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Abstract: Proton exchange membrane (PEM) fuel cell has recently attracted broad attention from many
researchers due to its cleanliness, high efficiency and soundless operation. The obtention of high-
performance output characteristics is required to overcome the market restrictions of the PEMFC
technologies. Therefore, the main aim of this work is to maintain the system operating point at an ad-
equate and efficient power stage with high-performance tracking. To this end, a model predictive
control (MPC) based on a global minimum cost function for a two-step horizon was designed and im-
plemented in a boost converter integrated with a fuel cell system. An experimental comparative
study has been investigated between the MPC and a PI controller to reveal the merits of the proposed
technique. Comparative results have indicated that a reduction of 15.65% and 86.9%, respectively,
in the overshoot and response time could be achieved using the suggested control structure.

Keywords: proton exchange membrane; proton electrolyte membrane; PEM; fuel cell; PEMFC; power
electronic converter; DC–DC boost converter; model predictive control; MPC

1. Introduction

Due to its abundance in the universe, hydrogen has become one of the most important
fuels for energy production. Hydrogen represents up to more than 75% of all normal
matter mass, and it accounts for over 90% of all atoms on earth [1]; it could be produced
by either simple methods, such as the electrolysis of water, or industrial methods using
steam reforming. The production cost of hydrogen is expected to fall by 50% by the middle
of this century, and that could pave the way for more sustainable sources of energy [2].
The latter has encouraged thousands of scientists and researchers to pursue research
in hydrogen cells.

A proton exchange membrane fuel cell (PEMFC), which uses hydrogen as the main fuel,
has recently attracted great attention due to its cleanliness, high efficiency, high power
density and quiet operation [3]. It can be used for a wide range of applications, including
automotive, stationary and portable power supplies [4–7]. For most of those applica-
tions, the PEMFC is usually used in conjunction with a DC–DC power converter that
generates highly regulated DC voltage for end-use. Therefore, the control design plays
the main role in a PEMFC power system, not only for performance improvement reasons
but also for safety operation.

During the last few years, many control algorithms have been designed for PEMFC
power systems; the pros and cons of the recently reported ones are listed in Table 1. Hence,
linear proportional integral (PI), proportional derivative (PD) and proportional integral
derivative (PID) have been, respectively, used by various research groups/researchers [8–10],
to keep the PEMFC operating at an appropriate power point. Although these controllers
are especially sensitive when they face a large load variation, results showed a gradual

Mathematics 2021, 9, 1158. https://doi.org/10.3390/math9111158 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5804-7982
https://orcid.org/0000-0001-9791-2476
https://orcid.org/0000-0002-4430-8088
https://orcid.org/0000-0003-2639-9016
https://www.mdpi.com/article/10.3390/math9111158?type=check_update&version=1
https://doi.org/10.3390/math9111158
https://doi.org/10.3390/math9111158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9111158
https://www.mdpi.com/journal/mathematics


Mathematics 2021, 9, 1158 2 of 17

and smooth rise to the desired operating power point with an acceptable tracking perfor-
mance. To increase the robustness of the PID and obtain a better dynamic performance,
various research groups/researchers [11] have applied a fractional order proportional
integral derivative (FOPID) controller to a DC–DC four-switch buck-boost (FSBB) converter
used in a PEMFC power system. The obtained results have shown that the proposed
method achieved better performance in comparison with the integer-order and Two-
Zero/Three-Pole (TZTP) controller. Hence, an overall efficiency of 92%, more than the one
obtained with TZTP, can be retained using the FOPID. The performances of the PID have
also been improved by various research groups/researchers [12] via the application of the
slap swarm algorithm (PID-SSA). Comparative results with other methods, such as incre-
mental resistance algorithm (IRA), mine-blast algorithm (MBA), and grey wolf optimizer
(GWM), have indicated better performance of the proposed PID-SSA in terms of efficiency
and reliability. However, despite the massive work done on improving the performance
of the PID, it is still sensitive to cope with the non-linearity of the power converter, which
leads many researchers to focus on the non-linear algorithms.

Various research groups/researchers [13] have proposed fuzzy logic control (FLC)
to overcome the drawbacks of the conventional P&O, where the results have indicated a
chattering reduction of 78.6% and an improvement of 63% in the settling time. To improve
the performance of the FLC, various research groups/researchers [14] have proposed
particle swarm optimization (FLC-PSO). Comparative results with the FLC have demon-
strated the effectiveness of the FLC-PSO in reducing the overshoot from 65.833% to 63.115%
while ensuring high tracking efficiency (99.39%). However, despite the reduction of 2%,
an overshoot up to more than 63% is still undesirable. Reddy and Sudhakar [15] optimized
the FLC via an adaptive neuro-fuzzy inference system (ANFIS). Simulation and experimen-
tal results have indicated that an increase of 1.95% in the average DC link and a reduction
of 17.74% in the average time taken to reach the operating power point can be achieved
using the proposed ANFIS algorithm.

The artificial neural networks and meta-heuristic algorithms have also been used by vari-
ous research groups/researchers [16–19]. Hence, in comparison with FLC, efficiency improve-
ments and a faster response of 45% are obtained by various research groups/researchers [16]
via the application of the neural network algorithm (NNA). The latter was also proposed
by [17] to overcome the drawbacks of the P&O. The obtained results showed that a reduc-
tion of 86% and 74%, respectively, in power oscillations and settling time can be achieved.
In [18], a genetic algorithm (GA) was used to improve the power quality of the PV generator.
Results have demonstrated that in comparison with the conventional P&O and the incre-
mental conductance (IC), the proposed GA can achieve a reduction of 97% in the oscillations
of output power. Khanam et al. [19] made a comparative study among ant colony opti-
mization (ACO), particle swarm optimization (PSO), differential evolution (DE) and P&O.
Results have demonstrated the effectiveness of the ACO in terms of convergence time
over the other proposed methods. Hence, in comparison with P&O, a reduction of 90.61%
and 5.13% are, respectively, obtained via the application of ACO and PSO.

The application of the sliding mode control (SMC) for the PEMFC system was pro-
posed by various research groups/researchers [3,20,21]. To counteract the chattering
phenomenon of the SMC, integral fast terminal sliding mode control (IFTSMC), back-
stepping sliding mode control (BSMC), high-order sliding mode based on twisting (TA),
super-twisting (STA), prescribed convergence law (PCL) and quasi continue (QC) have
been, respectively, proposed by [21–26]. Results have demonstrated that high chattering
reductions such as 84% and 91% via the application of the QC and STA can be achieved
using the proposed algorithms.
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Table 1. Summary of the recently reported approaches used for the PEMFC power system.

Reference Year Controller Converter Features Drawbacks

Ref. [8]
Ref. [9]
Ref. [10]

2017
2014
2020

PI
PD
PID

Boost converter
-

Buck-boost
converter

- Less energy consumption.
- Simplicity of implementation
- Frequently used in the industry.
- Low computational requirements.

- Sensitive against large load variation.
- Inappropriate control parameters leads
to the system instability.
- Not proper for non-linear systems.
- Parameters setting is difficult.

Ref. [11] 2020 FOPID FSBB
- High robustness in comparison
with PID.
- Less energy consumption.

- Complex implementation.
- Abundant parameters are required to
be adjusted.

Ref. [12] 2021 SSA-PID Boost converter
- Reasonable execution time.
- Good convergence acceleration.
- Few parameters tuning.

- Suffers from premature convergence.
- Unsuccessful to achieve the near-global
solution.

Ref. [13] 2017 FLC Boost converter
- Uses simple mathematics.
- Simplicity of rules modifications.
- Simplicity of implementation.

- Stability is not guaranteed.
- The accuracy is not guaranteed since
the outputs are perceived as a guess.
- Necessity of human expertise.

Ref. [14] 2019 FLC-PSO Boost converter - Easy to implement.
- Few parameters to adjust.

- High implementation cost.
- complex calculation.
- Needs memory to update velocity.

Ref. [15] 2019 ANFIS Boost converter

- Capability of adaptation.
- Expert knowledge is not required.
- High convergence speed
and tracking accuracy in comparison
with FLC.

- Requires large data for training
and learning.
- Abundant parameters are required to
be adjusted.
- High computational cost.

Ref. [16]
Ref. [17]

2018
2018 NNA Interleaved boost

Boost converter

- Similar to human reasoning.
- No exact model is required
- Possibility application for feed
forward control.

- Needs an expert for a good initialization.
- Stability is not guaranteed.
- Abundant parameters are required to
be adjusted.

Ref. [18] 2018 GA Boost converter

- Easy to understand.
- Effective for noisy environments.
- Works well for mixed
discrete/continuous problem.
- Supports multi-objective
optimization.

- Sometimes inappropriate for real-time
applications.
- Needs an expert for the implementation.
- The objective function is hard to design.
- Computationally expensive.

Ref. [19] 2019
ACO
PSO
DE

Boost converter
- High convergence speed.
- High tracking accuracy.
- High efficiency.

- Complex calculation.
- High implementation cost.
- Optimization process is lengthy.

Ref. [3]
Ref. [20]
Ref. [21]

2017
2019
2019

SMC Boost converter

- High robustness.
- Simple structure.
- Easy parameter tuning.
- Wide operation range.

- Excessive chattering effect.
- Considerable energy consumption.
- Lack of robustness during
the reaching phase.

Ref. [22] 2021 IFTSMC Boost converter

- Robust to parameter uncertainties
and disturbances.
- Finite time convergence.
- Capable of reducing the chattering.
- High convergence speed.

- Requires the knowledge of the system
boundary uncertainties.
- Problem of intrinsic singularity.
- Convergence problem may occur when
the states are away from the equilibrium.

Ref. [23] 2018 BSMC Boost converter

- Stability is guaranteed.
- Popular technique for high-order
systems.
- Uncertainties could be handled.

- Complex design.
- Requires an exact mathematical model.
- Sensitive to parameter variation.
- Requires the measures of all the states.

Ref. [24]
Ref. [21]
Ref. [25]
Ref. [26]

2020
2019
2020
2020

TA
STA
PCL
QC

Boost converter

- Capability of chattering reduction.
- Robust to uncertainties
and disturbances.
- Finite time convergence.

- Complex design.
- Complex stability demonstration.
- Accuracy is not guaranteed.
- Unable to use for first-order systems.

Ref. [27]
Ref. [28,29]

Ref. [30]
Ref. [31]
Ref. [32]

2019
2019
2020
2020
2020

MPC

Buck converter
3-phase inverter

Two-level inverter
Boost converter

High-gain converter

- Offers multiple variables control.
- Prediction on upcoming disturbance.
-Upcoming control actions prediction.
- Peak load shifting capability.
- Enhanced energy saving.
- Enhanced transient response: peak,
rise and settling time reduction.

- Plant model is required.
- Requires specific background
knowledge of the method.
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Due to their significant benefits, predictive control methods have attracted the inten-
tion of many researches and they have been implemented in a wide range of applications,
including power converters, actuator faults, pharmaceuticals industry, chemical processes,
and induction motors [27–38]. Hence, in comparison with the conventional P&O algorithm,
an improvement of 10.52% in the overall PV system efficiency was achieved by various
research groups/researchers [27] via the application of the MPC technique.

In [28], an overall efficiency of 90% for a grid connected system was achieved by ap-
plying the MPC for a three-phase inverter, where the efficiency was approximately 98%
for the maximum power point tracking (MPPT) control method and 92% for the inverter.
A Lyapunov-function-based MPC was proposed by authors of [29], where the results
showed that the proposed control strategy maintains the active and reactive powers close
to the desired values with an error of less than 3%. Various research groups/researchers [30]
have proposed a combination of MPC with an extended Kalman filter (EKF) for a two-level
inverter. High performances in terms of robustness and potential noise rejection were
obtained. Successful MPP tracking with an efficiency of up to 98% was obtained by various
research groups/researchers [31]. In the latter, the MPC is proposed for a boost converter
used in a renewable energy system. Various research groups/researchers [32] have com-
pared the MPC with different algorithms, such as IncCond, hill climbing, PSO, and FLC.
Except for the design complexity, results have demonstrated that the proposed MPC has
succeeded over the other methods in terms of efficiency, steady-state oscillation, tracking
speed and accuracy.

In this work, an MPC based on a global minimum cost function for a two-step horizon
was designed and implemented in a boost converter integrated with a Heliocentric hy-
ExpertTM fuel cell FC-50W. The aim is to maintain the system operating point at an adequate
and efficient power stage with high-performance tracking. First, the experimental system,
including the fuel cell, the dSPACE, the converter and the programmable load, is explained.
Then, the proposed method is designed for a two-step horizon, wherein the cost function
is adopted based on the stack current. For investigation, the effectiveness of the proposed
method is revealed through a comparison study with a PI controller, which is tuned through
the Ziegler–Nichols technique. Finally, some conclusions and perspectives are pointed out.

2. Materials and Methods
2.1. Hardware Description

A general overview of the different components used on the experimental test bench
is provided in Figure 1, and the main components are described as follows:

• PEM FC50: The technical data of the PEM FC50 are described in Table 2. The fuel
stack is supplied by hydrogen through a metal hydride storage cylinder 60 SL, which
is connected to the manometer that decreases the pressure. The stack contains 10 cells
stacked in series and generates a rated power of 40 W.

• DC–DC boost converter: The power converter used in the test bench is constructed
by the TEP-192-Research Group of Huelva University. Unlike the commercial con-
verters, this boost converter offers a PWM control input where the controller could
be designed via the user. It is characterized by an IGBT transistor with an input
switching frequency equal to 20 kHz; the maximum input voltage and current are,
respectively, equal to 60 V and 30 A with an accuracy of 0.5%; while, the maximum
output voltage and current are around 250 V and 30 A.

• MicroLabBox dSPACE DS1202: The dSPACE-DS1202 is an effective device for fast
control systems due to its high performance when turning the theoretical design into a
real-time experiment. The device includes more than 100 various type of input/output
channels with a dual core processor and independent co-processor that manages
host PC communication. By adding the library of real-time implementation (RTI) in
a Simulink–Matlab interface, it allows the use of the basic toolboxes in order to config-
ure all the I/O sensors as well as the PWM signal required for controlling the system.
Then, a generated C code will be sent to the MicroLabBox by the RTI when compiling
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the Simulink model. Hence, a PWM pulse is produced using the converted code given
by the MicroLabBox. The control desk software is used for creating an interface with
the graphical user interface (GUI), which allows to visualize and observe the online
evolution of the obtained signals with clear figures that make the online evaluation
of the different parameter changes easier and faster.

• Electronic programmable load: The characteristics of the electronic programmable
load used in this work are described in Table 3. The experimental tests were carried
out under an abrupt change of the load resistance through an electronic programmable
load BK 8500B. The latter is used instead of the classical manual sliding resistive
load since the programmable device cloud provides considerable advantages such
as generating a list of resistance waveform sequence with speed, accurate values
and high resolution in real-time.

Figure 1. Overview of the experimental test bench.

Table 2. PEMFC technical data.

PEMFC Features Electrical Features

Type Heliocentris FC50 Operating Voltage 2.5–10 V
Cooling fans Operating Current 0–10 A

Fuel H2 Rated power 40 W
Dimensions 12 × 10.3 × 13.5 cm Maximum power 50 W

Weight 1150 g Open-circuit voltage 9 V

Hydrogen Flowmeter Hydrogen 15 bar Kit

Precision 0.8% of the the quantified
value Inlet pressure 1–15 bar

Measuring range 10–1000 sml/min Outlet pressure 0.6 ∓ 0.2 bar

Thermal Hydrogen 200 bar kit

Operating temperature 15–50 ºC H2 inlet pressure 200 bar
Max. start temperature 45 ºC H2 outlet pressure 1–15 bar

Fuel characteristics Hydrogen Detector

Recommended purity 5.0 (99.999%) Type of sensor H2 4%
Hydrogen input pressure 0.4–8 bar (5.8–11.6 psig) Measuring principle 3 electrode sensor

Hydrogen consumption Max. 700 sml/min (at 0 ºC,
1013 bar) Range 0–4%
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Table 3. Characteristics the electronic programmable load BK 8500B.

Parameter Range Accuracy Resolution

CR Mode Regulation
Input current ≥ FS 10%

Input Voltage ≥ FS 10%

0.1–10 Ω ∓ (1% + 0.3% FS) 0.001 Ω

10–99 Ω ∓ (1% + 0.3% FS) 0.01 Ω

100–999 Ω ∓ (1% + 0.3% FS) 0.1 Ω

1 k–4 kΩ ∓ (1% + 0.8% FS) 1 Ω

CV Mode Regulation 0.1–18 V ∓ (0.05% + 0.02% FS) 1 mV

0.1–120 V ∓ (0.05% + 0.025% FS) 10 mV

CC Mode Regulation 0–3 A ∓ (0.1% + 0.1% FS) 0.1 mA

0–30 A ∓ (0.2% + 0.15% FS) 1 mA

Current Measurement 0–3 A ∓ (0.1% + 0.1% FS) 0.1 mA

0–30 A ∓ (0.2% + 0.15% FS) 1 mA

Voltage Measurement 0–18 V ∓ (0.02% + 0.02% FS) 1 mV

0–120 V ∓ (0.05% + 0.025% FS) 10 mV

2.2. Control Design

The main feature of the model predictive control (MPC) is its capability to predict
the future behavior of the desired control variables [39]. In other words, it is an optimization
technique that computes the next control action by minimizing the cost function, which
is the difference between the predicted variable and the specified reference. The MPC is
also characterized by a straight-forward implementation, it has no issue with the stability,
and the quality of the response depends on the control design. In MPC, the future predicted
state path is called the prediction horizon. The latter is the number of samples Ts over which
a prediction of the plant states/outputs is evaluated. According to Figure 2, the future
values of output variables at the samples k + 1, k + 2, etc., are predicted using the dynamic
model of the process (X(k)) and current measurements. Furthermore, according to this
figure, it is noticed that the control actions are based on both future predictions and current
measurements. The manipulated control variables u(k) at the k-th sampling time are
computed such that the objective function J is minimized. These control variables will be
implemented as a control signal to the process.

Figure 2. Basic concept for model predictive control (MPC).

Figure 3 illustrates the scheme of the proposed MPC approach for power electronic
converters, where iL(k), Vstack(k) and Vout(k) are the measured variables used in the model
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to compute the predictions iL(k + 1) of the controlled variables. The model used for the pre-
diction is a discrete time state-space model, which can provide predictive capability
for the MPC controller [40]. The design of the MPC control for a high step-up power
electronic converter (boost converter) can be done using the following steps [39]:

• Modeling the power converter and determining its state-space model.
• Obtaining the discrete time state-space model that allows the prediction of the fu-

ture behavior.
• Defining the cost function J that represents the desired behavior of the system.
• Determining the MPC control law that minimizes the cost function J.

Figure 3. MPC scheme for power electronic converters.

According to [3], the equations of the boost converter for the open and close switch
case are, respectively, given in Equations (1)–(5), where the state-space model is presented
in Equation (5).

dIL
dt

(t) =
1
L
(Vstack(t)−Vout(t)) (1)

dVout

dt
(t) =

1
C
(IL(t)−Vout(t)) (2)

dIL
dt

(t) =
1
L
(Vstack(t)) (3)

dVout(t)
dt

=
1

RC
(−Vout(t)) (4)

[
dIL(t)

dt
dVout(t)

dt

]
=

[
0 −(1−D(t))

L
(1−D(t))

C − 1
RC

]
.
[

IL(t)
Vout(t)

]
+

[ 1
L
0

]
Vstack(t) (5)

According to [27,30,31], and by using the sampling time Ts, the discretized equations
of the boost converter can be given as (6) and (7) for the open switch case, and (8) and (9)
for the close switch case.

Open switch:

IL(k + 1) = IL(k)−
Ts

L
Vout(k) +

Ts

L
Vstack(k) (6)
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Vout(k + 1) = Vout(k)−
Ts

RC
Vout(k) +

Ts

C
IL(k) (7)

Close switch:
IL(k + 1) = IL(k) +

Ts

L
Vstack(k) (8)

Vout(k + 1) = Vout(k)−
Ts

RC
Vout(k) (9)

Using the descritized equations given in Equations (6)–(9), or by using the the for-
ward Euler approximation [41] given in Equation (10), the discrete-time state-space model
of the boost converter can be written as Equation (11):

x(k + 1) = (I + Ts A)x(k) + TsBd(k) (10)

[
IL(k + 1)

Vout(k + 1)

]
=

[
1 −(1− D(k)) Ts

L
(1− D(k)) Ts

C 1− Ts
RC

][
IL(k)

Vout(k)

]
+

[ Ts
L
0

]
Vstack(k) (11)

The control objective is to make the stack current IL(k) as close as possible to the refer-
ence current Ire f (k). This could be obtained by minimizing the cost function J, which is
defined as the error between the predicted value and the desired reference value. The ex-
pression of the cost function can be written as Equation (12). Hence, if the used prediction
horizon is equal to one h = 1, then once the values of the controlled variables are obtained
at the next sample time and for both switching states, s = 0 and s = 1, the cost function J
will be evaluated. The block scheme of the proposed MPC technique is shown in Figure 4.

Jn=0,1
s=n = |IL,s=n(k+1) − Ire f | (12)

Figure 4. Block scheme of the proposed MPC technique.
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By evaluating the cost function J for both states, it selects the one at which the next
predicted value is closer to the value of the desired reference current ire f . It should
be noted that the MPC approach has the capability of predicting the next n-samples
of the prediction horizon, which means that the cost function at the future n-step can be
calculated. The discrete-time system that provides the n-samples of the future prediction
horizon can be written as Equations (13) and (14).

IL(k + n + 1) = IL(k + n)− (1− D(k + n))
Ts

L
Vout(k + n) +

Ts

L
Vstack(k + n) (13)

Vout(k + n + 1) = (1− D(k + n))
Ts

C
IL(k + n) + (1− Ts

RC
)Vout(k + n) (14)

In this work, an MPC with a prediction horizon equal to two h = 2 is used. To this end,
the calculation of the controlled variable IL at time tk+2 is necessary. However, this could be
an easy task by using Equations (13) and (14). The process of the proposed MPC technique
with a prediction horizon h = 2 is depicted in Figure 5. According to this figure, to calculate
the value of the predicted controlled variable IL(k+2), the calculation of the system variables
at time tk+1 is required.

Figure 5. Schematic diagram of the proposed MPC process with a 2-step prediction horizon.

Figure 6 illustrates the operating principle of the proposed MPC technique. Hence,
by observing the system behavior for the future two-step horizon and by evaluating the cost
function at each step, it will be possible to select the best switching state at which the cost
function has the lowest value. All the possible sets of switching states that could be
evaluated for h = 2 are given in Equation (15).

S(k+1) = 0 and S(k+2) = 0

S(k+1) = 0 and S(k+2) = 1

S(k+1) = 1 and S(k+2) = 0

S(k+1) = 1 and S(k+2) = 1

(15)
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Figure 6. Schematic diagram of the proposed MPC operating principle.

It should be noted that there are two strategies that could be used to calculate the pre-
dicted state X(k + 2):

• The first one is to evaluate the cost function at each step (sampling time). For in-
stance, by taking the example presented in Figure 6 where the performed switching
actions are indicated with the bold black line; at first, when the sampling time is tk,
the controller has to choose between S1 and S0, where the choice is based on the most
preferred switching condition that leads to minimizing the cost function J. Since S1
is selected in this example, it means that the predicted controlled variable IL,s=1(k+1)
that corresponds to S1 is the closest to the desired reference Ire f . Following the same
criterion for the two-step horizon at which the sampling time is tk+1, the controller
will decide between S11 and S10. Since S10 is selected, then, the cost function J10 is
performed and considered as the cost function of the previous step at the sampling
time tk+1. However, despite the simplicity of this strategy, it may fall in a local lower
cost function since the cost functions J01 and J11 that, respectively, correspond to
the switching states S01 and S11, were not evaluated.

• The second strategy is to evaluate the cost functions of all the sets of switching states
given in Equation (15), and finally, the lowest cost function is performed. The per-
formed switching actions using this method are indicated with the bold blue line.
The main feature of this method is its capability to calculate the global lower cost
function for the two-step horizon. Therefore, a new cost function for the two-step
prediction horizon is defined in Equation (16). The latter is composed of the error at
the sampling time tk+1 plus the error at the sampling time tk+2.

Jn=0,1&m=0,1
s=m = |IL,s=m(k+2) − Ire f |+ Js=n (16)

The evaluation of the four cost functions J00, J01, J10 and J11, for the two-step horizon
is presented in Figure 7. The combination with the lower cost function value for the two-
step prediction horizon is represented by the black color, where faded colors were used
for the combinations with higher cost function values. According to these combinations,
if the first method of prediction is used, the preferred cost function belongs to Combination
3 since S1 < S0 and S10 < S11. If we only consider the evaluation of the cost function
for the one-step (Equation (12)), the preferred cost function belongs to Combination 3 or
4 since S1 < S0. If we only consider the evaluation of the cost function for the two-step
(Jm=0,1

s=m ), the preferred cost function belongs to Combination 2 since S01 is lower than S00, S10
and S11. However, although this evaluation gives the same result as the proposed method
for the example presented in Figure 7, it may not be the most appropriate for other examples.
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Therefore, a combined cost function involving the two steps, as defined in Equation (16),
can provide the best switching condition for tracking the desired reference.

Figure 7. Schematic diagram of the switching condition combinations for the 2-step horizon and the evaluation of the
respective cost functions.

2.3. Performance Metrics Used

To achieve the best performance, the gains of the controller were obtained through
the minimization of the integral of the absolute error (IAE), which is given in Equation (17).
This helps to adjust the controller parameters through a decrement in the tracking error
in real-time.

IAE =
N

∑
i=1
|ei|∆t (17)

where ei is the tracking error and N is an observation data length time for the calculation.
Since the main objective of this research is the tracking performance enhancement,

not only was the IAE calculated but other types of metrics were also used to gather
accurate results. These were the root-mean-square-error (RMSE) and the relative root-
mean-square (RRMSE), which are reflected in Equations (18) and (19), respectively, where
ri is the reference along the i-th sample.

RMSE =

√√√√ 1
N

N

∑
i=1

(ei)2 (18)

RRMSE =

√√√√ N

∑
i=1

(ei)2/
N

∑
i=1

(ri)× 100% (19)

3. Results

Figure 8 tackles the response behavior of the stack current signal under the applica-
tion of the proposed MPC method and the classical PI control. To test the performance
of the controllers and their capability of counteracting the disturbance, load resistance
variation is applied at two times instances t1 = 25 s and t2 = 45 s. These times correspond,
respectively, to resistance rising from 20 to 50 Ω and decreasing from 50 to 20 Ω. The coeffi-
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cient parameters of the PI controller were tuned through the minimization of IAE, and they
are equal to 0.02 and 10 for the proportional and integral terms, respectively.

Figure 8. (a) Stack current signal; (b) stack current behavior when increasing the load resistance; (c) stack current behavior
when decreasing the load resistance; (d) steady state.

It is clear from the first load variation, depicted in Figure 8b, that the MPC approach
converges rapidly to the reference current with a response time equal to 1.3 s against
an important response value for the classical PI controller, which is around 6.8 s. It
should be noted that 0.12 s of the response time was caused by the delay time, which
occurred at the moment in which the load variation was applied. Hence, the proposed
MPC controller achieved a significant improvement in the convergence speed of almost
81%. On the other hand, the MPC presents a reduced undershoot equal to 1.73 A compared
with the conventional PI method, which is around 2.1 A. Consequently, the proposed
algorithm can effectively reduce the undershoot with an enhancement of 17.61% compared
with the PI controller.

The impact of reducing the load resistance on the response of the stack current is illus-
trated through Figure 8c. It is obviously clear from this figure that the PI controller takes a
significant time to reach the current reference with a response time equal to 7.25 s, while
only 0.51 s is obtained via the proposed MPC, which effectively outperforms the conver-
gence speed of the PI with 92.9%. According to this figure, it is noticed that the current
signal controlled via the proposed MPC made a delay time of 0.02 s. However, this
time is almost negligible, and it has no negative effect on the response time. Regarding
the overshoots, a significant one of almost 3.65 A is shown on the response behavior
of the conventional PI, while an improvement of around 13.69% on the overshoot is ob-
tained using the proposed MPC method.

Figure 9a–c illustrates, respectively, the real-time response of the PEMFC voltage,
power and duty cycle delivered by the classical PI and the proposed MPC approach.
The slight variation between the experimental test of the PI and MPC that appeared in a,b



Mathematics 2021, 9, 1158 13 of 17

and c occurred due to the effect of the operating temperature on the membrane since it
is difficult to carry out two experiments at exactly the same temperature. It should be
noted that this variation did not appear in the graphs of the stack current (Figure 8) since
it is a controlled signal where both of the algorithms drive the stack current to operate at
the same reference current Ire f .

Figure 9. (a) PEMFC stack voltage signal; (b) PEMFC stack power; (c) duty cycle signal.

According to Figure 9a, the effectiveness of the proposed MPC algorithm over the con-
ventional PI appears to reduce the overshoots and undershoots of the stack voltage. Thus,
the PI controller presents a voltage value around 1.11 V and 1.33 V for the first and the sec-
ond load variation, respectively. On the other hand, the proposed MPC shows values
of 0.98 V and 1.46 V for the same load variations.

From Figure 9b, it can be seen that the proposed MPC method effectively tracks
the desired output power of the PEMFC with an almost negligible ripple around the steady
state. Moreover, in comparison with the conventional PI controller, the results show that
a reduction of 4.18 W and 3.73 W in the undershoot and overshoot are obtained for the first
and the second load variation, respectively.

The real-time responses of the output current, voltage and power for the DC–DC boost
converter are depicted in Figure 10a–c. The latter clearly shows the impact of the variable
load resistance on the response behavior of the output current and the output voltage
for the two controllers. Furthermore, the slow converging and high overshoots of the PI
controller in comparison with the proposed MPC are clearly presented in this figure.



Mathematics 2021, 9, 1158 14 of 17

Figure 10. (a) DC–DC output current signal; (b) DC–DC output voltage signal; (c) DC–DC output power signal.

Finally, it is clearly demonstrated in the above results that the proposed MPC has
succeeded in overcoming the drawbacks of the conventional PI controller. Hence, a robust
and fast response, as well as better dynamic behavior when facing large load variation, are
obtained via the application of the proposed MPC method.

Performance Metrics Comparison

To obtain high control performance, the error signal should be reduced so as to im-
prove the tracking accuracy. Consequently, the IAE was minimized by tuning the cor-
responding gains, and therefore, the metrics in terms of error were determined during
a period of two load variations. Table 4 enlists the obtained values of the IAE, RMSE
and RRMSE for both controllers.

According to this table, the IAE revealed an expected improvement for the proposed
MPC where the conventional PI showed a value of 4.48 times higher than the proposed
controller. Regarding the RMSE, the reflection is similar for the same period. The MPC
yields an RMSE of 0.2068, whereas the PI downgraded the performance to 0.5085, which
implies a difference of 2.46 times. Finally, the RRMSE endures the previous trend where
the proposed MPC overcame the comparisons. Hence, the PI showed a value of 12.7%,
whereas the MPC diminished up to 5.17%, resembled by a 2.45-times difference.

Table 4. Comparison of the different metrics.

IAE RMSE RRMSE (%)

MPC PI MPC PI MPC PI
2.0607 9.2310 0.2068 0.5085 5.1705 12.7115
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4. Conclusions

The purpose of this paper was to improve the performance of the PEM fuel cell system
via the application of a predictive module controller (MPC). The proposed controller scheme
was designed based on a global minimum cost function for a two-step horizon in order
to enhance the efficiency and the convergence tracking speed of the power delivered
by the PEM fuel cell system.

A real-time implementation of the MPC method compared with a PI controller was
realized to reveal the advantages of this proposed approach, where the robustness was
tested via the application of large load variation through an advanced electronic variable
resistance device.

Experimental results have clearly demonstrated the effectiveness of the proposed
MPC method over the conventional PI controller. The latter showed an undershoot of 2.1 A,
an overshoot of 3.65 A, and a response time of 6.8 and 7.25 s, respectively, for the first
and second load variation. On the other hand, results of the proposed MPC showed
an undershoot of 1.73 A, an overshoot of 3.15 A, and a response time of 1.3 and 0.51 s,
respectively, for the same first and second load variation applied to the PI controller. Hence,
the controlled stack current signal has achieved significant improvement in the conver-
gence speed with an average value of 86.9% and a reduced overshoot around 15.65%.
Therefore, high tracking accuracy with a fast and robust response as well as global stability
of the closed-loop system are obtained via the application of the proposed MPC method.

Finally, the experimental results obtained in this work are quite encouraging, and they
pave the way for further advanced research in the performance improvement of PEM fuel
cell systems.
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Abbreviations
The following abbreviations are used in this manuscript:

PEM polymer electrolyte membrane
PEMFC polymer electrolyte membrane fuel cell
MPC model predictive control
PI proportional-integral
PD proportional derivative
PID proportional integral derivative
FOPID fractional order PID
FSBB four-switch buck-boost
TZTP two-zero/three-pole
PID-SSA PID based slap swarm algorithm
IRA incremental resistance algorithm
MBA mine-blast algorithm
GWM grey wolf optimizer
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P&O perturb and observe
FLC fuzzy logic control
FLC-PSO FLC based on particle swarm optimization
ANFIS adaptive neuro-fuzzy inference system
NNA neural network algorithm
GA genetic algorithm
IC incremental conductance
PSO particle swarm optimization
ACO ant colony optimization
DE differential evolution
SMC sliding mode control
IFTSMC integral fast terminal sliding mode control
BSMC back-stepping sliding mode control
TA twisting algorithm
STA super-twisting algorithm
PCL prescribed convergence law
QC quasi-continuous algorithm
MPPT maximum power point tracking
EKF extended Kalman filter
PWM pulse width modulation
IAE integral of the absolute error
RMSE root mean square error
RRMSE relative root mean square error
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