
SAT Instance Analysis

Joseba Celaya

Montserrat Hermo, Advisor

A thesis submitted
in order to obtain the

Bachelor Degree of
Computer Science

University of Basque Country
September 5, 2021

Grado en Ingenieŕıa Informática
Computación

Trabajo de Fin de Grado

SAT Instance Analysis

Autor

Joseba Celaya

Directora
Montserrat Hermo

2021

3

In memory of my father

4

Abstract

During last 20 years, the advances on SAT solving techniques has lead us to over-
come theoretical complexity worst case scenarios for big varieties of families and
distributions of SAT instances. SAT solvers based on conflict-driven clause learning
(CDCL), for example, are shown to be effective on large industrial benchmarks with
millions of variables each. But, the reasons why techniques like this are successful
with certain classes of instances remains unknown, and under research. In order
to understand the great performance of state of the art SAT solving techniques,
there’s been a big effort on characterising the structure of such SAT formulas.

In this work, we introduce a tool for studying formulas with a given structure, and
extracting some of the features discussed in recent bibliography.

i

ii ABSTRACT

Acknowledgements

I would like to thank to my project advisor Montse Hermo, for accepting to direct
my thesis and for helping and guiding my academic decisions in, what it has been
by far, the toughest year of my life.

iii

iv ACKNOWLEDGEMENTS

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Brief Algorithm History . 3
1.2 Development . 4
1.3 Characterising SAT formulas . 4

2 Statistical Approach 7
2.1 Graph Transformations . 9
2.2 Community Structure . 11
2.3 Scale-Free Property . 12
2.4 Self-Similar Structure . 13

3 The Tool 15
3.1 Tool Description . 15
3.2 Motivation . 16
3.3 Objectives . 17

3.3.1 Main Objectives . 17
3.3.2 Secondary Objectives . 18

3.4 Research and Development Workflow 19
3.4.1 Research . 19
3.4.2 Code Development . 22

3.5 Project Outline . 24
3.6 Functionalities . 25

3.6.1 backdoors . 25
3.6.2 cnf.py . 26
3.6.3 feat.py . 27
3.6.4 gen.py . 27
3.6.5 io.py . 28

v

vi CONTENTS

3.7 Future Work . 29
3.7.1 Do One Thing and Do It Well 30
3.7.2 Pure C . 30
3.7.3 Share . 30

4 Conclusions 31

Appendix A kanban2csv.py 33

Appendix B sia.bat and setup.sh 39

Chapter 1

Introduction

”To speak is to fall into tautology.”

Jorge Luis Borges, The Library Of Babel

A propositional logic, or propositional calculus formula, is a sentence belonging
to the formal language of propositional logic (PL). Here is a propositional logic
formula:

(p =⇒ q) ∧ p

Formulas can be transformed applying inference rules:

(p =⇒ q) ∧ p

(¬p ∨ q) ∧ p

q

Propositional logic formulas, can be transformed into equivalent formulas called
Conjunctive Normal Form (CNF), which are formulas composed by conjunctions
of disjunction of literals:

φ =
m∧
i=1

Ci, Ci =
k∨
j=1

xj

1

2 CHAPTER 1. INTRODUCTION

The fact that an arbitrary formula can be translated into a CNF is very powerful.
In advance, we will refer to propositional logic formulas in CNF just as CNF
Formulas, or SAT Instances. CNF Formulas can also be defined in term of sets, so
a formula is a set, and each clause another set containing literals:

Γ = {{x1, x2, x3}, {x̄1}, {x̄2}}
1

The Boolean Satisfiability Problem, or SAT for short, is the problem of deciding
whether a given propositional logic formula has a variable assignment that makes
the formula true. There is a similar problem definition that is applied on CNF
formulas, with clauses of fixed size k. This problem is called k-SAT.

It was the first known NP-Complete program, meaning that every other problem
contained in NP can be reduced to it. This has made the problem one of the
central problems of research in complexity theory and computer science.

Lots of problems arising in other areas such as combinatorial optimisation can be
studied as SAT problems. Anyway, algorithms for specific domains usually perform
better, than solving the translation into a SAT instance, and then solving it.

1This notation is going to be used further. It can also use positive and negative integers to
denote variables and negated variables.

1.1. BRIEF ALGORITHM HISTORY 3

1.1 Brief Algorithm History

The first algorithm introduced is from 1960. Is the Davis-Putnam (DP) algorithm.
It’s an algorithm that makes use of resolution for checking the validity of a given
formula. It can be alternatively defined as a proof system. Resolution’s space
complexity grows exponentially with respect to the length of the formula; so this
make using the algorithm in big scale unpractical.

In 1962, an improved algorithm called Davis-Putnam-Logemann-Loveland (DPLL)
appeared [13], which introduced the use of two heuristics, the unit propagation, and
the pure literal rule. Also, it based on building a solution from travelling a tree
like space search. The running time of this procedure is in O(2n). But in practice,
the average running times are bounded polynomially. This algorithm scheme is
the basis of most modern SAT solvers.

In 1996, Conflict Drive Clause Learning algorithms appeared [30]. The core idea
of these procedures, is to whenever a conflict is found searching in a branch, build
an implication graph, find the cut that lead to a conflict, obtain a new clause which
is the negation of the assignment that lead to a conflict, get back in the search tree,
and add the created clause to the original formula, in order to prune that part of
the search space, and not entering again during the search.

Theses are the most used algorithms in the context of SAT Solving, but there
are a lot of powerful algorithms based on other schemes. For instance, we have
algorithms based on greedy local search like GSAT [20]. These types of algorithms
are incomplete.

There are also SAT Solvers based on parallel computation like GPU4SAT [14]
and matrix based solvers like MatSat [27] that are inspired by Neural Network
systems, which can also be differentiable!

4 CHAPTER 1. INTRODUCTION

1.2 Development

Industrial SAT instances are the ones which solubility has an industrial or practical
application; for example, cryptography, hardware verification, software verification,
etc. SAT solvers are good solving industrial SAT instances. Their improvement in
efficiency is motivated by the introduction of lazy data-structures, learning mech-
anisms and activity based heuristics.

1.3 Characterising SAT formulas

Characterising what makes a SAT instance difficult to solve is a tough task.
Analysing a SAT formula yields to trying to characterise its structure and hard-
ness, and how does this relate to the efficiency of specific SAT solving methods.
In the literature, two approaches have been followed.

The first one, is to use tools from proof complexity, for analysing specific SAT
solving methods [12]. In this way, we can choose, for example, resolution as a
proof system and produce a refutation statement about a formula from a specific
family of SAT formulas. These formulas can be defined syntactically. An example
of this are Horn formulas, which are formulas containing clauses of no more than
one positive literal. This family of formulas, are known to be polynomially solvable
since 1978, as stated in Schaefer’s dichotomy theorem 2 [28] and linearly solvable
since 1984 [15]. Therefore, identifying whether a formula has any known syntactic
structure can be useful for designing a better solving strategy.

2Special cases of this theorem states that 2CNF, Horn, Dual-Horn, XOR-SAT and formulas
where setting all variables to true or all variables to false satisfies all clauses, are in P.

1.3. CHARACTERISING SAT FORMULAS 5

The second method, is based on extracting statistical features from formulas, that
are believed to determine the performance of a given solving method over those
family of formulas, due to empirical observation. An example of this, is the infa-
mous clause to variable ratio feature of a random k-SAT formula, and the following
conjecture:

Definition 1 (The Threshold Conjecture). For each k, there is some c′ such
that for each fixed value of c < c′, random k-SAT with n variables and cn clauses is
satisfiable with probability tending to 1 as n→∞; and when c > c′, unsatisfiable
with probability tending to 1.

For k = 3, this threshold, if exist, is bounded by 3.003 < c′ < 4.598 [11]. It is
observed that for randomly generated k-SAT formulas, can be a good measure
of hardness for solving methods like DPLL [29] procedures, but not that effective
for local search-like approaches. We will refer to this approach as the statistical
approach

We will talk about some different ways to study SAT formulas under the statistical
approach.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Statistical Approach

”Nothing is invented, for it’s written in nature first.”

Antoni Gaud́ı

First attempts on trying to identify features for characterising the hardness of
a SAT formula were made by Nudelman, Devkar, Shoham and Leyton-Brown in
2004 [24] and followed by Biere and Sinz [7] in 2006 and Ansótegui, Bonet, Levy
and Manyà [4] in 2008. These attempts, are usually made for analysing industrial
SAT instances and random SAT instances. First ones, are those that we find in
“nature”, and therefore, they can be more difficult to understand; since we don’t
know precisely how they’ve been generated. This is the reason why a statistical
analysis approach can be useful for dealing with them. By other hand, we have
random instances. These serve as a bottom reference for comparing them with
industrial ones, because we understand better their behaviour, as we mentioned in
first chapter.

7

8 CHAPTER 2. STATISTICAL APPROACH

These techniques were applied in their SAT solver SATzilla [23], which takes ad-
vantage of a wide variety of statistical features in order to classify SAT formulas,
apply regression to predict different algorithm’s running times on those formulas,
and select the most adequate algorithm according to the classification. Such SAT
solving approaches are called portfolio SAT solving methods. Our tool will help us
to compute some of those features.

Some of these features, are graph features computed over the graph form of a SAT
formula.

Following this direction, the study of complex networks has influenced the SAT
research community. The scale-free property [3], the community structure [5] and
the self-similar structure [1] are some examples.

Let’s introduce some definitions in order to continue:

Definition 2 (Graph). A graph is a pair G = (V,E) of sets such that E ⊆ V 2;
thus, the elements graph of E are 2-element subsets of V . The elements of V are
called vertices or nodes, and the elements of E edges.

Definition 3 (Vertex Degree (ku)). The number of edges incident to a given
node u, denoted by deg(u) or ku.

Definition 4 (r-partite Graph). Let r > 2 be an integer. A graph G = (V,E)
is called r-partite if V admits a partition into r classes such that every edge has its
ends in different classes: vertices in the same partition class must not be adjacent.

Definition 5 (Bipartite Graph). r-partite graph for an r value of 2.

Definition 6 (Undirected Weighted Graph1). Generalisation of a graph. Is a
pair (V,w) where V is a set vertices and w : V ×V → R+ satisfies w(x, y) = w(y, x).
Notice how for a regular graph w(x, y) = 1 if (x, y) ∈ E and 0 otherwise. Vertex
degree is defined as deg(x) =

∑
y∈V w(x, y). Bipartite graphs are tuples (V1, V2, w)

where V1 ∩ V2 = ∅ and w : V1 × V2 → R+.

Definition 7 (Neighbourhood (Ni)). The graph formed from the set of adjacent
vertices of the i, and all of the edges connecting pairs of vertices in that set.

1This generalisation is proposed for making further notation presented more fluent

2.1. GRAPH TRANSFORMATIONS 9

2.1 Graph Transformations

The efforts made on trying to represent CNF formulas in a way that is suitable for
visualisation have bring us the necessity of using graph theoretic representations of
then. In some cases, these representations are not complete, in the sense that you
can’t rebuild the formulas given their graph form. We will use a formula example
for the ones we used in the project: VIG and CVIG.

Let’s say we have the following SAT Instance in set notation:

Γ = {{1, 2, 3}1, {1, 2, 4}2, {−3, 5}3, {4,−5}4, {5,−6}5, {6, 7, 9}6, {6,−8, 9}7}

Definition 8 (Variable Incidence Graph (VIG)2). Given a SAT instance Γ 3

over the set of variables V , its variable incidence graph is a graph G = (V,E) were
E = {(u, v) ∈ V × V | u, v ∈ C and C ∈ Γ} Its undirected weighted graph form
consists on a tuple (V,w), with a weight function:

w(x, y) =
∑
c∈Γ
x,y∈c

1(|c|
2

)

Figure 2.1: VIG form of Γ

2Variable Interaction Graph [31] term is also used for referring VIG.
3SAT instances

10 CHAPTER 2. STATISTICAL APPROACH

Definition 9 (Clause-Variable Incidence Graph (CVIG)4). Given a SAT
instance Γ over the set of variables V , its clause-variable incidence graph is a
bipartite graph G with sets V and {C | C ∈ Γ}, were each variable node is
connected to the clause it is contained in. Its undirected weighted graph form
consists on a tuple (V, {C | C ∈ Γ}, w), with a weight function:

w(v, C) =

{
1/|C| if x ∈ C
0 otherwise

Figure 2.2: CVIG form of Γ

Definition 10 (Clause Incidence Graph (CIG)). Given a SAT instance Γ over
the set of variables V , its clause incidence graph is an undirected graph, where there
is a vertex for each C ∈ Γ, and an edge between two clauses that share a negated
literal.

Definition 11 (Resolution Graph [31]). In the resolution graph GR = (S,E)
an (undirected) edge is drawn between two clauses C1 and C2 if and only if there
is a variable x ∈ X such that x ∈ C1 and x̄ ∈ C2. Clauses C1 and C2 which
are adjacent in GR can thus be resolved. (Note that we also allow tautological
resolvents here.)

4Factor Graph [31] term is also used for referring CVIG.

2.2. COMMUNITY STRUCTURE 11

2.2 Community Structure

Modularity is a measure proposed by Newman and Girvan [21] for studying the
so called community structure of a network. Community structure is presented in
networks that can be easily partitioned into communities, such that most edges
connect nodes of the same community. Modularity is defined as the number of
edges falling within groups minus the expected number in a equivalent network
with edges placed at random. This measure has been proposed by Ansótegui,
Giráldez-Crú and Levy [5] for studying the underlying structure of industrial SAT
instances. Modularity is obtained from the graph representation of a SAT instance,
with the expression below [10]. The VIG form of a graph is commonly used for
this task. Adjvw value is 1 if vertex v and w are connected, and 0 otherwie. cv
denotes the community of a vertex v. δ(i, j) value is 1 if i = j, 0 otherwise. m is
the number of edges in the graph.

Q =
1

2m

∑
v,w∈V

[Adjvw −
kvkw
2m

]δ(cv, cw)

In our context, we will compute modularity in the way below[2]. G is a graph, and
C a partition of communities :

Q(G,C) =
∑
Ci∈C

∑
x,y∈Ci

w(x, y)∑
x,y∈V

w(x, y)
−

∑
x∈Ci

deg(x)∑
x∈V

deg(x)

2

Whenever we talk about the modularity of a graph, we refer to the maximum
obtainable modularity value for some partition. The decision problem version of
optimising the modularity of a partition is NP-complete [9]. There are several
approximation algorithms, some are greedy algorithms, some are based on label
propagation and some based on graph folding, like the Louvain method [8], which
runs at O(n log n)

Most industrial SAT instances have a high modularity value Q that is not present
in random instances [5]. It is shown that the number of communities and the
modularity value of the graph of a real-world SAT instance is better for predicting
the running time of a CDCL solver than the number of variables and clauses feature
[22].

12 CHAPTER 2. STATISTICAL APPROACH

Prepossessing instances has no major impact on the structure of industrial in-
stances. For random instances, modularity is only significant for very low clause-
variable ratio; and there is no remarkable change observed in phase transition re-
gion. Clause learning procedures reduces of the modularity of instances at running
time.

2.3 Scale-Free Property

Whenever we talk about scale-free property, we refer to the scale free distribution,
or the power law distribution. It’s density function is the following, where c is a
constant, and α our statistical feature of interest:

p(x) ∼ cxα

It’s been observed that many large networks modelling real live constructions such
as the World Wide Web present the scale-free property [6]. A scale free network
is a network with scale-free degree distribution, that is, nodes’ degree values are
distributed following a power-law distribution. Scale free networks present the
so called small world property, where nodes are highly clustered and path length
between them is small [34]. The path lenght is the number of edges in the shortest
path between two nodes. The characteristic path length L, is the average path
length between all pairs of nodes. The local clustering coefficient Cu, is a measure
of how close is the subgraph formed by the neighbourhood Nu of a node u from a
clique. A clique containing those nodes has at most ku(ku−1)/2 edges. Clustering
coefficient C is the average clustering over all nodes in the graph. For an undirected
graph, the local clustering coefficient value is defined as:

Cu =
2|E|

ki(ki − 1)

The α value can be computed via linear regression, or the maximum likelihood
method.

It’s been noticed, that industrial SAT instances do present a scale-free structure. α
value ranges in [2, 3] in most of the cases [3]. Also, clause learning based methods
seems to not modify dramatically this structure. This fact allows us to better
understand the internal structure of these instances.

2.4. SELF-SIMILAR STRUCTURE 13

2.4 Self-Similar Structure

Self similarity is, to put in plainly, the property of an object to be exactly or
approximately similar to a part of itself. The idea of self similarity arised from the
empirical observation that geographical curves (the ones we find out in coastlines
for example), present shapes that follow this principle [19]. This idea can also be
applied to graphs. Let’s introduce some concepts:

Definition 12 (Box). Given a graph G, a box is subset of nodes such that the
distance between any pair of nodes is smaller than a fixed value l.

Definition 13 (N(l)). The minimum number of boxes of size l required to cover
a given graph.

Now we can define self-similarity on a graph:

Definition 14 (Self-Similarity Graph Property). It is said about a graph G, when
for its N(l) function, its value decreases polynomially for some value d in the
following way: N(l) ∼ l−d

14 CHAPTER 2. STATISTICAL APPROACH

Chapter 3

The Tool

”You are an engineer”

Brian Eno and Peter Schmidt, Oblique Strategies

In this chapter, we are going to cover what our tools is, and what is not; and what
can it do. We are going to talk about the workflow followed, and how it evolved.
And at the end, we are going to discuss the future plans for the project.

3.1 Tool Description

The tool’s name is sia, acronym for SAT Instance Analysis 1. It is presented as
a Python Library. It is meant to be used in Windows and Linux Python
environments. Contains a C/C++ Extension Module for providing fast com-
putations of some statistical features. C/C++ Extension Module needs to be build
and installed. The necessary building tools, instructions and recommendations are
listed within the README file. IO operations, formula manipulation, and other
functionalities are built on plain Python.

1Sia is also a woman name, and the name of a pop artist https://es.wikipedia.org/wiki/
Sia

15

https://es.wikipedia.org/wiki/Sia
https://es.wikipedia.org/wiki/Sia

16 CHAPTER 3. THE TOOL

3.2 Motivation

The idea of the tool that we are presenting arises not only from the personal
necessity of computing some of the mentioned statistics, as from the necessity of
manipulating CNF formulas in an easy and handy way.

Our computer language of choice for this task is going to be Python [33], not only
because at dealing with statistical data it is one the most popular languages, but
because of how easy is to share a tool built on it; specially when the project size
is small/intermediate. Loading, and manipulating SAT instances feels intuitive in
such a language. Also, there is a good ecosystem of Python libraries and tools
for dealing with satisfiability and SMT problems, which makes this language a
valid option.CNFgen [17] and PySAT [16] are some of the most interesting in
this context. CNFgen is designed for creating SAT benchmark formulas, coming
from Proof Complexity research area, such as matching or combinatorial problems;
while PySAT provides a practical low level interface with state-of-the-art SAT
solvers.

So, there is a tool in Python that creates benchmark formulas, and a tool that
solves formulas with state-of-the-art SAT solvers. It seems natural that a new
tool should appear that analyses formulas.

3.3. OBJECTIVES 17

3.3 Objectives

The main objectives of the project were to provide a handy way for computing
the statistical features mentioned in the chapter 2. The interest on this approach
of dealing with SAT instances in a statistical/graph theoretic way was motivated
by my recent interest on computational complexity and graph theory. Also, this
[18] talk about the topic was decisive for my to finally choose it. The aspect of
manipulating CNF formulas was something decided to cover at the programming
state of the project.

3.3.1 Main Objectives

The main objectives were to understand and implement the computation of the
already infamous statistical features:

• Modularity
• Fractal dimension
• Scale-free structure

Under the following conditions:

• The tool needs to be easy to install
• The tool needs to be easy to use
• The tool needs to be easy to modify

These objectives were fulfilled. But if we talk about modifying the C/C++ Exten-
sion Module things change; because this is, in fact, not trivial to modify and
adapt. It requires, of course, some C/C++ knowledge, which is usually far from
what you would expect from the average Python programmer. The guided building
and installation process is intended to work for a Linux user using the GNU g++
compiler, and a Windows user using the mingw32 compiler. Using the clang
compiler alternatively in macOS, or the Microsoft Visual C++ (MSVC) in
Windows (which is commonly suggested for building Python C/C++ Extension
Modules there) should work fine.

18 CHAPTER 3. THE TOOL

3.3.2 Secondary Objectives

The secondary objective, was related to building utilities for CNF formula manip-
ulation.

Although, this task was loosing more and more sense as I was getting more in depth
in the world of SAT related software. Already mentioned software like CNFgen[17]
and PySAT [16] have good capabilities for CNF formula manipulations. Also,
it already exists a package in Python called cnftools2 and another one by the
same name written in C++, with the same main author of CNFgen [17]3 that
provide CNF formula manipulation. And if we talk about general logic formula
manipulation and parsing, the list can be just endless.4

What I didn’t found was a library that provided just common SAT solving step
functions for transforming formulas, such as variable propagation, or the use of
heuristics. Such functionalities can be good for understanding some of the algo-
rithms behind combinatorial search, and SAT solving. This has been the main
objective from the set of secondary objectives.

Some other discussed idea with my project advisor was the idea of visualising
the execution trace of various SAT solving algorithms like DPLL, but this was
discarded because:

• Building an efficient graphical application in Python is a hard task, even with
the appropriate base tools and libraries. Is something you shouldn’t make in
Python.

• It already exists a tool like DPVIS [32], that does the same in Java, a tool
like 3dVis, from the same author, that does the same in C++5; and another
Python tool called iSAT [25] that interfaces with SAT solvers and provides
graph construction and visualisation and some graph statistical feature com-
putation over space search graphs at each steps.

Anyway, a lot of time an effort was invested in this idea. The possibility of using
the Python project vispy6 made this idea somehow viable at the beginning. But
this illusion soon faded out. Fair enough, it was used for rendering some of the
images shown in this project.

2cnftools, Python: https://github.com/easyas314159/cnftools
3cnftools, C++: https://github.com/MassimoLauria/cnftools
4GitHub proposes 119 results for the search ”logic manipulation” and 469 for ”logic parsing”

in July 2021.
5DPVIS is from 2005, and 3dVis from 2006.
6The vispy project: https://vispy.org/

https://github.com/easyas314159/cnftools
https://github.com/MassimoLauria/cnftools
https://vispy.org/

3.4. RESEARCH AND DEVELOPMENT WORKFLOW 19

3.4 Research and Development Workflow

3.4.1 Research

The research and reading process has been managed using a diary system of Mark-
down plain notes. Managed by the Obsidian7 software. With this, system you can
build any kind of workflow you are able to design in a very minimalist and easy to
maintain way.

In my case, the Zettelkasten8 method was used for note taking. Obsidian allows you
to create notes that reference other notes, and build a network of knowledge.

Figure 3.1: Obsidian graphview of the notes containing the tags ”sat” and ”sia”

Each node is an unique note. Each node contains a code at the beginning of its title
of the form yyyymmddhhmm, so time can be easily tracked. Notes can reference
to other notes, and tags for making them easy to classify. Tags were used for
displaying the figure 3.1

7https://obsidian.md/
8https://en.wikipedia.org/wiki/Zettelkasten

https://obsidian.md/
https://en.wikipedia.org/wiki/Zettelkasten

20 CHAPTER 3. THE TOOL

Figure 3.2: Example of some notes

Figure 3.3: Obsidian graphview containing the intersection of sat and sia notes

The core node was serving as an index. The red dots are papers, the green ones
are intersecting sia related notes, and the yellow ones are online/recorded talks.
The grey ones belongs to notes on some other SAT tools, web pages of interest,
and references to some researches of the SAT community. Each notes contains
reviews of each paper, talk or concept made during the research, in order to make
information easy to access in the future. Some of this papers, and ideas, are not
mentioned in this report, because they correspond to preliminary work ideas that
haven’t been developed.

3.4. RESEARCH AND DEVELOPMENT WORKFLOW 21

This system was adopted at the beginning to keep track of the agenda, and all
the meetings with my project advisor. Obsidian has an addon that allows you to
create notes representing days, and visualise each day in a calendar view. This was
very handy at the beginning.

It was also used for taking notes of what have I done during specific amounts of
times. Here is an example of how a rendered Markdown file of day looks like with
a Gantt diagram:

Figure 3.4: Obsidian day-planner task list and Gantt diagram

I really liked this system at the beginning, but when I felt the need of being more
accurate with the time I spent, and to know how well invested this was, that
is to say, how efficient I was with my time, I ended up switching to other time
measurement system.

That system is going to be introduced in the following section.

22 CHAPTER 3. THE TOOL

3.4.2 Code Development

Here are going to be listed some key points of how code was develop:

• The main developing platform is been Windows 10, along with the Win-
dows Subsystem for Linux 2 (WSL2). This has allowed me to test and
build the tool in Windows and Linux simultaneously with less effort.

• The Python interpreter used in Windows was the one provided in miniconda
distribution, and the default Python interpreter provided for Ubuntu in
Linux. The Python version used and tested were the 3.8.5, and the 3.8.10
respectively. 3.8 version should be just appropriate.

• The compilers I used and tested where the mingw32 and the GNU g++ for
building the C Extension Package. Now that I have obtained some experience
on this task, I wouldn’t recommend to develop this kind of software with
mingw32 in Windows. It can bring you some headaches.

• No Integrated Development Environments (IDE) were used, as the most ob-
servant one will already inferred considering the last point. The Sublime
Text 3 and Vim text editors were used, in Windows and Linux respectively.
The unpleasant default Windows Terminal, and the new upgraded one were
used for launching the application.

• Make was used as the build system for Windows (the implementation pro-
vided by mingw32) and Linux. A single Makefile manages the differences
between compiling for Windows, and Linux.

• For building C Extension Package, the setuptools library was preferred; but
distutils is also supported.

• For setting up the Windows and Linux environments, I automated some tasks
using Windows bat files, and Linux shell scripts. This files were called sia.bat
and setup.sh respectively.

• The code was linted, formatted and tested using pylint, autopep8 and
pytest. The use of these tools was automated with the Makefile.

appendix:sia_init
appendix:sia_init

3.4. RESEARCH AND DEVELOPMENT WORKFLOW 23

• In the implementation stage, Kanban methodology was used. Small tasks
were listed, tagged, and time-measu red. For making this process easier, I
used a service called Kanbanflow 9, which allows you to create kanban boards,
and measure the time spent on each task.

• Kanbanflow’s time measurement system is the Pomodoro technique, a sys-
tem were you work for a fixed amount of time on a task for 25 minutes, with
no distraction, and then you rest for 5 minutes. 25 and 5 are the recom-
mended Pomodoro times, but they can be modified. In reality, or at least
in my case, you tend to make the pomodoros (that’s how each individual
working period is named) last longer when you feel comfortable/inspired.
Kanbanflow allows you to track the extra time spent easily too. My longest
pomodoro, to date, has lasted 2h and 15m, and it was related to obtaining
and inserting images in this exact report text.

• The free version of Kanbanflown doesn’t allow you to keep the log of the time
spent for more than 14 days back in time. So I wrote a Python script called
kanban2csv.py for parsing a raw copy of the data displayed on the web into
a csv file.

9https://kanbanflow.com/

appendix:kanban2cs
https://kanbanflow.com/

24 CHAPTER 3. THE TOOL

3.5 Project Outline

The project is organised as it follows, using a common Python project code struc-
ture.

<sia>

build
...

extensions
...

sia

init .py

backdoors.py

cnf.py

feat.py

gen.py

io.py

tests
...

LICENSE

README.md

setup.py

3.6. FUNCTIONALITIES 25

3.6 Functionalities

The package is currently composed of 5 modules:

• backdoors.py
• cnf.py
• feat.py
• gen.py
• io.py

3.6.1 backdoors

This was part of the secondary objectives. The secondary objective was imple-
menting functions for computing CNF formula manipulations. Some of the utili-
ties needed in this context, where the ones for checking if a given formula belonged
to a specific syntactic family. These utilities were going to be part of cnf.py.
But, after reading about backdoors [35], I decided to create a separate module,
containing these. Detecting whether if a formula contains a backdoor, lies in what
someone would expect as a topic of ”analysis”, so looking to the future this looked
like a good idea. Recognising polynomially solvable syntactic classes is part of the
backdoor search process.

Another possibility was to create a third module containing syntactic classes re-
lated utilities, but at the moment, it doesn’t feel appropriate.

Current contents:

• class Synclass: Class static methods for recognising syntactic classes :

– def is k sat(clauses, k)

– def is horn(clauses)

– def is dual horn(clauses)

• def all subsets(n, size=None): Returns a generator providing all possi-
ble variable assignments of n variables and length size.

26 CHAPTER 3. THE TOOL

3.6.2 cnf.py

This was part of the secondary objectives. This is the module intended for formula
manipulation. It contains:

• def empty clauses(clauses): Check if there exist an empty clause.

• def unit clauses(clauses): Check if there exists an unit clauses.

• def propagate literal(clauses, literal) Propagates a given literal.

• def propagate(clauses, assumptions): Propagates a given list of as-
sumptions.

• def unit propagation(clauses): Propagates unit literals of a given clause
list.

• def reduce clauses(clauses): Applies unit propagation until it isn’t pos-
sible.

• def pure literal(n, clauses): Returns an array of size number of vars
n, indicating variable appearance, if positive pure literal, if negative pure
literal, or none of the previous options.

• def get pure literal(n, clauses): Returns an assumption list from a
given pure literal check list.

• def to 3 sat(n, clauses): Converts a CNF instance into a 3-CNF in-
stance.

3.6. FUNCTIONALITIES 27

3.6.3 feat.py

Part of the main objectives. It computes the statistics mentioned in chapter 2.
It serves as an interface for calling the C Extension module featsat; which is an
interface for C/C++ lower level code, were heavy computations are performed.
Here is were the implementation of the procedures described in chapter 2 [3][5][1]
are contained:

• def modularity(file name, mode=’vig’): Computes de modularity of a
CNF formula from a given file. It has VIG and CVIG mode.

• def self similar(file name, mode=’vig’): Computes de fractal dimen-
sion of a CNF formula from a given file. It has VIG and CVIG mode.

• def scale free(file name, mode=’var’): Computes de scale free expo-
nent of a CNF formula from a given file. It has var and clause mode.

3.6.4 gen.py

This module was created before I knew about the existence of CNFgen[17]. It con-
tains some common random formula families generation functions. It was decided
to be included in the package because of practicality:

• def random formula check(k, n, m, seed): Check restrictions on ran-
dom formulas.

• def random k cnf(k, n, m, seed=None): Random k-CNF formulas with
no repeating literals per clause.

• def random horn(k, n, m, seed=None): Random Horn formulas with clauses
of size k.

• def pigeon hole(n): Pigeonhole Principle10 encoding for n pigeons and n-1
holes.

10https://en.wikipedia.org/wiki/Pigeonhole_principle

https://en.wikipedia.org/wiki/Pigeonhole_principle

28 CHAPTER 3. THE TOOL

3.6.5 io.py

This was the first module to be created for obvious reasons. It contains functions
for reading and loading CNF DIMACS files, which is the standard file format for
encoding CNF formulas:

• def parse dimacs(file: Iterable[str]): Parses iterable object of strings
describing a DIMACS cnf file.

• def from file(in file: Path): Parse dimacs file.

• def get header(in file: Path): Parse dimacs file header.

• def read tar(file path: Path): Reads a tar file containing dimacs files.

3.7. FUTURE WORK 29

3.7 Future Work

The main objectives of this project were fulfilled, and the phase of developing the
secondary ones is been started. But it isn’t enough. During development stage,
Python project building skills and knowledge about how to write good Python
code is been acquired. And now, open sourcing and sharing the project in the
current state seems awkward (Anyway, the code is been uploaded to GitHub in
order to share it with the tribunal) 11. The reasons for not sharing it yet are:

• The functionalities covered by the package seems to be thematically dis-
placed, even if all belong to the context of satisfiability. Also, only the ones
from the main objectives cover a necessity in an efficient way; even if it is a
niche necessity. The solution for this, is to prune the variety of functionali-
ties, and do better the ones that remain. Knowing about the UNIX Design
Philosophy [26] could have helped in the beginning of the project, to build a
better tool.

• Sharing a project in the good way implies making an exhaustive code docu-
mentation; and even if this project contains straight forward implementations
of already well know algorithms, currently the use instructions are contained
only in the README file. By the way, this is something usual in a lot of
state-of-the-art SAT solvers source code repositories12. But the fact that this
is usually done in this way, doesn’t mean it is right.

• Lots of unit tests are usually used in order to guarantee that code is working
properly on each release. The initial tests written in the project were focused
on testing the IO functions. Open sourcing the project would imply to build
better suites of tests.

This reasons arise from the software engineering mindset, and the truths is, that
this project is more related to researching purposes. Anyway, we have to keep
them into consideration.

Talking about design and performance, the possibility of building the whole package
in C/C++ is been around my head during the last project month. Reusing efficient
C code from well-known SAT solvers in order to implement more efficient data
structures, and create an interface in Python not only seems like an interesting
challenge, but as an opportunity to create something that eventually someone
might need (At least, this is something I would have liked to have 2 years ago).

11https://github.com/blcksy/sia
12Kissat is an example of this: https://github.com/arminbiere/kissat

https://github.com/blcksy/sia
https://github.com/arminbiere/kissat

30 CHAPTER 3. THE TOOL

Considering all said, these are my future plans for this project:

3.7.1 Do One Thing and Do It Well

The project is going to be redesigned. All the tools that are already available in the
SAT community are going to be taken into consideration, and new opportunities
are going to be identified. If the final decision consist on creating an efficient
Python interface for an already existing tools, this must be done in a way that
becomes truly useful.

3.7.2 Pure C

The functionalities covered in the secondary objectives set are going to be separated
from the current project, and they are going to be reintroduced as another Python
package. And this time, it is going to be written as a complete C Extension Module,
and properly extended.

3.7.3 Share

The main project is going to be redesigned and presented as a feature extracting
module interface for Python, and published on GitHub. It will contain all the
necessary instructions for its correct installation, and use.

Chapter 4

Conclusions

The main objectives were accomplished. Lots of secondary objectives and ideas
were studied, but not developed. No strict completion dates were imposed besides
the University Project Delivery Dates, and there was plenty of time for reading
and discovering about SAT solving, and SAT related software. This was also why
the average work load began to increase while we were reaching the end, and why
the necessity to track the time invested was emerging. It is convenient to start
since the very beginning tracking time, in order to know what takes you more
time to accomplished. Adopting a more rigorous way to track time, helped in
the second half of the project. As a note, approximately 45 hours were used in
the creation of this document, including the process of learning how to properly
use LATEX, formatting layouts, obtaining images, solving errors, etc. besides the
actual process of writing; and approximately 34 hours only for learning how to
build and test properly a C Extension Module. These two tasks were thoroughly
measured because of the suspicion that they were going to take forever. Anyway,
when counting the actual time spend I felt surprised. This was useful too, to know
which were my working ”bottlenecks”. It turns out that the most time consuming
tasks, but with less impact int the work, have been the ones related to taking notes
and reading papers, that finally haven’t been mentioned. This fact is been specially
frustrating. Nevertheless, all that process turns into experience acquired.

31

32 CHAPTER 4. CONCLUSIONS

Realising at every step I made that there was already a software providing the ideas
I had felt frustrating. But it helped me to get more in depth into the subject.

Since the project was proposed by me, I felt really helpless in the sense that I
had no colleagues to share and talk about the project, and my advisor wasn’t
specialised on the topic. Also, because of personal reasons, I’ve been working from
home, and this increased the feeling of being lost. Nevertheless, my advisor was
really supportive with me, and guided me in the best way possible, considering the
context. The meetings were held weekly by video conference on Tuesdays at 18:30,
unless specified via email otherwise.

However, there are some things I’ve learnt during the completion of the project,
which are truly positive:

• Time management in long-term projects.

• Scientific paper reading skills.

• A better understanding of Python and C/C++.

Appendix A

kanban2csv.py

'''

Tool for parsing time log from https://kanbanflow.com/

into a csv file

Kanban flow format:

<Date, number of pomodoros>

<task title>

<pomodoro status>

<time spent>

<time range>

Example:

Monday, 2 August 1h 16m 3 Pomodoros

Create a package

Successful Pomodoro

25m

14:26 - 14:51

TODO:

- Improve how the year is introduced

'''

import csv

from datetime import datetime

33

34 APPENDIX A. KANBAN2CSV.PY

from pathlib import Path

KANBAN_PATH = 'sia/KANBAN.md'

LOG_CSV_PATH = 'sia/log.csv'

def get_log(file_in):

'''

Parses kanban flow data into a list of lists of lists of str

Format:

[

[['<date:day>'], ['<task>', '<status>', '<time>', 'hours']],

]

...

'''

path = Path(file_in)

log_list = []

count = 0

with open(path, 'r') as file:

for line in file:

if line.startswith('#'):

log_list.append([[line.strip()[2:]]])

continue

if not line.strip():

continue

if count == 0:

log_list[-1].append([])

log_list[-1][-1].append(line.strip())

count += 1

if count == 4:

count = 0

for l in log_list:

for b in l: print(b)

return log_list

35

def create_csv(log):

'''

Creates csv file with the given rows and '\t' delimeter

Example:

day hour time tasks status

2021/08/02 14:26 - 14:51 25m Create a package Successful Pomodoro

'''

new_log = []

day = ''

hours = ''

time = ''

task = ''

status = ''

for day_list in log:

if len(day_list) == 1:

Empty day list

pass

for task_list in day_list:

if len(task_list) == 1:

if task_list[0] == 'missing':

continue

day = task_list[0]

day = ' '.join(day.split()[0:3])

date = datetime.strptime(day, '%A, %d %B')

TODO: Improve how the year is introduced

date = date.replace(year=datetime.now().year)

continue

hours = task_list[3]

time = task_list[2]

task = task_list[0]

status = task_list[1]

new_task = [date.strftime('%Y/%m/%d'), hours, time, task, status]

36 APPENDIX A. KANBAN2CSV.PY

new_log.append(new_task)

Save log entries in LOG_CSV_PATH

with open(LOG_CSV_PATH, 'w', newline='') as file:

writer = csv.writer(file, delimiter='\t')

writer.writerow(['day', 'hour', 'time', 'tasks', 'status'])

writer.writerows(new_log)

def count_time(log):

'''

Returns str containing total pomodoros and time

'''

pomodoros = 0

hours = 0

minutes = 0

seconds = 0

for day_list in log:

if len(day_list) == 1:

continue

for task_list in day_list:

if len(task_list) == 1:

Print each day info

print(task_list)

if task_list[0] == 'missing':

continue

pomodoros += int(task_list[0].split()[-2])

continue

time = task_list[2].split()

for unit in time:

if unit[-1] == 'h':

hours += int(unit.replace('h', ''))

continue

if unit[-1] == 'm':

minutes += int(unit.replace('m', ''))

continue

if unit[-1] == 's':

seconds += int(unit.replace('s', ''))

continue

37

'''

if task_list[2][-1] == 'm':

minutes += int(task_list[2].replace('m', ''))

continue

if task_list[2][-1] == 's':

seconds += int(task_list[2].replace('s', ''))

continue

'''

hours = hours + minutes//60

minutes = (minutes % 60) + seconds//60

seconds = seconds % 60

time = f'pomodoros: {pomodoros}, hours: {hours}, '\

f'minutes: {minutes}, seconds: {seconds}'

return time

if __name__ == '__main__':

log_entries = get_log(KANBAN_PATH)

total_time = count_time(log_entries)

print(total_time)

create_csv(log_entries)

38 APPENDIX A. KANBAN2CSV.PY

Appendix B

sia.bat and setup.sh

:: Script for starting sia conda env

@title sia

@cd Documents\Sia\sia

:: ENV variables

@set FITNESS_TOOL=C:\Programas\miniconda3\Scripts\pylint.exe

@set FORMATTING_TOOL=C:\Programas\miniconda3\Scripts\autopep8.exe

@set TEST_TOOL=C:\Programas\miniconda3\Scripts\pytest.exe

:: Commandline aliases

@doskey ll=ls -la

@doskey pt=%TEST_TOOL%

@doskey t=tree

@doskey tf=tree /F

@conda activate sia

#!/bin/bash

source Sia/sia-venv/bin/activate

export FITNESS_TOOL=pylint

export FORMATTING_TOOL=autopep8

export TEST_TOOL=pytest

alias t='tree /mnt/c/Users/o/Documents/Sia/sia/ -I "sia-venv|tools"'

cd /mnt/c/Users/{User}/Documents/Sia/sia

39

40 APPENDIX B. SIA.BAT AND SETUP.SH

Bibliography

[1] Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., and Levy, J. The
fractal dimension of sat formulas. In International Joint Conference on Au-
tomated Reasoning (2014), Springer, pp. 107–121.

[2] Ansótegui, C., Bonet, M. L., Giráldez-Cru, J., and Levy, J. Struc-
ture features for sat instances classification. Journal of Applied Logic 23
(2017), 27–39.

[3] Ansótegui, C., Bonet, M. L., and Levy, J. On the structure of indus-
trial sat instances. In International Conference on Principles and Practice of
Constraint Programming (2009), Springer, pp. 127–141.

[4] Ansótegui, C., Bonet, M. L., Levy, J., and Manya, F. Measuring
the hardness of sat instances. In AAAI (2008), vol. 8, pp. 222–228.

[5] Ansótegui, C., Giráldez-Cru, J., and Levy, J. The community struc-
ture of sat formulas. In International Conference on Theory and Applications
of Satisfiability Testing (2012), Springer, pp. 410–423.

[6] Barabási, A.-L., and Albert, R. Emergence of scaling in random net-
works. science 286, 5439 (1999), 509–512.

[7] Biere, A., and Sinz, C. Decomposing sat problems into connected com-
ponents. Journal on Satisfiability, Boolean Modeling and Computation 2, 1-4
(2006), 201–208.

[8] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre,
E. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[9] Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M.,
Nikoloski, Z., and Wagner, D. On modularity-np-completeness and be-
yond. ITI Wagner, Faculty of Informatics, Universität Karlsruhe (TH), Tech.
Rep 19 (2006), 2006.

41

42 BIBLIOGRAPHY

[10] Clauset, A., Newman, M. E., and Moore, C. Finding community
structure in very large networks. Physical review E 70, 6 (2004), 066111.

[11] Cook, S. A., and Mitchell, D. G. Finding hard instances of the satis-
fiability problem: A survey. Satisfiability Problem: Theory and Applications
35 (1996), 1–17.

[12] Cook, S. A., and Reckhow, R. A. The relative efficiency of propositional
proof systems. The journal of symbolic logic 44, 1 (1979), 36–50.

[13] Davis, M., Logemann, G., and Loveland, D. A machine program for
theorem-proving. Communications of the ACM 5, 7 (1962), 394–397.

[14] Deleau, H., Jaillet, C., and Krajecki, M. Gpu4sat: solving the sat
problem on gpu. In PARA 2008 9th International Workshop on State–of–
the–Art in Scientific and Parallel Computing, Trondheim, Norway (2008),
Citeseer.

[15] Dowling, W. F., and Gallier, J. H. Linear-time algorithms for test-
ing the satisfiability of propositional horn formulae. The Journal of Logic
Programming 1, 3 (1984), 267–284.

[16] Ignatiev, A., Morgado, A., and Marques-Silva, J. PySAT: A Python
toolkit for prototyping with SAT oracles. In SAT (2018), pp. 428–437.

[17] Lauria, M., Elffers, J., Nordström, J., and Vinyals, M. Cnfgen: A
generator of crafted benchmarks. In International Conference on Theory and
Applications of Satisfiability Testing (2017), Springer, pp. 464–473.

[18] Levy, J. On the formal characterization of industrial sat instances, February
2021. https://www.youtube.com/watch?v=KQvCd4oqJNg.

[19] Mandelbrot, B. How long is the coast of britain? statistical self-similarity
and fractional dimension. science 156, 3775 (1967), 636–638.

[20] Mitchell, D., Selman, B., and Leveque, H. A new method for solving
hard satisfiability problems. In Proceedings of the tenth national conference
on artificial intelligence (AAAI-92) (1992), pp. 440–446.

[21] Newman, M. E., and Girvan, M. Finding and evaluating community
structure in networks. Physical review E 69, 2 (2004), 026113.

[22] Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., and
Simon, L. Impact of community structure on sat solver performance. In
International Conference on Theory and Applications of Satisfiability Testing
(2014), Springer, pp. 252–268.

https://www.youtube.com/watch?v=KQvCd4oqJNg

BIBLIOGRAPHY 43

[23] Nudelman, E., Leyton-Brown, K., Devkar, A., Shoham, Y., and
Hoos, H. Satzilla: An algorithm portfolio for sat. Solver description, SAT
competition 2004 (2004).

[24] Nudelman, E., Leyton-Brown, K., Hoos, H. H., Devkar, A., and
Shoham, Y. Understanding random sat: Beyond the clauses-to-variables
ratio. In International Conference on Principles and Practice of Constraint
Programming (2004), Springer, pp. 438–452.

[25] Orbe, E., Areces, C., and Infante-López, G. isat: structure visualiza-
tion for sat problems. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning (2012), Springer, pp. 335–342.

[26] Pike, R., and Kernighan, B. Program design in the unix environment.
AT&T Bell Laboratories Technical Journal 63, 8 (1984), 1595–1605.

[27] Sato, T., and Kojima, R. Matsat: a matrix-based differentiable sat solver.
arXiv preprint arXiv:2108.06481 (2021).

[28] Schaefer, T. J. The complexity of satisfiability problems. In Proceedings of
the tenth annual ACM symposium on Theory of computing (1978), pp. 216–
226.

[29] Selman, B., Mitchell, D. G., and Levesque, H. J. Generating hard
satisfiability problems. Artificial intelligence 81, 1-2 (1996), 17–29.

[30] Silva, J. P. M., and Sakallah, K. A. Grasp—a new search algorithm
for satisfiability. In The Best of ICCAD. Springer, 2003, pp. 73–89.

[31] Sinz, C. Visualizing sat instances and runs of the dpll algorithm. Journal of
Automated Reasoning 39, 2 (2007), 219–243.

[32] Sinz, C., and Dieringer, E.-M. Dpvis–a tool to visualize the structure
of sat instances. In International Conference on Theory and Applications of
Satisfiability Testing (2005), Springer, pp. 257–268.

[33] van Rossum, G. Python tutorial. Tech. Rep. CS-R9526, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam, May 1995.

[34] Walsh, T., et al. Search in a small world. In Ijcai (1999), vol. 99, Citeseer,
pp. 1172–1177.

[35] Williams, R., Gomes, C. P., and Selman, B. Backdoors to typical case
complexity. In IJCAI (2003), vol. 3, pp. 1173–1178.

	Abstract
	Acknowledgements
	Introduction
	Brief Algorithm History
	Development
	Characterising SAT formulas

	Statistical Approach
	Graph Transformations
	Community Structure
	Scale-Free Property
	Self-Similar Structure

	The Tool
	Tool Description
	Motivation
	Objectives
	Main Objectives
	Secondary Objectives

	Research and Development Workflow
	Research
	Code Development

	Project Outline
	Functionalities
	backdoors
	cnf.py
	feat.py
	gen.py
	io.py

	Future Work
	Do One Thing and Do It Well
	Pure C
	Share

	Conclusions
	Appendix kanban2csv.py
	Appendix sia.bat and setup.sh

