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Science is not about building a body of known “fact”. It is a method for asking

awkward questions and subjecting them to a reality-check, thus avoiding the

human tendency to believe whatever makes us feel good.

Terry Pratchett
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Abstract

This PhD thesis makes contributions to support mobility and fault tolerance

in a publish/subscribe system. Two protocols are proposed in order to sup-

port mobility of all devices in the system, including inside the event notifica-

tion service. The protocols are designed with the idea that any change due to

mobility is completely beyond our control and ability to predict. Moreover,

the proposed solutions do not need to know neither the amount of nodes in

the system nor their identities before starting, the system is able to adapt to

new devices or disconnections and is able to keep operating correctly in a par-

titioned network. To do so we extend a previously proposed framework called

Phoenix that already supported client mobility. Both protocols use a leader

election mechanism to create a communication tree in a highly dynamic en-

vironment, and use a characteristic of that algorithm to detect topology

changes and migrate nodes accordingly. Thus, our first approach was devel-

oped with the idea of making the fewest amount of changes to Phoenix while

trying to maintain its main benefits. The resulting solution uses a recursive

approach to notify migrations and update routing tables where each broker

is responsible only for the subscribers that are directly connected to it. The

second protocol, that we have decided to call MFT-PubSub, improves on the

first one, introducing timestamps and consequently reducing the amount of

messages to reconfigure the routing tables after a migration. Additionally,

the message size is also reduced, and we also prevent possible inconsistencies

on partitioned networks. Finally, we prove the validity of MFT-PubSub by

simulating it with the Castalia framework for wireless sensor networks and

compare it to AODV in terms of performance.
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Chapter 1. Introduction

Distributed systems are commonplace nowadays. Everyone has used the

Internet. We use it every day for a multitude of purposes, from navigating

the World Wide Web to using messaging applications on our phones. We

also create smaller networks in our homes with smart devices that have the

ability to turn lights on or off with a spoken command. The ability to do

all that is thanks to devices that are configured in such a way that they

are able to intercommunicate using standard protocols. Moreover, for this

communication, they can use wired or wireless connections to talk to each

other. These collections of devices that work towards a common goal are

what we call distributed systems.

There are several ways to classify these systems, we could organize them

by how they see the passage of time. In a synchronous system all the devices

that form part of it are completely synchronized. If the clock in one device

perceives 10 seconds passing by, then we can assure that the clocks in the

other ones have also measured 10 seconds. This is often used to simplify

algorithms since it makes them easier to understand. But if we look at how

computing really behaves we see that it often does so asynchronously. The

clock in a device might be running slightly faster than the others, or a device

might get stuck waiting for a process to end. The asynchronous model is

closer to a real system than the synchronous one. Thought often, a barrier

or other kind of synchronization mechanism can be used in order to force an

asynchronous system to behave in the way of a synchronous one.

Another classification is by how tightly coupled the devices in a dis-

tributed network are. The client/server model that is most commonly found

is a tightly coupled distributed system. A peer to peer network on the other

hand is a loosely coupled system. The coupling of a system informs us about

the difficulty of changing a device. The less coupled the system, the less a

device needs to know about the other devices it interacts with.
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1.1. Introduction to Publish/Subscribe systems

1.1 Introduction to Publish/Subscribe systems

The publish/subscribe communication paradigm provides a mechanism for

anonymous and loosely coupled communications between event producers

and interested subscribers [24]. It was initially used in large scale systems e.g.,

the Internet [14, 16, 42]. Thought it can be seen as a messaging solution for

separate devices connected to a network it can also be used to better structure

the communication between any group of processes. It has also been used in

wireless sensor networks [7, 11, 51] and the Internet of Things [2, 28, 29].

The main idea behind the publish/subscribe paradigm is to separate the

devices that generate content from those that consume it. The content gen-

erated can range from a temperature reading of a sensor to an access notifi-

cation on a web page, or even the distribution of a live television broadcast

through the internet. In a publish/subscribe system the processes that gen-

erate and send content to the network are called the publishers, and those

that consume the events are called subscribers. The decoupling is complete

between both such processes. A publisher does not need to know which is

the subscriber that is receiving the information it is sending to, nor do both

of them need to be communicating at the same time in order for the message

exchange to happen. There is an event notification service that receives the

messages that the publisher sends and routes them to the subscribers that

are interested in that information. In Figure 1.1 we see a representation of

how such a service would look like. The notification service handles the event

delivery without the publishers or subscribers knowing how the message has

been routed inside it.

The event notification services are usually classified into two main groups,

depending on how a subscriber specifies the events they are interested in.

Topic-based publish/subscribe: The oldest scheme. As its name implies

it is based on topics. The publisher will send events belonging to a

topic defined using keywords. The subscriber will register an interest in

different topics and the event notification service will route those events

matching the specified topic to the subscriber. It was created following

3



Chapter 1. Introduction

Event notification
service

p1

p2

p3

s1

s2

s3

Figure 1.1: Representation of a publish/subscribe sytem.

the notion of groups, and a participant producing or consuming event

from the same topic could be defined as belonging to the same group.

An example of this would be for the subscriber to ask to receive all the

events relating to a temperature sensor.

Content-based publish/subscribe: The topic based schema can be a lit-

tle constraining in some cases. In content-based publish/subscribe

events are not classified simply by a topic name. Event categoriza-

tion is done using the content of the event itself. Subscribers, instead

of showing interest in a set of topics, define the events they are inter-

ested in using a filter. This filter is usually defined using a subscription

language specific to the implementation, SQL or XPath could be used

as this subscription language. The event notification service would then

try to test a publication according to the filters it has from the sub-

scribers, if any filter matches the publication, it is routed towards that

subscriber.

1.1.1 Event notification service

The event notification service is the most complex part of a publish/subscribe

system. It is responsible for correctly delivering the messages to the sub-

scribers. The devices that constitute the event notification service are called

4



1.2. Mobility in distributed systems

brokers. A publish/subscribe system can be centralized or distributed de-

pending on the amount of brokers it has.

A centralized topology is much simpler to develop and deploy, since they

only require a single broker to constitute the event notification service. But

this simplicity also comes with some drawbacks, for example they lack scal-

ability due to the bottleneck a single device can cause. Moreover, a single

broker redirecting all messages is also a single point of failure.

A distributed event notification service will have an arbitrary number of

brokers working in concert to deliver messages. This distribution of brokers

greatly enhances the resilience of the service. If one broker fails, a new

route can be found through the remaining brokers, moreover the load of each

broker is reduced since there is not a single one redirecting all the messages.

One of the complications is that in a distributed publish/subscribe service

the brokers have to organize themselves in order to be able to communicate

correctly. This organization can be made by the creation of a communication

tree, ring or any other mechanism commonly used for distributed systems.

1.2 Mobility in distributed systems

Mobility in a distributed system is quite a difficult topic. A network com-

posed of fully mobile devices, each working independently and sometimes

communicating with each other, without a central connection point is diffi-

cult to handle.

What we call mobility is not simply the physical change in location of a

device. Let us consider a set of people with mobile phones, while these people

are walking on the streets they are changing their physical location. However,

they are probably connected to the same antenna that has a range of up to

several kilometers. Even though they are moving, the logical topology of

the network does not change. Consequently, what we refer to as mobility is

related more to the change in network topology, which is usually caused by

physical mobility.

The algorithms designed for distributed systems have been commonly

5



Chapter 1. Introduction

developed with the idea of having static devices with known locations and

with stable links, unless there is a failure. The addition of mobility causes

the creation of more asynchronicity in the network [3].

Some algorithms try to solve the mobility problem by adding some kind of

synchronicity mechanism. For example, a moving node could handle mobility

gracefully by notifying the system of its movement before losing connection,

sometimes even providing its future location. This way, the system can

prepare for the migration of that node and no links are broken suddenly.

Another approach is to be more reactive. They do not keep track of the

location, or their links to neighboring devices, and do not notify of a change

before it occurs.

However, note that as mentioned before, from the point of view of a device

connected to a network, the disconnection caused by physical mobility is

indifferent to a link failure. A link that was correctly working for two devices

to communicate has dropped unexpectedly. If we are able to handle link

failures we are already a step closer to supporting device mobility.

For this reason in this dissertation we consider mobility as something

completely beyond our control. Devices will be physically moving and links

will fail, causing a change in the logical topology of the network. It is the

responsibility of the proposed protocol to correctly handle these cases by

detecting a broken link and trying to find an alternate route, or waiting until

the connection is available again.

1.3 Objective

The main objective of this dissertation is to create a protocol that handles

full mobility of all participants in a publish/subscribe system. This means

that not only publishers and subscribers are able to join or leave the system,

brokers are also allowed this ability. Consequently, one of the main challenges

is maintaining the communication topology between nodes. Furthermore,

any change in the logical topology will also cause a change in the routing

tables the brokers use to efficiently deliver messages. The objective is to

6



1.4. Organization of this dissertation

design a system in which the publish/subscribe service is not interrupted

due to the mobility of one of its devices. The service should keep working

for the clients that are connected, and the mobility support has to be as

transparent as possible for the clients.

This thesis analyzes the proposals in the literature that try to solve mobil-

ity, first only taking into account client mobility and latter also the mobility

inside the event notification service. This thesis follows a proposal made in

the research group for client mobility and extends it to also support broker

mobility, while trying to maintain its main features.

1.4 Organization of this dissertation

This dissertation is organized as follows. This Chapter introduces some basic

concepts and motivates the research work. Chapter 2 introduces the related

work in the area and defines some ground rules for the research which has

been carried out, explaining the previous work it is based on and defining

the system model we use. Chapter 3 describes a first approach to the objec-

tive of a mobile publish/subscribe system. Chapter 4 introduces the main

contribution of this dissertation that improves the protocol described on the

previous chapter. Finally, Chapter 5 summarizes the results obtained and

proposes possible future research lines.
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Chapter 2. Background and related work

2.1 Related work

Most of the research done in publish/subscribe systems is centered on im-

proving current solutions, be it the reliability of delivering an event [23],

improving the performance or increasing the fault tolerance [56]. Some work

tries to improve on a typical tree structure for event delivery. In [20] authors

propose the creation of a tree for each topic a subscriber can subscribe to

with the publisher being the root of the tree for optimal message delivery.

In some cases, a communication tree might be too weak against node fail-

ure, the reconfiguration of the tree might be too costly. The authors of [43]

propose using gossiping so that the system can keep working while the tree

is being repaired due to a node failure.

Another topic is the support for mobility. Though there are various pro-

tocols for publish/subscribe middleware, few of them support mobility [48].

In [32], authors mention some possible solutions for mobility support in pub-

lish/subscribe. Strategies are suggested to extend existing solutions, both

in centralized and decentralized networks. In the case of a mobile network,

nodes will need to adapt to disconnections, partitions of the network or the

merging of those partitions, and the storage of undelivered events. In [31],

Huang and Garcia-Molina study the tree construction problem in wireless

ad hoc publish/subscribe systems. They define the optimality of a pub-

lish/subscribe tree by developing a metric to evaluate its efficiency, and pro-

pose a greedy algorithm that builds the publish/subscribe tree in a fully dis-

tributed fashion. Several works also address the different factors that affect

the performance of a system with mobile nodes [9, 39], mostly based on mo-

bile clients. A proposal to create self-configurable and adaptive peer-to-peer

architecture for implementing content-based publish/subscribe communica-

tions on top of structured overlay networks has also been made [5, 4].

Another possible solution to support mobility is the use of information-

centric networks [21, 53, 55]. Since this kind of network supports mobility

natively, authors propose exploiting this property instead of using traditional

TCP/IP communications.

10



2.1. Related work

Internet of Things (IoT) and Wireless Sensor Networks (WSN) also con-

stitute an area that is still pushing research towards new topics [35, 54].

A number of recent contributions have also been made in the area [13, 27,

22, 33]. Most of the approaches support mobility through the inclusion of

gateway nodes and the separation of the publish/subscribe system from the

WSN. The gateway nodes receive messages from any number of sensors and

act as a publisher to the publish/subscribe system. This allows for the sen-

sors to be mobile devices that send events to the gateway they are connected

to, but does not fully compose a mobile publish/subscribe system.

In this section we will explore several solutions for mobility support in a

publish/subscribe system. We have separated them into two groups: those

that support publisher or subscriber mobility and those that support mobility

inside the event delivery notification service.

2.1.1 Mobile clients

Most of the research carried out to support the mobility of nodes in a pub-

lish/subscribe system has been done with regard to supporting mobile clients,

be they publishers or subscribers.

The first system to support client mobility was called JEDI [19], named

for Java Event-Based Distributed Infrastructure. In JEDI a node must notify

of its intention to migrate to the broker to which it is connected, before the

migration happens. This is done by the use of a moveOut message in which

the subscriber can also specify if the broker should store all events it has

subscribed to that are received while it is disconnected. When the subscriber

connects to another broker it will send a moveIn message that will start the

reconfiguration of the network. The new event dispatcher will exchange the

required information with the old broker for that subscriber, obtaining all

the subscriptions and undelivered messages. The new broker will also need to

communicate with its parents in the topological tree to change the delivery

route for the subscriber.

SIENA [14, 13] was a system developed at the same time as JEDI that

also allowed for client mobility. Similar to JEDI, it also requires explicit
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Chapter 2. Background and related work

moveOut and moveIn messages. The mobility is handled by a mobility ser-

vice that creates proxy nodes in charge of storing events for clients that are

disconnected. SIENA uses flooding, that has been found to be excessive [50],

in order to find the source and destination brokers for the migration of a

subscriber.

The REBECA [37, 38, 25] publish/subscribe system was also extended

to support client mobility. In this case the moving node does not need

to send an explicit moveOut message, a broker will detect when one of its

connected subscribers has disconnected. The broker will then create a virtual

counterpart of the roaming subscriber, and once the client is at its new

location it will be merged with the virtual representation. The migration is

done by the brokers themselves without further interaction by the subscriber.

But due to the nature of its advertisement semantics it does not support

publisher mobility.

Mobile XSiena [45] is a publish/subscribe platform which seeks to extend

the XSiena [34] content-based publish/subscribe system in order to support

user mobility. The key mobility-related features of Mobile XSiena are mo-

bile device integration, seamless networking, reconnection support, location-

based matching, and persistent events. This was later integrated into the

Phoenix framework [44, 46, 47]. Phoenix solves the two tasks that must

occur when a subscriber migrates [32]: updating the routing tables of the

corresponding brokers such that new events are properly routed, and deliv-

ering the events published during the migration. The framework does this in

a communication-efficient manner, i.e., without flooding the network.

MQTT is a commonly used protocol that also has received improvements

in order to support client mobility. Though MQTT offers the support for

subscriber mobility by allowing a subscriber to be connected to a subset

of brokers, creating backups in case of a link failure, it does not allow for

network reconfiguration in the case of a new connection, the subscriber will

have to issue the subscriptions again. In [36] authors extend the protocol

to support publisher mobility, by detecting a disconnection in the publisher

node, and storing undelivered messages while the system is reconfigured.

12



2.1. Related work

This approach guarantees the delivery order of the messages to be the same

as that of the creation.

PSVR [49] is a routing algorithm for a publish/subscribe system in a

WSN. Siegemund et. al. mention the cost of maintaining a communica-

tion overlay in a dynamic environment, that is often really high or is omit-

ted [18, 17], where systems usually recreate the overlay completely. The

proposed algorithm is designed for systems with highly dynamic subscribers

and publishers. The middleware also provides the guaranteed delivery of all

published messages to all subscribers and the correct handling of subscrip-

tions and unsubscriptions.

2.1.2 Mobile brokers

The scenario of mobility inside the event notification service is the most dif-

ficult to handle [30]. In this case the algorithms need to be able to handle

the migration of not only clients but also reconfiguration on the subscrip-

tion delivery path. There are few solutions that support full mobility on

publish/subscribe systems.

In [4] an extension to SIENA is introduced where a self-organizing algo-

rithm executed by brokers will try to optimize message delivery. Mechanisms

are introduced to allow the reconfiguration caused by changes in topology,

mostly to minimize the notification cost, but that could also be a first step

towards supporting mobile nodes. Though the complexity of the algorithm,

together with the need for a human administrator in case of a broker fail-

ure during the topology change procedure, makes it unsuitable for a highly

mobile environment where a broker might start the topology change, but be

disconnected by the time it finishes.

EMMA [41] is an extension to MQTT that not only handles client and

broker migration in a transparent way, it also uses its migration mechanism

in order to optimize QoS. It uses a controller node that is constantly mon-

itoring the network and is informed of any change in device connectivity.

The controller will then try to optimize event delivery and issue migrations

to both clients and brokers to load balance the system. The requirement
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Chapter 2. Background and related work

of a device that needs to know the connectivity of each node in the system

prevent this solution to be used in a fully mobile environment where it might

sometimes be unreachable.

2.2 Model and definitions

In this section we will describe the nomenclature used in the rest of the

dissertation. We have already mentioned that in a publish/subscribe system

we might find two different components. Clients will produce and consume

events while the notification service handles the subscriptions issued by the

clients and assures the correct delivery of events to the interested clients.

We can further divide the clients into two subsets: subscribers that will

register their interests and consume events, and publishers that will produce

those events. We will use s ∈ S to refer to a subscriber belonging to the set

of subscribers S and p ∈ P to refer to a publisher that belongs to the set of

publishers P . Any clients in the system may behave as a subscriber, publisher

or even both at the same time. We will also use the nomenclature f ∈ F

when referring to a filter that belongs to the set of filters F . Subscribers are

able to emit subscriptions by sending the corresponding filter to the broker

they are connected to.

The notification service is composed of a set of brokers which we will call

B and refer to individually as b ∈ B. The brokers will be connected at the

logical level by an acyclic graph or a spanning tree. The brokers are the

ones responsible for storing the subscriptions issued by the subscribers and

routing the published events to the matching subscribers. At any moment

a broker will have a set of neighboring brokers, in the graph, that it can

communicate with. We will refer to this set as Ni for broker bi. A broker

will also be able to communicate with clients that are connected to it. For

this reason we will refer to the set of interfaces, be it other brokers or clients,

that a broker bi can communicate with at any moment as Ii. Each publisher

or subscriber will be connected to just a single broker which will be used

as the entry point to the event notification service. Brokers are able to be

14



2.2. Model and definitions

connected to as many neighbors as they deem necessary. If a device decides

to take on the role of a broker and a subscriber or a publisher, the client role

will be considered to be connected to the broker in the same device. Thereby

allowing the broker role to be connected to different neighboring devices but

with the client connected to a single broker. We will refer to each individual

role taken by a device as a process.

All communications are by point-to-point message passing over FIFO

channels. In a static approach these links will be defined at the creation of

the system and will not change over time. Whereas, if the participants are

mobile, the set of channels linking them, as well as the neighbor set evolves.

For our use there is no need to have previous knowledge of the sets, i.e.,

initially each participant knows only itself, and the number of participants

in each set might change as time passes. This means that sets P , S and B

are dynamic and will change depending on participants joining or leaving the

network.

We represent any message sent by a process in the system with the fol-

lowing tuple:

(message type, payload)

The message type field will inform the receiver of the message how it has to

handle the containing payload. The amount of data in the payload field is

variable and depends on the message type. Each message will also have a

sender and a destination.

A process is able to send a message to any other connected process using

a send() primitive. We will use the following expression to refer to a message

sent to a process reachable by a broker bi:

send(message type, payload) to b ∈ Ii

Whenever a process receives a message it will block the reception of fur-

ther messages until it has processed the contents. These messages will be

stored in a buffer and will not be ignored.

Every subscriber will have a set of active filters that brokers will know of,

we will denote this as Fs ∈ F for subscriber s. The filters have a mechanism
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to test the events propagated through the network to see if they need to be

delivered to the subscriber that issued them.

f(e)→ {TRUE | FALSE}

2.3 Simple Routing

The Simple Routing [6] approach assumes a static system where brokers are

connected in an acyclic graph, and clients are permanently bound to a single

broker. This routing strategy is based on the propagation of subscription

(SUB) and unsubscription (UNS ) messages to all of the brokers in the sys-

tem.

Table 2.1 shows the three types of messages used in the Simple Routing

protocol, for subscribing to a filter, unsubscribing from a filter and publishing

an event respectively.

The routing table Ri at every broker bi contains, for every subscription

in the system, a routing entry (f, z) where f ∈ F and z ∈ Ii, to indicate that

the publication of an event e matching f must either be forwarded towards

broker z (if z ∈ B) or delivered to subscriber z (if z ∈ S). The routing table

is updated each time a subscriber issues a SUB or UNS message.

Lets use the topology found in Figure 2.1 as an example. We have a set of

three brokers B = {b1, b2, b3} and six subscribers S = {s1, s2, s3, s4, s5, s6}.
Each of the subscribers has registered an interest in the following filters:

Fs1 = {f1}, Fs2 = {f1, f2}, Fs3 = {f3}, Fs4 = {f4, f6}, Fs5 = {f1} and

Fs6 = {f6}. Each of the brokers will keep track of the subscriptions of each

subscriber and the interface a message needs to be sent through in the case

Message Payload Client/Broker Meaning
SUB f ∈ F s ∈ S Subscribe s to filter f
UNS f ∈ F s ∈ S Unsubscribe s from filter f
PUB e ∈ E p ∈ P Publish event e

Table 2.1: Simple Routing message description.
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that the filter matches. In the case of b2 receiving an event matching f1 it

will directly deliver it to s2 and send it to b1 so it can be routed towards s1.

b1

b2 b3

s4 s5 s6

s1

s2 s3

Figure 2.1: Sample publish/subscribe topology.

Filter Interface

f1 s1
f1 b2
f1 b3
f2 b2
f3 b3
f4 b2
f6 b3
f6 b3

Table 2.2: Routing table for broker b1 in a simple routing strategy.

In Table 2.2 we show the what the routing table of broker b1 would look

like. As mentioned previously this routing table contains the filters and the

interface to send the event towards in the case that they match. We can

also observe that the last two entries of the table have the same filter and

the same interface. This is used in this example to show the subscriptions

for all subscribers, though in a real implementation those two entries can be

merged into one, optimizing the delivery.
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2.3.1 Routing mechanism

In this section we will describe the routing mechanism used by simple routing.

Algorithm 2.1 shows the code that is executed by every broker in the event

notification service. This mechanism provides optimal routing treating event

delivery as multicast messages. Events are transmitted through a link only

once without duplication and subscribers will receive no duplicate messages.

Using the example in Table 2.2 any event that matches f6 will be routed

towards b3 in a single message and b3 will deliver that event to the subscribers.

1 when receive(SUB, f) from z ∈ Ii do
2 add one (f, z) entry to Ri

3 foreach b ∈ Ni where b 6= z do
4 send(SUB, f) to b

5 when receive(UNS, f) from z ∈ Ii do
6 remove one (f, z) entry from Ri

7 foreach b ∈ Ni where b 6= z do
8 send(UNS, f) to b

9 when receive(PUB, e) from z ∈ Ii do
10 X ← ∅
11 foreach (f, y) ∈ Ri where y /∈ X ∧ y 6= z do
12 if f(e) = true then
13 X ← X ∪ {y}

14 foreach y ∈ X do
15 send(PUB, e) to y

Algorithm 2.1: Simple Routing (code executed by broker bi)

Whenever a broker receives a SUB message it does two tasks, lines 1-4.

First it adds the subscription to the routing table, storing the filter, f , and

the sender z. Then it propagates that message to all the brokers that belong

to the set of neighboring processes, with the exception of the sender of the
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message. This way the subscription message is propagated to all the brokers

in the network and since they are connected through an acyclic tree there

will be a time when the last broker receives this message and has no one else

to send it to. Note that as shown in Table 2.2, the algorithm does not check

for duplicate entries in its routing table. If there already exists an entry

with the same combination of (f, z), this entry will be duplicated. Figure 2.2

shows how a PUB message sent by subscriber s4 reaches all the brokers in

the network and updates the routing tables.

The UNS message, lines 5-8 is handled in a similar way to the SUB

message. In this case, instead of adding the filter to the routing table we

are removing it, since the subscriber has shown its interest in unsubscribing

from the filter. The message is also propagated through the network in the

same manner as the previous one, allowing all the brokers in the network to

remove the subscription. In the case of duplicate entries only one is removed.

Due to the decoupling of elements within the system we do not know which

subscriber issued the subscription. If we were to optimize the routing table

and only store unique combinations of (f, z), we would have a problem at

this point. If we allowed no duplicate entries in the routing table, we would

not know how many subscribers were interested in a given filter, and when

we receive this UNS message we would not be able to remove it from the

table. Allowing the duplicate entries, we can remove one of the entries at this

time and we will still be able to keep routing messages to other subscribers

interested in the same filter and connected through the same interface.

Lines 9-15 show the processing of the last message, PUB. The handling

of this message is based on iterating through the routing table of the broker

to find filters that match the event and their corresponding interfaces. Line

11 ensures that once an interface has been chosen it will not be tested again,

since the message will already be propagated through that link. This interface

matching is what makes it possible for simple routing to optimally deliver

events. Publications towards different subscribers will be sent in a single

message until they reach another broker that will have separate interface

entries for the same filter. Figure 2.3 shows the path a PUB message sent
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b1

b2 b3

s4 s5 s6

s1

s2 s3

Filter Interface

f1 s1
f1 b2
f1 b3
f2 b2
f3 b3
f4 b2
f6 b3
f6 b3
f7 b2

Figure 2.2: Subscriber s4 issues a new subscription and the SUB message is
propagated. Routing table of broker b1 with the new entry on the right.

by a publisher connected to b2 would follow. When this message reaches first

b2, and later b1, in both cases the broker resends it to two of its interfaces,

the first one is the subscriber that is directly connected to it, and the second

is another broker.

b1

b2 b3

s4 s5 s6

s1

s2 s3

p1

Filter Interface

f1 s1
f1 b2
f1 b3
f2 b2
f3 b3
f4 b2
f6 b3
f6 b3
f7 b2

Figure 2.3: Publisher p1 sends a PUB message that matches filter f1. Routing
table of broker b2 with the new entry on the right.
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2.4 Phoenix

Phoenix [47] is an extension to the Simple Routing protocol that is able to

seamlessly handle subscriber migrations. Publisher migration is inherently

supported by Simple Routing. In simple routing brokers do not care where a

published event is coming from. At any step of the delivery process the broker

will check its routing table and send the message towards the interfaces that

are related to the matching filters. For this reason and since brokers do not

store any information on publishers, a publisher can easily change the router

it is connected to.

Any kind of temporary loss of connectivity can be characterized as client

mobility, not only those caused by physical mobility. A link failure in a

static system could also be described as mobility, if the process, instead of

recovering the lost link tries to reconnect to the network using a secondary

link. When this happens the newly connected process might have to be

informed of this change. But client mobility often happens as a result of signal

degradation on a wireless network due to the increase of distance between

two connected devices. In those cases the client is temporarily disconnected

to the network in a manner that it is not able to fully predict and does not

know when it will be connected again. In the case of subscriber mobility, a

subscriber cannot be sure that in case of a disconnection it will be able to

connect to the same broker again.

Phoenix tries to solve the problem of client mobility while trying to make

this mobility as transparent to the subscribers as possible. Not only keep-

ing the subscriptions the client already has on the system, but also storing

undelivered events. This way, in the case of a temporary disconnection the

subscriber will not lose any messages. In order to support subscriber mo-

bility Phoenix requires a method to notify the broker network that it has

changed the connection and that it is the same broker that was connected

somewhere else before. The messages defined for simple routing are kept,

but their contents are changed. Subscriber identity is added to SUB or UNS

messages and this identity is also stored in the routing table of the brokers.
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Filter Interface Subscriber

f1 s1 s1
f1 b2 s2
f1 b3 s5
f2 b2 s2
f3 b3 s3
f4 b2 s4
f6 b3 s4
f6 b3 s6

Table 2.3: Routing table of broker b1 using Phoenix.

The modified routing table, with the subscriber identities added, is shown

in Table 2.3 for comparison with that shown in Table 2.2 for the network in

Figure 2.1. And in order to support sending undelivered events during client

migration all messages will include a timestamp. This way subscribers can

request the replaying of events that have happened after a specific time. The

replaying of events also requires the creation of queues on the brokers, one

for each subscriber they know of, in order to store messages that can be sent

at a later date.

For the support of subscriber mobility, Phoenix introduces two new mes-

sage types that can be seen in Table 2.4. The first, called MIG, is the one

a subscriber will use in the case it detects a disconnection, or connects to a

different broker. This MIG message will reach the last broker the subscriber

is connected to following the same path a PUB message would follow for that

same subscriber. The second message it adds is called REP, and is the one

that is used to resend events that where lost during the disconnection.

Message Payload Client/Broker Meaning
MIG — s ∈ S Notify the migration of s
REP e ∈ E s ∈ S Replay event e towards s

Table 2.4: Phoenix message description

Algorithm 2.2 shows the changes made to simple routing to begin sup-
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porting mobile subscribers. We can see how the messages also contain the

subscriber identifier which is also added to the extended routing tables. Be-

sides that, the broker also maintains a set of local clients Ci. This set of local

clients is updated each time a broker receives a message from a subscriber,

as seen in lines 5 and 12. The matching of events is similar to the one in

simple routing. The main difference, in line 22, is that broker will now store

all events that are directed to a subscriber belonging to its local set. Events

are stored with a local timestamp by the broker. Since a subscriber receives

all events from the same broker they can specify the replaying of messages

after the last correct reception of a PUB message.

The main contribution of Phoenix is shown in Algorithm 2.3. Here the

subscriber migration process is described. There are two main parts in the

handling of the MIG message. On the one hand we have the brokers that

receive this message without the subscriber being in their local sets. In this

case the broker will check if the subscriber is now local and will redirect the

message towards the broker that was last connected to that subscriber. Using

the routing table we have information not only about the filters and interfaces

they belong to, but also about subscribers that issued those same filters.

Searching the routing table, as seen in line 5, we can obtain the interface

from which the SUB message of that subscriber was received. Following this

path at each broker we reach the one that was connected directly to the

broker. Brokers will have to update their routing tables to point towards the

new and correct interface to route messages.

On the other hand, if the broker that receives such a message has the

subscriber in its local set, it means that the subscriber has moved and it

is no longer local. In this case the message does not need to be redirected

anymore, but the broker has other duties. It needs to send back the events

that the subscriber has requested.

Lines 17-24 show how a replayed message is routed. The message is routed

in a similar way to a published event, but instead of matching the filter, the

broker simply matches the subscriber in the routing table. The last broker

on the delivery process will be the one that has this subscriber in its local
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set, and has to store the messages in a queue again, in case the subscriber

has migrated during this process.

1 when receive(SUB, f, s) from z ∈ Ii do
2 if @(f, , s) ∈ Ri then
3 Ri ← Ri ∪ {(f, z, s)}
4 if z /∈ Ni ∧ s /∈ Ci then
5 Ci ← Ci ∪ {s}
6 foreach b ∈ Ni where b 6= z do
7 send(SUB, f, s) to b

8 when receive(UNS, f, s) from z ∈ Ii do
9 if ∃(f, , s) ∈ Ri then

10 Ri ← Ri \ {(f, , s, t)}
11 if z /∈ Ni ∧ s@(−,−, s) ∈ Ri then
12 Ci ← Ci \ {s}
13 foreach b ∈ Ni where b 6= z do
14 send(UNS, f, s) to b

15 when receive(PUB, e, ts) from z ∈ Ii do
16 ts← clock()
17 X ← ∅
18 foreach (f, y, ) ∈ Ri where y /∈ X ∧ y 6= z do
19 if f(e) = true then
20 X ← X ∪ {y}
21 if y ∈ Ci then
22 enqueue(e, ts) in Qi(s)

23 foreach y ∈ X do
24 send(PUB, e, ts) to y

Algorithm 2.2: Simple Routing with dynamic clients
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1 when receive(MIG, s, b, tslast) from z ∈ Ii do
2 if s /∈ Ci then
3 if z = s then
4 Ci ← ci ∪ {s}
5 bj ← b ∈ Ni where (−, b, s) ∈ Ri

6 foreach (−,−, s) ∈ Ri do
7 replace ( , , s) with ( , z, s) in Ri

8 send(MIG, s, b, tslast) to bj
9 else

10 Ci ← Ci \ {s}
11 foreach (−, ,−, s) ∈ Ri do
12 replace ( , , s) with ( , z, s) in Ri

13 while Qi(s) is not empty do
14 dequeue(e, ts) from Qi(s)
15 if ts > tslast then
16 send(REP, e, s, ) to z

17 when receive(REP, e, s, ts) from z ∈ Ii do
18 if s /∈ Ci then
19 bj ← b ∈ Ni where (−, b, s) ∈ Ri

20 send(REP, e, s) to bj
21 else
22 ts← clock()
23 enqueue(e, ts) in Qi(s)
24 send(REP, e, ts) to s

Algorithm 2.3: Client mobility in Phoenix
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2.5 Network topology

Unlike Phoenix in which the broker topology was static and predefined before

starting the publish/subscribe service, this dissertation introduces a fully

mobile protocol. Before handling the communication required to support

that service, we must create a network topology with the nodes available to

us. Being fully mobile we have a variable amount of nodes on the system,

that will change their neighbors as time passes, so we cannot preconfigure

the network.

In order for the devices on the network to communicate efficiently we must

create a logical overlay. One of the most common examples is the creation

of an acyclic graph also called a spanning tree that helps in correctly routing

messages towards their recipient. These spanning trees are usually created

using information about the network, be it the number of nodes connected

or cost of sending a message through one link. On a static network we can

easily obtain that information, and once we have it in our hands we are

able to calculate a single graph for optimum connectivity which requires few

reconfigurations. However when we add mobility into the mix we have an

increased number of lost links between two nodes. And each time we have

to notify the devices on the network of the need to reconfigure. For this

reason we have a need for a protocol that inherently supports mobility in the

creation of the network topology.

We also need a mechanism that detects when a change in the topology

has occurred so a new link will be created when an old one disappears, so

we can react accordingly. Another problem to take into account is that due

to the mobility of the nodes we might end up with a partitioned network.

Whenever this happens we have to keep providing a service to all the nodes

on all the partitions. Lastly we want to minimize the number of nodes in

the network that needs to be reconfigured whenever a partition occurs. This

way we reduce the number of migrations that might take place, reducing the

number of messages sent, and reducing the load on the network.

In our case, we have chosen a leader election algorithm that has a heart-
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beat mechanism in order to keep the leader stable [26]. Once a leader has

been elected, this node will keep sending messages so that all the other nodes

will have this one as their leader. When a node receives one of these messages

it will know the path to the leader [10], and it will broadcast it so the message

spreads to all nodes within communication range. With this we create the

overlay we need for constructing the publish/subscribe system.

In Figure 2.4 we show how this heartbeat mechanism works. Suppose a

network of five nodes where n1 has been chosen as the leader by the algorithm,

the leader will keep sending a heartbeat mechanism so the rest of the nodes

know it is still alive and reachable. Using this message the rest of the nodes

will know the path towards the leader. If each time this message is reset we

store the link used to receive the message in the node we can point towards

the leader as seen in Figures 2.4b and 2.4c. Each node will only resend the

heartbeat message once for each round and only store the path towards the

leader on the first reception of the message. After the round finishes we are

left with a connectivity graph that does not have any cycles as shown in

Figure 2.4d.

Using this algorithm, in the event that the network is partitioned, each

of the partitions will choose a leader. And eventually when the network

becomes connected again both partitions will merge, choosing a single leader

and maintaining a single graph. Furthermore, with this heartbeat message,

when a node first receives the message of a new round it will store the sender

as the next hop to the leader. This next hop might be modified by any

physical change in the location of a node or by a failure, since the heartbeat

message will arrive via another node. Using this we can detect when the

topology has changed, whenever the next hop to the leader changes, and

notify the publish/subscribe system so that it can migrate accordingly.
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n1

n2 n3

n4 n5

(a) n1 sends heartbeat message.

n1

n2 n3

n4 n5

(b) n2 and n3 resend the heartbeat.

n1

n2 n3

n4 n5

(c) n4 and n5 resend the heartbeat.

n1

n2 n3

n4 n5

(d) The connection tree is created.

Figure 2.4: Hearbeat mechanism of the leader election used to create an
acyclic connection tree.
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3.1 Introduction

This is the first approach to supporting full mobility on publish/subscribe. It

follows a simple and modular approach to handling node migration. When-

ever a node creates a change in the network topology, be it from physically

moving from one place to another, or due to losing a connection, it causes a

migration to happen in the pub/sub service. This migration can range from

a simple one, a publisher changing its connection to a broker losing a link

and migrating. In the first case we do not need to update the network at all;

the base protocol is able to handle that on its own. For the second case we

need to update the routing tables for the subscribers attached to that broker.

Depending on the complexity of the network, several migrations can happen

at the same time, complicating things further.

For this first approach whenever a broker migrates it will only handle

the migration for the subscribers that are directly attached to it. Any other

subscriber is left as it was before the migration and the rest of the brokers are

notified that they also need to migrate. Creating a cascading, or recursive

migration until all the brokers involved have finished updating their routing

tables.

3.2 Messages

Table 3.1 shows the additional messages used in order to support broker

mobility, for sending the set of filters a subscriber has issued, for notifying the

migration of a broker, for updating the routing table based on the information

of the primary partition (i.e., the partition containing the leader), and for

forcing the migration of a broker respectively.

We have created four new messages for the nodes to support broker mo-

bility, and to be able to communicate information referring to a migration

in the network. The definition for these messages can be seen in Table 3.1.

These new messages are used together with the previous ones, defined on

Section 2.4 for the Phoenix protocol.
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Message Payload Client/Broker Meaning
BMIG Cb b ∈ B Notify the migration of b
BTAB Rb b ∈ B Updated routing table of b
FMIG — b ∈ B Force the migration of a broker

FILTERS f : f ∈ F b ∈ B Send active subscriptions

Table 3.1: Broker mobility message description

The first message, which we call BMIG, is the one used to notify the

migration of a broker. This is the message that starts the migration process

and contains information corresponding to the subscribers that are directly

connected to the broker that sends it. This message is routed using the

routing path for the subscribers it contains until it reaches the last broker

that was connected to the migrating broker. The BTAB message contains

the full routing table of the broker that sends it, and is used to send updated

information to the brokers involved in a migration. As mentioned earlier we

create a cascading migration with the use of the FMIG message that forces

any broker that receives it to send a BMIG message to the sender. Finally

due to inconsistencies that might happen in a partitioned network we use

the FILTERS message to notify a broker of all the active subscriptions of a

given subscriber.

In order to further explain this FILTERS message, let us imagine a net-

work with two different partitions (p1 and p2). A subscriber (s) might con-

nect to p1 and subscribe to whatever topics it desires, but after some time

it loses connection with the brokers on p1 and connects to a broker on p2.

Since the network is partitioned, the brokers on p2 have no information on

the subscriptions of s. This can be complicated further since s might be

jumping between p1 and p2, and subscribing to different topics in each one.

In this case whenever s migrates, the first broker that receives the migration

message will answer back with a FILTERS message, and the subscriber can

fix inconsistencies by sending SUB or UNS messages.
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To summarize the migration process, whenever a broker detects a migra-

tion, it will send a BMIG to its new parent in the topology, and receive a

BTAB message from it. The migrating broker will also send FMIG messages

to all its connected brokers causing a cascade of migrations.

3.3 The protocol

This section contains an in depth explanation of this first approach. For this

version of the protocol we have simplified the code of Phoenix, for example

by removing the timestamp values from messages. In Phoenix, brokers store

undelivered PUB messages, and when a subscriber migrates it can request

for the events that it has lost to be resent by specifying the timestamp of the

last received message. When the broker to which it was connected previously

receives this message, it will resend all the messages that are newer than that

specified timestamp. But, in our case, the subscribers are not the only ones

that are migrating, brokers will also migrate. As a broker migrates it has no

knowledge of the last received message by a subscriber. Furthermore since

the broker network is also changing, we cannot designate a single broker as

the one responsible for storing the events. We can have a situation where the

broker that stores the messages for a subscriber is in a different partition from

that subscriber. For this reason we do away with the set of local subscribers

that Phoenix uses to handle subscriber migration. In the case that we need

to know if a subscriber is local for a broker, we can simply look at the routing

table. Remember that in the routing table we store a tuple containing the

filter, subscriber and interface. The interface in this case is designated as

the identifier of the device that is the next hop towards the subscriber. If

the interface has the same identifier as the subscriber, we know that the

subscriber is one hop away and that it is local to the broker.

For this reason in this protocol, brokers will store all undelivered mes-

sages to be resent at a later date. We need a mechanism that tells us if

a message has been delivered. A simple acknowledgment by the subscriber

whenever it receives a message is enough. With this, if an error occurs,
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the broker will store the message as undelivered. When a broker receives a

migration message, from a subscriber or another broker, it will send all mes-

sages stored for the subscribers that migrate. These changes are reflected in

Algorithms 3.1 and 3.2. Due to the way migrations can occur in the system

we cannot be sure that a subscriber has received all the undelivered messages

whenever it migrates. If the broker that contains some of those messages is

not connected to the same partition as the subscriber, the subscriber will

have to wait until another migration occurs and they end up in the same

partition.
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1 when receive(SUB, f, s) from z ∈ Ii do
2 if @(f, , s) ∈ Ri then
3 Ri ← Ri ∪ {(f, z, s)}
4 foreach b ∈ Ni where b 6= z do
5 send(SUB, f, s) to b

6 when receive(UNS, f, s) from z ∈ Ii do
7 if ∃(f, , s) ∈ Ri then
8 Ri ← Ri \ {(f, , s)}
9 foreach b ∈ Ni where b 6= z do

10 send(UNS, f, s) to b

11 when receive(PUB, e) from z ∈ Ii do
12 X ← ∅
13 foreach (f, y, ) ∈ Ri where y /∈ X ∧ y 6= z do
14 if f(e) = true then
15 X ← X ∪ {y}

16 foreach y ∈ X do
17 if y /∈ Ii then
18 foreach (f, y, s) ∈ Ri where f(e) = true do
19 enqueue {e} in Qi(s)

20 else
21 send(PUB, e) to y

Algorithm 3.1: First approach to mobile clients
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1 when receive(MIG, s, b) from z ∈ Ii do
2 if z = s then
3 X ← ∅
4 foreach (f, , s) ∈ Ri do
5 X ← X ∪ {f}
6 send(FILTERS, X) to s

7 if b 6= bi then
8 if ∃( , , s) ∈ Ri then
9 bj ← y ∈ Ni where ( , y, s) ∈ Ri

10 send(MIG, s, b) to bj

11 foreach ( , , s) ∈ Ri do
12 replace ( , , s) with ( , z, s) in Ri

13 sendQueuedMessages(s, z)

14 function sendQueuedMessages(s, y)
15 while Qi(s) is not empty do
16 dequeue {e} from Qi(s)
17 if y /∈ Ii then
18 enqueue {e} in Qi(s)
19 return

20 else
21 send(REP, e, s) to y

22 when receive(REP, e, s) from z ∈ Ii do
23 y ← x ∈ Ii where ( , x, s) ∈ Ri

24 if y /∈ Ii then
25 enqueue {e} in Qi(s)
26 else
27 send(REP, e, s) to y

Algorithm 3.2: Simple Routing with mobile clients - Message re-
play
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To complicate things more, as explained in Section 2.5, we may have a

subscriber migrating from one partition of the network to another, and since

both partitions function individually the subscriber will have different sub-

scriptions in each of them. The FILTERS message is designed to fix this

issue. We can see how this message is sent in lines 23-27 of Algorithm 3.1.

Whenever a subscribers sends a MIG message, the broker it migrates to

will answer with a FILTERS message. This message contains all the sub-

scriptions of that subscriber the broker has in its routing table. Using this

information the subscriber may decide that the subscriptions are outdated

and issue SUB or UNS messages to fix and update the routing tables of the

brokers on that partition. These SUB and UNS messages will be propagated

normally to the rest of the brokers.

The main function responsible for how brokers handle the migration is

shown in Algorithm 3.3. Whenever a broker migrates it will send a BMIG

message with two parameters: a list of the subscribers connected to it (Cj)

and its own identifier (bj). Any broker that receives this message will first

replace the next hop of those subscribers in the routing table to the sender

of the message, while storing the old value. The it will resend the BMIG

message to the stored values so that they are notified of the change. This

behavior can be seen in lines 2-8 in Algorithm 3.3 and it is similar to what

happens when a subscriber migrates, but in this case the migration happens

by proxy, using the broker. Then, if the broker is the first one to receive the

message it will answer with a BTAB message containing its whole routing

table. Finally the broker will send any stored messages for those subscribers.

The process is the same as if those subscribers were to individually migrate,

but the broker is able to group the migrations together.

Whenever a broker migrates it can only trust the subscribers that are

connected directly. A subscriber that is lower on the network topology might

have migrated and the broker has not yet received that information, or as

explained before that subscriber might have connected to another partition.

For this reason when, after sending a BMIG message, it receives a BTAB

message back, it will then empty its routing table except for the entries of the
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local subscribers. Subsequently it will store all the information that comes

with the message as shown in lines 14-17. In lines 18-21 the broker checks for

any information that is missing on the other broker’s routing table and sends

the necessary SUB and UNS messages to fix it as if it were a subscriber that

received a FILTERS message. After this, the broker will force the migration

of all the brokers that are connected to it with an FMIG message. As soon

as a broker receives an FMIG message it will answer back with a BMIG

message starting the process again. And finally, as before, the broker will

send any stored messages for all subscribers.

37



Chapter 3. First approach to mobile Publish/Subscribe

1 when receive(BMIG, Cj, bj) from z ∈ Ni do
2 X ← ∅
3 foreach s ∈ Cj do
4 X ← X ∪ {b ∈ Ni where ( , b, s) ∈ Ri ∧ b 6= z}
5 foreach ( , , s) ∈ Ri do
6 replace ( , , s) with ( , z, s) in Ri

7 foreach y ∈ X do
8 send(BMIG, Cj, bj) to y

9 if z = bj then
10 send(BTAB, Ri) to bj

11 foreach s ∈ Cj do
12 sendQueuedMessages (s, z)

13 when receive(BTAB, Rj) from bj ∈ Ni do
14 foreach ( , , s) ∈ Ri where s /∈ Ci do
15 Ri ← Ri \ {( , , s)}
16 foreach ( , , s) ∈ Rj where s /∈ Ci do
17 Ri ← Ri ∪ {( , bj , s)}
18 foreach (f, , s) ∈ (Ri −Rj) do
19 send(SUB, f, s) to bj

20 foreach (f, , s) ∈ (Rj −Ri) do
21 send(UNS, f, s) to bj

22 foreach b ∈ Ni where b 6= bj do
23 send(FMIG) to b

24 foreach ( , , s) ∈ Rj where s /∈ Ci do
25 sendQueuedMessages (s, bj)

26 when receive(FMIG) from z ∈ Ni do
27 send(BMIG, Ci, bi) to z

Algorithm 3.3: Simple Routing with mobile brokers
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3.4 Migration example

Let us analyze the protocol with two examples of migrations that might

occur. The first one, shown in Figure 3.1 shows a straightforward migration.

Due to physical mobility or a link failure a connection has been lost, and the

broker decides to connect to a different one.

b1

b2 b3

1

2

b4 b5 b6 b7

s1

s2 s3

s4 s5 s6 s7

Figure 3.1: Simple migration example. b3 ↔ b1 link is lost and b3 ↔ b2 is
created.

If we were to look at the messages exchanged between the brokers we

would notice that b3 will start with a BMIG message. And b3, b6 and b7

will have to somehow inform b1 of the new location of their subscribers. The

following list enumerates the sequence of messages sent due to that migration:

1. b3 → b2 ⇒ BMIG : {Cj = [s3] , bj = b3}

2. b2 → b3 ⇒ BTAB : {Rj = R2}

3. b2 → b1 ⇒ BMIG : {Cj = [s3] , bj = b3}

4. b3 → b6 ⇒ FMIG

5. b3 → b7 ⇒ FMIG

6. b6 → b3 ⇒ BMIG : {Cj = [s6] , bj = b6}
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7. b7 → b3 ⇒ BMIG : {Cj = [s7] , bj = b7}

8. b3 → b6 ⇒ BTAB : {Rj = R3}

9. b3 → b7 ⇒ BTAB : {Rj = R3}

10. b3 → b2 ⇒ BMIG : {Cj = [s6] , bj = b6}

11. b3 → b2 ⇒ BMIG : {Cj = [s7] , bj = b7}

12. b2 → b1 ⇒ BMIG : {Cj = [s6] , bj = b6}

13. b2 → b1 ⇒ BMIG : {Cj = [s7] , bj = b7}

Even thought the change seems small, only one link changes and no other

change has been made in the network, the protocol forces the migration of

all the brokers that are below the migrating one. This causes the cascade of

BMIG and BTAB messages we see in the list. We can further complicate

this example by adding another migration at the same time as shown in

Figure 3.2. In this case b3 loses its link to b1, and while that link is down b6

decides to migrate to b5.

b1

b2 b3

1

4

b4 b5 b6
23

b7

s1

s2 s3

s4 s5 s6 s7

Figure 3.2: Complex migration example. First b3 ↔ b1 link is lost and after
b6 ↔ b3 is also lost. b6 ↔ b5 is connected and allowed to completelly migrate
before b3 ↔ b2 is created.
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The sequence of messages in this example is similar to the previous one.

First we have the migration of b6 and then b3. b6 has no broker connected to

it during the migration, for this reason it does not need to force migration.

b3, on the other hand will force the migrations as in the previous example.

1. b6 → b5 ⇒ BMIG : {Cj = [s6] , bj = b6}

2. b5 → b6 ⇒ BTAB : {Rj = R5}

3. b5 → b2 ⇒ BMIG : {Cj = [s6] , bj = b6}

4. b2 → b1 ⇒ BMIG : {Cj = [s6] , bj = b6}

5. b3 → b2 ⇒ BMIG : {Cj = [s3] , bj = b3}

6. b2 → b3 ⇒ BTAB : {Rj = R2}

7. b2 → b1 ⇒ BMIG : {Cj = [s3] , bj = b3}

8. b3 → b7 ⇒ FMIG

9. b7 → b3 ⇒ BMIG : {Cj = [s7] , bj = b7}

10. b3 → b7 ⇒ BTAB : {Rj = R3}

11. b3 → b2 ⇒ BMIG : {Cj = [s7] , bj = b7}

12. b2 → b1 ⇒ BMIG : {Cj = [s7] , bj = b7}

We have to take into account that while a migration is taking place,

until the last BMIG is sent brokers will have the wrong destination for some

subscribers. Let us use the first example. Before any migration occurs for

b3, s6 is connected through b6. At step 2 when b3 receives a BTAB message

from b2 it will change the next hop to s6 to show b2, since it prefers to trust

b2. After sending an FMIG to b6 at step 4 and receiving its corresponding

BMIG on step 6 it will correct the next hop to show b6. If we take a look at

the second example we see that there is no need to correct the direction of

s6. When b3 receives a BTAB from b2 on step 6 it is already able to correctly

route messages to s6.
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If we did not force the migration of the lower brokers on a branch b3

would not be able to differentiate between the two examples. And when

migrating, it would add incorrect information to the routing table of the rest

of the brokers. This is the reason a broker only migrates with the subscribers

directly connected to it and forces the migration of the rest so they can inform

the network of their subscribers.

3.5 Summary

In this chapter we have shown a first approach to supporting broker mobility

on a Publish/Subscribe system. The protocol is simple and modular. It treats

broker migrations simply as an aggregate of subscriber migrations making the

broker act as a proxy for the subscribers. The protocol is able to support the

creation of partitions on the network and the publish/subscribe service will

keep working correctly on each partition. Whenever two partitions merge,

thanks to the leader election algorithm that creates the network topology,

one of the two leaders of the partitions will be chosen as a leader for both.

And one partition will migrate into the other.

Though simple, there are also some problems. The number of messages

required on each migration is pretty high, and some of those messages contain

too much information. A BTAB message contains the full routing table of

the broker, in a small network as in the previous examples it will only have

a few lines of data. But on a larger network, and with several subscriptions

by each subscriber, that message will have too much information to be easily

sent and resent on each migration.

The way migrations are handled can also lead to the inability of remov-

ing a subscriber’s subscriptions from the system. Let us say a subscriber

s is connected to the network and has some subscriptions. The network is

partitioned between p1 and p2, and s is connected to p1. After some time

s decides to leave the network and sends an UNS message for all its sub-

scriptions, a message that is correctly routed to all the brokers on p1. At

that time p1 has deleted all subscriptions of s, but on p2 the brokers have
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not received any UNS message and they still keep all the subscriptions as

active. Later if p1 merges into p2, meaning that between both partitions the

leader of p2 is the one chosen, none of the brokers of p1 will have s as a

local subscriber. And when they receive a BTAB message, that message will

contain the subscriptions of s, and they will store it in their routing table.

From the point of view of a broker in p1 we do not know if after s has left

it has subscribed again or if they are still the old subscriptions. The brokers

will keep the subscriptions of s active even when there is no s anymore.
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4.1 Introduction

This chapter describes the main contribution of this dissertation. After devel-

oping the first iteration of a mobile publish/subscribe protocol, there were

some drawbacks that made it quite complicated to use in an environment

where the resources are limited. Sending the whole routing table each time a

broker migrates and furthermore, causing a cascade of migrations can com-

pletely saturate the network in devices with limited connectivity capabilities,

such as the ones found in a wireless sensor network. The inability to com-

pletely remove a subscriber’s subscriptions in some cases can also cause a

broker to keep storing messages forever for a subscriber that might never

return.

With the idea of eliminating these drawbacks we decided to introduce a

timestamp value to any message sent by a subscriber. This timestamp is a

simple sequence number that increases in value each time a subscriber sends

a message. Using this information whenever a broker migrates it can share

the timestamp values for the subscribers with the rest of the brokers and see

if any subscriber has sent new messages. If the new partition has a newer

timestamp for a subscriber, the broker it is able to deduce that the subscriber

has somehow already migrated and that message has not yet been received.

This way we can make a broker responsible not only for the migration of the

subscribers directly connected to it, but also for all the subscribers that are

connected to other brokers lower on the logical connectivity branch. And

we do not have to force the migration of those brokers as before. With this

change we solve the main problems of the previous approach.

We completely eliminate the need to force the migration of brokers, and

at the same time reduce the size of the messages exchanged by the brokers.

Where before we were sending the full routing table of the brokers each time

one migrated, now we only exchange the timestamps of the subscribers. Using

this timestamp we can also determine if a subscriber has completely left the

service. Whenever two brokers exchange the timestamp values, if one of them

has a higher number but no active subscriptions for any given subscriber, the
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brokers are able to deduce that the last message of the subscriber has been

an unsubscription. And consequently they disable its active subscription on

the partition this information exchange takes place.

But this timestamp value alone is not enough to determine the location

of a subscriber when part of the network migrates. We mentioned that the

timestamp value is increased each time a subscriber sends a message, be it

a subscription, unsubscription or migration. But if a broker migrates we

change the position of the subscriber in the logical topology, and we do not

increase the timestamp values for that subscriber. This can lead to conflicts

if several migrations take place at the same time.

Let us use the example provided in the previous chapter in Figure 3.2.

Here first b3 disconects from b1 and creates a network with 2 partitions.

Those two partitions will keep working independently thanks to the leader

elections algorithm that creates the network topology. After some time b6

decides to migrate to b5 with its subscriber still connected. With this we

have changed the logical location of s6, but b3 will not receive that migration

message yet. So for b3 the subscriber is still at a lower branch in the topology

map. When b3 chooses to migrate to b2 it will do so as a proxy for s3, s6 and

s7. Without knowing that it has the wrong routing information for s6. And

since the timestamps for s6 that both b2 and b3 have are the same value, b2

and the rest of the brokers are forced to trust b3. This erroneous information

will be distributed to all the network with s6 becoming unreachable.

Taking this into account we need more information whenever a migra-

tion happens in order to prevent this from happening. The information we

are missing is the number of hops between a subscriber and a broker. This

value can be easily extracted from the messages sent by a subscriber. With

this each broker will store, besides the subscriptions for each subscriber, the

timestamp and the number of hops to each one. With both these values

whenever a migration happens the broker will check first the timestamp for

the subscriber and if the value is the same the number of hops will be com-

pared. Any broker with a higher sequence number will be deemed to have

the latest information and correct path on that subscriber, if the timestamps

47



Chapter 4. Mobile Fault Tolerant Publish/Subscribe: MFT-PubSub

are equal the one that reports being the closest will have a higher probability

of being correct.

Due to the way we are able to handle migrations, from the point of view of

any node on the system a link failure is indistinguishable from a real physical

migration. Furthermore a crash on any broker will cause the migration of

the other nodes that are connected to it as if that broker, instead of crashing,

had changed its physical location. Moreover, after a broker crash, if the node

is able to reboot and start again, the protocol will handle it as a new broker

migrating into the network and the crashed broker will be able to resume

working normally. For these reasons we decided to call this protocol Mobile

Fault Tolerant Publish/Subscribe, or MFT-PubSub for short.

4.2 Messages

As with the protocol described in the previous chapter we have defined new

messages to be sent in order to support broker migrations. These new mes-

sages are shown in Table 4.1. We keep the FILTERS message described for

the first approach for the same reasons. Whenever a subscriber migrates

from one partition to another we need a mechanism for that subscriber to

get the active subscriptions on that partition and fix them if needed.

Message Payload Client/Broker Meaning
FILTERS f : f ∈ F b ∈ B Send active subscriptions

BMIG {Cb, Ob} ∈ Sb b ∈ B Notify the migration of b
BQUERY s ∈ S b ∈ B Ask for the subscriptions of s

BSUB f : f ∈ F b ∈ B Send active subscriptions

Table 4.1: Message description

The BMIG message keeps the name and is also sent whenever a broker

migrates to notify the network of its migration, but its behavior has been

completely changed. Unlike the previous approach where it contained only

information on subscribers that are directly connected to it, this time it

contains information on all the subscribers it knows of. Only the timestamp
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and hop count will be sent for each subscriber, and the broker divides the

list into two groups. The first group is composed by the subscribers that are

considered child nodes of the broker, in this case all the subscribers that are

lower on the topology map than itself. This is the group of subscribers that

the broker is representing when it migrates. We call this group Cb for broker

b The other group contains the rest of the subscribers the broker knows of,

called Ob for broker b. Using these two lists together the broker that receives

the BMIG message can determine how many subscribers the sender knows

of and how updated that information is. If there is any missing information

the brokers will try to fix that by themselves. Another parameter that is

also important in this message is the number of hops it needs to reach each

broker. We have mentioned previously that we use the number of hops to each

subscriber as a tie breaker, and whenever a broker migrates, the information

on the subscribers that move with it will also need to be updated. Taking the

hop count that the broker declares on list Cb and adding the hop count of the

BMIG message we obtain the new hop count for that subscriber. As with

the previous case the BMIG message will be routed using the routing path

for the subscribers in Cb until it reaches the last broker that was connected

to the migrating broker.

The next messages are the ones used to update any inconsistent infor-

mation detected during the migration process. If a broker, after receiving a

BMIG message, realizes that it is missing some information on a subscriber

due to having a lower timestamp, it will ask the sender of the BMIG to send

the mising subscriptions using a BQUERY message. This message simply

contains the identifier of the subscriber the broker is asking about. The

BQUERY message will be answered with a BSUB message. In a BSUB a

broker sends all the active subscriptions it has on a given subscriber. This

message is treated as a grouped SUB message from a subscriber and is prop-

agated through the network as such. A broker that has received a BMIG

message might also decide to send a BSUB message to the sender if it real-

izes that it has a higher timestamp or lower hop count for a subscriber.
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This interchange of BQUERY and BSUB messages is what allows us to

prevent the cascading migration of the previous approach. In the best case

a broker migration will cause only a single BMIG message to be sent into

the network, and this message will follow a single path to the last broker.

In a system where there are several partitions working independently, and,

brokers and subscribers are moving freely between them, the migration will

be more complicated. The BMIG message might have to take several paths

to reach different brokers and any amount of BQUERY and BSUB messages

will have to be sent to fix any erroneous or inconsistent information in the

routing tables.

4.3 The protocol

This section will have an in depth explanation of the protocol. In order to

introduce the timestamp and hop count values explained in the previous sec-

tion we have to modify the message reception behavior of the basic messages

defined on Phoenix. Algorithm 4.1 shows these changes. Each message has

two new parameters t and h,, containing the timestamp and hop count re-

spectively. The hop count is increased each time the message is resent. And

since we have these values we can also use them to check if the message we

are receiving is newer than the previous one. It might happen, due to the

way migrations are handled that a broker receives the same message from a

subscriber twice, using this condition we remove the duplicity. Let us imagine

a broker that is connected to a lower branch on the network topology with

a subscriber at 2 hops of distance. That subscriber sends a SUB message

and since the broker is close it receives it quickly. But, while that message is

being propagated to the network the broker decides to migrate. It ends up

in a similar position, on one of the lower branches, but on the other side of

the network. Once it finishes migrating, since the SUB message is still being

propagated into the network it will receive the message again. In this case

we ignore the message.
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1 when receive(SUB, f, s, t, h) from z ∈ Ii where (t, h) > Ti(s) do
2 Ti(s)← (t, h + 1)
3 if @(f, , s) ∈ Ri then
4 Ri ← Ri ∪ {(f, z, s)}
5 foreach b ∈ Ni where b 6= z do
6 send(SUB, f, s, t, h+1) to b

7 when receive(UNS, f, s, t, h) from z ∈ Ii where (t, h) > Ti(s) do
8 Ti(s)← (t, h + 1)
9 if ∃(f, , s) ∈ Ri then

10 Ri ← Ri \ {(f, , s)}
11 foreach b ∈ Ni where b 6= z do
12 send(UNS, f, s, t, h+1) to b

13 when receive(MIG, s, b, t, h) from z ∈ Ii where (t, h) > Ti(s) do
14 Ti(s)← (t, h + 1)
15 if z = s then
16 X ← ∅
17 foreach (f, , s) ∈ Ri do
18 X ← X ∪ {f}
19 send(FILTERS, X) to s

20 if b 6= bi then
21 if ∃( , , s) ∈ Ri then
22 bj ← y ∈ Ni where ( , y, s) ∈ Ri

23 send(MIG, s, b, t, h+1) to bj

24 foreach ( , , s) ∈ Ri do
25 replace ( , , s) with ( , z, s) in Ri

26 sendQueuedMessages(s, z)

Algorithm 4.1: Simple Routing for MFT-PubSub
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As explained previously, when a broker migrates it has to send a BMIG

message. This message contains two groups of subscribers, the ones that are

considered children for the broker and the remaining subscribers it knows of.

The creation of these two groups is pretty straightforward and is shown in

Algorithm 4.2. A broker is able to differentiate the two groups taking a look

into its routing table. All the subscribers for which their next hop is defined

as the old link towards the leader will be considered as outside of the control

of the broker and will integrate the Ob list. The rest of the subscribers will

create the Cb list. A broker, at any time, if it cannot deliver a PUB message

to a subscriber, be it by directly sending it to the subscriber or via another

broker, will store it in a queue for that subscriber. When a migration occurs

the broker supposes that the brokers belonging in the Ob list it has just

created are connected through the newly created connection. In order to

replay lost events, the broker will send all queued messages belonging to the

subscribers on the Ob list at this time. It may happen that some of those

messages cannot be delivered, due to the subscriber not being connected to

that partition at that time. However, they will tend to arrive to brokers that

are closer to where the subscriber was previously. And with time a single

broker will store the messages to be delivered to a subscriber.

Since we might end up moving messages from a broker to another, instead

of directly delivering them to a subscriber, we are increasing the network load.

This can be lessened by instead of sending individual REP messages as in

Phoenix, grouping those same messages by subscriber.

As mentioned before, a BMIG message has three parameters; two lists

of subscribers with their timestamps, separating what the sending broker

believes that are children nodes Cj , and the rest Oj , and a hop count for the

message. In the algorithms bi will be the broker running the code and bj the

broker that sent the message. Whenever any broker receives such a message

it knows that the sending broker has moved and some corrections might have

to be made to the routing tables.
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1 function migrate(bo, bn)
2 C ← ∅
3 O ← ∅
4 foreach (s, z, ) ∈ Ri do
5 if z = bo then
6 O ← O ∪ {(s, Ti(s).t, Ti(s).h)}
7 replace (s, , ) with (s, bn, )

8 else
9 C ← C ∪ {(s, Ti(s).t, Ti(s).h)}

10 send(BMIG, C, O, 0) to bn
11 foreach ((s, , ) ∈ O) do
12 sendQueuedMessages (s, bn)

Algorithm 4.2: Migration of broker bi

The first step is to check the list of subscribers the migrating broker be-

lieves are its children. This is done in lines 3-18 of Algorithm 4.3. Depending

on the timestamps of the subscribers there are three different outcomes.

bj has newer information on the subscriber: When bi checks the times-

tamps, if it sees that the timestamp it received for a given subscriber

is higher than the one it has stored it knows that it is missing infor-

mation. In this case bi will ask bj to send the subscriptions of that

subscriber to update its routing table. bi will also create another Ci

list that will be composed of those subscribers that bi considers are still

children of bj . In this case bi will add the subscriber to Ci since bj has

newer information on it.

bj has older information on the subscriber: This is the opposite sit-

uation to the previous outcome. This might happen if the subscriber

migrated without bj knowing about it. In this case bi will send the

updated information to bj and will not store the subscriber in Ci since

it is able to determine that, in this instance, bj is wrong.
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bj has the same timestamp as bi: In this case we have a tie and we need

to take the hop counts into account. If bj declares a lower or equal hop

value for the subscriber than what bi has, bi supposes that the other

broker is correct. bi will store the subscriber in its Ci list and update

the hop count to that subscriber. On the other hand, if bj is further

away from the subscriber than bi, the broker determines that the other

one is wrong and sends the subscriptions of the subscriber to fix this

inconsistency.
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1 when receive(BMIG, Cj, Oj, h) from bj ∈ Ni do
2 Ci ← ∅
3 foreach (s, (t, hj)) ∈ Cj do
4 if t > Ti(s).ts then
5 //If j is newer than i

6 send(BQUERY, s, Ti(s).ts, Ti(s).h) to bj
7 Ci ← Ci ∪ {(s, (Ti(s).ts, hj))}
8 else if t < Ti(s).ts then
9 //If i is newer than j

10 sendSubscriptions(s, bj)

11 else if t = Ti(s).ts then
12 if h ≤ Ti(s).hops then
13 //If j is closer than i

14 Ci ← Ci ∪ {(s, (Ti(s).ts, hj))}
15 Ti(s)← (t, h + hj + 1)

16 else if h > Ti(s).hops then
17 //If i is closer than j

18 sendSubscriptions(s, bj)

19 foreach (s, (t, )) ∈ Oj do
20 if t > Ti(s).ts then
21 send(BQUERY, s, Ti(s).ts, Ti(s).h) to bj
22 else if t < Ti(s).ts then
23 sendSubscriptions(s, bj)

24 if h = 0 then
25 foreach (s, , ) ∈ Ri where s /∈ (Cj ∪Oj) do
26 sendSubscriptions(s, bj)

27 X ← ∅
28 foreach s ∈ Ci do
29 X ← X ∪ {b ∈ Ni where ( , b, s, ) ∈ Ri ∧ b 6= bj}
30 foreach ( , , s) ∈ Ri do
31 replace ( , , s) with ( , bj , s) in Ri

32 foreach y ∈ X do
33 send(BMIG, Ci, ∅, h+1) to y

34 foreach s ∈ Ci do
35 sendQueuedMessages (s, bj)

Algorithm 4.3: Mobile brokers with timestamps
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After checking the subscriber on Cj , bi will take a look at the remaining

subscribers bj knows on Oj , in lines 19-23. In this case the treatment is

simpler than before, the broker will only look at the timestamps. If bj has

newer information on a subscriber, it will ask for it with a BQUERY message.

Otherwise, if bj has a lower timestamp bi will send directly the subscriptions

for that subscriber.

The next step, shown in lines 24-26 is only carried out on the first broker

that receives a BMIG message. It might happen that the broker bi has

subscriptions by subscribers in its routing table that bj does not know. In a

partitioned network a subscriber may join one of the partitions, and when a

broker migrates into it, the broker needs to be informed of that subscriber.

In this case the broker bi will send the subscriptions of all the subscribers

that are not in either Cj or Oj .

Finally broker bi has to resend the BMIG message it received in lines

28-33. In order to correctly route this message bi has to check for the next

hop for all the subscribers in its newly created Ci list. In this way we direct a

BMIG message to the oldest known brokers for those subscribers. In line 31

we also change the next hop for the subscribers to show the newly migrated

broker. The list Oj is only used by the first broker that receives that message

and there is no need to send it anymore. The BMIG is handled as if it were

a PUB message for a subscriber, and each broker that receives it will update

the next hop accordingly. This way we can correctly route messages to the

new location of the subscriber by updating a few brokers.

The last step of the migration process is to send the queued messages for

the subscribers on Ci back to bj so that the broker can route them to their

recipients.

If in any case when checking for the timestamps of subscribers the broker

does not know about that specific subscriber, it will create a new entry with

0 for the value of the timestamp. This way it will always ask for information

concerning that specific subscriber.

The two messages shown in Algorithm 4.4 are the ones responsible for

fixing any difference in the routing tables of the brokers. The first message,
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1 when receive(BSUB, s, Sj, Tj(s), h) from z ∈ Ni where
Tj(s) > Ti(s) do

2 foreach ( , , s) ∈ Ri do
3 Ri ← Ri \ {( , , s)}
4 foreach f ∈ Sj do
5 Ri ← Ri ∪ {(f, z, s)}
6 Ti(s)← {(Tj(s).ts, Tj(s).h + h + 1)}
7 foreach b ∈ Ni where b 6= z do
8 send(BSUB, s, Sj, Tj(s), h + 1) to b

9 sendQueuedMessages (s, z)

10 when receive(BQUERY, s, t, h) from z ∈ Ni where (t, h) < Ti(s) do
11 sendSubscriptions(s, z)

12 function sendSubscriptions(s, z)
13 Si ← ∅
14 foreach (f, , s) ∈ Ri do
15 Si ← Si ∪ {f}
16 send(BSUB, s, Si, Ti(s), 0) to z

Algorithm 4.4: Messages to fix inconsistent routing tables

BSUB, is treated as if it were a SUB message from a subscriber. For this

reason the broker will ignore it if it already has a higher valued timestamp.

In order to process the BSUB message, since we do not know how many

active subscriptions that subscriber has, a broker will first delete all the

subscription for that subscriber. subsequently, in the next step it will store all

the subscriptions included in the message. It will also update the timestamp

and hop count for that subscriber. Since this message is treated as a SUB

message the BSUB is resent to all the neighbors the broker has. Finally,

since this message can be received in order to fix an error in the routing

table and at this moment the broker believes it has a path to the subscriber

it will send its queued messages.
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The handling of a BQUERY message is shown in lines 10-11. When a

broker receives a BQUERY message, with a timestamp older than what it

has, it will directly answer back with the subscriptions of the subscriber the

message is asking for. The subscriptions will be grouped in a BSUB message

that will be propagated to the network.

4.4 Migration example

As in the previous chapter we will analyze the behavior of the system with

two examples. We will use the same graphs, but for ease of reading they are

also copied here as Figures 4.1 and 4.2.

b1

b2 b3

1

2

b4 b5 b6 b7

s1

s2 s3

s4 s5 s6 s7

Figure 4.1: Simple migration example. b3 ↔ b1 link is lost and b3 ↔ b2 is
created.

The messages sent in order to complete the migrations in both examples

were quite similar in the first approach we explained in the previous chapter.

Using MFT-PubSub we are able to reduce the messages to a minimum in

the best case scenario. For the migration shown in Figure 4.1 we have the

following sequence of messages:
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1. b3 → b2 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = [(s1, 1, 2), (s2, 1, 3), (s4, 1, 4), (s5, 1, 4)]

h = 0



2. b2 → b1 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = ∅
h = 1



Here we have also included the full content of the messages. The entire

migration is comprised of just two BMIG messages that reach b1. In the

first message we can see how Cj and Oj are filled, with subscriber identifiers,

timestamp values (in this case set to 1), and the number of hops to reach each

subscriber. b2 checks the subscribers on both groups and since everything

is correct it sends it towards the broker it had stored as the next hop for

subscribers s3, s6 and s7, in this case b1. Once b1 receives the message from

b2 all the required changes in the routing tables are done. We do not need

to notify b4 or b5 since they are connected to the rest of the network through

b2 and we have already corrected it. Neither do b6 or b7 need to be notified

of this migration since they connect through b3. Note that if we look into b6,

before the migration it had five hops to reach s5, and after the migration it

is at four hops, but we have not changed that value. The hop count is more

of a tie breaker in the case of having the same timestamp and at worst the

BMIG message will be sent until it reaches the broker with the hop value of

one. Once it reaches this last broker, it will issue a BSUB to fix the incorrect

routing. We will analyze this situation with the next example.

Figure 4.2 shows a more complicated migration. In this case the protocol

makes use of the BQUERY and BSUB messages in order to fix the incon-

sistencies after a migration. The sequence of messages is quite a bit more

complicated than before and it looks as follows:
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b1

b2 b3

1

4

b4 b5 b6
23

b7

s1

s2 s3

s4 s5 s6 s7

Figure 4.2: Complex migration example. First b3 ↔ b1 link is lost and after
b6 ↔ b3 is also lost. b6 ↔ b5 is connected and allowed to completelly migrate
before b3 ↔ b2 is created.

1. b6 → b5 ⇒ BMIG :


Cj = [(s6, 1, 1)]

Oj =

[
(s1, 1, 3), (s2, 1, 4), (s3, 1, 2),

(s4, 1, 5), (s5, 1, 5), (s7, 1, 3)

]
h = 0


2. b5 → b2 ⇒ BMIG :


Cj = [(s6, 1, 1)]

Oj = ∅
h = 1


3. b2 → b1 ⇒ BMIG :


Cj = [(s6, 1, 1)]

Oj = ∅
h = 2


4. b3 → b2 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = [(s1, 1, 2), (s2, 1, 3), (s4, 1, 4), (s5, 1, 4)]

h = 0


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5. b2 → b1 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = ∅
h = 1


6. b2 → b5 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = ∅
h = 1


7. b5 → b6 ⇒ BMIG :


Cj = [(s3, 1, 1), (s6, 1, 2), (s7, 1, 2)]

Oj = ∅
h = 2


8. b6 → b5 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 0}

9. b5 → b2 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 1}

10. b2 → b4 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 2}

11. b2 → b1 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 2}

12. b2 → b3 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 2}

13. b3 → b7 ⇒ BSUB : {s = s6, Sj = [f6] , Tj(s) = (1, 1), 3}

Once both migrations hava taken place we have a similar number of mes-

sages to those shown in the previous chapter. Though we have to categorize

this as a worst case scenario. The first three messages are for b6 to complete

its migration and are similar to the previous example. The BMIG message is

routed towards b1 were it cannot continue since the link towards b3 is broken.

At this time b5, b2 and b1 have the correct routing for s6.

However, once b3 begins its migration we start having some complications.

Note that the content of b3’s BMIG message still contains s6 as a child node,

since it has not received any new message notifying it of the migration. Once

this message reaches b2 it will check the timestamps and hop counts against

its own. b2 has a timestamp value of 1 for s6, the same as b3, so we have to

use the hop value. b3 claims to be at two hops from s6 and b2 knows that

it is at three itself, so it trusts b3’s claim that s6 is its child. At this time
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an incorrect routing path is set for s6 on b2, it will point towards b3 instead

of b5. But, as we see on steps 5 and 6 b2 will redirect the BMIG message

not only to b1 as previously, but it will also send a copy to b5 since this was

the last next hop towards b6. b1 will receive the message and act accordingly

by changing the next hop for s3 and s7. The moment b6 receives the BMIG

message sent by b5 in step 7 it will realize that its hop count is one whereas

the hop count claimed by b3 is two. Since it has a lower hop count it corrects

the routing tables of the rest of the brokers by sending a BSUB message that

is propagated to the rest of the network as seen in steps 8-13.

Using the hop count to break the ties created by having the same times-

tamp can cause temporary inconsistencies in the network as seen in this

example. However, as the BMIG message is routed towards the old con-

nection of the subscribers, it also means that the brokers that receive the

message have a lower hop count to reach that subscriber. Eventually it will

reach a broker with a lower value than the one the message contains and

that broker will stop including the subscriber in the child list and correct

the inconsistency with a BSUB message. Any PUB message sent during this

inconsistency will be routed toward the wrong broker. In the example shown

in Figure 4.2 b3 might receive PUB messages sent to s6, but since b6 is un-

reachable it will store those messages. When it receives the BSUB message

at step 12 it will answer back with all the queued messages it has for s6 as

shown in line 9 of Algorithm 4.4. Thus in the end s6 or any other subscriber

in the same situation will not loose any message due to the inconsistency

created during the migration.

4.5 Performance evaluation

In this section we will analyze the performance of the MFT-PubSub protocol

in a fully mobile environment. Before obtaining performance metricks we

have to check if the protocol works as intended and is able to support the

migrations of the brokers. The first step in validating the protocol was carried

out using JBotSim [15].
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JBotSim is a library written in Java that allows us to easily test code

for distributed networks. It does this by allowing us to define function for

when something happens in the network, be it the reception of a message or

the creation of a new link. Using this tool we can easily and quickly deploy

the protocol in a distributed network and simulate the migration of brokers

in the conditions that we specify. Thought it is not as extensive as other

tools, it allows us to test specific use cases in minutes and run tests where

we can see how the system behaves in real time. Using JBotSim to test

the protocol is as simple as implementing the system behavior whenever a

message is received. Then we can create the network by dropping the nodes

onto a 2D map of the environment and allowing them to create connections

using a predefined wireless connection range. Once the connectivity tree is

created we can manually move any node to any point in the map and check

the messages it sends to notify the migration. We can also check the routing

tables, or the queued messages of the rest of the brokers and see if they are

behaving correctly. Once we had validated the correctness of the protocol

using this tool we decided to implement it in a simulation environment where

we could obtain more information on the protocol behavior. Even though

JBotSim is a useful tool to validate a distributed algorithm it lacks some

features that would make it a complete wireless network simulator. The main

disadvantage is that by default all communications are carried out through

channels that are perfect. If two nodes are in communication range of each

other, a message sent by one will always be received by the other, there is

no calculation for signal strength or interference caused by other nodes.

For this reason we decided to use the OMNeT++ [52] simulation envi-

ronment, and more specifically the Castalia [8] simulator. OMNeT++ is a

general network simulation tool that is extensively used to test the validity of

distributed algorithms or even specific deployments. This is quite a powerful

tool and if it lacks any feature it can be expanded by the use of the multiple

frameworks that use OMNeT++ as a base.

This is the case of Castalia which was developed as a simulator specifically

for wireless sensor networks. It was developed following a scheme comprised
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of layers, separated in modules. The user can develop the protocol in different

layers, such as the application, MAC, radio or even physical movement. In

order to create a node the user has to define the set of layers required for

that node. Changing the radio model is as easy as changing a line in a

configuration file. This tool also simulates the common problems found on

a real deployment of a wireless sensor network, such as network connectivity

degradation due to distance or saturation of the radio spectrum. The most

important feature it has, and the reason we choose it, is that it support

the simulation of a wireless node that is physically moving through a set

of coordinates in a 2D map. Whenever a wireless message is sent, Castalia

will calculate the signal strength for that message in the rest of the nodes

in the simulation. If that signal is above some threshold in order to be

correctly received, the message will be delivered to the node. Using this we

can simulate a network where all the nodes are moving in predefined patterns

and the framework will calculate each time the set of nodes that are able to

receive the message. This subsequently might cause a migration following

the protocol presented in this dissertation.

Castalia also offers tools specific to wireless sensor networks, such as the

ability to calculate energy consumption of the nodes. On this occasion we

do not make use of this feature. In our simulations we want to test the

validity of our proposed protocol. We want the system to be as responsive as

possible, and to this end the messages must be sent as quickly as possible the

moment any change is detected. The change detection rate is also related to

the timeout the leader election algorithm uses for its heartbeat mechanism.

As we explained before we use this heartbeat to check when a broker or a

subscriber has to migrate. If this message is sent once a minute we will

be able to act in the case of a migration at most at the frequency of once

a minute. A slower heartbeat rate will also increase the time a broker or

subscriber is disconnected if they loose one of their links, since they have

to wait until they receive the heartbeat to migrate. For these reasons we

choose to have the antenna module active all the time. Mostly waiting to

react whenever a message is received. And, since this the one module that
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consumes the most energy, with several orders of magnitude above the rest,

we decided to ignore energy consumption for these tests. In the future it

would be interesting to try and implement some synchronization mechanism

to try to save energy. For example we could use the heartbeat message to

piggyback other messages, this way even though we might cause some delays

in the delivery of the messages, we would be able to have a known timeout for

the communication. And with this we might be able to turn off the antenna

when we know no messages are going to be sent.

4.5.1 AODV

To test the validity of the proposed protocol we chose to compare it to a

similar algorithm that would allow for communication in a fully mobile en-

vironment. Due to the difficulty of finding a publish/subscribe algorithm

that would allow for full mobility of all the nodes at any time we chose to

implement a more general communication protocol. For this we chose to use

AODV [40].

AODV is short for Ad hoc On-Demand Distance Vector, and is intended

to be used for mobile nodes in an ad hoc network. The algorithm is designed

to find unicast routes between a sender and the destination. To compensate

for the dynamic nature of the network it uses a reactive approach to route

creation. Routes are created only whenever a node wants to send a message.

The algorithm works as follows. Nodes will be continually exchanging

hello messages. These messages are used to determine the neighboring nodes

and whether the links are still alive. Each node will keep a list of neighboring

nodes they can communicate with, and in the case that a neighbor fails to

send the periodic hello message a broken link is detected. The nodes also

store a routing table for all the destinations they tried to communicate with.

This routing table is simply the next hop from the set of neighbors it has,

with each node only knowing the next hop and not the full route. Whenever

a node wants to send a message to a destination that is not in the routing

table it will issue a Route Request message (RREQ). This message will be

propagated via broadcast to the rest of the network. Any node that receives
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such a message will first check if it already has a route to the destination. In

the case that a route exists, or it is the destination, it will answer back with

a Route Reply (RREP), if it does not have any route it will also broadcast

the RREQ. This behavior is described in Figure 4.3 where a node n1 wants

to find a route towards n5. It might happen that several routes are created

towards the destination, in this case the route with the shortest hop count

is used. Once a route is created the originator can send the message they

want. Each route created also has a predefined timeout, once no messages

have been sent through that route on some time the node invalidates the

route. If this happens or a broken link is detected a Route Error (RERR)

message is sent back towards the originator of the route.

Due to its ability to handle route creation and send messages without the

need to stop and synchronize the nodes of the network, while every node if

moving, we chose AODV to compare with our protocol. Even though MFT-

PubSub is designed for publish/subscribe and is able to handle publication

as if they were multicast messages, whereas AODV only handles unicast, we

believe this is a fair comparison with the parameters described in the next

subsection. Another interesting feature of MFT-PubSub is that we can also

create routes in a similar way to what AODV does. If each subscriber creates

a subscription that refers to itself we can have a system where, instead of mul-

ticast messages, any node is able to send a message directly to a subscriber.

These routes will be created when the subscriber issues the subscription and

will be updated with each subsequent migration. Thus, instead of having to

create a route whenever we want to send a message the system already has

one ready for us. For simplicity we also define roles for each node such as

broker, subscriber or publisher. However, MFT-PubSub supports the ability

of a node to take any of the three roles at any time, even all three at the

same time.

4.5.2 Simulation parameters

Before starting the simulations we have to define the parameters these sim-

ulations are going to be run at. We want to test several situations, from
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n1

n2

n3

n4 n5

(a) n1 sends a RREQ message for n5

that is received by n2 and n3.

n1

n2

n3

n4 n5

(b) n2 and n3 do not have any route
to n5 so they also broadcast the mes-
sage.

n1

n2

n3

n4 n5

(c) n4 also broadcasts the message.

n1

n2

n3

n4 n5

(d) Finally n5 answers back with a
RREP message and the route is cre-
ated.

Figure 4.3: AODV route creation.

having a few nodes to creating a bigger network. In some preliminary tests

we realized that having a few nodes in a big area will not allow the correct

communication of the nodes. Most of the time the nodes will be too far away

from each other to be able to communicate with each other and this will only

permit brief moments when the messages can be sent. For this reason we

choose to link the simulation area with the amount of nodes we are simulat-

ing, by defining a node density. This density has been defined as 0,005 nodes

per square meter, giving each node an area of 200 square meters. The five

different configurations used can be seen in Table 4.2. We have given each

node a specific role, even those on AODV. If a node is defined as a broker
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or subscriber in AODV it will not initiate any RREQ messages, though sub-

scribers and publishers are also allowed to route messages to another node

if needed. For all simulations we keep the amount of publishers equal, and

low, since we are mostly interested in checking the ability of the brokers to

handle their routing table as the network size increases.

Configuration #publishers #susbscribers #brokers area

C2 2 2 2 35x35 m2

C4 2 4 4 45x45 m2

C8 2 8 8 60x60 m2

C16 2 16 16 80x80 m2

C32 2 32 32 110x110 m2

Table 4.2: Simulation configurations.

The duration of the simulation is set at 700 seconds, with the last 200

of those being a period where no new messages are created. This gives time

for the messages that are in transit or in the queues to be delivered to their

recipients. AODV has no mechanism to store a message to be delivered at

a later date. But, in MFT-PubSub we store all PUB messages that could

not be correctly routed to its destination. When a message is not delivered,

it means that it is still stored in the memory of some of the brokers waiting

for the subscriber to be reachable again. This means that even though the

messages have not been delivered by the time the simulation ends if we left it

to run enough time, eventually they would be delivered. The nodes defined

as publishers will send messages to the network every second for the first 500

seconds of the simulation.

One of the most important parameters to check the validity of the protocol

is the mobility model chosen. After starting with a random walk model where

for each tick of a clock a random direction and random distance is chosen for

the new location(within some predefined parameters), we realized that this

created a few clusters of nodes, but did now allow the nodes to cover the

whole area. We choose the random waypoint model [12], at speeds of 2-4-6-

8-10 meters per second, that go from walking quite fast to the top speed of
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a sprinter. In this mobility model the nodes choose a random point in the

simulation area and go towards that point at a predefined speed. Once it

reaches that point it will choose another one and repeat the procedure. This

means that nodes will walk around the whole simulation area more often and

prevents the creation of clusters.

For the radio module we choose to use one that is already configured in

the Castalia framework, the CC2420 chip [1]. This chip is designed for low

power wireless communication applications such as a wireless sensor network

that uses the 2.4GHz frequency band. The transmission power is set to

0dbm in order to maximize the communication range of the devices which,

as this chip is designed for low power use cases, is quite low. One of the most

interesting points of Castalia is its ability to calculate if a node should receive

a message. This is done by calculating a Signal to Interference Ratio (SINR)

for each message reception. We set the radio module to use the additive

collision model that will allow the delivery of the message in the case of a

concurrent transmission if one of the signals is strong enough. We also use

the normal mode for the chip.

The last module we have to configure is the Media Access Control (MAC)

module. For the simulations we have used the Carrier-Sense Multiple Access

(CSMA) configuration that comes with the Castalia installation. CSMA is

a common MAC protocol used in both wired or wireless computer networks.

Using this protocol a node will check if any other node in the network is

transmitting in the shared medium, the 2.4GHz band in our case, before it

begins the transmission. If a transmission is detected the sender will wait a

random interval before trying to send the message again.

All possible combinations of size and speed are repeated 10 times during

the simulation with different random seeds each time, to be able to repeat

the simulation conditions. This way we can obtain an average of the results

to better reflect the performance. We also want to mention at this point

that, where MFT-PubSub only needed a few minutes to run the biggest

simulations, the implementation AODV required between six and up to 16

hours for the biggest ones. This long simulation time made it difficult to test
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AODV and was mostly caused by the number of messages that it needs to

send. Each time a message is sent Castalia has to calculate and deliver those

messages to nodes in range, and AODV being an algorithm prone to sending

broadcast messages flooding the network creates a huge amount of messages.

4.5.3 Delivery rate

The first and most obvious metric to measure is if the messages are being

delivered correctly to the subscribers. We call this the delivery rate. We

consider the delivery rate as the number of messages a subscriber receives

with respect to the ones that were originally sent to it. This metric does not

take into account messages that are stored in the routers, where hopefully,

with time, they will reach the subscribers.

In Figure 4.4 we see a comparison of the delivery rates for both MFT-

PubSub and AODV. MFT-PubSub seems to have better resilience to speed,

even improving the delivery rate as the speed goes up. We will later analyze

this behavior. Both protocols are strongly affected by the network size, the

bigger the network, the harder it is to correctly deliver a message.

In order to find the reason behind the strange behavior of MFT-PubSub

where faster mobility improves the delivery rate of messages we have to look

at the actual number of messages delivered. Figure 4.5 shows the comparison

for delivered messages both with respect to the network size and the speed.

The improvement of delivery rate for higher speeds can be further analyzed

with Figure 4.5b. This figure shows the results of the C16 configuration using

the different predefined speeds. Here we can see a slight increase on the total

number of messages delivered as the speed increases, but as the speed reaches

6 m/s it starts to drop. This happens due to the way MFT-PubSub stores

the undelivered messages. Whenever a broker cannot find the path to a

subscriber it will store it and wait for new information on that subscriber, as

the speed increases there are more opportunities for a subscriber both to pass

by a broker that has a message for it and to be in range to communicate. If

we look at the amount of messages delivered in Figure 4.5a, we observe that

for C32 AODV has delivered more messages than MFT-PubSub, whereas
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in Figure 4.4 we show that MFT-PubSub has a better delivery rate for that

same configuration. This difference is mainly due to how a publish/subscribe

system works; in order to be able to route a message to a subscriber, that

subscriber has to actually subscribe to the content, and the subscription is

what creates the route. In these simulations we only take into account the

messages that are routed to a subscriber as having to be delivered to that

subscriber. If a subscriber is in another partition and a broker does not know

it needs to route a PUB message to that subscriber, since it is not in the

routing table, the message will not be considered a loss. AODV works in a

more reactive approach, it will always try to create a route to the subscriber

and retry several times until it fails. If we take a look at medium sized

networks MFT-PubSub is able to correctly deliver more messages as shown

in Figure 4.5b, where MFT-PubSub outperforms AODV at all speeds.
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Figure 4.4: Message delivery rate comparison of both algorithms depending
on the size of the simulation.
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Figure 4.5: Average number of messages correctly delivered. In Figure 4.5a
we show the results for a node speed of 8 m/s on different configurations.
And, in Figure 4.5b we show the results of all speeds for the C16 configura-
tion.
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4.5.4 End-to-end delay

The next metric we will take a look into is the delay the protocol causes in

order for a message to reach its destination. We call this metric the end-

to-end delay. Figure 4.6 shows the comparison between both protocols. It

is interesting to note that MFT-PubSub is able to keep up with AODV in

this metric in spite of the differences in how message delivery works. AODV

will try to deliver the message as soon as possible, by creating a route if it

does not have one already and sending the mesage afterwards. This metric

measures this delay, caused by the need to create the route, since, once the

route is created the message is sent directly towards the destination. In

MFT-PubSub we already have predefined routes so it should need less time

to deliver the message since half the work is already done. Nevertheless, in

this metric we also have to take into account those messages that had been

stored by the brokers due to it being not possible to deliver them. Here

we are measuring the time from the message creation to its delivery. Any

message that is stored to be delivered later will greatly increase this value.

We also observed that some of these values in the case of AODV are higher

than they should be, mostly those pertaining to C4. In Figure 4.7 we show the

number of hops a message needs to be correctly delivered. In contrast to the

average delivery time, here we are mostly interested in knowing how many

hops a message needs in order to be delivered from source to destination.

Whenever a broker has to replay undelivered events we reset the hop count

for that message. We can see that in the case of C4, AODV needs more

hops that the other configurations in order to deliver a message. We ran this

configuration with different random seeds and we always obtained the same

behavior. This behavior means that the message is being sent from a node

to another without being able to be delivered due to the changing nature of

the network.

74



4.5. Performance evaluation

 0.001

 0.01

 0.1

 1

 10

C2 C4 C8 C16 C32

E
n
d

 t
o
 E

n
d

 D
e
la

y

Configuration

MFT-PubSub
AODV

Figure 4.6: Comparison of end-to-end delay, in seconds, for data messages
for a node speed of 8 m/s. Note the logarithmic scale on the y axis.
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Figure 4.7: Number of hops a message makes on the network before it is
delivered for a node speed of 8 m/s.
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4.5.5 Number of messages exchanged

Finally, since we decided not to analyze the energy consumption of the pro-

tocol, we take a look at another metric that might tell us about the efficiency

of it. In this case we choose the total number of messages by all the nodes

exchanged in the network. Due to the mobility of the nodes messages have

to be sent to inform neighboring nodes or to recreate broken routes. Looking

at the total number of messages gives us an insight into how much overhead

the protocol needs to route the messages it has delivered. We show this

comparison in Figure 4.8. We have to emphasize that this is the average

number of messages sent by each node, to obtain the total we have to mul-

tiply this by the number of nodes. For the smallest configuration AODV

needs fewer messages than MFT-PubSub, since the latter has to create the

whole publish/subscribe structure in order to function correctly. However,

as the number of nodes increase we see an explosion of messages by AODV,

whereas MFT-PubSub barely changes in number. With this we conclude

that even though AODV works fine it is highly inefficient due to the amount

of broadcast messages it needs to create the routes, with mobility compli-

cating things more. While nodes are moving an already created route might

become unreachable, and require another round of route request messages.

If we take a look to the number of messages sent by individual nodes we

also notice that on MFT-PubSub most of the work is done by brokers that

are responsible for routing messages and keeping up with the changes caused

by migrations. Publishers and subscribers send fewer messages.
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node in order to correctly route messages for a node speed of 8 m/s. Note
the logarithmic scale on the y axis.

4.6 Summary

In this chapter we have presented a publish/subscribe protocol that supports

full mobility of nodes, called MFT-PubSub. We have improved on the pre-

vious protocol by reducing the number of messages a migration requires to

stabilize the network, and reducing the size of those messages. The protocol

is more complex to implement than the one presented in the previous chapter

due to the handling of timestamps and hop counts.

Thanks to the timestamps a broker can notify the migration of not only

the subscribers that are directly connected to it, but also those that are in

a lower branch in the communication topology. Using those timestamps we

also prevent the creation of phantom subscriptions where a subscriber has

unsubscribed from one partition, but not the other. Whenever the migration

occurs brokers can compare their timestamps and if the one with the newer

timestamp has no subscriptions for a subscriber, it means that the subscriber

has left the network.
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We have implemented the protocol in Castalia in order to obtain perfor-

mance metrics and compare it with similar solutions. In our case we compare

MFT-PubSub with AODV which is an established algorithm for communi-

cation in a mobile network. We observe that the protocol proposed in this

dissertation improves the performance of AODV, though it suffers in bigger

sized networks. We have also shown that the number of messages increases

linearly with the number of nodes on the network, with each node suffering

a similar load, though nodes closer to the leader will have a higher load.

One of the main improvements that could be made is to try to optimize

the algorithm that creates the communication tree. Using the leader election

mechanism we often end up with trees that are severely unbalanced, with

most of the nodes on a single branch from the leader. This behavior leads

to an increased amount of migrations that could be reduced if the tree were

more balanced.

The nodes can also take on any of the three roles found in typical pub-

lish/subscribe networks, even at the same time. This allows for the creation

of a network that instead of behaving like a common multicast scenario.

Thus, we can create a network where all the nodes are able to communicate

with each other if each node has the three roles at the same time and a node

creates a subscription with its own identifier.
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5.1 Conclusions

In this dissertation we have presented two protocols that allow broker mi-

gration in a fully mobile publish/subscribe system. The second one being an

improved iteration of the first one. Both have been designed by extending the

Phoenix protocol that allows subscriber and publisher migration. We have

achieved the objective of having a system where network changes caused by

mobility will not massively impair the performance of the network. As in

Phoenix, we also try to optimize the messages caused by a migration and we

are able to replay events to subscribers that took place while that subscriber

was disconnected. However, due to the mobile and changing nature of the

network we cannot make any promises on the order of those messages or even

regarding whether a subscriber has received all of them or not.

Both protocols presented support the creation of partitions, each one com-

posing an independent event delivery network that works for the subscribers

and publishers connected to them. Thanks to the leader election algorithm

used, in those partitions that merge together one of the two previous leaders

will be chosen as the new leader designating a main partition and a secondary

one. The main partition will be the one that keeps the leader and the sec-

ondary will effectively migrate into it. Thus we always have one direction for

migrations. Neither protocol is dependent on the leader election algorithm

we have chosen, any other algorithm that has similar properties can be used.

Any algorithm that is able to create an acyclic connection graph with the

nodes in the system, and keep it updated while the nodes are moving, can

also be used. Different algorithms might also be used depending on the ex-

pected mobility of the system. A deployment in which we expect to have a

backbone of static brokers while a few others are mobile could use a more

traditional approach of trying to optimize or load balance the links used.

The first protocol, presented in Chapter 3 is a direct extension to Phoenix.

It simplifies a few things, such as not storing messages with timestamps for

event replay, but it offers broker mobility by creating a migration for the

group of subscribers that are local to that broker. This protocol though
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simple, also has some drawbacks. The messages it sends can be very large

since they might contain the full routing table of a broker. And, due to the

cascading nature of the forced migrations, the protocol needs more messages

than the optimum for notifying the migration. In some cases it might not

be possible to completely eliminate a subscriber from the system, leaving

behind phantom subscriptions.

The second approach, which we have decided to call Mobile Fault Tolerant

Publish/Subscribe, or MFT-PubSub for short, is the main contribution of

this dissertation. MFT-PubSub maintains the concept of using the brokers

as a proxy for subscriber migration whenever a broker migrates, by simulating

the migration of the subscribers connected to it. However, it improves its

efficiency with respect to the first approach. We have added a timestamp to

each message sent by a subscriber and this allows us to know which one of

any two brokers has received the latest message from a subscriber. Using this

timestamp, together with the number of hops a broker needs to reach the

subscriber, we can optimize the migration of the brokers. Each time a broker

migrates, it compares those values with the new connected broker and they

exchange messages until both have an updated routing table. Furthermore

this protocol allows any device on the network to take on any combination

of the roles of a broker, subscriber or publisher. We can also create a filter

that matches messages sent directly to an specific subscriber, this way we can

create a network in which we keep delivery routes between any two nodes.

And those same routes will be updated each time a topology change occurs.

MFT-PubSub has been validated by simulation in the Castalia frame-

work. We have compared the performance of our protocol, with respect to

mobility and number of devices it supports, against AODV. We improve on

the message delivery rate that AODV offers though the performance is re-

duced on bigger networks. The number of messages needed also increases

linearly with the network size allowing better scalability than AODV.
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5.2 Future work

The protocols described in this dissertation can be extended and improved in

several ways. As mentioned before, different mobility patters might reduce

the requirements of migrations, allowing to optimize the number of messages

needed for the migration.

Small changes to the leader election used might also have an impact in

the way migrations are detected. By using the communication tree we are

ignoring better delivery paths. If we introduce the concept of mobility to

the creation of the spanning tree, we might have a network where devices

are aware of the speed at which they are moving. Using this information, we

might automatically create a backbone of slower nodes where links are more

stable and try to prevent migrations from happening inside that backbone.

Subscribers might also be more interested in joining those stable brokers than

simply having the shortest path to the leader which is the one used in the

current implementation. Trying to balance the spanning tree is also another

point of improvement.

Also, since a device might have all three roles of a publish/subscribe net-

work at the same time we can create a solution for multicast communication

in a mobile environment.
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