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Resumen

Los dispositivos que controlan el flujo de energía o materia desempeñan un papel

destacado en la tecnología. Un dispositivo clave es el rectificador, que permite que

las corrientes sólo vayan en una dirección. El más notable de estos dispositivos es el

diodo eléctrico, que es una parte vital de los ordenadores, los dispositivos digitales

y los sistemas de conversión de corriente AC/DC. Sin el diodo no existiría la mayor

parte de la tecnología que tenemos hoy en día.

El diodo eléctrico es un componente eléctrico que permite que la corriente eléc-

trica fluya de forma asimétrica con respecto al signo de la diferencia de potencial

que se le aplica. Normalmente, un diodo está compuesto por la unión de un

semiconductor p con un semiconductor n. Cuando se aplica un potencial de polar-

ización directa ∆V a la unión p-n (conectando el polo positivo de una batería al

semiconductor p), la corriente eléctrica fluirá a través del diodo. Sin embargo, la

unión p-n actúa como un aislante eléctrico si se aplica un potencial de polaridad

inversa −∆V .

El impacto tecnológico del diodo ha motivado el desarrollo de dispositivos anál-

ogos en otros escenarios físicos, como la óptica. Un equivalente óptico al diodo

es el aislador óptico, que se utiliza para permitir la propagación unidireccional

de la luz. Este dispositivo se basa en la rotación no recíproca de la dirección de

polarización de la luz polarizada en materiales que se encuentran en un campo

magnético, conocida como Rotación de Faraday. El aislador óptico es un compo-

nente crítico en los dispositivos ópticos para proteger las fuentes de luz delicadas

de la retropropagación de la luz.

v
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Llegados a este punto podemos ver que un ingrediente común entre los dispos-

itivos que muestran un comportamiento similar al de un diodo es algún tipo de

asimetría estructural interna. En el diodo eléctrico esta asimetría proviene de la

distribución asimétrica de los portadores de carga: electrones en el lado n y huecos

en el lado p. En el aislador óptico, la orientación del campo magnético rompe la

simetría del sistema.

El objetivo de esta Tesis es explorar la física y los posibles diseños de disposi-

tivos que implementen un mecanismo rectificador para un transporte asimétrico de

materia o energía. Esta Tesis se divide en dos partes: En la primera parte, estudio

el scattering asimétrico de partículas por potenciales cuánticos unidimensionales

y en la segunda parte, estudiaré la rectificación térmica en cadenas de osciladores.

A continuación, presento una introducción a estas dos partes.

Parte I

El interés actual por desarrollar nuevas tecnologías cuánticas está impulsando la

investigación aplicada y fundamental sobre los fenómenos y sistemas cuánticos con

posibles aplicaciones en circuitos lógicos, metrología, comunicaciones o sensores.

Se necesitan dispositivos básicos robustos que realicen operaciones elementales

para llevar a cabo tareas complejas cuando se combinan en un circuito. Con el

desarrollo de nuevas tecnologías cuánticas en mente, el objetivo de esta parte de

la Tesis es diseñar potenciales para el scattering unidimensional de una partícula

cuántica sin espín que conduzcan a coeficientes de transmisión y reflexión que

difieran para paquetes de ondas procedentes de la izquierda o de la derecha.

Para obtener scattering asimétrico, es necesario utilizar potenciales no hermíti-

cos y no locales. Aunque los potenciales no locales y no hermíticos pueden parecer

poco comunes y extraordinarios en la física cuántica para algunos, aparecen de

forma natural cuando se aplican técnicas de partición para describir interacciones

efectivas en un subespacio de un sistema mayor con un hamiltoniano hermítico.

Los hamiltonianos no hermíticos que representan interacciones efectivas tienen una
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larga historia en física nuclear, atómica y molecular, y se han vuelto comunes en la

óptica, donde las ecuaciones de onda en guías de onda podrían simular la ecuación

de Schrödinger. Los hamiltonianos no hermíticos también pueden establecerse

fenomenológicamente, por ejemplo, para describir la disipación. Recientemente

ha habido mucho interés en los hamiltonianos no hermíticos, en particular, en

aquellos que tienen simetría PT por sus propiedades espectrales y sus útiles apli-

caciones, sobre todo en óptica. Sin embargo, es importante destacar que existen

simetrías diferentes a la PT y que son necesarias para producir ciertas formas de

scattering asimétrico.

El contenido de esta parte de la Tesis está organizado como sigue. En el capí-

tulo I, utilizaré potenciales no hermíticos y no locales para diseñar potenciales

con coeficientes de scattering asimétricos. Las simetrías para los hamiltonianos no

hermíticos se generalizarán utilizando el concepto de pseudohermiticidad y se uti-

lizarán para derivar reglas de selección útiles para los coeficientes de transmisión y

reflexión. En el capítulo II, derivaré un conjunto de propiedades de los valores pro-

pios de los potenciales de scattering que extienden los resultados anteriores para

los hamiltonianos discretos no hermíticos utilizando las simetrías generalizadas.

En el capítulo III, presentaré una posible realización física de los hamiltonianos

de scattering asimétrica en un contexto de óptica cuántica.

Parte II

La radiación, el calor y la electricidad son algunos de los principales mecanis-

mos físicos de transporte de energía. En particular, los dos últimos mecanismos

desempeñan un papel importante en la tecnología. El procesamiento moderno de

la información se basa en dispositivos electrónicos como el diodo y el transistor.

Sin embargo, no existe una tecnología análoga para controlar las corrientes de

calor transportadas por fonones. Una explicación podría ser que los fonones son

más difíciles de controlar que los electrones, ya que (al contrario que ellos) no

tienen masa ni carga eléctrica. Sin embargo, sería interesante explorar el diseño
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de dispositivos fonónicos debido a la riqueza de diferentes mecanismos físicos que

intervienen en el transporte de calor. El rectificador térmico, o diodo térmico,

sería un componente elemental para el desarrollo de dispositivos fonónicos. En

esta parte de la Tesis estudio la rectificación térmica en cadenas de osciladores,

teniendo la posibilidad de diseñar un diodo térmico como motivación principal.

La rectificación térmica es el fenómeno físico, análogo a la rectificación de la

corriente eléctrica en los diodos, en el que la corriente de calor a través de un

dispositivo o medio (el diodo térmico o rectificador) no es simétrica con respecto

al intercambio de las temperaturas de los baños térmicos con los que está en con-

tacto. Fue observado por primera vez en 1936 por Starr en una unión entre cobre

y óxido cuproso. Los trabajos teóricos se iniciaron mucho más tarde utilizando

como rectificadores modelos simples de cadenas sgmentadas de osciladores anar-

mónicos. Estos trabajos desencadenaron mucha investigación que continúa hasta

hoy. La investigación sobre la rectificación térmica ha ganado mucha atención en

los últimos años como ingrediente clave para construir dispositivos que controlen

los flujos de calor de forma similar a las corrientes eléctricas. Existen propues-

tas para diseñar circuitos lógicos térmicos en los que la información, almacenada

en memorias térmicas, se procesaría en puertas lógicas térmicas. Estas puertas

lógicas térmicas, al igual que sus homólogas electrónicas, requerirían diodos térmi-

cos y transistores térmicos para funcionar. Los dispositivos rectificadores de calor

también serían muy útiles en los circuitos nanoelectrónicos, ya que permitirían a

los componentes delicados disipar el calor mientras están protegidos de las fuentes

de calor externas.

La mayoría de los trabajos sobre diodos térmicos han sido teóricos, con sólo unos

pocos experimentos. Un intento relevante de construir un rectificador térmico se

basó en una estructura graduada hecha de nanotubos de carbono y nitruro de boro

que transporta el calor entre un par de circuitos de calefacción/sensores. Uno de

los extremos del nanotubo está cubierto con una deposición de otro material, lo

que hace que el calor fluya mejor desde el extremo cubierto al descubierto. Sin

embargo, la rectificación obtenida fue pequeña, con factores de rectificación en

torno al 7%.
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Gran parte del esfuerzo teórico en la investigación de la rectificación térmica

se ha dirigido a mejorar los factores de rectificación y las características de los

rectificadores. La primera aproximación al diseño de diodos térmicos consistió en

utilizar cadenas de osciladores segmentados en dos o más regiones con propiedades

diferentes. Sin embargo, pronto se observó que el rendimiento de los rectificadores

segmentados era muy sensible al tamaño del dispositivo: la rectificación dismin-

uye al aumentar la longitud del rectificador. Para superar esta limitación se pro-

pusieron dos ideas. La primera consiste en utilizar cadenas escalonadas en lugar de

segmentadas, es decir, cadenas en las que alguna propiedad física varía de forma

continua a lo largo de la cadena, como por ejemplo la masa de las partículas que

la componen. La segunda consiste en utilizar cadenas con interacciones de largo

alcance, de forma que todos los elementos de la cadena interactúan con todos los

demás. El fundamento de estas propuestas era que en un sistema escalonado se

crean nuevos canales rectificadores asimétricos, mientras que las interacciones de

largo alcance crean también nuevos canales de transporte, evitando el habitual

decaimiento del flujo de calor con el tamaño. Además de un mayor poder de rec-

tificación, se espera que las cadenas escalonadas tengan una mejor conductividad

térmica que las segmentadas. Este es un punto importante para las aplicaciones

tecnológicas, ya que los dispositivos con altos factores de rectificación no son útiles

si las corrientes que fluyen a través de ellos son muy pequeñas.

Otro foco principal de la investigación teórica en rectificación térmica es la

búsqueda de los factores fundamentales que contribuyen a la aparición de la rec-

tificación. Históricamente, los elementos cruciales para que haya rectificación han

sido la presencia de alguna asimetría estructural en el sistema y de fuerzas no lin-

eales (anarmónicas), que conducen a una dependencia con la temperatura de las

bandas fonónicas. El solapamiento de las bandas fonónicas de las distintas partes

de la cadena implica una buena o mala conducción térmica, por lo que el signo de

la diferencia de temperatura aplicada puede afectar a la conducción y dar lugar a

rectificación cuando. Sin embargo, investigaciones más recientes han señalado que

la anarmonicidad no es una condición necesaria para un solapamiento asimétrico

y, por tanto, para la rectificación. La rectificación también se produce en modelos
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armónicos simples (minimalistas) que incorporan alguna asimetría estructural y en

la que los valores de algunos de sus parametros físicos dependen de la temperatura.

El contenido de esta parte de la Tesis está organizado como sigue. En el capí-

tulo IV, presento un modelo de rectificador térmico que se basa en una impureza

localizada en medio de una cadena de átomos. En el capítulo V, se presenta una

propuesta de rectificador térmico en una cadena de iones atrapados con una dis-

tribución de frecuencia escalonada. Finalmente, en el capítulo VI, se estudia el

transporte de calor en un modelo de dos osciladores conectados para explorar el

origen y la optimización de la rectificación térmica.



List of publications

I) The results of this Thesis are based on the following articles

Published Articles

1. M. Pons, Y. Y. Cui, A. Ruschhaupt, M. A. Simón and J. G. Muga

Local rectification of heat flux

EPL 119, 64001 (2017).

2. A. Ruschhaupt, T. Dowdall, M. A. Simón and J. G. Muga

Asymmetric scattering by non-Hermitian potentials

EPL 120, 20001 (2017).

3. M. A. Simón, A. Buendía and J. G. Muga

Symmetries and Invariants for Non-Hermitian Hamiltonians

Mathematics 6, 111 (2018).

4. M. A. Simón, A. Buendía, A. Kiely, A. Mostafazadeh and J. G. Muga

S-matrix pole symmetries for non-Hermitian scattering Hamiltonians

Phys. Rev. A 99, 052110 (2019).

5. M. A. Simón, S. Martínez-Garaot, M. Pons and J. G. Muga

Asymmetric heat transport in ion crystals

Phys. Rev. E 100, 032109 (2019).

xi

https://doi.org/10.1209/0295-5075/119/64001
https://doi.org/10.1209/0295-5075/120/20001
https://doi.org/10.3390/math6070111
https://doi.org/10.1103/PhysRevA.99.052110
https://doi.org/10.1103/PhysRevE.100.032109


List of publications xii

6. A. Alaña, S. Martínez-Garaot, M. A. Simón and J. G. Muga

Symmetries of (N ×N ) non-Hermitian Hamiltonian matrices

J. Phys. A: Math. Theor. 53, 135304 (2020).

7. A. Ruschhaupt, A. Kiely, M. A. Simón and J. G. Muga

Quantum-optical implementation of non-Hermitian potentials for asymmet-

ric scattering

Phys. Rev. A 102, 053705 (2020).

8. M. A. Simón, A. Alaña, M. Pons, A. Ruiz-García and J. G. Muga

Heat rectification with a minimal model of two harmonic oscillators

Phys. Rev. E 103, 012134 (2021).

II) Other articles produced during the Thesis period

Published Articles not included in this Thesis

1. M. Palmero, M. A. Simón and D. Poletti

Towards Generation of Cat States in Trapped Ions Set-Ups via FAQUAD

Protocols and Dynamical Decoupling

Entropy 21, 1207 (2019)

2. M. A. Simón, M. Palmero, S. Martínez-Garaot and J. G. Muga

Trapped-ion Fock-state preparation by potential deformation

Phys. Rev. Research 2, 023372 (2020)

https://doi.org/10.1088/1751-8121/ab7781
https://doi.org/10.1103/PhysRevA.102.053705
https://doi.org/10.1103/PhysRevE.103.012134
https://doi.org/10.3390/e21121207
https://doi.org/10.1103/PhysRevResearch.2.023372


Introduction

Devices that control the flow of energy or matter play a prominent role in

technology. A key device is the rectifier, which allows currents only one way. A

rectifier behaves like a corridor with a trap door that can be opened from left

to right but is closed otherwise. The most notable of such devices is the electric

diode, which is a vital part of computers, digital devices, and AC/DC current

conversion systems. Without the diode most of the technology that we have today

would not exist.

The electric diode is an electrical component that allows electrical current to

flow asymmetrically with respect to the sign of the potential difference that is

applied to it. Typically, a diode is composed by the union of a p-semiconductor

with an n-semiconductor. When a forward-bias potential ∆V is applied to the p-n

junction (by connecting the positive pole of a battery to the p-semiconductor),

electrical current will flow through the diode. However, the p-n junction acts as

an electrical insulator if a reversed-bias potential −∆V is applied.

Motivated by the technological impact of the diode, analogous devices have

been developed in other physical scenarios, like optics. An optical equivalent to the

diode is the optical isolator, which is used to allow one-way light propagation [1].

This device is based on the non-reciprocal rotation of the polarization direction

of polarized light in materials that are in a magnetic field, known as Faraday

Rotation (see ref. [2]). The optical isolator is a critical component in optical

devices to protect delicate light sources from back-propagating light.

1
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At this point we can see that a common ingredient between devices which

show a diode-like behaviour is some kind of internal structural asymmetry. In the

electric diode this asymmetry comes from the asymmetric distribution of charge

carriers: electrons in the n-side, and holes in the p-side. In the optical isolator the

orientation of the magnetic field breaks the symmetry of the system.

This Thesis is devoted to explore the physics and possible designs of devices

that implement a diodic or rectifying mechanism for an asymmetric transport of

matter or energy. The Thesis is divided into two parts: In part I, I look for

asymmetric particle scattering of 1-dimensional quantum potentials and in part

II, I will study thermal rectification in chains of oscillators. There follows an

introduction to these two parts.

Introduction to part I: non-Hermitian systems and

asymmetric scattering

The current interest to develop new quantum technologies is boosting applied

and fundamental research on quantum phenomena and systems with potential

applications in logic circuits, metrology, communications or sensors. Robust basic

devices performing elementary operations are needed to perform complex tasks

when combined in a circuit. With the development of new quantum technologies

in mind, the objective of this part is to design 1-dimensional scattering potentials

for a quantum, spinless particle of mass m that lead to transmission and reflection

coefficients (squared modulus of the amplitudes) which differ for wave packets

coming from the left or the right.

To find an asymmetric scattering behavior, I will use non-Hermitian and non-

local potentials [3, 4]. Although non-local and non-Hermitian potentials might

seem uncommom and extraordinary in quantum physics to some, they appear

naturally when applying partitioning techniques to describe the effective interac-

tions in a subspace of a larger system with a Hermitian Hamiltonian by projection
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[3, 5, 6]. Non-Hermitian Hamiltonians representing effective interactions have a

long history in nuclear, atomic, and molecular physics, and have become common

in optics, where wave equations in waveguides could simulate the Schrödinger

equation [7–9]. Non-Hermitian Hamiltonians can also be set phenomenologically,

e.g. to describe dissipation [7]. Recently there has been a lot of interest in non-

Hermitian Hamiltonians [10–18], in particular, the ones having parity-time (PT)

symmetry [19, 20] because of their spectral properties and useful applications,

mostly in optics [8, 9, 21]. However, I shall emphasize that symmetries different

from PT exist and are necessary to produce certain forms of asymmetric scattering.

The contents of this part of the Thesis will be organized as follows. In chap-

ter 1, I will use non-Hermitian and non-local potentials to design potentials with

asymmetric scattering coefficients for left/right incidence. Symmetries for non-

Hermitian Hamiltonians will be generalized using the concept of pseudohermitic-

ity [22] and used to derive useful selection rules for the transmission and reflec-

tion coefficients. In chapter 2, I will derive a set of properties of the eigenvalues

of scattering potentials that extend previous results for discrete non-Hermitian

Hamiltonians by using the generalized symmetries. In chapter 3, I will present a

possible physical realization for asymmetric scattering Hamiltonians in a quantum

optics setup.

Introduction to part II: Heat rectification in meso-

scopic systems

Radiation, heat and electricity are prominent mechanisms of energy transport.

In particular, the two last mechanisms play a dominant role in technology. Modern

information processing rests on electronic devices like the diode and the transistor.

However, there is not an analogous technology to control heat currents driven by

phonons. An explanation could be that phonons are more difficult to control than

electrons since (contrary to them) they do not have mass or electrical charge [23].

However, it would be interesting to explore the design of phononic devices due to
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the richness of different physical mechanisms that mediate heat transport. The

thermal rectifier, or thermal diode, would be a primary building block to develop

phononics [23]. In this part I study thermal rectification in chains of oscillators

with the design of a thermal diode in mind.

Thermal rectification is the physical phenomenon, analogous to electrical cur-

rent rectification in diodes, in which heat current through a device or medium (the

thermal diode or rectifier) is not symmetric with respect to the exchange of the

bath temperatures at the boundaries. It was first observed in 1936 by Starr in

a junction between copper and cuprous oxide [24]. The theoretical work started

much later using as rectifiers simple anharmonic chain models with different seg-

ments [25, 26]. These papers sparked much research that continues to this day.

Research on thermal rectification has gained a lot of attention in recent years as

a key ingredient to build prospective devices to control heat flows similarly to

electrical currents [23, 27]. There are proposals to engineer thermal logic circuits

[28] in which information, stored in thermal memories [29], would be processed

in thermal gates [30]. Such thermal gates, as their electronic counterparts, would

require thermal diodes and thermal transistors to operate [31, 32]. Heat rectify-

ing devices would also be quite useful in nanoelectronic circuits, letting delicate

components dissipate heat while being protected from external heat sources [27].

Most work on thermal diodes has been theoretical with only a few experiments

(see refs. [33–36]). A relevant attempt to build a thermal rectifier was based on a

graded structure made of carbon and boron nitride nanotubes that transports heat

between a pair of heating/sensing circuits [33]. One of the ends of the nanotube is

covered with a deposition of another material, which makes the heat flow better

from the covered end to the uncovered end. However, rectifications were small,

with rectification factors around 7%.

Much of the theoretical effort in thermal rectification research has been aimed

at improving the rectification factors and the features of the rectifiers. The first

approach to designing thermal diodes consisted in using chains of oscillators seg-

mented into two or more regions with different properties [25, 26, 37, 38], which is
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reminiscent of the idea of the p-n junction in electric diodes. However, it was soon

noticed that the performance of segmented rectifiers was very sensitive to the size

of the device, i.e., rectification decreases when increasing the length of the rectifier

[38]. To overcome this limitation two ideas were proposed. The first one consisted

in using graded rather than segmented chains, i.e., chains where some physical

property varies continuously along the site position such as the mass of particles

in the chain [39–47]. The second one consisted in using chains with long-range

interactions (LRI), such that all the elements in the chain interact with all the rest

[40, 48, 49]. The rationale behind these proposals was that in a graded system,

new asymmetric rectifying channels are created, while the long-range interactions

create also new transport channels, avoiding the usual decay of heat flow with size

[40]. Besides a stronger rectification power, LRI graded chains are expected to

have better heat conductivity than segmented ones. This is an important point

for technological applications, because devices with high rectification factors are

not useful if the currents that flow through them are very small.

Another main focus of the theoretical research in thermal rectification is the

search for the fundamental factors that contribute to the emergence of rectifi-

cation. Historically, the crucial elements for having rectification have been the

presence of some structural asymmetry in the system and of non-linear (anhar-

monic) forces [23, 37, 38, 50–54], which lead to a temperature dependence of the

phonon bands or power spectral densities. A match or mismatch of the phonon

bands of neighboring parts of the chain implies corresponding good or bad con-

duction so the sign of the temperature bias may affect the conduction and lead

to rectification when the spectra of the parts are affected differently by the bias

reversal. However, more recent research pointed out that anharmonicity is not a

necessary condition for an asymmetric match/mismatch and therefore for rectifica-

tion [55]. Rectification also occurs in simple (minimalistic) harmonic models that

incorporate some structural asymmetry and temperature-dependence of the model

parameters [55]. This dependence may indeed result from an underlying, more in-

tricate anharmonic system by linearization of the stochastic dynamics [55, 56], or

it may have a different origin [57].
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The contents of this part of the Thesis will be organized as follows. In chapter

4, I present a model of a thermal rectifier that relies on a localized impurity in the

middle of a chain of atoms. In chapter 5, a proposal for a thermal rectifer in a

chain of trapped ions with a graded frequency distribution is presented. Finally, in

chapter 6, I study heat transport in a solvable model of two connected oscillators

to explore the origin an optimization of thermal rectification.



Part I

Non-Hermitian systems and

asymmetric scattering





Chapter 1

Asymmetric scattering by

non-Hermitian potentials

“You must unlearn what you have learned.”

Master Yoda

The Empire Strikes Back

In this chapter I study the properties of potentials with asymmetric transmis-

sion or reflection for a quantum, spinless particle of mass m satisfying the one-

dimensional (1D) Schrödinger equation. I propose six types of asymmetric devices

according to the asymmetries of the transmission/reflection coefficients, see fig.

1.1. Non-Hermitian and non-local potentials will be necessary to construct this

kind of devices, therefore an important part of this chapter will consist in studying

their properties. In particular we will study their symmetries. Symmetries can be

used, analogously to their standard application in atomic physics, to determine

selection rules for allowed/forbidden transitions and to predict whether a certain

potential may or may not lead to asymmetric scattering. Importantly, the concept

of symmetry must be generalized when dealing with non-Hermitian potentials.

9
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The theory in this chapter is worked out for particles and the Schrödinger

equation but it is clearly of relevance for optical devices due to the much exploited

analogies and connections between Maxwell’s equations and the Schrödinger equa-

tion, which were used, e.g., to propose the realization of PT-symmetric potentials

in optics [7].

The rest of the chapter goes as follows. In sections 1.1 and 1.2 I introduce the

basics of scattering formalism and the concept of left/right eigenvectors, which

will be fundamental to understand the rest of the chapter. In section 1.3 the

concept of symmetry will be generalized for non-Hermitian Hamiltonians. A set

of selection rules will be derived for the scattering coefficients. In section 1.4 I will

describe the 6 types of asymmetric devices and how the different selection rules

from the generalized symmetries of the Klein 4-group (composed by the identity,

parity, time reversal and PT-symmetry) affect them. In section 1.5 some examples

of non-local potentials leading to asymmetric scattering are given. In section 1.6 I

give an example of a local PT potential that has completely asymmetric reflection

in a broad range of incident momenta. Finally, in section 1.7 I summarize the

main results of this chapter.

1.1 Non-Hermitian scattering in 1 dimension

In this section I will put together a minimum set of concepts and tools needed

to describe scattering in 1 dimension. The ideas in this section can be found

with more detail in [3], which generalizes the results in the celebrated book by

Taylor [58] to non-Hermitian Hamiltonians. In scattering theory one deals with

the Hamiltonian for a particle of mass m subjected to the action of a potential V

H = H0 + V, (1.1)

where H0 = P 2/(2m) is the kinetic energy operator, with P the momentum op-

erator. The potential V is not assumed to be either Hermitian or local. Before

continuing, I shall clarify these two statements. A linear operator O is Hermitian
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Figure 1.1: Devices with asymmetric scattering (limited to scattering coef-
ficients being 0 or 1). The dashed and continuous lines represent respectively
zero or one for the moduli of the scattering amplitudes; the bended lines are
for reflection amplitudes, and the straight lines for transmission: (a) One-way
mirror (T R/A); (b) One-way barrier (T /R); (c) One-Way T-filter (T /A); (d)
Mirror & 1-way transmitter (T R/R); (e) One-way R-filter (R/A); (f) Transpar-
ent, one-way reflector (T R/T ). The nomenclature for the devices is explained
in the main text of section 1.4.

if it is equal to its adjoint operator O†, with the definition of the adjoint given by

⟨ϕ|Oψ⟩ =
⟨
O†ϕ

∣∣ψ⟩ ∀ |ψ⟩ , |ϕ⟩ ∈ H, (1.2)

where H is the Hilbert space of the particle. A potential V with a diagonal

representation in the position basis {|x⟩} of the particle’s Hilbert space is said to

be local,

⟨x|Vlocal|x′⟩ = δ(x− x′)V (x′), (1.3)

whereas a non-local potential has off-diagonal elements

⟨x|Vnonlocal|x′⟩ = V (x, x′). (1.4)

The potentials that we study are in general non-diagonal and satisfy V ̸= V †,

therefore, the Hamiltonians will also be non-Hermitian, H ̸= H†.
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Scattering theory addresses the following question: given an input (incident)

wave packet |ψin⟩, what is the output (outgoing) wave packet |ψout⟩ after interact-

ing with the potential? Since the wave packet is a superposition of plane waves

we may reformulate it in terms of its components, namely, given an incoming

state with a momentum p, what are the probability amplitudes of the state be-

ing reflected and transmited elastically (with the same energy)? To answer these

questions the scattering theory brings in the scattering states, eigenstates of the

Hamiltonian which belong to the continuum part of the spectrum, i.e., eigen-

states of the Hamiltonian which are not bounded to a finite portion of space and

behave asymptotically as plane waves far from the range of action of the poten-

tial. The scattering states represent incoming waves with momentum p and energy

Ep = p2/(2m) > 0 that are partially reflected and transmitted by the potential.

For a plane wave with momentum p > 0 incoming from the left which is transmited

to the right and reflected back, the scattering state |p+⟩ is, asymptotically,

⟨
x
∣∣p+⟩ =

⟨x|p⟩+Rl(p) ⟨x|−p⟩ if x→ −∞

T l(p) ⟨x|p⟩ if x→ ∞
, (1.5)

where T l(p) and Rl(p) are the transmission and reflection amplitudes for left in-

cidence. ⟨x|p⟩ = (2πℏ)−1/2e−ipx/ℏ is the delta-normalized momentum eigenstate.

Similarly, for a plane wave incoming from the right with momentum −p (p > 0)

which is transmited to the left and reflected back, the scattering state |−p+⟩ is,

asymptotically

⟨
x
∣∣−p+⟩ =

T
r(p) ⟨x|−p⟩ if x→ −∞

⟨x|−p⟩+Rr(p) ⟨x|p⟩ if x→ ∞
, (1.6)

where T r(p) and Rr(p) are the transmission and reflection coefficients for right

incidence. We shall see that in general T l ̸= T r, Rl ̸= Rr for Hamiltonians

that are non-Hermitian and non-local. For the adjoint of the Hamiltonian H† =

P 2/(2m) + V †, we can also find the scattering states and amplitudes for left and

right incidence: T̂ l(p), R̂l(p), T̂ r(p) and R̂r(p). In the rest of this Thesis I will
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use the convention that hatted variables .̂.. will refer to the adjoint Hamiltonian

H†. In the following, all the results I present for H can be found also for H† by

making the change H → H†.

Scattering theory provides the method to calculate the scattering amplitudes

through the transition operator Top(z), which is defined as

Top(z) = V + V G(z)V, (1.7)

with G(z) = (z −H)−1 being the Green’s operator. In [3] the transition operator

is used to write the scattering eigenstates as

∣∣±p+⟩ = |±p⟩+ lim
ε→0+

G0(Ep + iε)Top(Ep + iε) |±p⟩ (p > 0), (1.8)

where G0(z) = (z −H0)
−1 is the Green’s operator for free propagation. Now, to

find the scattering amplitudes of reflection and transmission, one has to take the

limits of ⟨x|±p+⟩, where |±p+⟩ is given by eq. (1.8), when |x| goes to infinity and

compare with eqs. (1.5), (1.6) to get

Rl = −i2πm
p

⟨−p|Top(+)|p⟩,

T l = 1− i
2πm

p
⟨p|Top(+)|p⟩,

Rr = −i2πm
p

⟨p|Top(+)| − p⟩,

T r = 1− i
2πm

p
⟨−p|Top(+)| − p⟩, (1.9)

where Top(+) is a shorthand notation for limε→0+ Top(Ep+iε). The same procedure

can be followed using the transition operator T̂op for H† to obtain T̂ l(p), R̂l(p),

T̂ r(p) and R̂r(p). It is convenient to introduce the on-shell scattering matrix,

defined as

S(p) =

 T l(p) Rr(p)

Rl(p) T r(p)

 , (1.10)

which gives the reflected and transmited components for an incident plane wave.
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Waves propagating from left to right are represented as (1, 0)T and waves propa-

gating from right to left as (0, 1)T. Therefore, a left incident wave will be scattered

to
(
T l(p), Rl(p)

)T and a right incident wave to (Rr(p), T r(p))T.

As I mentioned before, one of the goals of scattering theory is connecting an

input state |ψin⟩ to an output state |ψout⟩. The way of doing this is through the

collision or scattering operator S

|ψout⟩ = S |ψin⟩ . (1.11)

S is the product of the Möller operators S = Ω†−Ω+, which are defined as

Ω+ = lim
t→−∞

eiHt/ℏe−iH0t/ℏ,

Ω− = lim
t→+∞

eiH
†t/ℏe−iH0t/ℏ. (1.12)

The Möller Ω̂± and scattering Ŝ operators for the adjoint Hamiltonian can be

found by substituting H for H† in eq. (1.12). The Möller operator with the

+(-) symbol connects the input (output) state with the scattering states of the

Hamiltonian. The Möller operators satisfy the isometry relation

Ω†±Ω± = 1, (1.13)

and the following intertwining equations with the complete and free Hamiltonians

H, H0

HΩ+ = Ω+H0,

H†Ω− = Ω−H0. (1.14)

The hatted quantities for the adjoint Hamiltonian have expressions similar to those

in eqs. (1.13) and (1.14) with the substitution H ↔ H†. Because of eq. (1.14)

and because the momentum eigenstates |p⟩ are eigenstates of H0 with energy Ep,
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the scattering states in eqs. (1.5) and (1.6) are also given by

∣∣±p+⟩ = Ω+ |±p⟩ (p > 0). (1.15)

If the Hamiltonian is not Hermitian, the scattering operator will not be unitary in

general. Because of this non-unitarity, input states may, for example, be absorbed

by the potential. However, the scattering operator S and the scattering operator

Ŝ of the adjoint Hamiltonian H† satisfy the generalized unitarity relation

Ŝ†S = SŜ† = 1. (1.16)

The generalized unitary relation (1.16) implies a set of relations for the scattering

amplitudes of non-Hermitian Hamiltonians. To find these relations one needs to

find the matrix elements of S and Ŝ in the momentum basis. According to [3] the

matrix elements of the scattering operator are related to the transition operator

by

⟨p|S |p′⟩ = δ(p− p′)− 2iπδ(Ep − Ep′) ⟨p|Top(+) |p′⟩ . (1.17)

Factorizing out the Dirac delta in momentum using that δ(p−p′) = |p|
m
δ(Ep−Ep′)

and considering positive momenta p and p′ we get ⟨p|S|p′⟩ ⟨p|S|−p′⟩

⟨−p|S|p′⟩ ⟨−p|S|−p′⟩

 =
|p|
m
δ(Ep − Ep′)S(p). (1.18)

Because of (1.18), the on-shell scattering matrices S and Ŝ (of the adjoint Hamil-

tonian) inherit the generalized unitarity relation of the scattering operators (1.16),

yielding the following useful relations for the scattering amplitudes

Ŝ†S = 1 =⇒



T̂ l(p)T l∗(p) + R̂l(p)Rl∗(p) = 1,

T̂ r(p)T r∗(p) + R̂r(p)Rr∗(p) = 1,

T̂ l∗(p)Rr(p) + T r(p)R̂l∗(p) = 0,

T l(p)R̂r∗(p) + T̂ r∗(p)Rl(p) = 0.

(1.19)
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The relations in (1.19) will be extremely relevant in the following, as they set extra

conditions for the scattering amplitudes of asymmetric devices.

1.1.1 Why is non-Hermiticity needed for asymmetric scat-

tering?

Asymmetric scattering is achieved when
∣∣T l
∣∣ ̸= |T r| or

∣∣Rl
∣∣ ̸= |Rr|. When the

Hamiltonian is Hermitian, the hatted quantities in eq. (1.19) are equal to the

unhatted ones and, therefore, eq. (1.19) becomes

∣∣T l(p)
∣∣2 + ∣∣Rl(p)

∣∣2 = 1,

|T r(p)|2 + |Rr(p)|2 = 1,

T l∗(p)Rr(p) + T r(p)Rl∗(p) = 0. (1.20)

Taking absolute values in the last equation in (1.20) and solving for T r(p) gives

|T r(p)| =
∣∣∣∣T l(p)

Rr(p)

Rl(p)

∣∣∣∣ . (1.21)

Now, because of the first equation in (1.20) we get |Rr(p)| =
∣∣Rl(p)

∣∣. Finally,

substracting the two first equations in (1.20) one arrives at |T r(p)| =
∣∣T l(p)

∣∣ (in

fact, the stronger relation T l(p) = T r(p) holds [3]). Therefore, it is impossible to

build asymmetric devices with Hermitian Hamiltonians.

1.2 Right and left eigenvectors of non-Hermitian

Hamiltonians

Eigenstates in the discrete part of the spectrum (bound-in-space eigenstates) of

a Hermitian Hamiltonian corresponding to different eigenvalues are orthogonal, i.e.

⟨Ei|Ej⟩ = 0 if Ei ̸= Ej. One can choose the normalization ⟨Ei|Ej⟩ = δij, which

makes the eigenstates an orthonormal set. Similarly, the scattering states |p+⟩
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satisfy (in the Hermitian case) ⟨p+|p′+⟩ = δ(p − p′). The discrete and scattering

eigenstates span orthonormal bases in their corresponding subspaces and can be

used to form a basis of the complete Hilbert space in the following way,

1 =
∑
i

|Ei⟩⟨Ei|+
∫
dp
∣∣p+⟩⟨p+∣∣ . (1.22)

It is possible to generalize (1.22) for a non-Hermitian hamiltonian using a biorthog-

onal basis. We say that the vectors |λ⟩ and
∣∣∣λ̂⟩ are a right and a left pair of

eigenvectors if there exists a λ eigenvalue such that

H |λ⟩ = λ |λ⟩ ,⟨
λ̂
∣∣∣H =

⟨
λ̂
∣∣∣λ. (1.23)

For two different eigenvalues λ1 and λ2, it is easy to show that
⟨
λ̂1

∣∣∣λ2⟩ =⟨
λ̂2

∣∣∣λ1⟩ = 0, and for this reason, the pairs |λ⟩ ,
∣∣∣λ̂⟩ are called biorthogonal part-

ners. This result is applied to scattering Hamiltonians in the following way. In

the discrete spectrum of H, we can choose the normalization
⟨
Êi

∣∣∣Ej

⟩
= δij for

the point spectrum eigenvectors. The right scattering states are given by eq.

(1.15). Using the intertwining relations (1.14) for the hatted Moller operators

(after the H ↔ H† substitution) one can prove that the states |p̂+⟩ = Ω̂+ |p⟩ are

left eigenvectors of H with eigenvalue Ep. The isometry relation (1.13) implies

⟨p̂+|p′+⟩ = δ(p − p′), therefore the pairs |p̂+⟩, |p+⟩ are biorthogonal partners. Fi-

nally, the completeness formula of the Hilbert space (1.22) is generalized to the

non-Hermitian case as

1 =
∑
i

∣∣∣Ei

⟩⟨
Êi

∣∣∣+ ∫ dp
∣∣p+⟩⟨p̂+∣∣ . (1.24)

1.3 Generalized symmetries

For Hermitian Hamiltonians, symmetries are represented by the commutation of

some symmetry operator A with the Hamiltonian. According to Wigner’s theorem
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[59], a symmetry operator A has to be either unitary or antiunitary. Unitary

and antiunitary operators are defined by the relation A†A = AA† = 1. Unitary

operators are linear, and therefore the adjoint is defined by eq. (1.2), whereas

antiunitary operators are antilinear, so the adjoint is defined by

⟨ϕ|Oψ⟩ =
⟨
O†ϕ

∣∣ψ⟩∗ ∀ |ψ⟩ , |ϕ⟩ ∈ H. (1.25)

In Hermitian scattering theory, symmetry plays an important role as it implies

relations among the S-matrix elements beyond those implied by its unitarity, see

e.g. [58] and, for scattering in one dimension, section 2.6 in [3]. Symmetries are

also useful for non-Hermitian Hamiltonians, but the mathematical and conceptual

framework must be generalized. We consider that a unitary or antiunitary operator

A represents a symmetry of H if it satisfies at least one of these relations,

AH = HA, (1.26)

AH = H†A. (1.27)

For a right eigenstate of H, |ψ⟩, with eigenvalue E, eq. (1.26) implies that A|ψ⟩

is also a right eigenstate of H, with the same eigenvalue if A is unitary, and with

the complex conjugate eigenvalue E∗ if A is antiunitary. Equation (1.27) implies

that A|ψ⟩ is a right eigenstate of H† with eigenvalue E for A unitary or E∗ for

A antiunitary, or a left eigenstate of H with eigenvalue E∗ for A unitary, or E

for A antiunitary. For real-energy scattering eigenfunctions in the continuum, the

ones we are interested in here, E∗ = E. When eq. (1.27) holds we say that H

is A-pseudohermitian [60]. Parity-pseudohermiticity has played an important role

as being equivalent to space-time reflection (PT) symmetry for local potentials

[20, 60]. A large set of these equivalences will be discussed below. A relation of

the form (1.27) has been also used with differential operators to get real spectra

beyond PT-symmetry for local potentials [10, 11].

Here we consider A to be a member of the Klein 4-group K4 = {1,Π,Θ,ΠΘ}

formed by unity, the parity operator Π, the antiunitary time-reversal operator Θ,

and their product ΠΘ. The Klein 4-group is a discrete, Abelian group and every
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element A satisfies A2 = 1. We also assume that the Hamiltonian is of the form

H = H0+V , with H0, the kinetic energy operator of the particle, being Hermitian

and satisfying [H0, A] = 0 for all members of the group, whereas the potential V

may be non-local in position representation. The motivation to use Klein’s group

is that the eight relations implied by eqs. (1.26) and (1.27) generate all possible

symmetry transformations of a non-local potential due to the identity, complex

conjugation, transposition, and sign inversion, both in coordinate or momentum

representation, see the 3rd and 4th columns of table 1.1, where each symmetry

has been labeled by a roman number.
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Table 1.2: Transformation rules of the Möller and scattering operators with
linear and antilinear operators.

Type of symmetry A linear A antilinear

AH = HA
AΩ± = Ω±A
AS = SA

AΩ± = Ω̂∓A

AS = Ŝ†A

AH = H†A
AΩ± = Ω̂±A

AS = ŜA

AΩ± = Ω∓A
AS = S†A

With the definitions of symmetry in eqs. (1.26), (1.27) and the tools from

scattering formalism in 1.1 we can now find the effects of the symmetries in the

scattering operator S, which will pose restrictions in the scattering amplitudes.

We start by specifying the transformation rules of the Möller operators (1.12)

under a symmetry operator A of the Klein 4-group. The Möller operators are

transformed differently depending on whether A is unitary or antiunitary and

whether the Hamiltonian obeys a usual symmetry (1.26) or pseudohermiticity

(1.27). For example, for A unitary and (1.26) we have

AΩ+ = A lim
t→−∞

eiHt/ℏe−iH0t/ℏ

= lim
t→−∞

eiHt/ℏAe−iH0t/ℏ

= lim
t→−∞

eiHt/ℏe−iH0t/ℏA

= Ω+A,

(1.28)

and

AΩ− = A lim
t→+∞

eiH
†t/ℏe−iH0t/ℏ

= lim
t→+∞

eiH
†t/ℏAe−iH0t/ℏ

= lim
t→+∞

eiH
†t/ℏe−iH0t/ℏA

= Ω−A.

(1.29)
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Using eqs. (1.28) and (1.29) we finally get

AS = AΩ†−Ω+

= Ω†−AΩ+

= Ω†−Ω+A

= SA,

⇓

S = A†SA.

(1.30)

The rest of combinations of the type of A (unitary/antiunitary) with the type

of symmetry ((1.26) or (1.27)) are summarized in table 1.2. Since the symmetry

operators commute with the free Hamiltonian H0, the action of any of them on a

momentum eigenstate will give, as a result, a state with the same energy. In fact,

as can be seen in table 1.3, the result of the action of any element A of the 4-group

on a state |p⟩ is either |p⟩ or |−p⟩. For this reason, we can work with the on-

shell representation of the scattering operator to obtain extra relations between

the scattering amplitudes. As an example I will demonstrate what happens to

the scattering amplitudes when the symmetry III is satisified, i.e., ΠH = HΠ.

Considering a momentum p > 0 and using S = Π†SΠ (see table 1.2) I find

 ⟨p|S|p⟩ ⟨p|S|−p⟩

⟨−p|S|p⟩ ⟨−p|S|−p⟩

 =

 ⟨−p|S|−p⟩ ⟨−p|S|p⟩

⟨p|S|−p⟩ ⟨p|S|p⟩

 . (1.31)

Now, using the on-shell representation of the scattering operator (1.18) and the

definition of S(p) (1.10) I arrive at

T l(p) = T r(p),

Rl(p) = Rr(p). (1.32)

Instead of deriving the equivalent relation to (1.32) for all the symmetries ex-

plicitely, I summarize the results for the matrix elements of the S operator in

the 5th column and for the scattering amplitudes in the columns 6-9 of table 1.1.
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Table 1.3: Action of the Klein 4-group operators on the position and momen-
tum eigenkets. A scalar α ∈ C is included in the table to make the unitary/an-
tiunitary nature of the elements of the group explicit.

α |x⟩ α |p⟩
1 α |x⟩ α |p⟩
Π α |−x⟩ α |−p⟩
Θ α∗ |x⟩ α∗ |−p⟩
ΠΘ α∗ |−x⟩ α∗ |p⟩

Explicit examples on how to find the relations in the 5th and 6th columns of table

1.1 for other symmetries can be found in [3].

If we now take into account the generalized unitary relations Ŝ†S = SŜ† = 1, in

terms of amplitudes (1.19), the columns 6-9 of table 1.1 imply further consequences

on the amplitudes’ moduli (tenth column of table 1.1) and phases (not shown). The

final two columns use the previous results to determine if perfect asymmetry is pos-

sible for transmission or reflection. This makes evident that Hermiticity (II) and

parity (III) preclude, independently, any asymmetry in the scattering coefficients;

PT-symmetry (VII) or Θ-pseudohermiticity (VI) forbid transmission asymmetry

(all local potentials satisfy automatically symmetry VI), whereas time-reversal

symmetry (i.e., a real potential in coordinate space) (V) or PT-pseudohermiticity

(VIII) forbid reflection asymmetry.

1.3.1 Equivalences between symmetries

The occurrence of one particular symmetry in the potential (conventionally

“first symmetry”) does not exclude a second symmetry to be satisfied as well.

When a double symmetry holds, excluding the identity, the “first” symmetry im-

plies the equivalence of the second symmetry with a third symmetry. We have

already mentioned that Π-pseudohermiticity (IV) is equivalent to PT -symmetry

(VII) for local potentials. Being local is just one particular way to satisfy sym-

metry VI, namely Θ-pseudohermiticity. The reader may verify with the aid of

the third column for ⟨x|V |y⟩ in table 1.1, that indeed, if symmetry VI is satisfied

(first symmetry), symmetry IV has the same effect as symmetry VII. They become
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Table 1.4: Equivalences among symmetries for the potential elements. Given
the symmetry of the upper row, the table provides the equivalent symmetries.
For example, if II is satisfied, then III=IV holds. In words, if the potential is
Hermitian, parity symmetry amounts to parity pseudohermiticity. In terms of
the matrix elements of the potential, if ⟨x|V |y⟩ = ⟨y|V |x⟩∗ and also ⟨x|V |y⟩ =
⟨−x|V | − y⟩, ∀(x, y), then ⟨x|V |y⟩ = ⟨−y|V | − x⟩∗ holds as well. One may
proceed similarly for all other relations. The commutation with the identity (I)
is excluded as this symmetry is satisfied by all potentials.

II III IV V VI VII VIII
III=IV II=IV II=III II=VI II=V II=VIII II=VII
V=VI V=VII V=VIII III=VII III=VIII III=V III=VI

VII=VIII VI=VIII VI=VII IV=VIII IV=VII IV=VI IV=V

equivalent. Another well known example is that for a local potential (symmetry

VI is satisfied), a real potential in coordinate space is necessarily Hermitian, so

symmetries V and II become equivalent. These examples are just particular cases

of the full set of equivalences given in table 1.4. The concept of equivalence for

symmetries was refined and studied in more detail in [16].

1.4 Asymmetric devices

I will describe now the set of devices that we want to design and how the eight

non-Hermitian symmetries of the Klein 4-group make this possible or impossible

in some cases. Table 1.5 gives a descriptive list of the 6 kinds of asymmetric

devices that we consider (see also fig. 1.1 for a schematic representation of the

devices). The first column gives the name that we have chosen for each of the

devices. Second and third columns show the expected behaviour for left or right

incidence, respectively. The fourth column shows the descriptive code for each

of the devices. The descriptive codes have always the following structure, LI/RI,

where LI and RI are codes that describe the behaviour for left and right incidence

respectively. LI and RI are composed by a combination of the symbols T , R,

A. T stands for devices with full transmision (|T | = 1), R for full reflection

(|R| = 1). A is the code for full absorption (|R| = |T | = 0). For example, a device

with reflection asymmetry |Rl| = 1, |Rr| = 0 and with |T r| = |T l| = 1 would
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in our case be a particular “transparent, one-way reflector”, as full transmission

occurs from both sides and its descriptive code would be T R/T . This effect is

known as “unidirectional invisibility” [61, 62]. The device denominations in fig.

1.1 or table 1.5 are intended to be compact and systematic, and do not necessarily

coincide with some extended terminology, in part because the range of possibilities

is broader here than those customarily considered, and because we use a 1 or 0

condition for the moduli.

Combining the information of the last two-columns in table 1.1 with the addi-

tional condition that all scattering coefficients be 0 or 1, we elaborate the last two

columns of table 1.5, which provides the symmetries that do not allow the imple-

mentation of the devices in fig. 1.1. The complementary table 1.6 gives instead

the symmetries that allow, but do not necessarily imply, a given type of device.
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Table 1.6: Device types allowed for a given symmetry.

Symmetry Allowed devices
I All types
II None
III None
IV T R/R, T R/T
V T R/R
VI R/A, T R/T
VII T R/T
VIII T /A, T R/R

1.5 Designing potentials for asymmetric devices

We will demonstrate how to design non-local potentials with different asymmet-

ric responses. For simplicity we look for non-local potentials V (x, y) that vanish

outside the finite region of space |x| ≤ d and |y| ≤ d.

I follow an inverse scattering approach similar to [64]. This approach starts

by imposing an ansatz for the wave functions and the potential in the stationary

Schrödinger equation

ℏ2k2

2m
ψ(x) = − ℏ2

2m

d2

dx2
ψ(x) +

∫ d

−d
dyV (x, y)ψ(y). (1.33)

The free parameters are fixed making use of the boundary conditions. The form

of the wave function incident from the left is ψl(x) = eikx + Rle−ikx for x < −d

and ψl(x) = T leikx for x > d, where k = p/ℏ. The wave function incident from the

right is instead ψr(x) = e−ikxT r for x < −d and ψr(x) = e−ikx +Rreikx for x > d.

Our strategy is to assume polynomial forms for the two wave functions in the

interval |x| < d, ψl(x) =
∑5

j=0 cl,jx
j and ψr(x) =

∑5
j=0 cr,jx

j, and also a polyno-

mial ansatz of finite degree for the potential V (x, y) =
∑

i

∑
j vijx

iyj. Inserting

these ansatzes in eq. (1.33) and from the conditions that ψl,r and their derivatives

must be continuous, all coefficients cl,j , cr,j and vij can be determined. Symme-

try properties of the potential can also be imposed via additional conditions on

the potential coefficients vij. For example we may use this method to obtain a
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Figure 1.2: (Color online) One-way T-filter (T /A,
∣∣T l
∣∣ = 1, T r = Rl = Rr =

0) with potential V (x, y) = |V (x, y)|eiϕ(x,y) set for k0 = 1/d. (a) Absolute value
|V (x, y)|; (b) Argument ϕ(x, y); (c) Transmission and reflection coefficients:∣∣Rl
∣∣2 (black, solid line),

∣∣T l
∣∣2 (green, solid line), |Rr|2 (blue, tick, dashed line),

|T r|2 (red, dotted line). V0 = ℏ2/(2md3).



Chapter 1. Asymmetric scattering by non-Hermitian potentials 29

(a)

-10 -5 5 10
x/ϵ

-1.0

-0.5

0.5

V ϵ
2
/α

(b) 5 10 15 20
k d

0.2

0.4

0.6

0.8

1.0

1.2

c
o
e
ff
ic

ie
n
ts

(c) 5 10 15 20
k d

0.2

0.4

0.6

0.8

1.0

1.2

c
o
e
ff
ic

ie
n
ts

Figure 1.3: (Color online) Transparent 1-way reflector with a local PT po-
tential: (a) Approximation of the potential (1.37), real part (green solid line),
imaginary part (blue dashed line). (b,c) Transmission and reflection coefficients
versus momentum kd; left incidence:

∣∣Rl
∣∣2 (black, solid line),

∣∣T l
∣∣2 (green,

solid line); right incidence: |Rr|2 (blue, tick, dashed line), |T r|2 (red, dotted
line, coincides with green, solid line). ϵ/d = 10−4. (b) α = 1.0ℏ2/(4πm) (c)
α = 1.225ℏ2/(4πm) (the black, solid line coincides here mostly with the red,
dotted and green, solid lines).
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one-way T-filter (T /A) device (third device in table 1.5) with a non-local PT-

pseudohermitian potential (symmetry VIII of table 1.1) for a chosen wave vector

k = k0. The absolute value and argument of the resulting potential V (x, y) are

shown in figs. 1.2(a) and 1.2(b) together with its scattering coefficients as a func-

tion of the incident wave vector, fig. 1.2(c). As can be seen in fig. 1.2(c) the

imposed scattering coefficients are fulfilled exactly for the chosen wave vector.

They are also satisfied approximately in a neighborhood of k0. Other examples of

potentials for the devices in fig. 1.1 can be found in the supplemental material of

ref. [13].

1.6 Extending the scattering asymmetry to a

broad incident-momentum domain

The inversion technique just described may be generalized to extend the range of

incident momenta for which the potential works by imposing additional conditions

and increasing correspondingly the number of parameters in the wave function

ansatz. For example we may impose that the derivatives of the amplitudes, in one

or more orders, vanish at k0, or 0/1 values for the coefficients not only at k0 but

at a series of grid points k1, k2, ... kN [3, 64–66].

Here we put forward instead a method that provides a very broad working-

window domain. While we make formally use of the Born approximation, the

exact numerical computations demonstrate the robustness and accuracy of the

approach to achieve that objective by making use of an adjustable parameter in the

potential. The very special role of the Born approximation in inverse problems has

been discussed and demonstrated in [67–69]. Specifically we study a transparent

one-way reflector T R/T . Our aim is now to find a local PT-symmetric potential

such that asymmetric reflection results, T l = T r = 1, Rr = 0, |Rl| = 1 for a broad

range of incident momenta. A similar goal was pursued in [21] making use of a

supersymmetric transformation, without imposing |Rl| = 1.
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In the Born approximation and for a local potential V (x), the reflection ampli-

tudes take the simple form

Rl = −2πim

p
⟨−p|V |p⟩, Rr = −2πim

p
⟨p|V | − p⟩. (1.34)

Defining the Fourier transform

Ṽ (k) =
1√
2π

∫ ∞
−∞

dx V (x)e−ikx (1.35)

we get for k = p/ℏ > 0:

Rl = −
√
2πim

kℏ2
Ṽ (−2k), Rr = −

√
2πim

kℏ2
Ṽ (2k). (1.36)

Assuming that the potential is local and PT-symmetrical, we calculate the tran-

sition coefficient from them using generalized unitarity as |T |2 = 1−Rr∗Rl.

To build a T R/T device we demand: Ṽ (k) =
√
2παk (k < 0) and Ṽ (k) = 0

(k ≥ 0). By inverse Fourier transformation, this implies

V (x) = −α ∂

∂x
lim
ϵ→0

1

x− iϵ
= α lim

ϵ→0

1

(x− iϵ)2

= α lim
ϵ→0

[
x2 − ϵ2

(x2 + ϵ2)2
+ i

2xϵ

(x2 + ϵ2)2

]
, (1.37)

which is indeed a local, PT -symmetric potential for α real. α is directly related to

the reflection coefficient, within the Born approximation, Rl = 4πimα/ℏ2. As the

Born approximation may differ from exact results, in the following we shall keep

α as an adjustable parameter.

In a possible physical implementation, the potential in eq. (1.37) will be ap-

proximated by keeping a small finite ϵ > 0, see fig. 1.3(a). Then, its Fourier

transform is Ṽ (k) =
√
2παkeϵk (k < 0) and Ṽ (k) = 0 (k ≥ 0). In figs. 1.3(b)

and (c), the resulting coefficients for ϵ/d = 10−4 and two different values of α are

shown. These figures have been calculated by numerically solving the Schrödinger
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equation exactly. Remarkably, the Born approximation contains all the informa-

tion required to build the required potential shape up to a global factor. Such a

prominent role of the Born approximation in inverse problems has been noted in

different applications [67–69]. For a range of α, the potential gives |Rr| ≈ 0, a

nearly constant |Rl|2, and |T r| = |T l| ≈ 1 in a broad k-domain, see fig. 1.3(b).

Adjusting the value of α, fig. 1.3(c), sets |Rl| ≈ 1 as desired.

1.7 Discussion

Scattering asymmetries are necessary to develop technologically relevant de-

vices such as one-way mirrors, filters and barriers, invisibility cloaks, diodes, or

Maxwell demons. So far, much effort has been devoted to build and apply local

PT-symmetric potentials but the possible scattering asymmetries with them are

quite limited. We find that six types of devices with asymmetric scattering are

possible when imposing 0 or 1 scattering coefficients. PT-symmetry can only real-

ize one of them, but this symmetry is just one among eight possible symmetries of

complex non-local potentials. The eight symmetries arise from the discovery that

Klein’s four-group {1,Π,Θ,ΘΠ}, combined with two possible relations among the

Hamiltonian, its adjoint, and the symmetry operators of the group, eqs. (1) and

(2), produce all possible symmetries generated by complex conjugation, coordinate

inversion and transposition. The conventional definition of a symmetry in terms

of the commutation of a unitary/antiunitary operator A with the Hamiltonian H

is not enough, and A-pseudohermiticity must be considered as well on the same

footing. Extending the concept of what a symmetry is for complex, non-local po-

tentials is a fundamental, far-reaching step of this work. This group theoretical

analysis and classification is not only esthetically pleasing, but also of practical

importance, as it reveals the underlying structure and span of the possibilities

available in principle to manipulate the asymmetrical response of a potential for a

structureless particle. Although the present theory is for the scattering of quantum

particles, the analogies between quantum physics and optics suggest to extend the

concepts and results for optical asymmetric devices.



Chapter 2

S-matrix pole symmetries for

non-Hermitian scattering

Hamiltonians

Non-Hermitian Hamiltonians may have in general complex eigenvalues. How-

ever, in 1998 Carl M. Bender showed that non-Hermitian potentials having PT-

symmetry can have a completely real spectra [19]. Later, in a series of works

published in 2002, Ali Mostafazadeh generalized this finding [22, 70, 71]. A Hamil-

tonian with a discrete spectrum that satisifies (1.26), for a Hermitian and antilinear

operator Aantilinear; or (1.27) for a Hermitian and linear operator Alinear, will have

eigenvalues that are real or come in complex-conjugate pairs [22, 70, 71]. In this

chapter we study an aspect that was not investigated in refs. [22, 70, 71], namely

that, under the same conditions, the complex poles of the scattering matrix can

also come in complex conjugate pairs.

This chapter aims at extending the results in chapter 1 and refs. [22, 70, 71] in

several directions:

i) I will provide an alternative characterization of the 8 symmetries formed by

the elements of the Klein 4-group and the relations (1.26), (1.27) in terms of the

invariance of H with respect to the action of superoperators.

33
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ii) Moreover, four of these eight symmetries imply the same type of pole struc-

ture of S-matrix eigenvalues in the complex momentum plane that was found for

PT symmetry [3], namely, zero-pole correspondence at complex-conjugate points,

and poles on the imaginary axis or forming symmetrical pairs with respect to the

imaginary axis. This configuration with poles located on the imaginary axis or

as symmetrical pairs has some important consequences. In particular, it provides

stability of the real energy eigenvalues with respect to parameter variations of the

potential. While a simple pole on the imaginary axis can move along that axis

when a parameter is changed, it cannot move off this axis (since this would violate

the pole-pair symmetry) or bifurcate. The formation of pole pairs occurs near

special parameter values for which two poles on the imaginary axis collide. When

the poles are mapped to the energy complex plane E = p2/2m, they have the same

symmetry structure of complex conjugate pairs as the discrete eigenvalues of an

A-pseudohermitian Hamiltonian, which expands the results of refs. [22, 70, 71].

The remainder of the chapter is organized as follows. In section 2.1, I char-

acterize the symmetry operations defined in chapter 1 as the invariance of the

Hamiltonian with respect to the action of eight linear or antilinear superoperators.

In section 2.2, I discuss the physical consequences of the symmetries in the pole

structure of the scattering matrix eigenvalues. Four symmetries are shown to lead

to complex poles corresponding to real energies or conjugate (energy) pairs. This

result generalizes what was found in refs. [22, 70, 71]. In section 2.3, I exemplify

the general results with separable potentials exhibiting parity-pseudohermiticity

and time-reversal symmetry. These are the two non-trivial symmetries of the four

which have complex-conjugate pairs of eigenvalues (in the sense that the other

two, hermiticity and PT-symmetry, are already well discussed). In section 2.4, I

discuss and summarize the results.
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2.1 Superoperator formalism

The eight symmetries discussed in chapter 1, which are listed again in table

2.1 may also be regarded as the invariance of the Hamiltonian with respect to

transformations represented by superoperators L [14] defined by

L(H) =

A
†HA I, III,V,VII

A†H†A II, IV, VI, VIII
. (2.1)

This definition of the superoperator action is independent of the representation

we use, but its realization in coordinates or momenta representation in terms of

the operations of complex conjugation C, transposition T , and inversion I (sign

reversal of momentum or position), is different. In coordinate representation, these

superoperators take the following forms (see column 3 in table 2.1),

1H =

∫ ∫
|x⟩⟨x|H|y⟩⟨y|dxdy,

T (H) =

∫ ∫
|x⟩⟨y|H|x⟩⟨y|dxdy,

C(H) =

∫ ∫
|x⟩⟨x|H|y⟩∗⟨y|dxdy,

I(H) =

∫ ∫
|x⟩⟨−x|H| − y⟩⟨y|dxdy, (2.2)

while in momentum representation, these superoperators are

1H =

∫ ∫
|p⟩⟨p|H|q⟩⟨q|dpdq,

T ′(H) =

∫ ∫
|p⟩⟨q|H|p⟩⟨q|dpdq,

C ′(H) =

∫ ∫
|p⟩⟨p|H|q⟩∗⟨q|dpdq,

I ′(H) =

∫ ∫
|p⟩⟨−p|H| − q⟩⟨q|dpdq. (2.3)

Adopting the trace inner product for linear operators F and G

⟨⟨F |G⟩⟩ = tr(F †G) (2.4)
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we can show that all superoperators (also the primmed ones) and their products L

are either unitary (for L = 1, T , I, T I), or antiunitary (for L = C, CT , CI, CT I),

with respect to the inner product as defined by

⟨⟨LF |LG⟩⟩ = ⟨⟨F |G⟩⟩ (L unitary), (2.5)

⟨⟨LF |LG⟩⟩ = ⟨⟨F |G⟩⟩∗ (L antiunitary). (2.6)

They all satisfy LL† = L†L = 1 where the adjoints are defined differently for

linear or antilinear superoperators,

⟨⟨F |L†G⟩⟩ = ⟨⟨LF |G⟩⟩ (L unitary), (2.7)

⟨⟨F |L†G⟩⟩ = ⟨⟨LF |G⟩⟩∗ (L antiunitary). (2.8)

Moreover the eight superoperators satisfy L† = L.

The set {1, I, T , C, CT , T I, IC, CT I} (and the primmed ones) forms the ele-

mentary Abelian group E8 [72]. This is a homocyclic group, namely, the direct

product of isomorphic cyclic groups of order 2 with generators C, T , I. Only for

the subgroup {1, I, CT , CT I} the superoperators have the same representation-

independent form in terms of complex conjugation, transposition, and inversion

in momentum and position bases.

A direct application of the superoperator framework is the generalization of

Wigner’s formulation of symmetries [59]. He associated symmetry transforma-

tions to unitary or antiunitary operators preserving the (Hilbert space) inner prod-

uct, namely the “transition probabilities” | ⟨Aψ,Aϕ⟩ |2 = | ⟨ψ, ϕ⟩ |2. For general

states described by density operators ρ1, ρ2, transition probabilities are computed

as ⟨⟨ρ1|ρ2⟩⟩ and the transformations described by the unitary or antiunitary su-

peroperators preserve the transition probability. Hamiltonian symmetries are,

within the conventional Wigner scheme, the symmetry transformations that leave

the Hamiltonian invariant (A†HA = H, so that A and H commute). Here the

Hamiltonian symmetry is more broadly defined as the invariance LH = H, which

includes transformations beyond the conventional scheme.
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2.2 S-matrix pole structure

In refs. [22, 70, 71], Mostafazadeh derived the sufficient and necessary condi-

tions of diagonalizable Hamiltonians with a discrete spectrum for having a spec-

trum made of real eigenvalues and complex-conjugate pairs of eigenvalues. The

condition was that the Hamiltonian had to be A−pseudohermitian with respect

to a Hermitian linear operator A or commute with a Hermitian antilinear op-

erator B. In fact, the two conditions are equivalent [71]: if a Hamiltonian is

A-pseudohermitian one can find a Hermitian antilinear B that commutes with H

and viceversa. In this section I generalize the results in [22, 70, 71] to scattering

Hamiltonians. I show, for the symmetry operators in the Klein 4-group, that the

poles of the S−matrix have the same structure as the eigenvalues of the discrete

spectrum, as described in [22, 70, 71], when the Hamiltonian satisfies symmetries V

and VII of table 2.1, i.e., eq. (1.26) for A antiunitary (A = Θ,ΠΘ), or symmetries

II and IV of table 2.1, i.e., eq. (1.27) for A unitary (A = 1,Π).

In section 1.1 we introduced the scattering matrix (S-matrix) formalism, which

was used to derive the results of chapter 1 regarding the scattering coefficients. It

was possible to decompose the S-matrix into the on-the-energy-shell matrices S for

real and positive momentum in terms of transmission and reflection amplitudes

for right and left incidence, see eq. (1.10). The S matrix contains the scatter-

ing amplitudes for incoming wave packets with well defined momentum being

scattered into states with the same kinetic energy and reflected and transmitted

components. The on-shell scattering matrix S allowed us to obtain the generalized

unitary relations (1.16) in terms of the scattering amplitudes (1.19). For negative

p the matrix elements of S give the amplitudes of scattering states with a pure

outgoing plane wave towards the right or the left. Moreover we assume, as it is

customary, that the amplitudes may be continued analytically beyond the real

axis. The existence of a continuation on the complex plane domain depends on

decay properties of the potentials and may be checked for each potential. The

analytical continuation is indeed possible for the model potentials of the following

section.
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We will look for the poles of the S-matrix in the eigenvalues of its on-shell

decomposition S. The eigenvalues of S can be calculated from the transmission

and reflection amplitudes as

Sj =
(T l + T r) + (−1)j[(T l − T r)2 + 4RlRr]1/2

2
(2.9)

for j = 1, 2, and of course there is a similar expression for Ŝj (The scattering matrix

for the adjoint Hamiltonian) with hatted amplitudes. In general they satisfy the

relations [3],

Sj(p) = Ŝ∗j (−p∗) , (2.10)

and

Ŝ∗j (p
∗)Sj(p) = 1 . (2.11)

Combining eqs. (2.10) and (2.11) gives

Sj(p) = S−1j (−p) . (2.12)

Equation (2.12) is remarkable since it reveals the presence of a pole (zero) at −p

if there is a zero (pole) at p. If the following relations are fulfilled,

T r,l(p) = T̂ r,l(p) or T r,l(p) = T̂ l,r(p), (2.13)

Rr,l(p) = R̂r,l(p) or Rr,l(p) = R̂l,r(p), (2.14)

then

Sj(p) = Ŝj(p), (2.15)

which together with eq. (2.10) gives

Sj(p) = S∗j (−p∗). (2.16)

In plain language, eq. (2.16) tells that if eqs. (2.13) and (2.14) are satisfied,

the poles and zeros of Sj must be symmetrically distributed with respect to the

imaginary axis of the momentum complex plane. Combined with eq. (2.12) this
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also means that each pole has a symmetrical zero with respect to the real axis.

This symmetrical distribution of poles and zeros is the same as in the Hermitian

case (see fig. 2.1), the only difference being the possibility of finding pairs of

symmetrical poles in the upper complex plane when H ̸= H†. They represent

normalizable “bound states with complex energies”. When they are not present,

the discrete spectrum becomes purely real.

According to table 2.1, eqs. (2.13) and (2.14) are fulfilled for symmetries II (her-

miticity), VII (PT-symmetry), IV (parity pseudohermiticity), and V (time-reversal

invariance). Thus, Hamiltonians having these symmetries have their S−matrix

poles symmetrically distributed about the imaginary axis. For local potentials

the last two symmetries coalesce with the first two well-known cases [13], namely,

IV becomes equivalent to PT-symmetry, and V becomes equivalent to hermitic-

ity. For non-local potentials, though, these symmetries correspond to genuinely

distinct properties. In the following section we shall demonstrate this fact with po-

tentials that are either purely parity-pseudohermitian (and not PT-symmetrical),

or time-reversal invariant but not Hermitian.

Figure 2.1: Example of configuration of poles (filled circles) and zeros (empty
circles) of the S-matrix eigenvalues in the complex momentum plane for Her-
mitian Hamiltonians. Poles in the upper half plane (Im(p) > 0) correspond to
bound eigenstates of the Hamiltonian, i.e. localized states with negative en-
ergy. Poles in the lower half plane correspond to virtual states (Re(p) = 0),
resonances (Re(p) > 0) and antiresonances (Re(p) < 0). The singularities with
negative imaginary part correspond to states that do not belong to the Hilbert
space since they are not normalizable. However, they can produce observable
effects in the scattering amplitudes, in particular when they approach the real
axis. The pole structure of symmetries IV, V, and VII, see table 2.1, is similar,
but pole pairs are also possible in the upper half-plane.
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2.3 Separable Potentials

In order to illustrate and test the theoretical concepts that we have discussed, in

particular the symmetrical configuration of poles with respect to the imaginary axis

in the complex momentum plane for certain Hamiltonian symmetries, we will use

some solvable toy models consisting on rank-one separable potentials. Separable

potentials are quite useful models as a solvable approximation to realistic ones,

in particular in nuclear, atomic, and molecular physics [73]. Often they lead

to explicit expressions for wave functions or scattering amplitudes, so they are

used to test concepts and new methods. They are also instrumental in learning

about different dynamical phenomena (for example transient effects, short-time

and long-time behavior, or anomalous decay laws) and their relation to complex-

plane singularities [74–77]. Their simplest version takes the form |χ⟩V0⟨χ| for some

χ. In particular, with a complex V0, they have been used to examine anomalous

(negative) time delays caused by crossing of zeroes of the S-matrix eigenvalues or

S-matrix elements across the momentum real axis [78].

In this work we consider the simple structure V = V0 |ϕ⟩⟨χ|, with V0 (potential

strength) real, and conveniently chosen normalised states |ϕ⟩, |χ⟩. The aim of

this section is to demonstrate the formal results of the previous section without

attempting to simulate any specific systems, but we note that separable, non-

Hermitian potentials are instrumental to model nuclear reactions, in particular by

increasing the rank (number of separable terms) [79]. Separable non-Hermitian

potentials also provide solvable approximations to non-local non-Hermitian poten-

tials that arise naturally in quantum optics to describe the interaction of a ground

state atom with a laser beam [80].

I proceed to look for the poles of the S matrix in the following way. Since

the scattering amplitudes in S are simply related to matrix elements of Top(z)

(eq. (1.7)) in momentum representation, see eq. (1.9), the singularities in the

scattering amplitudes and the eigenvalues of S will come from the singularities of

Top(z) [75]. For a separable potential, the transition operator Top can be written
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(see Appendix A.1) as

Top =
V0

1− V0Q0(E)
|ϕ⟩⟨χ| , (2.17)

where Q0(E) = ⟨χ| (E−H0)
−1 |ϕ⟩ and H0 = p2/(2m). Therefore, the singularities

(poles) of S are found by solving

Q0(E)V0 = 1, (2.18)

Once Q0(E) is calculated, the transmission and reflection amplitudes can be found

from (1.9) using the momentum representation of |ϕ⟩ and |χ⟩ (see Appendix A.2).

In the following subsections I will build a Hamiltonian with symmetry V (time

reversal) and another one with symmetry IV (parity pseudohermicity) and illus-

trate the symmetries of the S matrix poles in momentum complex plane.

2.3.1 Time-reversal symmetric potential

We start with an example of a separable potential which only satisfies symmetry

V (apart from the trivial symmetry I). The normalised vector |χ⟩, is given in

position and momentum representation as

⟨x|χ⟩ =

√
a

ℏ
e−a|x|/ℏ,

⟨p|χ⟩ =

√
2a3

π

1

p2 + a2
. (2.19)

We choose |ϕ⟩ similarly as

⟨x|ϕ⟩ =
√

2ab
ℏ(a+b)

e
−bx/ℏ x > 0,

eax/ℏ x < 0,

⟨p|ϕ⟩ =
√

ab
π(a+b)

a+b
(p+ia)(p−ib) . (2.20)

The real and positive parameters ℏ/a and ℏ/b determine the width of the potential

functions in coordinate representation. b is chosen different from a to introduce a
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Figure 2.2: Poles and pole trajectories of time-reversal symmetric potential
(2.21) for (a) varying V0 with a = 2b; (b) varying a with b = 0.5 p0, V0 > 0;
and (c) varying b with a = p0, V0 > 0. At pole collisions we connect each of
the incoming trajectories with a different emerging trajectory but the choice of
outgoing branch is arbitrary since the two colliding poles lose their identity.

right/left asymmetry in ⟨x|ϕ⟩. In coordinate representation the potential is given

as

⟨x|V |y⟩ = V0

√
2ba2

ℏ2(a+ b)

e
−(a|y|+bx)/ℏ x > 0,

ea(x−|y|)/ℏ x < 0.

(2.21)
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Clearly the potential is always even in y and in the limiting case where a = b, it

is also even in x. For a = b, the potential will satisfy parity symmetry (III) and

also PT symmetry (VII), without asymmetric transmission or reflection.

We define first a complex momentum q =
√
2mE (for complex E) with pos-

itive imaginary part. To calculate Q0(q) explicitly we use a closure relation in

momentum representation, and complex contour integration around the poles at

ia, q and ib. The result is then analytically continued to the whole q-plane,

Q0(q)/m = −i
√
2b [2a(a+ b)2 − q2(3a+ b)− iq(2a+ b)(3a+ b)]

q(a+ b)3/2(a− iq)2(b− iq)
, (2.22)

with which we may calculate the transmission and reflection amplitudes. The four

roots of eq. (2.18) are the core poles of S.

Using m, V0 and ℏ we define the length and momentum scales L0 = ℏ/
√
mV0

and p0 =
√
mV0. In fig. 2.2(a), we can see the trajectory of the S-matrix core

poles (zeros of 1 − V0Q0(q)) for varying V0. Notice a bound state for V0 < 0

and collisions of the eigenvalue pairs around V0 = 0. In figs. 2.2(b) and 2.2(c),

where V0 is positive and a or b are varied, there are two virtual states and one

resonance/anti-resonance pair. In all cases the symmetry of the poles about the

imaginary axis which corresponds to real energies or complex-conjugate pairs of

energies, is evident. For larger values of the a or b parameters (not shown) the

pair collides so that all poles end up as virtual states.

Figure 2.3 depicts the associated transmission and reflection coefficients (square

moduli of the amplitudes) as functions of the momentum p. |Rl(p)| = |Rr(p)| for

all p due to symmetry V, see column (11) of table 1.1. The coefficients can be

greater than one in contrast to the Hermitian case.

2.3.2 Parity pseudohermitian potential

As a second example we will consider a separable potential which only fulfills

symmetry IV. The normalised vector |χ⟩ in position and momentum representation
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Figure 2.3: Transmission and reflection coefficients of the time-reversal sym-
metric potential (symmetry V) (2.21) with a = p0, b = 0.5 p0 and V0 > 0.

is

⟨x|χ⟩ =
√

a
ℏ

e
−(a+ib)x/ℏ x > 0,

eax/ℏ x < 0,

⟨p|χ⟩ =
√

a
2π

2a+ib
(p+ia)(p+b−ia) , (2.23)

where a > 0 and b is real. We choose |ϕ⟩ as

⟨x|ϕ⟩ =
√

a
ℏ

e
−ax/ℏ x > 0,

e(a+ib)x/ℏ x < 0,

⟨p|ϕ⟩ =
√

a
2π

2a+ib
(p−ia)(p−b+ia)

, (2.24)

where ℏ/a gives, as before, the width in coordinate representation. The poten-

tial functions in coordinate representation become asymmetrical because of the

imaginary terms ib in the exponent added only on one side. This term leads to

oscillations in real and imaginary parts. In momentum representation b appears

as a real shift in the position of one of the poles. In coordinate representation the
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potential is

⟨x|V |y⟩ = aV0
ℏ



e−[a(x+y)−iby]/ℏ , x > 0, y > 0

ea(y−x)/ℏ , x > 0, y < 0

e[a(x−y)+ib(x+y)]/ℏ , x < 0, y > 0

e[a(x+y)+ibx]/ℏ , x < 0, y < 0

. (2.25)

The case b = 0 implies that the potential is real and hence satisfies time-reversal

symmetry (V) with equal reflection amplitudes (as in the previous case), and also

symmetry VIII.

By calculating Q0 again explicitly using complex contour integration around

the poles at −q, −b− ia and b− ia, we get that

Q0(q)/m =
8a2q3 − 4a2q (10a2 + b2)− ia (4a2 + b2)

2
+ 32ia3q2

q (4a2 + b2) (a− iq)2 [b2 + (a− iq)2]
.

Equation (2.18) has five roots in this case constituting core poles of the S-matrix

elements.

Figure 2.4 depicts the trajectories of these poles for varying a, b or V0. As for the

previous potential, the poles are symmetric with respect to the imaginary axis. In

fig. 2.4(a) there is a single bound state for V0 < 0 while for positive values there are

a resonance/antiresonance pair and a pair of virtual states. There are collisions of

eigenvalues for values of V0 close to 0. In fig. 2.4(b) two complex-conjugate (bound)

eigenvalues cross the real axis and become a resonance/antiresonance pair. At the

exact point where the eigenvalues are on the real axis, the scattering amplitudes

diverge, however the eigenvalues of the S matrix do not, since divergences of the left

and right amplitudes cancel each other. For a ≈ 4.55 p0 a resonance/antiresonance

pair collides and becomes a pair of virtual states. In fig. 2.4(c) another crossing

of the real axis takes place, but in this case when decreasing b.
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Figure 2.4: Poles and pole trajectories for the parity pseudohermitian poten-
tial (2.25) (a) varying V0 with a = b; (b) varying a with b = p0, V0 > 0; (c)
varying b with a = 0.5 p0, V0 > 0.

Figure 2.5 depicts the associated transmission and reflection coefficients as func-

tions of the momentum p. The eigenvalues are not always equal since parity pseu-

dohermicity does not imply any strict restriction to them [13]. For large momenta,

i.e. p ≫
√
2p0, the potential is transparent giving T l, T r ≈ 1. For p ≈ 1.5 p0 the

right incidence transmission has a pronounced peak. Comparing with 2.4(c), we

notice that the values of the potential parameters and the momentum are close
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Figure 2.5: Transmission and reflection coefficients for a = b = 0.5 p0 and
V0 > 0.

to the ones for which the real axis crossing takes place. Around p = 0.6 p0 the

potential acts as a T /R device or one-way-barrier (see table 1.5).

2.4 Discussion

In this chapter I have studied some aspects of the scattering of a structureless

particle in one dimension by generally non-local and non-Hermitian potentials.

Conditions that were found for discrete Hamiltonians to imply conjugate pairs of

discrete eigenenergies (pseudohermiticity with respect to a linear operator or com-

mutativity of H with an antilinear operator [22, 70, 71]) can in fact be extended to

scattering Hamiltonians in the continuum, implying symmetry relations not just

for bound-state eigenvalues but also for complex poles of the S-matrix. Specifi-

cally the poles of S matrix eigenvalues are symmetrically located with respect to

the imaginary axis, also in the lower momentum plane, so that resonances and

antiresonance energies are conjugate pairs as well. In terms of the eight possible

Hamiltonian symmetries associated with Klein’s group of A operators (unity, par-

ity, time reversal and PT) and their commutation or pseudohermiticity with H,

the symmetrical disposition of the poles applies to four of them, which includes

hermiticity and PT-symmetry. Potential models and pole motions are provided
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for the two other non trivial symmetries: time-reversal symmetry and parity pseu-

dohermiticity.





Chapter 3

Quantum-Optical implementation

of non-Hermitian potentials for

asymmetric scattering

In chapters 1 and 2, non-local potentials for asymmetric scattering were con-

structed as mathematical models but no physical implementation was discussed.

In this chapter a feasible quantum-optical implementation of non-Hermitian, non-

local, non-PT potentials is put forward to implement different scattering asymme-

tries, including transmission asymmetries. Using Feshbach’s projection technique

it is found that the effective potentials for a ground-state atom crossing a laser

beam in a region of space are generically non-local and non-Hermitian. Shaping

the spatial-dependence of the, generally complex, Rabi frequency, and selecting a

specific laser detuning allows to produce different potential symmetries and asym-

metric scattering effects, including asymmetric transmission.

The rest of this chapter is organized as follows. In section 3.1, I shall ex-

plain how to generate different non-Hermitian symmetries in a quantum-optical

setting of an atom impinging on a laser illuminated region. In section 3.2, I pro-

vide specific examples of devices (constructed using numerical optimisation) with

different asymmetric scattering responses. Realistic experimental parameters are

51
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Table 3.1: Conditions leading to specific symmetries in the potential (3.4). A
given symmetry also implies others, see the last column.

Symmetry Conditions Implies
(I) 1H = H1 none -
(II) 1H = H†1 q = −q∗ (i.e. Re q = 0) I
(III) ΠH = HΠ Ω(x) = eiϕΩ(−x) I
(IV) ΠH = H†Π q = −q∗ & Ω(x) = eiϕΩ(−x) III, II, I
(V) ΘH = HΘ q = −q∗ & Ω(x) = eiϕΩ(x)∗ VI, II, I
(VI) ΘH = H†Θ Ω(x) = eiϕΩ(x)∗ I
(VII) ΘΠH = HΘΠ q = −q∗ & Ω(x) = eiϕΩ(−x)∗ VIII, II, I
(VIII)ΘΠH = H†ΘΠ Ω(x) = eiϕΩ(−x)∗ I

also examined. In section 3.3, the asymmetric behavior is explained with a clas-

sical approximation of the motion and the non-commutativity of rotations on the

Bloch sphere, which gives good estimates for the potential parameters. Finally, in

section 3.4, I summarize the main findings in the chapter.

3.1 Effective non-local potential for the ground

state of a two-level atom

The key task is to physically realize some of the potential and asymmetric device

types described in chapter 1, which are again summarized in table 3.2. I start with

a two-level atom with ground level |1⟩ and excited state |2⟩ impinging onto a laser

illuminated region. For a full account of the model and further references see

[81]. The motion is assumed to be one dimensional, either because the atom is

confined in a waveguide or because the direction x is uncoupled to the others.

I only account explicitly for atoms before the first spontaneous emission in the

wave function [82–84]. If the excited atom emits a photon, it disappears from the

coherent wave function ensemble. I assume that no resetting into the ground state

occurs. The physical mechanism may be an irreversible decay into a third level [85],

or atom ejection from the waveguide or the privileged 1D direction due to random

recoil [86]. The state Φk = ( ϕ
(1)
k ,ϕ

(2)
k )T for the atom before the first spontaneous

emission impinging with wave number k in a laser adapted interaction picture,
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obeys, after applying the rotating-wave approximation, an effective stationary

Schrödinger equation with a time-independent Hamiltonian [80, 81] HΦk(x) =

EΦk(x), where

H = H01+ V =
1

2m

(
p2

0

0

p2

)
+ V(x), (3.1)

V(x) =
ℏ
2

(
0

Ω(x)∗
Ω(x)

−(2∆ + iγ)

)
. (3.2)

I assume perpendicular incidence of the atom on the laser beam for simplicity.

Here E = ℏ2k2/2m is the energy, and Ω(x) is the position-dependent, on-resonance

Rabi frequency, where real and imaginary parts may be controlled independently

using two laser field quadratures [87]; γ is the inverse of the lifetime of the excited

state; ∆ = ωL − ω12 is the detuning (laser angular frequency minus the atomic

transition angular frequency ω12); p = −iℏ∂/∂x is the momentum operator; and

1 = |1⟩⟨1|+|2⟩⟨2| is the unit operator for the internal-state space. Complementary

projectors P = |1⟩⟨1| and Q = |2⟩⟨2| are defined to select ground and excited state

components. Using the Feshbach partitioning technique [5, 88, 89], I find for the

ground state amplitude ϕ(1)
k the equation

Eϕ
(1)
k (x) = H0ϕ

(1)
k (x) +

∫
dy ⟨x, 1|W(E)|y, 1⟩ϕ(1)

k (y), (3.3)

where W(E) = PVP + PVQ(E + i0−QHQ)−1QVP, is generically non-local and

energy-dependent. Specifically, I have now achieved a physical realization of an

effective (in general) non-local, non-Hermitian potential whose kernel has the form

V (x, y) = ⟨x, 1|W(E)|y, 1⟩ = m

4

ei|x−y|q

iq
Ω(x)Ω(y)∗, (3.4)

where q =
√
2mE
ℏ (1 + µ)1/2, Im q ≥ 0, and µ = 2∆+iγ

2E/ℏ . eq. (3.4) is worked out in

momentum representation to do the integral using the residue theorem. This is a

generalized, non-local version of the effective potentials known for the ground state

[85, 90], which are found from eq. (3.4) in the large µ limit [80]. The reflection

and transmission amplitudes Rr,l and T r,l may be calculated directly using the

potential (3.4) or as corresponding amplitudes for transitions from ground state
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Table 3.2: Device types for transmission and/or reflection asymmetry in the
first row (see section 1.4 for nomenclature). The second row gives the corre-
sponding symmetries that allow each device.

T R/A T /R T /A T R/R R/A T R/T
I I I,VIII I,VIII I,VI I, IV, VI, VII

to ground state in the full two-level theory (see Appendix B).

3.1.1 Possible symmetries of the non-local potential

The necessary conditions for the different symmetries of a non-Hermitian and

non-local Hamiltonian were worked out in section 1.4. In the second column of

table 3.1, those conditions have been particularized for the effective potential of

the 2-level atom (3.4). For example, symmetry III (parity) requires that V (x, y) =

V (−x,−y) (see table 1.1). Inserting the functional form of the potential from eq.

(3.4) into this condition, it results in the requirement Ω(x)Ω(y)∗ = Ω(−x)Ω(−y)∗.

This is fulfilled if Ω(x) = Ω(−x)eiϕ with some arbitrary phase freedom ϕ.

Since Ω(x) does not depend on q, symmetries IV, V and VII imply that sym-

metry II is obeyed as well (Hermiticity). Moreover, symmetry III (parity) should

be discarded for our purpose since it does not allow for asymmetric transmission

or reflection [13]. This leaves us with three interesting symmetries to explore: VI,

which allows for asymmetric reflection; VIII which allows for asymmetric transmis-

sion; and I, which in principle allows for arbitrary asymmetric responses, except

for physical limitations imposed by the two-level model see Appendix B.

As seen from table 3.1, Re(q) = 0 makes the potential Hermitian, so it must be

avoided. If γ = 0, µ ∈ R. Hence µ + 1 < 0 gives Re(q) = 0 and µ + 1 > 0 gives

Im(q) = 0. µ + 1 > 0 amounts to a condition on the detuning compared to the

incident energy, namely ∆ > −E/ℏ. In the following I implement potentials with

symmetries VIII, VI, and I, with detunings and energies satisfying the condition

µ+ 1 > 0.
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3.2 Design of asymmetric devices

I will now apply this method to physically realize non-local potentials of the

form (3.4). I shall work out explicitly a T /A device with symmetry VIII, an

R/A device with symmetry VI, and a “partial”-T R/A device, having 1/2 trans-

mission and reflection coefficients from the left, with symmetry I. The T /A and

the “partial”-T R/A device have transmission asymmetry so they cannot be built

with local or PT -symmetric potentials. Let us motivate the effort with some pos-

sible applications, relations and analogies of these devices. T /A and R/A are,

respectively, transmission and reflection filters. They are analogous to half-wave

electrical rectifiers that either let the signal from one side “pass” (transmitted)

or change its sign (reflected) while suppressing the other half signal. They may

play the role of half-rectifiers in atomtronic circuits. A T /A device allows us, for

example, to empty a region of selected particles, letting them go away while not

letting particles in. The “atom diode” devices worked out e.g. in [6, 91–93] were

of type R/A. As the mechanism behind them was adiabatic, a broad range of mo-

menta with the desired asymmetry could be achieved. In comparison, the current

approach is not necessarily adiabatic so it can be adapted to faster processes.

As for the “partial”-RT /A device, it reflects and transmits from one side while

absorbing from the other side. In an optical analogy an observer from the left

perceives it as a darkish mirror. An observer from the right “sees” the other side

because of the allowed transmission but cannot be seen from the left since nothing

is transmitted from right to left. Our device is necessarily a “partial” one as there

cannot be net probability gain because of the underlying two-level system, and a

“full” version with both reflection and transmission coefficients equal to one would

need net probability gain.
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The three devices are worked out for γ = 0, a valid approximation for hyperfine

transitions. I assume for the Rabi frequencies the forms

ΩVIII(x) = a[g(x+ x0) + ig(x− x0)],

ΩVI(x) = bg(x+ x0) + cg(x− x0),

ΩI(x) = −ibg(x+ x0) + cg(x− x0), (3.5)

in terms of smooth, realizable Gaussians g(x) = exp[−x2/w2]. I fix 2d as an effec-

tive finite width of the potential area beyond which the potential is negligible and

assumed to vanish. I will express in the following the different length parameters

as a multiple of d to keep results general. In addition, I will use as a scaling factor

for the velocity vd = ℏ/(md), and for time τ = md2/ℏ.

In the following calculations I fix the width of the Gaussians to be w =
√
2d/10.

I always first set a target velocity v0 to achieve the desired asymmetric scattering

response. The real parameters a, b, c, x0 in eq. (3.5), and ∆ are then numerically

optimized with the GRAPE (Gradient Ascent Pulse Engineering) algorithm [94,

95].

The Rabi frequencies will fulfill the indicated symmetries VIII, VI, and I. ΩVI(x)

should not be even (i.e. b ̸= c) to avoid symmetry II. In addition, ΩI(x) should

not fulfill any other symmetry than I. The corresponding Rabi frequencies Ω(x)

are depicted in figs. 3.1, top row. The scattering coefficients are shown in the

bottom row. fig. 3.1 demonstrates that the three potentials satisfy the asymmetric

response conditions imposed at the selected velocity and also in a region nearby.

The “partial”-T R/A device fullfills
∣∣T l
∣∣2 =

∣∣Rl
∣∣2 = 1/2 and full absorption

from the right. The potential I use for that device has symmetry I only, i.e.,

“no symmetry” other than the trivial commutation with the identity. No other

potential symmetry would allow this type of device.

The effective non-local potential V (x, y), see eq. (3.4), corresponding to the

v/vd ratios used for the three devices is shown in fig. 3.2. Note that the non-local
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Figure 3.1: Left column: T /A device with symmetry VIII. Top: ΩVIII(x);
Bottom: transmission and reflection coefficients. v0/vd = 400, aτ = 2618.19,
x0/d = 0.1532, τ∆ = 1413.01. Middle column: R/A device with symmetry
VI. Top: ΩVI(x) (it is real); Bottom: transmission and reflection coefficients.
v0/vd = 400, bτ = −244516.1, cτ = 167853.9, x0/d = 0.1679, τ∆ = 193.508.
Right column: “Partial”-T R/A device with symmetry I. Top: ΩI(x), real (blue,
solid line) and imaginary parts (orange, dashed line); Bottom: transmission and
reflection coefficients. v0/vd = 8, bτ = 102.6520, cτ = 165.8355, x0/d = 0.1648,
τ∆ = 90.5337. In all cases τ = md2/ℏ and vd = ℏ/(md).

Figure 3.2: Non-local potentials V (x, y): absolute value (top), argument (bot-
tom). Left column: Potential for T /A device with symmetry VIII. Middle
column: Potential for R/A device with symmetry VI. Right column: “Partial”-
T R/A device with symmetry I. V0 = ℏ2/(md3).

potential has dimensions energy/length, so we divide the absolute value by a factor

V0 = ℏ2/(md3) to plot a dimensionless quantity.

In the parameter optimization I see that increasing the velocities further does

not pose a problem for the T /A device, it is more challenging for an R/A device,

and it is quite difficult for the partial-RT /A device. The device T /A is feasible
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for an experimental implementation as the ratio v0/vd can be easily increased to

desired values, for reasonable values of the Rabi frequency and laser waist [96].

Moreover, the velocity width with the desired behavior is much broader for

T /A. Therefore a T /A device is the best candidate for an experimental imple-

mentation. As a check of feasibility, let us assume a Beryllium ion. Its hyperfine

structure provides a good two-level system for which I can neglect decay (i.e. γ ≈ 0

is indeed realistic). m = 1.49 × 10−26 kg and I set a length d = 10µm compat-

ible with the small laser waists (in this case 1.4 µm) achieved for individual ion

addressing [96]. The scaling factors take the values

vd = 0.67mm/s,

τ = 1.49× 10−2 s,

which gives v ≈ 27 cm/s for v/vd = 400, (there is no major obstacle to get devices

for higher velocities, in particular the classical approximations in section 3.3 can

be used to estimate the values of the parameters) and Rabi frequencies, see fig.

3.1, in the hundreds of kHz range. The relative ion-laser beam velocity could be

as well implemented by moving the beam in the laboratory frame.

3.3 Classical approximation for T /A device

In a T /A device such as the one presented, an incident plane wave from the

left ends up as a pure transmitted wave with no reflection or absorption. However,

a wave incident from the right is fully absorbed. How can that be? Should not

the velocity-reversed motion of the transmitted wave lead to the reversed incident

wave? For a more intuitive understanding I may seek help in the underlying

two-level model. In the larger space the potential is again local and Hermitian.

A simple semiclassical approximation is to assume that the particle moves with

constant speeds ±v for left (v > 0) or right (−v < 0) incidence, so that at a

given time it is subjected to the 2 × 2 time-dependent potentials V(±vt). The

incidence from the left and right give different time dependences for the potential.
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The scattering problem then reduces to solving the time-dependent Schrödinger

equation for the amplitudes of a two-level atom with time-dependent potential,

i.e. to solving the following time-dependent Schrödinger equation (γ = 0)

iℏ
∂

∂t
χ±(t) = V(±vt)χ±(t), (3.6)

with the appropriate boundary conditions χ+(−∞) = χ−(−∞) = ( 1
0 ). The solu-

tions for v/vd = 400 are shown in fig. 3.3. In fig. 3.3(a), χ+(t) (left incidence) is

depicted: the particle ends with high probability in the ground state at the final

time. In fig. 3.3(b), χ−(t) (right incidence) shows that the ground state popu-

lation is transferred to the excited state. Projected onto the ground-state level

alone, this corresponds to full absorption of the ground state population at the

final time.

For an even rougher but also illustrative picture, again in a semiclassical time-

dependent framework, I may substitute the smooth Gaussians for Re(Ω) and Im(Ω)

in fig. 3.1 by two simple, contiguous square functions of height Ω > 0 and width

w̃ > 0. Then, the 2× 2 potential at a given time is, in terms of Pauli matrices,

V(x) = ℏ
2
∆(σZ − 1) +

ℏ
2


ΩσX −w̃ < x < 0

−ΩσY 0 < x < w̃

0 otherwise

(3.7)

where x = ±vt and let T = 2w̃/v.

The time-evolution of this process, χ±(t), up to a phase factor may be regarded

as two consecutive rotations Rj = e−iβnj ·σ/2 (j = 1, 2), with β = T
2

√
Ω2 +∆2, of

the two-level state on the Bloch sphere about the axes

n1 =
1√

Ω2 +∆2
(Ω, 0,∆), (3.8)

n2 =
1√

Ω2 +∆2
(0,−Ω,∆). (3.9)

The initial state at a time t = −T/2 is again χ+(−T/2) = χ−(−T/2) = ( 1
0 ).

The unitary time-evolution operator to reach the final time T/2 takes the form
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Figure 3.3: Simplified model of the asymmetric T /A device with symmetry
VIII: (a) χ+(t), (b) χ−(t); ground-state population

∣∣χ±(t),1∣∣2 (blue, solid line),
excited-

∣∣χ±(t),2∣∣2 (orange, dashed line). v/vd = 400, aτ = 2618.19, x0/d =
0.1532, τ∆ = 1413.01.

ei∆T/2R2R1 for incidence from the left (χ+) and ei∆T/2R1R2 for incidence from

the right (χ−). The time T and the parameters Ω,∆ will be fixed to reproduce

the results of the full calculation with the exact model so that the system starts

in the ground state to end either in the ground state (|χ+(T/2)|2 = 1) or in

the excited state by performing the rotations in one order or the reverse order

(|χ−(T/2)|2 = 0). This gives Ω/∆ =
√
2 and T = 4π/(3

√
3∆). It follows that

n1 =
1√
3
(
√
2, 0, 1) and n2 =

1√
3
(0,−

√
2, 1).

The different outcomes can thus be understood as the result of the

non-commutativity of rotations on the Bloch sphere, see fig. 3.4: In fig. 3.4(a),

first the rotation R1(T/2) and then the rotation R2(T/2) are performed. Starting

in the ground state |1⟩, the system ends up in the excited state |2⟩. In fig. 3.4(b),

first the rotation R2(T/2) and then the rotation R1(T/2) are performed: now the

system starts and ends in the ground state |1⟩.

These results can also be used to approximate the parameters of the potential in

the quantum setting. As an approximation of the height a I assume that the area

a
∫∞
−∞ dx g(x) = a

√
πw is equal to w̃Ω = Tv0Ω/2 = v0π(2/3)

3/2. This results in

an approximation a ≈ v0
w

√
π (2/3)3/2. As an additional approximation, we assume

that (a/
√
2)/∆ ≈ Ω/∆ =

√
2, so I get ∆ ≈ a/2 ≈ v0

2w

√
π (2/3)3/2. A comparison

between these approximations and the numerically achieved parameters, see fig.
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(a) Order of rotations: first R1(T/2) (left figure) and then R2(T/2) (right figure).

(b) Order of rotations: first R2(T/2) (left figure) and then R1(T/2) (right figure).

Figure 3.4: Simplified time-dependent model of the asymmetric T /A device
with symmetry VIII: Bloch sphere explaining non time-reversal invariance, see
text for details. The state trajectories are depicted in two-steps on the sphere.
The rotation axes are also depicted. (a) The process simulates incidence from
the left. The state starts and ends in |1⟩. (b) The process simulates incidence
from the right. The state starts at |1⟩ and ends at |2⟩.

3.5, shows a good agreement over a large velocity range. This allows one to find

good initial values for further numerical optimization.
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Figure 3.5: Asymmetric T /A device with symmetry VIII: comparison between
numerically achieved parameters (red dots) and approximated parameters (blue,
solid lines) versus velocity v0. (a) Height of Rabi frequency a, (b) detuning ∆.

3.4 Discussion

Since devices of technological interest, such as one-way filters for transmission

or reflection, one-way barriers, one-way mirrors, and others, may be built based

on the asymmetric scattering response of non-Hermitian Hamiltonians, there is

both fundamental interest and applications in sight to implement non-Hermitian

scattering Hamiltonians. The results in this chapter are a step forward in that

direction, specifically I propose a quantum-optical implementation of potentials

with asymmetric scattering response. They are non-local and non-PT symmetri-

cal, which allows for asymmetric transmission.

In general the chosen Hilbert space may be regarded as a subspace of a larger

space. For example, the space of a “structureless particle” in 1D is the ground-

state subspace for a particle with internal structure, consisting of two-levels in

the simplest scenario. It is then possible to regard the non-Hermitian physics

in the reduced space as a projection of the larger space, which may itself be

driven by a Hermitian or a non-Hermitian Hamiltonian. I have used the Hermitian

option in the examples, where I assumed a zero decay constant, γ = 0, for the

excited state. A non-zero γ implies a non-Hermitian Hamiltonian in the larger

two-level space. The description may still be enlarged, including quantized field

modes to account for the atom-field interaction with a Hermitian Hamiltonian.

As an outlook, depending on the application, there might be the need for a more

fundamental and detailed descriptive level. Presently I discuss the desired physics
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(i.e., the scattering asymmetries) at the level of the smallest 1D space of the

ground state, while taking refuge in the two-level space to find a feasible physical

implementation.





Part II

Heat rectification in mesoscopic

systems





Chapter 4

Local Rectification of Heat Flux

In this chapter, a model for an atom-chain thermal rectifier is presented. The

atoms in the chain are trapped in on-site harmonic potentials, and interact with

their nearest neighbours by Morse potentials (or also by harmonic potentials in a

simplified version). The chain is homogeneous except for a local modification of the

interactions and trapping potential at one site, the “impurity”. The rectification

mechanism is due here to the localized impurity, the only asymmetrical element of

the structure, apart from the externally imposed temperature bias, and does not

rely on putting in contact different materials or other known mechanisms such as

grading or long-range interactions. The effect survives if all interaction forces are

linear except the ones for the impurity.

The rest of the chapter is organized as follows. In section 4.1, I shall describe

the homogeneous 1D chain, without the impurity. For this system, I numerically

solve the dynamical equations, to show that the usual heat conduction applies. In

section 4.2, I modify the potentials for one of the atoms and demonstrate the recti-

fication effect. I also observe rectification when all the interaction Morse potentials

are substituted by harmonic oscillators. Finally, in section 4.3, I summarize and

discuss the results of this chapter.

67
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4.1 Homogeneous one-dimensional chain

I start with a homogeneous 1D chain with N atoms coupled at both extremes to

heat baths, at different temperatures Th and Tc for “hot” and “cold” respectively.

The baths are modeled with a Nosé-Hoover method as described in [97]. Atoms

1 and N represent the first and the N -th atom in the chain, from left to right,

that will be in contact with the baths. All the atoms are subjected to on-site

potentials and to nearest-neighbor interactions, and their equilibrium positions

yi0 are assumed to be equally spaced by a distance a. xi = yi − yi0, i = 1, ..., N ,

represent the displacements from the equilibrium positions of the corresponding

atoms with positions yi.

The classical Hamiltonian of the atom chain can be written in a general form

as

H =
N∑
i=1

Hi, (4.1)

with

H1 =
p21
2m

+ U1(x1) + VL,

Hi =
p2i
2m

+ Ui(xi) + Vi(xi−1, xi) i = 2, ..., N − 1,

HN =
p2N
2m

+ UN(xN) + VN(xN−1, xN) + VR, (4.2)

where the pi are the momenta, Ui(xi) is the on-site potential for the ith atom,

and Vi(xi−1, xi) represents the atom-atom interaction potential. VR and VL are

the interactions coupling the boundary atoms to the Nosé-Hoover thermostats,

see [97].

There are a large number of 1D models that obey this general Hamiltonian.

Different choices of the trapping and interaction potentials would give different

conductivity behaviors. I choose a simple form of the Hamiltonian in which each

atom is subjected to a harmonic on-site potential and a Morse interaction potential
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Figure 4.1: (a) On-site potentials: harmonic potential centered at the equilib-
rium position of each atom (dashed blue line) as a function of the displacement
from this position xi = yi − yi0 in a−units, and the on-site potential for the
impurity, i = N/2 + 1 (N even, red solid line). (b) Interaction potentials as
a function of the distance between nearest neighbors: Morse potential (blue
dashed line) valid for all atoms except for i = N/2 + 1, N even, where the
modified potential (red solid line) is used. The harmonic approximation of the
Morse potential is also depicted (eq. (4.5), black dots, only used for fig. 4.5,
below). Parameters: D = 0.5, g = 1, γ = 45, d = 100 and b = 105, used
throughout the chapter.

between nearest neighbors (see fig. 4.1, dashed lines),

Ui(xi) =
1

2
mω2x2i , (4.3)

Vi(xi−1, xi) = D
{
e−α[xi−xi−1] − 1

}2
, (4.4)

where ω is the trapping angular frequency, and D and α are time-independent

parameters of the Morse potential. A “minimalist version” of the model where

V becomes the harmonic limit of eq. (4.4), dotted line in fig. 1, will also be
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Figure 4.2: Symmetric temperature profiles for a homogeneous chain, without
impurity. For Th = TL, Tc = TR (red solid dots) the (absolute value of) the
heat flux is JL→R, equal to JR→L for the reverse configuration of the bath
temperatures, Th = TR, Tc = TL (black empty squares). Parameters as in fig.
4.1.

considered in the final discussion,

Vi(xi−1, xi) = k(xi − xi−1)
2/2, k = 2Dα2. (4.5)

For convenience, dimensionless units are used and the mass of all particles is set

to unity.

I start by studying the homogeneous configuration with no impurity and poten-

tials (4.3) and (4.4), solving numerically the dynamical equations for the Hamil-

tonian (4.1) with a Runge-Kutta-Fehlberg algorithm. I have chosen a low number

of atoms, N = 20, with thermal baths at Th = 0.20 and Tc = 0.15 at both ends

of the chain with 16 thermostats each. The real temperature is related to the

dimensionless one through Treal = Tma2ω2/kB so, for typical values m ≈ 10−26

kg, ω ≈ 1013 s−1, a ≈ 10−10 m, and using kB = 1.38 × 10−23 JK−1, the dimen-

sionless temperatures 0.15, 0.20, translate into 100, 150 K. It is advisable to use

temperatures around these values in order to ensure that the displacements of the

particles are realistic [98].

First I demonstrate the conductivity behavior of the model. To this end, I

calculate the local heat flux Ji and temperature Ti, performing the numerical inte-

gration for long enough times to reach the stationary state. The local temperature
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Figure 4.3: Temperature profile along the homogeneous chain for different
number of atoms: 100 (dotted black line), 125 (dashed blue line) and 150 (solid
red line). The atom sites have been rescaled with the total number of atoms.
The time averages have been carried over a time interval of ≈ 2 × 106 after a
transient of ≈ 1 × 105. In the inset (a), the product JN vs. N demonstrates
that for long chains JN is independent of N . In (b) the linear dependence of
J with ∆T for a fixed number of atoms, N = 100, is shown. Parameters as in
fig. 4.1.

is found as the time average Ti = ⟨p2i /m⟩, whereas Ji, from the continuity equation

[99], is given by

Ji = −ẋi
∂V (xi−1, xi)

∂xi
. (4.6)

From now on I only consider the time average ⟨Ji(t)⟩, which converges to a constant

value for all sites once the system is in the stationary nonequilibrium state. I depict

the temperature profiles, for N = 20, first with TL = Th and TR = Tc (L and R

stand for left and right) and after switching the positions of the thermal baths in

fig. 4.2. The profiles are symmetric, as expected, and the heat flux does not have

a preferred direction [25, 99]. Denoting the absolute values of the fluxes from the

left (when TL = Th) as JL→R, and from the right (when TR = Th) as JR→L, I find

that JL→R = JR→L = J = 1.6 × 10−2, in the dimensionless units, consistent with

the values found in other models [25, 99].

The profile of the temperature is linear with boundary non-linearities at the
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Figure 4.4: Temperature profile for the chain of N = 20 atoms, with an
impurity in the N/2 + 1 position, with TL = Th and TR = Tc (circles) and with
the thermostat baths switched (squares). Parameters as in fig. 4.1. (a) Tc =
0.15, Th = 0.2. JL→R = 0.00769 vs JR→L = 0.00581, with gives a rectification
R = 31%; (b) Tc = 0.025, Th = 0.325. JL→R = 0.0499 vs JR→L = 0.0140, with
R = 256%.

edges, close to the thermal baths, due to the boundary conditions [100]. In fig. 4.3,

I depict Ti vs i/N for N = 100, 125 and 150 with the same boundary conditions.

For these larger atom numbers I have connected the first 3 and the last 3 atoms

to the Nosé-Hoover baths. In the inset (a) of fig. 4.3 the product JN vs. N is

plotted, showing that for a low N limit there is a well defined conductivity per

unit length whereas for longer chains, JN tends to be constant which indicates

a normal thermal conductivity independent of the length. Fixing the number of

atoms to 100, as in the inset (b) of fig. 4.3, I observe a linear dependence between

the flux and ∆T .
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Figure 4.5: Rectification factor R as a function of the temperature difference
between ends of the chain of atoms, ∆T . I have changed both Th and Tc

according to Tc = 0.15 − (∆T − 0.05)/2 and Th = 0.2 + (∆T − 0.05)/2, with
N = 20, keeping the rest of parameters as in fig. 4.1. Interatomic potentials:
Morse potential, eq. (4.4) (black line with circles, see the temperature profiles of
extreme points in fig. 4.4); harmonic potential, eq. (4.5) (red line with squares).

4.2 Impurity-based thermal rectifier

To rectify the heat flux I modify the potentials for site j = N/2 + 1 with N

even, as

Uj(xj, t) = de−b[xj(t)+a/3], (4.7)

Vj(xj−1, xj, t) = ge−γ[xj(t)−xj−1(t)+a/2]. (4.8)

All the parameters involved, d, b, and g, γ are time-independent. In fig. 4.1 the

modifications introduced with respect to the ordinary sites are shown (solid lines).

The different on-site and interaction terms introduce soft-wall potentials (instead

of hard-walls to aid in integrating the dynamical equations) that make it difficult

for the impurity to transmit its excitation to the left whereas left-to-right transmis-

sion is still possible. This effect is facilitated by the relative size of the coefficients,

a/3 < a/2, that determine the position of the walls. These positions imply that

an impurity excited by a hot right bath cannot affect its left cold neighbour near

its equilibrium position at the j− 1 site. However, if the left j− 1 atom is excited

from a hot bath on the left, it can get close enough to the impurity to kick it and

transfer kinetic energy.
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After extensive numerical simulations, I have chosen the values of these param-

eters as in fig. 4.1, such that the conductivity in the forward direction, JL→R, and

the rectification factor, defined as R = (JL→R−JR→L)/JR→L×100, are both large

for Th = 0.2, Tc = 0.15. A large R without a large JL→R could in fact be useless

[27]. Note that the parameters are not necessarily the optimal combination, which

in any case would depend on the exact definition of “optimal” (technically on how

JL→R/J and R are weighted and combined in a cost function and on the limits

imposed on the parameter values). This definition is an interesting question but

it goes beyond the scope of this chapter, which is to demonstrate and discuss the

effect of the localized impurity.

I have used again N = 20 atoms connected to baths of 16 thermostats each,

with the same temperatures as for the homogeneous chain, and numerically solved

the dynamical equations to calculate the local temperature and the heat flux for

both configurations of the baths. The interatomic potential for the regular atoms

is the Morse potential (4.4). In fig. 4.4(a), the temperature profiles show a clear

asymmetry between L→ R and R → L. Specifically, I find JL→R = 7.6×10−3 and

JR→L = 5.8 × 10−3 which gives R = 31%. The effect decays with longer chains,

with, for example, R = 19% for N = 100, and R=17.8% for N = 150.

These temperature profiles depend on the difference between the bath temper-

atures, see e.g. fig. 4.4(b). Increasing the temperature gap, but keeping Th low

enough so that the displacement of the atoms from their equilibrium positions

is realistic, I find higher values of R. Figure 4.5 shows the strong dependence

of R with ∆T (black circles). I have changed both Th and Tc so that the mean

temperature (Tc + Th)/2 remains constant.

4.3 Discussion

I have presented a scheme for thermal rectification using a one-dimensional

chain of atoms which is homogeneous except for the special interactions of one of

them, the impurity, and the couplings with the baths at the boundaries. These



Chapter 4. Local Rectification of Heat Flux 75

0.15

0.175

0.2

0 5 10 15 20

Ti
T
L T

R

(a)

0 5 10 15 20
atom site

Ti
T
L T

R

0.325

0.025

0.175

(b)

Figure 4.6: Temperature profile for a harmonic interacting chain of N = 20
atoms, with an impurity in the N/2 + 1 position, with TL = Th and TR = Tc

(circles) and with the thermostat baths switched (squares), for (a) ∆T = 0.05
and (b) ∆T = 0.3. The corresponding rectification factors are (a) R = 18% and
(b) R = 85%. Parameters regarding the impurity are the same as in fig. 4.1.

proof-of-principle results for an impurity-based rectification mechanism may en-

courage further exploration of the impurity-based rectification, in particular of the

effect of different forms for the impurity on-site potential and its interactions with

neighboring atoms. In contrast to the majority of chain models, the structural

asymmetry in the present model is only in the impurity. The idea of a localized

effect was already implicit in early works on a two-segment Frenkel-Kontorova

model [26, 38], where rectification depended crucially on the interaction constant

coupling between the two segments. However, the coupling interaction was sym-

metrical and the asymmetry was provided by the different nature (parameters) of

the segments put in contact. Also different from common chain models are the

potentials chosen here. Instead of using the Morse potential as an on-site model,

see e.g. [25], I have considered a natural setting where this potential character-

izes the interatomic interactions, and the on-site potential is symmetrical with
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respect to the equilibrium position, and actually harmonic. The numerical results

indicate that this model is consistent with normal conduction, and also helps to

isolate and identify the local-impurity mechanism for rectification. In this regard

it is useful to consider a further simplification, in the spirit of the minimalists

models proposed by Pereira [55], so as to distill further the essence of the local

rectification mechanism. If the Morse interatomic interaction is substituted by the

corresponding harmonic interaction, see the black dotted line in fig. 4.1(b), the

rectification effect remains, albeit slightly reduced, see fig. 4.5. The chain is then

perfectly linear with the only non-linear exception localized at the impurity. The

temperature dependent feature mentioned in [55] as the second necessary condi-

tion for rectification besides asymmetry, is here localized in the impurity too, and

consists of a different capability to transfer kinetic energy depending on the tem-

peratures on both sides of the impurity. Figure 4.6 shows temperature profiles for

the purely harmonic chain to be compared with the Morse-interaction chain in fig.

4.4. Flatter profiles are found on both sides of the impurity, as corresponds to the

abnormal transport expected for harmonic chains [101]. It would be interesting to

combine the impurity effect with other rectification mechanisms (such as grading,

long-range interactions, or use of different segments), or with more impurities in

series to enhance further the rectification effect.

Even though the motivation was to mimic the effect of a localized atom diode

that lets atoms pass only one way, unlike the atom diode [6], all interactions in the

present model are elastic. The model may be extended by adding an irreversible,

dissipative element so as to induce not only rectification but a truly Maxwell demon

for heat transfer [92, 102]. On the experimental side, one dimensional chains of

neutral atoms in optical lattices can be implemented with cold atoms [103]. An

impurity with different internal structure could be subjected to a different on-site

potential imprinted by a holographic mask [104], and asymmetrical interatomic

interactions could be implemented by trapping a controllable polar molecule or

mediated by atoms in parallel lattices [105].



Chapter 5

Asymmetric heat transport in ion

crystals

In this chapter I propose to bridge the gap between mathematical models and

actual physical systems by exploring the implementation of a thermal rectifier in

a realistic, graded system with long-range interactions: a chain of ultracold ions

in a segmented Paul trap with frequency-graded microtraps for each ion. Long-

range interactions are due to the Coulomb forces, and the baths at the ends of

the chain may be implemented with optical molasses (see fig. 5.1). The trapping

frequencies of the microtraps are controlled individually in order to create a graded

and asymmetric trap-frequency profile along the chain. This asymmetry will lead

to a heat flow that depends on the sign of the temperature difference of the baths.

Heat transport in trapped-ion chains has been studied in several works [106–110]

and interesting phenomena like phase transitions have been investigated [106–

109]. The idea of using locally-controlled traps is already mentioned in [106]

to implement disorder and study its effects. The device I present here may be

challenging to implement, but at reach with the current technology, in particular

that of microfabricated traps [111–113]. Thus the setting is thought for a small,

realistic number of controllable ions.

The chapter is organized as follows. In section 5.1, I describe the physical

system of trapped ions with graded trap frequencies. I also set the stochastic

77
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dynamics due to the action of lasers at the chain edges. In section 5.2, I implement

an efficient method to find the steady state using Novikov’s theorem and solving an

algebraic system of equations. In section 5.3, I present simulations of this system

exhibiting thermal rectification and discuss the dependence with the number of

ions, different options for the ion-laser coupling, and the advantages/disadvantages

of using a graded frequency profile instead of a segmented one. Finally, in section

5.4, I summarize the conclusions, and discuss connections with other works.

5.1 Physical System

Consider a linear lattice of N individual harmonic traps of (angular) trapping

frequencies ωn evenly distributed along the x axis at a distance a from each other.

Each trap contains a single ion that interacts with the rest via Coulomb potentials.

All the ions are of the same species, with mass m and charge q. The Hamiltonian

that describes the dynamics of the system is (I consider only one-dimensional

motion along the chain axis)

H(x,p) =
N∑

n=1

[
p2n
2m

+
mω2

n

2
(xn − x(0)n )2

]
+ Vint(x), (5.1)

where {xn, pn}, position and momentum of each ion, are the components of the

vectors x,p, x(0)n = na are the centers of the harmonic traps, and Vint is the sum

of the Coulomb interaction potential between all pairs of ions,

Vint(x) =
1

2

∑
n

∑
l ̸=n

VC(|xn − xl|), (5.2)

with VC(|xn − xl|) = q2

4πε0
1

|xn−xl|
. The ends of the chain are in contact with two

thermal reservoirs at temperatures TL for the left bath and TR for the right bath

respectively. The action of the resevoirs on the dynamics of the chain is modeled

via Langevin baths at temperatures TL and TR [101, 114]. The equations of motion
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TL TR

Figure 5.1: Schematic representation of the frequency-graded chain of trapped
ions proposed as a thermal rectifier. The left and right ends of the chain are in
contact with optical molasses at temperatures TL and TR (green and grey boxes
respectively). Each ion is in an individual trap. The (angular) frequencies of the
traps increase homogeneously from left to right, starting from ω1 and ending at
ω1+∆ω. The ions interact through the Coulomb force, which is long range, and
therefore all the ions interact among them, even distant neighbors. By default
I use 15 ions.

of the chain, taking into account the baths and the Hamiltonian, are

ẋn =
1

m
pn,

ṗn = −mω2
n(xn − x(0)n )− ∂Vint

∂xn
− γn
m
pn + ξn(t),

(5.3)

where γn and ξn(t) are only non-zero for the ions in the end regions, in contact with

the left and right baths in the sets L = {1, 2, ..., NL} and

R = {N − (NR − 1), ..., N − 1, N}, see fig. 5.1. γn are friction coefficients and

ξn(t) are uncorrelated Gaussian noise forces satisfying ⟨ξn(t)⟩ = 0 and ⟨ξn(t)ξm(t′)⟩ =

2Dnδnmδ(t− t′), Dn being the diffusion coefficients. These Gaussian forces are for-

mally the time derivatives of independent Wiener processes (Brownian motions)

ξn(t) =
√
2Dn

dWn

dt
[107, 115] and eq. (5.3) is a stochastic differential equation

(SDE) in the Stratonovich sense [115].

The baths are physically implemented by optical molasses consisting of a pair

of counterpropagating Doppler-cooling lasers [107]. The friction and diffusion

coefficients for the ions in contact with the baths are given in [107, 116, 117]

γn = −4ℏk2L,R
(
IL,R
I0

)
2δL,R/Γ

[1 + (2δL,R/Γ)2]
2 ,

Dn = ℏ2k2L,R
(
IL,R
I0

)
Γ

1 + (2δL,R/Γ)2
,

n ∈ L,R,

(5.4)

where kL (kR) and IL (IR) are the wave vector and intensity of the left (right) laser.
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δL (δR) is the detuning of the left (right) laser with respect to the angular frequency

ω0 of the atomic transition the laser is exciting, and Γ is the corresponding natural

line width of the excited state. The expressions in eq. (5.4) are valid only if

the intensities of the lasers are small compared to the saturation intensity I0,

IL,R/I0 ≪ 1. In this bath model, the friction term in eq. (5.3) comes from

the cooling action of the laser and the white noise force ξn(t) corresponds to the

random recoil of the ions due to spontaneous emission of photons [116, 117]. Using

the diffusion-dissipation relation D = γkBT [118], the temperatures of the optical

molasses baths are given by

TL,R = − ℏΓ
4kB

1 + (2δL,R/Γ)
2

(2δL,R/Γ)
, (5.5)

with kB being the Boltzmann constant. If the laser intensities are low enough,

the temperatures of the baths are controlled by modifying the detunings. When

δ = δD = −Γ/2 the optical molasses reach their minimum possible temperature,

the Doppler limit TD = ℏΓ/(2kB). Note that away from the Doppler limit the

same temperature may be achieved for two different values of the detuning. These

two possibilities imply different couplings (two different pairs of γ and D values)

and thus different physical effects that will be studied in section 5.3.3.

5.2 Calculation of the stationary heat currents

The local energy of each site is defined by

Hn =
1

2m
p2n +

1

2
mω2

n

(
xn − x(0)n

)2
+

1

2

∑
l ̸=n

VC(|xn − xl|). (5.6)

Differentiating Hn with respect to time I find the continuity equation

Ḣn =
pn
m

[
ξn(t)− γn

pn
m

]
− 1

2m

∑
l ̸=n

∂VC(|xn−xl|)
∂xn

(pn + pl). (5.7)
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Two different contributions can be distinguished: jBn ≡ pn
m

[
ξn(t)− γn

pn
m

]
, which

is the energy flow from the laser reservoir to the ions at the edges of the chain

(only for n ∈ L,R), and Ḣ int
n ≡ − 1

2m

∑
l ̸=n

∂VC(|xn−xl|)
∂xn

(pn + pl), which gives the

“internal” energy flow due to the interactions with the rest of the ions. In the

steady state
⟨
Ḣn

⟩
= 0, and therefore

⟨
jBn
⟩
+
⟨
Ḣ int

n

⟩
= 0, (5.8)

where ⟨···⟩ stands for the expectation value with respect to the ensemble of noise

processes ξ(t) (ξ represents a vector with components ξn). Equation (5.8) im-

plies that, in the steady state, the internal rates Ḣ int
n vanish for the inner ions

of the chain because jBn = 0 for n /∈ L,R. In chains with nearest-neighbor (NN)

interactions, ⟨Ḣ int
n ⟩ simplifies to two compensating and equal-in-magnitude con-

tributions that define the homogeneous heat flux across the chain. For long-range

interactions this is not so and defining the flux is not so straightforward. A formal

possibility is to impose nearest-neighbor interatomic interactions for some atoms

in the chain [40], but this approach is not realistic in the current system so I define

instead the heat currents for the left and right baths as

JL(t) =
∑
n∈L

⟨
jBn
⟩
,

JR(t) =
∑
n∈R

⟨
jBn
⟩
,

(5.9)

respectively. These expressions are in general time-dependent. In the steady state

JL,steady and JR,steady should cancel each other since the local energies stabilize

and internal energy flows cancel. I will use either JL,steady or JR,steady to calculate

the total energy flow in the chain, always taking the absolute value, i.e., J ≡

|JL,steady| = |JR,steady|. J is defined as J→ when the hot bath is on the left and J←
when it is on the right.

To compute the average heat fluxes of the baths
⟨
jBn
⟩

in eq. (5.9) I need

the averages ⟨pn(t)ξn(t)⟩. Instead of explicitly averaging pn(t)ξn(t) over different

realizations of the white noise, I use Novikov’s theorem [115, 119, 120]. Novikov’s
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theorem states that the ensemble average (over the realizations of the noise) of the

product of some functional ϕ(t), which depends on a set of nnoise Gaussian noises

ξi(t) with zero mean value, ⟨ξi(t)⟩ = 0, and the noise itself, is given by

⟨ξi(t)ϕ(t)⟩ =
nnoise∑
j=1

∫ t

0

dt′ ⟨ξi(t)ξj(t′)⟩
⟨
δϕ(t)

δξj(t′)

⟩
, (5.10)

where δϕ(t)/δξj(t
′) is the functional derivative of ϕ(t) with respect to the j-th

component of the noise. Since the noises are independent from each other and

δ−correlated,

⟨ξi(t)ϕ(t)⟩ = 2Di

= 1
2
limt′→t−

⟨
δϕ(t)

δξi(t
′)

⟩︷ ︸︸ ︷∫ t

0

dt′δ(t− t′)

⟨
δϕ(t)

δξi(t′)

⟩
= Di lim

t′→t−

⟨
δϕ(t)

δξi(t′)

⟩
.

(5.11)

The 1/2 factor from the integral in eq. (5.11) comes from the assumption that the

Dirac delta function is the limit of even correlation functions when the correlation

time goes to 0. The notation limt′→t− stands for the limit when t′ goes to t from

below (t′ < t). To evaluate the functional derivatives of the position xn(t) and

momentum pn(t) coordinates with respect to the white noises, I integrate eq. (5.3)

to have its formal solution as a functional depending on the white Gaussian noises

ξn(t),

xn(t) = xn(0) +
1

m

∫ t

0

ds pn(s),

pn(t) = pn(0) +

∫ t

0

ds

[
− ∂H

∂xn
(s)− γn

m
pn(s) + ξn(s)

]
.

(5.12)

Taking the functional derivatives of eq. (5.12) I get for t′ < t

δxn(t)

δξm(t′)
=

1

m

∫ t

t′
ds

δpn(s)

δξm(t′)
,

δpn(t)

δξm(t′)
= δnm −

∫ t

t′
ds

δ

δξm(t′)

[
∂H

∂xn
(s) +

γn
m
pn(s)

]
.

(5.13)
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The integration limits in eq. (5.13) go from t′ to t since the functional deriva-

tives are 0 when s < t′, because the values of the noise in the future cannot

affect a signal in the present, which would break causality. I have also used that
δξn(t)
δξm(t′)

= δnmδ(t − t′). Taking the limit t′ → t− in eq. (5.12) I obtain the val-

ues of the functional derivatives of xn and pn, limt′→t− δxn(t)/δξm(t
′) = 0 and

limt′→t− δpn(t)/δξm(t
′) = δnm (δnm is the usual Kronecker delta). Thus I have

⟨xn(t)ξm(t)⟩ = 0 and ⟨pn(t)ξm(t)⟩ = δnmDm, which gives for the heat flow from

the baths ⟨
jBn
⟩
=

1

m

[
Dn − γn

⟨p2n⟩
m

]
. (5.14)

In all simulations I check that |JL,steady| = |JR,steady| within the numerical toler-

ance of the computer. To measure the asymmetry of the heat currents I use the

rectification factor R defined as

R =
J→ − J←

max(J→, J←)
. (5.15)

R may go from −1 to 1 (In the figures I depict it in % between -100% and 100%).

If there is no rectification J→ = J← and R = 0. For perfect rectification in the

right (left) direction, J→ ≫ J← (J→ ≪ J←), and R = 1 (R = −1). Notice that

other definitions of rectification factors exist in many works on asymmetric heat

transfer so comparisons should be done with care.

This model does not show the antithermodynamical behavior observed in other

models [121, 122], and heat is found to flow in all cases from the hot to the cold

bath.

5.2.1 Algebraic, small-oscillations approach to calculate the

steady state

To find the temperature profiles and heat currents in the steady state the usual

approach is to solve the SDE system in eq. (5.3) up to long times and for many real-

izations of the white noises ξ(t). In that way, the ensemble averages ⟨pn(t→ ∞)2⟩,

necessary for both the temperature profiles and heat currents, are computed. This
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standard route implies a heavy computational effort, in particular when I want to

study the heat transport for several bath configurations, frequency increments and

chain parameters. It is possible to circumvent this difficulty and find ensemble

averages like ⟨xnxm⟩, ⟨xnpm⟩, ⟨pnpm⟩ (second order moments) without integrating

any SDE [123–125]. The idea is to impose the condition d ⟨· · ·⟩/dt = 0 for all the

second order moments and linearize the dynamical equations of the system around

equilibrium. A system of linear algebraic equations for the moments results, that

can be easily solved without solving the SDE many times.

To linearize the SDE in eq. (5.3) I approximate the potential energy of the

Hamiltonian in eq. (5.1), V (x) = Vint(x)+m
∑

n ω
2
n(xn−x

(0)
n )2/2, by its harmonic

approximation around the equilibrium positions xeq, defined by ∂V (x)
∂x

∣∣∣
x=xeq

= 0.

The approximate potential (ignoring the zero-point energy) is

V (x) ≈ 1

2

∑
n,m

Knm(xn − xeqn )(xm − xeqm), (5.16)

with Knm = ∂2V (x)
∂xn∂xm

∣∣∣
x=xeq

being the Hessian matrix entries of V (x) around the

equilibrium configuration [126]

Knm =


mω2

n + 2
(

q2

4πε0

)∑
l≠n

1

|xeq
n −xeq

l |
3 if n = m

−2
(

q2

4πε0

)
1

|xeq
n −xeq

m |3
if n ̸= m

. (5.17)

Note that this approximation does not modify the two main features of the system,

namely asymmetry and long-range interactions, which are manifest in the asym-

metric distribution of ωn and the non-zero off-diagonal elements of the K matrix,

respectively. In the following I will use yn = xn − xeqn to simplify the notation.

The linearized dynamics around the equilibrium positions are given by

ẏn =
1

m
pn,

ṗn = −
∑
l

Knlyl −
γn
m
pn + ξn(t).

(5.18)



Chapter 5. Asymmetric heat transport in ion crystals 85

0

5

10

15

T 
(m

K)
TL TR

Δω
(a)

0 100 200 300
ω1t

−0.0025

0.0

0.0025

0.005

0.0075

JRΔ steady

JLΔ steady

H
ea

tC
ur
re
nt
s
(m

l2
ω

3 1)

(b)

Figure 5.2: (a) Temperatures of the ions in the stationary state for a graded
chain with the parameters described in section 5.3.1. The temperature profiles
found with the algebraic method (eq. (5.19)) are indistinguishable from the
ones found solving the Langevin equation (eq. (5.3)). Empty triangles (squares)
correspond to TL = TH (TL = TC) and TR = TC (TR = TH). (b) Heat currents
as a function of time for TL = TH and TR = TC , see eq. (5.9): JL(t) (solid green
line) from the left reservoir into the chain;JR(t) (dotted grey line) from the right
reservoir into the chain (negative except at very short times); JL(t) + JR(t)
(dotted-dashed black line), which must go to zero in the steady state. The
three lines tend to stationary values marked by horizontal lines. Parameters:
ω1 = 2π × 50 kHz, a = 50µm, δH = −0.02Γ, and δC = −0.1Γ, which gives
temperatures TH ≈ 12 mK and TC ≈ 3 mK. ∆ω = 0.5ω1. In all figures
Γ = 2π × 41.3 MHz.
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Now, I set d ⟨···⟩/dt = 0 for all the moments. Using eq. (5.18) and applying

Novikov’s theorem I find

⟨pnpl⟩ − γl ⟨ynpl⟩ −
∑
m

Klm ⟨ynym⟩ = 0,

∑
m

[Knm ⟨ympl⟩+Klm ⟨ympn⟩] +
1

m
(γl + γn) ⟨pnpl⟩ = 2δnlDn.

(5.19)

The system (5.19) is linear in the second order moments so it can be solved nu-

merically to find the steady-state values of the moments. Besides eq. (5.19) I

have that ⟨ynpl⟩ = −⟨ylpn⟩, which follows from eq. (5.18) and d ⟨ynym⟩ /dt = 0.

Since there are 1
2
N(N − 1) independent ⟨ynpl⟩ moments, I choose the ones with

n < l. Similarly, the moments ⟨ynyl⟩ and ⟨pnpl⟩ contribute with 1
2
N(N + 1) inde-

pendent variables each and I choose the ones with n ≤ m. Thus there are in total
1
2
N(3N + 1) independent moments that can be arranged in the vector

η =
[
⟨y1y1⟩ , ⟨y1y2⟩ , ..., ⟨yNyN⟩ ,

⟨p1p1⟩ , ⟨p1p2⟩ , ..., ⟨pNpN⟩ ,

⟨y1p2⟩ , ⟨y1p3⟩ , ..., ⟨yN−1pN⟩
]T
.

(5.20)

There are the same number of independent equations as independent moments:

N2 equations correspond to the first line in eq. (5.19), and 1
2
N(N + 1) equations

to the second line because of the symmetry with respect to n, l. The system of

equations (5.19) may be compactly written as Aη = B, where A and B are a
1
2
N(3N + 1) square matrix and vector.

5.3 Numerical Results

I now display the results of the simulations. To find the temperature profiles

and the currents in the steady state I use the algebraic method described in sec-

tion 5.2.1. I also check that the results coincide with those by solving eq. (5.3) for
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many different realizations of the noise forces ξ(t) and averaging. The code for all

the numerical simulations has been written in the language Julia [127, 128]. In

particular, to solve the Langevin equation, I used Julia’s package DifferentialE-

quations.jl [129].

To model the baths and the chain I use atomic data taken from ion trap exper-

iments [130, 131]. I consider 15 24Mg+ ions in all figures except in fig. 5.6. Only

the three leftmost and three rightmost ions interact with Doppler cooling lasers.

The Doppler cooling lasers excite the transition 3s2S1/2 → 3p2P1/2, with angular

frequency ω0 = 2π × 1069 THz and excited state line width Γ = 2π × 41.3 MHz

[107]. For this ionic species and atomic transition the Doppler limit is TD = 1 mK.

The intensities of the laser beams are small compared to the saturation intensity

I0 so that eq. (5.4) holds. I take In/I0 = 0.08 for the ions in the laser beams,

whereas In = 0 for the rest.

The temperatures TL, TR of the left and right laser baths are controlled with

their detunings δL, δR with respect to the atomic transition. I fix two values for

the detunings, δH and δC , such that TH > TC (hot and cold baths, also source

and drain) and I define J→ (J←) as the stationary heat current in the chain when

TL = TH and TR = TC (TL = TC and TR = TH).

Except in section 5.3.5 I consider a graded frequency profile. If the frequency

of the leftmost trap is ω1, the frequency of the nth trap will be ωn = ω1 +∆ω n−1
N−1

up to ω1+∆ω for the rightmost trap. In section 5.3.5, I compare the graded chain

to a segmented chain, where the left half of the chain has trapping frequencies ω1

while the other half has ω1 +∆ω.

5.3.1 Evolution to steady state

To compare the results by solving eq. (5.3) and averaging and those from the

algebraic method, I simulated a frequency graded chain with a trapping frequency

ω1 = 2π×50 kHz for the leftmost ion, see fig. 5.2. The number of ions interacting

with the laser beams (three on each bath) is consistent with the lattice constant
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Figure 5.3: Graded chain of N = 15 24Mg+ ions. (a) Stationary fluxes for
different frequency increments: J→ (for TL = TH and TR = TC , dashed line);
J← (for TL = TC and TR = TH , solid line) (b) Rectification factor. Parameters:
ω1 = 2π × 1 MHz, l = 5.25 µm, a = 4.76 l (25µm), δH = −0.02Γ, and δC =
−0.1Γ.

and typical waists of Gaussian laser beams [130, 131]. To set the trap distance I

fix first the characteristic length l =
(

q2

4πε0
1

mω2
1

)1/3
as the distance for which the

Coulomb repulsion of two ions equals the trap potential energy for an ion at a

distance l away from the center of its trap. If a < l, the Coulomb repulsion of

the ions is stronger than the trap confinement which makes the ions jump from

their traps. With the parameters used in this section I have l = 38.7µm and set

a = 1.29 l = 50µm. The detunings of the hot and cold lasers are δH = −0.02 Γ,

and δC = −0.1 Γ which gives temperatures TH ≈ 12 mK and TC ≈ 3 mK. I fix the

value ∆ω = 0.5ω1 for the frequency increment.

The results of the two methods are in very good agreement. In the scale of fig.
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Figure 5.4: Rectification factor in a graded chain of N = 15 24Mg+ ions
for different trap distances and frequency increment. The dashed lines are for
R = 0 and delimit the regions J→ > J← and J→ < J←. The parameters are
ω1 = 2π × 1 MHz, l = 5.25µm, δH = −0.02Γ, and δC = −0.1Γ.

5.2 (a) the calculated local temperatures are undistinguishable. In the calculation

based on solving the dynamics I had to integrate eq. (5.3) for Ntrials = 1000

realizations of white noise ξ(t). The method based on the system of moments

shortened the calculation time with respect to the dynamical trajectories by a fac-

tor of 1/700. In fact, the time gain is even more important because the dynamical

method requires further processing, performing a time averaging to compute the

stationary flux in addition to noise averaging, see fig. 5.2 (b).

Additionally, the relaxation to the steady state slows down when the frequencies

of the traps increase since the deterministic part of the Langevin equation dom-

inates the dynamics over the stochastic part, entering an under-damped regime.

In contrast, this increase does not affect the algebraic method.

5.3.2 Rectification in frequency graded chains

In this subsection I demonstrate rectification for the frequency graded chain. I

used the method described in section 5.2.1 for 24Mg+ ions with the same param-

eters for the baths used before. I fix the trapping frequency of the leftmost trap
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Figure 5.5: (a) Friction coefficient defined in eq. (5.4). (b) Bath temperature
defined in eq. (5.5). (c) Rectification as a function of the temperature difference
between the hot and cold baths TH − TC for δH below (dashed black line)
and above (solid blue line) the Doppler limit, and δC = δD (Doppler limit).
Parameters: ω1 = 2π × 1 MHz, ∆ω = 0.15ω1, l = 5.25µm, a = 4.76 l.

to ω1 = 2π × 1 MHz, and a trap spacing a = 4.76 l (25µm) (the characteristic

length is l = 5.25µm). Figure 5.3 depicts the results with these parameters in

a graded chain. Figure 5.3 (a) shows that both J→ and J← decrease rapidly as

the frequency increment is increased. The rectification reaches its maximum value

for a frequency difference of ∆ω ≈ 0.1ω1. The fluxes cross so there are some

points where the rectification is exactly zero, besides the trivial one at ∆ω = 0,

at ∆ω = 0.05ω1, 0.3ω1, 1.3ω1. At these points the direction of rectification

reverses, presumably as a consequence of the changes in the match/mismatch of

the temperature dependent local power spectra. The change of rectification direc-

tion occurs for all the choices of parameters, as displayed in fig. 5.4. Figure 5.4

gives the rectification factor for different trap distances and frequency increments.

0-rectification curves separate regions with different rectification direction. The

second region in fig. 5.4 (starting from the left) would be the most interesting one
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Figure 5.6: Rectification factor for different bath temperature differences ∆T
as the number of ions is increased. The detuning of the cold bath laser is set to
the Doppler limit δC = −Γ/2. ω1 = 2π × 1 MHz, ∆ω = 0.15ω1, l = 5.25µm,
a = 4.76 l.

to build a thermal diode, since rectification reaches its largest values there.

For small values of ∆ω there is little asymmetry in the chain and therefore

modest rectification is expected whereas a very large ∆ω implies very high trap-

ping frequencies on the right implying a too strong confinement and vanishing

interactions. This bottleneck reduces the fluxes in both directions and the rectifi-

cation. However, since ∆ω is controllable, and the range of values of ∆ω for which

rectification is larger can be also controlled with the intertrap distance a, see fig.

5.4, the existence of a rectification window does not imply a major limitation.

5.3.3 Same bath temperatures, different bath couplings

As already mentioned (below eq. (5.5)), above and below the detuning δD =

−Γ/2 corresponding to the Doppler limit temperature, the optical molasses allow

for two different couplings (two pairs of friction and diffusion coefficients in eq.

(5.4)) between the ions and the laser corresponding to the same bath temperature.

This duality may be seen explicitly in fig. 5.5. Specifically fig. 5.5 (a) depicts the
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variation of the friction coefficient for values of δ around δR, and fig. 5.5 (b) the

corresponding temperatures. Interestingly, the different couplings imply different

rectification factors. If I set δC = δD = −Γ/2, i.e., the cold bath is cooled to the

Doppler limit, δH can be chosen to be below or above δD for the same temperature

TH . The corresponding rectification factors for the two choices are shown in fig. 5.5

(c), which demonstrates that significant rectification can be achieved by choosing

δH < δD for temperature increments that are smaller than or of the order of

TC = TD, for example R ≈ 20% for ∆T = 0.1TC , or R ≈ 60% for ∆T = TC .

Finding good rectification at low (relative) temperature differences is considered

to be one on the challenges in asymmetric heat transport research [132].

5.3.4 Dependence with number of ions

Keeping in mind that scaling the frequency-graded ion chain to a large numbers

of ions is not a realistic option in this setting, it is nevertheless important to study

the dependence with ion number from small to moderate numbers. In fig. 5.6

I observe an overall trend in which the rectification decreases with the number

of ions in the chain (while it increases with temperature bias ∆T in the studied

range). This effect is easy to understand, as increasing N while keeping the total

variation of the trapping frequency ∆ω constant, the frequency gradient decreases.

This lowers the asymmetry in the chain and the rectification factor. Oscillations

with N superimposed to the global trend are more visible for smaller N giving an

optimal value at N = 19.

5.3.5 Graded versus segmented

I have also compared the performance of the graded thermal diode and a seg-

mented version in which the left half of the chain is trapped with frequency ω1 and

the right half (including the middle ion) with ω1 +∆ω. Even though the optimal

rectification in fig. 5.7 (a) for the segmented chain is larger than for the graded
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Figure 5.7: Comparison of graded and segmented chains with N = 15 24Mg+
ions. (a) Maximum of J→ and J← for the graded and segmented chain for
different frequency increments. (b) Rectification factor: graded chain (dashed
lines); segmented chain (solid lines). Parameters: ω1 = 2π×1 MHz, l = 5.25µm,
a = 4.76 l, δH = −0.02Γ, and δC = −0.1Γ.

chain, the fact that the fluxes are generally much larger for the graded chain, see

fig. 5.7 (b), makes the graded chain more interesting for applications.

5.4 Discussion

In this chapter I have numerically demonstrated heat rectification in a chain of

ions trapped in individual microtraps with graded frequencies, connected at both

ends to thermal baths created by optical molasses. An alternative to implement a
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graded frequency profile in the lab could be combining a collective Paul trap for

all the ions with on-site dipolar laser forces [106, 133–135].

A goal of this chapter is to connect two communities, ion trappers and re-

searchers on heat-rectification models. The results found are encouraging and

demonstrate the potential of a trapped-ion platform to experimentally investigate

heat rectification schemes. Trapped ions are quite interesting to this end because

they are highly controllable, and may easily adopt several features to enhance

rectification, such as the ones explored here (long-range interactions and an asym-

metrical gradation), or others such as time-dependent forces [23, 136], or different

non-linearities in on-site forces. The limitations and application domain should

also be clear, the proposed platform is circumscribed to cold temperatures of the

order of hundreds of µK to mK achieved by Doppler cooling. In this sense it is

not aimed at competing with (it is rather complementary to) proposals for which

experiments [33–36] or simulations [132, 137, 138] demonstrate thermal rectifica-

tion at room temperature or for hundreds of K. Also, the number of ions should

realistically be kept small so the proposed ion chain is not aimed at achieving a

macroscopic diode length, but at playing a role in thermal diode research and in

the context of ion-trapped based quantum technologies.

Methodologically, the calculation of the steady state has been performed with

an algebraic approach much faster than the time-consuming integration and av-

eraging over noise and time of the dynamical equations. The algebraic approach

linearizes the forces around equilibrium positions which, in this system and for the

realistic parameters considered is well justified and tested numerically. The results

found provide additional evidence that simple linear models may rectify heat flow

[55]. I underline that this linear model is, arguably, even simpler than some linear

“minimalist, toy models” in [55] that showed rectification (the on-site forces are

already linear from the start and the temperature dependence of explicit model

parameters is only in the coefficients of the Langevin baths), with the important

bonus of being also realistic.



Chapter 6

Thermal rectification with a

minimal model of two harmonic

oscillators

As previously discussed in the introduction to this part of the Thesis, the pres-

ence of thermal rectification in the first models was explained by the temperature

dependence of the phonon bands (power spectra) of the different segments of the

chain [25, 26]. This temperature dependence of the phonon bands occurs natu-

rally in systems where there are non-linear (anharmonic) interactions, therefore

non-linearities have been regarded recurrently as an essential element for rectifi-

cation [23, 37, 38, 50–54]. However, it was later pointed out by Pereira [55] that

anharmonicity is not a necessary condition for rectification, since harmonic sys-

tems having some structural symmetry and temperature-dependent parameters

can rectify.

In this chapter I put forward a minimal model for rectification composed of

two neighboring atoms of different mass interacting harmonically, and in con-

tact with thermal baths with temperature dependent couplings. Asymmetric heat

transport is found if both the bath temperatures and the temperature-dependent

bath-system couplings are exchanged. The model admits a natural realization in

95
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terms of two trapped ions subjected to respective optical molasses, which provide

the necessary temperature dependence of the coupling parameters. Apart from the

possibility of a physical realization, another interesting feature is the analytical

treatment, which facilitates greatly the exploration in parameter space to identify

regimes of maximal rectification. The explicit solution of the stationary regime

also provides tools for a better understanding of the physics and enhanced control.

For example the match or mismatch of the spectra of the two masses for forward

and reverse bias configurations, which will be made evident for the parameters

with maximal rectification, may be analyzed in terms of dissipative normal modes

characterized by complex eigenvalues.

Segal and Nitzan proposed models with some similarities to the one presented

in this chapter [53, 54], specifically an anharmonic chain with different couplings

to both baths. They also worked out quantum models [53, 54] in terms of an

N -level system asymmetrically coupled to the baths. Both types of models have

“harmonic limits”, which in the chain is reached by making the potentials har-

monic, and in the quantum one by taking N to infinity assuming equispaced

levels. The asymmetrical couplings however, were not interchanged when revers-

ing the temperature bias (in these models that interchange would have suppressed

the asymmetry because the forward bias configuration becomes a mirror image of

the reverse bias one), so that the harmonic limit did not give any rectification.

The rest of the chapter is organized as follows: In section 6.1, I describe the

physical model and its dynamical equations. In section 6.2, I introduce the covari-

ance matrix and derive the equation that it satisfies in the steady state. In section

6.3, I solve the covariance matrix equation and find analytical expressions for the

steady-state temperatures of the masses and heat currents. In section 6.4, I relate

the parameters of the model to those of Doppler cooled trapped ions. In section

6.5, I look for configurations with high rectification. I also study the power spectra

of the oscillators, which confirms the match or mismatch pattern for rectification.

Finally, in section 6.6, I summarize the results and present the conclusions.
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Figure 6.1: Diagram of the model described in section 6.1. Two masses are
coupled to each other through a spring constant k. Each mass is harmonically
trapped and connected to a bath characterized by its temperature Ti and its
friction coefficient γi.

6.1 Physical Model

The physical model consists of two masses m1 and m2 coupled to each other by

a harmonic interaction with spring constant k and natural length xe. The masses

m1 and m2 are confined by harmonic potentials centered at xL, xR with spring

constants kL, kR respectively (see fig. 6.1). The Hamiltonian describing this model

is

H =
p21
2m1

+
p22
2m2

+ V (x1, x2), (6.1)

with V (x1, x2) =
k
2
(x1 − x2 − xe)

2+ kL
2
(x1 − xL)

2+ kR
2
(x2 − xR)

2, where {xi, pi}i
(i = 1, 2) are the position and momentum of each mass. Switching from the

original coordinates xi to displacements with respect to the equilibrium positions

of the system qi = xi − xeqi , where xeqi are the solutions to ∂xi
V (x1, x2) = 0, the

Hamiltonian can be written as

H =
p21
2m1

+
p22
2m2

+
k + kL

2
q21

+
k + kR

2
q22 − kq1q2 + V (xeq1 , x

eq
2 ). (6.2)

Dropping the constant term, this has the form of the Hamiltonian of a system

around a stable equilibrium point,

H =
1

2
−→p TM−1−→p +

1

2
−→q TK−→q , (6.3)
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where −→q = (q1, q2)
T, −→p = (p1, p2)

T, M = diag(m1,m2) is the mass matrix of

the system and K is the Hessian matrix of the potential at the equilibrium point,

i.e., Kij = ∂2xi,xj
V (−→x )

∣∣∣−→x=−→x eq
. In this model K11 = k + kL, K22 = k + kR and

K12 = K21 = −k. The generic form (6.3) can be adapted to different physical

settings, in particular to two ions in individual traps, or to two ions in a common

trap.

The masses are in contact with Langevin baths, which will be denoted as L

(for left) and R (for right), at temperatures TL and TR for the mass m1 and m2

respectively (see fig. 6.1). The equations of motion of the system, taking into

account the Hamiltonian and the Langevin baths are

q̇1 =
p1
m1

, q̇2 =
p2
m2

,

ṗ1 = −(k + kL)q1 + kq2 −
γL
m1

p1 + ξL(t),

ṗ2 = −(k + kR)q2 + kq1 −
γR
m2

p2 + ξR(t), (6.4)

where γL, γR are the friction coefficients of the baths and ξL(t), ξR(t) are Gaus-

sian white-noise-like forces. The Gaussian forces have zero mean over noise re-

alizations (⟨ξL(t)⟩ = ⟨ξR(t)⟩ = 0) and satisfy the correlations ⟨ξL(t)ξR(t′)⟩ = 0,

⟨ξL(t)ξL(t′)⟩ = 2DLδ(t−t′), ⟨ξR(t)ξR(t′)⟩ = 2DRδ(t−t′). DL and DR are the diffu-

sion coefficients, which satisfy the fluctuation-dissipation theorem, DL = γLkBTL,

DR = γRkBTR, where kB is the Boltzmann constant.

It is useful to define the phase-space vector −→r (t) = (−→q ,M−1−→p )T (notice that
−→v = M−1−→p is just the velocity vector). The equations of motion are

−̇→r (t) = A−→r (t) + L
−→
ξ (t), (6.5)
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with

A =

 02×2 12×2

−M−1K −M−1
L

 ,

L =

 02×2

M−1

 , (6.6)

and −→
ξ (t) = (ξL(t), ξR(t))

T, L = diag(γL, γR). 0n×n and 1n×n are the n-dimensional

squared 0 matrix and identity matrix respectively. With the vector notation the

correlation of the white-noise forces can be written as

⟨−→
ξ (t)

−→
ξ (t′)T

⟩
= 2Dδ(t− t′), (6.7)

where D = diag(DL, DR).

6.2 Covariance matrix in the steady state

In order to look for the steady-state currents in the system I will make use of

the covariance matrix C(t) which is defined as

C(t) =
⟨−→r (t)−→r (t)T⟩ . (6.8)

The relation between the kinetic temperatures of the masses, T1(t) and T2(t), and

the covariance matrix is given by

T1(t) ≡
⟨p21(t)⟩
m1kB

=
m1C3,3(t)

kB
,

T2(t) ≡
⟨p22(t)⟩
m2kB

=
m2C4,4(t)

kB
. (6.9)

As discussed in section 5.2.1, the covariances of the positions and velocities of

the masses could be calculated integrating eq. (6.5) over an ensemble of noise

realizations −→
ξ (t) and taking the corresponding expectation values in the steady

state. However, in section 5.2.1 it was pointed out the tremendous cost of doing
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this, so I introduced a way to linearize the system that let us find the steady-state

covariances as the solutions for a set of algebraic equations [123–125]. In this

case the system dynamics are already linear, so I can directly use the steady-state

method described in 5.2.1. Besides, the solutions of the steady-state equations

will be analytical for this two oscillators model.

To begin, I differentiate C(t) with respect to time and use eq. (6.5) to get

d

dt
C(t) = AC(t) + C(t)AT

+ L
⟨−→
ξ (t)−→r (t)T

⟩
+
⟨−→r (t)−→ξ (t)T⟩LT. (6.10)

The solution of eq. (6.10) can be used to find the kinetic temperatures of the

masses at all times but I am only interested in the steady-state values, i.e. the

asymptotic values for t→ ∞. In the steady state, the covariance matrix is constant

( d
dt
C(t) = 0), therefore it satisfies

ACs.s. + Cs.s.AT = −L
⟨−→
ξ −→r T

⟩s.s.
−
⟨−→r −→ξ T

⟩s.s.
LT, (6.11)

with {·}s.s. ≡ lim
t→∞

{·}(t). The two terms
⟨−→
ξ −→r T

⟩s.s.
and

⟨−→r −→ξ T
⟩s.s.

in (6.11) can

be calculated using Novikov’s theorem [119] as explained in section 5.2,

⟨−→
ξ (t)−→r (t)T

⟩
= DLT. (6.12)

I have therefore, the following algebraic equation for the steady-state covariance

matrix

ACs.s. + Cs.s.AT = −B, (6.13)

with B = 2LDLT. By definition, the covariance matrix is symmetric, but there are

also additional restrictions imposed by the equations of motion and the steady-

state condition, which reduce the dimensionality of the problem of solving eq.
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(6.13) [57]. Since d ⟨qiqj⟩/dt = 0 in the steady state, I have

⟨p1q1⟩s.s. = ⟨p2q2⟩s.s. = 0,

⟨p1q2⟩s.s.

m1

= −⟨q1p2⟩s.s.

m2

. (6.14)

Taking (6.14) into account, the steady-state covariance matrix takes the form

Cs.s. =


⟨q21⟩

s.s. ⟨q1q2⟩s.s. 0 ⟨p2q1⟩s.s.
m2

⟨q1q2⟩s.s. ⟨q22⟩
s.s. − ⟨p2q1⟩

s.s.

m2
0

0 − ⟨p2q1⟩
s.s.

m2

⟨p21⟩s.s.
m2

1

⟨p1p2⟩s.s.
m1m2

⟨p2q1⟩s.s.
m2

0 ⟨p1p2⟩s.s.
m1m2

⟨p22⟩s.s.
m2

2

 . (6.15)

The explicit set of equations for the components of Cs.s can be found in Appendix

C.

6.3 Solutions

In this section I use the solution to eq. (6.13) to write down the temperatures

and currents in the steady state. I use the software Mathematica to find analytic

expressions for the temperatures,

T1 =
TLP1,L(k) + TRP1,R(k)

D(k)
,

T2 =
TLP2,L(k) + TRP2,R(k)

D(k)
, (6.16)

where D(k) =
2∑

n=0

Dnk
n and Pi,(L/R)(k) =

2∑
n=0

ai,n,(L/R)k
n are polynomials in the

coupling constant k with coefficients



Chapter 6. Thermal rectification with a minimal model of two harmonic
oscillators 102

D0 = a1,0,L = a2,0,R

= γLγR
[
h(1)(γLkR + γRkL) + (m1kR −m2kL)

2],
D1 = a1,1,L = a2,1,R

= γLγR
[
h(0)h(1)+ 2 (m1 −m2) (m1kR −m2kL)

]
,

D2 = h(0)h(2),

a1,2,L = γL
(
m2h

(1) + γR(m1 −m2)
2
)
,

a1,2,R = h(1)m1γR,

a2,2,L = h(1)m2γL,

a2,2,R = γR
(
m1h

(1) + γL(m1 −m2)
2
)
,

a1,0,R = a1,1,R = a2,0,L = a2,1,L = 0, (6.17)

where

h(n) ≡ γRm
n
1 + γLm

n
2 . (6.18)

The currents from the baths to the masses are given by eq. (5.14)

JL = kB
γL
m1

(TL − T1) , JR = kB
γR
m2

(TR − T2) , (6.19)

with Ti given by eq. (6.16). Since, in the steady state, JL = −JR, the shorthand

notation J ≡ JL will be used. Substituting eq. (6.16) into eq. (6.19), the heat

current is

J = κ (TL − TR), (6.20)

where κ = kBk
2γLγRh

(1)/D(k) acts as an effective thermal conductance.
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6.4 Relation of the Model to a trapped ion setup

In this section I discuss the realization of the model with a pair of trapped

ions. I consider two different setups: two ions in a collective trap, and two ions in

individual traps. Later in section 6.5 I shall focus on two ions in individual traps

to illustrate the analysis of rectification.

In both setups I assume strong confinement in the radial direction, making the

effective dynamics one-dimensional. I will also assume that the confinement in the

axial direction is purely electrostatic, which makes the effective spring constant

independent of the mass of the ions [139]. Additionally, I will relate the temper-

atures and friction coefficients of the Langevin baths to those corresponding to

Doppler cooling.

6.4.1 Collective trap

Consider two ions of unit charge with masses m1 and m2 trapped in a collective

trap. Assuming strong radial confinement and purely electrostatic axial confine-

ment, both ions feel the same harmonic oscillator potential with trapping constant

ktrap [139]. The potential describing the system is

Vcollective =
1

2
ktrap

(
x21 + x22

)
+

C
x2 − x1

, (6.21)

with C = Q2/(4πε0). The equilibrium positions for this potential are

xeq2 = −xeq1 =

(
1

2

)2/3(
Q2

4πε0ktrap

)1/3

. (6.22)
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Assuming small oscillations of the ions around the equilibrium positions, the Hes-

sian matrix of the system is

K1,2 = − Q2

2πε0

1

(xeq2 − xeq1 )3
= −ktrap,

K1,1 = ktrap +
Q2

2πε0

1

(xeq2 − xeq1 )3
= 2ktrap,

K2,2 = ktrap +
Q2

2πε0

1

(xeq2 − xeq1 )3
= 2ktrap. (6.23)

Using eq. (6.23) I can relate the parameters of this physical setup to those of the

model described in section 6.1,

kL = kR = k = ktrap. (6.24)

6.4.2 Individual on-site traps

I can make the same assumptions for the axial confinement as in the previous

subsection but now each of the ions is in an individual trap with spring constants

ktrap,L and ktrap,R respectively. The potential of the system is

Vindividual =
1

2
ktrap,L (x1 − xL)

2 +
1

2
ktrap,R (x2 − xR)

2

+
C

x2 − x1
, (6.25)

where xL and xR are the center positions of the on-site traps. The elements of the

Hessian matrix in the equilibrium position are

K1,2 = − Q2

2πε0

1

(xeq2 − xeq1 )3
,

K1,1 = ktrap,L +
Q2

2πε0

1

(xeq2 − xeq1 )3
,

K2,2 = ktrap,R +
Q2

2πε0

1

(xeq2 − xeq1 )3
. (6.26)
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Comparing the parameters in eq. (6.26) with those in the model described in

section 6.1 I identify

kL = ktrap,L,

kR = ktrap,R,

k =
Q2

2πε0

1

(xeq2 − xeq1 )3
. (6.27)

In this case, the analytic expressions for the equilibrium positions are more com-

plicated. I get for the distance between the equilibrium positions of the ions

(x2 − x1)
(eq) =

1

3
∆xLR

− 1

6

[ 22/3ζ

ktrap,Lktrap,R(ktrap,L + ktrap,R)

+
24/3ktrap,Lktrap,R(ktrap,L + ktrap,R)(xR − xL)

2

ζ

]
, (6.28)

where ∆xLR = (xR − xL) and ζ = (Y − η)(1/3), with

Y = 3
√
3

{
Ck4trap,Lk4trap,R (ktrap,L + ktrap,R)

7

×
[
4ktrap,Lktrap,R∆x

3
LR + 27C (ktrap,L + ktrap,R)

]}1/2

,

η = k2trap,Lk
2
trap,R (ktrap,L + ktrap,R)

3

×
[
2ktrap,Lktrap,R∆x

3
LR + 27C (ktrap,L + ktrap,R)

]
. (6.29)

In this setup, the coupling between the ions k can be controlled by changing the

distance between the on-site traps.

6.4.3 Optical molasses and Langevin baths

As discussed in section 5.1, the Langevin dynamics can be implemented in a

trapped-ion setup with the technique of optical molasses [116, 117, 140, 141]. The

damping-like force in the Langevin equation comes from the absorption of the

photons by the ions, while the diffusive force (−→ξ (t)) is originated by the random
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recoil of the ions when they emit photons. To recall what was explained in 5.1, the

effect of the optical molass amounts to having an effective temperature Tmolass and

effective friction coefficient γmolass which are controlled with the laser intensity I

and frequency detuning δ with respect to the selected internal atomic transition.

The following expressions describe the molass effect [107, 116, 117]

γmolass(I, δ) = −4ℏ
(
δ + ω0

c

)2(
I

I0

)
2δ/Γ

[1 + (2δ/Γ)2]2
,

Tmolass(δ) = − ℏΓ
4kB

1 + (2δ/Γ)2

(2δ/Γ)
, (6.30)

where ω0 is the frequency of the selected internal atomic transition of the ion, Γ

is the natural width (decay rate) of the excited state, and I0 is the saturation

intensity. For fixed Γ and I, γmolass depends on δ, and thus, indirectly, on the

temperature Tmolass.

6.5 Looking for rectification

There is rectification if the flux J for the forward temperature bias is different

from the flux J̃ for reverse bias with the baths exchanged. To measure rectification,

I will use the rectification coefficient 0 ≤ R ≤ 1 defined as

R ≡

∣∣∣|J | − |J̃ |
∣∣∣

max(|J |, |J̃ |)
= 1−min

(
κ

κ̃
,
κ̃

κ

)
, (6.31)

where κ, κ̃ are the heat conductance in the forward and reversed (after the baths

are exchanged) configurations. The important point here is to define what is

meant by exchanging the baths. In the following I will consider that a bath is

characterized, not only by its temperature T but also by its coupling to the system

by means of the friction coefficient γ, so, exchanging the baths is achieved by

exchanging both the temperatures and the friction coefficients, as summarized in

table 6.1. For generic models this choice is a matter of definition, but for trapped

ions it is a natural way to proceed.
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Figure 6.2: Rectification, R, in the kLkR plane for k = 1.17 fN/m, γL =
6.75 × 10−22 kg/s, and γR = 4.64γL, m1 = 24.305 a.u., m2 = 40.078 a.u. The
dashed line represents eq. (6.32).

When implementing temperatures and friction coefficients by lasers according

to eq. (6.30), the exchange operation is straightforward when the two ions are

either of the same species or isotopes of each other, since the only required action

to exchange temperatures is to exchange the detunings without modifying the in-

tensities. The detuning exchange, in turn, automatically exchanges the friction

coefficients. However, for two different species, which involve two different atomic

transitions, the laser wavelengths and the decay rates Γ depend on the species.

Then, exchanging the temperatures by modifying the detunings, keeping the laser

intensities constant, does not necessarily imply an exchange of the friction coeffi-

cients. Nevertheless it is possible to adjust the laser intensities so that the friction

coefficients get exchanged and this is the assumption hereafter. In terms of the

analysis of rectification in ref. [55], I am adding a temperature-dependent feature

to the system, namely, the friction coefficients depend on the bath temperature

and are exchanged as the baths are reversed.
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Table 6.1: Definition of forward and reversed (exchanged) bath configurations.
The variables with a tilde are the ones for the “reversed” configuration.

forward reversed
Bath Friction γL, γR γ̃L = γR, γ̃R = γL
Bath Temperature TL, TR T̃L = TR, T̃R = TL

6.5.1 Parametric exploration

I have explored thoroughly the space formed by the parameters of the model

m1,m2, k, kL, kR, γL, γR, to find and maximize asymmetric heat transport. I have

fixed the values of some of the parameters to realistic ones while varying the

rest. Unless stated otherwise the masses are m1 = 24.305 a.u. and m2 = 40.078

a.u., which correspond to Mg and Ca, whose ions are broadly used in trapped-

ion physics. According to eqs. (6.20) and (6.31), R does not formally depend

on the bath temperatures in this model for given friction coefficients. Of course,

the friction coefficients depend on the temperature indirectly, but also on laser

intensities, see eq. (6.30), so in the parametric space m1,m2, k, kL, kR, γL, γR there

is no need to specify the bath temperatures to analyze the rectification in the

following. The bath temperatures will be needed though to calculate the power

spectra, and play an implicit role in the central assumption that their exchange

implies an exchange of friction coefficients.

Figure 6.2 depicts the values of the rectification after sweeping the kLkR plane

for fixed values of k, γL, and γR. There is a ridge in the kL, kR plane for which the

rectification is maximal, and can be found by solving ∂kLR = 0. In a weak dissi-

pation regime (γL/m1 <<
√
k/m1, γR/m2 <<

√
k/m2), a Taylor series around

(γL, γR) = (0, 0) gives in zeroth order a straight line for the ridge,

k + kR
m2

=
k + kL
m1

. (6.32)

eq. (6.32) implies the resonance condition ωL = ωR for the effective oscillation

frequencies ωL =
√

(k + kL)/m1 and ωR =
√
(k + kR)/m2, see eq. (6.2). The

lowest order correction to eq. (6.32) implies a small shift of the line, keeping the
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same slope,

k + kR
m2

=
k + kL
m1

+
(m2γL +m1γR)(m1γL +m2γR)

2m1m2(m2
2 −m2

1)
. (6.33)

In a trapped-ion context the condition (6.32) may be imposed by adjusting the

distance of the traps for fixed kL and kR. Besides the line of maximum rectification,

fig. 6.2 also shows two lines where rectification is zero. At these lines forward and

backward fluxes cross. Solving R = 0 with a Taylor series around (γL, γR) = (0, 0)

gives, up to second order in friction coefficients, the two approximate solutions

kR = kL

[
m2

m1

± 1

2k

√
m2γLγ3R
m3

1

]

+ k

[
m2

m1

(
1± 2m1m2γR + (m2

1 +m2
2)γL

2
√
m1m3

2γLγR

)
− 1

]

± 1

2

√
m2γLγ3R
m3

1

+ γR
(m2

1 +m2
2)γL +m1m2γR

2m2
1(m2 −m1)

. (6.34)

The term ± 1
2k

√
m2γLγ3R/m

3
1 in eq. (6.34) makes the slopes of the two zero-

rectification lines different from each other and also from the maximum-rectification

line. However, this difference is hardly noticeable for weak dissipation as in fig.

6.2.

Interestingly, along the maximum line (6.32) the rectification no longer depends

on the spring constants of the model, see eqs. (6.20) and (6.31),

R =

1− a+g
1+ag

if a > 1, g > 1 or a < 1, g < 1

1− 1+ag
a+g

if a > 1, g < 1 or a < 1, g > 1,

(6.35)

it only depends on the mass and friction coefficient ratios a and g

a = m2/m1, g = γR/γL. (6.36)

Besides a high value of R, it is desirable to have a significant current Jmax [57].

Using again eq. (6.32) in the expression for the currents (6.20), the maximum
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current Jmax = max(
∣∣J∣∣, ∣∣J̃∣∣) is

Jmax =



kBgγLk
2|TL−TR|

(a+g)(gγ2
L(kL+k)+k2m1)

if

a > 1, g > 1

or a < 1, g < 1

kBgγLk
2|TL−TR|

(1+ag)(gγ2
L(kL+k)+k2m1)

if

a > 1, g < 1

or a < 1, g > 1

(6.37)

Now let us analyze how the parameters a and g affect the maximum current Jmax

in (6.37). To do this, I divide the ag plane in four quadrants by the axes a = 1 and

g = 1 (in those axes R = 0). In eq. (6.37) the parameter a appears only in the

denominator, thus for a higher a, a smaller current is found. The quadrants with

a < 1 will be better for achieving large currents. g appears both in the numerator

and denominator so there is no obvious advantageous quadrant for this parameter.

Equation (6.35) is symmetric upon the transformations a↔ 1/a and g ↔ 1/g.

Using a logarithmic scale for a and g, the resulting R map is symmetric with

respect to the a = 1 and g = 1 axes. I can thus limit to analyze the quadrant

a > 1, g > 1.

Figure 6.3(a) shows the rectification given by eq. (6.35) in terms of a and g.

If one follows the direction of the gradient vector of R, −→∇R ≡ (∂aR, ∂gR), which

is indicated in fig. 6.3 by the black arrows, it becomes clear that the fastest way

of increasing R is following the diagonal dotted line a = g. Therefore I decided

to vary a and g following a common value c = a = g. The effect of varying the

common value c may be seen in fig. 6.3(b), which shows the rectification. As can

be seen in fig. 6.3(b) the rectification increases when the mass and friction ratios

increase (R tends to one for large c).

6.5.2 Spectral match/mismatch approach to rectification

If there is a good match between the phonon spectra of the ions (i.e., their

peaks overlap in a broad range of frequencies) for a certain baths configuration,
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Figure 6.3: (a) Rectification factor, R, given by eq. (6.35) as a function of
the mass and friction ratios a and g. (b) Rectification factor along the diagonal
dotted line a = g in (a).

and mismatch when the baths exchange, the system will present heat rectification

[25, 26]. I have studied the phonon spectra of the model for several sets of param-

eters exhibiting no rectification or strong rectification. The spectra are calculated

through the spectral density matrix. For a real-valued stochastic process −→x (t), its

spectral density matrix is defined as [123]

S−→x (ω) ≡
⟨−→
X (ω)

−→
XT(−ω)

⟩
, (6.38)
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with −→
X (ω) being the Fourier transform of −→x (t) (I use the convention of factors of 1

and 1/(2π) for the transform and the inverse transform). A justification of the use

of the spectral density matrix to understand heat transport arises from the Wiener-

Khinchin theorem [123], which says that the correlation matrix of a stationary

stochastic process in the steady state is the inverse Fourier transform of its spectral

density matrix
⟨−→r (t)−→r T(t+ τ)

⟩
= F−1[S−→r (ω)](τ). Thus the covariance matrix

in the steady state is

Cs.s. =
1

2π

∫ ∞
−∞

dω S−→r (ω). (6.39)

Equation (6.39) directly connects the spectral density matrix to the steady-state

temperature since T s.s.
1 = m1C

s.s.
3,3 /kB and T s.s.

2 = m2C
s.s.
4,4 /kB, and, therefore, to

the heat currents, see eqs.(6.9) and (6.19).

The Fourier transform of the vector process −→r (t) describing the evolution of the

system, see eq. (6.5), is −→
R (ω) = (iω −A)−1 L

−→
Ξ (ω) with −→

Ξ (ω) being the Fourier

transform of the white noise −→
ξ (t). Notice that −→

Ξ (ω) is not square-integrable,

however its spectral density is S−→
ξ
(ω) = 2D [123], which is flat as expected for a

white noise. Therefore, the spectral density matrix of the system is

S−→r (ω) = 2 (A− iω)−1 LDLT (A+ iω)−T . (6.40)

The imaginary part of the eigenvalues of the dynamical matrix A correspond to

the peaks in the spectrum whereas the real part dictates their width. Equation

(6.40) gives after direct computation

S−→r (ω) = 2kB
γLTLSL(iω) + γLTRSR(iω)

(m1m2)2PA(iω)PA(−iω)
, (6.41)

where PA(λ) is the characteristic polynomial of the dynamical matrix A and SL(ω),

SR(ω) are the matrix polynomials in the angular frequency ω whose coefficients

are defined in Appendix D. I show the spectral densities for the velocities, S1 ≡

S3,3(ω) = ⟨R3(ω)R3(−ω)⟩ for the left ion, and S2 ≡ S4,4(ω) = ⟨R4(ω)R4(−ω)⟩ for

the right ion, since they are the elements related to the calculation of the heat
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Figure 6.4: Spectral densities of the velocities of the ions (r3 and r4) cor-
responding to TL = T̃R = 2 mK, TR = T̃L = 1 mK, and two values of c in
fig. 6.3(b): (a), (b) for c = 1 and (c), (d) for c = 10. Solid, black lines are
for the left ion spectral density S1(ω) and dashed, blue lines for the right ion
spectral density S2(ω). Dot-dashed, vertical lines mark the frequencies of the
normal modes of the system. The spectra are multiplied by their corresponding
masses so that the areas are proportional to the steady-state temperatures, see
eq. (6.39). (a) and (b) correspond to R = 0: the overlap between the phonon
bands is the same in forward and reversed configurations. (c) and (d) corre-
spond to R ≈ 0.8: in the forward configuration (c) the phonons match better
than in the reversed configuration (d).

current using eq. (6.39),

S1(ω) = 2kB
γRk

2TRω
2 + γLTL [ω

4 (γ2R − 2km2 − 2kRm2) + ω2(k + kR)
2 +m2

2ω
6]

(m1m2)2PA(iω)PA(−iω)
,

S2(ω) = 2kB
γLk

2TLω
2 + γRTR [ω4 (γ2L − 2km1 − 2kLm1) + ω2(k + kL)

2 +m2
1ω

6]

(m1m2)2PA(iω)PA(−iω)
.

(6.42)

Figure 6.4 depicts a series of plots of the spectra given by eq. (6.42), corresponding

to two points in fig. 6.3(b) (The calculation for the reverse bias is done with the

substitutions in table 6.1). For c = 1 (fig. 6.4(a) and (b)) there is no rectification,
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since the spectra match in the forward (a) and reversed (b) configurations. How-

ever, for c = 10 (fig. 6.4(c) and (d), R ≈ 0.8) the picture is very different: there

is a good match between the spectra in the forward configuration but not for the

reversed configuration. It is interesting to analyze how the system changes from

c = 1 to c = 10 (see fig. 6.5) using the dissipative normal modes of the system,

which may be found by diagonalizing the dynamical matrix A, eq. (6.6). The fre-

quencies of the peaks in fig. 6.4 are given by the imaginary part of the eigenvalues

λA = λr + iλi of A. Likewise, the width depends on the real part of the eigenval-

ues. For the forward configuration, the normal frequencies (position of the peaks)

come closer to each other as c is increased, while the widths remain practically

constant. To understand why the real part remains practically constant, recall

that I have chosen to work with spring constants that satisfy eq. (6.32) and mak-

ing the mass and friction coefficient ratios equal to c, i.e., c ≡ m2/m1 = γR/γL.

The (dissipative) terms in A responsible for the real parts in the eigenvalues are,

for the forward configuration, γL/m1 and γR/m2 = (cγL)/(cm1) = γL/m1, which

are constant for every value of c. On the contrary, in the reverse bias configura-

tion the dissipative terms in the dynamical matrix are γ̃L/m1 = γR/m1 = cγL/m1

and γ̃R/m2 = γL/(cm1), with opposite behavior with respect to c. The real parts

of the eigenvalues also behave quite differently for reverse bias, one of them gets

closer to the imaginary axis for c = 10, see fig. 6.4 (d), where this mode concerns

mostly the right ion, the only one excited at the peak frequency, while the other

eigenvalue moves far from the imaginary axis so a peak is not noticeable at the

imaginary value (left dotted-dashed line) any more.

6.6 Discussion

I have studied heat rectification in a model composed of two coupled harmonic

oscillators connected to Langevin baths, which could be realized with trapped ions

and optical molasses. This simple model allows analytical treatment but still has

enough complexity to examine different ingredients that can produce rectification.

The results reported in this chapter demonstrate in a simple but realistic model
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Figure 6.5: The evolution of the dissipative normal modes of the system as
the asymmetry parameter c increases is shown in this plot. λr, λi stand for the
real and imaginary parts of the eigenvaules of the dynamical matrix A.

that harmonic systems can rectificate heat current if they have features which de-

pend on the temperature [55]. I implement this notion of temperature-dependent

features by defining the baths exchange operation as an exchange of both tem-

peratures and coupling parameters of the baths to the system. The temperature

dependence of the bath-system coupling occurs naturally in laser-cooled trapped

ion setups.

I have also studied the phonon spectra of the system, aided by a normal mode

analysis, comparing the match/mismatch of the phonon bands, to reach the con-

clusion that the band match/mismatch description for heat rectification is also

valid for systems which are purely harmonic, as long as there are temperature-

dependent features.





Conclusions

“Don’t adventures ever have an end? I suppose not. Someone else always has

to carry on the story.”

J. R. R. Tolkien

The Fellowship of the Ring

In this Thesis I have presented the most relevant results of the research I have

conducted during my PhD, which embraces the study of asymmetric scattering and

heat transport. The general goal of my research was to design devices that alow

asymmetric transport and that are reallistic enough, so they can be implemented

experimentally. In this chapter I will summarize the main results of this Thesis

and present the conclusions.

Conclusions to part I

• Asymmetric scattering by non-Hermitian potentials

– Six types of devices with asymmetric scattering are possible when im-

posing 0 or 1 for the values of the scattering probabilities.

117
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– Hermitian Hamiltonians do not allow for any asymmetry in transmis-

sion and reflection probabilities, therefore in order to design asymmet-

ric devices non-Hermitian Hamiltonians are needed. Besides, non-local

potentials are needed for asymmetric scattering.

– There are 8 symmetries that generate all the possible transformations

of the potential matrix elements, which consist in complex conjuga-

tion, coordinate inversion, the identity and transposition. The eight

symmetries arise from the commutation or pseudohermiticity of the

potential with an element of the Klein’s 4-group K4 = {1,Π,Θ,Πθ}.

The symmetries impose selection rules for the scattering amplitudes

that conditions the design of some of the devices.

– The conventional definition of a symmetry in terms of commutation

with a unitary/antiunitary operator A is extended with the concept of

A-pseudohermiticity for non-Hermitian Hamiltonians. Both commuta-

tion and A-pseudohermiticity must be considered on the same footing.

– Some example potentials are given for the different asymmetric devices,

in particular a local PT-potential that works as a transparent 1-way

reflector in a broad domain of incident momenta.

• S-matrix pole symmetries for non-Hermitian scattering Hamilto-

nians

– The symmetries of a non-Hermitian Hamiltonian, understood as com-

mutation or A-pseudohermiticity, can be rewritten as the invariance of

H with respect to the action of a unitary or antiunitary superoperator,

H = L(H). Following this approach with the 8 symmetries described

in chapter 1, a group structure is unveiled: the 8 symmetries form the

elementary abelian group E8.

– In refs. [22, 70, 71] it was shown that A-pseudohermiticity (with A

linear and Hermitian) or commutavity with an antilinear Hermitian
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operator were necessary and sufficient conditions for a discrete Hamil-

tonian to have conjugate pairs of discrete eigenenergies. I show that this

result can be extended to scattering Hamiltonians. Scattering Hamilto-

nians that satisfy the same conditions, have the poles of their S-matrix

forming conjugate pairs in the complex energy plane.

– I provided examples of the distribution of poles using separable po-

tentials. The two examples correspond to the non-trivial symmetries:

time-reversal and parity-pseudohermicity.

• Quantum-optical implementation of non-Hermitian potentials for

asymmetric scattering

– I propose a quantum-optical implementation of non-local and non-

Hermitian potentials with asymmetric scattering amplitudes. Since

they are non-local and also non-PT symmetrical they allow asymmet-

ric transmission.

– The non-Hermitian potentials are effective interactions for the ground

state of a two-level atom impinging on a laser field. They are found

using Feshbach projection technique.

– I present examples of a T /A device (One-way T-filter), a R/A device

(One-way R-filter) and a partial T R/A device (One-way mirror).

Conclusions to part II

• Local rectification of heat flux

– I have presented a design for a thermal rectifier based on a localized

impurity in a chain of atoms. The on-site potential and interatomic

interactions are modeled with harmonic and Morse potentials, respec-

tively.
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– As oposed to other models, the chain is homogeneous and the only

structural asymmetry is the impurity.

– The numerical results show normal heat conduction without the impu-

rity and rectification when it is present.

– Rectification also occurs when the Morse interaction is substituted by

a harmonic one, although it is somewhat weaker.

• Asymmetric heat transport in ion crystals

– I introduced a model of a chain of ions trapped in individual microtraps

and in contact at both ends with thermal baths mediated by optical

molasses.

– Numerical results show that there is rectification when the microtrap

frequencies are graded along the chain.

– In this model I explore some of the mechanisms that have been proposed

in the literature to improve rectification, namely long range interactions

and graded structures.

– This model could be implemented in a trapped-ion platform, which

is interesting because is one of the most controllable quantum tech-

nologies platform. Besides, this work connects two different scientific

communities: ion trappers and researchers in thermal rectification.

• Heat rectification with a minimal model of two harmonic oscilla-

tors

– I study thermal rectification in an analytically treatable model com-

posed of two coupled harmonic oscillators connected to Langevin Baths.

– The results demonstrate that thermal rectification is also possible in

harmonic systems if there are temperature-dependent features. In this

case, the temperature dependence is in the coupling of the oscillators to
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the baths. This temperature dependence arises naturally in Doppler-

cooled trapped-ion setups.

– The phonon band match-mismatch description that was proposed for

non-harmonic systems also applies to this harmonic model.
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Appendix A

Properties of separable potentials

A.1 Transition operator

For a separable potential V = V0 |ϕ⟩⟨χ|, the transition operator becomes

Top = α |ϕ⟩⟨χ| , (A.1)

where α = V0 + V 2
0 ⟨χ|G(E) |ϕ⟩. Then using the Lippmann-Schwinger equation

we get that

Top(E) = V + V G0(E)Top(E)

= [V0 + αV0 ⟨χ|G0(E) |ϕ⟩] |ϕ⟩⟨χ| , (A.2)

where G0(E) = (E −H0)
−1 is the Green’s operator for free motion. Solving for α

now gives

α =
V0

1− V0 ⟨χ|G0(E) |ϕ⟩
=

V0
1− V0Q0(E)

. (A.3)
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A.2 S-matrix eigenvalues

The eigenvalues for the S-matrix are given by eq. (2.9) in terms of the reflection

and transmission amplitudes. For a separable potential, using eq. (1.9), we can

simplify the transmission and reflection coefficients as

T l = 1− 2πim

p
αϕ(p)χ∗(p),

T r = 1− 2πim

p
αϕ(−p)χ∗(−p),

Rl = −2πim

p
αϕ(−p)χ∗(p),

Rr = −2πim

p
αϕ(p)χ∗(−p).

(A.4)

If we now define

Γ =
2πim

p
α [ϕ(p)χ∗(p) + ϕ(−p)χ∗(−p)] , (A.5)

we can write the eigenvalues as simply

Sj = 1− Γ− (−1)jΓ

2
. (A.6)

Note that S2 = 1 for all p. Clearly the following relation must also always hold

for the reflection and transmission amplitudes,

T l + T r − T lT r +RlRr = 1. (A.7)
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Numerical calculation of

transmission and reflection

coefficients

Here we will discuss how to numerically solve the stationary Schrödinger equa-

tion for the two-level system by the invariant imbedding method [142, 143].

Let the potential V(x) be non-zero in the region −d < x < d. We introduce the

following dimensionless variables: k̄ = (2mE)1/22d/ℏ, x̄ = x/(2d) + 1/2, Ω̄(x̄) =

(4md2/ℏ)Ω(x) and Γ̄ = (4md2/ℏ)(γ − 2i∆). The non-Hermitian dimensionless

Hamiltonian for the system takes the form

H̄ = H̄0 + V̄(x̄), (B.1)

H̄0 = − ∂2

∂x̄2
+

 0 0

0 −iΓ̄

 , (B.2)

V̄(x̄) =

 0 Ω̄(x̄)

Ω̄(x̄)∗ 0

 . (B.3)

To set the matrices we use as in the main text the convention for internal states

|1⟩ = ( 1
0 ) and |2⟩ = ( 0

1 ). To simplify the notation, we will from now on drop the

bars above variables and operators for the remaining part of this section A. The

127
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corresponding stationary Schrödinger equation is now

k2ψ(1)(x) = − ∂2

∂x2
ψ(1)(x) + Ω(x)ψ(2)(x),

k2ψ(2)(x) = − ∂2

∂x2
ψ(2)(x) + Ω(x)∗ψ1(x)− iΓψ(2)(x).

Let us denote as |Ψα(x)⟩ the wave vector for the atom impinging in internal level

α, α = 1, 2. This vector has ground and excited state components, generically

⟨β|ψα(x)⟩, β = 1, 2, which are still functions of x. We can define the matrices

F (x) and F̃ (x) as

Fβ,α(x) = ⟨β|ψα(x)⟩ , F̃β,α(x) =
⟨
β
∣∣∣ψ̃α(x)

⟩
, (B.4)

so the stationary Schrödinger equation can be rewritten as

[
k2 −H0 − V(x)

]
F (x) = 0,[

k2 −H0 − V(x)
]
F̃ (x) = 0. (B.5)

B.1 Free motion, V = 0

When V(x) = 0 we get

[
k2 −H0

]
|ψα(x)⟩ = 0,[

k2 −H0

] ∣∣∣ψ̃α(x)
⟩

= 0, (B.6)

for α = 1, 2. We can write down the solutions for particles “coming” from the left

|ψα(x)⟩ in internal state |α⟩ as

|ψ1(x)⟩ =

 1√
k
eikx

0

, |ψ2(x)⟩ =

 0

1
4√k2+iΓ

ei
√
k2+iΓx

,
where we assume the branch Im

√
k2 + iΓ ≥ 0. |ψ2(x)⟩ is a regular traveling wave

only for real
√
k2 + iΓ). If the square root has an imaginary part, |ψ2(x)⟩ decays
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from left to right. The solutions for incidence from the right
∣∣∣ψ̃α(x)

⟩
in internal

state |α⟩ are similarly

∣∣∣ψ̃1(x)
⟩
=

 1√
k
e−ikx

0

, ∣∣∣ψ̃2(x)
⟩
=

 0

1
4√k2+iΓ

e−i
√
k2+iΓx

.
The normalization is chosen in such a way that the dimensionless probability

current is constant (and equal) for all solutions with real
√
k2 + iΓ.

The solutions are given by F (x) = h+(x) and F̃ (x) = h−(x), where

h±(x) =

 1√
k
e±ikx 0

0 1
4√k2+iΓ

e±i
√
k2+iΓx

 . (B.7)

The Wronskian is W (h+, h−)(x) = 2i so that these are linearly independent solu-

tions.

B.2 General case

To solve the general case, we construct the Green’s function defined by

(k2 −H0)G0(x, x
′) = δ(x− x′)1. (B.8)

It is given by

G0(x, x
′) = W−1

h+(x)h−(x
′) x > x′,

h+(x
′)h−(x) x′ > x,

(B.9)

= − i

2

 1
k
eik|x−x

′| 0

0 ei
√

k2+iΓ|x−x′|
√
k2+iΓ

 .
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The Green’s function allows us to solve for F (x) and F̃ (x) in integral form,

F (x) = h+(x) +

∫ ∞
−∞

dx′G0(x, x
′)V(x′)F (x′),

F̃ (x) = h−(x) +

∫ ∞
−∞

dx′G0(x, x
′)V(x′)F̃ (x′). (B.10)

B.3 Asymptotic form of the solutions

From eq. (B.10) we find the following asymptotic forms of F (x) and F̃ (x):

Fη(x) =

h+(x) + h−(x)R x < 0

h+(x)T x > 1

,

F̃η(x) =

h−(x)T̃ x < 0

h−(x) + h+(x)R̃ x > 1

, (B.11)

where the R and T matrices for incidence from the left are given by

R = W−1
∫ 1

0

dx′h+(x
′)V(x′)F (x′),

T = 1+W−1
∫ 1

0

dx′h−(x
′)V(x′)F (x′), (B.12)

whereas, for right incidence,

R̃ = W−1
∫ η

0

dx′h−(x
′)V(x′)F̃η(x

′),

T̃ = 1+W−1
∫ η

0

dx′h+(x
′)V(x′)F̃η(x

′). (B.13)

In particular, for left incidence in the ground-state, we get if x < 0,

|ψ1(x)⟩ =

 1√
k
eikx

0

+

 R1,1
1√
k
e−ikx

R2,1
1

4√k2+iΓ
e−i
√
k2+iΓx

, (B.14)
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and, if x > 1,

|ψ1(x)⟩ =

 T1,1
1√
k
eikx

T2,1
1

4√k2+iΓ
ei
√
k2+iΓx

 . (B.15)

When
√
k2 + iΓ is real, the elements of T and R in Eqs. (B.14) and (B.15) are

transmission and reflection amplitudes for waves traveling away from the interac-

tion region. However when Im
√
k2 + iΓ > 0 the waves for the excited state 2 are

evanescent. In scattering theory parlance the channel is “closed”, so the T2,1 and

R2,1 are just proportionality factors rather than proper transmission and reflection

amplitudes for travelling waves. By continuity however, it is customary to keep

the same notation and even terminology for closed or open channels.

In a similar way, for right incidence in the ground state and x > 1,

|ψ̃1(x)⟩ =

 1√
k
e−ikx

0

+

 R̃1,1
1√
k
eikx

R̃2,1
1

4√k2+iΓ
ei
√
k2+iΓx

, (B.16)

whereas, for x < 0,

|ψ̃1(x)⟩ =

 T̃1,1
1√
k
e−ikx

T̃2,1
1

4√k2+iΓ
e−i
√
k2+iΓx

 . (B.17)

Note that alternative definitions of the amplitudes may be found in many works,

without momentum prefactors.

The amplitudes relevant for the main text are T l = T1,1, T r = T̃1,1, Rl = R1,1,

and Rr = R̃1,1. The following subsection explains how to compute them.

B.4 Differential equations for R and T matrices

To solve for R and T we will use cut-off versions of the potential,
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Vη(x) =

V(x) 0 ≤ x ≤ η,

0 Otherwise
, (B.18)

where 0 ≤ η ≤ 1, and corresponding matrices

Rη = W−1
∫ η

0

dx′h+(x
′)V(x′)Fη(x

′),

Tη = 1+W−1
∫ η

0

dx′h−(x
′)V(x′)Fη(x

′),

R̃η = W−1
∫ η

0

dx′h−(x
′)V(x′)F̃η(x

′),

T̃η = 1+W−1
∫ η

0

dx′h+(x
′)V(x′)F̃η(x

′). (B.19)

Taking the derivative of these matrices with respect to η, we find a set of four

coupled differential equations,

dRη

dη
= W−1T̃ηh+(η)V(η)h+(η)Tη, (B.20)

dTη
dη

= W−1
[
h−(η) + R̃ηh+(η)

]
V(η)h+(η)Tη, (B.21)

dR̃η

dη
= W−1

[
h−(η)+R̃ηh+(η)

]
V(η)

[
h−(η)+h+(η)R̃η

]
,

(B.22)
dT̃η
dη

= W−1T̃ηh+(η)V(η)
[
h−(η) + h+(η)R̃η

]
. (B.23)

The initial conditions are R0 = R̃0 = 0 and T0 = T̃0 = 1.

B.5 Improving numerical efficiency

The equations (B.22) and (B.23) involve only matrices for incidence from the

right, they do not couple to any left-incidence matrix, whereas the equations for

left incidence amplitudes involve couplings with amplitudes for right incidence.

This asymmetry is due to the way we do the potential slicing. The asymmetry is

not “fundamental” but we can use it for our advantage to simplify calculations.
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We can solve equations (B.22) and (B.23) to get amplitudes for right incidence.

To get amplitudes for left incidence we use a mirror image of the potential and

solve also these two equations. Thus it is enough to find an efficient numerical

method to solve equations (B.22) and (B.23). In principle, one can now solve

these differential equations from η = 0 to 1 to get all reflection and transmission

amplitudes using the boundary conditions R̃0 = 0 and T̃0 = 1. However due to the

exponential nature of the free-space solutions h±(x) especially if Im
√
k2 + iΓ > 0,

this is not very efficient numerically.

To avoid this problem we make new definitions,

Ŝη = 1+ h+(η)R̃ηh
−1
− (η),

T̂η = h+(0)T̃ηh
−1
− (η),

V̂(η) = W−1h2+(0)V(η),

Q̂ = ih−2+ (0). (B.24)

Rewriting the equations (B.22) and (B.23) in terms of these new variables we get

dŜη

dη
= −2Q̂+ Q̂Ŝη + Ŝη

[
Q̂+ V̂(η)Ŝη

]
,

dT̂η
dη

= T̂η

[
Q̂+ V̂(η)Ŝη

]
, (B.25)

with initial conditions T̂0 = Ŝ0 = 1.

Let us consider solely incidence in the ground state. For right incidence in the

ground state, the reflection coefficients and transmission coefficient are

R̃1,1 = e−2ik
[
(Ŝη=1)1,1 − 1

]
,

R̃2,1 =
4
√
k2 + iΓ√
k

e−ik−i
√
k2+iΓ(Ŝη=1)2,1,

T̃1,1 = e−ik(T̂η=1)1,1,

T̃2,1 =
4
√
k2 + iΓ√
k

e−ik(T̂η=1)2,1. (B.26)
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B.6 Bounds from unitarity

The S-matrix

S =


T11 T12 R̃11 R̃12

T21 T22 R̃21 R̃22

R11 R12 T̃11 T̃12

R21 R22 T̃21 T̃22

 (B.27)

is unitary for Hermitian Hamiltonians, in particular when γ = 0. Unitarity implies

relations among the matrix elements and in particular

1 ≥ |R11|2 + |T11|2, (B.28)

1 ≥ |R̃11|2 + |T̃11|2, (B.29)

1 ≥ |R̃11|2 + |T11|2, (B.30)

1 ≥ |R11|2 + |T̃11|2. (B.31)

While the first two equations (B.28) and (B.29) are rather obvious because of

probability conservation, the last two equations (B.30) and (B.31) are less so, and

set physical limits to the possible asymmetric devices that can be constructed in

the ground state subspace.



Appendix C

Full set of steady-state equations

for the components of Cs.s

Here is the full set of equations for the covariance matrix elements in the steady

state. We use the shorthand notation ⟨...⟩ = ⟨...⟩s.s, i.e., all averages are in the

steady state.

2k ⟨p2q1⟩
m1m2

+
2γL ⟨p21⟩
m3

1

=
2DL

m2
1

,

−2k ⟨p2q1⟩
m2

2

+
2γR ⟨p22⟩
m3

2

=
2DR

m2
2

,

−(kL + k) ⟨q1q2⟩
m1

+
k ⟨q22⟩
m1

+
γL ⟨p2q1⟩
m1m2

+
⟨p1p2⟩
m1m2

= 0,

(kL+k)⟨p2q1⟩
m1m2

− (kR+k)⟨p2q1⟩
m2

2

+
γL⟨p1p2⟩
m2

1m2

+
γR⟨p1p2⟩
m1m2

2

=0,

−(kL + k) ⟨q21⟩
m1

+
k ⟨q1q2⟩
m1

+
⟨p21⟩
m2

1

= 0,

−(kR + k) ⟨q22⟩
m2

+
k ⟨q1q2⟩
m2

+
⟨p22⟩
m2

2

= 0,

−(kR + k) ⟨q1q2⟩
m2

+
k ⟨q21⟩
m2

− γR ⟨p2q1⟩
m2

2

+
⟨p1p2⟩
m1m2

= 0.
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Complete expressions for the

Spectral Density Matrix

In section 6.5 we used the characteristic polynomial PA(λ) of the dynamical

matrix A for the calculation of the spectral density matrix. PA(λ) is defined as

PA(λ) ≡ det(A− λ)

= λ4

+ λ3
(
γL
m1

+
γR
m2

)
+ λ2

(γLγR +m2(k + kL) +m1(k + kR))

m1m2

+ λ
(γR(k + kL) + γL(k + kR))

m1m2

+
k(kL + kR) + kLkR

m1m2

.

(D.1)

We also used the polynomials SL(λ) =
6∑

n=0

λnsL,n and SR(λ) =
6∑

n=0

λnsR,n. There

are 14 different polynomial coefficients, which are 4× 4 matrices. This is the full
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list of coefficients,

sL,0 =


(k + kR)

2 k(k + kR) 0 0

k(k + kR) k2 0 0

0 0 0 0

0 0 0 0

 ,

sR,0 =


k2 k(k + kL) 0 0

k(k + kL) (k + kL)
2 0 0

0 0 0 0

0 0 0 0

 ,

sL,1 =


0 kγR −(k + kR)

2 −k(k + kR)

−kγR 0 −k(k + kR) −k2

(k + kR)
2 k(k + kR) 0 0

k(k + kR) k2 0 0

 ,

sR,1 =


0 −kγL −k2 −k(k + kL)

kγL 0 −k(k + kL) −(k + kL)
2

k2 k(k + kL) 0 0

k(k + kL) (k + kL)
2 0 0

 ,

sL,2 =


2(k + kR)m2 − γ2R km2 0 −kγR

km2 0 kγR 0

0 kγR −(k + kR)
2 −k(k + kR)

−kγR 0 −k(k + kR) −k2

 ,

sR,2 =


0 km1 0 kγL

km1 2(k + kL)m1 − γ2L −kγL 0

0 −kγL −k2 −k(k + kL)

kγL 0 −k(k + kL) −(k + kL)
2

 ,

sL,3 =


0 0 γ2R − 2(k + kR)m2 −km2

0 0 −km2 0

2(k + kR)m2 − γ2R km2 0 −kγR
km2 0 kγR 0

 ,
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sR,3 =


0 0 0 −km1

0 0 −km1 γ2L − 2(k + kL)m1

0 km1 0 kγL

km1 2(k + kL)m1 − γ2L −kγL 0

 ,

sL,4 =


m2

2 0 0 0

0 0 0 0

0 0 γ2R − 2(k + kR)m2 −km2

0 0 −km2 0

 ,

sR,4 =


0 0 0 0

0 m2
1 0 0

0 0 0 −km1

0 0 −km1 γ2L − 2(k + kL)m1

 ,

sL,5 =


0 0 −m2

2 0

0 0 0 0

m2
2 0 0 0

0 0 0 0

 ,

sR,5 =


0 0 0 0

0 0 0 −m2
1

0 0 0 0

0 m2
1 0 0

 ,

sL,6 =


0 0 0 0

0 0 0 0

0 0 −m2
2 0

0 0 0 0

 ,

sR,6 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −m2
1

 . (D.2)
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