Figure 8.12 Roller bearing static load capacity. 
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Axial stiffness 

Axial stiffness is affected by contact geometry: a roller raceway contact with 

a larger contact length is stiffer than another with a shorter one, as can be seen 

when 𝑅𝑓 or 𝜆 increases. In terms of 𝑅𝑓, this phenomenon is non-linear since 

the relationship between 𝑅𝑓and the raceway length is also non-linear. For this 

reason, the 𝑅𝑓 = 0.25 curve is more flexible than the other two, where the 

contact length is similar. Roller diameter seems to have little effect on axial 

stiffness; the effect of a more rigid contact with higher 𝐷𝑤 is compensated for 

with less rollers. 

 

Figure 8.13 Roller bearing stiffness results. 
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Wire twist 

Just as was the case with the ball bearings, if the wire-roller-wire set is smaller, 

for the same applied external displacement the set can twist more. This 

phenomenon can be seen in Figure 8.14, where every graph shows how wire 

twist is greater when the roller-wires set is smaller. 

 

Figure 8.14 Roller bearing wire twist results. 

Contact angle 

The contact angle variation shown in Figure 8.15 is so closely related to wire 

twist, that the wire twist values are almost the same as the contact angle 

variation values. This small deviation comes from the deformation of the roller-

wire contact. 
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Figure 8.15 Roller contact angle results. 

Contact pressure contours 

This section presents the pressure lines along the longitudinal axis of the 

contact patch during the loading process. On roller bearings, the contact is 

always truncated in the direction of the major semi-axis. In this sense, even 

though very large non-realistic pressure peaks appear in Figure 8.16 due to 

linear material assumption, this does not imply that these peaks do not exist. 

Indeed, the free edges of the wire exert some pressure peaks in the location of 

the wire edges. However, these pressure peaks can be avoided to a great extent 

with edge filleting and slight crowning. 

Regarding the results, identical behaviour is observed in all cases, where 

friction generates a tangential force on roller-wire contact that tilts the pressure 

lines. As a result, the maximum pressure reaches and surpasses the maximum 

allowable limit. The appearance of this kind of phenomena can be expected but 

not predicted using the analytical model in [9], since it assumes that the contact 

angle remains constant at 45 [°] and that the contact force is evenly distributed. 
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(c) 

Figure 8.16 Roller bearing contact pressure results: (a) 𝑹𝒇; (b) 𝝀𝒓; (c) Roller diameter. 

8.5.3 Results summary 

All the results presented in this section are compiled in Figure 8.17 and Figure 

8.18 for ball and roller bearings respectively. These plots compare the overall 

performance indicators of the reference case with the ones where a single 

parameter was increased or decreased, providing a graphical presentation of 

how much the variation of a geometrical design parameter affects the overall 

value of each performance indicator. 

Ball bearings 

On ball bearings, axial static load capacity is only affected by the osculation 

ratio and ball diameter, with a significant variation. Overall stiffness constant 

retrieved a slight increase with high values of 𝑠 and 𝜆𝑟 and low values of 𝐷𝑤. 

The overall contact angle seems to increase with all studied parameters, 
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especially with 𝜆𝑟. Overall wire twist is not affected as much by studied 

parameters. Contact angle variation is not so closely related to wire twist since 

the ball climbing phenomenon has a significant contribution. In addition to this, 

non-linearities are observed for some design parameters on some performance 

indicators and the most evident ones are: the effect of 𝑠 on the axial load 

capacity, the effect of 𝜆𝑟 on the stiffness, and the effect of 𝑠 and 𝑅𝑓on the 

contact angle. 

 

Figure 8.17 Effect of the design parameters on ball bearing performance. 
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Roller bearings 

Axial static load capacity suffers important variations with all geometrical 

parameters because of the contact length increase or decrease. On the one hand, 

stiffness does not change significantly with roller diameter. The effect of 

increasing the contact length is compensated with the reduction in the roller 

number. On the other hand, 𝜆𝑟 and 𝑅𝑓 directly affect the roller-wire and wire-

ring contact geometry, which contribute to the stiffness fluctuations. Variations 

in contact angle and wire twist are closely related with a small deviation caused 

by roller-wire contact deformation. In addition to this, non-linearities are 

observed for some design parameters on some performance indicators, with 

the most evident being the effect of 𝑅𝑓 on the axial load capacity and the 

stiffness, and the effect of 𝐷𝑤 on the wire twist. 

 

Figure 8.18 Effect of the design parameters on roller bearing performance.
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9 Conclusions and future work 

9.1 Conclusions 

The main conclusions drawn from the research work carried out in this 

Doctoral Thesis are presented in this final section. Keeping in line with the 

document, the conclusions are listed following the same order as the previous 

chapters. 

 The study of the static structural response of four-point contact 

slewing bearings revealed that the wire twisting phenomenon, i.e. the 

rotation of the wire cross-section under external load, has a significant 

effect on bearing performance. This phenomenon keeps the ball-

raceway contact centred on the wire raceway so that contact truncation 

is avoided. For this reason, adequate lubrication of the wire-ring 

contact is crucial. Incorrect lubrication of this contact may impede wire 

twisting and will lead to contact truncation. Attention must be also 

paid to the osculation ratio, since high osculation ratio values 

combined with small raceways can also result in truncation problems. 

Regarding the comparison with conventional slewing bearings, the 

additional contacts and the aluminium rings reduce the stiffness of the 

component. Besides this, eventual truncation problems can arise if the 

osculation ratio is high and the boundary conditions are flexible 

enough. 

 An engineering formula was developed to obtain the twisting stiffness 

of the race-shaped wire that can be found in four-point contact wire-

race bearings. The proposed formula was elaborated based on an 

evidence-based deformation assumption at a differential level for the 

section of the wire. After the integration and mapping process, the 

formula was tuned as a function of the principal wire geometrical 

parameters. Finally, the accuracy of the proposed formula was assessed 

by comparisons with equivalent FE results. 
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 A four-point contact wire-race slewing bearing analytical formulation 

to perform structural calculations under axial, tilting moment loads or 

a combination of both under rigid rings boundary conditions was 

proposed. This formulation was based on representing the physical 

phenomena that occur in one sector of the bearing under this type of 

loading. The stiffness and the status of the contacts were also key 

aspects to take into consideration. In this regard, the limitations in 

terms of representing the wire-ring contact status lead to only consider 

the axially loaded sector situation. As a result, a non-linear system of 

equations is reached, which represents the structural response of one 

sector of the bearing with one rolling element. The response of the 

whole bearing is obtained from the summation of all sector results. 

Analytical and FE results were compared in order to validate the 

analytical formulation, obtaining good agreement between them. 

 Another analytical formulation was proposed for crossed-roller wire-

race slewing bearings. The analytical formulation development process 

is very similar to the previous one, also considering that each sector is 

independent of each other. However, in this case, axial and radial loads 

can be applied to the bearing sectors, which allows any combination 

of loads to be applied to the whole bearing. After defining some 

assumptions, an analytical formulation based on non-linear equations 

was developed to represent the structural behaviour of one bearing 

sector. The proposed approach works not only for the rigid rings 

assumption, but the flexibility of the rings can also be considered. As 

the final objective consisted of developing an analytical calculation 

tool, the formulation was implemented on a simulation algorithm. On 

the one hand, this algorithm can be used to calculate the stiffness and 

the static load capacity of any bearing geometry within a certain design 

space. On the other hand, the load distribution problem can be also 

solved. However, an optimization process had to be carried out in the 

calculation process. Finally, a validation by means of a FE results 

comparison was successfully performed. 

 The EF models, in whose results the basis of the developed analytical 

approaches rests on, were experimentally validated. FE models were 

used to study the behaviour of the wire-race bearings and to validate 

the accuracy of the analytical models. Because of this, their accuracy 

had to be proven. To this end, an experimental test campaign was 
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carried out on a tension-compression test bench for four specimens of 

two bearing designs. Axial stiffness results showed that a lack of bolt 

preload during the assembly process increased the scatter and lead to 

more flexible behaviour. Slight non-linear behaviour was also observed 

at the beginning of the loading process, which could be caused by 

manufacturing errors. Finally, the experimental and the FE results for 

both bearing designs were very much in line with each other. 

 In spite of the versatility and accuracy of the FE models, the related 

computational cost is high and convergence problems are likely to 

arise. In order to address these drawbacks, several wire-race bearing 

FE modelling strategies were proposed and validated via a results 

comparison with reference FE models. Regarding four-point contact 

wire-race bearings, the efficient strategy proposed by Daidié for 

conventional slewing bearings was implemented. This strategy 

consisted of replacing the balls with a mechanism composed of rigid 

beams and a non-linear spring that simulates the stiffness of the 

contacts. After some modifications, it gave excellent results with 

improved efficiency. Moreover, two other efficient FE modelling 

strategies were proposed for crossed roller wire-race bearings. The first 

one consisted of implementing the analytical formulation developed in 

this thesis in a FE model by means of user-defined elements, which 

replace the wires and the rollers. The second alternative consisted of 

replacing these elements by non-linear springs. Both alternatives 

showed good agreement and excellent efficiency, with the most 

beneficial case being 100 times less time consuming than the reference 

FE models. It is also worth mentioning that the first alternative is 

slightly more accurate but more tedious to implement. 

 Finally, some design guidelines for four-point contact and crossed-

roller wire-race bearings were proposed. Firstly, a DoE based on FE 

analyses of both bearing configurations under axial load was 

performed. Then, main and crossed effects of the design parameters 

were evaluated and the design guidelines were consequently deduced. 

In the case of four-point contact wire-race bearings, static load capacity 

is only affected by contact geometry parameters such as the osculation 

ratio and the ball diameter. It rises as any of the two parameters 

increases. Axial stiffness does not change significantly with any 

parameter. Contact angle variation increases with all the parameters, 
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but more abruptly with the wire diameter. Wire twist increases with the 

osculation ratio and the size of the raceway, while it decreases with the 

ball and wire diameter. Regarding crossed roller wire-race bearings, it 

increases as all parameters do. Axial stiffness is mainly affected by the 

wire diameter. It increases as the wire diameter increases. Contact angle 

variation and wire twist increase in line with the size of the raceway 

and slightly decrease with the roller and wire diameter. 

9.2 Future work 

As a result of the work conducted in this Doctoral Thesis, various research 

lines were left open as possible future work. Some of these alternatives are 

proposed in the following points: 

 Comparing the structural behaviour of crossed roller wire-race 

bearings with the equivalent conventional slewing bearings. 

 Developing the current four-point contact wire-race slewing bearing 

analytical model so radial loads can be applied. The performance of 

the ball wire-race slewing bearing analytical model could be improved 

if the flexibility of the rings is considered. In addition to this, a 

simulation algorithm could be built in order to create an analytical 

simulation tool. Also to this regard, other four-point contact wire-race 

slewing bearing analytical model alternatives could be studied. Some 

ideas are proposed in Figure 9.1, where the tangential behaviour of the 

wire-ring contacts can be included or the wire structural behaviour 

better represented. 

 

  

Figure 9.1 Proposed alternatives for future ball wire-race bearings analytical 
models. 
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 Studying the effect of the manufacturing errors on the performance of 

the bearing. The manufacturing errors could also be included in the 

analytical models for bearing calculations. 

 A more efficient FE modelling strategy could be developed for ball 

wire-race slewing bearings if the wire-ring contacts are included in the 

simplification, as has been done for crossed roller wire-race bearings. 

 Studying the wire edge effects thoroughly and developing some wire 

edge corrections for crossed-roller wire race bearings. 

9.3 Derived research publications 

As a result of the research work presented in this Doctoral Thesis, the 

following research articles were published in high impact factors scientific 

journals: 

 Martín, I. Heras, J. Aguirrebeitia, M. Abasolo, I. Coria, Static structural 

behaviour of wire bearings under axial load: Comparison with 
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Mech. Mach. Theory. 132 (2019) 98–107. 

DOI: 10.1016/j.mechmachtheory.2018.10.016 

 J. Aguirrebeitia, I. Martín, I. Heras, M. Abasolo, I. Coria, Wire twisting 

stiffness modelling with application in wire race ball bearings. Derivation 

of analytical formula and finite element validation, Mech. Mach. Theory. 

140 (2019). 

DOI: 10.1016/j.mechmachtheory.2019.05.012 

 Martín, I. Heras, I. Coria, M. Abasolo, J. Aguirrebeitia, Structural 

modeling of crossed roller wire race bearings: Analytical submodel for 

the roller-wire-ring set, Tribol. Int. (2020) 106420.  

DOI: 10.1016/j.triboint.2020.106420 

 Martín, I. Heras, J. Aguirrebeitia, L.M. Macareno, Influence of the 

geometrical design on ball and crossed roller wire race bearing behavior 

under axial load, Tribol. Int. 156 (2021). 
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Appendix A: Ball-raceway 

contact formulae summary 

This appendix features a summary of the ball-raceway contact formulae 

proposed by Houpert in [74]. Some of these formulae have been modified in 

order to obtain simpler expressions. Additionally, the parameters have been also 

replaced to match to the ones used in this document. 
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Appendix B: Experimental test 

results  

This appendix features all the results of the experimental test campaign 

carried out in Chapter 6. 
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Figure B.1 Bearing 1: No bolt preload test 1. 
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Figure B.2 Bearing 1: No bolt preload test 2. 
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Figure B.3 Bearing 1: No bolt preload test 3. 
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Figure B.4 Bearing 2: No bolt preload test 1. 
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Figure B.5 Bearing 2: No bolt preload test 2. 
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Figure B.6 Bearing 2: No bolt preload test 3. 
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Figure B.7 Bearing 3: No bolt preload test 1. 
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Figure B.8 Bearing 3: No bolt preload test 2. 
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Figure B.9 Bearing 3: No bolt preload test 3. 
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Figure B.10 Bearing 4: No bolt preload test 1. 
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Figure B.11 Bearing 4: No bolt preload test 2. 
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Figure B.12 Bearing 4: No bolt preload test 3. 
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Figure B.13 Bearing 1: Bolt preload test 1. 
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Figure B.14 Bearing 1: Bolt preload test 2. 
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Figure B.15 Bearing 1: Bolt preload test 3. 
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Figure B.16 Bearing 2: Bolt preload test 1. 
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Figure B.17 Bearing 2: Bolt preload test 2. 
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Figure B.18 Bearing 2: Bolt preload test 3. 
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Figure B.19 Bearing 3: Bolt preload test 1. 
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Figure B.20 Bearing 3: Bolt preload test 2. 
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Figure B.21 Bearing 3: Bolt preload test 3.  
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Figure B.22 Bearing 4: Bolt preload test 1. 
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Figure B.23 Bearing 4: Bolt preload test 2. 
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Figure B.24 Bearing 4: Bolt preload test 3. 
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Appendix C: Clamping tools 

drawings 

In this appendix, the drawings of the clamping tools designed and 

manufactured for the experimental tests are presented. The object of these 

clamping tools is explained in Chapter 6.  
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Appendix D: Certificates of 

inspection 

In this appendix, the certificates of inspection of the dial indicators used for 

the experimental tests presented in Chapter 6 are included.  
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Figure D.1 Certificate of inspection of the dial indicator serial number 19140163. 

 

Figure D.2 Certificate of inspection of the dial indicator serial number 20153892. 

  



Appendix D: Certificates of inspection  277 

 

 

Figure D.3 Certificate of inspection of the dial indicator serial number 20157207. 

 


