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Abstract 

 

Purpose: Morse code as a form of communication became widely used for telegraphy, radio and 

maritime communication, and military operations, and remains popular with ham radio operators. 

Some skilled users of Morse code are able to comprehend a full sentence as they listen to it, while 

others must first transcribe the sentence into its written letter sequence. Morse thus provides an 

interesting opportunity to examine comprehension differences in the context of skilled acoustic 

perception. Measures of comprehension and short-term memory show a strong correlation across 

multiple forms of communication. This study tests whether this relationship holds for Morse and 

investigates its underlying basis. Our analyses examine Morse and speech immediate serial recall, 

focusing on established markers of echoic storage, phonological-articulatory coding, and lexical-

semantic support. We show a relationship between Morse short-term memory and Morse 

comprehension that is not explained by Morse perceptual fluency. In addition, we find that poorer 

serial recall for Morse compared to speech is primarily due to poorer item memory for Morse, 

indicating differences in lexical-semantic support. Interestingly, individual differences in speech 

item memory are also predictive of individual differences in Morse comprehension.  

Conclusion: We point to a psycholinguistic framework to account for these results, concluding 

that Morse functions like “reading for the ears” (Maier et al., 2004) and that underlying differences 

in the integration of phonological and lexical-semantic knowledge impact both short-term memory 

and comprehension. The results provide insight into individual differences in the comprehension 

of degraded speech and strategies that build comprehension through listening experience. 
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Humans are born with the ability to acquire a spoken language. They extend this capacity by 1 

learning to use culturally-instructed symbols to represent units of speech or meaning, for instance 2 

by acquiring the ability to read. Auditory Morse code is an acoustic form of symbolic 3 

communication based on the English alphabet that can function like “reading for the ears” (Maier 4 

et al., 2004). Here, the well-documented relationship between reading comprehension and verbal 5 

short-term memory (Gathercole and Baddeley, 1993) leads us to investigate the potential for a 6 

similar relationship between Morse comprehension and verbal short-term1 memory.  7 

Morse perceptual fluency, comprehension, and short-term memory 8 

Morse code was developed as an informationally efficient and robust communication 9 

system for telegraphy and maritime use (Fahie, 1884),  and today it is most commonly used by 10 

amateur radio enthusiasts (Halstead; 1949; Coe, 2003; Turnbull, 1853). An auditory Morse 11 

message consists of sequences of short and long tone pips (spoken as “dit” and “dah,” and written 12 

as “.” and “-”). Each letter of the Roman alphabet is represented by a unique combination of dits 13 

and dahs. Perceptual Morse fluency is standardly measured by “copy speed,” which is the fastest 14 

                                                 
1 In line with the predominant practice in speech sciences, we refer to performance on the immediate serial recall task 
as a measure of short-term memory. However, ordered serial recall likely involves additional cognitive and attentional 
processes such as those involved in intentional rehearsal, and not just passive storage. Historically, this led Baddeley 
and colleagues to consider forward and backward immediate serial recall tasks as measures of working memory  
(Baddeley, 1986). 
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presentation rate at which a user can accurately transcribe a Morse message into its corresponding 15 

English letter sequence.  16 

Some skilled Morse users are able to comprehend a Morse message as they listen to it, in a speech-17 

like manner, without first transcribing it into printed English (For an example, see Supplemental 18 

video 1). The ability to comprehend Morse online has been previously described within the 19 

literature but has received little investigation. In the current study, we assess speech-like Morse 20 

comprehension using a sentence repetition task. Spoken sentence repetition crucially rests upon 21 

the meaningful interpretation of the incoming information (Miller & Isard, 1963; Potter and 22 

Lombardi, 1990; Potter, 2012). Thus, when comprehension is intact, spoken sentences can be 23 

readily repeated with high accuracy, and poor performance is diagnostic of a comprehension 24 

disorder or low language proficiency (McCarthy and Warrington, 1987; Ziethe et al., 2013; Klem 25 

et al., 2015; Theodorou, Kambanaros, and Grohmann, 2017; Marinis and Armon-Lotem, 2017). 26 

Similarly, repeating a Morse sentence is straightforward for individuals who self-report 27 

spontaneous online comprehension (See Supplemental video 2), but difficult for those without this 28 

skill.  29 

We also measure individual differences in Morse perceptual fluency, in this case using a 30 

Morse transcription task in which participants copy a spoken Morse sentence letter-by-letter into 31 

its English equivalent, concurrently with the sentence presentation. Importantly, similar to the 32 

ability to repeat spoken pseudowords, the transcription of a Morse word can be done without 33 

meaningful interpretation of the input. The widespread wartime use of Morse code, for instance, 34 

often involved the high-speed copying and receiving of Morse messages crafted using encryption 35 

algorithms that made comprehension impossible (Turnbull, 1853; Sterling, 2008).  36 
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Finally, we measure short-term memory for Morse and speech lists using an immediate 37 

serial recall task. This task is similar to digit and letter span tasks that are widely used in 38 

assessments of language and reading abilities (e.g., Gathercole, 1999). Measures of comprehension 39 

and short-term memory show a strong correlation across multiple forms of communication, 40 

including spoken English, written English, and American Sign Language (Ben-Yehudah and Fiez, 41 

2017; Just and Carpenter, 1992; Gathercole and Baddeley, 1993; Emmorey et al., 2017). If Morse 42 

functions like “reading for the ears,” individual differences in Morse short-term memory should 43 

predict differences in Morse comprehension, above any potential contributions from perceptual 44 

abilities.  45 

Comparing Morse and speech short-term memory 46 

Morse, where skilled perception is not necessarily associated with skilled comprehension, 47 

offers an opportunity to gain new insights into the relationship between short-term memory and 48 

comprehension. We focus on aspects of short-term memory performance that have been associated 49 

with three different speech-language abilities: 1) recency and suffix effects as markers of echoic 50 

storage, 2) order errors as a marker of phonological-articulatory coding, and 3) item errors as a 51 

marker of lexical-semantic support. 52 

Echoic Storage. Echoic storage is thought to involve the retention of a single acoustic item 53 

in a short-term memory store. Evidence for echoic storage comes from the recency effect, which 54 

is the recall advantage observed for a final as compared to penultimate list item. It is typically 55 

observed for auditory lists but not written lists (Crowder and Morton, 1969; Frankish, 1996). By 56 

some accounts, the echoic store is speech-specific (e.g., Eimas and Corbit, 1973; Liberman, 57 

Cooper, Shankweiler, & Studdert-Kennedy, 1967; c.f. Frankish 1996), in which case a recency 58 

effect should not be observed for Morse lists. Others have argued that non-speech acoustic stimuli 59 
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can benefit from echoic storage under some conditions. For example, Greene and Samuel (1986) 60 

found a recency effect in the recall of an auditory tone sequence by skilled musicians, and 61 

suggested that experience-dependent shaping of acoustic perception may lead to enhanced recency 62 

effects (Greene and Samuel, 1986; Frankish, 1996). Thus, differences between Morse and speech 63 

recency effects would provide evidence of underlying differences in echoic storage. 64 

Suffix manipulations permit a further probe of echoic storage. A spoken suffix is an 65 

additional item presented at the end of the list that is not to be recalled and is thought to gain access 66 

to the echoic store, thereby displacing a final speech list item from memory and disrupting the 67 

recency effect (e.g, Crowder, 1978). This displacement from echoic storage is sensitive to the 68 

acoustic similarity between the final item and the suffix (Crowder and Morton, 1969; Frankish, 69 

1996). For our task, on some trials an irrelevant Morse or spoken letter (i.e. a suffix) is presented. 70 

Since Morse and speech are acoustically very distinct, a speech but not a Morse suffix should 71 

displace the final item from a speech list, and thereby reduce the recall of the final item in a spoken 72 

list. Conversely, if Morse recall benefits from echoic storage, then a Morse but not a speech suffix 73 

should reduce the recall of a final item in a Morse list. Overall, differences between Morse and 74 

speech suffix effects would provide additional evidence of underlying differences in echoic 75 

storage. 76 

Phonological-articulatory coding. Both spoken and written lists are thought to benefit 77 

from phonological-articulatory coding. Though theories of short-term memory differ in important 78 

details, a common idea is that both spoken and written items can gain access to an amodal 79 

phonological store associated with speech planning, which allows the items to be retained using 80 

articulatory rehearsal (Baddeley, 2003) or another speech-based strategy, but makes the items 81 

prone to confusions based on phonological similarity (Jones et al., 2004; Page and Norris, 1998). 82 
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Thus, differences between Morse and speech lists in patterns of item confusions would provide 83 

evidence of underlying differences in phonological-articulatory coding. 84 

Lexical-semantic support. Lexical-semantic information is thought to protect against the 85 

degradation of items within phonological memory and facilitate memory repair (e.g. Jefferies, 86 

Frankish, and Noble, 2009; Savill, Ellis, and Brooke, 2018). This is supported by studies 87 

demonstrating effects of lexical and semantic variables on short-term memory performance. For 88 

instance, recall is greater for lists of words as compared to nonwords, concrete as compared to 89 

abstract words, and high as compared to low frequency words (Hulme et al., 1997; Jefferies, 90 

Frankish, and Lambon-Ralph, 2006a,b; Lewandowsky and Farrell, 2000; Miller and Roodenrys, 91 

2009; Poirier and Saint-Aubin, 1996; Saint-Aubin and Poirier, 1999; Quinlan, Roodenrys, and 92 

Miller, 2017). Importantly, such lexical and semantic variables influence the rate of item but not 93 

order errors (Lewandowsky and Farrell, 2000). Thus, differences between Morse and speech lists 94 

in item errors would provide evidence of underlying differences in the use of lexical-semantic 95 

support to maintain items in phonological memory. 96 

Summary 97 

To summarize, in this study we recruit skilled users of Morse code and assess their abilities 98 

to repeat a Morse sentence, transcribe a Morse sentence, and immediately recall Morse and speech 99 

lists in the order of their presentation. We expect to find individual differences in Morse 100 

comprehension that cannot be simply explained by individual differences in perceptual fluency. 101 

We also assess whether short-term memory performance for Morse and speech exhibit differences 102 

in echoic storage, phonological-articulatory coding, and lexical-semantic support. 103 

 104 

Methods 105 
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 106 

Participants 107 

Participants were required to hold an amateur radio license and possess a self-reported skill 108 

level of sending and receiving Morse at 15 words per minute or above. All participants reported 109 

extensive years of experience with Morse (20-54 years). The subjects provided informed consent 110 

prior to participation according to a protocol approved by the University of Pittsburgh Institutional 111 

Review Board and paid for their participation.  112 

 Twenty-five participants completed this study. An initial set of six participants completed 113 

the study in the laboratory. Due to difficulties in recruiting such a specialized sample, the 114 

procedures were modified to permit recruitment and testing of geographically distant participants, 115 

and the remaining 19 participants performed the experiment at home For these participants, the 116 

experimental materials and equipment were sent to their residence, and included headphones, 117 

program installation software, a flash drive, two spiral bound answer booklets, comment sheets, 118 

instruction packets, and pre-paid return postage. After each participant received the materials, a 119 

scheduled phone call with an experimenter provided an opportunity to review the materials and 120 

address any points of uncertainty. Participants were asked to complete all parts of the study within 121 

a week, calling the investigator if they experienced any confusion or problems executing the 122 

experiment. Crucially, the instructions, stimuli, response output, and experimental software were 123 

identical across the laboratory and at-home participant groups. Following data collection, three 124 

participants were excluded from analyses for not following instructions (e.g, reporting the suffix) 125 

and one for data loss. The reported data are from the remaining 21 participants, all of whom are 126 

male (mean age of 59 years  ± 9 SD).  127 
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 To maximize our sample size, we recruited expert Morse code users over a two year period, 128 

using advertisements sent to Morse code clubs and organizations, and recruitment tables at amateur 129 

radio festivals until we exhausted this recruitment network. By leveraging the use of both in-lab 130 

and at-home testing, we were able to obtain a sample size consistent with that reported in other 131 

short-term memory studies (e.g, Frankish, 2008) that examine different error types produced by 132 

stimulus differences (e.g. intelligible vs. clear speech).  However, a limitation of this study is that 133 

it is underpowered to observe subtle effects. In addition, any study conducted outside of the 134 

laboratory faces additional challenges such as monitoring compliance with instructions. For 135 

instance, although we saw no evidence of this, individuals could have disregarded our instruction 136 

to immediately write each letter as they heard it in our perceptual fluency task.  137 

Stimulus materials 138 

Using freely available online software, 18 English sentences were transcribed into Morse 139 

code at three different rates (16, 19, and 25 words per minute). The sentences were divided into 140 

two sets, with the assignment to a sentence comprehension versus perceptual fluency task 141 

counterbalanced across participants, matched for average number of words across sentences in 142 

each task, for each participant. The sentences were 5-7 words and created to be plausable but not 143 

predictable. The audiofile from one sentence was accidentally misnamed causing one of the 144 

sentences to be omitted and replaced with another in some participants, and so these sentences 145 

were not included in the scoring for any participant. The same software was used to create audio 146 

files for eight Morse letters (H, R, W, M, F, X, K, L, Q). Audio recordings were also created of a 147 

female native English speaker naming aloud the same set of letters. The resulting files were used 148 

as Morse and Speech list items (H, R, W, M, F, X, K, L) and an irrelevant suffix item (Q) in an 149 

immediate serial recall task. 150 
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Experimental design 151 

The study consisted of a Morse sentence comprehension task, a Morse perceptual fluency 152 

task, and an immediate serial recall task. Additionally, prior to this experiment, participants 153 

performed an initial immediate serial recall task with 5-item lists across three presentation 154 

modalities (written, speech, Morse). These results are not included because most participants 155 

performed at or near ceiling for all conditions. 156 

Morse comprehension and perceptual fluency. For the Morse sentence comprehension 157 

task, participants were presented with nine sentences at three different rates (16, 19, and 25 words 158 

per minute). Participants were asked to write each sentence in English on paper as soon as they 159 

finished hearing it. To assess Morse perceptual fluency, participants were presented with nine 160 

sentences at three different rates (16, 19, and 25 words per minute). Participants were asked to 161 

write down (“copy”) each sentences in English as they were listening to them. Performance was 162 

coded as the proportion of accurately transcribed words.  163 

 Morse and speech short-term memory. For the immediate serial recall task, participants 164 

first heard a list of letters, and then immediately following the list presentation they were instructed 165 

to write the presented items as English letters in their order of presentation, and if they could not 166 

recall a letter, they allowed to mark an omitted response in any give position. Stimuli were 167 

presented acoustically at a rate of one letter every 1.5 sec. The list of letters for a given trial was 168 

randomly selected without replacement from pool of eight letters (H, R, W, M, F, X, K, L). On 169 

some trials, an additional letter (Q) was presented 500 ms after the onset of the response cue. 170 

Participants were instructed not to report this suffix item. Each list was immediately followed by 171 

a visual response cue that prompted subjects to write down their responses on a separate notecard 172 

for each trial. The task used a 2x3x2 design with stimulus type (speech, Morse), suffix type 173 
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(speech, Morse, none), and list length (4 or 6 letters) as within-subject factors. There were 10 trials 174 

per condition. Stimulus type was blocked and counterbalanced across participants, such that a 175 

participant first completed either all of the Morse or all of the speech. Within each type of block, 176 

the no-suffix condition always occurred first, and the remaining two suffix conditions were 177 

presented in random order. List length was blocked such that the four letter lists were presented 178 

first in each condition. A brief practice session was used to familiarize participants with the task. 179 

For at-home participants, this was done with the experimenter over the phone. Nearly all 180 

participants exhibited perfect or near-perfect recall of the 4-item lists, and so the data from this 181 

condition are not included in the reported analyses. 182 

Analysis Approach 183 

Overall measures of task performance and relationships between tasks. In the first 184 

stage of data analysis, we computed the overall level of accuracy for the Morse comprehension, 185 

Morse perceptual fluency, and the serial recall tasks for the Morse and Speech conditions, 186 

separately.  Accuracy on the Morse comprehension and perceptual fluency tasks was coded as the 187 

percentage of correctly produced words across the three different rates of sentence presentation. 188 

Accuracy on the serial recall task was defined as a correct item in the correct position. We then 189 

used paired t-tests to compare Morse comprehension and perceptual fluency accuracy, and to 190 

compare serial recall accuracy for the Morse and speech conditions. Lastly, we examined the 191 

correlations between Morse short-term memory and comprehension, above and beyond those 192 

explained by individual differences in Morse perceptual fluency. This analysis was implemented 193 

as a hierarchical regression model in which Morse perceptual fluency was entered as the first 194 

predictor followed by overall Morse short-term memory. 195 
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Investigating components of short-term memory. A second set of analyses examined 196 

specific aspects of short-term memory performance, with the goal of better understanding observed 197 

differences between Speech and Morse serial recall. To probe for differences in echoic storage, we 198 

first tested for recency effects in Morse and Speech conditions; this was done through paired t-199 

tests comparing accuracy at position 5 versus 6 using data from the No-Suffix condition only, to 200 

avoid possible effects of a suffix item on echoic storage. Another paired t-test compared the size 201 

of the effect across the two conditions, subtracting accuracy for position 5 from postion 6 to 202 

compute a difference value that was used as the dependent measure. As another way to probe the 203 

nature of echoic storage for Morse and Speech lists, we used a generalized linear mixed effects 204 

model (implemented in R with glmer and the nlme package) to investigate the effects of our suffix 205 

conditions on the recall of the most recent list item. This model included List condition (Morse, 206 

speech) and all three suffix conditions (no-suffix, speech suffix, Morse suffix) as factors, 207 

participant as a random factor,  and single trial accuracy of the final item as the dependent 208 

measure2. 209 

To evaluate differences in phonological-articulatory coding and lexical-semantic support, 210 

incorrect responses on the immediate serial recall task were coded as either an order or an item 211 

error. Order errors were defined as the recall of a list item in an incorrect list position. Item errors 212 

were defined as an omitted response for a given list position or the recall of an item not presented 213 

on the list. For each participant, we computed the mean rate of order errors for each list condition, 214 

collapsing across the three different suffix conditions. Separate paired t-tests were used to compare 215 

the rate of order errors between Morse and Speech conditions, and  the rate of item errors between 216 

                                                 
2 Family: binomial ( logit ), Formula: Acc ~ Type * Suffix + (1 + Suffix | Participant) 



Morse short-term memory and comprehension 
 

 

 

13 

Morse and Speech conditions. In addition, we examined the correlation between the patterns of 217 

order errors for Morse and Speech. This was done by computing the frequency at which each 218 

spoken letter was mistakenly swapped with another spoken letter at recall (e.g number of times F 219 

was swapped with R), and the frequency at which each Morse letter was swapped with another 220 

Morse letter at recall to generate separate confusion matrices for Morse and Speech. We then 221 

conducted a Pearson correlation analysis between the two resulting confusion matrices in R.   222 

Relationship between item memory and Morse comprehension. Because we presume 223 

that lexical-semantic information is common to Speech and Morse, we wondered if individual 224 

variability in lexical-semantic support for Speech (measured as item memory for speech) could 225 

partially account for differences in Morse comprehension. To answer this question, a hierarchical 226 

linear regression tested whether individual item errors for Speech predicted individual differences 227 

in Morse comprehension, and whether item errors for Morse accounted for any additional 228 

variability in comprehension above and beyond the variability that was predicted by speech item 229 

memory. We tested this through a hierarchical regression model. To minimize any effects due to 230 

differences in echoic storage, data were only included from the congruent suffix conditions (Morse 231 

lists with a Morse suffix, speech lists with a speech suffix). 232 

Results 233 

Overall measures of task performance and relationships between tasks 234 

Accuracy on the Morse comprehension task was more variable and slightly poorer (M = 235 

85%, SD = 19%, range 40 - 100%) than accuracy on the Morse perceptual fluency task (M = 90%, 236 

SD = 12 %, range 55- 100%). Accuracy on the serial recall task was poorer for Morse as compared 237 

to speech lists ( M = 74 % (SD= .19) for Morse, M=83% (SD = .15) for speech,  t(21)= -4.23, p < 238 

.001). 239 
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Measures of comprehension and short-term  memory typically show a strong correlation 240 

(Just and Carpenter, 1992; Gathercole and Baddeley, 1993; Emmorey et al., 2017). To test whether 241 

this is true for Morse, over and above any contributions from perceptual fluency, we conducted a 242 

hierarchical regression with Morse perceptual fluency and Morse short-term memory accuracy as 243 

predictors of Morse comprehension accuracy.  Adding Morse short-term memory to the model 244 

significantly changed the R value from .32 to .55 (see Table 1), and short-term memory 245 

significantly predicted comprehension, p = .037. 246 

[Table 1] 247 

Investigating components of short-term memory 248 

To understand the component abilities that might underlie the poorer serial accuracy for 249 

Morse as compared to Speech lists, we conducted a series of analyses focusing on: 1) recency and 250 

suffix effects as markers of echoic storage, 2) order and item errors as markers of phonological-251 

and  lexical-semantic support, respectively. 252 

Echoic storage. Planned analyses comparing positions 5 and 6 revealed a significant 253 

recency effect for speech (t (20) = -4.32, p< .001) and a trend for a significant recency effect for 254 

Morse (t (20) = -1.94, p=.067); the size of the recency effect did not significantly differ for Morse 255 

code as compared to Speech lists, t (20) = -1.69, p = .106 (Figure 1).  256 

[Figure 1] 257 

 Suffix effects were examined with a generalized linear mixed effects model that revealed 258 

a significant main effect of List condition, p < .001, main effect of Suffix, p = .005, and two-way 259 

list x suffix interaction, p < .001. Further, post-hoc t-tests at the final position revealed the expected 260 

pattern of results for a spoken list: presentation of an acoustically similar (speech) suffix resulted 261 
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in poorer final item recall as compared to presentation of an acoustically dissimilar suffix (Figure 262 

2), whereas results for Morse trended in the expected directions, but did not reach significance.  263 

[Figure 2] 264 

Taken together, the key effects of recency and suffix effects for Morse that would provide evidence 265 

for speech-like storage of a final Morse item in echoic memory (Crowder and Morton, 1969) were 266 

not statistically robust (despite exhibiting a pattern consistent with speech) and so the evidence 267 

that supports this conclusion is weak at best. Additionally, while list differences were observed, 268 

the size of the effects are too small to account for the large difference in overall short-term memory 269 

accuracy for Morse as compared to speech. 270 

Patterns of order and item errors. Similar rates of order errors were observed for Morse 271 

(M=.37, SE = .05) and speech lists (M=.32, SE = .06), and a t-test comparing the two rates yielded 272 

a non-significant result, t(21) = .95, p = .36. We also compared the confusion matrices for Morse 273 

and speech items using a Pearson correlation analysis and found a significant correlation, r(62) = 274 

.36, t = 3.07, p = .003. The results are consistent with the idea that the ordered recall of Morse and 275 

speech lists both rely on a speech-based mechanism in which order information is sensitive to 276 

phonological confusability between items.    277 

We also computed the overall number of item errors for each list condition, collapsing 278 

across the three different suffix conditions. We observed higher rates of item errors for Morse lists 279 

(M=.42, SE = .09) than speech lists (M=.17, SE = .05) with a t-test revealing a highly significant 280 

difference between the two list conditons,  t(20) = 5.17, p < .001. This result indicates that items 281 

in a Morse list are more likely to be forgotten than items in a speech list. 282 

[Figure 3] 283 
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Relationship between item memory and Morse comprehension. In a final analysis we 284 

investigated whether individual differences in item errors for Speech predict differences in Morse 285 

comprehension, and whether item errors for Morse accounted for any additional variability in 286 

comprehension above and beyond the variability that predicted by speech. We found that item 287 

memory for speech significantly predicted Morse comprehension, corrected R2 = .31, F = 8.5,  p = 288 

.009. Adding item errors for Morse did not improve the model's predictive power, (see Table 2), 289 

corrected R2= .35,  p = .022. This finding indicates that although item memory for Morse is poorer 290 

than for speech, individual differences in item memory reflect an underlying factor that is common 291 

to Morse and speech short-term memory, and this underlying factor contributes to Morse 292 

comprehension. 293 

[Table 2] 294 

Discussion 295 

In this study, we investigated individual differences in perceptual fluency, comprehension, 296 

and short-term memory for Morse stimuli. We find strong evidence that differences in Morse short-297 

term memory predict differences in Morse comprehension, above and beyond any contributions 298 

from differences in perceptual fluency. Further, we find that short-term memory is poorer for 299 

Morse as compared to speech, and this difference is primarily explained by poorer item memory 300 

for Morse. Finally, we find that individual differences in Morse short-term memory are predictive 301 

of differences in Morse comprehension, and that even more specifically, item errors in serial recall 302 

predict poorer comprehension. Interestingly, item errors for speech  sufficiently account for 303 

enough of the variability that item memory for Morse does not add any additional predictive power. 304 

Below, we draw upon parallels to the reading literature concluding that Morse functions like 305 

“reading for the ears” and we explain how a psycholinguistic framework can account for the 306 
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observed relationships between short-term memory (for Morse and speech lists) and Morse 307 

comprehension. We end by considering the implications of our results for understanding individual 308 

differences in the comprehension of distorted speech and listening strategies that impact learning 309 

from experience. 310 

 311 

The relationship between short-term memory and Morse comprehension 312 

Our findings are consistent with decades of research showing that measures of verbal short-313 

term memory are highly predictive of differences in written comprehension (Just and Carpenter, 314 

1992; Gathercole and Baddeley, 1993). Since Morse code is based on a 1:1 mapping between a 315 

perceptual input and a particular letter of the Roman alphabet, like the written alphabet it provides 316 

for largely consistent mappings between perceptual inputs and corresponding phonological and 317 

semantic knowledge of spoken English. Thus, it should not be suprising that we find a reading-318 

like relationship between individual differences in Morse short-term memory and Morse 319 

comprehension.  320 

While our participants varied in their Morse short-term memory, in general their short-term 321 

memory for Morse lists was poorer than for speech lists. To investigate the underlying sources of 322 

this difference, we analyzed aspects of short-term memory associated with three different speech-323 

language abilities: recency and suffix effects as a marker of echoic memory, order errors as a 324 

marker of phonological-articulatory coding, and item errors as a marker of lexical-semantic 325 

support for items maintained in a phonological store. We observed large and highly significant 326 

differences only for the rate of item errors for Morse as compared to speech lists. Our observed 327 

dissociation between order and item error effects is consistent with neural evidence associating 328 
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item errors in short-term memory with a ventral semantic processing pathway and order errors 329 

with a brain network for attention and exectuve control (Majerus et al., 2013).  330 

Psycholinguistic perspectives on short-term memory have explained differences in item 331 

errors as the natural outcome of a highly interactive speech-language network. Figure 4 332 

schematically illustrates this perspective as applied to the current study. In these perspectives, 333 

active representations within a phonological store associated with speech planning are 334 

interconnected with lexical-semantic representations stored in long-term memory (for review, see 335 

Acheson & McDonald, 2009). Those items with stronger lexical-semantic representation are better 336 

protected from loss or degradation within the phonological store, resulting in better recall of the 337 

items (Jefferies, Frankish, and Lambon-Ralph, 2006a,b; Lewandowsky and Farrell, 2000). This 338 

leads us to infer that Morse lists experience weaker support from lexical-semantic knowledge, 339 

causing poorer item memory and hence poorer overall recall of Morse as compared to speech lists.  340 

Because psycholinguistic perspectives on short-term memory posit that immediate serial 341 

recall is parasitic on the speech-language network, factors attributed to this network should 342 

influence both short-term memory and comprehension (as depicted in Figure 4). Our results 343 

provide support for this general prediction. Specifically, we find that individual differences in item 344 

memory for Speech lists similarly predict individual differences in Morse comprehension, despite 345 

the overall poorer item memory observed for Morse lists. This somewhat counterintuitive pattern 346 

of results fits easily with two related ideas. The first is that the integration of phonological and 347 

lexical-semantic knowledge is weaker for Morse as compared to speech, which is to be expected 348 

given that individuals have vastly more experience listening to and comprehending speech as 349 

compared to Morse. In this way, Morse once again seems to function like “reading for the ears,” 350 

as reading experience is thought to build the integration of orthographic, phonological, and 351 
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semantic knowledge that is a hallmark of skilled reading comprehension (Perfetti and Hart, 2004). 352 

The second idea is that individuals vary in the strength of their integration of phonological and 353 

lexical-semantic knowledge, but do so similarly for Morse and speech. This makes sense if Morse 354 

and speech stimuli for the same concept map onto the same lexical-level knowledge, as would be 355 

expected given that Morse (like printed English) symbolically represents spoken English. 356 

Therefore, those individuals with the strongest lexical-semantic integration should exhibit stronger 357 

item memory across perceptual differences in input.     358 

 359 

Implications for auditory comprehension of distorted speech 360 

Our results also provide a new perspective on auditory comprehension of degraded speech 361 

input. They are strikingly similar to results found by Frankish (2008), who compared the 362 

immediate serial recall of lists with distorted (less intelligible) versus non-distorted (intelligible) 363 

spoken letters as stimuli. Frankish found that the rate of item errors was higher for the distorted as 364 

compared to non-distorted list condition, but that order errors showed no difference between 365 

distorted and non-distorted spoken letters. Frankish attributed his results to differences in echoic 366 

storage, because the differences in item recall were greatest at the final position. Our data are not 367 

as easily interpreted as arising from an echoic store, as individual differences in item memory 368 

predicted Morse comprehension even under under suffix conditions that should minimize echoic 369 

storage. Instead, we suggest that differences in lexical-semantic support better explain our results. 370 

Differences in lexical-semantic support may also help to explain the Frankish (2008) results. 371 

Unintelligible (distorted) speech stimuli (like those used by Frankish) create uncertainy in mapping 372 

the acoustic input onto phonological and lexical-semantic knowledge in long-term memory. As a 373 
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result, this weakens lexical-semantic integration and so less intelligible stimuli are more likely to 374 

be forgotten in short-term memory – the core result from the Frankish study.  375 

One important distinction between the present study and Frankish (2008) is that our study used 376 

auditory stimuli that were acoustically clear and accurately perceived by all participants, and yet 377 

we observed individual differences in comprehension and short-term item memory. This 378 

underscores the well-established point that differences in the quality or variability of the acoustic 379 

input do not solely explain differences in short-term memory and comprehension of speech items. 380 

For instance, individuals with with cochlear implants show tremendous individual differences in 381 

word recognition ability (Koeritzer et al., 2018; Moberly, Pisoni, and Harris, 2017; Nagaraj, 2017; 382 

Pisoni et al., 2018a) that are poorly predicted by the quality of the acoustic output provided by the 383 

implant (Battmer, Linz, and Lenarz, 2009; Pisoni et al., 2018b). Similar to our findings for Morse, 384 

these differences in comprehension are correlated with individual differences in short-term 385 

memory, and not simply explained by listening experience (in this case, amount of elapsed time 386 

since the implant surgery). Interestingly, one of the many likely factors that does seem to be 387 

important is the nature of listening experiences with the cochlear implant (Houston and Bergeson, 388 

2014; Wang, Shafto, and Houston, 2018). For instance, infants with cochlear implants show 389 

individual differences in attentional orienting to speech input, which may account for individual 390 

differences in speech and linguistic development that have been associated with differences in 391 

lexical-semantic abilities (AuBuchon, Pisoni, and Kronenberger, 2015; Pisoni et al., 2018a). 392 

Further evidence that attention has an impact on listening comes from studies of adults with typical 393 

hearing (e.g, Kraljic, Samuel, and Brennan, 2008). 394 

Putting these ideas together, we suggest that while there are many sources of individual 395 

differences in speech comprehension, differences in lexical-semantic integration may be an 396 
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explanatory mechanism that is relevant for seemingly different areas of speech research. Applying 397 

this idea to our study, many of the participants with the strongest comprehension of Morse reported 398 

using it on a regular basis to communicate with ham radio operators around the world, and began 399 

doing so at a relatively early age. Potentially, the nature of this listening experience may have 400 

fostered the mapping of Morse onto lexical-semantic knowledge, as well as the integration of 401 

phonological and lexical-semantic knowledge for both Morse and speech, which would in turn 402 

support maintence of item information in short-term memory. Collectively, these results point to 403 

the value of further research on how different listening experiences impact short-term memory and 404 

comprehension outcomes (AuBuchon, Pisoni, and Kronenberger, 2015). 405 

  406 
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Tables 

Table 1. Hierarchical linear regression for Morse comprehension using perceptual fluency and 
Morse short-term memory as predictors. 
 b SE b E t-value sig 
Constant  .17 .30    
Copy performance -.39 .32 .25 1.24 .231 
Morse short-term memory -.45 .20 .45*  2.25 .037 

Note R2 = .30 corrected R_corr
2 = .22 , * p < .05 *  
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Table 2. Hierarchical linear regression for Morse comprehension using Speech item and Morse 
short-term memory as predictors. 
 b SE b E t-value sig 
Constant .92 .04  21.91 .000 
Speech Item Errors -.76 .26 -.55 -.2.8 .009 

Note R2 = .31 corrected R_corr
2 = . 27, * p < .05 * 

 
Excluded variables 

 E t sig 
Morse Item Errors -.37 -1.02 .32 
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Figure Legends 

Figure 1. Overall accuracy at each serial position speech (circles) and Morse (triangles)  lists. 

Recall accuracy is the proportion of items recalled correctly in the correct position.   

Figure 2. Final item accuracy for speech and Morse lists. For speech, speech suffix condition 

results poorer final item recall as compared to Morse suffix, t(20) = -3.94, p = .001 or no suffix 

(t(20) = -4.48, p < .001. For Morse showed a similar pattern emerges but does not reach 

significance: poorer final item recall for Morse suffix condition as  compared to presentation of 

an acoustically dissimilar (speech) suffix, t(20) = -1.67, p = .11 or no suffix (t(20) = -1.75, p = 

.10.     

Figure 3. Proportion of Item and Order Errors. Error bars represent standard errors of the mean 

over subjects. 

Figure 4. Psycholinguistic perspective on commonalities between Morse and Speech. Both the 

Immediate Serial Recall (ISR) task and Sentence Comprehension tasks involve acoustic input 

which can be phonologically coded and mapped onto long-term lexical semantic knowledge (left 

panel), with perceptual fluency (A) reflecting the strength of acoustic mapping onto the 

phonological level, and lexical-semantic integration providing support (B) to maintain 

phonologically coded items in short-term memory. Phonological coding is conceptually depicted 

as something akin to a set of phono-lexical representations in a high level speech plan, with an 

activation gradient that declines across successive positions. Echoic memory is not depicted, but 

would be represented as the acoustic trace of the most recently heard item. In the ISR task (middle 

panel), the acoustic input arrives as a sequence of letters which maps onto learned letter-name and 

lexical long-term knowledge about English letters. This provides lexical-semantic support for item 

memory. Comprehension (right panel) rests on successful phonological coding and activation of 
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long-term lexical knowledge as well. Across the participant sample tested, overall integration is 

weaker for Morse than Speech accounting for differences in item memory across conditions. 

However, individual differences lexical-semantic integration (B) would similarly affect both ISR 

and sentence comprehension performance, and thus account for correlations between these two 

tasks. 

 



Fi
gu
re

C
lic

k 
he

re
 to

 a
cc

es
s/

do
w

nl
oa

d;
Fi

gu
re

;F
ig

ur
e1

.ti
ff



Fi
gu
re

C
lic

k 
he

re
 to

 a
cc

es
s/

do
w

nl
oa

d;
Fi

gu
re

;F
ig

ur
e2

.ti
ff



Fi
gu
re

C
lic

k 
he

re
 to

 a
cc

es
s/

do
w

nl
oa

d;
Fi

gu
re

;F
ig

ur
e3

.ti
ff



Fi
gu
re

C
lic

k 
he

re
 to

 a
cc

es
s/

do
w

nl
oa

d;
Fi

gu
re

;F
in

al
Fi

gu
re

4.
tif



  

Supplemental Material

Click here to access/download
Supplemental Material

SupplementaryVideo1.m4v



  

Supplemental Material

Click here to access/download
Supplemental Material

SupplementaryVideo2.m4v



  

Photo/Video Release

Click here to access/download
Photo/Video Release

ConsentPJ.pdf



  

Photo/Video Release

Click here to access/download
Photo/Video Release

MorseRecordingWaiver-JA.pdf



  

Photo/Video Release

Click here to access/download
Photo/Video Release

MorseRecordingWaiver-KB.pdf


