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a b s t r a c t

Graph construction plays an essential role in graph-based label propagation since graphs give some
information on the structure of the data manifold. While most graph construction methods rely on
predefined distance calculation, recent algorithms merge the task of label propagation and graph
construction in a single process. Moreover, the use of several descriptors is proved to outperform a
single descriptor in representing the relation between the nodes. In this article, we propose a Multiple-
View Consistent Graph construction and Label propagation algorithm (MVCGL) that simultaneously
constructs a consistent graph based on several descriptors and performs label propagation over
unlabeled samples. Furthermore, it provides a mapping function from the feature space to the label
space with which we estimate the label of unseen samples via a linear projection. The constructed
graph does not rely on a predefined similarity function and exploits data and label smoothness.
Experiments conducted on three face and one handwritten digit databases show that the proposed
method can gain better performance compared to other graph construction and label propagation
methods.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Graph-based classification algorithms have received a lot of
ttention due to their capability in revealing the underlying struc-
ure of the data manifold (Wang, Mezlini, Demir, Fiume, Tu,
rudno, Haibe-Kains, & Goldenberg, 2014; Wang, Yang, Liu, &
ujita, 2019; Zheng, Liu, Chen, An, & Zhang, 2020). Moreover,
hile there exists a huge amount of data, very few of them
ay have labels, and the majority of the available data samples
re without any label which got excluded from the training
hase when we adopt supervised learning. Hence, the use of
emi-supervised learning algorithms that can simultaneously use
abeled and unlabeled samples is of more interest compared to
upervised learning methods which only adopt labeled samples
ornaika and Bosaghzadeh (2015), Dornaika, Dahbi, Bosaghzadeh,
nd Ruichek (2017), Karasuyama and Mamitsuka (2013). As a re-
ult, graph-based semi-supervised learning algorithms can over-
ome the above-mentioned limitations (An, Chen, & Yang, 2017;
iu, Lai, Ou, Zhang, & Zheng, 2020; Tong, Gray, Gao, Chen, &
ueckert, 2017).
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ttps://doi.org/10.1016/j.neunet.2021.11.015
893-6080/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
While most of these approaches rely on a single feature (con-
sequently, they construct a single graph and use it for label prop-
agation) (Dornaika & Bosaghzadeh, 2015; Dornaika, Bosaghzadeh,
& Raducanu, 2013; Dornaika, Dahbi et al., 2017; Zhou, Bousquet,
Lal, Weston, & Schölkopf, 2004), recent techniques use several
sources of information to extract different features and conse-
quently, better estimate the underlying manifold structure (An
et al., 2017; Angelou, Solachidis, Vretos, & Daras, 2019; Wang
et al., 2014; Zheng et al., 2020) .

Most of the previous graph-based learning methods consider
the graph construction and the learning (classification, regression,
clustering, etc.) as two separate tasks (Bahrami, Bosaghzadeh, &
Dornaika, 2019; Tong et al., 2017) where in the first phase, one
or several graphs are constructed (and merged) and then the
label propagation is performed. However, recent methods do not
consider them as two separate tasks and instead, they combine
the graph construction and the post-learning task in a single
framework (Huang, Kang, Tsang, & Xu, 2019; Lin, Liao, Sun, Chen,
& Zhao, 2017; Nie, Cai, & Li, 2017; Wang & Tsotsos, 2016). The
experimental results proved that the fusion of these two steps
can enhance the learning performance.

One of the major drawbacks in most of the single-view and
multi-view graph-based learning algorithms is how they estimate

the label of unseen samples. In this case, one has to reconstruct
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he affinity graph using the new samples and perform the la-
el propagation on the new samples (Bosaghzadeh & Dornaika,
020). However, when we have a stream of samples coming in
equence, this solution becomes less possible since repeating the
raph construction and label propagation is a time-consuming
ask. This is due to the fact that these algorithms which are called
ransductive, cannot directly estimate the label of test samples
nd for the new samples, one has to repeat the whole process. On
he other hand, inductive algorithms learn an explicit mapping to
stimate the label of unseen samples; hence, for the new samples,
t is not necessary to reconstruct a new graph and perform
abel propagation, but the labels can be calculated via a linear
apping (Bahrami et al., 2019; Nie, Xu, Tsang, & Zhang, 2010).
In multi-view learning, since there exist several features, one

as to look for a fusion algorithm to merge these sources of infor-
ation. Most multi-view graph-based algorithms adopt several
re-constructed graphs (e.g., KNN graph), and then merge them
o obtain a unified consistent graph (An et al., 2017; Bahrami
t al., 2019). However, recent algorithms directly estimate the
ffinity graph using either a single feature or several descrip-
ors. There are two main groups of methods for inferring the
raph from data: (i) methods that rely on data-self represen-
ativeness (Dornaika & Bosaghzadeh, 2015; Dornaika, Kejani, &
osaghzadeh, 2017; Kang, Shi, Huang, Chen, Pu, Zhou, & Xu,
020), and (ii) methods that rely on data smoothness (Nie et al.,
017; Wang et al., 2019).
In summary, existing multi-view graph-based semi-supervised

earning methods which estimate a flexible non-linear embed-
ing cannot overcome the drawbacks mentioned above.
In this article, we propose a multi-view graph-based semi-

upervised learning algorithm that can overcome the above-
entioned limitations. The proposed algorithm has the following
haracteristics:

• It combines the label propagation and multi-view graph
construction in a unified framework.

• It jointly estimates the projection matrix, the labels of unla-
beled samples, the consistent graph, and the views’ weights

• It constructs a single consistent graph considering the infor-
mation in different views.

• It uses several features and fuses the information available
in different views to enhance accuracy.

• For unseen samples, the proposed method can directly esti-
mate the labels via a linear transformation which makes it
suitable for large-scale label propagation.

The remaining of this article is organized as follows: Section 2
ntroduces the graph and basic assumptions in graph-based label
ropagation. It also briefly reviews some related works. Sec-
ion 3 is dedicated to the proposed method. Section 4 reports the
xperimental results. Finally, we conclude the article in Section 5.

. Related work

.1. Graph-based label propagation

Consider X ∈ Rd×N as the data matrix containing N = l +

samples each with the dimensionality of d, where l samples
ave labels and u samples are unlabeled. Without loss of any
enerality, it is assumed that the labeled samples are represented
y the first l columns of the matrix X. There exist a respective
inary label matrix Y = [Yl,Yu] = [y1; y2; ....; yl; yl+1; ...; yl+u] ∈

RN×C where yi is a C dimensional vector that determines the
class for the samples xi. For an arbitrary sample xi that belongs
to the class c , the cth element of yi is set to one and the rest are
zero. For unlabeled samples (i.e., Yu), yij = 0| ∀j. Moreover, we
define a soft label matrix F = [f1; f2; ....; fN ] ∈ RN×C where Fic
represents the probability of sample x belonging to the class c.
i

175
We define an undirected weighted graph as G = {X,W}

where the data matrix X contains the nodes and the symmetric
affinity matrix W represents the pairwise similarity between the
nodes. Moreover, we define L = D − W as the unnormalized
Laplacian matrix where D is the diagonal degree matrix where
Dii =

∑N
j=1 Wij shows the degree for the node xi.

2.2. Review of single and multi view graph-based learning methods

The basic assumption in graph-based learning is that close
samples share similar labels.

Gaussian Field and Harmonic Functions (GFHF) algorithm (Zhu,
Ghahramani, & Lafferty, 2003) exploits this assumption and at-
tempts to estimate the label matrix, F, by minimizing the follow-
ing criterion:

min
F

N∑
i=1

N∑
j=1

∥fi − fj∥2 Wij = min
F

Tr(FT L F) (1)

where Tr(.) denotes the trace of a matrix. It states that for the two
amples xi and xj with corresponding soft labels fi and fj and the
imilarityWij, if the similarity is high (i.e., largeWij) the difference
etween the corresponding soft labels of the two samples should
e low.
LGC (Zhou et al., 2004) adds the label fitness term to Eq. (1).

ts objective function is:

min
F

N∑
i,j=1

∥
1

√
Dii

fi −
1√
Djj

fj∥2 Wij + µ

l∑
i=1

∥fi − yi∥2 (2)

where µ is the balance parameter between the label smoothness
and label fitness terms.

As explained in the introduction, the adoption of several fea-
tures for graph construction and label propagation has absorbed
attention due to the complementary information in different
views; hence different graphs. However, a drawback in adopting
several features is the possible noisy features and graphs. In Kara-
suyama and Mamitsuka (2013) the authors adopted the weighted
fusion of several graphs, while at the same time maintaining
the sparsity for the adopted graphs. Their mathematical objective
function was

min
F,λ

V∑
v=1

λv(FT Lv F) + µ1

l∑
i=1

∥fi − yi∥2
+ µ2∥λ∥

2
2

s.t. λT1 = 1, λ ≥ 0

(3)

where Lv is the Laplacian of the graph constructed from the
vth view and λv is contribution of the vth view. Recent fu-
sion algorithms insert the label space as a source of information
to further enhance the performance. The authors in Wang and
Tsotsos (2016) divide their work into Kernel Fusion and Kernel
Diffusion steps, where in the Kernel Fusion step, they combine
the information in the label space and the data space, hoping that
label information can boost the accuracy of label propagation.
Similarly, in Lin et al. (2017), along with several features, the au-
thors used the information in the label space in their optimization
to further enhance the accuracy.

While above mentioned algorithms adopt graph construction
algorithms like KNN graph with Gaussian kernel, recent algo-
rithms automatically construct the graph via some predefined
criterion. For instance, Wang et al. (2019) used manifold learning
and sparse representation to construct a graph for each view.
Their adopted criterion is

min
Sv

n∑
i,j=1

∥xv
i − xv

j ∥
2
2 s

v
ij + α

n∑
i=1

∥sv
i ∥

2
2 (4)

v v T v
s.t. sii = 0, sij ≥ 0, 1 si = 1
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here svij represents the calculated similarity between the pair xi
and xj in the vth view. Another recent approach is to construct
the graph based on the data Self-expressiveness property which
states that each data sample can be expressed as a linear com-
bination of other samples (Kang et al., 2020). The mathematical
form of its multi-view version can be written as

min
Zv

V∑
v=1

∥Xv
− XvSv

∥
2
F + α∥Sv

∥
2 (5)

Sv
≥ 0

where Sv is the similarity matrix in the vth view. In the fusion
step, both Kang et al. (2020) and Wang et al. (2019) use the
idea of consensus graph, which states that the graph of any view
is a perturbation of the consensus graph. The consensus graph
criterion can be written in its simple form as follows.

min
V∑

v=1

∥Sv
− U∥

2 (6)

where U is the consensus graph between the graphs of the
different views.

2.3. Review of flexible manifold embedding

While Zhu et al. (2003) and Zhou et al. (2004) work only on
available samples (labeled and unlabeled samples), they cannot
handle o unseen samples. The authors of Flexible manifold em-
bedding (Nie et al., 2010) additionally adopted a projection matrix
that maps data to the label space (inductive model). The objective
function of FME is given by:

min
F,Q, b

Tr (FT L F) + Tr ((F − Y)T U (F − Y))

+ µ (∥Q∥
2
+ γ ∥XTQ + 1bT

− F∥2)
(7)

where the first term is the label smoothness, the second one is
the label fitness term, and the third term is the regularization
of the projection matrix plus the error of label fitting using
the projection matrix. Q is the projection matrix, b is the bias
vector, µ and γ are balancing parameters and ∥.∥2 denotes the
ℓ2 norm of a matrix. The diagonal matrix U has nonzero values
for the labeled samples and zero otherwise. The solution to the
optimization problem (7) gives F, Q, and b via the following
equations (see Nie et al. (2010)):

Q = γ [γ XHcXT
+ I]−1XHcF (8)

b =
1

l + u
[FT1 − WTX1] (9)

F = (U + L + µ γ Hc − µ γ 2 M)−1UY (10)

where M = XT
c Xc (γ XT

c Xc + I)−1, Xc , and Hc = I −
1

l+u1 1T are
the centered data matrix and the centering matrix, respectively.

3. Proposed method

We propose a Multiple-View Consistent Graph construction
and Label propagation algorithm (MVCGL) that unifies the multi-
view graph construction and label propagation in a single frame-
work. Unlike previous works (Bahrami et al., 2019; Wang &
Tsotsos, 2016), we do not use some previously constructed graphs
but estimate a unified graph based on the information in different
views. Thus, the targeted task is more complicated than the tasks
addressed in the previous works.

Since the graph matrix is considered as an input in the FME
framework, the data smoothness term is not taken into account
in the FME framework. In our case, one of the sub-tasks is the
176
estimation of a unified consistent graph over the multiple views.
Thus, data and label smoothness will be used in our objective
function to estimate this unified graph.

Data smoothness or manifold smoothness assumes that far
samples should have low similarity (Similarity is encoded in the
elements of the S matrix). Mathematically, the graph matrix S
should minimize the following smoothness term:

min
S

1
2

N∑
i,j=1

∥xi − xj∥2 Sij = min
S

Tr (X LXT ) (11)

where L is the Laplacian matrix of the graph S. We define the data
smoothness term in multi-view learning as

min
S

V∑
v=1

βp
v

N∑
i,j=1

∥xvi − xvj∥
2 Sij = min

S

V∑
v=1

βp
v Tr(Xv L XT

v ) (12)

where xvj is the jth sample in the vth view, βv is an unknown
weight, p > 1 is a hyperparameter that avoids the trivial solution
of choosing only one view, and V denotes the total number of
views.

By adding Eq. (12) to the FME criterion (i.e., Eq. (7)), we have:

min
,S,F,Q,b

[

V∑
v=1

βp
v Tr(Xv L XT

v ) + λ Tr(FT L F) + Tr((F − Y)T U (F − Y))

+γ ∥S∥2
+ µ (∥Q∥

2
+ α ∥XT

cQ + 1bT
− F∥2) ]

s.t. 0 ≤ Sij ≤ 1,
N∑
j=1

Sij = 1 (13)

here S is the unified similarity matrix and βv is the weight
f view v. By optimizing the above objective function, we can
imultaneously estimate β, S, F, Q, and b. Since in multi-view
earning we have different features, to estimate the label of test
amples one should use all these features. Consequently, we
oncatenate the features of all views such that they form a single
escriptor. Hence, the data matrix Xc and the projection matrix
have the dimensionality of (

∑V
v=1 d

v) × N and (
∑V

v=1 d
v) × C ,

espectively.
To solve the problem presented in Eq. (13), we propose an

terative alternate solution. We proceed as follows.
Fix S and β and calculate Q, b, and F The minimization

roblem of Eq. (13) is reduced to:

min
F,Q,b

λ Tr(FT L F) + Tr((F − Y)U (F − Y)T )

+ µ (∥Q∥
2
+ α ∥XT

cQ + 1bT
− F∥2)

(14)

he above is the FME formulation in Eq. (7). Consequently, Eqs. (8),
9), and (10) can be adopted to calculate Q, b, and F, respectively.

Fix F,Q, b, and β and calculate S The proposed objective
unction in Eq. (13) can be simplified to

min
S

V∑
v=1

βp
v Tr (Xv L XT

v ) + λ Tr(FT L F) + γ ∥S∥2

.t. 0 ≤ Sij ≤ 1,
N∑
j=1

Sij = 1

(15)

hich can be written as

min
S

V∑
v=1

βp
v

N∑
i,j=1

∥xv
i − xv

j ∥
2
2 Sij + λ

N∑
i,j=1

∥fi − fj∥2
2Sij + γ ∥S∥2

2

≡ min
S

N∑
Sij

(
V∑

βp
v ∥xv

i − xv
j ∥

2
2 + λ ∥fi − fj∥2

2

)
+ γ ∥S∥2

2

i,j=1 v=1
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≡ min
S

N∑
i,j=1

[Sij dij + γ S2ij ] s.t. 0 ≤ Sij ≤ 1,
N∑
j=1

Sij = 1

(16)

here dij =
∑V

v=1 ∥xv
i − xv

j ∥
2
2 + λ ∥fi − fj∥2

2. Since Eq. (16) is
ndependent between different i, we can deal with it individually
or each row si as (the vector di is set to (di1, . . . , diN )T ):

min
si

N∑
j=1

Sij dij + γ S2ij ≡ min
si

∥si +
1
2γ

di∥
2
2

s.t. 0 ≤ Sij ≤ 1,
N∑
j=1

Sij = 1

(17)

A closed-form solution for si (i = 1, . . . ,N) can be found in Nie
et al. (2017).

Fix F, Q, b, and S and calculate β Eq. (13) can be simplified
as

min
β

V∑
v=1

βp
v Cv + η (

V∑
v=1

βv − 1) (18)

where Cv = Tr(XT
vLXv) and η is the Lagrangian multiplier.

To estimate the weight coefficients (i.e., βv , v = 1, . . . , V ), we
vanish the derivative of Eq. (18) w.r.t. βv and obtain

pβp−1
v Cv + η = 0 ⇒ βv = (

−η

pCv

)
1

p−1 (19)

Expanding (
∑V

v=1 βv = 1), we have

(
−η

pC1
)

1
p−1 + (

−η

pC2
)

1
p−1 + · · · + (

−η

pCV
)

1
p−1 = 1

⇒, (
−η

p
)

1
p−1 =

1∑V
v=1

1
Cv

1
p−1

(20)

Inserting Eq. (20) in Eq. (19), we get:

v =

1

Cv

1
p−1∑V

v=1(
1
Cv
)

1
p−1

(21)

Algorithm 1 summarizes the main steps for solving the prob-
lem (13). Once the model is estimated (i.e., F, Q, b, and S are
recovered), the label (row vector) of any test sample can be
predicted via the following mapping:

f = xTcQ + bT (22)

where xc is the vector constructed by concatenating the features
of the views V views.

4. Experiments

In this section, we evaluate the performance of the proposed
method and compare it with that of several algorithms. The
competing methods are single feature, feature concatenation,
SNF (Wang et al., 2014), SMGI (Karasuyama & Mamitsuka, 2013),
DGFLP (Lin et al., 2017) MLGC (An et al., 2017), and AMGL (Nie,
Li, & Li, 2016).

4.1. Experimental setup

For the evaluation of the proposed method, we use five image
databases, three are small face databases namely PF011, PIE (Sim,

1 nova.postech.ac.kr/special/imdb/imdb.html.
177
Input: V data matrices Xc = [X1; ...;XV ], Binary label of
labeled samples Yl, Parameters α, µ, λ, and p

Output: Predicted soft label matrix F, Projection matrix Q
and bias vector b, the coefficients βv , v = 1, ..., V

1. Initialize the coefficient of each view βv to 1
V

2. Initialize the soft label matrix F = Y
3. Initialize the affinity graph S

repeat
Update the affinity matrix S by the solution in Nie

et al. (2017).
Update F, Q and b by Eqs. (10), (8), and (9).
Update β by Eq. (21).

until |St − St−1
| < threshold;

4. The F matrix shows the label of unlabeled samples.
5. Estimate the label of unseen samples via Eq. (22).

Algorithm 1: Multiple-View Consistent Graph construction
and Label propagation algorithm

Baker, & Bsat, 2002), FERET (Phillips, Moon, Rizvi, & J. Rauss,
2000), COVIDx Dataset of chest X-ray images2 and one large
handwritten digit database namely MNIST (LeCun & Cortes, 2010).
This database contains 60,000 train and 10,000 test images of
handwritten digits from 0∼9 which constructs 10 classes.

Since a multi-view algorithm requires several features, from
the adopted databases explained above, we extract several fea-
tures. For face databases, we use LBP image (Ahonen, Hadid,
& Pietikainen, 2006), Gabor (Shen & Bai, 2006) and Covariance
descriptor (Cov) (Tuzel, Porikli, & Meer, 2006). The dimensions
of these descriptors are respectively 900, 2560, and 405. The
Gabor filter adopted five scales and eight orientations. The Cov
descriptor adopted nine low-level feature maps with 3 × 3 blocks
n the image.

The COVIDx dataset contains 13892 chest X-ray images in
hree classes, namely: COVID19, normal and pneumonia. Al-
hough this dataset is commonly used for supervised classifica-
ion, we use it to test the proposed semi-supervised method. For
ach X-ray image, we extract two image descriptors given by two
ifferent deep CNNs: ResNet50 and ResNet101 trained on the Im-
geNet dataset. These nets produce an image descriptor of 2048
lements. For the MNIST database, we used two deep convolu-
ional neural networks, namely VGG-16 and VGG19 (Simonyan
Zisserman, 2014) that both were trained on the ImageNet

atabase (Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009). These nets
roduce an image descriptor of 4096 elements.
PCA is used for reducing the dimensionality of features such

hat 90% of the energy is preserved. After that, zero-mean and
nit-variance are applied. We separately report the results for
mall and large databases. For small databases, we select l sam-
les as labeled and the rest are used as unlabeled and the
hole data is used in the training phase. In the large databases
i.e., Covidx and MNIST datasets, we split the data into training
nd test parts. The training samples are then treated similarly
o the small datasets (l samples as labeled and the rest of the
raining data as unlabeled).

Since the accuracy depends on the data configuration, we
reate 10 splits for labeled and unlabeled samples and perform
he experiments on these splits and then report the average
nd standard deviation of the accuracy. For each database, we

2 https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md.

https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
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Table 1
Average accuracy and standard deviation of a single feature and the proposed method on PIE, FERET and PF01 databases. The optimal
parameters are shown in the parenthesis (k, λ, µ, α)
PIE

lab./class Feature

Cov Gabor LBP Concatenation MVCGL

15 80.93 ± 3.71 91.79 ± 3.32 87.75 ± 3.9 94.31 ± 2.88 94.39 ± 2.86
(3,20,100,2) (5,20,100,2) (3,10,5,5) (3,0.0001,1,1000) (3,10,1,1000)

17 81.93 ± 4.06 91.09 ± 3.08 88.11 ± 2.99 94.54 ± 2.51 94.84 ± 2.47
(3,10,2,5) (3,0.0001,1,100) (3,10,2,5) 5,0.0001,1,1000) (3,20,0.1,1000)

FERET

lab./class Feature

Cov Gabor LBP Concatenation MVCGL

3 59.17 ± 9.53 79.8 ± 8.96 72.01 ± 10.3 83.98 ± 8.06 84.66 ± 7.74
(5,20,100,100) (3,20,2,100) (5,20,1.,2) (3,10,0.1,100 (3,20,0.1,100

5 67,27 ± 18.67 86 ± 15.38 85.15 ± 17.66 90.72 ± 12.98 91.45 ± 12.95
(5,20,5,1) (3,10,0.1,10) (3,20,2,2) (3,0.0001,0.1,100) (3,20,0.1,100)

PF01

lab./class Feature

Cov Gabor LBP Concatenation MVCGL

5 70.24 ± 3.34 84.26 ± 3.76 79.57 ± 2.55 91.3 ± 2.03 92.61 ± 1.74
(20,20,1000,5) (20,10,1000,100) (3,20,1,100) (15,0.0001,1,100) (10,20,5,100)

7 71.82 ± 5.93 85.81 ± 4.93 80.71 ± 4.51 93.22 ± 2.39 93.7 ± 2.4
(15,20,10,100) (20,20,100,1) (20,20,1000,2) (20,20,1,100) (20,10,2,100)
choose different numbers of labeled samples (i.e., l). For each
, we vary the parameters and calculate the accuracy and then
elect the parameters which give the highest accuracy as the
est parameter. We then fix these parameters for the rest of the
plits. The parameters of the proposed method are the balance
arameters λ, γ , µ, and α. Also, we have the p parameter that
hould be greater than one to avoid trivial solution (i.e., one view
s selected) and experimentally, we set it to two. For the param-
ters µ, α, and λ, we select a combination of labeled/ unlabeled
ata (i.e., split) as evaluation and performed a grid search to find
he parameters which gives the highest accuracy. We then fix the
btained parameters for the remaining splits in this experiment.
ore specifically, for the number of neighbors parameter used in
raph optimization (i.e., k), we take the set {3, 5, 7, 10, 15, 20},
or the regression model parameters (i.e., µ and α), we take
he set {0.0001, 0.001, 0.01, 0.1, 2, 5, 10, 100, 1000} and for the
abel smoothing parameter (i.e., λ), we use the {0.0001, 0.001,
.01, 0.1, 2, 5, 10, 20}. The parameter γ is set according to Nie
t al. (2017).

.2. Experimental results

mall databases. For the datasets with less than 2000 images, we
plit the data into labeled and unlabeled samples and use them
or training. We randomly select l samples as labeled and the rest
re left as unlabeled samples. This configuration is adopted for
mall databases since the number of samples is small in these
atabases. For initialization, we construct the graph using Eq. (17)
ecause the f vectors are set to zero. Moreover, the initial coeffi-
ient vector β is set to ( 1

V , 1
V , . . . , 1

V ). For the single features, we
construct a single graph and insert it into the proposed method.

We calculate the average accuracy and standard deviation
on 10 splits of labeled/unlabeled samples and report them in
Table 1 for the PIE, FERET, and PF01 databases. As we can see, the
proposed method obtained higher accuracy compared to the use
of a single feature and moreover, has a lower standard deviation
compared to them. The numbers in the parenthesis show the
adopted parameters.
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Table 2
Average accuracy and standard deviation of the single feature and the fu-
sion algorithm on COVIDx database. (Top) Results on the unlabeled samples
(i.e., transductive setting). (Bottom) Results on the unseen (test) samples (i.e.,
inductive setting).
lab./class Feature

View1 View2 MVCGL

40 60.13 ± 2.17 54.60 ± 2.56 61.70 ± 1.38
3,20,10,0.1 20,0.1,0.001,1000 5,20,10,0.1

120 64.71 ± 1.64 61.42 ± 1.16 65.59 ± 1.68
7,2,5,0.1 3,5,5,2 3,2,2,10

200 66.85 ± 1.39 61.91 ± 1.09 67.58 ± 1.42
5,0.0001,5,0.1 3,0.1,10,0.1 7,2,5,0.1

lab./class Feature

View1 View2 MVCGL

40 60.86+2.53 51.77+7.84 61.55+2.72
5,20,10,0.1 20,0.1,0.001,1000 5,20,10,0.1

120 64.28 ± 1.50 60.96 ± 2.18 66.02 ± 1.42
7,2,5,0.1 3,5,5,2 3,2,2,10

200 64.99 ± 0.8 61.90 ± 1.74 67.00 ± 0.8
5,0.0001,5,0.1 3,0.1,10,0.1 7,2,5,0.1

Large databases. In the previous experiment, we consider that the
whole data is available in the training phase; however, this is not
the case in most real-world applications. In this experiment, we
adopt a large database and divide the data into a training part
(containing labeled and unlabeled samples) and a test part. We
do not use test data in the training phase. We assume that the
training data (i.e., labeled and unlabeled samples) are available
in the training phase and are used by the proposed algorithm.

The COVIDx database contains chest X-ray images of 13892
patients where 468 has ‘COVID-19’, 7966 are normal and 5458
have ‘pneumonia’. From each class, we select 400 samples for
training (among them l are labeled) and the rest are used as test.
We report the average accuracy and standard deviation for the
single feature and the proposed fusion algorithm for unlabeled
and test samples in Table 2. As we observe, the proposed fusion
algorithm is able to enhance the accuracy compared to the use
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Table 3
The average and standard deviation calculated on the MNIST dataset adopting different labeled
sample sizes. (Top) Results on the unlabeled samples (i.e., transductive setting). (Bottom) Results
on the unseen (test) samples (i.e., inductive setting).
MNIST (Accuracy on Unlabeled data)

Scheme lab./class

20 30 40

VGG16 94.53 ± 0.3 95.17 ± 0.3 95.59 ± 0.3
VGG19 94.35 ± 0.5 94.99 ± 0.5 95.35 ± 0.4
Concatenation 95.87 ± 0.4 96.28 ± 0.4 96.66 ± 0.3
SNF (Wang et al., 2014) 94.53 ± 0.6 95.81 ± 0.4 96.49 ± 0.3
SMGI (Karasuyama & Mamitsuka, 2013) 88.40 ± 0.9 89.66 ± 0.7 89.84 ± 0.7
DGFLP (Lin et al., 2017) 92.14 ± 0.5 92.70 ± 0.5 93.06 ± 0.3
MLGC (An et al., 2017) 88.20 ± 1.4 89.45 ± 1.0 90.27 ± 0.7
AMGL (Nie et al., 2016) 94.99 ± 0.5 95.39 ± 0.3 95.67 ± 0.3
MVCGL (ours) 95.89 ± 0.4 96.38 ± 0.4 96.66 ± 0.3

MNIST (Accuracy on Test data)

Scheme lab./class

20 30 40

VGG16 94.98 ± 0.5 95.39 ± 0.3 95.81 ± 0.3
VGG19 95.05 ± 0.5 95.64 ± 0.4 95.97 ± 0.4
Concatenation 95.47 ± 0.5 96.79 ± 0.5 96.21 ± 0.4
SNF (Wang et al., 2014) 94.79 ± 0.6 95.97 ± 0.3 96.64 ± 0.2
MVCGL (ours) 96.48 ± 0.4 96.75 ± 0.3 97.05 ± 0.3
of a single feature which proves that the fusion algorithm can
benefit from the complementary information in both views.

In the MNIST database, for each class, we randomly select 1000
amples for the training set and the rest for the test set. We
elect l samples from the training set as the labeled data and
the rest as unlabeled samples. We report the average accuracy
along with the standard deviation over 10 different combinations
of labeled/unlabeled samples in Table 3. Bold values correspond
to the highest accuracy among competing methods. We compared
the proposed method with the following algorithms, SNF (Wang
et al., 2014), SMGI (Karasuyama & Mamitsuka, 2013), DGFLP (Lin
et al., 2017), MLGC (An et al., 2017), AMGL (Nie et al., 2016), and
MMCL (Gong, Tao, Maybank, Liu, Kang, & Yang, 2016).

Table 3(a) shows the accuracy on unlabeled samples. The pro-
osed method shows better results in terms of average accuracy
nd standard deviation. In other words, the average accuracy of
he proposed method is higher while its standard deviation is
ower compared to the use of a single feature and other com-
eting algorithms. It shows that the proposed method can extract
ore discriminative information in comparison to other methods
nd hence obtains better performance.
Moreover, compared with other fusion algorithms, the pro-

osed method had better accuracy. Moreover, for the test sam-
les, we report the accuracy in Table 3(b). It is clear that SMGI,
GFLP, MLGC, and AMGL which cannot predict the label of test
amples are not reported. For the proposed method, we calculate
he label of the test data using Eq. (10). Similarly, we observe
hat the proposed method has better accuracy than the single
eature. The only algorithm which gains slightly better accuracy is
he feature concatenation on test data with only 0.04% when we
ave 30 labeled samples per class. The obtained accuracy on the
est samples is similar to that obtained on the unlabeled samples,
hich shows that the proposed method can well determine the
nderlying subspace of data.

.3. Computational complexity

It is worth noting that the label of an unseen sample can be
stimated in two ways. The first is to include it in the training
et as an unlabeled sample and repeat the whole training process.

he second solution is to find a mapping from the feature space
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to the label space and thus estimate the label of an unseen
sample directly. The algorithms with inductive capability adopt
the second solution. The positive of the inductive capability is
that one does not need to repeat the training process, but uses
a mapping that is usually faster to estimate the label for the
unseen samples. In the following, we evaluate the computational
complexity of the proposed method in estimating the label of
unlabeled and test samples. In the transductive setting, our pro-
posed method estimates both the labels of unlabeled samples and
a linear transformation for mapping the feature space to the label
space. The method is iterative, so its complexity is linear with
the number of iterations (i.e., T). The transductive part of the
proposed method has a computational complexity of O(TN3). The
computational complexity of the DGFLP algorithm is O(T (D3.5C +

DN2)) (Lin et al., 2017). That of SMGI and MLGC is O(N3) and
that of AMGL is O(u3l2C), where D is the dimensionality of the
features, C is the number of classes, N = l+u is the total number
of training samples, u is the number of unlabeled samples and l
is the number of labeled samples.

We note that the proposed method has a higher computational
cost than some other methods in the training phase (transductive
setting), but has a higher accuracy compared to the competing
methods. For the inductive part of the proposed method, which
is used to estimate the label of Ntest test samples, the inference
has complexity O(NtestD2C) because this inference requires matrix
multiplication XT Q, where the size of XT is Ntest × D and that
of Q is D × C . It should be mentioned that in order to estimate
the labeling of test samples in transductive algorithms, one needs
to repeat the training phase, while in the proposed method it is
obtained by linear projection (matrix multiplication). Moreover,
the projection used to estimate the label of test samples can be
done in parallel when we have many samples.

5. Conclusion

In this letter, we propose a unified algorithm for constructing
a consistent multi-view graph and label propagation that uses
smoothness of data and labels in its criteria and combines label
propagation and graph estimation into a single criterion. From
the application point of view, the proposed method has several
advantages. First, it can use few labeled samples, which is benefi-
cial for many applications (e.g., medical diagnosis) where labeled



N. Ziraki, F. Dornaika and A. Bosaghzadeh Neural Networks 146 (2022) 174–180

s
f
T
o
(
t
v
w
p
v
a
u
p

f
o
s
p
s
i
p
a

D

c
t

A

C
I
C

R

A

A

B

B

D

N

N

P

S

T

T

W

W

W

Z

Z

amples are difficult to obtain. Second, it merges information
rommultiple views to propagate the labels to unlabeled samples.
hird, it estimates a linear transformation to predict the labeling
f unseen samples, which can be useful for many practical tasks
e.g., online classification, real-time and large-scale labeling es-
imation). Fourth, it does not require individual graphs for each
iew, but constructs a unified graph within its optimization task,
hich offer a lot of simplicity in real-world tasks. The evaluations
erformed on several databases show that the proposed multi-
iew method has higher accuracy than using a single feature and
lso has better accuracy compared to other fusion techniques. The
se of different hand-crafted and deep features shows that the
roposed method can work with different types of features.
Although the proposed method can easily estimate the label

or a large number of unseen samples, one of the main drawbacks
f the proposed algorithm is that it cannot handle large training
izes since it uses the entire training samples in the learning
hase. In our future work, we will focus on using anchors as a
olution to reduce the computational complexity of the algorithm
n the training phase. Moreover, the assumption of a linear map-
ing between the feature space and the label space is a naive
ssumption that may not be correct for complicated tasks.
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