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a b s t r a c t 

Human-machine interaction is increasingly dependent on speech communication, mainly 

due to the remarkable performance of Machine Learning models in speech recognition 

tasks. However, these models can be fooled by adversarial examples, which are inputs in- 

tentionally perturbed to produce a wrong prediction without the changes being noticeable 

to humans. While much research has focused on developing new techniques to generate 

adversarial perturbations, less attention has been given to aspects that determine whether 

and how the perturbations are noticed by humans. This question is relevant since high fool- 

ing rates of proposed adversarial perturbation strategies are only valuable if the perturba- 

tions are not detectable. In this paper we investigate to which extent the distortion metrics 

proposed in the literature for audio adversarial examples, and which are commonly applied 

to evaluate the effectiveness of methods for generating these attacks, are a reliable mea- 

sure of the human perception of the perturbations. Using an analytical framework, and an 

experiment in which 36 subjects evaluate audio adversarial examples according to different 

factors, we demonstrate that the metrics employed by convention are not a reliable measure 

of the perceptual similarity of adversarial examples in the audio domain. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Human-computer interaction increasingly relies on Machine
Learning (ML) models such as Deep Neural Networks (DNNs)
trained from, usually large, datasets ( Fang et al., 2018; Gao
et al., 2019; Hassan et al., 2018; Nunez et al., 2018 ). The ubiq-
uitous applications of DNNs in security-critical tasks, such as
face identity recognition ( Parkhi et al., 2015; Sun et al., 2014 ),
speaker verification ( Heigold et al., 2016 ; Huang and Pun, 2020;
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Snyder et al., 2017 ), voice controlled systems ( Boles and Rad,
2017; Feng et al., 2017; Gong and Poellabauer, 2018 ) or signal
forensics ( Bayar and Stamm, 2018; Athulya, Sathidevi, et al.,
2017; Bayar and Stamm, 2018; Zeng, Zeng, Qiu, 2017 ) require
a high reliability on these computational models. However,
it has been demonstrated that such models can be fooled
by perturbing an input sample with malicious and quasi-
imperceptible perturbations. These attacks are known in the
literature as adversarial examples ( Goodfellow et al., 2014;
Szegedy et al., 2014 ). Due to the fact that these attacks are de-
u.eus (R. Santana). 
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Fig. 1 – Illustration of an adversarial attack, in which an 

adversarial perturbation is added to a clean audio 

waveform, forming an adversarial example which is 
misclassified by a target DNN model, while not altering the 
human perception of the audio. 
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igned to be hardly detectable, they suppose a serious concern 

egarding the reliable application of DNNs in adversarial sce- 
arios. 

The study of adversarial examples has focused primar- 
ly on image domain and computer vision tasks ( Akhtar and 

ian, 2018 ), whereas domains such as text or audio have re- 
eived much less attention. In fact, such domains imply ad- 
itional challenges and difficulties. One of the evident differ- 
nces between domains is the way in which the information is 
epresented, and, therefore, the way in which adversarial per- 
urbations are measured, bounded and perceived by human 

ubjects. 
In the image domain, � p norms are mainly used as a ba- 

is to measure the distortion between the original signal and 

he adversarial example. However, recent works have pointed 

ut that such metrics do not always properly represent the 
erceptual distortion introduced by adversarial perturbations 
 Dukler et al., 2019; Fezza, Bakhti, Hamidouche, Déforges, 2019; 
ordan, Manoj, Goel, Dimakis, 2019 ). Although in some works 
n the audio domain � p norms are also used during the gener- 
tion of adversarial examples to limit the amount of perturba- 
ion ( Alzantot et al., 2018a; Gong and Poellabauer, 2017 ), more 
epresentative metrics are usually employed for acoustic sig- 
als, such as signal-to-noise ratio (SNR) ( Du et al., 2020; Yakura 
nd Sakuma, 2019 ) or Sound Pressure Level (SPL) ( Abdoli et al.,
019; Roy et al., 2017; Zhang et al., 2017a ). These metrics are 
omputed in decibels (dB), which is a standard scale employed 

or acoustic signals. However, even for such metrics, measur- 
ng the perceptual distortion of the attacks is not straightfor- 
ard, as other characteristics such as time-frequency prop- 

rties ( Bosi and Goldberg, 2012 ) have a high influence. In text 
roblems, the difficulty of characterizing the perceptual dis- 
ortion is even greater, due to the fact that every change is 
nevitably noticeable, and therefore, the aim is to produce 
emantically and syntactically similar adversarial examples 
 Alzantot et al., 2018b ). 

In this paper we focus on the human evaluation of adver- 
arial examples in the audio domain. A more comprehensive 
pproach to evaluating adversarial distortions can serve to 
etter understand the risks of adversarial attacks in the au- 
io domain. For instance, the development of adversarial de- 
enses or secure human machine interaction systems can fo- 
us on the more effective, unnoticeable, attacks. 

In particular, we focus on the hypothesis that the suit- 
bility of the approaches used in the literature to measure 
he amount of distortion in speech signals is questionable,
nd that different alternatives to evaluate the distortion in 

 more rigorous way should be employed, such as consider- 
ng different metrics in different specific parts of the signals 
 Vadillo and Santana, 2019 ). Therefore, the goal of this study is 
o perform an analysis of the human perception of audio ad- 
ersarial perturbations according to different factors, to test 
hese hypotheses, and based on these results, to determine 
hether the similarity-metrics employed in the literature are 

uitable to model such subjective criterion. 
The main contributions of this work are the following: 

• We propose a novel experimental design to evaluate 
the human perception of audio adversarial examples for 
speech recognition tasks, according to different factors. 
• We compared different distortion metrics in order to as- 
sess their suitability to provide a realistic measurement of 
the distortion for voice signals. 

• We provide evidence that standard distortion metrics em- 
ployed in previous works are not a reliable measure of the 
perceptual distortion of audio adversarial examples in this 
domain, showing that more specific metrics are required 

in order to achieve more realistic results. 

The remainder of the paper is organized as follows: In the 
ollowing section we introduce the main concepts related to 
dversarial examples and review previous approaches to eval- 
ate the distortion produced by adversarial perturbations in 

he audio domain. This section also highlights a number of 
esearch questions related to the evaluation of audio distor- 
ion that have not been previously addressed. Section 3 de- 
cribes the selected task, target model and dataset, as well 
s the particular method employed for generating adversarial 
erturbations in the audio domain. Section 4 presents a pre- 

iminary evaluation of the adversarial perturbations accord- 
ng to the metrics proposed in the literature. In Section 5 , we
resent the design of an experiment to find answers to some 
f the issues involved in the perceptual evaluation of the per- 
urbations. The results of the experiment in which 36 human 

ubjects evaluate different aspects of the adversarial pertur- 
ations are also presented and discussed. Section 6 concludes 
he paper and identifies lines for future research. 

. Related work 

he existence of adversarial examples which are able to fool 
NNs have been reported for many different audio related 

asks, such as automatic speech recognition ( Alzantot et al.,
018a; Carlini and Wagner, 2018; Neekhara et al., 2019 ), music 
ontent analysis ( Kereliuk et al., 2015 ) or sound classification 

 Abdoli et al., 2019 ). A common adversarial attack scheme is 
epresented in Fig. 1 . Note that it is assumed that an adversary 
an feed the perturbed signal directly into the model. Even 

f this is a common assumption, some works have demon- 
trated that such attacks can be designed to work in the phys- 
cal world ( Carlini et al., 2016; Qin et al., 2019; Yakura and
akuma, 2019; Yuan et al., 2018 ). 
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2.1. Adversarial example: Formal description 

Let f (x ) be a classification model f : X → Y , which classifies
an input x from the input space X ⊆ R 

d as one of the classes
represented in Y = 

{
y 1 , . . . , y k 

}
. An adversarial example x ′ is

defined as x ′ = x + v , where v ∈ R 

d represents the adversar-
ial perturbation capable of producing a misclassification of f
for the (correctly classified) input x : f (x ′ ) � = f (x ) . A necessary
requirement for an adversarial attack is that the perturbation
should be imperceptible , and therefore, the goal is to minimize
the distortion introduced by v as much as possible, according
to a suitable distortion metric ϕ(x, x ′ ) → R 

Depending on the objective of the attack, adversarial exam-
ples can be categorized in different ways. First of all, a targeted
adversarial example consists of a perturbed sample x ′ = x + v
which satisfies f (x ′ ) = y t , where y t represents the target (in-
correct) label that we want to be produced by the model. In
contrast, an untargeted adversarial example only requires the
output label to be incorrect f (x ′ ) � = f (x ) , without any additional
regard about the output class assigned to x ′ . 

Furthermore, depending on the scope of the adversarial
perturbation v , we can differentiate between individual or uni-
versal adversarial perturbations. In the first case, the perturba-
tion is crafted specifically to be applied to one particular input
x . Therefore, it is not expected that the same perturbation will
be able to fool the model for a different sample. In the sec-
ond case, universal adversarial perturbations are input agnos-
tic perturbations able to fool the model independently of the
input. Universal perturbations allow adversarial attacks to be
produced in scenarios where individual perturbations are im-
practical (for instance, scenarios requiring a fast or real-time
computation of adversarial examples), or performing a high
number of attacks more efficiently, avoiding having to gener-
ate a new (individual) perturbation for each new input. 

In Vadillo and Santana (2019) , different levels of univer-
sality are proposed, depending on the number of classes for
which it is expected to work. The first universality level com-
prises single-class universal perturbations that are conceived
to fool the target model only for inputs of one particular class
( Gupta et al., 2019; Vadillo and Santana, 2019 ). We will focus
on single-class universal perturbations, although our findings
regarding the weaknesses and gaps in the evaluation of ad-
versarial perturbations are not restricted to this universality
level. 

2.2. Methods for assessing audio adversarial 
perturbations 

In this section we review the strategies employed by previous
works in order to verify that audio perturbations are not de-
tectable by humans. Even if an essential requirement for ad-
versarial perturbations to suppose a real threat is that they
must be imperceptible, a good specification of such (mainly
subjective) a constraint is not straightforward, and, indeed, is
not well established yet. 

Furthermore, even if the analysis is constrained to the au-
dio domain, the understanding and definition of what can
make a sample natural is very related to the ML task that is be-
ing solved by the model (e.g., it might be harder to categorize
a music tune as “unnatural” than a spoken command). With a
large variety of ML tasks related to the analysis of acoustic sig-
nals (e.g., speech recognition, music content analysis or ambi-
ent sound classification), each of them may require, therefore,
a different criterion to assess the distortion of the adversarial
examples according to human perception. Although a num-
ber of strategies have been proposed in these domains ( Carlini
and Wagner, 2018; Kereliuk et al., 2015; Roy et al., 2017; Schön-
herr et al., 2018; Zhang et al., 2017a ), we focus our review of
related work on those suitable for spoken commands. Among
these strategies are: 

• Thresholding the perturbation amount 
• Models of human perception and hearing system 

• Human evaluation 

2.2.1. Thresholding the perturbation amount 
The methods discussed in this section rely on limiting or mea-
suring the perturbation amount that is added to the original
input, according to a distortion metric, to ensure that the per-
turbations are imperceptible or quasi-imperceptible , or that the
distortion levels are below a maximum acceptable threshold. 

In Alzantot et al. (2018a) , the perturbation applied to spo-
ken commands is restricted to the 8 least-significant-bits of
a subset of samples in a 16 bits-per-sample audio file. Simi-
larly, in Gong et al. (2019) ; Gong and Poellabauer (2017) , the ef-
fectiveness of the proposed attacks for speech paralinguistic
and speech classification tasks is measured for different per-
turbation amounts under � p norms. The restrictions applied
in these cases guarantee that the maximum change applica-
ble to each signal is constrained. However, such thresholds are
not representative for acoustic signals, as they do not guaran-
tee a low perceptual distortion on audio attacks. 

In Abdoli et al. (2019) ; Carlini and Wagner (2018) ;
Neekhara et al. (2019) ; Yang et al. (2018) , in which audio ad-
versarial perturbations for speech recognition models are ad-
dressed, the relative loudness of the adversarial perturbation
v with respect to the original signal x is measured in Decibels
(dB), which is a more representative metric for acoustic sig-
nals: 

dB x,max (v ) = dB max (v ) − dB max (x ) , (1)

where 

dB max (x ) = max 
i 

20 log 10 (| x i | ) (2)

In Abdoli et al. (2019) ; Du et al. (2020) , the signal to noise ratio
(SNR) is used to measure the relative distortion of adversarial
perturbations for speech recognition models, computed as: 

SNR (x, v ) = 10 log 10 
P(x ) 
P(v ) 

, (3)

where P(x ) and P(v ) represent the power of the clean signal x
and the perturbation v , respectively. The SNR has been used in
other works on audio adversarial examples ( Abdoli et al., 2019;
Carlini et al., 2016; Kereliuk et al., 2015; Yakura and Sakuma,
2019; Yuan et al., 2018 ). However, these works are not based on
speech signals, as their approaches rely on data with very dif-
ferent characteristics, such as urban sound classification, mu-
sic content analysis or the injection of malicious commands
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nto songs. Therefore, the results are not directly comparable 
o spoken speech recognition, the task addressed in this paper.

.2.2. Models of human perception and hearing system 

he human hearing system is able to identify sounds in a 
ange from 20Hz to 20kHz, so that perturbations outside this 
ange can not be perceived ( Rosen and Howell, 2010; Ross- 
ng, 2007 ). Based on this fact, in Zhang et al. (2017a) and 

oy et al. (2017) , high frequencies are used to generate audio 
hich is inaudible to humans but which is captured and clas- 

ified by a device. Although these attacks may not fit in our 
pecification of adversarial examples (since humans cannot 
erceive the generated audio, and therefore cannot judge it 
s benign either), they introduce the idea of using frequency 
anges that are out of the human hearing range in adversarial 
cenarios. 

A different strategy is employed in Qin et al. (2019) and 

chönherr et al. (2018) , where psychoacoustic models 
 Zwicker and Fastl, 2013 ) are used to compute the hear- 
ng thresholds of different zones of the clean audio signal,
hich are used to restrict the perturbation to the least per- 

eptible parts. While this strategy is particularly interesting 
or individual attacks, since the perturbation can be hidden 

y taking into account the particularities of a single audio 
ignal, it has several limitations when it comes to universal 
erturbations, due to the fact that the regions of an audio in 

hich the perception is lower vary drastically depending on 

he signal. 

.2.3. Human evaluation 

n Cisse et al. (2017) and Kreuk et al. (2018) , an ABX test is
erformed, which is a standard method to identify detectable 
ifferences between two choices of sensory stimuli. In this 
ethod a subject is asked to listen to two audios A and B, and 

fterwards a third audio X, which will be either A or B, ran- 
omly selected. The objective of this test is to assess if the user 

s able to distinguish between A and B. Optimally, the accuracy 
atio would be 50%, equal to the probability of selecting ran- 
omly between the two choices. In our scenario, the two initial 
udios A and B would correspond to the clean and perturbed 

udio (in either order). 
In Schönherr et al. (2018) , a Multiple Stimuli with Hidden Refer- 

nce and Anchor (MUSHRA) test ( Schinkel-Bielefeld et al., 2013 ) 
s carried out to perform a subjective assessment of the audio 
uality of adversarial examples. The goal of the test is to score 
he quality of perturbed audio signals ( anchors , e.g., adversarial 
xamples) with respect to the original signal ( hidden reference ,
n this context, the original audio).1 According to the results,
he adversarial examples obtained considerably lower scores 
han the clean audio signals. 

In Yakura and Sakuma (2019) and Yuan et al. (2018) the ad- 
ersarial perturbations are embedded in songs, which can be 
eployed in the physical world without raising suspicions for 
uman listeners (e.g., in elevators or TV advertisements) to 
1 It is worth mentioning that the MUSHRA test is mainly used to 
ssess the intermediate quality level of coding systems, whereas 
or small impairments, which should be the case of audio adver- 
arial perturbations, more suitable tests have been proposed, ( ITU, 
015 ). 

D
p
d
p
m
o

orce a target model to understand speech commands. In both 

orks a human evaluation is carried out on Amazon Mechan- 
cal Turk to qualitatively assess the detectability of their at- 
acks. According to the results presented by the authors, al- 

ost none of the participants perceived speech in the per- 
urbed signals. However, a considerable percentage of people 
eported that an abnormal noise could be noticed in the songs.

In Qin et al. (2019) , where adversarial examples are gener- 
ted for automatic speech recognition tasks, a human evalu- 
tion of their attacks is also carried out on Amazon Mechan- 
cal Turk, qualitatively assessing different factors. According 
o the results reported by the authors, the adversarial exam- 
les were judged completely identical to the original samples 
6% of the times. However, when enhancing their attacks in 

rder to work in the physical world, the perturbations were 
onsiderably more detectable, and the adversarial examples 
ere judged different to the original samples 71% of the times.

Finally, in Alzantot et al. (2018a) ; Carlini et al. (2016) ; 
u et al. (2020) ; Gong and Poellabauer (2017) ; 
aidya et al. (2015) , experiments with human subjects 
re performed with the aim of analyzing their response to 
he task, in order to assess if the adversarial perturbation has 
ny influence on the responses provided by human listeners.
owever, no analysis of the perceptual distortion introduced 

y the perturbations is reported, except in Du et al. (2020) , in
hich the subjects are asked to evaluate the noise level of the 

udio signals. 
It is noteworthy that, although a human evaluation is the 

ost reliable method of studying the extent to which the ad- 
ersarial perturbations are detectable, it is necessary to ap- 
ropriately model such criteria using distortion metrics. This 
ould allow us to employ such metrics during the optimiza- 

ion process of the perturbations to minimize the perceptual 
istortion more effectively, or efficiently comparing results 
rom different attacks in a more standardized way, without 
he need for human intervention. However, defining such met- 
ics is a challenging task. For these reasons, in comparison 

o these previous works, rather than using a human evalua- 
ion to analyze the audibility of adversarial attacks, we aim to 
tudy whether the distortion metrics proposed in the litera- 
ure agree with the human judgement, in order to assess their 
uitability for such purposes. 

Finally, in all these works, only individual adversarial per- 
urbations have been evaluated. In contrast, in this paper we 
valuate universal adversarial perturbations, which require 
igher amounts of distortion in comparison to individual at- 
acks, and which can not be enhanced for each input individ- 
ally, making it difficult to mask or hide the perturbations in 

he input signals. To the best of our knowledge, no prior work 
as reported a human evaluation of universal audio adversar- 

al perturbations. 

.3. Summary 

espite the fact that different distortion metrics have been 

roposed to measure the distortion levels introduced by au- 
io adversarial perturbations, we found that most of the ap- 
roaches are not enough to adequately represent the hu- 
an perception of these attacks, as some of the thresholds 

r acceptable distortion levels assumed in previous works 
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( Abdoli et al., 2019; Alzantot et al., 2018a; Carlini and Wagner,
2018; Gong et al., 2019; Gong and Poellabauer, 2017; Neekhara
et al., 2019; Yang et al., 2018 ) do not always guarantee that the
perturbations are imperceptible. Therefore, the undetectabil-
ity of the attacks can be questionable. With this paper, we in-
tend to provide evidence and raise awareness about this. We
hope that the results reported may contribute to establish a
more thorough measurement of the distortion, and therefore,
to a more realistic study of audio adversarial examples. 

3. Adversarial examples of speech commands

Our goal is to evaluate the detectability of audio adversarial
perturbation, and to determine to what extent the metrics
commonly used in the literature agree with the human evalu-
ation. To accomplish this goal, we should first establish a num-
ber of stepping stones: 

1. Identify a suitable and representative audio task. 
2. Identify a model appropriate for the task 
3. Collect or identify a dataset to train the model. 
4. Using the model, generate the adversarial examples for the

task. 
5. Estimate the actual fooling rate of the adversarial exam-

ples. 

3.1. Selection of the task, model, and dataset 

The task we have selected is speech command classification since
it is an exemplar machine learning task which is part of the
repertoire of extensively used speech-based virtual agents,
such as smartphones or smart home assistants. Lightweight
speech command recognition models are particularly well
suited for tasks requiring a continuous monitoring of audio
signals in search of keywords, or for resource-constrained de-
vices, due to the high computational cost required by auto-
matic speech recognition models ( Zhang et al., 2017b ). In fact,
it is common for automatic speech recognition systems to
have to be activated by predefined short commands, which are
usually recognized by keyword-spotting models ( Chen et al.,
2014; Sainath and Parada, 2015 ). Therefore, vulnerabilities in
speech command classification models can lead to privacy-
issues, security breaches or dangerous malfunctions of voice
controlled devices in security critical tasks. 

The DNN model we have selected is based on the ar-
chitecture proposed for small-footprint keyword recognition
( Sainath and Parada, 2015 ). Such architecture has been used in
related works on adversarial examples ( Alzantot et al., 2018a;
Du et al., 2020 ) and as a baseline model in other research tasks
( Warden, 2018; Zhang et al., 2017b ). The model takes as input
an audio waveform, computes the spectrogram of the signal
for different time intervals, and extracts a set of MFCC fea-
tures for each of them. The resulting two-dimensional repre-
sentation of the audio signal is fed into a Convolutional Neural
Network, composed of two convolutional layers with a ReLU
activation function, followed by a fully-connected layer and a
softmax layer. 

We used the Speech Command Dataset ( Warden, 2018 ),
which is a widely used dataset in the study of adversarial
attacks for speech recognition systems ( Abdoli et al., 2019;
Alzantot et al., 2018a; Du et al., 2020; Yang et al., 2018 ). The
dataset is composed of recordings of 30 different spoken com-
mands, provided by a large number of different people. Au-
dio files are stored in a 16-bit WAV file, with a sample-rate
of 16kHz and a fixed duration of one second. As in previous
publications ( Alzantot et al., 2018a; Warden, 2018 ), we selected
the following subset of commands to develop our work: “Yes”,
“No”, “Up”, “Down”, “Left”, “Right”, “On”, “Off”, “Stop”, and
“Go”. Additionally, We will also consider two special classes:
“Unknown” (a spoken command not considered in the previ-
ous set), and “Silence” (no speech detected in the audio). The
selected setup allows multiple factors to be controlled (e.g.,
the number of spoken commands is limited yet varied) or fixed
(e.g., the length of all the audio samples is equal). This allows
us to focus on more relevant factors of speech signals, which
highly affect the perceptual distortion of adversarial pertur-
bations, as we show in the paper. 

3.2. Generating single-class universal perturbations 

As previously mentioned, we focus on single-class universal
perturbations ( Gupta et al., 2019; Vadillo and Santana, 2019 ),
an attack approach that attempts to generate a single pertur-
bation which is able to fool the model for any input corre-
sponding to a particular class y i . We decided to focus on uni-
versal perturbations because an initial experimentation with
individual perturbations (crafted using Deepfool algorithm)
led us to the conclusion that the perturbations were undoubt-
edly imperceptible. This conclusion has been reported before
in the literature ( Fezza et al., 2019 ) for the case of image ad-
versarial examples. Therefore, we selected the more challeng-
ing task of generating universal perturbations, which requires
higher distortion levels. The fact that higher distortion lev-
els are required to generate universal perturbations also in-
creases the necessity to assess their imperceptibility in a rig-
orous and realistic way, in order to properly study the potential
of such attacks. Thus, universal perturbations provide an ap-
propriate setup to evaluate the main objective of our paper: to
carry out an analysis of the human perception of audio adver-
sarial perturbations, in order to assess whether the distortion
metrics employed in the literature correlate with the human
judgment. Moreover, we selected single-class universal attacks
in order to study in more detail the results on different com-
mands. The particular choice of the class to which the target
perturbation is applied is a factor that may influence the per-
ceptual distortion of the perturbations. 

The selected attack method is based on the strategy
proposed in Moosavi-Dezfooli et al. (2017) , a state-of-the-
art method to generate universal perturbations based on
accumulating individual perturbations created for a set of
training samples using the Deepfool algorithm ( Moosavi-
Dezfooli et al., 2016 ). The Deepfool algorithm is an individual
adversarial attack method which, given an input x , aims to
find the minimal perturbation capable of changing the clas-
sification provided to x by the model, that is: 

r ∗ = min 

r 
|| r || 2 s.t. f (x + r ) � = f (x ) . (4)
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Table 1 – Effectiveness of the generated single-class uni- 
versal perturbations. 

Class 
Max. FR% Mean FR% 

Train Valid Train Valid 

Silence 23.80 19.46 22.24 19.61 
Unknown 72.70 73.06 70.58 73.51 
Yes 74.50 74.36 68.26 66.40 
No 86.50 83.77 81.48 79.40 
Up 84.20 75.45 82.20 74.73 
Down 71.50 65.55 68.06 64.51 
Left 52.30 49.73 42.20 40.59 
Right 68.70 63.82 60.62 56.47 
On 76.00 75.65 54.42 53.28 
Off 80.10 73.48 75.18 70.85 
Stop 61.40 61.82 56.92 57.30 
Go 87.80 80.06 86.24 80.90 
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he strategy followed by Deepfool is to employ a linear ap- 
roximation of the decision boundaries learned by the classi- 
er to efficiently approximate the distance between the input 
nd the closest decision boundary (towards which the input 
ill be pushed). This is done iteratively until the perturbed 

i.e., adversarial) input is wrongly classified by the model. Let 
f j (x ) be the output logit of the model f corresponding to the 
lass y j when an input x is classified, and x i the adversarial ex- 
mple at the iteration i ( x 0 = x ). At each iteration, the decision
egion corresponding to the source class y c = f (x ) , which can 

e formally defined as: 

 = 

k ⋂ 

j=1 

{ x ∈ X : f c (x ) ≥ f j (x ) } , (5)

s approximated as: 

 

 i = 

k ⋂ 

j=1 

{x ∈ X : f j (x i ) − f c (x i ) + 

� 

f j (x i ) 
	 x −

� 

f c (x i ) 
	 x ≤0 } , (6)

here 
� 

f j (x ) denotes the gradients of the logit corresponding 
o the class y j with respect to the input. For the sake of simplic-
ty, let us denote f ′ j = f j (x i ) − f c (x i ) and w 

′ 
j = 

� 

f j (x i ) −
� 

f c (x i ) .

ased on the simplified decision boundary model ̃  R i , the ad- 
ersarial example is updated using the following rule: 

 i +1 = x i + 

| f ′ l | 
|| w 

′ 
l || 2 2 

w 

′ 
l , (7) 

here l � = c represents the index of the class y l � = y c whose
ecision boundary is closest to x i according to the following 
roximity criterion: 

 = argmin j � = c 
| f ′ j | 

|| w 

′ 
j || 2 

. (8) 

n order to generate a universal perturbation v , given a train- 
ng set X̄ = { ̄x 1 , . . . , x̄ n } of n input samples, the UAP algorithm 

 Moosavi-Dezfooli et al., 2017 ) iteratively takes an input x̄ i ∈ X̄ ,
omputes an individual perturbation r i for ( ̄x i + v ) using the 
eepfool algorithm (unless f ( ̄x i ) � = f ( ̄x i + v ) , that is, unless v

s already capable of fooling the model for the input x̄ i ), and 

dds the local perturbation r i to the universal perturbation v : 

 ← P ε (v + r i ) . (9) 

he projection operator 

 ε (v ) = argmin v ′ || v − v ′ || 2 subject to || v ′ || 2 ≤ ε (10) 

s used to bound the norm of the universal perturbation after 
ach update. This process is repeated until a stop criterion is 
et (e.g., a fixed number of steps or passes through the entire 

raining set). We use the UAP-HC reformulation of this strategy 
or audio samples, as presented in Vadillo and Santana (2019) ,
here more details about the process to generate the pertur- 
ations can be found. 

We generated 5 different universal perturbations per class,
tarting from a different training set of 1000 samples in each 
ase. During the crafting process, the universal perturbations 
ere bounded by the � 2 norm, with a threshold value of ε = 0 . 1 .

n addition, the Deepfool algorithm was limited to a maxi- 
um number of 100 iterations. The overshoot parameter of 

he Deepfool algorithm was set to 0.1. Finally, the UAP-HC al- 
orithm was restricted to 5 epochs, that is, 5 complete passes 
hrough the entire training set. 

.3. Effectiveness of the perturbations fooling the model 

o measure the effectiveness of the universal perturbations,
e compute the percentage of audios for which the predic- 

ion changes when the perturbation is applied. We will refer to 
his metric as fooling ratio (FR) ( Moosavi-Dezfooli et al., 2017 ).
he effectiveness of the generated perturbations is shown in 

able 1 , for the training set (the set of samples used to opti-
ize the universal perturbation) and for the test set (the set 

f samples used to compute the effectiveness of the attack 
or inputs not used during the optimization process). Results 
re shown for the average effectiveness of the 5 perturbations 
enerated for each class, as well as for the one that maximizes 
he FR on the training set. 

According to the results, the generated adversarial exam- 
les are highly effective for the majority of the classes, with a 
aximum FR above 70% for 7 out of 12 classes in both train- 

ng and test sets. Note that we obtain a considerably high ef- 
ectiveness also in the class unknown , which is composed of a 
iverse set of spoken commands. However, the hardest class 
o fool is silence , in which the maximum FR is below 25% in
oth training and test sets. This may be due to the fact that,
ccording to the nature of the audios corresponding to that 
lass, trying to fool the model by adding a small amount of 
oise is a challenging task. 

It is important to bear in mind that the effectiveness of a 
niversal perturbation is directly correlated to the distortion 

mount introduced. We show in Fig. 2 , for each class, the way
n which the FR increases as the distortion amount introduced 

y the perturbations increases. These results have been ob- 
ained by scaling the magnitude of a universal perturbation 

 according to two distortion criteria: the � 2 norm of the per- 
urbation and the decibel difference between the perturbation 
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Fig. 2 – Variation in the effectiveness (FR%) in the test set of 
the generated single-class universal adversarial 
perturbations according to two different criteria: � 2 norm of 
the perturbation (top) and dB x,max (v ) metric with respect to 

each input signal x (bottom). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 – Distortion level of the generated single-class 
universal perturbations, evaluated in the test set using the 
standard evaluation approach: dB x,max (v ) applied to the 
whole signals. Results are averaged for the 5 perturbations 
generated for each class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Different mean distortion values are reported depending on 

the attack strategy, ranging from -18dB to -45dB. 
3 This effect can be explained by the fact that, due to the nature 

of the samples corresponding to the class silence , their loudness 
level is lower than for the rest of classes. 
and each sample of the dataset. In the first case, the perturba-
tion signal is scaled in order to ensure that its norm equals
the desired threshold, and it is equally applied to every input
sample. In the second case, the perturbation signal is scaled
for every input sample x , in order to ensure that the dB x,max (v )
metric equals the specified threshold. 

The fact that the FR is directly correlated with the distor-
tion level implies that there is a trade-off between the effec-
tiveness and the detectability of the attacks. Therefore, to ad-
equately study the risk posed by audio adversarial attacks, it
is important to establish realistic and rigorous criteria for as-
sessing the human perception of such attacks. 

4. Evaluation of the distortion using 

similar ity metr ics 

While the ability to fool the model is an essential ingredient
of adversarial examples, the other requirement is that the per-
turbation is not noticed by humans. In this section, we evalu-
ate the distortion produced by the generated adversarial per-
turbations, according to different criteria. 

4.1. Evaluating the distortion: The standard, uninformed 

way 

We first computed the distortion according to the standard ap-
proaches employed in previous works on adversarial exam-
ples in speech recognition tasks ( Abdoli et al., 2019; Carlini
and Wagner, 2018; Neekhara et al., 2019; Yang et al., 2018 ), as
described in equation (1) . Note that according to this metric,
the lower the distortion value, the less detectable the pertur-
bation. In Carlini and Wagner (2018) , where individual adver-
sarial perturbations are created for speech transcription sce-
narios, the mean distortion of the generated perturbations
is −31 dB, and the 95% interval for distortion ranges from
−15 dB to −45 dB.2 Approximately the same range of distor-
tion is reported in Yang et al. (2018) . In Neekhara et al. (2019) ,
where universal adversarial perturbations are generated also
for speech transcription models, the distortion level of the per-
turbations is bounded under different thresholds, obtaining
a mean distortion of approximately −42 dB in the best case
and −30 dB in the worst case. In Abdoli et al. (2019) , the mean
distortion levels of the generated universal perturbations for
speech command classification are approximately between
−18 dB and −25 dB. Overall, distortion levels below −32 dB are
considered acceptable in these works. 

Fig. 3 shows the distortion level of the generated pertur-
bation with respect to each input sample in the test set, ac-
cording to the same approach. Results are computed indepen-
dently for each class, and averaged for the 5 trials carried out
in each of them. Table 2 shows the mean distortion level ob-
tained for each class. As can be seen, the mean distortion is be-
low −40 dB in all the classes except silence , in which the mean
distortion is of −29 . 52 dB.3 Moreover, without considering the
class silence , more than 90% of the samples are below −32 dB in
all the cases. Therefore, our perturbations can be considered
as highly acceptable according to this standard. 
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Table 2 – Distortion levels produced by the generated 

single-class universal perturbations (standard evalua- 
tion). Results are averaged for the 5 experiments carried 

out for each class. 

Class Mean dB x,max (v ) % of samples below -32dB 

Silence –29.52 48.04 
Unknown –41.35 90.20 
Yes –40.58 90.45 
No –42.56 93.09 
Up –40.24 89.18 
Down –40.63 90.64 
Left –48.10 99.03 
Right –43.30 95.20 
On –46.31 96.21 
Off –42.01 94.03 
Stop –43.92 96.11 
Go –41.88 93.28 
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.2. Evaluating the distortion: Detailed and 

ignal-part-informed way 

n order to measure the distortion in more detail, we employed 

he approach introduced in Vadillo and Santana (2019) . In this 
ase, the distortion induced by the perturbation v in the orig- 
nal sample x is computed in terms of the difference between 

oth the maximum (as defined in Eq. (1) ) and the mean decibel 
alues, defined as: 

B x,mean (v ) = dB mean (v ) − dB mean (x ) , (11) 

here 

B mean (x ) = 20 · log 10 

⎛ 

⎝ 

1 
d 

d ∑ 

i =1 

| x i | 
⎞ 

⎠ . (12) 

Furthermore, previous work on evaluating the naturalness 
f adversarial examples in the audio domain computes the 
istortion between two signals by applying the metrics to the 
ntire signals ( Abdoli et al., 2019; Carlini and Wagner, 2018; 
eekhara et al., 2019; Yang et al., 2018 ). In Vadillo and San- 

ana (2019) , the application of both metrics in two different 
arts of each audio signal is advocated: the vocal part and the 
ackground part. This differentiation is due to the fact that,
or spoken commands, the amount of sound outside the vo- 
al part is considerably lower. Thus, the same amount of per- 
urbation would be perceived differently depending on the in- 
ected part. 

As we are handling short single-command audio signals,
he vocal part of an audio signal x = 

{
x 1 , . . . , x d 

}
will be delim- 

ted by the contiguous subsequence { x a , . . . , x b } , 1 ≤ a, b ≤ d,
ontaining 95% of the accumulated energy of the signal, that 
s: 

∑ b 
i = a x 

2 
i ∑ d 

i =1 x 
2 
i 

≈ 0 . 95 . (13) 

hus, we will assume that the two remaining subsequences 
 x 1 , . . . , x a −1 } and { x b+1 , . . . , x d } will be composed just of back-
round noise. Notice that this partition is well suited for single 
ommand audios in which it is assumed that the vocal part of 
he signal is contiguous. Audio signals belonging to the silence 
lass will be omitted from the analysis of the vocal part, as 
hey are composed only of background noise, without any vo- 
al part. 

The results obtained with the described evaluation ap- 
roach are shown in Fig. 4 . The first row of the figure shows
he results obtained using dB x,max (v ) metric, and the bottom 

ow the results obtained using dB x,mean (v ) metric. Notice the 
ifference between the horizontal axis scales of the figures. 

By comparing the perturbations in the vocal part and the 
ackground part, it can be seen that perturbations in the vocal 
art are less noticeable, with a decibel difference significantly 

ower, which occurs using both dB max and dB mean distortion 

etrics. 
Regarding the distortion amount in the vocal part, the ob- 

ained results are significantly below the threshold of −32 dB 

n almost all the samples, independently of the metric. Com- 
ared to the sound intensity level of a normal conversation,
 distortion of −30 dB corresponds to the weakest audible sig- 
al between 10kHz and 100Hz frequency range ( Smith, 1997 ),
hich is roughly the difference between the ambient noise in 

 quiet room and a person talking ( Carlini and Wagner, 2018 ). 
While the distortion level outside the vocal part is still ac- 

eptable under the dB max metric, according to the dB mean met- 
ic the distortion exceeds the threshold of −32 dB for a great 

ajority of the samples. In fact, in about half of the cases the
ifference in decibels is greater than −20 dB, which may indi- 
ate that the perturbations could be highly detectable in those 
arts. 

. Human evaluation of voice command 

dversarial examples 

hile the methods presented in Section 4.2 provide a more 
ccurate and detailed assessment on the quality of the adver- 
arial examples, the metrics used are not expected to capture 
ll the subtleties of a proper human evaluation. Therefore, we 
esigned an experiment in which human subjects listen to au- 
io adversarial examples and judge them according to differ- 
nt criteria. The main goal of the experiment was to study to 
hich extent the perturbations are detectable by humans. In 

his section we describe the experimental design and its re- 
ults. 

.1. Experimental design 

 set of 36 subjects, independent of the research, was selected 

o conduct the experiment. Each participant was instructed 

o listen to different audio clips and answer some questions 
bout them. 

The experiment is composed of two parts: 

• In the first part, the naturalness of the generated universal 
adversarial examples is investigated. The other question 

investigated is to what extent the distortion produced by 
the perturbation affects the understandability of the spo- 
ken commands. To address these questions, each partici- 
pant is asked to listen to a set of 12 audio clips, six of them
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Fig. 4 – Distortion level of the generated single-class universal perturbations, evaluated in the test set using dB x,max (v ) metric 
(top row) and dB x,mean (v ) metric (bottom row). For each audio, the distortion has been measured in the vocal part as well as 
in the background part. Results are averaged for the 5 perturbations generated for each class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

clean and the other six adversarially perturbed, and pro-
vide the following information 

4 : 
• Identify the command that can be heard in the audio

clip, in order to determine if the adversarial perturba-
tions affect the understandability of the spoken com-
mands. 

• Assess the level of naturalness of the audio clip, in or-
der to study whether the adversarial examples are per-
ceived as perturbed audios in comparison to clean in-
stances. As both clean and perturbed audios will be
tested, the comparison between the results obtained in
both cases may reflect if the perturbations are perceived
just as a regular background noise or other ordinary per-
turbations, or whether they are perceived as artificial or
malicious. In the experiment, the subjects evaluated the
naturalness on a scale from 1 to 5, with the following
scale provided as reference: 
1) Clearly perturbed audio with an artificial sound or

noise. 
2) The audio is slightly perturbed by an artificial sound

or noise, not likely to be caused by the low quality of
the microphones or ambient sounds. 

3) Not sure 
4 Participants are instructed to reproduce each audio a maxi- 
mum of two times. 

 

 

 

 

4) No obvious signs of an artificial perturbation. The
detectable perturbations are likely to be caused by
a low- or mid-quality microphone, ambient sounds
or ordinary noises. 

5) The audio clip clearly does not contain any artificial
perturbation. 

• In the second part of the experiment, each participant per-
formed an ABX test, a method to identify detectable dif-
ferences between two choices of sensory stimuli. In this
method, a subject is asked to listen to two audios A and B,
and afterwards a third audio X, which will be either A or B,
randomly selected. The goal of the test is to evaluate if the
subject is able to determine if X corresponds to A or to B.
In our experiment, the two initial audios A and B will cor-
respond to the clean and perturbed audio, in any order. In
addition, the participant will be asked to report the confi-
dence of their decision (high, medium and low confidence).
Thus, this test will determine if the perturbations are de-
tectable in comparison to the clean audio sample. Six tri-
als were carried out in each experiment, that is, six sets of
three audio clips A, B and X. 

We included a “catch” ABX trial in the second part of the
experiments, in which the three audios were the same, which
will be used to discard those experiments in which a high con-
fidence is reported in the classification of X. To prevent the
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Table 3 – Summary of the experimental setup designed for the human evaluation of the distortion produced by the uni- 
versal perturbations. 

Experiment Intensity Audio samples (part 1) ABX trials (part 2) 

Clean Perturbed Total 

1 Low 6 6 12 6 
2 Low 6 6 12 6 
3 Low 6 6 12 6 
4 Medium 6 6 12 6 
5 Medium 6 6 12 6 
6 Medium 6 6 12 6 
7 High 6 6 12 6 
8 High 6 6 12 6 
9 High 6 6 12 6 
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Fig. 5 – Accuracy percentages achieved by the participants 
of the experiment in the speech command classification 

task. Results have been split for each sample type (clean or 
adversarial) as well as for the intensity levels of the original 
audios in the experiments (low, medium or high). 
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atch ABX trials from biasing the responses of the participants 
o real trials in any way, we added the catch questions at the 
nd of the tests. 

Due to the fact that the audio clips of the dataset contain 

ifferent characteristics, such as the intensity of the spoken 

ommand or the amount of background noise, the perception 

f a perturbation may change according to these features. For 
his reason, in order to carry out a more in-depth analysis, we 
ecided to classify the audios considering three levels of in- 
ensity: low, medium and high. To the best of our knowledge,
o prior work has considered this factor in the assessment 
f the human perception of audio adversarial perturbations.
he dB mean metric presented in Eq. (12) will be used to mea- 
ure the mean intensity of the original audio signals. Accord- 
ng to this metric, 99% of the intensities of the audio samples 
ie approximately in the decibel range [30,85]. By performing a 
ough uniform binning of the intensity range (known as equal- 
idth binning in the literature ( Dougherty et al., 1995 )), the 

evels were defined as follows: 

• Low intensity level: audios with a mean distortion below 

50dB. 
• Medium intensity level: audios with a mean distortion be- 

tween 50dB and 70dB. 
• High intensity level: audios with a mean distortion above 

70dB. 

To ensure a uniform representation of the different levels 
f intensity, each experiment was composed of audio signals 
f only one of these levels. Nine different experiments were 
reated, (three experiments per intensity level), and each of 
hem was assigned to four different participants, making a to- 
al of 36 experiments and participants. A summary of the final 
xperimental setup is provided in Table 3 , and the frequency 
f each command in the first part of the experiment (in which 

articipants are asked to classify the audio samples) is shown 

n Table 4 . We ensured that the model correctly classified the 
riginal audio samples but incorrectly classified the adversar- 

al examples. 

.2. Analysis of the results 

n this section we analyze the results obtained in the experi- 
ents. As a summary of the participants, the average age was 
4.6 years, with a standard deviation of 6.0 years. Out of the 
6 participants, 32 were male (88.9%) and 4 female (11.1%). 

.2.1. Command classification task 
he first factor to be analyzed is the accuracy percentage ob- 

ained by humans in the command classification task (first 
art of the experiment), that is, which percentage of samples 
ave been correctly labeled by humans. The results obtained 

or each intensity level are summarized in Table 5 , which 

hows the number of wrongly classified audios, and in Fig. 5 ,
hich shows the obtained command classification accuracies.

n both cases, the results have been computed independently 
or clean instances and for adversarial examples. 

According to the results, the total number of instances 
rongly classified considering all the instances, clean and ad- 

ersarial, is 27 out of 432, which corresponds to a total accu- 
acy in the command classification of ∼ 94 %. Among all the 
rongly classified audios, 15 correspond to the clean sam- 
les and 12 to adversarial samples. Overall, these results in- 
icate that the adversarially perturbed spoken commands are 
s clearly recognizable as the original (clean) audios. In other 
ords, although the adversarial perturbations are able to fool 

he target model, they do not affect the human understand- 
ng of the command. The obtained results are consistent with 
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Table 4 – Number of audios per command used in the experiments (part 1). 

Type Sil. Unk. Yes No Up Down Left Right On Off Stop Go 

Low intensity 3 3 3 3 3 3 3 3 3 3 3 3 
Medium intensity 3 3 3 3 3 3 3 3 3 3 3 3 
High intensity 3 5 3 4 0 4 2 2 3 3 0 7 
Clean 7 4 5 5 4 4 4 2 7 4 4 4 
Perturbed 2 7 4 5 2 6 4 6 2 5 2 9 
Total Frequency 9 11 9 10 6 10 8 8 9 9 6 13 

Table 5 – Number of wrongly classified audios (part 1). 

Intensity 
level 

Samples 

Clean Adv. All 

Low 1 0 1 
Medium 4 5 9 
High 10 7 17 
All 15 12 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 The alternative hypothesis of the test is that the empirical suc- 
cess ratio is greater than p = 0 . 5 . The same test with the alterna- 
tive hypothesis that the empirical ratio is not equal to 0.5 obtained 

a p-value of ≈ 0 . 41 . 
those achieved in Du et al. (2020) , where the success rate of a
set of people in classifying audio commands is reported us-
ing the same dataset as us, but without considering silence or
unknown as classes and without differentiating between the
intensity level of the original signals. According to the results
reported in Du et al. (2020) , the accuracy in recognizing the
commands was 93.5% for clean samples and 92.0% for adver-
sarial examples. 

Finally, comparing the results for the three intensity levels
of the audios, 17 of the wrongly classified audios correspond to
the high intensity audios, 9 correspond to the medium inten-
sity and only 1 to the low intensity. These results suggest that,
the higher the intensity level of the audio signal, the more dif-
ficult it is to correctly identify the spoken commands. 

5.2.2. Naturalness 
The results obtained in the analysis of the naturalness level
assigned to the instances is displayed in Fig. 6 . The figure
shows the frequencies with which samples are classified in
each naturalness level, split according to the sample type
(clean or adversarial). In addition, the results are jointly com-
puted for all the experiments (top left) as well as for each in-
tensity level individually: low (top right), medium (bottom left)
and high (bottom right). Considering all the experiments, it
can be observed that the adversarial examples obtained lower
scores in comparison to the clean samples. We verified by an
exact multinomial statistical test that there exist significant
differences regarding the scores assigned to clean and adver-
sarial audios (achieving a p-value below a tolerance of 0.01).
Indeed, while 63.0% of the clean samples are classified with a
naturalness level of 4 or 5, only 39.8% of adversarial examples
have been classified in the same range. These results indicate
that, in general, the adversarial perturbations are perceived in
the audio signals as artificial sounds or noises with a consid-
erably higher frequency than clean samples. 

Doing the same analysis independently for each intensity
level, it can be observed that the main difference is given in
the lowest intensity level, in which 75.0% of the adversarial
examples achieved a score of 1 or 2, while only 4.2% of clean
samples were classified in that range. For the highest intensity
level, however, the percentage of adversarial examples which
scored a 4 or 5 ( 62 . 5% ) is even greater than the corresponding
percentage for clean samples ( 47 . 2% ). Thus, the human per-
ception of the adversarial examples is clearly related to the
intensity level of the original audio signals. This is a remark-
able fact that should be taken into consideration in the evalu-
ation of audio adversarial examples. 

5.2.3. ABX test 
In order to better evaluate if the perturbations are perceivable,
the results obtained in the ABX test (second part of the exper-
iment) have been analyzed. This is summarized in Fig. 7 . The
first row of the figure shows the percentage of success cases in
the ABX test, that is, the percentage of cases in which the un-
known audio (audio X) has been correctly classified. The sec-
ond row shows the confidence level of the answers. All these
results have been computed independently for each intensity
level. 

The success rate of the experiments with low and medium
intensity levels is of 97.2% and 81.9% respectively, revealing
that the perturbations are clearly perceivable in such cases.
On the contrary, only a 55.6% success rate is achieved for high
intensity levels, close to the optimum value of 50%, which
is equivalent to a random guessing. We verified by an ex-
act binomial test 5 that the achieved success ratio is not sig-
nificantly greater (achieving a p-value of ≈ 0 . 2 ) than the
probability p = 0 . 5 corresponding to a binomial distribution
X ∼ B (n = 72 , p = 0 . 5) , where n is the sample size. This fact in-
dicates that, in such cases, the adversarial examples are not
distinguishable from their corresponding clean audio sam-
ples. It is worth noting that, given our experimental setup, 95%
(ClopperPearson) confidence intervals of the success ratio is
[0 . 90 , 0 . 99] for low intensity audios, [0 . 71 , 0 . 90] for medium in-
tensity audios and [0 . 43 , 0 . 67] for high intensity audios. The
results provided can, therefore, be considered representative
of the human perception of the distortion. 

Consistently with the success rates, the subjects were
highly confident in providing their answers in 90.3% of the
cases in the experiments containing audios with low inten-
sity levels, and 62.5% in the experiments containing audios
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Fig. 6 – Analysis of the naturalness level assigned to the audio samples of the speech command classification task in all the 
experiments, split by sample type (clean or adversarial). The results are computed for all the experiments (top left) as well 
as for each intensity level individually: low (top right), medium (bottom left) and high (bottom right). 

Fig. 7 – Success percentages obtained in the ABX test (top) 
and confidence levels of the answers in the test (bottom), 
both computed independently for each intensity level. 
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ith medium intensity levels. Contrarily, only in 9.7% of the 
nswers the participants reported a high confidence in the 
xperiments containing audios with high intensity levels,
hereas in 72.2% of the answers a low confidence was re- 
orted. 

Overall, these analyses demonstrate that the detectabil- 
ty of the perturbations largely depends on the intensity level 
f the clean audio, being detectable for audios with low and 

edium intensity levels, but not perceivable for audios with a 
igh intensity level. 

It is worth mentioning that, according to the standard ap- 
roach used in previous related works to measure the de- 
ectability of audio adversarial examples, the crafted pertur- 
ations were far below the maximum acceptable distortion.
owever, according to the signal-part-informed approach,
articularly evaluating the dB mean,x (v ) in the background part 
f the signal, the distortion exceeded the threshold for a large 
ercentage of samples. Thus, the results obtained in this sec- 
ion reinforce our proposal about the need to employ more 
igorous approaches in order to measure and set a threshold 

n the distortion produced by the adversarial perturbations in 

 more representative way. 
We encourage the reader to listen to some of the adversar- 

al examples generated, to empirically assess the perceptual 
istortion of adversarial perturbations, as well as to compare 
he distortion levels obtained using the standard approach 
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with those obtained using the detailed signal-part-informed
approach, to verify that the latter is clearly more correlated
with the human judgment.6 

6. Conclusions 

In this paper we have addressed the measurement of the per-
ceptual distortion of audio adversarial examples, which re-
mains a challenging task despite being a fundamental con-
dition for effective adversarial attacks. For this purpose, we
have performed an analysis of the human perception of audio
adversarial perturbations for speech command classification
tasks, and this analysis has been used to assess whether the
distortion metrics employed in the literature correlate with
the human judgment. 

We have found out that, while the distortion levels of our
perturbations are acceptable according to the standard eval-
uation approaches employed by convention, the same pertur-
bations were highly detectable and judged as artificial by hu-
man subjects. For this reason, we have proposed the use of a
more rigorous framework to measure the distortion in a more
comprehensive way, based on a differential analysis in the vo-
cal and background parts of the audio signals, which provide
a more realistic evaluation of the perceptual distortion. Our
experiments with single-class universal perturbations for a set
of varied commands also demonstrate that there exist differ-
ences regarding the effectiveness of the attacks, related to the
relative distortion, and how the perceptual distortion of the
perturbations changes depending on the intensity levels of
the audio signal in which it is injected. 

These results highlight the lack of audio metrics capable of
modeling the human perception in a realistic and representa-
tive way, and, as a consequence, stress the need to include
human evaluation as a necessary step for validating meth-
ods used to generate adversarial perturbation in the audio do-
main. We hope that future works could advance in this direc-
tion in order to fairly evaluate the risk that adversarial exam-
ples suppose. 

As future research, we intend to extend the analysis and
methodologies considered in this paper for the evaluation of
the perceptual distortion to more complex tasks, such as au-
tomatic speech recognition, which can lead to a more com-
prehensive and uniform framework for the measurement of
the perceptual distortion in the audio domain. Although the
proposed evaluation framework can be applied to such audio
problems, further research may be needed to validate the fea-
sibility of these strategies for these problems, or to develop
more particular and suitable frameworks. 

In addition, we believe that the findings reported in this
paper can be used to generate more imperceptible attacks,
for instance, by considering different distortion metrics dur-
ing the optimization of the adversarial perturbations, with
the objective of minimizing the introduced perceptual dis-
tortion in the clean samples. Similarly, finding optimization
strategies which are capable of integrating complex models
6 https://vadel.github.io/adversarialDistortion/ 
AdversarialPerturbations.html . 
of the human hearing system, such as psychoacoustic mod-
els, to generate universal perturbations is an interesting re-
search line. Whereas such strategies have been investigated
in recent works to generate individual perturbations, it is an
open question whether they can be applied to generate more
imperceptible universal perturbations, which we hope future
work will explore. Nevertheless, to make advances in the field
of robust speech recognition, different types of perturbations
and attack strategies need to be considered, and it may not be
possible, effective or efficient in all cases to make use of such
models to generate adversarial perturbations. Therefore, in-
dependently of the particular method employed to minimize
the distortion during the generation of audio adversarial per-
turbations, it is necessary to stress the relevance of employ-
ing solid approaches to evaluate the distortion introduced to
the inputs in order to promote a more rigorous an realistic re-
search in this field. 

Finally, although our analysis, and most of the analysis
conducted on the use of adversarial perturbations for audio
tasks, is based on perturbations that are obtained as an addi-
tive transformation of the signal, other types of perturbations
(e.g., convolutions) are worth investigating, in search of more
effective or more efficient attack approaches. 
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