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Abstract: In this study, transparent oxyfluoride glass-ceramics (GCs) with NaLaF4 nanocrystals
(NCs) were prepared by the sol–gel method for the first time. Three different molar ratios of
La(CH3COO)3/Na(CH3COO) were used to obtain the GCs, which were sintered at 450, 550 and
650 ◦C for 1 min. X-ray diffraction (XRD) was employed to follow the evolution of the xerogel
during the heat treatments and to study crystal growth for the three temperatures. In all cases, the
LaF3 crystalline phase was present, but crystallization of NaLaF4 was only promoted at 650 ◦C.
Thermogravimetric and thermodifferential analysis (TGA-DTA) and Fourier transform infrared
spectroscopy (FTIR) were used to analyze the crystallization process. High-resolution transmission
electron microscopy (HRTEM) was employed to confirm NaLaF4 crystallization and determine the
size distribution. The incorporation of Nd3+ ion into NaLaF4 and LaF3 nanocrystals was confirmed by
site-selective emission and excitation spectra. The Nd3+ emission intensities in both phases depend
not only on the NaLaF4/LaF3 ratio but also on their emission efficiencies.

Keywords: oxyfluoride glass-ceramics (GCs); sol–gel; Nd3+; NaLaF4; LaF3 site-selective emission;
luminescence; optical properties; glass crystallization

1. Introduction

In recent years, transparent oxyfluoride glass-ceramics have attracted considerable
attention due to their widespread application in scintillators, phosphors, photovoltaics and
solid-state lasers [1–3]. In particular, rare-earth (RE) fluoride crystals are excellent hosts for
up- and down-conversion luminescence associated with their unique characteristics, such
as their low lattice phonon energy (lower than 500 cm−1) [4,5]. The short lifetime of the
SiO2 glass matrix, due to its high phonon energy, is compensated with the incorporation of
the RE-fluoride nanocrystals. The final material combines the excellent mechanical and
chemical properties of the glass with the luminescence of the crystalline phases [6].

The NaLnF4 (Ln = Y, Gd, La and Lu) series acts as a host material with excellent physi-
cal and chemical stability, as well as low phonon energy. Moreover, the multisite nature
of the crystalline structure imparts high efficiency in light emission [7,8]. In comparison
with conventional lanthanides, such as Y or Gd, NaLaF4 has the lowest phonon energy
(290 cm−1) with a potentially higher up-conversion efficiency due to its non-radiation tran-
sitions [9]. It is a difficult challenge to obtain a single NaLaF4 nanocrystal phase because
the strong La3+–F− ionic bond favors precipitation of LaF3 phase, which has significantly
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lower free energy of formation than NaLaF4 [9–11]. A mechanism to improve the crys-
tallization of NaLaF4 involves doping with rare-earth ions, which helps to stabilize the
alkaline fluorides when its crystallization competes with that of other phases, such as
LaF3 [12,13].

Recently, transparent glass-ceramics containing NaLaF4 as the only crystalline phase
enclosed in a SiO2-enriched barrier have been synthesized by a conventional melting
technique at 1600 ◦C, using LaF3 as a precursor. However, very low crystalline frac-
tions, around 5 wt.%, were reported to maintain the transparency after crystallization
at 520 ◦C [14,15]. Controllable LaF3/NaLaF4 crystallization by melt-quenching has also
been reported recently; however, increasing the content of NaLaF4 active phase was not
achieved [16,17].

Alternative techniques have been proposed to avoid the drawbacks of melt-quenching,
which involve reducing high-temperature fluoride loss. The sol–gel method (SG), based
on the hydrolysis and polycondensation of metal salts or metal alkoxide precursors in a
solvent, is a cheap and low-temperature technique that allows fine control of the chemical
composition of glass-ceramic materials. SG also permits the incorporation of optical active
particles or molecules into the glass matrix [18]. An important contribution regarding the
preparation of sol–gel oxyfluoride glass-ceramics was made by Fujihara et al. by employing
trifluoracetic acid (TFA) as a precursor of oxyfluoride GCs for the first time [19]. This
process allows for the formation of fluoride nanocrystals instead of a random dispersion
of La3+ ions in the SiO2 matrix. To date, sol–gel preparation of different oxyfluoride
glass-ceramics doped with REs has proven suitable for controlling the synthesis and
crystallization processes [19–22], with promising optical results [23–27] and unique location
of the RE dopants in the fluoride host. However, the preparation of oxyfluoride of NaLaF4
by an SG route has not yet been reported. The main objective of this work is to gain a first
insight into the synthesis and optical properties of NaLaF4 with a view to its application
in the field of photonics. To this end, SiO2-NaLaF4 GCs doped with Nd3+ were prepared
using different heat treatment conditions and varying the precursor ratios. Site-selective
emission and excitation spectra allow the emission of Nd3+ in the crystalline phases to
be identified.

2. Materials and Methods
2.1. Synthesis of 80SiO2-20NaLaF4/LaF3 Sols

Three sols containing 20 mol% of NaLaF4 and LaF3 as active phases were prepared
using tetraethyl orthosilicate (TEOS), ethanol (EtOH), acidulated water H2O (0.1M HCl),
trifluoracetic acid (TFA), lanthanum acetate La(CH3COO·nH2O)3 and Na(CH3COO) as
precursors. First, a Na/La solution was prepared mixing the corresponding precursors
in molar ratios 1La(CH3COO)3:XNa(CH3COO):5EtOH:4H2O:5TFA (X = 0.95, 1.2 and 1.5)
followed by stirring for 2 h at 40 ◦C in a glycerin bath under refrigeration. Separately,
the SiO2 sols were prepared by mixing 3.5EtOH:1TEOS:2H2O (0.1M HCl) with constant
stirring for 2 h at room temperature.

Finally, three different SiO2-NaLaF4/LaF3 sols were prepared depending on the em-
ployed Na(CH3COO)/La(CH3COO)3 molar ratio; the labels employed for the different
samples are listed in Table 1.

Table 1. Identification of SiO2-NaLaF4/LaF3 sols depending on the molar ratio of Na/La precur-
sors used.

SiO2-NaLaF4/LaF3 sols Na(CH3COO):La(CH3COO)3

Sol-0.95 0.95:1
Sol-1.2 1.2:1
Sol-1.5 1.5:1

All SiO2-NaLaF4/LaF3 sols were doped with 0.1 mol% of Nd3+ by incorporating
neodymium acetate in the Na/La solutions.
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2.2. Preparation of Doped and Undoped 80SiO2-20(NaLaF4/LaF3) Glass-Ceramics

Bulk samples were prepared using the undoped Sol-0.95 sol and 0.1Nd3+-doped Sol-
0.95, Sol-1.2 and Sol-1.5 sols. All the sols were first filtered into a Petri dish, sealed with
parafilm, and then dried at 50 ◦C for 4–7 days to obtain the xerogel.

Self-supported layers of composition 80SiO2-20NaLaF4/LaF3 glass-ceramics (labeled
GC-0.95) were obtained from the Sol-0.95 xerogel after heat treatment at different tem-
peratures from 450 to 650 ◦C for 1 min using a heating rate of 10ºC/min. Subsequently,
0.1Nd3+-doped 80SiO2-20NaLaF4/LaF3 glass-ceramics, labelled as Nd-GC-0.95, Nd-GC-1.2
and Nd-GC-1.5, were obtained from Sol-0.5, Sol-1.2 and Sol-1.5 xerogels, respectively, after
heat treatment at 650 ◦C for 1 min using a heating rate of 10 ◦C/min. Both xerogels and the
glass-ceramics were then milled for further characterization.

2.3. Characterization

Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were
performed using an SDT Q600-TA instrument to study the thermal transformation of the
powder on the Sol-0.95 xerogel. The sample was heated from 25 ◦C to 800 ◦C with a heating
rate of 10 ◦C/min under an inert atmosphere (Ar).

X-ray diffraction (XRD) was employed to identify the crystalline phases of the powders
for Nd-GC-0.95, Nd-GC-1.2 and Nd-GC-1.5 samples using an X-ray powder diffractometer
(D8 advance, Bruker) working with CuKα1 radiation (λ = 1.5406 Å). The diffraction patterns
were acquired in the range 10◦ ≤ 2θ ≤ 70◦. The size of the nanocrystals (NCs) was estimated
from the Scherrer equation:

Dhkl =
kλ√

β2 − b2cosθ
(1)

where Dhkl is the calculated crystallite size, k = 0.94 for spherical crystals, θ is the Bragg
angle and β is the full width at half maximum intensity of the peak (FWHM). To determine
the weight ratios of NaLaF4 and LaF3 phases, Rietveld refinement was performed with the
Fullprof program using interpolation of points to model the background. [28].

Fourier transform infrared spectra (FTIR) was recorded employing a Perkin-Elmer 100
FT-IR instrument in the range 4000–450 cm−1, with a resolution of 4 cm−1.The microstruc-
ture of the GC-0.95, GC-1.2 and GC-1.5 samples was analyzed with a high-resolution
transmission electron microscope (HRTEM, JOEL JEM-2100F, Akishima, Tokyo, Japan)
operating at 200 kV. The sample was prepared by dispersing a fine powder of sample in
ethanol and then depositing some drops onto the carbon-enhanced copper grid.

2.4. Optical Characterization

Site-selective steady-state emission and excitation spectra were recorded by exciting
the samples with a continuous wave (cw) Ti:sapphire ring laser (0.4 cm−1 linewidth) in the
770–920 nm spectral range. The fluorescence was analyzed with a 0.25 m monochromator;
the signal was detected by an extended IR Hamamatsu H10330A-75 photomultiplier and
amplified by a standard lock-in technique.

3. Results and Discussion

Transparent, homogeneous, and stable sols were obtained from Sol-0.95, Sol-1.2 and
Sol-1.5 sols. After drying at 50 ◦C, xerogels of 20 mm in diameter were successfully obtained
(Figure 1a). All samples are transparent to view when evaluated on paper, indicating high
quality; suitable long-term stability was also observed.

The thermal behavior of Sol-0.95 xerogel was evaluated by DTA-TGA (Figure 1b)
under an Ar atmosphere at a heating rate of 10 ◦C/min. In general, a two-stage thermal
degradation profile was observed in the temperature range between (1) 80–110 ◦C and
(2) 300 ◦C. The first interval corresponds with an endothermic peak and a weight loss of
30% attributable to desorption of water and solvent removal. The second degradation step,
accompanied by an exothermic peak around 300 ◦C and a weight loss of 40%, is related to
the chemical decomposition and further crystallization of fluorides. The decomposition
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of La(CF3COO)3 (obtained during the chemical reaction between lanthanum(III) acetate
and TFA) occurred together with the crystallization of LaF3, as previously reported [27].
Although crystallization does not generally involve mass loss, in the case of GCs prepared
by SG, the chemical reactions between the TFA and lanthanide salts occurred concomi-
tantly with crystallization, such that significant mass loss also took place. In this case,
crystallization of NaLaF4 and LaF3 occurred simultaneously because no additional peaks
were observed in the plot.

The crystallization process differs from that reported for GCs prepared by melt-
quenching. De Pablos-Martín et al. [14] and Elts et al. [17] reported the crystallization of
pure NaLaF4 during the heat treatment of a melt-quenched glass, finding an exothermic
peak between 600 and 700 ◦C [14,17]. These authors attributed the high crystallization
temperature of the NaLaF4 to the increase in viscosity during glass formation, inhibiting
atom diffusion and crystal growth and producing a resistance to crystallization. On
synthesis by SG, this drawback did not occur, and fluoride crystallization took place at the
same time as the precursor reaction.
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Figure 1. (a) Photograph of dried Sol-0.95 xerogel at 50 ◦C/24 h and (b) DTA and TGA in argon atmosphere of Sol-0.95
xerogel sample.

Figure 2a shows the XRD patterns for 0.1Nd3+ GC-0.95 bulk samples treated at 450, 550,
and 650 ◦C for 1 min. Peaks associated with hexagonal NaLaF4 phase (JCPDS-file number
50-0155) and LaF3 (JCPDS-file number 32-0483) were clearly identified at all treatment
temperatures. However, at 450 ◦C, a preferential crystallization of LaF3 phase was observed,
confirming that precipitation of LaF3 requires a lower free energy of formation compared to
NaLaF4. Upon increasing temperature, NaLaF4 crystallization was promoted and, at 650 ◦C,
the maximum NaLaF4 crystal fraction was reached. The LaF3 and NaLaF4 nanocrystal sizes
for GC-0.95 samples were both around 35 nm, as estimated using the Scherrer equation
(Equation (1)). It was not possible to determine the nanocrystal size of NaLaF4 at 450
and 550 ◦C due to the low resolution of the diffraction peaks. However, the NaLaF4
nanocrystals appeared to be larger than those of LaF3. XRD confirms that crystallization is
achieved in the sol–gel materials with only one minute of heat treatment. It was previously
reported that longer treatment times do not augment the crystal fraction [29]. Further
characterization was performed on GCs treated at 650 ◦C for 1min.
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1 min and (c) average crystallite size calculated with the Scherrer equation for SG-0.95/1.2/1.5 treated at 650 ◦C for 1 min.

The effect of the Na/La molar ratio was analyzed by XRD (Figure 2b), employing
Rietveld refinement to calculate the weight percent fraction of crystallized NaLaF4 and
LaF3 (Table 2). Additional peaks of NaF were observed for all samples. In addition to NaF,
an unidentified phase was observed in both GC-1.2 and GC-1.5; the intensity of the most
intense peak of the additional phase (I) as a percentage of the most intense peak of the
pattern (Imax) was ~5% in both cases. An optimum Na/La molar ratio of the crystalline
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phase was found, which corresponds to the maximum formation of NaLaF4 (46.2 wt.%)
compared to LaF3 (53.8 wt%). Although an increase in NaLaF4 content is expected when
increasing the Na/La ratio, this was not observed (Table 2). XRD (Figure 2b) showed that
the decrease in NaLaF4 content was accompanied with a higher content of an unidentified
phase, likely associated with the remaining sodium.

Table 2. Relation of NaLaF4 and LaF3 phases in 80SiO2-20NaLaF4/LaF3 GCs treated at 650 ◦C for
1 min estimated by Rietveld refinement (normalized to 100%).

GC Sample
wt%

NaLaF4 LaF3

GC-0.95 46.2 53.8
GC-1.2 31.6 68.4
GC-1.5 40.2 59.8

On the other hand, crystallite sizes for GCs obtained for different NaCH3COO/
LaCH3COO3 molar ratios, also calculated with the Scherrer equation, indicated that, up
to a ratio of NaCH3COO/LaCH3COO3 = 1.2, the size remained constant, with greater
crystallites observed for NaLaF4 in comparison to LaF3 (Figure 2c). Upon increasing the
La concentration to 59.8 wt% (GC-1.5), the crystallites of both phases grew to the range
45–48 nm. The calculated crystallite sizes are significantly greater than those reported by
the melt-quenching technique (smaller than 25 nm) but are similar in size to the nanoparti-
cles obtained outside the glass matrix in aqueous media [9,14].

The FTIR spectra of Sol-0.95 xerogel and GC-0.95 glass-ceramic treated at 650 ◦C for 1
min are shown in Figure 3. The spectrum of the xerogel shows absorption bands at 460, 800
and 1080 cm−1 associated with stretching, bending and out-of-plane Si–O–Si bonds of SiO2,
respectively [28,29]. Some bands corresponding to TFA and acetate precursors appeared
between 1400 and 1750 cm−1. In addition, a broad band from 2800 to 3760 cm−1 was
present in the xerogel spectrum, associated with O–H and C–H groups of the ethanol and
water formed during condensation [30]. The peaks associated with TFA, acetate and water
disappeared in the spectrum of the GC-0.9 glass-ceramic, and the bands corresponding to
Si–O–Si increased in intensity. The band at 460 cm−1, observed in the spectrum of the GC-
0.95 glass-ceramic, is attributed to vibration of fluorine in the crystal lattice, consistent with
crystallization. A broad band between 900 and 1400 cm−1, associated with tetrafluoride
compounds, provides further evidence of NaLaF4 crystallization [31,32].

Microstructural characterization of the GC-0.9, GC-1.2 and GC-1.5 glass-ceramics heat
treated at 650 ◦C for 1 min was performed by HRTEM (Figure 4a–c). Spherical nanoparticles
of various sizes were identified, indicating their different nature. The average nanoparticle
size is shown in Figure 4d, where an increase in average size with increasing Na/La
molar ratio may be observed, in accordance with the crystallite sizes determined by XRD.
Although the size of the crystals is similar to that described for particles synthesized in
aqueous media, the spherical shape of the SG-synthesized particles differs to the tubular
shape reported previously in the literature.

The observed d-spacings of 0.31 and 0.32 nm are consistent with the lattice spacing
of planes (101) in hexagonal NaLaF4 (JCP 00-20-0155) and (111) in LaF3 (JCP 0-050-0483),
respectively.
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Figure 4. HRTEM of samples (a) GC-0.95, (b) GC-1.2 and (c) GC-1.5 treated at 650 ◦C for 1 min; (d) particle size distribution
for samples shown in Figure 4a–c; (e) HRTEM micrograph of GC-0.95 and transmission electron micrograph of (f) lattice
plane of NaLaF4 in the (101) direction with a distance of 0.31nm and (g) lattice plane of LaF3 in the (011) direction with a
distance of 0.32 nm.

The presence of Nd3+-doped LaF3 and NaLaF4 nanocrystals was also confirmed by
site-selective laser spectroscopy. The 4F3/2→4I11/2 laser transition was measured at room
temperature for the GC-0.95/1.2/1.5 samples heat treated at 650 ◦C for 1 min by exciting
with a Ti-sapphire laser at different wavelengths in resonance with the 4I9/2→4F5/2,2H9/2
absorption band. As an example, Figure 5 shows the normalized emission spectra for the
GC-0.95 sample obtained under excitation at 786 and 792 nm. These excitation wavelengths
correspond to Nd3+ ions in LaF3 and NaLaF4 crystalline phases, respectively [33,34]. The
spectrum obtained under excitation at 786 nm presents well-resolved peaks at around
1036, 1040, 1047, 1058 and 1063 nm, which is in agreement with the emission of Nd3+

in LaF3 nanocrystals [34]. Under 792 nm excitation, the spectrum shows a main peak at
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around 1055 nm, together with a less intense one at 1049 nm, which corresponds to the
Nd3+ emission in the hexagonal NaLaF4 crystalline phase. In addition to this emission,
weak peaks at 1036 and 1040 nm were also observed due to the spectral overlapping of the
spectra of both crystalline phases.
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Figure 5. Room-temperature-normalized emission spectra of the 4F3/2→4I11/2 laser transition ob-
tained under excitation at 786 (black) and 792 nm (red) for the GC-0.95 sample doped with 0.1 mol%
of Nd3+.

The emission spectra are similar for the three GC samples, with the only difference
being the relative intensity of the Nd3+ emission in the two crystalline phases, which
depends on the molar relation of both phases. Assuming that 786 and 792 nm correspond
to excitations of Nd3+ ions in the LaF3 and NaLaF4 nanocrystals, respectively, the highest
intensity for the Nd3+ emission in LaF3 corresponds to the GC-1.2 sample in agreement
with the higher LaF3 content of this sample. Figure 6 shows the emission spectra for the
three GC samples.

These results are confirmed by the excitation spectra corresponding to the 4I9/2→4F5/2,
4F3/2 transitions obtained by collecting the luminescence at two different wavelengths.
Figure 7 shows, as an example, the normalized excitation spectra of the GC-1.2 sam-
ple performed in the 770–890 nm spectral range on collecting the luminescence at 1040
and 1055 nm (the emission peaks corresponding to Nd3+ emission in LaF3 and NaLaF4
crystalline phases respectively). As observed in the spectrum obtained by collecting the
luminescence at 1040 nm, the 4I9/2→4F5/2 band is composed of several peaks at 786, 790,
792, 796 and 800 nm. The peaks at 786, 790, 796 and 800 nm correspond to Nd3+ in the
LaF3 nanocrystals, whereas the one at 792 nm can be attributed to Nd3+ in the NaLaF4
crystalline phase. Moreover, the 4I9/2→4F3/2 transition presents two peaks at 859 and
862 nm, corresponding to Nd3+ emission in LaF3 nanocrystals, together with another peak
at 864.5 nm attributable to NaLaF4 nanocrystals. The presence of excitation peaks from
both crystalline phases is due to the spectral overlapping of both emissions at 1040 nm
(Figures 5 and 6). The excitation spectrum obtained by collecting the luminescence at
1055 nm presents two main peaks for the 4I9/2→4F5/2 band at 792 and 801 nm, which
correspond to Nd3+ in the NaLaF4 crystalline phase. The 4I9/2→4F3/2 transition shows
the two expected Stark components of the 4F3/2 level in a well-defined crystal field site.
However, the high-energy component superimposes the peak at 859 nm corresponding to
the LaF3 nanocrystals.

It is worth noting that despite the lower crystalline fraction of the tetrafluoride phase
compared to that of LaF3, Nd3+ emission is much more efficient in NaLaF4 due to its higher
emission cross-section [35,36].
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Figure 6. Room-temperature emission spectra of the 4F3/2→4I11/2 laser transition obtained under
excitation at 786 (black) and 792 nm (red) for (a) GC-0.95, (b) GC-1.2, and (c) GC-1.5 samples doped
with 0.1 mol% of Nd3+.
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4. Conclusions

Nd3+-doped SiO2-NaLaF4 GCs with the presence of LaF3 were successfully obtained
for the first time by sol–gel after heat treatment in the range 450–650 ◦C for 1 min. Lower
temperatures did not produce significant quantities of NaLaF4, but LaF3 crystallized for all
heat treatment temperatures. Both phases also appeared for different relations of precursors;
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however, deficiency of Na in the precursors generated the maximum percentage of NaLaF4
in the final GCs. ATD, FTIR and XRD confirmed the presence of LaF3 and NaLaF4 phases
in the GCs, and the HRTEM images confirm the crystal sizes obtained by XRD, which
tended to increase upon increasing the Na/La molar ratio in the precursors.

As in other GCs prepared by SG, the chemical reactions between the TFA and lan-
thanide salts occurred concomitantly with crystallization. Moreover, NaLaF4 and LaF3
crystallization took place at the same time as the precursor reaction. Site-selective exci-
tation and emission spectra performed for the 4I9/2↔4F3/2/4F5/2 transitions confirm the
presence of Nd3+ ions inside both LaF3 and NaLaF4 crystalline phases for all GC samples.
Notwithstanding the more abundant LaF3 phase in the GC samples, the most efficient
emission corresponds to Nd3+ located in the NaLaF4 crystalline phase. The luminescence
results also show that the highest Nd3+ emission intensity in the LaF3 phase corresponds
to the GC-1.2 sample, in accordance with its higher LaF3 content.
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