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Abstract

New challenges on transport systems are emerging due to the advances that the current
paradigm is experiencing. The breakthrough of the autonomous car brings concerns about
ride comfort, while the pollution concerns have arisen in recent years. In the model of
automated automobiles, drivers are expected to become passengers, so, they will be more
prone to suffer from ride discomfort or motion sickness. Conversely, the eco-driving
implications should not be set aside because of the influence of pollution on climate
and people’s health. For that reason, a joint assessment of the aforementioned points
would have a positive impact. Thus, this work presents a self-organised map-based solu-
tion to assess ride comfort features of individuals considering their driving style from the
viewpoint of eco-driving. For this purpose, a previously acquired dataset from an instru-
mented car was used to classify drivers regarding the causes of their lack of ride com-
fort and eco-friendliness. Once drivers are classified regarding their driving style, natural-
language-based recommendations are proposed to increase the engagement with the sys-
tem. Hence, potential improvements of up to the 57.7% for ride comfort evaluation
parameters, as well as up to the 47.1% in greenhouse-gasses emissions are expected to be
reached.

1 INTRODUCTION

The paradigm of transportation is experiencing technological
advances, causing new challenges to emerge [1]. On the one
hand, the breakthrough of the autonomous driving scenario
aims to relieve motorists from the tasks and risks of driving
a car, with the subsequent improvement of safety and per-
ceived comfort [2, 3]. Thus, while the former is expected to
be clearly enhanced since most of the road accident-associated
injuries and fatalities depend on the human factor [4], mostly
due to recklessness and distractions [5], the latter requires
further attention. This change of the driving scenario will turn
drivers into mere passengers, and hence, new challenges to
their wellness will appear [6], being passenger comfort one of
them. On the other hand, despite pollution having been an
issue since the popularisation of the automobile, it has become
an even more concerning point in recent years due to the
global warming, and because of the harmful effects on people’s
health and lives [7]. In consequence, eco-driving emerges as
a set of rules and parameters to be followed with the aim
of improving the energy efficiency while reducing the green-
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house gasses (GHG) emissions [8]. Hence, any autonomous
car related development should take into account these rules
to minimise both the impact of pollution and passenger’s
discomfort.

There exist many factors that contribute to the global ride
comfort. These aspects are derived from both the environment
within the vehicle (e.g. smell, temperature, humidity etc.), as well
as from the characteristics of the passenger (e.g. gender, age,
health conditions etc.) along with his/her behaviour (keeping
or not his/her gaze on the road). Besides, vibrations affect the
overall comfort perception. Several pieces of research link per-
ceived distress, motion sickness and the frequency components
of the vibrations with the resonance frequencies of the organs
of the human body [9, 10]. Although some vibrations are caused
by the constructive characteristics of either the roadway or the
vehicle itself including the handling of the automobile, those
derived from the driving behaviour and handling skills of the
driver have a noticeable influence in compromising ride com-
fort.

The level of perceived discomfort is associated with the
frequency of the vibrations the human body is exposed to,
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and is directly proportional to their magnitude. It is worth
to remark that increasing the time exposure of the individ-
ual to a given vibration source increases the discomfort sen-
sation. With these assumptions in mind, it is known that low-
frequency vibrations, with frequencies close to 1 Hz, prop-
agate through the human body, impairing the well-being of
the individual gradually until a no-return point. On the other
hand, higher-frequency vibrations, which are significantly atten-
uated by the subject’s body, have no significant contribution
on increasing the sensation of malaise, but, on the other hand,
they are related to a general feeling of disturbance. It is also
interesting to note that monotone continuous low frequency
vibrations increase fatigue, while transient vibrations produce
stress [11].

Motion sickness is the most severe vibration-originated com-
fort condition, causing from mild effects such as cold sweat-
ing and dizziness to nausea and vomit, which strongly impair
passengers [12, 13]. This condition, highly related to low-
frequency vibrations, happens because the brain perceives a
mismatch between the expected movements and the real accel-
erations detected by the vestibular apparatus of the inner ear
[14]. For that reason, the vast majority of drivers do not get
motion-sick, since they receive a more complete range of stim-
uli that helps the brain to have a more accurate insight into
the actual dynamics of the car [15]. Furthermore, motion sick-
ness is very frequent among passengers due to the fact of
not perceiving as many stimuli as drivers do, consequently
making the sensory conflict between the sight and the hear-
ing senses more noticeable. It is worth noting that these
effects are worsened as passengers get involved into secondary
tasks, such as surfing the internet, reading or working on a
PC [16].

At the same time, the concern caused by pollution is moti-
vated by two main reasons: the GHG being the main actor in
the global warning, and the harm that other associated toxic
gasses cause. Regarding the latter point, it has been observed
that people who suffer from pathologies of the breathing sys-
tem tend to experience the most noticeable worsening of their
health condition when exposed to high levels of pollutants [17].
Because of the both aforementioned reasons, several regula-
tions intended to reducing the emission levels of private trans-
portation have been passed by authorities, becoming their ful-
filment one of the main objectives for the automotive industry
[18–20].

Consequently, several works have put the spotlight on driving
style (DS) as a major determinant on several handling features
[21]. Thus, it is known that drivers have different DS, experi-
ences and emotions due to unique driving characteristics, show-
ing their own driving behaviours and habits [21]. Several pieces
of research have boarded the assessment of DS to identify a
variety of driving patterns, such as distracted driving, drowsi-
ness or driving fatigue. Besides, works have been carried out on
aggressive driving behaviour, which leads to several drawbacks
for both the driver and the occupants, such as lack of comfort,
energy efficiency and even the increase on the risk of accident
[22]. The aforementioned behaviours are mainly influenced by

the experience/inexperience of the drivers, as well as his/her
age, gender and general health state [23]. Being these points
considered, the assessment of DS appears as a powerful tool
to identify the underlying causes of the aforementioned draw-
backs.

Throughout bibliography, it can be seen that automated DS
assessment has been performed to classify drivers among a vari-
ety of styles, cycles, and scenarios, regarding their behaviour
and the road type [24–27]. This classification enables to con-
sider the underlying causes of the deviations from the ideal
driving behaviour and, consequently, to provide personalised
recommendations. This advice might help drivers to mitigate
the most undesirable characteristics of their handling, and con-
sequently, achieve outstanding fuel consumption results [28],
reduce their risk of accident or even increase the ride comfort
[29]. It is worth to remark that, since these recommendations
are intended to re-educate drivers if they follow incorrect driv-
ing patterns, they should not interfere with those that show cor-
rect ones.

To perform those personalised recommendations, machine
learning techniques, such as fuzzy logic and artificial neural net-
works have been used to give coaching feedback to the driver
about his/her performance regarding the DS, such as ref.[30],
where DS-associated fuel consumption was assessed to pro-
vide reduction recommendations, or ref. [31], where critical
manoeuvres are analysed to identify eco-driving-compromising
points. In contrast, despite several works having been per-
formed to estimate ride comfort [32] and passenger expe-
rience [33] by means of machine learning, there exists no
proposals to provide DS recommendations to improve ride
comfort.

In this work, we developed a method to improve ride comfort
in an eco-driving framework. This approach, that could be used
to develop advanced driving assistance system (ADAS), aims to
reduce the DS-related discomfort in car occupants while taking
into account eco-driving considerations. Thus, not only driving
features that can trigger ride discomfort are identified, but also
the eco-driving features are taken into account, providing per-
sonalised advice according to both fields. This corrects the eco-
driving and wellness-compromising conditions. This ADAS was
developed while using real-word data from an instrumented car,
particularly the data stream from its CAN-bus and the inertial
measurements unit (IMU) as well as simulated fuel consump-
tion data.

We used self-organised maps (SOMs) [34, 35], a very popu-
lar unsupervised classifier in the fields of data mining and big
data [36, 37], to characterise the DS. This intelligent, unsuper-
vised machine learning algorithm is able to automatically group
driving behaviours. It was chosen because it relies on a 2D rep-
resentation of a high-dimensional complex system, known as
a map, which is suitable for a qualitative evaluation of multi-
ple driving behaviour features. Based on this characterisation,
and taking into account its interpretation, some DS recommen-
dations are set to be provided by the system. Moreover, this
proposal has the main advantage of the aforementioned advice
being provided by means of natural language, which makes it
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friendlier for the driver, always considering his/her individual
characteristics. This fact is expected to encourage the engage-
ment of the motorists with the system, who, otherwise, might
not notice which points of their DS could cause a rise of the
GHG emissions or the triggering of discomfort and motion
sickness in their companions. Thus, in this work, we present the
following contributions:

∙ A novel application of unsupervised neural networks to dis-
cover patterns that compromise eco-driving and ride com-
fort.

∙ Analysis an approach to the examination of the underlying
causes of different types of non-optimal DSs for ride comfort
from the eco-driving viewpoint.

∙ Personalisation of the provided advices when considering
the aforementioned points. Those recommendations involve
pedal, gear stick and steering wheel operation.

∙ Improvement in the ride comfort performance, with poten-
tial enhancements of up to the 57.7%.

∙ Improvement in the fuel-consumption ratios, with potential
enhancements of up to the 47.1%.

These results stand out amongst those achieved by the tra-
ditional methods of gear recommendation [38] or eco-driving
scoring [39] and have the additional advantage of facing the
problematic putting the spotlight on the driver, instead of the
vehicle. This approach, hence, treats both fuel consumption and
ride comfort as a set of driver-dependent features, in contrast
with the traditional solutions, which face the lack of comfort as
a consequence of the fuel consumption–reduction techniques,
such as in pulse-and-glide strategies, where the tradeoff between
comfort and efficiency has to be carefully calibrated so as to not
impairing the ride experience [40, 41]. Other works, such as [42]
actually aboard the eco-driving from a behavioural viewpoint,
but they achieve improvements of the 34.8%, which are clearly
are superseded by ours.

The remainder of this paper is organised as follows. Sec-
tion 2 introduces ride comfort and eco-driving concepts as
well as the SOM modelling algorithm. Section 3 provides
an overview of the proposed approach and describes the
utilised instrumented car dataset. In addition, the most rel-
evant features concerning eco-driving ride comfort are anal-
ysed and selected. In Section 4 the development of SOMs
for joint ride comfort and eco-driving classification is pro-
vided. Different DS clusters are identified and natural language-
based handling advice is developed. In Section 6 system val-
idation and analysis is presented. Finally, Section 7 sum-
marises the achieved improvements and exposes some final
considerations.

2 SOM-BASED RIDE COMFORT AND
ECO-DRIVING CHARACTERISATION

Due to the main part of the proposed approach being based on
the characterisation of DS taking into account both ride com-
fort and eco-driving through the use of unsupervised machine

FIGURE 1 Amplitude responses of different weighting filters in ISO
2631, wf: motion sickness (blue), wd: global comfort horizontal-component
(green), and wk: global comfort vertical-component (red)

learning algorithms, some basic theory on these concepts is
introduced in this section.

2.1 Ride comfort parameters

Two types of discomfort can be distinguished when we analyse
the ride comfort during a given trip. In ref. [43] the general feel-
ing of malaise is called average discomfort, while motion sick-
ness is associated with dizziness, fatigue and nausea. The syn-
ergy between these two sensations causes the feeling of discom-
fort.

Two complementary types of approaches can be followed
to assess the ride-quality experienced by passengers: qualitative
and quantitative. Regarding qualitative methods, subjective tests
[44] can be used to rate a variety of parameters from the view-
point of the individual experience of the passenger. Conversely,
several methods can be used to quantify the ride-quality during
a given trip. In this line, the sensations caused by vibrations
on the human body strongly depend on the signal direction
and its spectral content. Hence, the International Standardi-
sation Organisation (ISO) elaborated one of the mainly used
standards: International Standard 2631 (ISO-2631-1) [45]. This
standard describes ways to evaluate vibration exposure to the
human body, defining methods to measure vibrations as well
as how to process measurement data to standardised quantified
performance measures concerning health, perception, comfort,
and motion sickness.

In this standard, measurements are based on the frequency
weighted root mean square (RMS) computations of accelera-
tion data for each axis. This norm defines several filter shapes
that delimit the frequency bands where different components
of discomfort are present: filters wf, wd, and wk, where filter wf
is representative of motion sickness discomfort, while the fil-
ters wd and wk model the horizontal and vertical components of
global discomfort, respectively.

As shown in Figure 1, the frequencies that mainly cause
motion sickness are those between wf1

=0.1 Hz and wf2
=0.3 Hz

(blue curve), so, the motion-sickness-associated measures have
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to be carried out for the input data filtered by the blue curve wf.
On the other hand, the green filter wd evaluates the sensation of
general discomfort for a seated passenger when accelerations
lie in longitudinal or lateral directions. Finally, the wk red filter is
related with vertical accelerations.

Regarding the time persistent discomfort, the measured
accelerations can be weighted and filtered in the way that ISO
2631-1 determines, where awxd, awyd, and awzk are the results of
being filtered by wf, wd, and wk, respectively (see Figure 1). The
weighted RMS acceleration for each axis is expressed as,

awi j =

√√√√ 1
N

N∑
k=1

a2
i , w j (k), (1)

where i determines the direction, w j is the corresponding filter,
and N is the number of samples of the acceleration data.

Other significant parameter to be assessed is the likeliness
of nausea by means of the computation of the motion sickness
dose value (MSDVi ) for each axis by particularising the Equa-
tion (1) for w j = wf (with wf being the motion sickness filter
represented by the blue curve in Figure 1), such that,

MSDVi =

N∑
k=1

a2
i , wf(k), (2)

which is a standardised measure of motion sickness.
There are several works related to the analysis of those

parameters suggesting some variants. Concerning motion sick-
ness, although International Standard pays attention to vertical
accelerations, there are later works that prove the influence of
lateral accelerations in motion sickness. Thus, in ref. [46], the
likeliness of nausea is represented by the Equation (2) applied to
lateral accelerations. Additionally, in ref. [47], the ISO weighting
filters shown in Figure 1 are slightly modified to better match
with the real sensations caused by the transverse forces, being
wf1 = 0.02 Hz and wf2 = 0.3 Hz. On the other hand, in ref. [48],
the probability of a car occupant to get motion sick enough to
vomit is suggested, as well as several weighting parameters, both
for vertical and horizontal accelerations.

In this work we chose the filter proposed in ref. [47], and
we analysed motion sickness parameter using lateral accelera-
tions, since they depend more on driving than the vertical ones.
In addition, based on ref. [48], we combined the contribution
of both vertical and horizontal accelerations by means of the
new vomit rate parameter presented in Equation (3). Moreover,
despite those parameters being accumulative (depends on travel
length), in this work a window-based averaging was used.

VR =

√√√√√(1
3

)2

MSDVz
2 +

(√
2

3

)2

MSDVy
2. (3)

Finally, acceleration and jerk peaks are evaluated using a
methodology based on acceleration thresholds [49]. A high

value of acceleration or jerk can cause discomfort even during
shorter periods of time. When the levels get too high the pas-
senger will find it difficult to maintain posture. Limit values vary
between the studies. In ref. [50] a maximum acceleration value
of 1.47 m s−2 is determined whereas in ref. [43] it is argued that
since an automobile only carries seated passengers it is expected
that the thresholds should be set on the higher side than in a
train or on a bus and the limit is set closer to 2 m s−2.

Thus, we can assess the transient discomfort, by counting the
acceleration peaks with values above a certain threshold, such
that:

ni = ni + 1 when ai > threshold (4)

where i determines the direction of the acceleration in each of
the XYZ axes and the threshold was fixed at 1.75 m s−2.

2.2 Eco-driving and ride comfort
characterisation

Several approaches can be followed to alleviate and improve
the scenario of high emission levels, with the undersizing of the
engines to reduce both fuel consumption and, consequently,
GHG, being the most popular measure [51]. However, while
this technique has been applied for more than 20 years by
increasing the influence of electronics on the control of the
engine, it should be remarked that this technique is less effec-
tive for compression ignition engines, being a topic of major
concern particularly in Europe because it holds the largest ratio
of diesel vehicles [52]. Additionally, regulations force manufac-
turers to deploy automated fuel economy-intended systems in
production automobiles. These systems, such as gear recom-
mendation [38] or eco-driving scoring [39], despite achieving
the objective of reducing the emissions of pollutants [38], could
be further enhanced by means of a holistic solution which
combined the behaviour of the drivers, a previous training on
eco-driving techniques and the efforts of car manufacturers to
effectively achieve a significant level of improvement.

Several authors remark that eco-driving could effectively
contribute to reducing overall fuel consumption and GHG
emissions if adequate education about strategic, tactical,
and operational decisions were provided to drivers [53–55],
so, the use of several techniques, can help drivers to maximise
fuel efficiency and to reduce pollutants’ emissions. In a broader
sense, eco-driving factors could be categorised into three main
groups: strategic decisions (vehicle selection and maintenance),
tactical decisions (route planning) [41], and operational deci-
sions (driving style) [56]. In this study, eco-driving focuses on
the most useful eco-driving skills that every driver can put into
practice, independently of strategic and tactical decisions [57].
The driving style involves driving speed, acceleration, decelera-
tion, gear changing, idling, and accessories (i.e. air conditioning).
In ref. [56], the authors compare the ranges of percentages of
fuel savings or CO2 reduction contributed by each of the above
eco-driving factor. They concluded that the primary eco-driving
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factor is acceleration/deceleration, contributing to 3.5–40%
fuel savings. Driving speed could contribute to 2–29%, while
idling reduction accounts for 6–20%. Other factors, such as
air conditioning, despite having an effect on fuel consumption
are determinant in passengers’ comfort. Moreover, several safe
driving techniques or “golden rules of eco-driving” have been
developed [58]:

∙ Avoid unnecessary acceleration and braking and make maxi-
mum use of the vehicle’s momentum.

∙ Maintain a steady speed at low RPM: drive smoothly, using
the highest possible gear at low RPM.

∙ Shift up early: shift to higher gear by approximately 2,000
RPM.

Other useful driving advice which can lead to fuel savings are:
check tire pressures frequently, remember all accessory loads
that add to fuel consumption, use electrical equipment spar-
ingly, and avoid carrying dead weight and adding unnecessarily
to aerodynamic drag.

However, in some scenarios, the above eco-driving rules do
not consider the ride comfort viewpoint. As an example, in
ref. [40] the tradeoff between ride comfort and fuel efficiency
are studied for the pulse and glide strategies. These strategies
require the clutch to be disengaged between engine pulses to
ride the car by inertia while the traction chain is not linked
to the wheels. However, this may severely condition the pas-
sengers’ comfort, since high values of vibration and jerk can
happen, and, consequently, several levels of calibration have to
be applied to not disturbing the occupants [40]. In the same
fashion, some sources propose minimising the required time to
achieve the speed setpoint so as to minimise the fuel consump-
tion [59, 60], which returns outstanding economy rates by the
cost of conditioning the passenger comfort in both the dan-
ger sense and sensation terms (i.e. jerkiness, noise, accelerations
etc.). For those reasons, a tradeoff solution has to be found to
guarantee both the fuel economy and the ride comfort for the
vehicle occupants.

To better analyse the aforementioned tradeoff, among many
of the previously mentioned methods, SOMs have been suc-
cessfully used to online cluster DS regarding meaningful fea-
tures and to provide advice to modify the undesirable aspects of
car handling [30].

2.3 Self-organising map clustering
algorithm

The SOM is an unsupervised artificial neural network suitable
for clustering and visualisation of complex multi-dimensional
data [34, 35, 61]. It defines a mapping from a set of high-
dimensional input data onto a regular low-dimensional dis-
crete grid, known as feature map. The SOM algorithm, pre-
sented in ref. [35], is based on a competitive learning algorithm,
the winner-take-all. In the winner-take-all algorithm an input
vector is represented by the closest neuron prototype vector,
which is assigned during training to a data cluster centre. The-

FIGURE 2 Typical SOM topology: structure of an N -input SOM,
x = (x1, x2, … , xN ), and M=77 output neurons distributed into a 7×11 2D
hexagonal grid

ses prototype vectors are stored in the weights of the neural
network.

2.3.1 Topology of self-organising maps

The architecture of a SOM consists of a topologically organised
array of neurons set along a regular grid: the competition layer.
Each input to the SOM is fully connected to every neuron in
the competition layer. Figure 2 depicts a 2D output layers with
M = 77 neurons set along an hexagonal grid.

Each neuron in the competition layer has a double represen-
tation: an N -dimensional vector mi = (mi1,mi2, … ,miN ), 1 ≤

i ≤ M , known as weight vector, and its position in the grid. The
number of components of the vector is equal to the number of
input features N .

Clustering a dataset by means of SOM paradigm is carried out
using a two-level approach: first the SOM is trained, and then,
the prototype vectors of the SOM are clustered [62].

2.3.2 Training and clustering of self-organising
maps

First, an initial weight is randomly assigned to each neuron
connection [63]. Then, in each training step, one input sample
xk = (xk

1 , x
k
2 , … , x

k
N

), 1 ≤ k ≤ K , from the training set is cho-
sen randomly and the distances between this sample and all the
neuron weights of the SOM are computed. The Euclidean dis-
tance is most frequently used as the distance metric ‖ ⋅ ‖.

‖‖xk − mi
‖‖2
=

N∑
j=1

(xk
j − mi j )

2. (5)

The output neuron whose weight vector is nearest to the kth
input sample, according to Equation 5, is the best matching unit
or the winner neuron, usually denoted by c. The best matching
unit is used to update the weight vectors of the SOM. In this
process, the best matching unit and its neighbours are moved
towards the kth input sample, bringing them closer. For each



CARBALLEIRA ET AL. 191

neuron of the SOM, the weight vector is updated as follows,

mi (n + 1) = mi (n) + 𝛼(n)hci (n)‖‖xk(n) − mi (n)‖‖, (6)

where n denotes the iteration step, xk(n) is an input sample
randomly selected from the training set at iteration n, hci (n) is
a neighbourhood function or kernel around the best match-
ing unit and 𝛼(n) is the learning rate. Both 𝛼(n) and hci (n) are
decreasing functions approaching zero with each iteration. The
neighbourhood function specifies how much the ith neuron has
to move toward the input sample at iteration step n. It is a radial
basis function, usually a Gaussian function centred at the best
matching unit.

The unified distance matrix (i.e. U-matrix), composed of
the distances of the weight vectors to each of their neigh-
bours in the grid, provides an insight into the SOM response.
It is not only a powerful analysis tool, suitable for identi-
fying clusters mathematically, but also a useful visualisation
tool.

In sum, after initialisation, the following training steps are
repeated until a stop criterion is reached:

1. Competition. Given a randomly selected input sample, all the
neurons in the competition layer compete with each other to
be the best matching unit. The neuron that is closer to the
input sample is the winner (i.e. the winner-take-all).

2. Cooperation. The best matching unit also excites the neu-
rons in its neighbourhood. This cooperative process decays
as neurons are further away from the winning neuron.

3. Adaptation. The best matching unit and its neighbouring
neurons are pulled closer to the input sample. For each neu-
ron in the SOM, the weight vector is updated accordingly to
Equation 6.

The trained SOM provides a nonlinear mapping of the mul-
tidimensional dataset onto a 2D grid that allows identifying
groups of samples with similar characteristics (i.e. clusters) by
taking into account all features simultaneously. A clustering
algorithm based on the U-matrix and the k-nearest neighbours
algorithm (k-NN) was used [64] with the aim of identifying and
assessing meaningful clusters. In this work, the training pro-
cedure will be carried out by using the Matlab Neural Net-
work Clustering App [65] while the clustering development
will be performed by means of the CIS SOM Toolbox for
Matlab [64].

3 SYSTEM OVERVIEW AND DRIVING
STYLE FEATURES

To achieve our objective of developing an ADAS to improve
ride comfort while paying attention to eco-driving, we per-
formed an in-depth analysis of the DS of 20 drivers of different
age-groups and driving experience levels. We used data collected
from the real-world using an instrumented car. This information
was used to discover underlying DS characteristics, which are to

FIGURE 3 Block diagram of the proposed ride comfort and eco-driving
assessment system

be decoded from the raw data by means of the unsupervised
SOM clustering algorithm.

Given a set of driving signal measurement, the devised model
is able to perform online classification and to provide the driver
with personalised driving advice in real time, with the aim of
improving his/her global ride comfort and eco-friendliness.
Figure 3 shows a block diagram of the eco-driving ride comfort
ADAS. The system is composed of a feature computation
block, a SOM-based driving style classifier, and the driver
advice module.

The development of the proposed ADAS for ride comfort
improvement was performed in three stages. First, the selec-
tion of a set of meaningful features, able to account for both
ride comfort and eco-driving viewpoints, was performed by
means of analysing the magnitude of their correlation coeffi-
cients. Next, the SOM unsupervised clustering technique was
applied to discover different driving styles. Two SOMs were
trained, the first one (i.e. main SOM) is able to classify the driv-
ing data into a number of classes that account fundamentally
for ride comfort, while the second SOM (i.e. auxiliary SOM)
deals with fuel consumption features. After a quantitative and
qualitative evaluation of each SOM, well differentiated DS clus-
ters were identified and labelled according to their ride com-
fort characteristics and eco-driving measures. After that, with
these pieces of information, particular actions on the car con-
trols (i.e. gas pedal, brake pedal, steering wheel, and gear stick)
were developed in order to provide advice to the drivers.

3.1 Dataset

A variety of studies on intelligent vehicles have been per-
formed with the aim of discovering the way how vehicles,
traffic, motorists, and their surrounding environment relate
and behave, as well as to select the best sensors to register
each situation correctly. Most driving studies rely on dedicated
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FIGURE 4 Stretches of the Uyanik route used in this work. An average of
9:27 min of driving is available for each driver

instrumented cars, fitted with several sensors jointly used with
loggers of the field buses of the vehicle, instead of participants
riding their own vehicles, to simplify data collection and delivery
flow. This kind of studies (e.g. NU-Drive [66], UTDrive [67],
or Uyanik [68]) provide more consistent and reproducible data
records, produced under a more strict experimental control,
allowing researchers to establish comparisons between different
drivers more easily than if they had driven their own cars.

In this work, we used the Uyanik dataset [68], from the Uni-
versity of Sabançi at Istanbul. This study’s car collects three
channels of uncompressed video from the left and right sides
of the driver and the road ahead (see Figure 5). It also includes
three audio recordings, GPS, and CAN-bus readings, includ-
ing vehicle speed (VS), engine RPM (ERPM), steering wheel
angle (SWA), and brake pedal status (pressed or idle). Gas pedal
engagement percent (PGP) is sampled at either 10 or 32 Hz,
whereas brake pedal and gas pedal pressure sensor readings
(BP and GP, respectively) are sampled at the same CAN-bus
rate. Finally, a laser distance measuring device was fitted in the
front bumper jointly with a three-axis XYZ inertial IMU set-
up. In this study, all of the signals were handled jointly, which
requires a re-sampling of the data streams to the highest fre-
quency of 32 Hz and their proper synchronisation. This re-
synchronisation was carried out by displaying the video feeds
jointly with the plain data of Uyanik, resulting in a set of

FIGURE 5 Data-acquisition systems and sensors installed in the
instrumented car

spreadsheet-like data chunks that can be easily processed auto-
matically.

The driving behaviour data collection was performed in
Istanbul. The car route is around 25 km (about 40 min), and
includes different kinds of sections: city, highway, secondary
roads, and a university campus. The age range for female drivers
was 21–48, and the corresponding male range was 22–61. The
route was the same for all 20 drivers, however, the road con-
ditions differ depending on traffic and weather. In this work,
we selected the stretches of route remarked in Figure 4, which
exclusively comprehend highway-type roads. While riding along
these roads, which show fluent traffic, vehicles acquire high
mean speeds with low deviations. Additionally, these highway
stretches were selected so that their mean slopes were lower
than the 2%, so drivers had to uninterruptedly operate the gas
pedal to adjust their vehicles’ speeds to the traffic flow.

To complete the dataset so as to be able to assess the fuel
consumption and, consequently, the eco-driving characteris-
tics, we added the fuel consumption data corresponding with
each sample. This data, which the original dataset lacked, was
obtained by introducing the real-world driving data into a realis-
tic model of the instrumented car [30], developed with the GT-
Suite simulator [69]. This model, as detailed in ref. [30], takes
into account parameters of the car (e.g. car wheelbase, wheel
radius, friction coefficients, aerodynamics, weight, inertia, and
final transmission ratio), the individual ratios for each of the
user-selectable gears, the engine parameters and, most impor-
tantly, the telemetry data related to the handling of the car, such
as selected gear, accelerator pedal state, brake pedal state, clutch,
and desired speed.

3.2 Statistical analysis of driving behaviour

With the aim of comparing the driving style of individual
drivers concerning ride comfort and eco-driving, a statistical
analysis of comfort parameters and fuel consumption was per-
formed. Figure 6 depicts mean parameter values corresponding
to each driver while completing the same route. As can be seen,
mean fuel consumption differs among drivers, ranging from
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FIGURE 6 Average ride comfort parameters and fuel consumption for each driver. These parameters are computed on a sample of 2290 driving windows

2.09 l ∕100 km (driver 6) to 4.17 l ∕100 km (driver 18). More-
over, it can be highlighted that drivers 6, 11, 12, and 20 con-
sume less than 3 l ∕100 km, while drivers 14 and 18 are slightly
above 4 l ∕100 km, being the remainder drivers between those
values. The first group of drivers, namely eco-friendly drivers,
exhibit low positive and negative acceleration peaks in x axis (i.e.
nx pos and nx neg), as well as relatively low y axis acceleration
peaks (i.e. ny). These drivers show also low motion sickness dose
values and vomit rates. For example, average vomit rates are:
0.79 m s−2 (Driver 6), 0.76 m s−2 (Driver 11), and 0.82 m s−2

(drivers 12 and 20). In consequence, it can be concluded that
the most ecological drivers from fuel consumption viewpoint
present also a comfortable driving style. On the contrary, the
drivers that consume the most fuel are not necessarily the most
uncomfortable ones (e.g. driver 18 shows high fuel consump-
tion: 4.15 l ∕100 km and low vomit rate: 0.86 m s−2). Thus, it

can be seen that there is a certain relationship between driving
comfort and fuel consumption, but this synergy must be anal-
ysed in depth.

Next, a different statistical approach to fuel consumption and
comfort parameters is provided. The kernel density estimation
is used to shed light on the nonlinear relationship between the
driving behaviour of selected drivers and these parameters. The
kernel density estimation technique, unlike histogram, produces
smooth estimate of the probability density function and is able
to suggest multimodality [70]. It is useful to estimate the prob-
ability density function of datasets difficult to be modelled by
parametric density functions.

Figure 7 depicts the bivariate kernel density function of fuel
consumption and vomit rate corresponding to six representa-
tive drivers that exhibit different statistical driving behaviour.
The probability density function shows different shapes by each
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FIGURE 7 3D kernel density estimation, computed on a total of 2290 driving windows, links vomit rate and fuel consumption for some of the most
representative drivers of the sample population. Wider projections onto the horizontal plane mean higher variances of the vomit rate and the fuel consumption
measured for the driver

one of the selected drivers. The positions of the surface peaks
indicate maximum likelihood of fuel consumption and vomit
rate. Furthermore, the sharper the surface, the more regular
the driving style. To carry out this selection, the kernel density
function for each driver was elaborated, and consequently, two
main trends were identified between all the drivers. As can be
seen, both drivers 6 and 20 present a rather regular and com-
fortable driving style, while driver 6 peaks at the lowest val-
ues both in fuel and vomit rate. In contrast the peak values
corresponding to driver 20 are slightly greater than the former
ones. However, concerning fuel consumption, driver 6 shows a
more disperse trend than driver 20. Opposite, the coordinates
of the peak for drivers 8, 14, and 18 show high average fuel
consumption and irregular driving patterns (i.e. flattened sur-
faces). Moreover, driver 18 exhibits a clear bimodal driving style.
It is worth noting that although the secondary peak is unlikely, it
increases the average fuel consumption. These results are con-
sistent with those shown in Figure 6. In sum, the driving data
construct different kernel density estimation surfaces accord-
ing to the drivers’ preferred driving style. Some drivers are more
regular than others, although external factors such as weather or
road conditions, could also be in part responsible of these dif-
ferences.

3.3 Feature selection

With the aim of choosing DS variables with a significant level
of relationship with both the comfort parameters and fuel con-
sumption introduced in Section 2, we performed a correlation
analysis with the real-world driving signals. The features were
computed over 256-sample windows (i.e. 8 s at a 32 Hz sam-

ple rate) with 50% overlapping between consecutive windows
(i.e. 128 samples, or 4 s). It is worth noting that the most fuel-
demanding sections of the instrumented car route were selected,
that is to say, those that ran through highway and motorway.
Moreover, sections with traffic jams and slow traffic (i.e. mean
speed below 60 km h−1) were discarded with the aim of avoid-
ing outliers.

Table 1 summarises the Pearson correlation coefficients
(PCC) of the set of selected driving characteristics with different
discomfort parameters and fuel consumption. The first column
of each variable represents the root mean square (RMS) of the
signal whereas the second represents the variance. As can be
seen, the features with the strongest correlations with fuel con-
sumption and the selected discomfort measures are highlighted.
For those features concerning the X-axis of the car (longitudi-
nal direction, see Figure 5), we can see that both the RMS and
variance of XACC pos and XACC neg signals present strong
correlation with nx pos and nx neg, respectively. Moreover, the
variance of VS and both RMS and variance of XACC correlate
with nx neg positively. In the same way, for those features con-
cerning the Y-axis of the car (transverse direction, see Figure 5),
both RMS and variance of YACC and SWA are strongly corre-
lated with MSDVy and VR. Finally, regarding fuel consumption,
mean and variance of XACC pos and RMS of ERPM are the
most informative features. It is worth noting that the Z-axis fea-
tures, despite having a noticeable contribution on worsening the
motion sickness felt by the passengers, were discarded since they
do not directly depend on the DS, but on the road characteris-
tics.

In sum, the results displayed in Table 1 show that the fea-
tures with the strongest correlation with ride comfort are:
RMS{SWA, XACC, XACC neg, XACC pos, YACC} and
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TABLE 1 Pearson correlation coefficients (PCCs) between eco-driving ride-comfort variables and real-world data from the instrumented car. RMS and
variances are computed using 2290, 8 s analysis windows

SWA SWA VS VS XACC XACC XACC neg XACC neg XACC pos XACC pos YACC YACC ERPM ERPM

RMS Var RMS Var RMS Var RMS Var RMS Var RMS Var RMS Var

Fuel[l ∕100 km] 0.07 0.05 0.26 0.19 0.16 0.25 −0.35 −0.14 0.60 0.50 0.05 0.08 0.45 0.15

nx pos 0.12 0.15 −0.07 0.18 0.33 0.37 −0.08 −0.01 0.45 0.61 0.16 0.20 0.07 0.16

nx neg 0.09 0.10 −0.01 0.49 0.61 0.53 0.65 0.79 −0.10 −0.04 0.09 0.10 −0.08 0.20

ny 0.28 0.28 0.12 0.03 0.11 0.18 0.06 0.13 0.09 0.11 0.65 0.70 0.02 −0.02

MSDVy[m s−2] 0.68 0.60 0.05 0.21 0.19 0.21 0.05 0.14 0.16 0.16 0.73 0.60 0.02 0.07

VR[m s−2] 0.63 0.56 0.09 0.20 0.20 0.23 0.04 0.14 0.19 0.19 0.76 0.65 0.02 0.07

variance{SWA, VS, XACC, XACC neg, XACC pos, YACC}. On
the other hand, fuel consumption is positively correlated with
RMS{XACC pos, ERPM} and variance{XACC pos}.

4 DEVELOPMENT OF THE
SOM-BASED CLASSIFIER

According to the scheme depicted in Figure 3, an unsupervised
SOM clustering algorithm was used to classify drivers regard-
ing their ride comfort and eco-driving ratings. With this pur-
pose, we selected the entire set of samples which comprises
driving data of 20 drivers. As an average of 115 windows is avail-
able per individual, the whole set of driving samples consists of
2290 windows (i.e. more than 2.5 driving hours). The 75% of
the 5D samples will be used to train a SOM, which is to say
K = 1717, keeping the remaining quarter for testing purposes.
The data were normalised before training in order to avoid
distortion in the results due to the use of Euclidean distances
(Equation (5)).

A comprehensive series of training experiments revealed that
a reduced subset of only five independent features is able to
model the jointly relationship ride-comfort/fuel-consumption
with driving signals in a very satisfactory way. These features
are: RMS{SWA, XACC neg, XACC pos, YACC, ERPM}. In
contrast, despite a number of variances show high correlation
coefficients, they were found less suitable for modelling driv-
ing behaviour than the corresponding RMS values. The above
selected features will be used to develop a SOM-based driving
style model and provide drivers with specific recommendations.

The number of output neurons of the SOM was initially
selected with the Vesanto’s rule [64], which defines the opti-

mal number of neurons as M = 5
√

K . Thus, a 14 × 14 SOM
topology (i.e. M = 196) was defined and recursively trained.
However, we carried out experiments ranging from 13 × 13 to
15 × 15 maps, achieving the best results for the latter, so, a
15 × 15 map was built and trained to improve the feature extrac-
tion capabilities. In Figure 8 the SOM results are analysed by
means of displaying the input weight planes. These planes depict
the weights associated with each input for each neuron, and
reflect the input magnitudes that are expected to cause a hit for
each neuron (i.e. the neuron is the best matching unit for that

particular input). Thus, considering that lighter colours repre-
sent the higher values, several assertions can be made by visually
analysing the weight values. As can be seen, all the five planes are
clearly different, which indicates that the inputs show no corre-
lation between them. This fact proves that the provided infor-
mation has no redundancies, improving the separation capabili-
ties of the SOM.

It can be seen that drivers with high values of SWA tend to
show also high levels of YACC, fact that conditions the ride
comfort of the car occupants (see top left corner). On the other
hand, several neurons of the bottom left part of both ERPM
and XACC pos show high values as well, which indicates that
not only are those samples related to a high fuel consumption,
but also might show a relationship with discomfort. Regard-
ing XACC neg, high values for this variable are displayed at
the top-right part of its corresponding map, which could show
a certain level of relationship with negative acceleration peaks,
derived of spurious braking. Finally, it is worth noting that the
weight map for ERPM is particularly uniform, which might indi-
cate that the extraction of fuel consumption characteristics for
this specific SOM could be less conclusive than for the other
features.

To extract more solid conclusions that those provided by
the visual inspection of the input planes, several partitions can
be made on the map in order to exploit the granularity of the
algorithm and to group similar neurons into defined clusters.
It should be remarked that, according to the k-NN algorithm
referred to in Section 2.3, generally, the finer the partition, the
greater the number of clusters found in the SOM. In this case, a
three-cluster partition was used as an starting point to assess the
relationship with both the ride comfort and the fuel consump-
tion of drivers. This partition is shown in Figure 9.

When comparing Figure 9 with Figure 8, we can see several
similarities, particularly with the input maps of SWA and YACC.
Thus, if we compare again the top left section of the input map
of SWA, we can see that the light neurons surrounded by the
dark ones of the upper left corner match with the red neurons
of the upper left corner of Figure 9. The same happens with the
bottom left corner of YACC, for which, when comparing with
the bottom left corner of Figure 9, it can be seen that the lighter
neurons correspond with the elements of the red cluster, while
the darkest ones correspond with the blue coloured elements.
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FIGURE 8 Input weight maps for the five selected input features, RMS{SWA,XACC neg,XACC pos} and RMS{YACC,ERPM}, from left to right and top to
bottom. A total of 1717 data windows were analysed. Lighter colours represent higher values of the corresponding features for each of the 15 × 15 neurons of the
SOM. These values are used to later partition the DS clusters because they depict the weights associated with each input for each neuron, and reflect the input
magnitudes that are expected to cause a hit for each neuron

FIGURE 9 SOM partitioned to separate neurons between three clusters
of ride comfort and fuel consumption. This partition is based on the weights
obtained during the training of the SOM and produced by carefully selecting
the k of the k-NN partitioning algorithm

Once the three different clusters are displayed and analysed,
a quantitative evaluation of the ride comfort and fuel consump-
tion parameters is performed. For that purpose, the mean val-
ues and variances of the selected variables are computed and
displayed in Table 2. As can be seen, the red cluster, which
according to the description of the input planes has high val-

TABLE 2 Average values and variances for discomfort and fuel
consumption for the three-cluster classification. This classification is
performed on the total of 2290 windows

Cluster/variable Blue Green Red

MSDVy Avg. 1.27 1.36 3.00

[m s−2] Var. 0.31 0.33 1.24

Vomit rate Avg. 0.73 0.81 1.50

[m s−2] Var. 0.07 0.07 0.27

nx pos Avg. 0.05 1.40 2.73

Var. 0.19 36.8 94.2

nx neg Avg. 2.30 0.42 3.69

Var. 76.7 11.3 175.7

ny Avg. 0.42 0.68 4.78

Var. 1.95 3.87 48.0

Fuel cons. Avg. 2.92 3.64 3.68

[l ∕100 km] Var. 1.98 2.71 4.95

ues of SWA and YACC, depicts average values of the contin-
uous discomfort variables that double those for the green and
blue clusters, which compile much lower SWA and YACC val-
ues. In the same fashion, Table 2 shows that nx pos and ny,
which model transient discomfort peaks, are noticeably higher
for the red cluster than for the blue one. This trend, however, is
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TABLE 3 Average values and variances for discomfort and fuel
consumption for the five-cluster classification. This classification is performed
on the total of 2290 windows

Cluster/variable Blue Green Yellow Magen. Red

MSDVy Avg. 1.09 1.19 1.65 1.85 3.25

[m s−2] Var. 0.18 0.22 0.56 0.46 1.58

Vomit rate Avg. 0.64 0.72 0.94 1.01 1.62

[m s−2] Var. 0.04 0.05 0.11 0.09 0.34

nx pos Avg. 0.02 0.18 3.70 0.39 0.98

Var. 0.05 0.78 116.3 1.84 17.3

nx neg Avg. 1.20 0.21 0.37 5.27 2.21

Var. 26.9 1.87 7.18 229.8 61.6

ny Avg. 0.05 0.23 1.02 2.02 5.74

Var. 0.16 0.89 5.43 10.5 69.2

Fuel cons. Avg. 2.82 2.86 4.90 3.04 3.08

[l ∕100 km] Var. 1.70 1.25 2.94 2.44 3.45

not kept for nx neg, which has a minimum for the green clus-
ter, increasing for the blue one. Regarding variances, a general
increasing trend of variance jointly with the average values can
be seen. This trend is related to the kernel density estimation
graphs on Figure 7, where low consumption, low motion sick-
ness drivers show more pointy surfaces with their probabilities
lying in a much smaller area, reflected in the low variance of
the low motion sickness drivers. Thus, in the case of the motion
sickness variables, their variances are relatively low, which means
that the generated clusters are fairly compact and well separated
for the assessment of this feature. In contrast, the transient dis-
comfort peaks’ variance values are high due to some drivers
being more likely to present spurious acceleration peaks above
a certain threshold, even for the same class, as displayed in Fig-
ure 6.

It is worth to remark that the average values of comfort vari-
ables are slightly lower for the blue cluster than for the green
one, being the difference between the average values of fuel
consumption the major determinant for their separation. Con-
versely, for fuel consumption, the identified cluster do not show
such that level of compactness and separation, since the average
values are similar for both red and green clusters, while the vari-
ances are too high, being, in the case of the red cluster, even
higher than the mean value. For these reasons, this partition
can be considered valid for ride comfort, but not conclusive for
fuel consumption, so, the fineness of the clustering was further
increased until a five-class grouping was achieved.

To assess how the finer clustering affects to the discomfort
and fuel consumption ratings, the average and variance values
were extracted and displayed in Table 3. In this case, the red
cluster stands out among the remaining four clusters in terms
of vomit rate and MSDVy, which are, by far, the highest. With
respect to the other clusters, it can be seen that a full spec-
trum of classes, ranging from intermediate to low vomit rate
and MSDVy, has been found. Regarding the discontinuous dis-
comfort variables, the trend displayed for three-clusters is kept.

Thus, from the maximum displayed for the magenta class, nx
neg uniformly decreases jointly with vomit rate and MSDVy

until the blue cluster is reached, increasing. As for fuel consump-
tion, it can be clearly seen that the samples with the high to inter-
mediate continuous discomfort values do not match with the
highest fuel consumption rates. On the other hand, the sam-
ples with the lowest vomit rate are those showing the lowest
fuel consumption rates as well. Nevertheless, the yellow cluster
stands out among the others, since, despite having an interme-
diate level of vomit rate, it shows a very high fuel consump-
tion level, jointly with an increase on nx pos. This means that
the continuous ride discomfort is not always related to the eco-
unfriendliness of drivers, while the spurious might be, as stated
in Section 3.2

Nonetheless, when inspected 2-by-2, the addressed clus-
ters, particularly the couple blue-green and the couple yellow-
magenta are very similar in terms of ride comfort. This resem-
bles a three-cluster classification, so, instead of using the latter
five-class clustering, the former three-class one seems simpler
and useful to extract conclusions about ride comfort.

4.1 Auxiliary eco-driving SOM

Taking the results displayed in the previous section, an auxiliary,
fuel consumption-dedicated 15×15 SOM was built and trained
so as to complete the three-cluster-based ride comfort assess-
ment. This SOM is a particularisation of the one developed
and analysed in the previous section, using only the variables of
the input universe highly correlated with the fuel-consumption
information, which, according to Table 1 are RMS(XACC pos)
and RMS(ERPM).

In the same fashion as for the joint ride-comfort and eco-
driving SOM, the maps of the weights, shown in Figure 10,
can be used to assess and analyse how the SOM algorithm has
extracted meaningful characteristics regarding fuel consump-
tion.

Thus, it can be seen that both maps are different from each
other, which means that the input variables have a low level
of correlation between them. Regarding the weights displayed
for RMS(XACC), according with Figure 10, uniformly decrease
from left to right, with the maximum values laying on the upper
and bottom left corners of the map. Concerning RMS(ERPM),
it can be seen that the weights decrease from the bottom to the
top, being this decrease more noticeable at the centre part than
at the sides. In this case, the maximum values lay on the bottom-
left corner of the map.

With the aforementioned characteristics of the input planes,
we can assert in advance with no further analysis that the driv-
ing samples with the highest fuel consumption are those corre-
sponding to the bottom-left quarter of the SOM. The medium
and low consumption drivers, conversely, can be matched with
the upper-left quarter and the right half of the map, respectively.
However, since these latter trends are not as clear as the first
one, a further analysis was performed by partitioning the SOM
into 3 clusters, in the same manner as in the precedent section,
as shown in Figure 11.
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FIGURE 10 Input weight maps for the two selected input features of the
auxiliary SOM, RMS{XACC pos,ERPM}. A total of 1717 data windows were
analysed. Lighter colours represent higher values of the corresponding features
for each of the 15 × 15 neurons of the fuel-consumption SOM

FIGURE 11 Auxiliary SOM partitioned to separate neurons between
three clusters of fuel consumption. This partition is also produced by carefully
selecting the k of the k-NN partitioning algorithm

TABLE 4 Average values and variances for fuel consumption for the
three-cluster auxiliary classification. This classification is performed on the
total of 2290 windows

Fuel consumption

[l∕100 km] Blue Green Red

Avg. 2.30 2.91 4.35

Var. 0.94 1.74 2.97

Three areas can be clearly distinguished in the shown cluster-
ing. These zones meet with the characteristics visually extracted
through the previous paragraphs by the analysis of Figure 10
and consolidate the statements elaborated in advance. As
depicted, the red cluster, which comprehends the bottom-
left quarter of the SOM, joins drivers with high levels of
RMS(XACC pos) and RMS(ERPM), which, according with the
previously performed correlation analysis, match with the high-
est levels of fuel consumption. Regarding the green and blue
clusters, they match with the previous assertions in terms of
location within the SOM input planes. To verify that each
class corresponds with individual fuel consumption categories,
Table 4 was elaborated.

As compiled in the preceding table, the three clusters iden-
tified in Figure 11 clearly separate driving samples according to
their fuel-consumption scores. Thus, the red cluster contains the
samples with the highest consumption rating, being the green
one representative of medium consumption, and the blue, those
samples of the lowest consumption class. Hence, these results
verify that if an auxiliary clustering of the fuel-consumption
related variables is performed, a better separation of this feature
can be achieved.

4.2 SOM aggregated results

As previously stated, the elaboration of a main SOM to jointly
assess ride comfort and fuel consumption individual character-
istics did not provide an adequate level of eco-driving assess-
ment. For that reason, a fuel-consumption exclusive, auxiliary
SOM was developed. This dedicated SOM, in contrast with that
for joint assessment, achieves a clear classification because only
inputs with significant correlation with fuel consumption are
applied. Thus, the joint evaluation of both SOMs is expected to
enable to provide a robust classification of both characteristics.

Due to this approach, the operations of the driver on the
commands of the vehicle are to be analysed for the ride com-
fort clusters first, and subsequently, for the fuel consumption
groups. Finally, the operations for each objective will be joined
to provide personalised recommendations to improve the DS-
associated ride comfort and fuel consumption.

Thus, in accordance with Figures 10 and 11, it can be con-
cluded that the different ratings happen because of noticeable
differences on handling. The dataset provides two gas pedal sig-
nal, PGP and GP, both of which are highly correlated with the
analysed feature XACC pos, being the correlation coefficient
between XACC pos and PGP of 0.90. In the same way, the brake
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FIGURE 12 2D views of the three-cluster distribution for ride comfort. The clusters were labelled as high discomfort (red), medium discomfort (green) and
low discomfort (blue)

pedal positively correlates with XACC neg, being 0.68 the cor-
relation between them. So, it can be concluded that XACC pos
and XACC neg are suitable features to carry out a qualitative
assessment of the manner each driver operates the gas pedal and
brake pedal, respectively. Finally, SWA and ERPM are represen-
tative features of the drivers’ operation of the steering wheel and
the gear stick, respectively.

5 DEPLOYMENT OF THE DRIVER
ADVICE MODULE

With the SOM-based in-car driving style modules properly
developed and trained, achieving meaningful separation of
the input samples into clusters, the eco-driving ride comfort
improvement module is to be deployed, according to Figure 3.
For this purpose, the causes of the ride comfort and fuel
consumption characteristics of the selected clusters are assessed
and meaningful recommendations are provided according to
them.

5.1 Ride comfort clusters’ characteristics

According to Table 2 in Section 4, three ride comfort clusters
are enough to distinguish drivers regarding their vomit rate and
MSDVy, being the red one the cluster with the highest rate,
while the blue one represents the lowest. Intermediate motion
sickness data is compiled into the green cluster. Thus, with the
clustering corresponding with Table 2, Figure 12 is elaborated,
and, with the depicted characteristics, we can classify the clus-
ters as follows:

∙ High discomfort (red) corresponds to drivers with high val-
ues of vomit rate and MSDVy, and, consequently, with ele-
vated SWA and YACC, which means that the main feature
of these motorists is that they tend to use the steering wheel
aggressively, following swift cornering and overtaking strate-
gies.

∙ Medium discomfort (green) drivers show moderate to low
values of vomit rate and MSDVy, and, consequently, with
moderate to low SWA and YACC, while their values of XACC
pos are medium-high, pointing out that the extensive use of
the gas pedal is the main condition of ride comfort.

∙ Low discomfort (blue) class shows the lowest values of vomit
rate and MSDVy, so SWA is also kept in the lower range,
XACC pos is kept low too, which means that these drivers
tend to operate the gas pedal smoothly. Conversely, the val-
ues of XACC neg are higher than for the green class, which,
jointly with the high correlation with nx neg, suggest that
these drivers could use the brake pedal more thoroughly with
spurious braking peaks.

Additionally, by the inspection of Figure 12, it can be seen
that no separation is achieved for ERPM, which is coherent
with the input planes displayed in Figure 8, and with the inde-
termination of the variance of the fuel consumption for each
cluster.

Thus, according to the enumerated characteristics, as well as
with the comfort variables displayed in Table 2 taken into con-
sideration, the advice shown in Table 5 could be provided to
drivers to improve their DS regarding ride comfort.

With this recommendations, and with the foregoing consid-
erations in mind, we can elaborate Table 6 to show up the poten-
tial decrease on the likelihood of occupants to get motion sick
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TABLE 5 Suggested actions to improve ride-comfort

Comfort cluster Driver advice

High (red) Operate steering wheel more smoothly

Medium (green) Release gas pedal

Low (blue) Avoid braking peaksa)

a)Note: This advice is only provided when a braking peak above a certain threshold occurs.

TABLE 6 Expected vomit rate reduction between clusters

Current Target Vomit rate MSDVy

cluster cluster reduction [%] reduction [%]

Medium (green) Low (blue) 9.88 6.62

High (red) Medium (green) 46.0 54.7

High (red) Low (blue) 51.3 57.7

in case of the DS recommendations were completely followed
by the drivers.

As depicted in Table 6, a reduction of up to the 57.7% can be
expected if a highly discomfortable driver could modify his/her
DS so as to mimic a low motion-sickness motorist. Neverthe-
less, if he/she could only make it to drive like a medium motion-
sickness driver , a promising reduction of up to the 54.7% could
be achieved.

5.2 Fuel consumption clusters’
characteristics

As pointed out in Section 4.1, an auxiliary SOM was needed to
alleviate the inconsistencies on the estimation of the fuel con-
sumption for each of the ride comfort clusters. Thus, accord-
ing to Table 4, three eco-driving clusters can be distinguished
regarding the associated fuel consumption, with the red group
representing the data with the highest fuel consumption, the
green one, the intermediate consumption, and the blue, the low-
est. With these clusters, Figure 13 was elaborated to assess the
behavioural characteristics that cause the differences on eco-
driving.

By the visual inspection of Figure 13, the three different clus-
ters can be classified regarding their characteristics as follows:

∙ High fuel consumption (red) corresponds with samples with
medium to high XACC pos and ERPM, with high disper-
sion, which means that these drivers tend to use the gas pedal
swiftly and extensively at high engine regimes, with a low gear
selected [71].

∙ Medium fuel consumption (green) drivers keep ERPMs too
low, but the high average level of XACC pos indicates that
the usage of the gas pedal is excessive while the gear selected
is high.

∙ Low fuel consumption (blue) group keeps XACC pos in the
lowest range while the ERPMs are kept within an adequate
range [71].

FIGURE 13 3D view of the three-cluster fuel consumption classification
results. The clusters were labelled as high (red), medium (green), and low
(blue), considering RMS(ERPM), RMS(XACC pos), and fuel consumption

TABLE 7 Suggested actions to improve fuel consumption

Comfort cluster Advice

High (red) Keep gas pedal steady / switch to a higher gear

Medium (green) Release gas pedal / switch to a lower gear

Low (blue) Keep driving style

These automatically inferred groups reflect typical character-
istics of several types of driving according to the “golden rules”
of driving [58], where low RPMs and soft operation are required
to achieve a low fuel consumption rate, while swift operation of
the gas pedal jointly with high engine regimes is discouraged.
According to the enumerated characteristics, the advice com-
piled in Table 7 could be provided to drivers to improve their
DS regarding fuel consumption.

As depicted in Table 8, a reduction of up to the 47.1% can be
expected if a high consumption driver could modify his/her DS
so as to mimic a fuel-efficient motorist. Nevertheless if he/she
could only make it to drive like a medium consumption driver a
promising reduction of up to the 33.1% could be achieved.

TABLE 8 Fuel consumption reduction between clusters

Current cluster Target cluster

Fuel consumption

reduction [%]

Medium (green) Low (blue) 21.0

High (red) Medium (green) 33.1

High (red) Low (blue) 47.1
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TABLE 9 Percentage distribution of the ride comfort and fuel
consumption clustering intersection

Low fuel

consumption

Medium fuel

consumption

High fuel

consumption

(blue) (green) (red)

Low discomfort
(blue)

24.3 1.51 1.86

Medium
discomfort
(green)

3.38 22.9 5.24

High discomfort
(red)

15.9 20.1 4.83

5.3 Joint recommendations

The recommendations provided in Section 4.2 suggest drivers
to change the manner they operate some controls of the auto-
mobile, such as the steering wheel, the brake pedal, the gear
stick or the gas pedal to mimic the behaviour of other motorists
with better scores in either ride comfort or fuel economy. With
the recommendations for these two separated clusterings taken
into consideration, the intersection of the ride comfort and eco-
driving groups if explored with the aim of providing the driver
with a joint set of recommendations.

In Table 9 both clusterings are intersected. Columns repre-
sent the fuel consumption clusters, and rows, the ride comfort
groups. As can be seen, the low discomfort group is mainly con-
formed by low consumption samples. The same happens for
the medium discomfort cluster, shaped by medium fuel con-
sumption drivers. Conversely, for the high discomfort class, two
predominant fuel consumption classes, low and medium, can
be identified.

Thus, Table 9 shows that a high correlation between com-
fort and fuel economy can be expected for the low and medium
motion sickness classes, where most of the hits correspond with
the same eco-driving classes. On the other hand, this corre-
lation is not so clear for the high motion sickness class. This
lack of definition of fuel consumption for the least comfortable
class observed in Table 9 explains the high variance of the fuel
consumption information observed for the joint clustering of
Table 2.

With these considerations in mind, Table 10 was elaborated.
It is worth to remark that, for the best driving style (i.e. low

motion sickness and low fuel consumption) the driver is encour-
aged to keep on driving as he/she was, and advice is pro-
vided only when braking peaks occur. On the other hand, the
least comfortable and eco-unfriendly drivers are provided with
more advice.

Let us remark, as well, that the intersection of recommen-
dations does not fall into contradictions, which proves the
robustness of the system. Additionally, this lack of contra-
dictions, as well as the fact of the recommendations being
provided by means of natural language, makes the sys-
tem more likely to be easily accepted by drivers, improv-
ing the engagement with the system, and, consequently, its
effectiveness.

6 SYSTEM ROBUSTNESS
VERIFICATION

In this work it is shown that, with an appropriate selection of
features, unsupervised machine learning methods can be used
to extract conclusions according to the ride comfort and fuel
economy standards regarding each driver’s characteristics. For
that purpose after the window size was properly sized and the
driving signals were carefully selected regarding their Pearson
correlation coefficients, two SOMs, one for the assessment of
the ride comfort and another one for the fuel consumption were
properly sized and trained. Finally, the classes identified by both
SOMs were thoroughly examined to check that they did match
with the already existing knowledge, and, analysing their mem-
bers’ values, recommendations according to their characteristics
were elaborated and cross compared to create nine comfort-
consumption clusters.

To prove that the intersection of both ride-comfort and fuel-
consumption clusterings is robust and tends to classify drivers
according to the kernel density estimation displayed in Figure 7,
heat maps for drivers 2, 6, 8, 14, 18, and 20 were elaborated.
Figure 14 represents the distribution of the cross classification
for each of the drivers. If these distributions are compared
with their corresponding kernel density estimation surfaces
(Figure 7), it can be seen that drivers with the sharpest kernel
density distribution, such as drivers 2 and 6, tend to show a
predominant medium–medium discomfort+fuel consumption
cluster, driving during more than the half of the samples in
this class. In contrast, for drivers such as drivers 8, 14, or 18

TABLE 10 Intersection of the ride comfort and fuel consumption recommendations

Low consumption (blue) Medium consumption (green) High consumption (red)

Low discomfort Keep driving style Release GP / Lower gear Keep GP steady / Higher gear

(blue) Avoid braking peaksa) Avoid braking peaksa) Avoid braking peaksa)

Medium discomfort Keep driving style Release GP / Lower gear Keep GP steady / Higher gear

(green) Release GP Release GP Release GP

High discomfort Keep driving style Release GP / Lower gear Keep GP steady / Higher gear

(red) Operate SW smoothly Operate SW smoothly Operate SW smoothly

a)Note: This advice is only provided when a braking peak above a certain threshold occurs.
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FIGURE 14 Heatmaps of the percentage distribution of the intersection of the ride comfort and fuel consumption clusters for drivers 2, 6, 8, 14, 18, and 20. B
stands for blue, G for green, and R for red

the distribution is more disperse, with several clusters having
a high predominance, lacking a single predominant driving
cluster.

On the other hand, conclusions about either ride comfort
(i.e. by rows) or fuel consumption (i.e. by columns) can be
extracted by analysing Figure 14. Thus, the predominant clus-
ter for driver 2 is medium, with the 68.9% of his/her windows
laying into this category. Regarding fuel consumption, it can be
seen that medium is also the winning classification, with 66.7%
of his/her windows being classified for this category. Driver 6
behaves similarly to driver 2, the most frequent combination is
also medium-medium, with 77.1% and 59.4%, respectively. For
driver 8, medium-medium, with 40.5% and 52.7%, is again the
winner combination. But, in this case, the highly discomfort-
able class as well as the low consumption class are also remark-
able, with the 33.8% and the 29.7%, respectively. Drivers 14 and
18 are very similar, with the highly discomfortable class out-
standing among the others, with the 63.9% and the 79.5% of
the driving windows, while most of the times they are classified
as low consumption drivers (45.8% and 56.2%). Finally, driver
20 shows a fairly uniform distribution, so, this driver cannot be
clearly classified separately for fuel consumption or ride com-
fort. In contrast, the class intersection shows nine clearly sep-
arated categories that can be easily distinguished, proving that
the followed approach is useful to perform a deeper insight

into driving behaviour, specially for drivers with no predomi-
nant class.

Regarding the recommendations displayed in Table 10, they
should be provided in a noticeably enough way, but without
being confusing or annoying for drivers, helping to achieve
an engagement level with the system such that the expected
improvement ratios could be effectively reached. For that rea-
son, specially with the aim of minimising confusion, recommen-
dations are only to be provided when DS is clearly and steadily
identified during a certain time threshold, avoiding the annoy-
ance of displaying messages that constantly change, and, conse-
quently, improving the effectiveness and friendliness of the sys-
tem.

7 CONCLUSION

The main motivation of this work was the development of an
ADAS to increase ride comfort of the passengers, while taking
into account the eco-driving viewpoint. The proposed solution
provides the driver with a set of recommendations, in a nat-
ural language, with the aim of improving his/her driving style.
The system is composed of two main subsystems: a SOM-based
driving style classifier and the driver advice module. The first
one, consists of two cooperative SOMs that were trained with
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real-world driving data. The classifier subsystem is able to group
drivers regarding their ride comfort and eco-driving character-
istics. The second subsystem identifies the underlying causes of
both the DS-associated lack of comfort and high consumption,
and provides advice according to them. The verification car-
ried out on the whole system proved that it is robust enough
to clearly identify the aspects of ride comfort and eco-driving
jointly in most real-world driving situations, providing a deeper
insight than if each aspect were analysed separately.

The aforementioned recommendations are designed to be
easily understandable by most of the drivers, and, if they were
completely followed, noticeable reductions in the comfort com-
promising parameters could happen. As shown in this work, if a
driver could modify his/her DS with the help of the recommen-
dations from the most discomfortable group to the most com-
fortable one, the discomfort indicators would improve up to the
57.7%, improving the comfort perception of the vehicle occu-
pants drastically. As for eco-driving, if a motorist achieves a very
high level of engagement with the system, modifying his/her
DS according to the advice provided, drastic reductions of up
to the 47.1% in both fuel consumption and GHG emissions
could be achieved.
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61. Miljković, D.: Brief review of self-organizing maps. In: 2017 40th Interna-
tional Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), pp. 1061–1066. IEEE, Piscataway,
NJ (2017)

62. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. In: IEEE
Trans. Neur. Netw. 11, 586–600 (2000)

63. Akinduko, A.A., Mirkes, E.M.: Initialization of self-organizing maps:
principal components versus random initialization. A case study.
arXiv:1210.5873 (2012)

64. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-organizing
map in MatLab: the SOM toolbox. In: Proceedings of the Matlab DSP
Conference, pp. 35–40. IEEE, Piscataway, NJ (1999)

65. MathWorks, Cluster data by training a self-organizing maps net-
work. https://es.mathworks.com/help/deeplearning/gs/cluster-data-
with-a-self-organizing-map.html. Accessed on: 23 February 2021

66. Meiring, G., Myburgh, H.: A review of intelligent driving style analysis sys-
tems and related artificial intelligence algorithms. Sensors 15(12), 30653–
30682 (2015)

67. Angkititrakul, P., Petracca, M., Sathyanarayana, A., Hansen, J.H.: UTdrive:
driver behavior and speech interactive systems for in-vehicle environments.
In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 566–569.
IEEE, Piscataway, NJ (2007)
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