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Summary

Genomic resources and bioinformatics tools are very scarce in non-model species,
such as most fish species, yet there are sufficient ecological and economic reasons
for this situation to change. RNA-Seq would be an effective tool for generating ge-
nomic resources aimed at revealing genetic variation and function necessary for both
micro- and macro-evolutionary studies in non-model species. My Thesis is a natu-
ral continuation of previous works carried out in my research group. This research
line beginned with a population genetics study of the European anchovy (Engraulis
encrasicolus, L.) by Montes et al. (2013), which needed the development of the IEB
method by Conklin et al. (2013). These studies were followed by a similar applica-
tion of the methodology on Atlantic mackerel (Scomber scombrus, L.; Genomic Re-
sources Development Consortium et al., 2015).

This Thesis characterizes several non-model fish species at two different time scales:
at the population level in Tinca tinca, a freshwater fish native to rivers across Europe
and Central Asia, and at the inter-species level in Clupeiformes, present worldwide
both in salt and freshwater. Both studies have in their foundations RNA Sequenc-
ing. This Thesis also contributes with bioinformatic methods and pipelines for de
novo transcriptome assembly, and the identification of (1) its sequences, (2) their
functions, (3) exon structure, (4) nucleotide variation, and (5) genes under positive
selection.

The first section of this Thesis, published in “A novel transcriptome-derived SNPs
array for tench (Tinca tinca L.)” (Kumar et al., 2019), addresses the presence or ab-
sence of the Western and Eastern phylogroups in two cultured populations of Tinca
tinca in Central Europe. To this end, genetic variation was ascertained within and
between two cultured tench breeds from the Czech Republic and Hungary. This is
the first study that generates genomic and transcriptomic resources for this species.

We sampled RNA from individuals from both sexes, two tissues (brain and mus-
cle) and two different metabolic rates (fast in summer, and slow during winter). We
assembled a transcriptome composed of 267,058 sequences, annotating it with func-
tional information, and predicting the set of coding sequences and protein transla-
tions. With supplementary DNA sequencing of other ten individuals, we discov-
ered 60,414 Single Nucleotide Polymorphisms (SNP). From them we constructed
a 96 SNP chip for this species, the first one, and used it to genotype 140 samples
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with pure and mixed phylogroup ancestries (Eastern and Western, according to the
growth hormone gene), from two local breeds in the Czech Republic and Hungary.

Clustering results indicate that the most probable number of ancestries is two, the
same as the number of phylogroups, but most individuals have a mixed ancestry.
According to the FST statistic, there exist small but significant differences between
breeds, but not at the phylogroup (Western, Eastern, or Hybrid) level. Therefore,
within the breed there is gene flow between individuals of both phylogroups, and
therefore there is no reproductive isolation between the two phylogroups. Our
study supports the hypothesis that the analyzed individuals would turn out to be
a genomic mosaic of both phylogroups, and that adaptive differences between the
breeds would arise from a differential composition of phylogroups at their founda-
tion.

Once the study was completed, I sailed out to optimize two key aspects of the SNP
discovery phase: the conversion rate, and the number of SNP identified in the trans-
criptome. Thus, the second section of this Thesis describes EXFI, a method that uses
state-of-the-art algorithms to split transcripts into exons. Transcriptome-derived
SNPs achieve low validation rates when the positions of Intron-Exon Boundaries
(IEB) are not taken into account. With this problem in mind, Conklin et al., 2013
developed the IEB method, based on the mapping of WGS reads on the transcrip-
tome. Under this approach, WGS reads are mapped to the transcriptome, and places
where sudden mapping starts and ends reveal the presence of IEBs.

With this idea in mind, I studied what could happen if instead of mapping reads,
I tried to do the same procedure with k-mers. Moreover, I went to state-of-the-art
probabilistic data structure to accelerate the procedure even more and also decrease
the disk and memory footprint of the method.

The data structure chosen for this task are the Bloom filters. Their first advantage is
their speed: checking that an element (k-mers) is in the data structure is fast because
it uses hash functions to encode elements as numbers. The second one is memory
efficiency: by representing k-mers into digits, a drastic reduction in space can be
achieved. Nonetheless, this data structure is probabilistic, meaning that it can pro-
duce errors. Concretely, the Bloom filter only makes false positives, with a certain
rate, that nonetheless can be kept under control. Moreover, downstream analysis
can detect and correct such errors. Therefore Bloom filters are fast, memory-efficient
and probabilistic, suitable for the IEB detection task.

The development of this procedure is crystallized in the article “EXFI: Exon and
splice graph prediction without a reference genome” (Langa et al., 2020). Within it, I
show the algorithmic development of the method, published as a Python3 package.
It is a two-step procedure to split a transcriptome into its constituent exons through
WGS, rather than a genome assembly.
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In the first stage, since transcribable DNA is a small fraction of the genome, the WGS
experiment is split between reads that overlap the transcriptome and reads who
don’t with an auxiliary Bloom filter of the transcriptome. The latter are discarded,
when the former are stored into a Bloom filter, made up of k-mers of the WGS reads
that overlap the transcriptome.

In the second stage, the transcriptome is split into exons. To do so, each k-mer of
the transcriptome is checked in the previous Bloom filter. Each time that a transcrip-
tomic k-mer is missing in the genomic Bloom filter, it indicates that such k-mer is
composed of two exons, and therefore is missing in the WGS dataset. With this idea
in mind, the transcriptome is splitted each time that k-mers are missing. The struc-
ture of the transcriptome is stored as a mathematical graph, where exons represent
nodes, the connections between nodes as edges, and transcripts as paths.

To validate the program I used three tiers of datasets. The first one were the hu-
man and zebrafish references, because of the amount of knowledge we have in
this species, and to guide the initial steps and correctness of EXFI. The second one
were fishes, Atlantic salmon and Atlantic herring, because this Thesis studies fishes.
Moreover, since the final purpose of this method is to discover SNPs as shown in the
first part of this thesis, these datasets were used because there are available Pool-Seq
WGS experiments. The advantage of this experimental approach is that by mixing
multiple individuals in the same run, it is possible to discover many more variants
than doing it individually. The disadvantage is that the number of variants in the
dataset might mislead the method. The final tier of species were mega-genomes, the
ones from the axolotl and the sugar pine, both almost 30 Gbp in size. The reasoning
behind them was to prove that memory efficient algorithms can deal with datasets
so large.

Additionally, I compared the performance of EXFI against two tools: ChopStitch,
a reference-free method similar to EXFI; and GMAP, a splice-aware aligner, which
needs a reference genome in order to discover exons.

There are four aspects that we characterized in EXFI. The first is that the initial WGS
read filtering is vital: it reduces by at least an order of magnitude the number of
reads that end in the Bloom filter. Therefore, the memory footprint of the Bloom
filters can be reduced significantly without sacrificing its accuracy and the ones of
the posterior steps.

Second, we searched for an appropriate memory footprint. The error reduction be-
cause of the pre-filtering step allows us to decrease the size of the Bloom filter with-
out a significant decrease in accuracy. Therefore, we tested EXFI with a range of
Bloom filter sizes from 4 to 60 GB, and achieved almost the same results with the
smaller one. In conclusion, 4 GB are enough to process a species in the same order
of magnitude as humans and zebrafishes. Therefore, these analyses can be carried
out in desktops and laptops.
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Third, we determined the optimal k-mer length. A small value of k would reduce
the specificity while increasing the number of k-mers to process. On the other side,
a large value of k would increase specificity at the cost of a smaller exon discovery
rate. Therefore an equilibrium had to be found, which turned out to be between 23
and 35 bp.

Fourth, an appropriate WGS depth needs to be used. If such depth is too low, in
some regions could be zero, and therefore would show up as an IEB signal, and
EXFI would underperform. On the opposite side, if it is too high, the number of
sequencing errors fills unnecessarily the Bloom filter, and therefore the false positive
rate increases, and the accuracy drops. To discover the optimal sequencing depth,
we sampled the Zebrafish datasets, and discovered that such optimal depth lies in
the region of 25 to 30x.

Finally, we compared the performance of EXFI against the two other tools. Gener-
ally, with the exception of the de novo herring transcriptome assembly, EXFI outper-
formed the other methods in terms of memory footprint and accuracy of the exon
predictions.

Thus, we have shown EXFI, a tool for rapid and effective exon decomposition of a
transcriptome, without using a reference genome. A retrospective in silico experi-
ment with tench shows that EXFI could have been capable of discovering 228,000
safe-to-genotype SNPs, with a near 100% precision and recall.

The third section of the Thesis shows an optimized sampling method for transcript
profiling, with the purpose of increasing the number of transcripts and therefore the
number of discoverable SNPs; and at the same time, obtains the most comprehensive
transcriptome for the European sardine (Sardina pilchardus).

Our work prior in tench has shown us that gene expression is very dependent on the
tissues used. If our goal in mind is to discover the maximum number of transcriptome-
derived SNPs, we therefore need to maximize the number of expressed transcripts.
Therefore, our first goal before sequencing the sardine transcriptome was to discover
what tissues contain the most information, and what strategy we should follow to
maximize to obtain the maximum number of transcripts.

To do so, we looked at an exhaustive RNA-Seq dataset of twelve tissues of zebrafish
(Pasquier et al., 2016). Since this fish is a reference, we could quantify its transcrip
expression and also measure the effects of de novo assembly. We sampled this twelve
tissue dataset under different sequencing depths, and composed in silico a mix of all
tissues.

Results show that the mix outperformed each individual tissue, even at the risk of
fragmenting and losing transcripts due to low coverage.

I applied this multi-tissue strategy to sample, sequence and assemble the most com-
prehensive transcriptome of the European sardine. The tissues chosen for this effort
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were brain, eye, heart, kidney, liver, muscle, ovary, skin, and testes. This sequencing
effort was done using the minimum number of donors to minimize the individual
sequence variability, which could misguide the de novo transcriptome assembly step.

This transcriptome was annotated and quantified.

This transcriptome was vital for the fourth section of the Thesis. Additionally, this
transcriptome will be used in the future, using the same approach as in tench, and
using EXFI, to discover the population structure of this fish, so important for the
ecology and the fishing industry in the Bay of Biscay.

In the last section, I studied the evolutionary relationships within Clupeiformes.
They are of great importance to the fishing industry because of their ecological and
nutritional value, and lipid and protein content. Nonetheless, these species receive
little attention, and until recently, no genome assemblies were available.

The purpose of this last part of this Thesis, under review and titled “Recurrent pos-
itive selection of lipid trafficking genes in Clupeiformes” (Langa et al., n.d.), sheds
some light over these species. In particular, its purpose was to discover genes under
positive selection, trying to discover what genes and biological processes character-
ize Clupeiformes.

To do so, I collected a large dataset of transcriptomes from twelve species of herrings,
anchovies, sardines, and shads; built their phylogenetic tree, and discovered groups
of genes under positive selection.

The computational procedure to do so is tremendously complicated, involving mul-
tiple clusterings steps, solving paralogy and orthology relationships, processing nu-
cleotide and protein alignments, resolving phylogenies, and producing thousands
of evolutionary hypotheses; all to discover genes and biological processes under se-
lection.

We observed under positive selection almost a thousand genes. To discover some
structure over them, we looked at the categories of genes, discovering that the groups
of genes significantly affected by evolution are 1) the mitochondrial electron trans-
port chain, 2) ribosomes, 3) lysosomes, 4) caveolae, 5) CD molecules, and 6) extra-
cellular proteins.

The main conclusion of this study is that evolution has shaped the Clupeiformes
molecular machinery towards an improved storage and transportation of lipids.

In conclusion, this Thesis shows through two case studies that RNA-Seq is a power-
ful representation of the functional part of the genome, that is cost-effective, and
valid for micro- and macro-evolutionary studies.

In the first part, we successfully disentangle the genetic differences between two
breeds of tench in Central Europe. Then, we successfully improved the methodol-
ogy on two fronts. In the first one, we developed a method, EXFI, for an accurate and
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efficient exon decomposition, which in turn improves the number of SNPs discov-
ered and conversion rates. In the second one, we designed a transcriptome sampling
strategy to maximize the number of expressed and assemblable transcripts, which
in turn increases the number of SNPs discovered.

Finally, in the second part, we analyze and describe the evolutionary differences
between clupeid fishes, concluding that the most important aspect of their biological
machinery is that they have shifted towards an improved transport and storage of
lipids.
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Resumen

Los recursos genómicos y las herramientas bioinformáticas son muy escasas en es-
pecies no modelo tales como la mayoría de peces, y eso a pesar de que haya sufi-
cientes razones ecológicas y económicas para que la situación cambie. El RNA-Seq
puede ser una herramienta efectiva para generar tales recursos genómicos con el
objetivo de revelar la variación genética y funciones necesarias tanto para estudios
micro- y macro-evolutivos en especies no modelo. Mi Tesis es la continuación nat-
ural de los trabajos previos realizados en mi grupo de investigación. Esta línea de
investigacion comenzó con un estudio de genética de poblaciones de la anchoa eu-
ropea (Engraulis encrasicolus, L.)) por Montes et al. (2013), el cual necesitó del desar-
rollo del método IEB por Conklin et al. (2013). Estos estudios fueron seguidos por
una aplicación similar de la metodología en caballa (Scomber scombrus, L.; Genomic
Resources Development Consortium et al., 2015).

Esta Tesis caracteriza varias especies no modelo de peces en dos diferentes escalas
temporales: a nivel de poblacion en Tinca tinca, un pez de agua dulce nativo de
ríos a lo largo de Europa y Asia Central, y a nivel inter-especies en Clupeiformes,
presentes a lo largo del mundo tanto en agua dulce como salada. Ambos estudios
usan como cimiento la secuenciación de ARN. Esta Tesis también contribuye con
métodos bioinformáticos y pipelines para el ensamblaje de novo de transcriptomas, y
la identificación de (1) sus secuencias, (2) sus funciones, (3) estructura exónica, (4)
variación nucleotídica, y (5) genes bajo selección positiva.

La primera sección de esta Tesis, publicada en “A novel transcriptome-derived SNPs
array for tench (Tinca tinca L.)” (Kumar et al., 2019), aborda la presencia o ausencia
de los filogrupos Este y Oeste de dos poblaciones cultivadas de Tinca tinca en Europa
Central. Con este fin, la variación genética fue determinada dentro y entre dos razas
de la República Checa y Hungría. Este es el primer estudio que genera recursos
genómicos y transcriptómicos para esta especie.

Muestreamos RNA de individuos de ambos sexos, dos tejidos (cerebro y músculo)
y dos tasas metabólicas distintas (rápida en verano, y lenta en invierno). Ensam-
blamos un transcriptoma compuesto de 267,058 secuencias, annotándolo con infor-
mación funcional, y prediciendo el conjunto de secuencias codificantes y tranduc-
ción a proteínas. A través de una secuenciación suplementaria de ADN de otros
diez individuos, descubrimos 60,414 polimorfismos de nucleótido único (en inglés
SNP). De ellos construímos un chip de 96 SNPs de esta especie, el primero, y lo
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usamos para genotipar 140 muestras de ascendencia tanto de filogrupo puro como
híbrido (este, oeste o híbrida, de acuerdo al gen de la hormona del crecimiento), de
dos razas locales de la República Checa y Hungría.

Los resultados de clustering indican que el número más probable de ascendencias
es dos, el mísmo número de filogrupos, pero la mayoría de individuos tienen una
ascendencia mixta. De acuerdo al estadístico FST, existen diferencias pequeñas pero
significativas entre razas, pero no a nivel de filogrupo. Por tanto, dentro de cada
raza hay flujo genético entre individuos de ambos filogrupos, y por tanto no hay ais-
lamiento reproductivo entre los dos filogrupos. Nuestro estudio respalda la hipóte-
sis de que los individuos analizados resultan ser un mosaico genómico de ambos
filogrupos, y que las diferencias adaptativas entre las razas se deben a la composi-
ción inicial de filogrupos en el momento de su fundación.

Una vez que este estudio fue completado, salí a optimizar dos aspectos clave en la
fase de descubrimiento de SNPs: la tasa de conversión, y el número de SNPs iden-
tificados sobre el transcriptoma. De este modo, la segunda sección de esta Tesis
describe EXFI, un método que utiliza algoritmos de última generación para dividir
tránscritos en exones. Los SNPs derivados a través del transcriptoma tienen bajas
tasas de validación cuando los límites entre intrón y exón (IEB en inglés) no se tienen
en cuenta. Con este problema en mente, Conklin et al., 2013 desarrolló el método
IEB, basado en el mapeo de lecturas WGS al transcriptoma. Bajo este enfoque, las
lecturas WGS son mapeadas al transcriptoma, y los lugares en los que suceden re-
pentinamente muchos comienzos y finales de mapeos revelan la presencia de los
IEBs.

Con esta idea en mente, estudié qué podría pasar si en vez de mapear lecturas, inten-
tara hacer lo mismo con k-mers. Es más, acudí en busca de lo último en estructuras
de datos probabilistas para acelerar el procedimiento todavía más y también reducir
la huella en memoria y disco del método.

La estructura de datos elegida para esta tarea son los filtros de Bloom. Su primera
ventaja es su veolcidad: comprobar que un elemento (los k-mers) están en la estruc-
tura de datos es rápido porque usa funciones hash para codificar elementos como
números. La segunda es que es eficiente en memoria: a través de representar un
k-mer como números, logrando una gran reducción en el espacio necesario. Sin em-
bargo, esta estructura de datos es probabilista, queriendo decir que puede producir
errores. Concretamente, el filtro de Bloom sólo produce falsos positivos, con un ra-
tio predeterminado, que sin embargo podemos mantener bajo control. Es más, los
análisis posteriores pueden detectar y corregir tales errores. Por tanto, los filtros de
Bloom son rápidos, eficientes en memoria, y probabilistas, apropiados para la tarea
de detectar IEBs.

El desarrollo de este procedimiento se cristalizó con la publicación de “EXFI: Exon
and splice graph prediction without a reference genome” (Langa et al., 2020). En
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él muestro el desarrollo algorítmico del método, publicado como un paquete de
Python3. Es un procedimiento de dos pasos que divide el transcriptoma en exones
a través de lecturas WGS en vez de un ensamblaje de genoma.

En la primera etapa, puesto que el ADN transcribible es una pequeña fracción del
genoma, el experimento WGS es dividido entre lecturas que solapan el transcrip-
toma y lecturas que no a través de un filtro de Bloom del transcriptoma. Las se-
gundas son descartadas, cuando las primeras son guardadas en un filtro de Bloom,
hecho de los k-mers de las lecturas que sí se solapan con el transcriptoma.

En la segunda etapa, el transcriptoma es dividido en exones. Para ello, cada vez
k-mer del transcriptoma se busca en el filtro de Bloom genómico. Cada vez que un
k-mer del transcriptoma está ausente en el filtro de Bloom, lo que indica es que tal
k-mer está compuesto de dos exones, y por tanto no está presente en el experimento
WGS. Con esta idea en mente, el transcriptoma es dividido cada vez que falta un
k-mer. La estructura del transcriptoma se guarda como un grafo matemático, donde
los exones son nodos, las conexiones entre nodos como aristas, y los tránscritos como
caminos.

Para validar el programa utilicé tres familias de conjuntos de datos. La primera
estaba compuesta por las referencias humana y del pez cebra, por la cantidad de
conocimiento que tenemos de estas especies, y para guiar los pasos iniciales y la
exactitud de EXFI. La segunda eran peces, el salmón atlántico y el arenque atlántico,
porque esta Tesis estudia peces. Es más, puesto que el propósito final de este método
es descrubrir SNPs como hemos mostrado en la primera parte, estos conjuntos de
datos fueron usados porque hay disponibles datos de secuenciación de Pool-Seq. La
ventaja de esta aproximación es que mezclando múltiples individuos en un mismo
experimento permite descubrir muchas más variantes que haciéndolo de manera
individual. La desventaja es que la gran cantidad de variantes puede confundir al
método. La familia final de especies son los mega-genomas, de ajolote y el pino de
azúcar, ambos de una longitud de casi 30 Gbp. La razón detrás de ellos era para
demostrar que un algoritmo tan eficiente puede procesar conjuntos de datos tan
grandes.

Más aún, comparé el rendimiento de EXFI con otras dos herramientas: ChopStitch,
otro método libre de referencias similar a EXFI; y GMAP un alineador splice-aware,
el cual necesita un genoma de referencia para descubrir exones.

Hay cuatro aspectos que caracterizamos en EXFI. El primero es que el filtrado inicial
de lecturas WGS es vital: reduce en un órden de magnitud el número de lecturas
que terminan en el filtro de Bloom. Por tanto, la huella en memoria de los filtros de
Bloom puede reducirse significativamente sin sacrificar tanto su precisión como el
de los pasos posteriores.

En segundo lugar, buscamos una huella en memoria apropiada. La reducción de la
tasa de error debida al paso de prefitrado nos permite reducir el tamaño del filtro
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de Bloom sin una pérdida significativa de precisión. Por tanto, probamos EXFI en
un rango de tamaños de filtros de Bloom de 4 a 60 GB, y logramos casi los mismos
resultados con el más pequeño. En conclusión, 4 GB son suficientes para procesar
una especie del mismo orden de magnitud que el ser humano y el pez cebra. Por
tanto, estos análsis se pueden llevar a cabo en equipos de escritorio y portátiles.

En tercer lugrar, descubrimos el tamaño óptimo del k-mer. Un valor de k bajo podría
reducir la especificidad a la vez que incrementa el número de k-mers a procesar. En
el lado contrario, un valor de k alto incrementaría la especificidad con el coste de una
tasa de descubrimiento de exones más baja. Por lo tanto, era necesario descubrir un
punto de equilibrio, que resultó encontrarse en el rango de 23 a 35 pares de bases.

En cuarto lugar, buscamos una profundidad de secuenciación WGS apropiada. Si tal
profundidad es demasiado baja, en algunos lugares resultará ser cero, y por tanto se
mostraría como una señal de IEB, y los resultados de EXFI serían peores. Por otro
lado, si es demasiado alta, el número de errores de secuenciación llena de forma in-
necesaria el filtro de Bloom, y por tanto la tasa de falsos positivos crece, y la precisión
cae. Para descubrir la profundidad de secuenciación óptima, muestreamos el con-
junto de datos de pez cebra, y descubrimos que tal profundidad óptima se encuentra
en la region entre 25 y 30x.

Finalmente, comparamos el rendimiento de EXFI contra las otras dos herramientas.
En general, con excepción del ensamblaje de novo del arenque, EXFI superó a los
otros métodos en términos de huella de memoria y precisión.

Por tanto, hemos mostrado que EXFI, una herramienta para una descomposición
rápida y efectiva del transcriptoma, sin utilizar un genoma de referencia. Un ex-
perimento in silico retrospectivo en tenca muestra que EXFI podría haber sido capaz
de identificar casi 228,000 SNPs fuera de peligro, con una precisión y exhaustividad
cercana al 100%.

La tercera sección muestra un método de muestreo optimizado para la caracteriza-
ción de tránscritos, con el propósito de incrementar el número de tránscritos y por
tanto el número de SNPs descubribles; y a la vez, obtiene el transcriptoma más ex-
haustivo para la sardina europea (Sardina pilchardus).

Nuerstro trabajo previo en tenca nos ha mostrado que la expresión génica es muy
dependiente del tejido utilizado. Si nuestro objetivo en mente es descubrir el mayor
número de SNPs basados en el transcriptoma, necesitamos por tanto maximizar el
número de tránscritos expresados.

Para ello, echamos la vista a un conjunto de datos de RNA-Seq muy exhaustivo de
pez cebra (Pasquier et al., 2016). Puesto que este pez es una referencia, pudimos
tanto cuantificar la expresión de sus tránscritos como medir los efectos del ensam-
blaje de novo. Muestreamos este conjunto de datos de doce tejidos bajo distintas
profundidades, y creamos in silico una mezcla de todos los tejidos.
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Los resultados muestran que la mezcla superó a todos los tejidos individuales, in-
cluso bajo el riesgo de fragmentar o perder tránscritos por una cobertura muy baja.

Apliqué esta estrategia multi-tejido para muestrear, secuenciar y ensamblar el tran-
scriptoma más exhaustivo de la sardina europea. Los tejidos elegidos para este es-
fuerzo fueron cerebro, ojo, corazón, riñón, hígado, músculo, ovario, piel, y testículos.
Este esfuerzo de secuenciación fue hecho utilizando el menor número de donantes
para minimizar la variabilidad individual a nivel de secuencia, la cual pordría con-
fundir el paso de ensamblaje de novo.

Este transcriptoma fue anotado y cuantificado. Este transcriptoma fue vital para la
cuarta sección de la Tesis. Es más, este transcriptoma será utilizado en el futuro,
utilizando la misma aproximación que en tenca, y utilizando EXFI, para descubrir
la estructura poblacional de este pez, tan importante para la ecología y la industria
pesquera en el golfo de Vizcaya.

En la última sección, estudié las relaciones evolutivas dentro de los Clupeiformes.
Son de gran importancia para la industria pesquera por su valor ecológico y nu-
tricional, y su contenido en lípidos y proteínas. Sin embargo, estas especies reciben
poca atención, y hasta hace poco, no había disponible ningún ensamblaje de genoma.

El propósito de esta última parte de la Tesis, bajo revisión y titulado “Recurrent pos-
itive selection of lipid trafficking genes in Clupeiformes” (Langa et al., n.d.), arroja
un poco de luz sobre estas especies. En particular, su propósito era descubrir genes
bajo selección positiva, tratando de descubrir qué genes y procesos biológicos carac-
terizan a los Clupeiformes.

Para ello, recopilé un gran conjunto de transcriptomas de doce especies de arenques,
anchoas, sardinas y sábalos; construí su árbol filogenético, y descubrí grupos de
genes bajo selección positiva.

El procedimiento computacional para hacerlo es tremendamente complicado, in-
volucrado muchos pasos de clustering, resolviendo relaciones de paralogía y or-
tología, procesando alineamientos de nucleótidos y proteínas, resolviendo filoge-
nias, y produciendo miles de hipótesis evolutivas; todo ello para descubrir genes y
procesos biológicos bajo selección.

Observamos bajo selección positiva casi un millar de genes. Para descubrir algún
tipo de estructura en ellos, echamos la vista a las categorías de genes a las que
perteneces, descubriendo que los grupos de genes significativamente afectados por
la evolución son 1) la cadena de transporte de electrones en las mitocondrias, 2) los
ribosomas, 3) los lisosomas, 4) caveolas, 5) cúmulos de diferenciación, y 6) proteínas
extracelulares.

La principal conclusión de este estudio es que la evolución ha moldeado la maquinaria
molecular de los Clupeiformes hacia un almacenamiento y transporte de lípidos
mejorado.
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En conclusión, esta Tesis muestra a través de dos supuestos prácticos que el RNA-
Seq es una potente represencación de la parte funcional del genoma, que es econó-
mica, y válida tanto para estudios micro- y macro-evolutivos.

En la primera parte, desenredamos las diferencias genéticas entre dos razas de tenca
en Europa central. A continuación, mejoramos con éxito la metodología en dos
frentes. En el primero, desarrollamos un método, EXFI, para una predicción precisa
y eficiente de exones, el cual mejora el número de SNPs descubiertos y tasa de con-
versión. En el segundo, diseñamos una estrategia de muestreo de transcriptomas, la
cual aumenta también el número de SNPs descubiertos.

Finalmenre, en la segunda parte, analizamos y describimos las diferencias evoluti-
vas entre clupeidos, concluyendo que el aspecto más importante de su maquinaria
biológica es que se ha desplazado hacia un transporte y almacenamiento de lípidos
mejorada.
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Chapter 1

Introduction

The announcement and completion of the Human Genome Project in 2003 was a
milestone in Molecular Biology. Its success made interesting and reasonable the as-
sembly of the genomes of many other model species in Genetics: Drosophila melano-
gaster (Adams et al., 2000), Arabidopsis thaliana (The Arabidopsis Genome Initiative,
2000), Mus musculus (Chinwalla et al., 2002), or Danio rerio (Howe et al., 2013).

After years of iterative refinements over the Sanger method (Sanger et al., 1977),
a breakthrough happened: parallel High-Throughput Sequencing. This successful
methodology cheaply sequences thousands to millions of fragments, at the expense
of being shorter and more error prone. At the beginning of this revolution, two com-
mercial sequencers were available: 454 (Margulies et al., 2005) and Illumina (Bentley
et al., 2008). Nowadays, two other competitors are delivering sequences of kilobases
to megabases with a higher error rate: Oxford Nanopore Technology (Clarke et al.,
2009) and Pacific Biosciences (Eid et al., 2009).

The development of these sequencing platforms opened the gates to specific regions
of the genome. We have entire new areas and sequencing approaches depending on
the focus of research: Metagenomics (Handelsman et al., 1998), Exome-Seq (Hodges
et al., 2007), ChIP-Seq (Barski et al., 2007; Johnson et al., 2007; Mikkelsen et al., 2007;
Robertson et al., 2007), DNAse-Seq (Boyle et al., 2008), BS-Seq (Meissner et al., 2008),
RNA-Seq (Wang et al., 2009), Ribo-Seq (Ingolia et al., 2009), Hi-C (Lieberman-Aiden
et al., 2009), Single-Cell Sequencing (Islam et al., 2011), and ATAC-Seq (Buenrostro
et al., 2013). The development of these techniques has enabled the research commu-
nity to go beyond describing common patterns of variation in the human genome,
as seen in the HapMap (Altshuler et al., 2005) and the 1000 Genomes projects (The
1000 Genomes Project Consortium, 2012) to describe the functional elements within
it (ENCODE; Dunham et al., 2012) and the interactions with the microbiome (Turn-
baugh et al., 2007).

These breakthroughs would not have been possible without the application and
development of bioinformatics, the multidisciplinary field that combines Biology,
Computer Science and Mathematics. None of them would have been achievable
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without the development of novel algorithms that made possible the processing, in-
tegration, comparison and visualization of the massive amounts of data generated.

Although the advances in keystone species (such as primates, research model spe-
cies, and livestock), the remaining non-model species receive relatively little atten-
tion. Given the absence of reference genomes, and the limited resources to study
every single species in the Tree of Life, it is necessary to study them effectively using
as little as possible.

RNA-Seq covers the expression of the most significant fractions of the genome: those
that are transcribed into RNAs, which contain the set of sequences that are translated
into proteins (also known as Coding DNA Sequences, CDS). The primary advantage
of this approach is that transcribable and coding DNA, the exome, supposes a tiny
fraction of the genome, around 1% in Homo sapiens, and therefore we avoid sequen-
cing the rest, which encompasses repetitive DNA, mobile elements and the introns
within genes.

Generating a complete genome reference is a colossal economical, personal, experi-
mental and computational effort reserved for great institutions and consortia. Ins-
tead, this Thesis focuses on the set of expressed transcripts since it is an information-
dense reduced representation of the genome. Therefore, the methods and techniques
used in this Thesis rely primarily on RNA-Seq experiments.

However, RNA-Seq has its own complications. First, genes transcribe multiple mes-
senger RNAs, coding or not, and therefore multiple protein products. Second, genes
and transcripts express with varying intensities, depending on the cell type, tis-
sue and development stage of the host organism. Therefore, RNA-Seq approaches,
whatever the goal in mind is, must deal with these two problems.

Annotation is the characterization of genes and their functions by searching known
databases of transcripts and protein sequences. Luckily, a 40% sequence identity is
enough to identify with confidence a protein (Rost, 1999) and the gene that produces
it. Once identified, we can start assigning functions and its place in the biochemical
reactions of the organism.

The most common use of RNA-Seq is to perform differential gene expression. This
procedure involves comparing RNA samples from multiple individuals across two
or more biological conditions. As different environmental factors stress an organism,
cells respond by increasing and decreasing, even silencing, the transcription of RNA.
Therefore, RNA-Seq is used to quantify both transcript and gene expression levels.
Afterwards, through statistical analysis, we can determine which genes are over-
and under-expressed, providing insights into the molecular responses to the stresses
introduced.
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Yet another use of RNA-Seq data is to discover genomic variation as Single Nucle-
otide Polymorphisms (SNPs): small mutations, insertions and deletions. As trans-
criptomes correspond to genes and therefore functional regions in a genome, trans-
criptome-derived SNPs are informative for adaptive variation (Beaumont & Bald-
ing, 2004; Luikart et al., 2003; Morin et al., 2004). Given that most mutations are
neutral, and that the coding DNA is under an enormous selective pressure, SNPs in
the transcriptome are of great evolutionary importance. Given enough loci, samples
and populations, RNA-based SNP discovery is a cost efficient approach to perform
population genomics: the micro-evolutionary study of the phylogenetic history, the
demography, and the spatio-temporal distribution of genetic diversity within a spe-
cies.

Finally, given enough genomes and transcriptomes from many species, it is possible
to study them also in a macro-evolutionary fashion. Because of the degeneracy of the
genetic code, i.e., the redundancy between the 64 codons and the set of the 20 amino-
acids and the stop signal, it is possible to discern at the protein level which mutations
are silent (they are synonymous -they produce the exact amino acid) from those that
produce a change (non-synonymous). By aligning protein-coding sequences, and
comparing codon by codon the ratio between nonsynonymous to synonymous mu-
tations, it is possible to analyze the evolutionary pressures that a gene withstands.
We can do this for every single gene and therefore observe the effect of evolution
over every molecular and biological process. Therefore, RNA-Seq is a powerful tool
for the molecular study of the processes and responses within the cell, but also for
seeing the effects of micro-evolution of a single species, and the macro-evolutionary
forces behind adaptation and speciation of wild organisms.

Thus, this Thesis develops RNA-Seq bioinformatic procedures in two case studies on
the characterization of several non-model fish species at two different time scales: at
the population level on Tinca tinca, a freshwater fish that belongs to the Cyprini-
formes order, and at the inter-species level in Clupeiformes, the order that contain
sardines, anchovies, herrings and shads.
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Chapter 2

Aims and Objectives

2.1 Aims

Genomic resources and bioinformatic tools are very scarce in non-model species,
and their generation requires the processing of large amounts of genomic and tran-
scriptomic data to build a reference. In this Thesis we had two aims. The first one
was to create bioinformatic pipelines for the scientific community that rely mainly
on the transcriptome, and that can be applied to any non-model species. The second
was to gain insights through state-of-the-art methods for a better understanding of
the evolutionary factors driving teleost species evolution in two different time scales:
we investigate local and recent adaptations of populations, as well as global and an-
cient selection events. For these ends, the above mentioned bioinformatic tools and
protocols were applied to describe the population structure of the farmable freshwa-
ter cyprinid Tinca tinca, along with identifying positively selected genes within the
economically and ecologically important Clupeiformes order.

Genomic resources are scarce in fish and this situation needs to change. The first
reason is ecological: they are present worldwide and occupy the central parts of the
trophic web. The second is economical: fish is a rich source of energy and nutrients,
and for millenia fishing has been an important human activity. The final reason
is statistical: Actinopterygii, the clade of ray-finned-fishes, encompasses 30,000 spe-
cies, nearly 40% of all vertebrate species. At the beginning of this Thesis only a dozen
reference genomes were available at Ensembl, and therefore almost every new study
had to start from zero.

Nonetheless, there are economical and material limitations when generating ge-
nomic resources, and therefore strategizing is a must. The principal area from which
to prioritize resources is the experimental one: we don’t need to study the entire
genome, but we can make use of reduced representations of it. Exome sequencing
is an interesting reduction strategy since it is restricted to exons from protein coding
sequences, regions with functional importance. Thus, taken together that most mu-
tations are neutral, and that the protein coding regions of the genome are under very
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selective pressure, the observed SNPs are of great importance. The main drawback
is that Exome-Seq requires first a known genome to derive capture probes.

Alternative and successful approaches in non-model species are Genotyping by Se-
quencing (GBS; Elshire et al., 2011) and Restriction Associated DNA marker Sequen-
cing (RAD-Seq; Baird et al., 2008). Both approaches rely on restriction enzymes and
fragment size selection in order to sequence a small fraction of the genome, and then
extract polymorphic markers. Their drawback is that the regions studied change
from species to species, making impossible comparative studies, and that most of
them will lie in intergenic and intronic space, and therefore their associated func-
tion, if any, can be hardly attained.

The works presented in this thesis, along with the ones they are based on (Conklin
et al., 2013; Genomic Resources Development Consortium et al., 2015; Montes et al.,
2013), combine the use of reduced representation of the genome, the transcriptome,
and shallow Whole Genome Sequencing (WGS), to obtain the same advantages of
exome sequencing without a reference genome, and the same aims: to study the
genetic variation exclusively in functional regions, unlike GBS and RAD-Seq.

In conclusion, transcriptome-derived SNPs are more informative and meaningful
compared to the reduced representation alternatives because they provide genetic
variation and functionality at the same time. Since this is not a standard approach,
there are no bioinformatic tools tailored for it, and therefore we first invested time
developing them.

The hypothesis of this Thesis can be resumed as the following:

RNA-Seq is an effective tool for generating genomic resources aimed at
revealing genetic variation and function necessary for both micro- and
macro-evolutionary studies in non-model species.

Which can be divided in:

1. RNA-Seq is a valid tool to study the local evolution of two cultured breeds of
Tinca tinca.

2. Transcriptomes derived from RNA-Seq can be split into its constituent exons.

3. Gene representation in the transcriptome can be maximized applying an ap-
propriate sampling strategy.

4. RNA-Seq is a valid tool to identify genes under positive selection

5. No reference genome is required.

2.2 Objectives

To reach the aims, we divided this Thesis into five objectives:
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Objective 0: Pipelines

In this objective we built the computational background in which the Thesis is sup-
ported. It consisted in:

a) To test and develop computational rules and protocols to construct pipelines
that are reproducible, automated, scalable, and easy to maintain and execute.

b) To construct the pipelines relevant for this thesis: transcriptome assembly and
annotation (common to all objectives), SNP discovery (Objectives 1 and 3, val-
idation of EXFI (Objective 2); and gene clustering, species tree construction,
and search for positive selection (Objective 4).

Given the support roles of this objective, no explicit publication was achievable, but
its impact has made possible a dozen of repositories of automated pipelines, all four
publications resulting from this THESIS, and published works outside it.

Objective 1: Tench

The purpose of this objective was to design an array of SNP markers for population
genetics studies in the T. tinca species, and implement it to unravel the phylogroup
composition of tench cultures in Central Europe. To achieve this objective the fol-
lowing milestones were considered:

a) To assemble de novo the T. tinca transcriptome.

b) To perform variant discovery by mapping WGS reads to the transcriptome,
and to identify suitable SNPs for genotyping, avoiding Intron-Exon Bound-
aries.

c) To genotype a subset of the discovered SNPs over a larger number of samples,
and apply statistical approaches to reveal the genetic structure of T. tinca in
Central Europe.

The paper entitled “A novel transcriptome-derived SNPs array for tench (Tinca tinca
L.)”, (Kumar et al., 2019), co-authored with Dr. Girish Kumar, from the University of
South Bohemia in České Budějovice, described and explained the genetic diversity
observed within and between the Czech Republic and Hungarian cultivated breeds.

After the study of population genetics in tench, and since the sequencing depth in-
creased both for the RNA-Seq and WGS experiments compared to previous publi-
cations, I wanted to improve the results of future experiments. On the one hand, I
wanted a more scalable method capable of dealing with more transcripts, depth and
samples. On the other hand, I wanted to achieve an almost complete transcriptome
with the smallest sequencing effort. This motivated Objectives 2 and 3, respectively.
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Objective 2: EXFI

The increasing throughput of the sequencing machines motivated us to develop a
new method for transcriptome decomposition into exons, which in particular pro-
vides a solution to the IEB (Intron-Exon Boundary) problem. The tasks performed
were:

a) To develop EXFI, a tool to decompose transcriptomes into exons without a ref-
erence genome, and assess the effects of genome size, coverage, heterozygosity,
memory consumption, speed, and accuracy.

b) To modify the SNP discovery procedure from Objective 1b using EXFI, com-
paring the success of the newly discovered SNPs with the ones used in Tinca
tinca.

The publication of “EXFI: Exon and splice graph prediction without a reference
genome” (Langa et al., 2020), reported the success of the EXFI approach on a wide
number of datasets, and its advantages over other tools on most of the important
metrics. In addition, it showed the enhancement of SNP analysis in T. tinca.

Objective 3: Sardine

Given the success of SNP discovery in T. tinca, we also desired to obtain a cost-
effective strategy for RNA-Sequencing. To do so, we wanted:

a) To determine a cost-effective sequencing strategy to obtain an almost complete
transcriptome by means of simulating RNA-Seq experiments in zebrafish, var-
ying both the sequencing depth and tissues used.

b) To apply the developed strategy to construct the Sardina pilchardus transcrip-
tome.

The results of this objective were published in the article “Transcriptomic dataset for
Sardina pilchardus” (Langa et al., 2021).

Objective 4: Clupeids

In this objective we applied a phylogenetic procedure to 12 species of Clupeiformes
to identify positive selection in these species. The tasks to be done were:

a) To explore public datasets of transcriptomic experiments, and assemble and
annotate the twelve clupeid transcriptome sequences available, including the
one from S. pilchardus above.

b) To cluster the species’ transcripts into orthogroups, and use that information
to compute the species tree in an attempt to elucidate the phylogenetic rela-
tionships within Clupeiformes.
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c) To discover genes under positive selection that characterize Clupeiformes, and
from these, unravel which functions have been evolutionarily altered in terms
of Gene Ontologies, pathways, and gene families.

A list of positively selected genes was provided in the Clupeiformes family, and
molecular mechanisms under selective pressure will be reported in the manuscript
Recurrent positive selection of lipid trafficking genes in Clupeiformes (Langa et al., n.d.).
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Chapter 3

Workflow and Theoretical
Framework

This Thesis is divided into two major evolutionary themes. The first is the popula-
tion genetics study of tench (Objective 1), followed by two methodological improve-
ments: optimized exon prediction (Objective 2) and better gene sampling (Objective
3). The second theme is the macro-evolutionary study of Clupeiformes (Objective
4). The outline of this Thesis is illustrated in Figure 3.1.

Transcriptome

Sardine

IEB

EXFI

L
oc
al

G
lo
ba
l

Clupeiformes

Anchovy

Mackerel

Tench
2

3

4

Reference

A
da
tp
ta
ti
on
s

FIGURE 3.1: Outline of this Thesis. Figure 5.7 in Chapter 5 revisits
this diagram with applications and parallel publications.
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My Thesis is a natural continuation of previous works carried out in my research
group. It starts from the population genetics study of the European anchovy (En-
graulis encrasicolus, L.) by Montes et al. (2013), which needed the development of
the IEB method by Conklin et al. (2013). These studies were followed by a simi-
lar application of the methodology on Atlantic mackerel (Scomber scombrus, L.; Ge-
nomic Resources Development Consortium et al., 2015) and tench (Objective 1). Af-
ter studying the latter fish, two methodological novelties were implemented: better
exon prediction with EXFI (Objective 2) and wider gene sampling on Atlantic sar-
dine (Objective 3). Then, evolutionary relationships on Clupeiformes were studied
(Objective 4).

Jawless vertebrates
Lampreys

Chondrichthyes
Sharks

Basal ray-finned fishes
Sturgeons

Sarcopterygii

Vertebrates

Teleost fishes

Elopomorpha
Eels

Clupeiformes
Anchovies, sardines

and herrings

Cypriniformes
Zebrafishes, tenches

Salmoniformes
Salmons and trouts

Scombriformes
Tunas and Mackerels

230 MYA 225 MYA

320-350 MYA

80 MYA

FIGURE 3.2: Simplificated phylogeny of vertebrates and teleost
fishes. Denoted with a star are the Whole Genome Duplication
rounds occured in some of these species: the Teleost Specific WGD,
dated 320 to 350 MYA, and the Salmonid-Specific WGD, 80 MYA.

Adapted from Glasauer and Neuhauss (2014).

Teleost fishes are the infraclass that comprises 96% of the fish species in the world,
almost half of all vertebrates, and encompasses about 40 orders and 448 families.
Among many particularities, the teleost genomes have undergone a Teleost-Specific
Whole Genome Duplication (WGD), occurring 320 to 350 million years ago (mya;
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Christoffels et al., 2004; Vandepoele et al., 2004). We can find additional WGD events
in the teleost tree, for example, one common to Salmoniformes (50 to 80 mya; Figure
3.2; Alexandrou et al., 2013). Although these duplications double the gene content
of fish genomes, over time it has resulted in the loss of most genes, with neo- and
sub-functionalization of the surviving new copies. This means that fish are prone to
have duplicated genes regarding vertebrates, in particular human and mouse, the
two species from which the scientific community derives all molecular information.
Zebrafish (Danio rerio) are one of the central model species in developmental biology
because of the robustness of its embryos and their transparency, and therefore exist
exhaustive molecular resources for this species. For these reasons, zebrafish are the
fish reference species by excellence, and so the reference point in this Thesis.

3.1 Software Development

The evolutionary studies carried out in this Thesis require numerous bioinformatic
tools to deal with transcriptomes of non-model organisms. These studies also in-
volve an elevated number of species. Therefore, it was necessary to develop a frame-
work to automate all computational tasks. To do so, I organized the task in different
Snakemake workflows (Köster & Rahmann, 2012), rather than a collection of scripts.
The reasoning behind was to reduce developing and maintenance costs, ensure the
reproducibility, improve the scalability of the constituent steps (both in terms of sam-
ples processed and computing resources), and to allow the recycling and their appli-
cability to experiments for any member of the research community. In a commitment
to reproducibility and open science, I have published all workflows and datasets in
their corresponding paper and form part of public repositories.

3.2 Transcriptomics and Population Genetics: Application to
Tinca tinca

Tench is a freshwater fish species within the Cyprinidae family, the same that con-
tains zebrafish. It is native to Eurasia, but because of human-mediated movement,
tench inhabits temperate and tropical freshwater regions (Welcomme, 1988). Its ap-
pearance and flavour makes tench a common fish in aquaculture and sport fishing
(Kocour et al., 2010). As of 2019, the annual global aquaculture production of tench
is about 1,400 tons (FAO, 2019).

Previous studies have revealed the existence of two phylogroups in Eurasia: a West-
ern one present from the British Isles to Poland, and an Eastern one that goes from
Central Europe to Central Siberia and China (Kocour & Kohlmann, 2011; Lajbner
et al., 2011). Both phylogroups overlap in Central Europe, where individuals have
undergone natural and human-aided hybridization, and these hybrids now appear
both in natural and cultured stocks across Europe.
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The first objective of this Thesis was to determine the genetic structure of tench in
two Central European fish farms, focusing mainly on the known phylogroups of
tench origin, based on the sequence variability of the transcriptome.

Conklin et al. (2013) provide the basis for a successful method already applied to
other fish species based on transcriptomes (Genomic Resources Development Con-
sortium et al., 2015; Montes et al., 2013). A SNP array was designed and applied
to disentangle the population structure of two cultured tench breeds native to the
Czech Republic and Hungary (Kocour & Kohlmann, 2014).

Once we reached this goal, we retrospectively analyzed two limiting factors of the
methodological approach used in the study. First, the bioinformatic approach devel-
oped to safely genotype transcriptome-derived SNPs, adapting it to the increasing
throughput of sequencing machines year by year. Second, the sample choice needed
to be optimized since both coverage and tissue sampling affects the number of genes
discovered, and therefore the number of identifiable SNPs.

3.3 Towards an Exome Decomposition without a Reference

To tackle the first problem, we extended the approach followed in Conklin et al.
(2013). In a nutshell, it discovers IEBs by mapping genomic reads to the transcrip-
tome. Positions where multiple alignments suddenly start and end are potential
candidates for an IEB, because genomic reads are part exon, part intron (Figure 3.3).
Following this approach, transcripts are split into exons, and the mapped reads are
used to call SNPs.

We can integrate multiple improvements to the procedure. First, we can achieve sim-
ilar results by mapping the constituent k-mers of the read, simplifying the alignment
step. Second, mapping k-mers is much faster than mapping entire reads. Third,
since the transcriptome is a small fraction of the genome, a fast filtering criterion
can speed up the procedure prior to mapping. And fourth, with the correct data
structure, we can apply the inverse procedure: to search for transcriptomic k-mers
in the WGS experiment and look for the gaps as hints of IEBs. We looked to proba-
bilistic data structures (also known as sketches), a set of tools that have been applied
to bioinformatic problems in the last decade, concretely the Bloom filter (BF, B. H.
Bloom, 1970).

The purpose of the second objective was the development of EXFI (Langa et al.,
2020), initials from exon finder, a tool that uses Bloom filters to decompose a trans-
criptome into its constituent exons in form of splice graph. Under this representa-
tion, 1) nodes are exons, 2) transcripts are paths, and 3) connected components are
genes.
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FIGURE 3.3: Summary of the IEB and EXFI procedures. Genes are
represented as exons (in different colors) separated by introns (in
grey). When genes are transcribed only exons are observed, but their
boundaries are unknown. To predict the distribution of exons, either
you can 1) de novo assemble a genome and use a splice-aware aligner
(the standardapproach), 2) map WGS reads against the transcriptome
and find out places where alignments are possible (IEB), or 3) check

every RNA k-mer in a DNA database (EXFI).

3.4 Towards a Full Transcriptome Assembly: a Simulation in
Zebrafishes and an Experiment in Sardines

The second problem we faced on transcriptome-derived SNPs was the RNA library
representation. Gene and transcript expression depends on factors such as environ-
mental stresses, the cellular and tissue type, or the developmental stage of the host.
Moreover, gene expression follows an exponential distribution: a few genes over-
whelmingly express more transcripts than the rest, completely eclipsing the experi-
ment (see Figure 3.4). Additionally, each tissue expresses a fraction of the genes to
function, some of them specific to it. Also, we have an economical and experimental
constraint: it is not possible to sample every single tissue in depth. On the oppo-
site side, insufficient sequencing results in fragmented and missing transcripts, or
choosing a single sample will end in a limited view of the full picture, or including
too many individuals will difficult the assembly due to the confusion introduced
by the sequence variation of every individual. Therefore, an experimental design
has to be found that maximizes gene and transcript discovery and assembly, while
constraining sequencing depth, experimental work, and samples used. To discover
such a strategy, we proceeded with a two-step approach: a simulation and a real
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experiment.
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FIGURE 3.4: Ranked normalized expression of transcripts in ten tis-
sues of the European sardine. Units are in Transcripts per Million
(TPMs, the ratio per millionth of reads that belong to a gene. Only
genes with expression above one TPM are shown. Note the logarith-
mic scale in the y axis. The eye library (ochre), after normalization,
has the highest expressed gene (Gamma-crystallin M2, almost one
fourth of reads) and is the least variable of them. On the other hand,
the brain (red) has the widest expression profile, and therefore is a
good candidate for gene discovery. Nonetheless, the assembly con-
tains almost 200,000 transcripts, and therefore the brain only covers

half of the landscape.

For the simulation step, since the purpose of this Thesis is centered on fish, and the
keystone fish species is the zebrafish, a dataset from this species was used. Origi-
nally published in Pasquier et al. (2016), it is composed of libraries collected from
twelve tissues, making it, to my knowledge, one of the most complete and deep in
fishes. Since each tissue provides different amounts of information, multiple strate-
gies were prepared in terms of depth and tissue sampling. The resulting optimal
strategy was applied to sequence the transcriptome of the European sardine.

The European sardine (Sardina pilchardus, Walbaum 1792) is a small pelagic forag-
ing fish that dwells the East North Atlantic coast, from Senegal to the North Sea,
and the Mediterranean and Black Sea. It is of great economical and nutritional im-
portance in European countries where climate change and overfishing represent the
most significant threats to this natural resource (Checkley et al., 2017). The situation
is so dire that Portuguese and Spanish governments imposed a fishing moratoria in
2018 (ICES, 2018). In order to help in the sustainable management of this species
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and assess the recovery of the sardine and its populations, it is essential to generate
genomic resources.

The aims of the third objective of this Thesis were twofold. First, was to discover
an optimal experimental strategy for RNA-Seq that maximizes transcript discovery
under a limited sequencing budget, and second, to characterize the transcriptome
of the European sardine using it. To achieve them, we sequenced and assembled de
novo nine sardine tissues. We quantified and annotated the transcriptomic sequences
and provided information about homology to known proteins, Gene Ontologies,
and associated metabolic processes.

Objective 3 was achieved with the publication of Langa et al. (2021), where we pub-
lished the RNA-Seq reads, transcriptome assembly, annotation and the expression
profiles of nine tissues of sardine. The description done will contribute to future re-
search on this species. Moreover, it will be used to characterize the sardine popula-
tion structure across the European coast, as done in Objective 1. Finally, this dataset
was fundamental to the results of Objective 4.

3.5 Evolution of Clupeiformes

Since my research group has been studying for years small pelagic fishes (Albaina
et al., 2016; Genomic Resources Development Consortium et al., 2015; Huret et al.,
2020; Montes et al., 2013; Zarraonaindia et al., 2012), it was the moment of going
beyond population studies and researching what are the genetic features that char-
acterize these species so important to the fishing industry in the Bay of Biscay, in
particular clupeids. Therefore, the fourth objective of this Thesis was the compara-
tive study of Clupeiformes.

Clupeiformes is the order of teleost fishes, composed of over 400 species, that in-
cludes anchovies, herrings, allis, shads and sardines (D. Bloom and Egan, 2018; Fig-
ure 3.5). They are found across the globe in tropical and temperate latitudes, both
in salt and freshwater. Ecologically, they are keystone species that mediate between
the plankton at the bottom and the predators at the top of the trophic web, either
other fishes, marine mammals and seabirds.

According to the Food and Agriculture Organization (FAO), herrings, anchovies,
and sardines supposed 24% across all reported fish catches in weight in 2018 http:
//www.fao.org/fishery/statistics/global-capture-production/query/en. Mainly
because of overfishing and global warming, the stocks of these species are decreas-
ing, periodic collapses are reported, and subsequent fishing bans are enforced (ICES,
2018). A better understanding of Clupeiformes biological features is necessary to
achieve a sustainable management of these species. Undoubtedly, generating ge-
nomic resources for these species will contribute to this understanding.

http://www.fao.org/fishery/statistics/global-capture-production/query/en
http://www.fao.org/fishery/statistics/global-capture-production/query/en
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Clupeiformes

Denticipitoidei

Clupeoidei

Engraulidae
Engraulinae

Coilinae

Spratelloidinae
Pristigasteridae

Clupeidae

Dussumieriidae
Chirocentridae

Clupeinae

Ehiravinae

Alosinae

Dorosomatinae

Engraulis encrasicolus

Coilia nasus

Clupea harengus
Clupea pallasii

Alosa alosa
Alosa pseudoharengus
Brevoortia tyrannus
Sardina pilchardus
Sardinops sagax

Konosirus punctatus
Tenualosa illisha

Denticeps clupeoides

FIGURE 3.5: Simplified phylogeny of Clupeiformes, based on the re-
sults of Lavoué et al. (2013)). On boldface are indicated the suborders,
families and subfamilies of interest. The right column holds the name

of the twelve species studied in this Thesis.

One of the key reasons for the consumption of fish in general, and clupeids in partic-
ular, are their high concentrations of protein and long-chain polyunsaturated fatty
acids (LC-PUFAs), especially the eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA) ω-3 fatty acids, linked to positive health benefits (Burdge, 1998; Calder,
2010; Jain et al., 2015; Kim & Mendis, 2006; Lemaitre et al., 2003; Ruxton et al., 2004;
Sidhu, 2003; Uauy & Valenzuela, 2000; Yokoyama et al., 2007). Therefore, a key
understanding of the clupeid transcriptome would shed light on how these species
synthesize, transport and store fats and these LC-PUFAs.

Little genomic resources existed for these species when this Thesis started. Since
then, the situation has improved. In 2016, Barrio et al. (2016) published a draft
genome assembly for the Atlantic herring. Then, Machado et al. (2018) and Louro
et al. (2019) released two genome drafts for the European sardine. Finally, in the
first phase of the Vertebrate Genome Project, Rhie et al. (2021) published a complete
assembly for the denticle herring (D. clupeoides). As we can see, reference genome
assemblies are still reserved for big consortia.

Nonetheless, there are still not enough genomes to characterize these species. Ins-
tead, I collected and analyzed publicly available RNA-Seq studies, and used them
to integrate them with ours to produce the results for this objective.

While the first objective was centered on recent and local adaptations of a single
fish, the fourth objective is ancient, planet-wide evolution of Clupeiformes and
therefore, the SNP comparisons between populations done for Objective 1 cannot
be extrapolated to the larger differences that happen between species. Instead, I
looked toward phylogenetic tests, suited for the major variations between homolo-
gous genes, and that consider their evolutionary histories. These tests are tailored
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for coding sequences, and consider the amino acid changes introduced by muta-
tions at the codon level. We used the branch-site test (Zhang et al., 2005) to detect
positive selection in concrete genes and branches of the Clupeiformes phylogenetic
tree. The application of this procedure to every single gene and branch allows us to
reveal evolutionary patterns with no previous hypothesis in mind, and therefore un-
biased towards a goal in particular. As these evolutionary tests work on the codons
of protein-coding genes, it is unnecessary to assemble entire genomes to produce
them: only transcriptomes.
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Chapter 4

Materials and Methods

This section describes the Materials and Methods of the different articles described.
It follows the same theme and structure of the objectives: a software development
part, followed with the population study of tench, the presentation of EXFI, the
transcriptome sequencing effort in sardine, and the comparative study in Clupei-
formes.

4.1 Software Development and Protocols Designed

Due to the number of samples and experiments processed, and the computational
approach taken, it was necessary to adopt a robust software development approach.
Among the many approaches available, we explain the principal ones that ensure
automation and reproducibility: Workflow Management and Version Control Sys-
tems. Next, the two most used pipelines used in the thesis, de novo transcriptome
assembly and annotation are explained in detail.

4.1.1 Workflow Management Systems: Snakemake

First, we embraced Workflow Management Systems (WMS). As the number of com-
putational steps and number of samples increases, the approach of copying and
pasting commands to the terminal, or writing a great amount of shell scripts, do
not work and do not scale up computationally and cognitively. In a nutshell, com-
putational approaches consist of refining massive amounts of raw data into smaller
high quality datasets, to then obtain a few tables and figures ready for publication.
In definite, a set of files enter, intermediate files are generated, and final outputs (ta-
bles and figures) are produced. Therefore a computational pipeline is a set of rules
with inputs, outputs and how to convert ones into others. Originally, Make was de-
veloped in the 1970’s to compile programs and libraries specified in a file usually
named Makefile. This file contains rules on how to convert an input into an output.
The user only needs to provide the name of the required files and Make takes care on
how to schedule all the necessary tasks. Although effective, bioinformatic pipelines
exist as Makefiles, but today the main WMS are Snakemake (Köster & Rahmann,
2012), based in Python, and Nextflow (Di Tommaso et al., 2017), based in Groovy.
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Both systems are similar, but I decided to focus on Snakemake given my knowledge
of Python and its simplicity compared to any other programming language.

Snakemake rules are similar to the ones in Make: in their most simple form, they
are defined by specifying the input and output file names and the Shell, Python or
R code to convert the one into the other, and it will take care if they have to be
generated, in which order they need to be scheduled, and how to execute them in
parallel, either in a single server or in a cluster. Figure 4.1 shows a small rule for
read mapping.

rule map_bwa:
"""Map a sample to reference"""
input:

genome = "genome.fa",
reads = "{sample}.fastq",

output: "{sample}.bam"
threads: 32
conda: "map.yml"
shell:

"bwa mem -t {threads} {input.genome} {input.reads} "
"| samtools sort -o {output} /dev/stdin

FIGURE 4.1: Example of a Snakemake rule. This rule maps reads to a
reference genome and converts the results into a sorted BAM file. The
inputs are the reference genome and a set of reads in FASTQ format.
The number of threads used is dynamically chosen between the ones
specified and the number available in the computing node. The conda
parameter specifies the environment where the needed tools are. The
shell parameters contain the explicit chain of commands to execute,
substituting the wildcards in curly brackets into the corresponding

values specified before.

The first reason to use Snakemake is its integration with the Conda package man-
ager, which in turn grants access to all bioinformatic software available in Bioconda
(Grüning et al., 2018). In addition, it integrates seamlessly with major workload
managers present in computing clusters such as SGE and Slurm, accelerating the
execution and avoiding the user to write and schedule job scripts manually. The
final advantage is the containerization of the pipeline, i.e., the virtual isolation of
the pipeline with respect to the Operative System, ensuring reproducibility on other
machines through Singularity containers (Kurtzer et al., 2017). Moreover, full con-
tainerization can be achieved using Docker.

Due to the reasons enumerated before, most of each objective and each paper of
this Thesis can be obtained through Snakemake workflows, which are available at
GitHub and archived in public repositories (Table 4.1).
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4.1.2 Version Control Systems and Git

As discussed with Snakemake, it is impossible to leave the complexity of any bioin-
formatic project as a monolithic script subject to changes at any given moment, either
when writing what steps to execute or, once a mistake is made, what has to change.
Therefore, a safer and more effective way to store the methods than overwriting a
file, or renaming it with an ever increasing number of suffixes, is not the way to go.
To solve this gap in the workflow, I looked at Version Control Systems.

Second, we embraced Git as the Version Control System (VCS). Since the same com-
putational procedures are applied to different samples, it was necessary to have all
experimental methods synchronized and updated to use the exact same program
versions, databases and parameters.

A second reason to use a VCS is that it keeps the history of all changes made. With
this property in mind, it is possible to experiment with the code, add the new con-
tributions when they are successful, and delete them safely when not. Moreover,
the history of the project can be divided into branches, with one typically named
"master" or "main" used for code ready to be distributed and used, and another one
called "devel", where new additions are written, but are not yet ready to be used.
This separation allows us to play and experiment with the code safely.

A third reason to use a VCS in general, and Git in particular is the use of hooks,
scripts that are automatically executed every time that the developer tries to store
changes. Each time that a change is introduced, a battery of tests ensure that the
analysis works properly, and therefore the changes are safe to store, and refuses
to save them when not. This therefore forces us to check every individual compo-
nent (unit testing) and to introduce small datasets to prove that the methods work.
Through unit testing, we liberate the developer of the cognitive load of which piece
does what anytime, and we assure the final user that the methods can be trusted
since each one of its components and the overall analysis work.

Apart from unit tests, a complementary approach is to lint the scripts: to unify the
writing style, flag correct but misleading code or prone to error. Although simple,
this approach removes too cognitive load from the developer, and allows third party
inspection of the code since there is only one coding style to use. Additionally, code
linters mark duplicated code and sections that seem too complex to understand.
Therefore, if code is not simplified, no changes can be stored, and therefore linting
promotes the factorization of programs into simple, understandable and maintain-
able code.

As an example, the software developed for Objective 2, EXFI, is a Python3 pack-
age versioned with Git, available at GitHub. The master branch is the one with the
ready to use package, the devel branch is the one that contains the set of new features
to be merged with master, and from devel multiple branches appear: experiments
made to the code to improve it. Some of these experiments were successful and were



26 Chapter 4. Materials and Methods

TABLE 4.1: Pipelines designed for this thesis.

Name Purpose

smsk Boilerplate for other pipelines
smsk_khmer_trinity Trimming, Normalization and Transcriptome assem-

bly of Ilumina reads
smsk_454 Quality control and transcriptome assembly of 454

reads
smsk_trinotate Transcriptome annotation
smsk_snptrans RNA-Seq and WGS based SNP discovery
smsk_exfi_validation Battery of tests for EXFI, ChopStitch and GMAP
smsk_selection Transcriptome clustering, tree species construction

and detection of positive selection

merged back to devel, others were a failure and were abandoned, but nonetheless
they still are present in the history of the project. With respect to continuous test-
ing, multiple unit tests are done for every single function of the package, no matter
how big or small they are. Additionally, a small dataset is provided to test that the
analysis the package carries out is done from beginning to end. Also, to ensure that
the code style is correct and that there are no opportunities for any mistake, it is
checked with pylint, which checks errors or even the opportunity for errors, forces to
use coding standards, and points out code that need to be refactored, i.e., simplified
for better understanding.

In conclusion, working with a VCS such as Git is useful not only to effectively save
and publish the computational methods, but also to enforce robust good practices.
This procedure is crystallized in the smsk (Snakemake skeleton), a template from
which all other pipelines are derived to jumpstart them (Table 4.1).

In the following subsections we explain the two most used pipelines across the the-
sis: transcriptome assembly, and transcriptome annotation.

4.1.3 smsk_khmer_trinity: Transcriptome Assembly and Quality Assess-
ment

Since de novo transcriptome assembly is vital to this thesis, and that it would be
performed across all objectives, an automated pipeline was constructed to convert
RNA-Seq reads into a transcriptome without human intervention. This pipeline is
composed of three stages: trimming, normalization and de novo assembly (Figure
4.2).

Trimming consists of cutting or deleting reads containing adaptors and low quality
sequences. The program chosen for this task was Trimmomatic (Bolger et al., 2014)
due to its high performance, the facility to personalize the cleaning procedure, and
its ability to remove adaptors effectively.

https://github.com/jlanga/smsk
https://github.com/jlanga/smsk_khmer_trinity
https://github.com/jlanga/smsk_454
https://github.com/jlanga/smsk_trinotate
https://github.com/jlanga/smsk_snptrans
https://github.com/jlanga/smsk_exfi_validation
https://github.com/jlanga/smsk_selection
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FIGURE 4.2: Schematic representation of the transcriptome assem-
bly pipeline. Reads are cleaned with Trimmomatic, normalized with
khmer and assembled with Trinity. Quality assessment is performed
by backmapping the reads to the transcriptome and by searching

SCOs with Busco.

The cleaning procedure worked as follows: For every read, remove adapters that
match the ones used in the TruSeq3-PE-2 protocol. Then, remove bases at the 3’
end that have a probability of error below 99% (Q20). Also, remove bases at the
5’ end that have a probability of error below 99% too. Then, compute the mean
probability of error of the read. If it falls below 99.9%, remove it. Finally, if a read
has a length less or equal to 32, remove it. This entire procedure is encoded in
a single string as follows: "ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 LEADING:20

TRAILING:20 AVGQUAL:30 MINLEN:32". Therefore, Trimmomatic has a very power-
ful syntax to specify what to remove and in which order that other programs lack.

Next, reads were normalized with khmer (Crusoe et al., 2015). This software uses
the count-min sketch (Cormode & Muthukrishnan, 2005), a probabilistic data struc-
ture used to compute the frequency tables of the k-mers of an experiment. Once
computed this frequency table, every sequence can be reprocessed to check the fre-
quencies of its constituent k-mers. If the frequency of a k-mer is too low, that k-mer is
considered a sequencing error, and therefore it is removed from the experiment. On
the other hand, if a k-mer is too frequent (repetitive regions in WGS, overexpressed
transcripts in RNA-Seq, dominant species in Metagenomics), it is redundant to in-
clude all the copies, and it is therefore necessary to reduce them, even to delete them
all. Therefore, this procedure is very useful to both remove errors and redundant
fractions of the experiment at hand, which will result in a faster and more precise
transcriptome assembly.

Finally, normalized reads are assembled with Trinity (Grabherr et al., 2011). I chose
this program due to the number of publications done with this procedure, and that
was built to assemble transcriptomes, rather than being the adaptation of genome
assemblers to this problem, such as Oases (Schulz et al., 2012), Trans-ABySS (Robert-
son et al., 2010), and SOAPdenovo-trans (Xie et al., 2014). Although Trinity obtains
its name because it was composed of three modules, nowadays it is split in four.
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First, k-mers are counted with Jellyfish (Marçais & Kingsford, 2011) to estimate and
reduce the memory footprint of the procedure. Then, the Inchworm module is exe-
cuted, where overlapping k-mers are inspected to generate a de Bruijn graph, where
nodes are represented by the different k-mers, and links arise whenever two k-mers
overlap by k-1 bases. When no ambiguity is possible, k-mers are joined into the ini-
tial transcriptomic contigs. Subsequently, Chrysalis clusters the previous contigs by
mapping the RNA-Seq reads, connecting contigs into connected components, and
revealing alternative spliced transcripts and close gene families. Finally, Butterfly
processes every component to report full-length transcripts, isoforms, and separate
paralogous genes.

The final object of this procedure is a FASTA file where each record is a transcript,
and where the header indicates what gene (connected component) each isoform be-
longs to.

To check the quality of the assembly, two metrics are computed. For the first, in-
put RNA-Seq reads are mapped back to the assembled transcriptome with Bowtie2
(Langmead & Salzberg, 2012). The reason to do so, is that a well assembled trans-
criptome should have used all reads in the experiment, and that RNA-Seq reads
should not be multi-mapped to different genes. According to the developers, a 90%
mapping success rate is a good indicator of a well assembled transcriptome (Haas
et al., 2013).

For the second, the transcriptome is searched for conserved Single Copy Orthologs
(SCOs) with BUSCO (Simão et al., 2015), to determine how complete the transcrip-
tome is given the number of conserved genes in this database. These SCOs are de-
pendent on the branches of the Tree of Life you are interested in. Therefore, since this
work is related to fish, we used the set of Actinopterygii SCOs. This program works
by performing homology searches with BLAST (Camacho et al., 2009) and HMMER
(Eddy, 2011) to the desired database, and then SCOs are reported as present (single
copy or duplicated), fragmented, or missing. The aim of a transcriptome assembly
should be to obtain the highest number of SCOs, either complete or fragmented.

Given that the Clupea pallasii transcriptome was performed by pyrosequencing, an-
other approach had to be taken. First, reads were corrected and trimmed with Pyro-
Bayes (Quinlan et al., 2008), trimmed, and cleaned for contamination with SnoWhite
(Dlugosch et al., 2013), and assembled with Newbler (Roche Ltd.), that instead of the
de Bruijn approach uses the Overlapping Layout Consensus methodology, based on
an all-vs-all sequence alignment to extend reads into transcripts. This sequence of
procedures was encapsulated into the smsk_454 pipeline (Table 4.1).

4.1.4 smsk_trinotate: Transcriptome Annotation

Assembled transcripts alone do not possess biological information. The straight-
forward approach is to first discover CDS and then match them to protein databases



4.2. Population Genetics of Tench 29

with known annotation, because function is related to protein sequence. We declined
studying non-coding RNAs (ncRNAs) because RNA-Seq and genome reference-free
based tools are not mature enough in non-model species, especially fishes.

The pipeline used for annotation is the one from TransDecoder (Haas, 2016) and
Trinotate (Bryant et al., 2017), but optimized for parallel execution. A schematic
representation is shown in Figure 4.3. First, since we are searching for homologies
between proteins, we replaced BLAST for Diamond (Buchfink et al., 2015), a pro-
gram with the same purpose but optimized for speed, between 30 to 50 times faster,
and the exact sensitivity. And second, hmmscan is not designed to work in paral-
lel by itself. By dividing the set of CDS and executing them in parallel resulted in a
faster execution while multiplying the memory footprint. In the end, the result of the
pipeline is a table containing the gene-to-transcript-to-protein relationship along the
matches against protein databases and the annotations inherited from them: Gene
Ontology terms (The Gene Ontology Consortium, 2019), KEGG pathways (Kanehisa
& Goto, 2000) and eggNOG functions (Huerta-Cepas, Szklarczyk, et al., 2016).

Assembly

CDS /
Proteome

TransDecoder

- Long ORFs
- blastp
- hmmer
- predict

Trinotate

- blastx
- blastp
- hmmer

Databases

- Gene Ontology
- KEGG
- EggNOG
- Swiss-Prot
- PFAM

FIGURE 4.3: Schematic representation of the annotation pipeline.
Protein-coding sequences are predicted with TransDecoder, which re-
lies also on Blast and HMMER searches. Annotation of the sequences
is then derived by a second round of Blast and HMMER searches, and
by querying the annotations from UniProt: GO, KEGG and EggNOG.

4.2 Population Genetics of Tench

The purpose of the study of T. tinca was to evaluate the presence of the two known
phylogroups (Western and Eastern) in two cultured populations in Central Europe:
Tabor, from the Czech Republic, and the Hungarian one.



30 Chapter 4. Materials and Methods

As genetic resources for Tench were very scarce, for this study of population genet-
ics, first, 96 SNP markers were discovered in the transcriptome and, second, were
genotyped in 140 individuals. Classical population genetics statistics were applied
to genotypic data.

The methods here described are the ones presented in Kumar et al. (2019). The
first stages of the procedure consists of the transcriptome assembly and annotation
explained in sections 4.1.3 and 4.1.4.

4.2.1 Data sources

For the SNP discovery step, DNA and RNA were parallely extracted. For trans-
criptome sequencing, the muscle and brain of four individuals were sampled. Two
males and two females that pertained to the Hungarian and Tabor breeds cultured in
fish tanks at the Faculty of Fisheries and Production of Waters, University of South
Bohemia. Additionally, samples were taken under two different metabolic activities,
corresponding to winter and summer (at 4 and 20ºC; see Table 4.2). The reason for
introducing such diverse conditions (tissue, sex, breed, season) was to maximize the
representation of the transcriptome within the sample.

TABLE 4.2: RNA-Seq samples of tench. Experimental design and ac-
cession numbers for the RNA-Seq experiment of tench. Two males
and two females were used. From them, muscle and brain were ex-

tracted. All individuals belong to the Western phylogroup.

Sample Breed Season Sex Tissue Sample Name Accession Numbers

1 Hungarian Winter Female Muscle MWH-330 SRR6180875
1 Hungarian Winter Female Brain BWH-330 SRR6180877
2 Hungarian Winter Male Muscle MWH-389 SRR6180876
2 Hungarian Winter Male Brain BWH-389 SRR6180878
3 Hungarian Winter Female Muscle MWH-377 SRR6180879, SRR6180881
4 Tabor Summer Male Muscle MWT-240 SRR6180880, SRR6180882

Total RNA was isolated using Qiazol lysis reagent (Qiagen). The isolated RNA was
quantified with a Nanodrop 2000 (Thermo Scientific) and integrity of RNA (RIN)
was determined using an Agilent 2100 Bioanalyzer (Agilent Technologies). Samples
with RIN values above 8 were used for RNA sequencing, and used for library con-
struction and Illumina sequencing. According to the RNA quality standards, six
samples were sequenced.

For genome sequencing, ten individuals from six locations were collected to maxi-
mize genetic diversity, including also the phylogroup of origin (Table 4.3). These
samples were obtained from the tissue collection of the Leibniz Institute of Freshwa-
ter Ecology and Inland Fisheries, Berlin, Germany, and represent six known popula-
tions: Czech Republic, Hungary, Italy, Germany, Turkey, and China.
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TABLE 4.3: WGS samples of tench. Ten individuals from 6 different
eurasian locations were collected and pooled into two libraries for

genome sequencing: Western and Eastern phylogroups.

Sample Origin Tissue Sample Name Phylogroup Accession Number

1 Czech Republic Fin clip Tench_DNA_1 Western SRR6180884
2 Czech Republic Fin clip Tench_DNA_2 Western SRR6180884
3 Hungary Fin clip Tench_DNA_3 Western SRR6180884
4 Hungary Fin clip Tench_DNA_4 Western SRR6180884
5 Italy Fin clip Tench_DNA_5 Western SRR6180884
6 Germany Fin clip Tench_DNA_6 Eastern SRR6180883
7 Turkey Fin clip Tench_DNA_7 Eastern SRR6180883
8 Turkey Muscle Tench_DNA_8 Eastern SRR6180883
9 China Blood Tench_DNA_9 Eastern SRR6180883
10 China Blood Tench_DNA_10 Eastern SRR6180883

Genomic DNA was isolated from muscle, fin or blood samples using the peqGOLD
Tissue DNA Mini Kit (Peqlab Biotechnologie) following manufacturer instructions.
The quantity and quality of DNA was measured with Qubit 2.0 Fluorometer and
0.8% agarose gel electrophoresis. The DNA samples with concentrations ≥ 50 ng/µl,
260/280 ratios of 1.8–2.0 and clear high molecular weight bands on the gel were used
for genome sequencing. An equimolar amount of total DNA was then pooled for the
library preparation.

In a posterior stage, the SNP genotyping step, 140 tench samples were genotyped
from a selected subset of 96 candidate SNPs identified in this study. In all, 66 indivi-
duals from the Tabor breed and 74 from the Hungarian breed. In addition, following
methodologies previously described in Kocour and Kohlmann (2014), growth hor-
mone (gh) gene genotyping was used to classify individuals within the Eastern (E) or
Western (W) phylogroup, or the hybrid (H) group. The distribution of samples with
respect to the gh genotype (E, W, H) are available in Table 4.4. Briefly, nineteen to
twenty seven samples were obtained for each phylogroup and breed combination.

TABLE 4.4: Tench samples used for genotyping. The phylogenetic
origin is based on genotyping the gh gene following Kocour and

Kohlmann (2011) and Kocour and Kohlmann (2014).

Breed \Phylogroup West Hybrid East

Hungarian 24 27 23
Tabor 25 22 19

4.2.2 IEB and SNP Calling

Once a reference transcriptome is built, genetic markers can be designed based on
it. Nonetheless, a few precautions need to be done in order to successfully genotype
them. First, IEBs need to be found. Genotyping chips require each SNP to lie within
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an exon so its flanking primers can bind to the DNA sequence. Failing to do so,
flanking primers may either be kilobases apart, because each of them will be placed
in different exons, or will fail to bind at all because the designed primer will consist
of a chimeric sequence made of two exons. If not taken care of soon, these errors will
propagate until the stage of large scale genotyping.

Conklin et al. (2013) solved this issue through read mapping (see Figure 3.3). This
procedure maps the genomic reads with a read mapper such as Bowtie2 (Langmead
& Salzberg, 2012) or BWA-MEM (H. Li, 2013). The procedure deviates from the one
in Montes et al. (2013) in two main points. First, the transcriptome is derived from
Illumina sequencing, yielding much more reads and less sequencing errors. Sec-
ond, as the transcriptome is better sampled, it is much more complete and correct,
contains a higher number of alternative isoforms per gene, and therefore more pro-
cessing needs to be done.

Once assembled the transcriptome, given the number of transcripts yielded, and
that the number of SNPs to be genotyped (96) was going to be much smaller than
the ones discovered (hundreds of thousands), we applied multiple stringent tran-
script filtering procedures. First, we used the quantification from kallisto (Bray et al.,
2016) to discard low expressed transcripts. Next, transcripts that according to the
annotation were non-coding were removed too. Finally, entire genes composed by
two or more coding transcripts were deleted too.

Once the transcriptome was filtered, the parallel mapping approach of DNA and
RNA sequences was done. Mappings were done with Bowtie2 with the local and
sensitive settings. These alignments were compressed and sorted with Samtools (H.
Li et al., 2009). Additionally, possible PCR duplicates were removed with the rmdup
subcommand. Finally, SNPs were called with the Samtools mpileup subcommand.
A minimum and maximum contig depths 20x and 200x were put in place in order
to avoid SNP biases in the lower end, and repetitive sequences and false local align-
ments in the upper end. For the RNA-Seq to transcriptome mapping, only a mini-
mum contig depth of 8x was required. The remaining SNPs were required to appear
at least in 2 RNA-Seq reads, and 3 for WGS reads at the same time. A simplified
flowchart of the procedure can be seen in Figure 9.

Transcriptome
Assembly

Annotation
Filter non-coding

Keep genes without 
isoforms 

WGS

Filter IEBs

Genomic
SNPs

Transcriptomic
SNPs

Rank by FST

RNA-Seq

Filtered reference

Select Top SNPs
Quality 
Control

Quality 
Control

Map WGS to 
transcriptome

Map RNA-Seq to 
transcriptome

Quantification 
Filter low 
expression

FIGURE 4.4: Flowchart of the IEB detection and SNP calling proce-
dure.
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Finally, IEBs were searched in the transcripts with high quality SNPs. The read map-
pings were reanalyzed in search of locations of sudden ends and starts of alignments.
The distribution of such points is compared to a uniform one, and p-values are as-
signed. Lower p-values mean that there is an excess of starts and ends compared
to chance, and therefore indicate the presence of an IEB. Transcripts with signs of
IEBs or without match to zebrafish sequences were discarded. Finally, SNPs were
ranked by FST between breeds, and the top 96 SNPs were selected to design probes
and primers for the Fluidigm Genotyping System.

For genotyping, 66 Tabor and 74 Hungarian tenches were used (140 in total, see
Table 4.4). Then, SNPs were categorized either as no signal (SNP not amplified),
disperse (call rate below 80%), monomorphic (minor allele frequency below 1%) and
PSV (Paralogous Sequence Variant; all individuals are heterozygotes). To compute
the conversion rate (ratio of polymorphic SNPs to genotyped), the no signal and
disperse were not taken into account.

Once genotyped, multiple Population Genetics metrics were computed. First, minor
allele frequency, expected and observed heterozygosities (He and Ho, respectively)
were estimated using GeneClass2 (Piry et al., 2004). Second, deviations from the
Hardy-Weinberg Equilibrium were obtained through Fisher’s exact tests in Genepop
(Rousset, 2008), using 10,000 dememorizations, 100 batches and 5,000 iterations per
batch. Genetic structure was assessed with Structure 2.3.4 (Pritchard et al., 2000).
The number of optimal clusters k was determined with the method proposed in
Evanno et al. (2005) by comparing the log-likelihoos of each run with k ranging
from 1 to 10. Each clustering was run using a burn-in of 10,000 steps, followed by
100,000 Markov chain Monte Carlo (MCMC) replicates. Barplots were plotted using
Pophelper 1.0.7 (Francis, 2017).

Based on the derived population structure, Bayescan 2.1 (Foll & Gaggiotti, 2008) was
used to detect loci under natural selection, also known as outlier loci. It was run with
20 pilot runs of 5,000 iterations each, 50,000 burn-in iterations and prior odds of 10
for the neutral model. The False Discovery Rate was corrected using the Benjamini-
Hochberg correction (Benjamini & Hochberg, 1995). Outlier loci were removed from
subsequent analysis, but their annotation was inspected.

Finally, neutral genetic differentiation and inbreeding were measured. Neutral ge-
netic differentiation was estimated with Arlequin 3.5 (Excoffier & Lischer, 2010) by
computing the unbiased pairwise FST (Weir & Cockerham, 1984). Inbreeding was
estimated with the FIS statistic using Fstat (Petit et al., 2001). Significance of the FST

and FIS statistics were tested with permutation tests, using 1,000 permutations. False
Discovery Rates were corrected this time using the Bonferroni method (Rice, 1989).
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4.3 Development of EXFI

As shown in the introduction, I developed an alternative method to IEB, the one
used previously in our group to ascertain the population structures of the European
anchovy, the Atlantic mackerel, and tench. First I will explain the methodology
behind, then an explanation of the datasets used to experiment and why. Finally
I show how optimal parameters were found, and how the results were compared to
two other tools.

4.3.1 Description of the Algorithm

In a similar approach to the IEB method, we developed EXFI to split a transcrip-
tome into its constituent exons. The procedure is based on locating k-mers in the
transcriptome that are not in the WGS experiment because they are made up of two
exons.

EXFI is written in Python3, using packages designed for efficient big data process-
ing (Pandas; McKinney, n.d.; Reback et al., 2021) and NumPy; Harris et al., 2020),
Bioinformatics (BioPython; Cock et al., 2009), and also high performance tools to
manipulate k-mers (BioBloomTools, Chu et al., 2014; ABySS2, Jackman et al., 2017)
and genomic intervals (Quinlan & Hall, 2010).

The operation of the procedure can be classified in two steps: k-mer storage and
exon prediction, carried out respectively by the build_baited_bloom_filter and build_-
splice_graph scripts. An additional script is provided to convert the splice graph, in
GFA1 format, into FASTA format, either as separated exons or gapped transcripts.

The key data structure for EXFI is the Bloom filter, a probabilistic data structure used
in this case to store k-mers fast and efficiently. It cannot produce false negatives, but
false positives, although the rate they are produced can be controlled.

The method to process and store k-mers is to use hash functions. Hash functions
map uniformly the k-mers to a range of integer numbers, in a way that similar k-
mers are sent to very different numbers. The problem of this approach is that col-
lisions can happen: two different k-mers can have the exact same hash value, and
therefore cannot be distinguished. To deal with this problem, we can, instead of
using a single function, use multiple independent hash functions. Therefore, the
probability of two different k-mers having the exact same values decreases dramat-
ically. Another desired property of hash functions is that they need to be extremely
fast.

The recipe for a Bloom filter are hash functions and a bit table. Every time we want to
remember a k-mer, we only need to store a one in the positions that the hash values
give, and to check if a k-mer has been seen, we only need to check if all positions
given by the hash value are set to one. The drawback of this approach is that as
the number of inserted elements grows, the probability of reporting a false positive
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k-mer grows too, since the hash value of a k-mer could be colliding with the hash
values of multiple k-mers at the same time.

Therefore Bloom filters have a False Positive Rate (BF FPR) and no False Negative
Rate. This means that it is possible for the data structure to report k-mers that have
never been seen in the experiment. This BF FPR, the size of the bit table, the number
of hash functions used, and the number of different k-mers are the four parameters
and are related one to each other. For example, lower BF FPR can be achieved by ei-
ther increasing the table size, increasing or decreasing the number of hash functions,
or decreasing the WGS experiment.

Since the transcriptome is a fraction of the genome, a very significant fraction of the
WGS experiment is not necessary to discover exons in the transcriptome. Therefore,
prefiltering of the WGS experiment with an additional BF can significantly reduce
the BF FPR. For example, the human exomes suppose around 1% of the genomic
sequence, and therefore this filtering can reduce the number of sequences to be pro-
cessed by an order of magnitude, and therefore either decrease the BF FPR, or reduce
the table size.

Finally, every single sequencing error is propagated into k k-mers, all of them unique
and therefore will occupy much space in the Bloom Filter. To minimize their impact,
we can use Cascading Bloom filters (Salikhov et al., 2014), a similar data structure
that uses two or more bit tables instead of one. The way this works is by trying to
insert a k-mer in the first table. If it is already in the first table, try to insert it in the
second, and so on. Therefore, in the first table you have the k-mers that have at least
a frequency of one, in the second table the k-mers that have a frequency of at least
two, and so on. EXFI uses only two tables, and by keeping only the second, we can
discard the vast majority of sequencing errors and therefore reduce the BF FPR.

Once computed the BF, the second part of the procedure extracts the exons from the
transcriptome. To do so, each transcriptomic k-mer is queried in the genomic BF
(Figure 4.5a). Whenever a k-mer is missing it must be because an exon is ending
and another one is starting at that place. Found k-mers are assembled and further
inspected (Figure 4.5b).

The False Positives introduced by the BF have two effects in the exon prediction
part: the appearance of very small exons of length, k overlapping the larger ones,
and also the extra bases appended to the borders of the exons. To prevent the first,
a filtering step is done to remove small exons (length k+5 by default; Figure 4.5c).
Then, exons that overlap each other by an excessive number of bases (10) are merged
together: the probability of 10 bases overlapping by chance is FPR10 (if FPR = 1%,
that probability is 10−11, astronomically low; Figure 4.5d). Finally, the remaining
overlaps are polished by inspecting the donor/acceptor signal (GU/AG) at the se-
quence level to finally separate the exons (Figure 4.5e). The result of this step is a
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FIGURE 4.5: Flowchart of the EXFI procedure. (a) k-mers are queried
sequentially and (b) merged if they overlap by k-1 bases. (c) Solitary
k-mers are removed as they are false positives. (d) Merge long over-
laps. (e) Polish the splice graph by finding the donor and acceptor

splice sites. Figure adapted from Langa et al. (2020)

GFA1 file, a common format to represent assembled genomes as linked contigs, and
that can be visualized with Bandage (Wick et al., 2015).

Finally, the gfa_to_fasta script is provided to either extract the individual exons or the
spliced transcript (a sequence in which exons are separated by regions filled with N
letters) in FASTA format. These files can be used in downstream analyses, such as
the ones done for SNP discovery in section 1.4.2.2.

Therefore EXFI provides user-friendly tools for researchers working in non-model
species and would like to study the population genetic variation associated with
coding sequences and/or the exome.

4.3.2 Datasets Used

Since genomes and transcriptomes vary widely across the Tree of Life, and because
the end in mind of EXFI is to discover variants for population studies, we defined
three tiers of datasets to prove the concept: references, semi-references, and mega-
genomes without a reference.

For the first tier, we wanted to test EXFI in a very controlled scenario by applying
it to two well known genomes. We used the zebrafish and human genome and
transcriptome references (GRC38 and GRCz10, Ensembl release 91, December 2017).
Instead of using real WGS datasets, multiple samples were generated with wgsim (H.
Li, 2011), simulating each individual by adding different variants and sequencing
errors through different random seeds. These two datasets were the ones that guided
the development of EXFI.

As the human and zebrafish are far from the real-world application of EXFI, I moved
a little further experimenting with reference transcriptomes but real WGS datasets.
For the second tier, I obtained WGS reads from ENA for the Atlantic salmon (Salmo
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salar; Kijas et al., 2018) and the Atlantic herring (Clupea harengus; Lamichhaney et al.,
2012). Instead of relying on individually sequenced samples, Pool-Seq libraries (se-
quencing multiple individuals without a differentiating tag) were used to measure
the robustness of the predictions under the influence of tens to hundreds of hap-
loid genomes in the same dataset. Moreover, a salmonid-specific WGD occured 80
mya, and according to Ensembl, the salmon genome is double in size compared to
zebrafish (3.41 Gbp vs. 1.37 Gbp; 47,329 vs. 25,592 protein-coding genes; Ensembl
Release 104), complicating the procedure even more. Additionally, for the Atlantic
herring we used both the available reference transcriptome along with an assembled
one, to compare the effects of a de novo assembly in exon prediction.

Finally, to test the upper limit of EXFI, we included a third tier of species composed
of the axolotl (Ambystoma mexicanum; Keinath et al., 2015) and the sugar pine (Pi-
nus lambertiana; Neale et al., 2014), the first known for its regenerative capacity and
the second for being the largest species of pine. Specifically, their genomes are also
known to be massive, 32 and 28 Gbp in size, respectively.

Additionally, since the motivation for this objective was to improve the SNP discov-
ery procedure done in Objective 1, we reanalyzed the Tinca tinca transcriptome and
WGS effort, for which no reference genome assembly is available to compare the
results. Table 4.5 resumes the datasets used, and shows the references and experi-
ments used.

Therefore, we tested EXFI under a wide variety of reference status, genome sizes,
and experimental WGS efforts.

TABLE 4.5: Datasets used for the development, validation and appli-
cation of EXFI.

Experiment Zebrafish Human Atl. salmon Atl. herring Sugar pine Axolotl Tench

Genome Type Chromosome Chromosome Chromosome Scaffold Scaffold Chromosome Not Available
Genome Size
(Gbp)

1.34 3.09 2.97 0.81 27.60 32.40 0.78

Genes 25,497 21,407 79,030 25,135 Unknown Unknown Unknown
Transcriptome
Type

Reference Reference Reference Reference / de
novo

de novo de novo de novo

Transcripts 51,714 164,776 109,584 29,353 / 97,777 331,11 180,605 267,058
Transcriptome
Size (Mbp)

110.69 270.48 355.21 64.18 / 55.39 36.74 229.48 294.70

Exons 495,200 1,199,596 1,313,909 314,220 / Un-
known

Unknown Unknown Unknown

Samples 2 6 20 50 1 1 10
Reads (M) 720.00 2,160.00 1,259.27 418.73 9,300.90 7,121.91 318.72
Total Bases
(Gbp)

72.00 216.00 125.93 41.13 1395.13 712.19 31.87

Coverage 53.73 69.90 42.44 50.92 50.54 21.98 51.58
Genome
source

GRCv10 GRC38 GCA_-
000233375.4

GCA_-
000966335.1

GCA_-
001447015.2

GCA_-
002915635.2

NA

Transcriptome
source

GRCv10 GRC38 GCA_-
000233375.4

GCA_-
000966335.1 /
SRR611605

GEUZ01 GFZP01 GFZX01

WGS source Simulated Simulated ERR2247296-
ERR2247299

SRR611633-
SRR611635

SRR2026990,
SRR2026995,
SRR2026998,
SRR2027002-
SRR2027013,
SRR2027088-
SRR2027101

SRP051662 ERR1725872,
ERR1725873
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4.3.3 Validation

To validate and compare the results, we provide the compare_to_gff3 script to com-
pare the predicted exons to a known reference in GFF format. Comparisons are
given in terms of the usual classification metrics:

• True Positives (TP), correctly predicted exons;

• False Positives (FP), incorrectly predicted exons;

• False Negatives (FN), missing exons;

• Precision (P), the ratio of correct predictions, P = TP / (TP + FP);

• Recall (R), the ratio of predictions found: R = TP / (TP + FN); and

• F1 score, the harmonic mean between precision and recall: F1 = 2 PR / (P + R).

These measurements were complemented with the mapping of the predicted ex-
ons to the reference genome, when available. This was done with BWA-MEM (H.
Li, 2013) and Samtools (H. Li et al., 2009). Statistics are given by the number of
mapped exons, and how many of those were done with a perfect CIGAR string
(100% matched, allowing only with small insertions or deletions, but no base clip-
ping).

For the validation of the tool, the datasets described in section 4.3.2 were used.
Briefly, zebrafish and human datasets were used because they are species deeply
studied. We moved a little outside reference territory by using Atlantic salmon and
Atlantic herring, both fishes, the central theme of this thesis. The first was chosen
because it has a recent genome duplication, and the second to assess the differences
between assembled and reference transcriptomes, and for being a clupeid fish. Ad-
ditionally, both WGS experiments came also from a Pool-Seq approach, rich in vari-
ants but also in sequencing errors, and therefore should misguide the exon predic-
tion process by increasing the BF FPR. The last two species used were the axolotl
and the sugar pine, known for having mega-genomes and their repetitive content.

First of all, it was necessary to discover the optimal four parameters that impact the
performance of EXFI. The annotation-based metrics are the ones used to discover
them. These four parameters are: to filter or not the WGS experiment, the quantity
of memory used, the k-mer length, and the coverage of the genome used. They were
discovered over the zebrafish and human datasets, since they are the most complete
references.

The effect of filtering or not reads was the first measured. Non-exonic reads and
their sequencing errors will fill the Bloom filter unnecessarily, but the filtering step
itself will increase the runtime. To measure the differences, EXFI was applied with
and without the read filtering step, with the k-mer length fixed to 25.
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Low memory footprint and high speed are the key reasons to use Bloom filters, but
using as little memory as possible is our target. The effect of decreasing the memory
requirements results in the increase of the BF FPR and therefore a decrease of Preci-
sion and Recall of the results. The trade-off between memory and BF FPR was done
by repeatedly analyzing the zebrafish datased, with BF sizes from 4 to 60 GB in steps
of 4 GB, and fixing the k-mer length to 25 base pairs.

The third parameter, the k-mer length, was analyzed using the odd values in the
range from 21 to 65 base pairs, while also using Bloom filters of 4 and 60 GB in size,
over the zebrafish dataset only. The effect of the k-mer length is very sensitive. If k is
too low, a k-mer can be present in too many regions at the same time and become too
unspecific, and therefore more reads (and more sequencing errors) are inserted into
the data structure, and the BF FPR will increase, therefore decreasing the Precision.
If k is too high, there will be less elements inserted and with less frequency, and they
will be susceptible to be eliminated by the cascading Bloom filter, lowering the BF
FPR but at the same time the Recall of the method. Also, the method is myopic:
it cannot see exons of length k or less, and therefore more false negatives will be
reported if k is too high. Therefore, a balanced k-mer length needs to be found.

Finally, a correct genome coverage needs to be used. If the WGS experiment is too
shallow, the method will overpredict IEBs because k-mers will be missing every-
where. On the opposite side, if the sampling is too deep, the number of sequencing
errors will become so endemic that the frequency filter will start to accept sequen-
cing errors as truthful k-mers. For this case, the zebrafish dataset was sampled in
10% increments with seqtk (H. Li, 2012), and each subsample was analyzed using the
high and low memory settings and k-mer length as before.

The performance of EXFI was also compared to two other tools: ChopStitch (Khan et
al., 2018) and GMAP (Wu & Watanabe, 2005) using the metrics described above, and
also BF FPRs, speed and memory footprint. ChopStitch is a tool similar to EXFI that
uses a transcriptome, WGS reads and Bloom filters to predict the exome. The main
difference is that in this tool the BF FPR needs to be provided first, and then the entire
WGS dataset is processed to estimate the needed memory and hash functions. Addi-
tionally, it uses the entire WGS dataset to predict exons. The second one, GMAP, is a
tool designed to perform gapped alignments of Expressed Sequence Tags (ESTs) and
full transcripts to a reference genome. The six datasets (zebrafish, human, salmon,
herring, pine and axolotl, see Table 4.5) were used to compare the three methods in
terms of the metrics described above: annotation and mapping-based.

To give an example of the power of EXFI over a non-model species, we reanalyzed
the tench dataset, not only splicing the transcriptome but also to discover SNPs,
specially the 96 used for genotyping. The steps done to find SNPs were the use
of EXFI itself, read mapping with Bowtie2 (Langmead & Salzberg, 2012) and vari-
ant calling with BCFTools (H. Li et al., 2009). Variants with quality value below 20
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were discarded, along those that were 35 base pairs or less to other variants or exon
boundaries.

4.4 Towards a Complete Transcriptome for S. pilchardus

This section describes the strategy and methodology behind the sequencing effort of
the European sardine.

4.4.1 An Optimal Sampling Strategy

Extracting RNA from tissues is a very complicated and delicate procedure. Given
the throughput of current sequencing technologies, RNA-Seq provides the expres-
sion of thousands of genes. Nonetheless, transcript expression is dependent on the
tissues used, and the expression of a handful of transcripts can eclipse the entire
experiment. Therefore, I wanted to find how much a transcriptome changes when
multiple tissues are used, and what could be a cost-effective strategy.

Before carrying out any experiment in the lab, I did a simulation over the transcrip-
tomes that we would obtain by subsampling twelve libraries from zebrafish. We
looked towards the zebrafish because of the enormous genomic resources available.
Concretely, we used the zebrafish dataset from Pasquier et al. (2016). In this paper,
the Actinopterygii lineage is sampled to construct and quantify 27 transcriptome
assemblies derived from twelve tissues. The RNA-Seq dataset is available under
accession number SRP044781 at ENA. Details are available in Table 4.6.

TABLE 4.6: Zebrafish samples for optimal strategy discovery. The
twelve libraries were subsampled to obtain an optimal sequencing
strategy to either sample deeply a tissue, or shallowly use all of them.

The number of Paired-End reads is expressed in millions.

Library Accession number Reads (M)

Bones SRR1524244 96.72
Brain SRR1524238 35.36
Embryo SRR1524246 55.19
Gills SRR1524239 54.47
Heart SRR1524240 85.67
Intestine SRR1524245 43.19
Kidney SRR1524243 46.37
Liver SRR1524242 59.25
Muscle SRR1524241 34.03
Ovary SRR1524248 22.03
Testis SRR1524249 59.90
Unfertilized eggs SRR1524247 24.88

To find out a near-optimal, simulations on this D. rerio RNA-Seq dataset were per-
formed. For every tissue, the dataset was subsampled incrementally from 1 to 20
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million paired-end reads, in increments of 1 million using wgsim (H. Li, 2011). Ad-
ditionally, a mix of the 12 tissues was sampled in the same way to observe the capa-
bilities of a varied sequencing effort, using the same number of reads.

Then, for every one of the 260 library and subsample combinations, transcriptomes
were assembled both de novo and reference-based with Trinity (Grabherr et al., 2011)
and StringTie (Pertea et al., 2015). In the de novo case, transcripts were associated
with its gene using BLASTN (Camacho et al., 2009), while in the reference case, tran-
script identifiers were extracted from the resulting GFF3 files. Then, we proceeded
to analyze the number of genes yielded by the twelve tissues and the mix, either
when a genome assembly is present or not.

4.4.2 Sequencing of Sardina Pilchardus

Given the results obtained for zebrafish, we decided that, when the sequencing effort
is limited, the optimal strategy to obtain the best representation of the transcriptome
of a given species is to use all possible tissues. Additionally, given that the ultimate
use of this dataset is to support a future SNP discovery procedure, to minimize indi-
vidual variation that misleads the transcriptome assembler, the number of samples
involved had to be reduced to the minimum.

Three individuals from the European Atlantic Ocean were collected by the IFRE-
MER institute during the EVHOE scientific surveys (October 10th, 2015; Leaute
et al., 2015). From these individuals, nine tissues (brain, eye, heart, kidney, liver,
muscle, ovaries, skin, and testes) were dissected onboard, immediately immersed in
RNAlater (Invitrogen), and stored at -20ºC until further processing. One of the in-
dividuals was used as the main donor of tissues, a female, while another individual
was used as a testes donor, and the third one to complete the sampling, a kidney and
skin donor.

Total RNA was extracted using TriZol®Reagent (Life Technologies) and quantified
with Agilent 2100 Bioanalyzer combined with Agilent RNA 6000 Nano chips (Ag-
ilent Technologies, Inc.) at the Gene Expression Unit (SGIker) of the University of
the Basque Country UPV/EHU. Samples with RIN below 8 were immediately dis-
carded. For every tissue, the sample with the highest RIN was used for sequen-
cing. The exceptions were testes, since there was only one male specimen, and ovary,
where both samples were used. A multiplex sequencing library was prepared by la-
beling each sample with specific 10-mer barcoding oligonucleotides. The barcoded
RNA-Seq libraries were sequenced using the Illumina HiSeq 2000 platform using
one single lane. Sequencing reactions were performed with paired-end 101-bp and
strand-specific protocol at the sequencing facility of the CNAG (Centre Nacional
d’Anàlisi Genòmica, Barcelona, Spain). Base-calling was performed using the Illu-
mina native software. Details of the RNA-Seq libraries are available in Table 4.7.
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TABLE 4.7: Transcriptome sequencing of Sardina pilchardus. Ten tis-
sues were used in total, coming from three individuals. The number

of reads is expressed in millions.

Library Sample Accession number Reads (M)

Brain Female 1 ERR5925802 6.11
Eye Female 1 ERR5925803 5.34
Heart Female 1 ERR5925804 4.98
Kidney Male ERR5925805 6.68
Liver Female 1 ERR5925806 4.67
Muscle Female 1 ERR5925807 5.31
Ovary 1 Female 1 ERR5925808 6.64
Ovary 2 Female 2 ERR5925809 6.57
Skin Male ERR5925810 5.17
Testes Male ERR5925811 5.04

RNA-Seq reads were processed using the smsk_khmer_trinity pipeline described in
Section 4.1.3. Briefly, reads were trimmed with Trimmomatic, normalized with khmer,
and assembled with Trinity. Quality of the assembly was measured in terms of map-
pability of the trimmed RNA-Seq reads with Bowtie2 and the number of Actinoptery-
gii SCOs present. The annotation was obtained by predicting protein-coding genes
with TransDecoder and annotations were derived with Trinotate, using the smsk_-
trinotate pipeline from Section 4.1.4. Trimmed reads were quantified with kallisto
(Bray et al., 2016)) and normalization in terms of Transcripts Per Million (TPM) was
obtained with sleuth (Pimentel et al., 2017).

This study has defined an optimal strategy for the construction of the transcriptome
of a non-model species, its annotation and specific tissue expression of the European
sardine, a species with a growing interest from the genetics perspective.

4.5 Clupeiformes and Genes under Positive Selection

This section describes the procedure behind the discovery of genes under positive
selection in Clupeiformes. It is divided into the species sampling, the transcript clus-
tering into genes, the construction of the species tree, and the discovery of positively
selected genes. We followed the methods from Roux et al. (2014) and Ciezarek et al.
(2016), which in turn follow the procedures from Ensembl Compara (Herrero et al.,
2016) and Selectome (Moretti et al., 2014; Proux et al., 2009). Given the complexity
and scale of the analyses required, the computational steps were packaged into a
Snakemake pipeline: smsk_selection. A schematic representation of the procedure is
available in Figure 4.6.
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FIGURE 4.6: Flowchart of the smsk_selection pipeline. Coding sections
of the transcriptomes are clustered with CD-HIT, and then clustered
into orthogroups with OrthoFinder. Multiple rounds of orthogroup
and sequence refinements before constructing the species tree. Fi-

nally, genes under positive selection are identified.

4.5.1 Sampling

Multiple data sources were considered to study the evolution of Clupeiformes (see
Table 4.8).

First, the transcriptomes from Clupea harengus (í Kongsstovu et al., 2019) and Denti-
ceps clupeoides (Rhie et al., 2021) were obtained from the NCBI Genome resource.
These transcriptomes are automatically annotated by predicting genes and tran-
scripts ab initio and by mapping related RNA-Seq experiments.

Second, previously assembled and published transcriptomes were obtained for Ko-
nosirus punctatus and Alosa pseudoharengus (Czesny et al., 2012), both available at the
Transcriptome Shotgun Assembly database from the European Nucleotide Archive.

Third, de novo transcriptome assembly was performed for species Engraulis encra-
sicolus, Coilia nasus (Zhu et al., 2017), Clupea pallasii (Roberts et al., 2012), Tenualosa
ilisha (Divya et al., 2019), Brevoortia tyrannus (Iv et al., 2017), Alosa alosa (Pasquier
et al., 2016), Sardina pilchardus (Langa et al., 2021), and Sardinops sagax (Richards et
al., 2018). To do so, raw RNA-Seq experiments were downloaded from ENA. Trans-
criptomes were assembled using the methods described in section 1.2.3. Finally, to
help with the gene and phylogenetic clustering procedure, additional transcripto-
mes were downloaded from Ensembl for the fish species Astyanax mexicanus, Danio
rerio, Gasterosteus aculeatus, Gadus morhua, Latimeria chalumnae, Lepisosteus oculatus,
Oryzias latipes, Oreochromis niloticus, Poecilia formosa, and Xiphophorus maculatus; and
mammals Homo sapiens and Mus musculus (Ensembl release 98).
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TABLE 4.8: Clupeiformes species studied. Species, tissues, sequenced
bases and accession numbers of the species used in the study of Clu-

peiformes. Gbp: giga base-pairs.

Species Source Gbp Transcripts Accession num-
ber

Tissues

D. clupeoides NCBI
Annotation

- 59,645 GCF_900700375.1 -

E. encrasicolus Illumina
HiSeq 2000

15 719,059 PRJNA261165,
PRJNA348159

Juveniles,
Kidney,
Liver, Muscle,
Ovary, Testes.

C. nasus Illumina GAII,
HiSeq 2000,
HiSeq 2500

55 885,281 PRJNA235378,
PRJNA242212,
PRJNA251948,
PRJNA315471

Liver

C. pallasii Roche 454 GS
FLX Titanium

0.6 19,004 SRX022719,
SRX082042

Liver, Testes

C. harengus NCBI
Annotation

- 46,203 GCF_900700415.1 -

K. punctatus ENA TSA - 69,974 GHHF01000000.1 Muscle, Liver,
Gill, Heart,
Kidney, Swim
Bladder,
Sexual Gland

T. ilisha Illumina
HiSeq 2500

6 107,804 PRJNA396091 Liver

B. tyrannus Illumina
HiSeq 2000

18 266,785 PRJNA276563,
PRJNA281114

Testes

A. alosa Illumina
HiSeq 2000

66 734,830 PRJNA256955 Bones, Brain,
Gills, Heart,
Intestine,
Kidney,
Liver, Muscle,
Ovary, Testes.

A. pseudoharengus ENA TSA - 216,529 GFCK01000024 Gill
S. pilchardus Illumina

HiSeq 2000
6 198,597 PRJEB18441 Brain, Eye,

Heart, Kidney,
Liver, Muscle,
Ovary, Skin,
Testes.

S. sagax Illumina
GAIIx

5 196,984 SRR7955963 Liver

Since we are only interested in protein coding sequences, they were extracted using
TransDecoder following the smsk_trinotate pipeline (see Section 4.1.4).

The remainder of this section explains the smsk_selection pipeline (Table 4.1). Briefly,
it consists of three steps: 1) the clustering of all the species transcripts into gene fam-
ilies, 2) the construction of the species tree, and 3) the detection of positive selection
of genes and functional groups of them.
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4.5.2 Clustering

The first step involves the clustering of the transcripts into genes. There are four
problems when trying to group transcripts of multiple species into a single gene
cluster. The first is alternative splicing, in which a single gene produces multiple
transcripts. The second is the Teleost-Specific WGD, which may misguide the clus-
tering step by merging duplicated genes present in all species into a single cluster.
The third is that evolution shapes gene evolution in different manners, modifying,
deleting and duplicating genes when necessary. The fourth problem is that gene
expression is tissue-specific, and therefore it is not possible to discern between un-
expressed and deleted genes.

First, protein-coding sequences for the 24 species (12 clupeid and 12 non-clupeid)
were clustered separately with CD-HIT-EST (W. Li & Godzik, 2006) with a sim-
ilarity threshold of 99.5% to remove within-species redundancy. Then, all non-
redundant CDS were clustered together with OrthoFinder (Emms & Kelly, 2019)
to predict orthogroups (clusters of homologous sequences - putative genes or gene
families) across all species. This program first performs an all-vs-all Diamond search
(Buchfink et al., 2015) of the translated CDS sequences, then normalizes the results
through their bit scores and taking into account sequence lengths and phylogenetic
distances, and then performed clustering with MCL (van Dongen & Abreu-Goodger,
2012). Subsequent steps on the pipeline include the inference of the species tree
(Emms & Kelly, 2017), and the separation of the orthogroups into orthologs and
their phylogenetic trees associated.

An additional separation and refinement of the orthogroups is done through the
methods presented in Y. Yang and Smith (2014). It consists of two rounds of protein
realignment with MAFFT (Katoh & Standley, 2013), column trimming with pxclsq
(Brown et al., 2017), tree inference with RAXML-NG (Kozlov et al., 2019), using the
WAG protein evolution model (Whelan & Goldman, 2001), trimming of tips of the
trees that had an absolute length of 2 or a relative length of 10 times its sister tip
(trim_tips.py), removal of tips from the same species with fewer characters while also
removing the paraphyletic ones (mask_tips_by_taxonID_transcripts.py), and removal
of deep paralogs (tips with a branch length greater than 0.5; cut_long_internal_-
branches.py).

Then, high-quality orthologs were predicted using the Root-to-Tip method (prune_-
paralogs_RT.py), which takes into account gene duplication events, in particular the
Teleost-Specific WGD. Then, non-clupeid species were used as outgroups and re-
moved from all the clusters.

Given that alignment errors are an important source of false positives when search-
ing for Positive Selection (Löytynoja, 2014; Redelings, 2014), a more stringent proce-
dure was applied to align CDS and proteins, made up also of two rounds of align-
ment and refinements. First, proteins were realigned with M-Coffee (Wallace et al.,
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2006), which aligned independently each orthogroup with Muscle (Edgar, 2004),
MAFFT (Katoh & Standley, 2013), T-Coffee (Notredame et al., 2000), and kalign
(Lassmann et al., 2009). These alignments were then evaluated, and columns with
a score below 9 (out of 9) were removed. Finally, proteins were back-translated to
CDS, where columns with occupancy below 50% were removed with pxclsq, and
rows rich in gaps were removed too with MaxAlign 1.1 (Gouveia-Oliveira et al.,
2007) using default settings. Clusters were reprocessed again, and were the ones
used to build the species tree and to search for positive selection.

4.5.3 Species Tree Construction

Due to the redundancy of the genetic code, multiple codons encode the same amino
acid. Four-fold degenerate sites are the positions in the third base of codon align-
ments that produce the same amino acid no matter what mutation occurs in that
position. Therefore, a phylogeny built on these positions minimizes the effects of
positive selection over the species tree (Eyre-Walker & Keightley, 1999; Nachman &
Crowell, 2000). Four-fold degenerate sites were extracted from all the orthogroups
previously aligned, and were concatenated into a supermatrix, requiring each or-
thogroup to contain at least four taxa. Then, columns were removed if they had oc-
cupancy of less than 50% with pxclsq, and converted to PHYLIP format. ModelTest-
NG (Darriba et al., 2020) was used to estimate the optimal evolution model to con-
struct the phylogenetic tree. Then, RAxML-NG was used to obtain the Maximum
Likelihood (ML) tree, performing 1,000 bootstrap replicates. Finally, ExaBayes 1.5
(Aberer et al., 2014) was run to obtain the Bayesian phylogenetic species tree, using
the ML tree as the starting tree, four independent MCMC runs, 3 coupled chains,
and one million generations each, and sampling every 500 generations. The sdsf
and postProcParams programs were run to ensure that the split frequencies, scale
reduction factors, and effective sample sizes were close to zero, one, and 200, re-
spectively. Finally, using the bootstrap replicates, a consensus unrooted tree was
generated, and from this one, a rooted version was generated with pxrr using D.
clupeoides as outgroup.

4.5.4 Finding Signals of Positive Selection

To find genes under Positive Selection, we used the branch-site test (Zhang et al.,
2005). This method studies the ratio between nonsynonymous (dN) to synonymous
(dS) substitutions, denoted by ω (ω = dN/dS), in the branch of interest (the fore-
ground branch) compared to the remainder (the background). On the one hand, the
null model assumes that the evolution speed of the foreground branch is strictly less
than one (ω f < 1), i.e., there is conservation in this branch, no matter what is hap-
pening in the background. On the other hand, the alternative hypothesis allows four
situations:

• Codons are conserved in both branches: 0 < ω f , ωb < 1,
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• Codons are evolving neutrally: ω f = ωb = 1,

• The foreground branch is under positive selection, while the background is
evolving neutrally: ω f > 1 = ωb, and

• The foreground branch is selected, while the background is fixed: ω f > 1 > ωb.

For each branch and ortholog analyzed, a likelihood ratio test (LRT) is used to com-
pare whether the alternate model fits better than the null hypothesis by comparing
it to a χ2 test.

The go-to program to compute these tests is CodeML, part of the PAML’s package
(Z. Yang, 2007), but instead we used ETE3 (Huerta-Cepas, Serra, et al., 2016) for
its convenience: it acts as an interface through the command line, avoiding design-
ing one control file per branch and orthogroup, parsing the very verbose outputs of
CodeML, and being able to plot each alignment, which contains also the p-values
and ω ratios for the different models used. Under ETE3, the models used are de-
noted bsA1 (the null hypothesis, branch-sites are under relaxation), and bsA (the
alternative hypothesis, branch-sites are under positive selection). Prior to testing for
selection, each orthogroup had to contain at least two species both in the foreground
and background branches.

Due to the sensitivity of the method to initial conditions (Z. Yang & dos Reis, 2011),
for every ortholog and branch, this LRT needs to be executed multiple times with
different starting values for ω0 (0.5, 1.0, and 1.5). Orthologs and branches were con-
sidered putatively under selection if the tests were found significant (p-value < 0.05)
in the three different starting points.

Since alignment error is a key source of false-positives (Markova-Raina & Petrov,
2011; Redelings, 2014), putatively selected orthogroups were processed again with
Guidance2 (Sela et al., 2015), a codon-aware probabilistic aligner known to produce
low rates of false positives compared to previous approaches. This program was
executed using PRANK (Löytynoja, 2014), performing 100 bootstrap alignments.
Low-quality positions in the alignments were removed this time with TrimAl 1.2
(Capella-Gutiérrez et al., 2009), using the automated feature, and taxa rich in gaps
were removed too with MaxAlign. Finally, a second step of detection of positive
selection was performed, this time with FastCodeML 1.3.0 (Valle et al., 2014), using
also the different starting ω0. As in ETE3, both foreground and background branches
had the requirement of a minimum of two species.

Mitochondria were analyzed and processed similarly, but separately since they have
their own genetic code. The 13 mitochondrial genes for all clupeoid species but
one (S. sagax) were downloaded from NCBI Gene and separated into 13 different
FASTA files. They were directly aligned with GUIDANCE2, trimmed with TrimAl
and filtered with MaxAlign, and searched for positive selection with ETE3 three
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times, one per starting point, using this time the vertebrate mitochondrial genetic
code.

All p-values from the two methods (ETE3 and FastCodeML) and three starting
points were merged across all orthologs and all branches analyzed, and corrected
with the Benjamini-Hochberg method (Benjamini & Hochberg, 1995). All ortholog-
branches with all corrected p-values under 0.05 were considered to be under positive
selection.

Since synonymous-site saturation may influence the reliability of the branch-site test
(Gharib & Robinson-Rechavi, 2013; Roux et al., 2014), CodeML’s free-ratio (b_free)
and one-ratio models (M0) were run again with ETE3 in the selected orthogroups-
branches. Orthogroup-branches with dS > 1 in both models were considered to be
under synonymous-site saturation, and therefore possible false positives.

Then, every high-quality orthogroup was annotated. Every transcript was searched
for homology against the Ensembl’s zebrafish transcriptome with DIAMOND’s
BLASTX implementation, matching each clupeid transcript to a single zebrafish
transcript, and therefore a zebrafish gene via the lowest e-value. Then, each or-
thogroup was matched to a single Ensembl gene identifier and gene symbol by a
majority vote of its constituent transcripts. If multiple orthogroups matched to the
same gene symbol, possibly due to a gene duplication event, a suffix of the form “-
n|m” was added, indicating that such an orthogroup is the copy number n out of m.
Orthogroups that did not match any zebrafish gene were simply given the symbol
“unknown” and added also a suffix. Tables with the equivalences between the ze-
brafish genes and their Gene Ontology (The Gene Ontology Consortium, 2019) and
Reactome (Jassal et al., 2020) annotations were downloaded from Ensembl’s Biomart
(Kinsella et al., 2011). Then, each orthogroup inherited the annotations of its corre-
sponding zebrafish gene. Additionally, gene family annotations and human to ze-
brafish ortholog equivalences were downloaded from the HGNC database (Braschi
et al., 2019) and Ensembl’s Biomart. Each clupeoid orthogroup inherited the gene
family annotation of their zebrafish ortholog, which in turn inherited it from its hu-
man equivalent. When possible, HGNC families were subdivided into subfamilies
for a more granular analysis. For example, the human “Aldo-keto reductase family”
could be subdivided into subfamilies “Aldo-reductase family 1” to “Aldo-keto re-
ductase family 7”. This division of the gene families can discover subfamilies under
positive selection while its superfamily is not.

Enrichment of Gene Ontology, Reactome, and HGNC clusters was analyzed with
the Bioconductor (Huber et al., 2015) ClusterProfiler package (Yu et al., 2012). This R
(R Core Team, 2020) package performs enrichment of any custom set of terms with
the enrich function and provides multiple forms to visualize the results. For the three
collections of terms, we used as the foreground those orthogroups that were selected
and had an annotation, and as the background list the set of orthogroups that were
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annotated. In both cases, terms associated with between 5 and 500 terms (minGs-
Size = 5, maxGsSize = 500) were kept to avoid very specific and non-specific cate-
gories, respectively. For each term, a Fisher exact test was performed (Fisher, 1934),
and all p-values were corrected by the Benjamini-Hochberg method (Benjamini &
Hochberg, 1995). Additional data processing and visualization were done with the
R Tidyverse metapackage (Wickham, 2017).

Finally, we tracked the number of times an orthogroup was positively selected, to
obtain which ones are under strong evolutionary pressure, putatively indicating not
only positive selection but also divergence.

This study demonstrates that selection has acted, among many other things, on the
transport and storage of lipids in Clupeiformes. These fishes are already known for
being a rich source of protein and lipids, particularly LC-PUFAs of the ω-3 kind, of
great importance for their protective health benefits.
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Chapter 5

Summary and Discussion of the
Results

The main summary of this Thesis is that RNA-Seq datasets are very powerful, both
in microevolutionary studies for a single species, or macro-evolutionary in multiple.
Since transcriptomes correspond to very functional regions in the genome, there is
nucleotide variability under huge selective pressure. Therefore, RNA-Seq is a very
information-dense reduced representation of the genome, and valid to study either
the effects of micro- and macro-evolution. To prove it, I developed computational
pipelines and applied them to discern the population structure of tench, or to ob-
tain the patterns of positive selection in the Clupeiformes order. In both cases, no
reference genome assembly was necessary.

5.1 Tench

The study presented in “A novel transcriptome-derived SNPs array for tench (Tinca
tinca L.)” (Kumar et al., 2019) is the first one generating genomic and transcriptomic
resources for tench. RNA libraries were generated including individuals of both
sexes under different metabolic rates, and two different tissues: brain and muscle,
in order to maximize transcriptome representation. Genome-wise, ten individuals
from six different locations scattered throughout the Eurasian continent were used
to maximize genotype variability.

RNA-Seq reads were successfully assembled into a transcriptome, whose quality
was assessed through the backmapping of the reads (96.54% to 99.38% success rate)
and the search of Actinopterygii SCOs (85.9% retrieved). Additionally, the trans-
criptome was annotated to obtain the identities of the genes found along with their
functions.

Among the 60,414 SNPs identified, 96 were used to design a chip aimed to perform
a population genetic study on Tench. This design resulted in a 96% conversion rate,
the highest reported to date.
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FIGURE 5.1: Structure analysis for tench]. Results from Structure
analysis for K = 2 (a) and K = 3 (b). Individuals corresponding to each
breed (Hungarian, Tabor) and gh gene phylogroup genotype (H: Hy-
brid; W: Western; E: Eastern) are separated with vertical white bars.
These clusters clearly indicate the differences between the two breeds,
but not between the gh gene genotypes. Figure reproduced from Ku-

mar et al. (2019).

A total of 140 tench fishes, from two different breeds and phylogroup origins, were
genotyped with the SNP markers obtained above. On the one hand, clustering re-
sults indicate that the most probable number of ancestries is two, which coincides
with the number of known phylogroups in this species, Western and Eastern phy-
logroups (Figure 5.1). Moreover, most individuals showed a mixed ancestry. Ac-
cording to our results, within both Tabor and Hungarian breeds, there were no ge-
netic differences between individuals with Western (W), Eastern (E) or Hybrid (H)
genotypes for the gh gene (Table 5.1). This result indicates that within each breed
there is gene flow between individuals of both phylogroups, Western and Eastern,
supporting the hypothesis that there is no reproductive isolation between the two
phylogroups (Kumar et al., 2014), at least in captivity. Beyond this hypothesis, our
results would support that, after several generations of mating, individuals of each
breed will consist of a mosaic of both phylogroups.

On the other hand, slight differences emerge when comparing individuals of the
Tabor and Hungarian breeds. However, six SNPs showed extremely high allelic
differences between breeds and were classified as outliers, i.e., under diversifying
selection. Among them, two SNPs were located in growth related genes. Knowing
that the Western and Eastern phylogroups show a 0.8% divergence in the gh (growth
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TABLE 5.1: Pairwise FST (below diagonal) and p-values (above diago-
nal) among tench breeds (Hungarian, Tabor) and gh gene phylogroup
genotype (H: Hybrid; W: Western; E: Eastern). FST value between the
two breeds was low but significant. Table reproduced from Kumar

et al. (2019).

Hungarian-H Hungarian-W Hungarian-E Tabor-H Tabor-W Tabor-E

Hungarian-H - 0.2022 0.1592 0.0000 0.0000 0.0000
Hungarian-W 0.0012 - 0.0429 0.0379 0.0000 0.0000
Hungarian-E 0.0025 0.0083 - 0.0787 0.0504 0.0000
Tabor-H 0.0619* 0.0000 0.0000 - 0.1973 0.3936
Tabor-W 0.0399* 0.0274* 0.0000 0.0054 - 0.0049
Tabor-E 0.0579* 0.0318* 0.0687* 0.0015 0.0218 -

hormone) gene sequence (Kocour & Kohlmann, 2011), the high allelic differentiation
observed between the Tabor and Hungarian breeds in growth-related genes led us to
hypothesize that the adaptive differences between the two breeds would arise from
a differential phylogroup composition at their foundation.

5.2 EXFI

In “EXFI: Exon and splice graph prediction without a reference genome” (Langa
et al., 2020), we show the development of EXFI (initials for Exon Finder), a tool to
efficiently split a transcriptome into exons, using WGS reads rather than a genome
assembly. EXFI relies on Bloom filters, a probabilistic data structure to store and
filter k-mers in a fast and memory-efficient way.

We measured the different parameters that affect the accuracy of the procedure: 1)
the inclusion of a pre-filtering step, 2) the allowed memory footprint, 3) the k-mer
length, and 4) WGS coverage. The results show that first, the pre-filter step decreases
the processing step at the same time that improves accuracy (Figure 5.2a). Sec-
ond,the test over the allowed memory consumption showed that for a 1 Gb genome,
4 GB are more than enough, showing minimal differences to higher quantities, and
therefore allowing processing on standard desktops and laptops. Third, the optimal
k-mer length was observed to be in the range of 23 to 35 bp, the first focused in Re-
call, and the second in Precision (Figure 5.2b). Finally, a WGS coverage between 25
and 40x is optimal, and that going beyond only increases both the runtime and the
number of errors introduced (Figure 5.2c).

EXFI was compared to ChopStitch, a similar tool, and GMAP, a reference-based tran-
script aligned, over a wide range of species and libraries. Human and zebrafish
simulations were generated to guide the optimal parameter discovery. Figure 5.2d
shows the results over the zebrafish dataset. Additionally, the method was tested on
Atlantic salmon and Atlantic herring, where WGS samples were pooled, and there-
fore variants should interfere with exon prediction. Finally, we tested the methods
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FIGURE 5.2: EXFI results. (a) Filtering and memory. Filtering the
WGS resulted in a huge decrease of the BF FPR and therefore higher
Precision, Recall and mapping rates. After filtering, memory usage
is not an issue anymore. (b) k-mer length. A k-mer length in a win-
dow between 25 to 35 resulted in an optimal equilibrium between
Precision and Recall. (c) Depth. An optimal depth between 20x to
30x is optimal. After that the method underperforms. (d) Compari-
son with other tools under the zebrafish dataset. EXFI outperforms in
any memory configuration the results from ChopStitch and GMAP.

on the mega-genomes of axolotl and sugar pine (32 and 21 Gbp, respectively), as
worst-case scenarios. Overall, GMAP was outperformed in every scenario, even
though it has at hand the true genomic sequence. In terms of BF FPR, precision,
recall and memory footprint, EXFI outperformed the methods, although ChopStitch
was faster (Table 5.2). The reasoning behind the differences in results over the two
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methods are the pre-filter step and also the exon processing criteria used to remove
false positive bases and exons.

TABLE 5.2: Performance of EXFI and the other two tools across dif-
ferent species. Best metrics across the three methods are marked in
bold. Memory, expressed in Gigabytes, represents the peak usage
in memory. EXFI obtained the best precision, while ChopStitch ob-
tained better recall. With respect to alignments to the genomes, EXFI
obtained the best mapping rates. Extracted from Langa et al. (2020).

Species Method Time Memory FPR1 FPR2 Precision Recall F1 Mapped Perfect

ChopStitch 1h41m54s 28.060 0.010 0.011 0.943 0.918 0.930 0.988 0.980
Zebrafish EXFI 2h35m15s 4.177 0.256 0.081 0.958 0.938 0.948 1.000 0.987

GMAP 40m19 6.567 — — 0.918 0.917 0.917 0.982 0.927
ChopStitch 4h28m58s 30.424 0.158 0.100 0.903 0.868 0.886 0.988 0.969

Human EXFI 6h32m49s 4.364 0.361 0.137 0.931 0.893 0.912 1.000 0.957
GMAP 1h11m25s 9.301 — — 0.883 0.884 0.883 0.985 0.907
ChopStitch 2h57m38s 8.657 0.010 0.010 0.883 0.887 0.885 0.985 0.975

Salmon EXFI 4h49m37s 4.466 0.080 0.042 0.901 0.904 0.903 0.999 0.987
GMAP 1h22m15s 9.320 — — 0.809 0.830 0.819 0.979 0.866
ChopStitch 49m53s 5.679 0.010 0.011 0.819 0.858 0.838 0.974 0.965

Herring ref. EXFI 1h25m6s 4.123 0.064 0.024 0.816 0.866 0.840 1.000 0.995
GMAP 19m8s 4.707 — — 0.949 0.941 0.945 0.983 0.935
ChopStitch 50m2s 5.705 0.010 0.011 — — — 0.972 0.871

Herring ass. EXFI 1h32m8s 4.111 0.068 0.026 — — — 0.986 0.823
GMAP 37m20s 6.564 — — — — — 0.921 0.578
ChopStitch — — — — — — — — —

Sugar pine EXFI 2d7h38m57s 60.090 0.090 0.031 — — — 0.997 0.903
GMAP 6h20m13s 55.371 — — — — — 0.956 0.673
ChopStitch 14h29m38s 29.629 0.202 0.142 — — — 0.851 0.772

Axolotl EXFI 1d3h20m50s 60.313 0.040 0.020 — — — 0.988 0.782
GMAP — — — — — — — — —

We applied the method to predict IEB in T. tinca, as we did for Objective 1 From the
original 266,578 transcripts, 1,072,772 exons were predicted, and from them 228,931
SNPs and 26,169 indels were predicted safe for genotyping. All IEBs proximal to
the 96 SNPs used for genotyping were found, showing a 100% Precision, although a
single SNP failed to be recognized, indicating also a 98.95% Recall.

In conclusion, EXFI predicts the splice graph from a transcriptome and WGS reads
without the need of a reference genome. Multiple parameters were studied and
optimized: read filtering, memory usage, k-mer length and sequencing depth. It was
tested under a wide number of datasets ranging in depth, heterozygosity, genome
length and complexity. A revisit on the tench dataset shows a 100% precision and
99% recall when finding SNPs. Also, low computational resources are needed to
carry on the decomposition. Finally, I demonstrate that this tool will be useful in
population genetic studies since it is capable of discovering hundreds of thousands
of safe-to-genotype SNPs, be useful to design a targeted capture assay (with Exome-
Seq in mind), and even expression chips, given that the exon composition is what
characterizes transcripts.
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5.3 European Sardine

The results of the sequencing effort made to build the European sardine trans-
criptome profile were presented in “Transcriptomic dataset for Sardina pilchardus”
(Langa et al., 2021). Anyway, before sending a boat to catch and dissect the samples,
it was necessary to decide what tissues were necessary to collect.

A complex computational study was performed to obtain the most number of tran-
scripts expressed, with the constraint of using a single Illumina HiSeq 2000 lane at
the time of our study: 180 million paired-end reads of 100 bp in length, or 36 Gbp.
Results over zebrafish showed that tissue diversity is much more important than
depth, even at the risk of losing tissue-specific and under expressed transcripts. No
matter the sampling depth, the mix of multiple tissues always outperformed any
single tissue for the same sequencing effort (Figure 5.3).
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FIGURE 5.3: Retrieved transcripts per library in zebrafish. Reference-
guided (a) and de novo (b) assembled transcripts are plotted according
to the library and sampling used. In both cases, the mix outperforms
any tissue for any depth. Also, the rank of every library changes with

respect to the methods, but not the mix.

Therefore, we obtained European sardines samples from a scientific bottom trawl
survey, from which nine tissues were dissected: brain, eye, heart, kidney, liver, mus-
cle, ovary, skin and testes. The assembly resulted in a transcriptome composed of
198,597 sequences, in which 85% of the Actinopterygii SCOs were found, and that
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97.8% of the original reads were placed into it. Annotation resulted in the identifica-
tion of protein-coding sequences, along with their functions. To our knowledge, this
is one of the widest datasets in Clupeiformes but non-model fishs, probably only
surpassed the ones from Pasquier et al. (2016), where 13 tissues of 23 fish species
were sampled.

This dataset opens the door to studies in population genomics such as the one pre-
sented in Objective 1. Also, it will facilitate the study of this species in the aqua-
culture industry, in areas such as the identification of stocks, the study of traits of
interest, and the comparative studies such as the ones done for Objective 4.

5.4 Clupeids

The results here explained will be published in the manuscript titled “Recurrent
positive selection of lipid trafficking genes in Clupeiformes” (Langa et al., n.d.). We
either obtained or assembled transcriptomes for twelve species of clupeids. The au-
tomation investment done in transcriptome assembly and CDS prediction from the
previous objectives and publications resulted in a head start in this one. Additional
automation in the form of the positive selection pipeline smsk_selection (see Section
XX) will surely help comparative analysis in any other group of species. In relation
with Objective 3, the optimal sampling strategy, transcriptomes derived over a wide
number of tissues (A. pseudoharengus, E. encrasicolus and S. pilchardus) performed
much better than libraries composed of smaller numbers of tissues but deeply se-
quenced, validating again the results from Objective 3 (Figure 5.4).

Given the absence of references in Clupeiformes, we had to fall back on a very inten-
sive and conservative transcript clustering into orthogroups, groups of highly simi-
lar sequences. This resulted in the grouping of an initial set of one million transcripts
into a more manageable set of high-quality 19,914 orthogroups, which correlates to
the around 25,000 protein-coding genes present in zebrafish.

Using four-fold degenerate sites, positions where positive selection should be min-
imal, and a Bayesian framework, we inferred a species tree with a 100% bootstrap
support. This tree (Figure 5.5) supports recent studies from Lavoué et al. (2013) and
D. Bloom and Egan (2018), based on a few mitochondrial and gene markers, and
disproves prior studies based on morphology and parsimony (Nelson et al., 2016).

After obtaining a clear phylogeny of Clupeiformes, we performed another round
of orthogroup refinement and an exhaustive search of positive selection in the eight
major subdivisions possible in the dataset generated, marked in red in Figure 5.5. In
total, we found 918 orthogroups under positive selection. Thanks to the annotation
of the orthogroups, we found over-represented six major sections of the genome:
1) the mitochondrial Electron Transport Chain, 2) the ribosomes and the translation
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FIGURE 5.4: BUSCO results over Clupeiformes. Transcriptomes de-
rived from assembled genomes obtained the highest results (D. clu-
peoides and C. harengus). These were followed by S. pilchardus, A. pseu-
doharengus, and E. encrasicolus, the ones derived from the widest num-
ber of tissues. The set of the Actinopterygii SCOs consists of 4,584

sequences.

machinery, 3) lysosomes, 4) caveolae, 5) cluster of differentiation molecules, and 6)
the set of extracellular proteins (Figure 5.6).

Further inspection of the results yielded more important insights. We observed
positively selected genes related to the transport and storage of lipids, apolipopro-
teins, and many of their receptors and mediators, involved in extra- and intracellular
cholesterol trafficking. In particular HDL apolipoproteins were found under selec-
tion in multiple branches, suggesting selection for the Reverse Cholesterol Trans-
port, the transport of excess cholesterol from peripheral tissues to the liver, where it
can be transformed into other cholesterol hormones or removed via the intestines.
Additionally, genes were found in the supply of lipids into peripheral tissues via
LDLs and intracellular trafficking of these macromolecules. Contrary to what one
would expect, most marine species lack the ability to completely synthesize LC-
PUFAs (Garrido et al., 2019). However, they present a richness of LC-PUFAs un-
matched by any other fish. This paradox, together with the bioenergetic require-
ments for overwintering, lead us to hypothesize that these species are under enor-
mous selective pressure to store lipids in general, LC-PUFAs in particular, as their
evolutionary strategy to store energy and survive. Further studies will be necessary
to verify this hypothesis. On a final note, this study has compiled into an automated
and user-friendly pipeline the complex methods sections from previous multiple pa-
pers. This pipeline is species-agnostic and therefore can be applicable to any other
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FIGURE 5.5: Bayesian phylogenetic tree of Clupeiformes. Consen-
sus phylogeny inferred by ExaBayes and four-fold degenerate sites.
Branch length represents the number of observed mutations. All
branches obtained 100% bootstrap support. Branches marked in red

are the ones tested for selection in the branch-site test.

taxonomic rank. The elimination of such a great barrier will surely allow any com-
putational biologist to study her own hypotheses.
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olae, 5) CD molecules, and 6) extracellular proteins. Adapted from

Langa et al. (n.d.).
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5.5 Future Perspectives

Taken together the four publications presented, we can define a multiple stage ex-
perimental design to study non-model species.
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FIGURE 5.7: Schematic representation of this Thesis, along with its
possible applications. Parallely to this thesis, we carried out the study
of selective sweeps in local breeds of sheep, and to characterize popu-
lations of honeybees across the European continent. The use of Pool-
Seq is key to account for the total genetic variability. The introduction
of EXFI allows us to design not only SNP chips, but to design ex-
pression arrays and exon capture chips. Moreover, the application of
this approach to multiple species allows the design of exon chips of

conserved regions.

In Langa et al. (2021) we demonstrated that a shallow but multi-tissue RNA-Seq
study can effectively represent the protein coding part of the genome. Second, EXFI
(Langa et al., 2020) effectively decomposes the transcriptome into exons. Therefore,
when considering population genetics studies in non-model organisms, in a first
stage, we propose to perform shallow RNA-Seq over the widest number of tissues,
accompanied by shallow WGS of a few individuals from a small number but diverse
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populations. Then, EXFI can be applied to identify polymorphic SNPs with a sub-
sequent genotyping success rate close to 100%. Finally, we can use them to perform
population genetics studies, such as the ones done in Kumar et al. (2019). For pos-
terior studies, moving from a micro to a macro scale study, in terms of the number
of SNPs, individuals and populations analyzed, two non-exclusive options open in
front of us:

1. Design a SNP chip, taking into account all the exons and SNPs discovered, to
genotype hundreds to thousands of individuals and/or loci in a single assay.

2. Design an Exome-Seq chip to capture exon fragments and discard intergenic
and intronic regions of the genome, and then sequence hundreds of individu-
als, either individually or in a Pool-Seq fashion, over a much larger number of
populations, and then perform Population Genetic studies.

Either approaches appear as alternatives to GBS and RAD-Seq, which rely on restric-
tion enzymes and fragment size selection in order to sequence a small fraction of the
genome, and then extract markers from polymorphic markers. The works presented
in this thesis, along with the ones that this is based on (Genomic Resources Develop-
ment Consortium et al., 2015; Montes et al., 2013; see Figure 5.7), they focus on SNPs
derived from protein-coding sequences, which are more informative, because they
not only report genomic variation, as is the case with most RAD-Seq and GBS se-
quences, but also on their function. In addition, taken together that most mutations
are neutral, and that the protein-coding sequences of the genome is under very se-
lective pressure, the observed SNPs are of great importance in evolutionary studies.
Going even further, the use of RNA-Seq and transcriptomes across multiple species
can be combined as done in the study of Clupeiformes, whereas the same can not be
said for RAD-Seq and GBS since the studied genome-fragments vary from species
to species.

Finally, following the approach developed and applied in this Thesis, exon decom-
position of multiple species can be achieved over independent studies, and then,
they can be integrated to compose an order-specific (or any other taxonomic rank)
chip of conserved exons. The purpose of this chip is to sequence both the conserved
exons and their flanking regions to apply it to an even higher number of species in
a taxon, as done in the Ultra Conserved Elements approach (Faircloth et al., 2012).
Following this train of thought, a recent advance in nanopore sequencing (Payne
et al., 2021), promises the selective sequencing of regions of the genome. Briefly,
nanopores accept or reject the molecule it is sequencing according to a target list.
This way, fragments whose start coincide with a known exon are processed, and
those who do not are rejected on the spot. Moreover, once a certain coverage for our
sequences of interest is achieved, it can start rejecting them too. This technological
advance undoubtedly highlights even more the importance of approaches such as
EXFI, that provide necessary reference sequences without an initial huge investment.
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Another example of our efforts to reduce both economic and computational costs are
two studies by our group that used Pool-Seq approaches instead of whole genome
individual sequencing. They resulted in two publications made in parallel to this
thesis. The first one was aimed to discover selective sweeps in two native sheep
breeds of the Basque Country, the Latxa and Sasi Ardi, using classical population
genetics statistics (Ruiz-Larrañaga et al., 2018). The latter, in turn, motivated the
same Pool-Seq approach to discern honey bee subspecies across Europe (Momeni
et al., 2021) in this case using machine learning approaches. Moreover, a third ar-
ticle (Chen et al., n.d.) underscores the power of Pool-Seq versus individual whole
genome sequencing: Pool-Seq is much cheaper and the overall genetic population
structure is still retrieved.

In summary, this thesis has presented a multidisciplinary effort to study fish species
under the light of evolution at two different time-scales. First, I studied the recent
adaptations of two cultured breeds of tench. Then, I studied the two immediate
improvements to the methodology used: a faster and accurate exon decomposition
with EXFI, and a better transcript sampling strategy in the European sardine. Finally,
through the combination of multiple datasets, I studied the genes and processes un-
der positive selection in Clupeiformes. Thus, the bioinformatic resources generated
in this Thesis together with the results and new hypothesis generated in both evo-
lutionary studies will surely guide future studies, not only in the fishes here studied
but also in any other species.
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Tench

• Based essentially on the genetic homogeneity observed between individuals
with Western, Eastern and Hybrid gh genotypes within breeds we hypothe-
sise that Tinca tinca cultured individuals in Central Europe would be mosaics
of the Western and Eastern phylogroups, while adaptive differences observed
when comparing the Hungarian and Tabor breeds would support a differential
phylogroup composition at their foundation

EXFI

• The EXFI computational tool developed in this Thesis partitions a transcrip-
tome into exons while avoiding genome assembly. It uses probabilistic data
structures, and it performs the best in terms of memory footprint, accuracy,
retrieval and exon mapping in almost all scenarios and metrics, regardless of
ploidy or genome size, and shows an accuracy of a perfect mapping of >98%
in fish species, making it accurate enough to design exome-level SNP chips.

Sardine

• To obtain a comprehensive transcriptome in a non-model species, we recom-
mend using the maximum number of tissues and the minimum number of
individuals. Our results make it clear that, regardless of sampling depth, mul-
tiple tissues always outperformed any single tissue for the same sequencing
effort.

• This Thesis provides one of the most complete transcriptomes in non-model
species: an assembled and annotated version of the European sardine. It also
provides the expression profiles of nine tissues. These genomic resources have
great applicability in studies aimed at investigating the adaptive mechanisms
and sustainable management of this species with such an important ecological
and economical impact.
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Clupeids

• In this study, a dataset of 12 Clupeiformes transcriptomes was generated to
perform the comparative analysis that successfully resolved the phylogeny of
the Clupeiformes supporting recently published phylogenetic trees based on a
few nuclear and mitochondrial genes, and at the same time disagreeing with
previous studies based on morphological characters.

• The phylogenetic tree constructed in this Thesis also served to identify 918
genes under positive selection, which overrepresented six major sections of
the genome: the mitochondrial electron transport chain, ribosomes, lysosomes,
caveolae, CD molecules and extracellular proteins.

• Positive selection was observed especially focused on genes related to extra-
and intracellular lipid trafficking. This is particularly interesting because of the
high lipid content in Clupeiformes and their high bioenergetic requirements
during hibernation. All this suggests that in Clupeiformes lipid storage is an
evolutionary driver for energy storage to ensure survival.

General Conclusions

• This PhD shows through two case studies that RNA-Seq, combined with fast
and accurate exon decomposition and extensive gene sampling, provides an
efficient surface on which to base phylogeographic and evolutionary studies
of non-model organisms. In addition, being a cheap and efficient approach,
resources can be reallocated by investing them in the number of populations
and species studied.

• Based on the proposed multi-species RNA-Seq strategy, it is possible to design
targeted capture chips from conserved exons, which would facilitate, cheapen
and increase the resolution of microevolutionary and macroevolutionary stud-
ies in non- model species.
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Appendix A

Article 1. Tench

Kumar, G., Langa, J., Montes, I., Conklin, D., Kocour, M., Kohlmann, K., & Estonba,
A. (2019). A novel transcriptome-derived SNPs array for tench (Tinca tinca L.). PLOS
ONE, 14(3), e0213992. https://doi.org/10.1371/journal.pone.0213992.

Article co-authored with Dr. Girish Kumar.

TABLE A.1: Quality Metrics for PLoS ONE in 2019.

PLoS ONE 2019 - Web of Science

Category Multidisciplinary Sciences
Impact Factor 2.740
Rank 27/71
Quantile Q2

PLoS ONE 2019 - Scopus

Category Multidisciplinary
CiteScore 5.2
Rank 10/111
Quantile Q1

https://doi.org/10.1371/journal.pone.0213992
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Abstract

Tench (Tinca tinca L.) has great economic potential due to its high rate of fecundity and

long-life span. Population genetic studies based on allozymes, microsatellites, PCR-RFLP

and sequence analysis of genes and DNA fragments have revealed the presence of Eastern

and Western phylogroups. However, the lack of genomic resources for this species has

complicated the development of genetic markers. In this study, the tench transcriptome and

genome were sequenced by high-throughput sequencing. A total of 60,414 putative SNPs

were identified in the tench transcriptome using a computational pipeline. A set of 96 SNPs

was selected for validation and a total of 92 SNPs was validated, resulting in the highest

conversion and validation rate for a non-model species obtained to date (95.83%). The vali-

dated SNPs were used to genotype 140 individuals belonging to two tench breeds (Tabor

and Hungarian), showing low (FST = 0.0450) but significant (<0.0001) genetic differentiation

between the two tench breeds. This implies that set of validated SNPs array can be used to

distinguish the tench breeds and that it might be useful for studying a range of associations

between DNA sequence and traits of importance. These genomic resources created for the

tench will provide insight into population genetics, conservation fish stock management, and

aquaculture.

Introduction

Tench (Tinca tinca L.) is a freshwater fish species within the Cyprinidae family that spawns

and grows ideally at water temperatures of 20–29˚C [1, 2]. Its native distribution is Eurasia;

however, due to human-mediated movement, tench can also be found in temperate and tropic

freshwater regions across the globe [3]. Due to its attractive appearance and specific meat fla-

vour, tench has relevant economic importance and is commonly used in aquaculture and
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sport fishing [4]. For example, tench farming is a common aquaculture activity in Europe and

has recently expanded to China [5]. All of these facts motivate the increase of its annual global

aquaculture production [6] of about 1400 tons [7].

Tench has very interesting features that set the species apart from other members of the

Cyprinidae and that have popularized tench as an experimental model [8]. These include: an

unequivocal body colour, normally green to brown-green, with golden, blue and albinotic phe-

notypes also existing [9]; small and hardly visible scales deeply embedded into the dermis;

obvious sexual dimorphism in pelvic fins [4], specific reproductive biology [1]; low incidence

of viral and bacterial diseases but high susceptibility to some chemical compounds [10]; and

monophyletic origin (all descendants of a common ancestor) within Tinca genus [11]. Genet-

ics studies have also shown that tench is still a diploid species (2n = 48) [12], which is advanta-

geous for some genetic studies, compared to many cyprinids that are polyploid species [13].

Genetic studies on tench have until now been based on allozymes [14, 15], microsatellites

[16, 17], PCR-RFLP [18, 19] and sequence polymorphism of genes and DNA fragments [20–

22]. These studies have revealed the existence of Western and Eastern phylogroups [6, 19].

Individuals from both phylogroups have undergone natural and human-aided hybridization

and this has produced hybrids that appear in natural water bodies as well as in cultured stocks

along Europe.

The rapid development and application of sequencing technologies is now permitting

researchers to discover thousands of SNPs at relatively low cost compared to the traditional

Sanger sequencing method [23]. Transcriptome sequencing is considered a cost-effective strat-

egy for discovering SNPs in non-model species. In fact, as a transcriptome is directly associated

with functional regions in a genome, transcriptome-derived SNPs can be informative for adap-

tive variation [24–26] and they can be used not only for assessing population genetic structure,

but also for genomic selection for traits of interest to aquaculture such as growth, sex determi-

nation or disease resistance (e.g. [27–29]). Given these advantages, SNPs derived from tran-

scriptomes have been widely discovered and studied in many fish species [29–42].

The aim of this study was: to discover and validate transcriptome-derived SNPs in T. tinca,

based on the strategy designed by Montes et al. and successfully applied in other fish species

[38, 43]. The SNPs array was then used to disentangle the population genetic structure of two

cultured tench breeds (Tabor and Hungarian), previously identified as stocks representing

mixture of haplotypes out of both phylogroups [22].

Materials and methods

Ethics statement

The handling and usage of experimental fish in this study was done in accordance with the

Czech Act. No 256/1992 Coll. as amended under supervision of the Institutional Animal Care

and Use Committee (IACUC) of the University of South Bohemia (USB), Faculty of Fisheries

and Protection of Waters (FFPW) in Vodňany. The USB FFPW has approval of the Ministry

of Agriculture of the Czech Republic for handling and usage of experimental animal’s ref. no.

16OZ15759/2013-17214. The presented study was included in the planned activities dealing

with study of biodiversity, genetic, physiological and reproductive variability and performance

of selected freshwater fish species. The experimental stock was reared under the common

semi-intensive pond management conditions. The fish sacrificed for the study were euthanized

in accordance with the Ordinance no. 419/2012 Coll. as amended. The fish were euthanized by

blow into the head using a blunt object and bleeding. One of the co-authors was present during

handling and processing the fish owned the certificate (no. 0135/2000-V3) which allows him

to conduct and manage experiments involving animals according to the above mentioned act.

Transcriptome-derived SNPs array for tench
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Sample collection

In the methodology followed for SNP discovery, two samplings (corresponding to the two

sequencing approaches) were performed; one for transcriptome sequencing, and another for

genome sequencing.

For transcriptome sequencing, 4 tench individuals (2 males and 2 females) were sampled.

The sampled individuals belonged to two metabolic activities (summer season with 20˚C

water temperature, and winter season with 4˚C water temperature) and two breeds (Hungar-

ian and Tabor) cultured in Vodňany, Czech Republic since 1990’s [44] (present Faculty of

Fisheries and Production of Waters, University of South Bohemia in České Budějovice). The

Tabor breed was established by collecting fish from ponds of a Czech county, and the Hungar-

ian breed by introducing the tench from Hungary. To increase the homozygosity, inbreeding

and gynogenesis within each breed were applied. Both breeds, containing approximately 120

adult individuals, have been maintained to date by intra-linear mating only for 6 generations.

Previous studies on these fish have shown that both breeds have gene pools mixed of both

Western and Eastern phylogroups [22, 45]. The transcriptome changes according to genes

expressed. Expression of various genes depends on many inner and outer factors (e.g. fish age,

health status, phase of reproductive cycle, weather, season—growing or wintering etc.). That is

why we sampled fish in winter (no-growing season) and summer (growing season) in order to

cover different genes expressed in mature 4-year old fish. Each fish was humanely sacrificed

and two different tissues were collected- whole brain (without pituitary) and back muscle

(approx. 1 g) and immediately frozen in liquid nitrogen, and stored at -80˚C until RNA extrac-

tion was performed. We had eight initial tissue samples, though two (brain in both cases) were

not suitable for sequencing due to RIN values below 8. The remaining six samples (two of

them in duplicate) were used for library construction and Illumina sequencing (S1 Table).

For genome sequencing, a total of ten tench individuals from six different locations were

collected (S2 Table) in order to cover maximal available genetic diversity, including phy-

logroup origin of tench species. Samples were taken from the tench tissue collection of Leibniz

Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany and they represented

populations throughout Neighbor-joining trees inferred from studies focused on genetic

diversity of the growth hormone (GH) gene [22], microsatellites [17] and mitochondrial DNA

[18].

RNA and DNA extraction

Total RNA was isolated using Qiazol lysis reagent (Qiagen). The isolated RNA was quantified

with a Nanodrop 2000 (Thermo Scientific) and integrity of RNA (RIN) was determined using

an Agilent 2100 Bioanalyzer (Agilent Technologies). Samples with RIN values above 8 were

used for RNA sequencing, and used for library construction and Illumina sequencing. Accord-

ing to the RNA quality standards, six samples were sequenced (S1 Table).

Genomic DNA was isolated from muscle, fin or blood samples using the peqGOLD Tissue

DNA Mini Kit (Peqlab Biotechnologie) following manufacturer instructions. The quantity and

quality of DNA was measured with Qubit 2.0 Fluorometer and 0.8% agarose gel electrophore-

sis. The DNA samples with concentrations� 50 ng/μl, 260/280 ratios of 1.8–2.0 and clear high

molecular weight bands on the gel were used for genome sequencing. An equimolar amount

of total DNA was then pooled for the library preparation.

Library construction and Illumina sequencing

A multiplex sequencing library was prepared by labeling each sample (six RNA samples, two

of them replicated; and two DNA pools) with specific 10-mer barcoding oligonucleotides.

Transcriptome-derived SNPs array for tench
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Transcriptomic and genomic libraries were sequenced in a single lane of Illumina HiSeq2000

and HiSeq2500 platforms, respectively. Sequencing reactions were performed separately for

transcriptome and genome with paired-end 101 bp and 126 bp reads, respectively. Sequencing

was performed at CNAG- Centre Nacional d’Anàlisi Genòmica, Barcelona, Spain. All

sequence data have been submitted to NCBI’s submission portal under the BioProject acces-

sion number PRJNA414567.

Genome size estimation

We estimated the genome size of Tinca tinca by means of the frequencies of the kmers in the

DNA reads. Reads were processed with Jellyfish 2.2.10 [46] using the count subcommand with

a kmer size of 25. The frequencies were computed using the histo subcommand. Finally, the

genomic haploid length, along with the repetitive and unique contents and rate of heterozygos-

ity, was computed using the GenomeScope web service [47].

Transcriptome de novo assembly and annotation

Raw RNA reads were processed in a strict four-step procedure in order to obtain a high-quality

reference. First, adaptors and low-quality reads were removed with Trimmomatic v0.33 [48] by

deleting the first 13 nucleotides of the read. Removal of adapters was done with the ILLUMINA-

CLIP:TruSeq3-PE-2.fa:2:30:10 parameters by setting a minimum mean PHRED quality value of

10, trailing bases with quality value at least 20, and a minimum read length of 31 bases. Second,

contaminants indicated by the UniVec database were removed with SeqClean (https://

sourceforge.net/projects/seqclean/). Third, Trimmomatic was run on Single End mode to

remove low quality and excessively short reads with the following parameters: minlen:31 avgq-

ual:10 minlen:31 trailing:19 minlen:31 tophred33. Finally, the paired-end structure of the reads

was recovered with a custom script written in Python with help of the Biopython package [49].

After the transcriptome reads were trimmed, paired and unpaired high-quality reads (all

RNASeq data) were assembled into contigs using Trinity v2.0.6 [50]. The resulting transcrip-

tome was uploaded to NCBI Transcriptome Shotgun Assembly Sequence Database and it is

available at GenBank with accession number GFZX00000000.1. Full implementation of assem-

bly procedure is available at https://github.com/GenomicResources/ttin_assembly.

To measure the quality of the assembled transcriptome, we used a two-fold approach. First

we backmapped (with Bowtie2) the trimmed reads against the generated reference to measure

the fidelity of the assembly with respect to the reads. According to the authors of Trinity, tran-

scriptomes with mapping rates above 80% are considered good assemblies. Second, we used

BUSCO v3.0.2 [51, 52] to assess the quality of the assembly by searching for Actynopterygii Sin-

gle Copy Orthologs (SCOs). The program searches the homology between our transcriptome

and a set of precomputed proteins that are known to be conserved across the evolution of a

large set of species, classifying them as SCOs, conserved but duplicated, fragmented, or

missing.

Finally, TransDecoder v2.0.1 (https://transdecoder.github.io/) and Trinotate (http://

trinotate.github.io/) were used for transcriptome annotation and generation of a tench prote-

ome. Transdecoder is a pipeline that extracts the possible open reading frames (ORFs) from a

raw transcriptome to predict if it has homology with BLAST [53] against a protein reference

database like Swiss-Prot [54] (downloaded on August 2015), UniRef90 [55] (accessed on

August 2015), or homology via Hidden Markov Models with HMMER [56] (retrieved on

August 2015) by querying the Protein Families database (Pfam, [57]. Once ORFs are called

and possible homologies to elements in the different databases are hypothesized, a proteome is

generated.

Transcriptome-derived SNPs array for tench
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The next step in the procedure is the annotation of both the transcriptome and the pre-

dicted proteome developed as described above with Trinotate. It consists of homology

searches, as done in the TransDecoder step, with help of BLASTX, BLASTP and HMMER, to

then make use of a database (downloaded on August 2015) containing annotations from Gene

Ontology (The Gene Ontology Consortium, 2000), KEGG [58], and eggnog [59].

Chimeras and duplicated regions were filtered out from the assembled transcriptome with

stringent filters. First, contigs were quantified with Kallisto [60] and those with zero counts

were removed with help of the Sleuth R package [61]. Additionally, according to the generated

proteome, contigs with no coding potential were removed. Finally, genes that produce two or

more isoforms were deleted. These procedures were performed using custom scripts in

Python, R (R Core Team 2016), SAMtools [62] and Snakemake [63]. Implementation of the

annotation procedure is available online at https://github.com/GenomicResources/ttin_

trinotate. The resulting filtered transcriptome was used in the following steps of intron-exon

boundary (IEB) prediction and SNP discovery.

SNP calling and IEB prediction

Tench SNP calling was performed as described by [38]. Two parallel SNP calling approaches

were performed by aligning transcriptome (T2T) and genome (G2T) trimmed reads to the fil-

tered transcriptome. This alignment was performed with Bowtie2 in local mode [64]. In this

pipeline, PCR duplicates from both transcriptome and genome reads were removed using the

SAMtools rmdup command [62]. Subsequently, variants were called with SAMtools mpileup
command [62]. In order to avoid false SNPs, a maximum contig depth of 200x was set to avoid

both repetitive sequences and false positive local alignments; the minimum contig depth

allowed for T2T variants was 8x and 20x in the case of G2T variants in order to remove tran-

scripts with low coverage that could bias the SNP calling procedure; the minimum variant

count allowed for T2T variants was 2 high quality (HQ) bases (i.e., the alternative base appears

at least twice), and 3 HQ bases for G2T variants. This last filtering step requires the SNPs to

have higher MAFs when coverage is lower. After applying all of these filters, only common var-

iants present in both T2T and G2T SNP discovery approaches were considered as putative

SNPs. The implementation of the transcriptome filtering and SNP calling procedures is avail-

able online at https://github.com/GenomicResources/ttin_snps.

It is well known that genotyping procedures (for PCR based technology like fluidigm) will

fail if primers are spanning or otherwise close to intron-exon boundaries [65]. Therefore, the

filtered transcriptome reference was in silico assessed to detect IEBs as described by [66]. This

is done by mapping genomic reads to the transcriptome, and computing p-values for change
points. These are locations in the transcriptome where one or more genomic reads do not map

throughout their whole length but rather the mapping is initiated or terminated internally to

the read. Locations with low p-values represent a surprising number of change points at that

location, hence a likely IEB. Predicted IEBs are annotated and avoided during genotyping

primer design.

SNP genotyping and validation

A total of 140 tench samples belonging to two breeds (Tabor, N = 66 and Hungarian, N = 74)

were genotyped for selected subset of 96 candidate SNPs. Only one SNP per contig was chosen

and selection was not biased to any gene family. As growth-related traits are of main impor-

tance in most cultured fish species and growth hormone (GH) gene might be associated with

growth [6], the SNP array was within each breed also associated with GH gene genotype distin-

guishing alleles of Eastern or Western phylogroup haplotype. Assignment of an individual to

Transcriptome-derived SNPs array for tench
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Eastern (E) only, Western (W) only or hybrid (H) GH gene genotype was performed using the

sequence analysis of GH gene [22]. In the pure Western GH gene genotype the first GH gene

fragment including polymorphic side 1 (PS1) and the second GH gene fragment including

PS7 were 344 bp and 451 bp long, respectively, while the individuals of pure Eastern GH gene

genotype had fragments of 341 bp and 455 bp in length, respectively. In hybrids, haplotypes of

both phylogroups were observed (i.e. 341 and 344 for PS1 and 451 and 455 for PS7). Flanking

sequences of a subset of SNPs selected for validation were used for primers and probe design

according to Fluidigm Genotyping System requirements. After genotyping, SNPs were catego-

rized as no signal (unamplified SNPs), disperse (call rate < 80%), monomorphic (minor allele

frequency, MAF < 0.01) and psv (paralogous sequence variant; all individuals are heterozy-

gotes). For the conversion rate (proportion of all genotyped SNPs showing polymorphism), no
signal and disperse SNPs were discarded, while only polymorphic SNPs (no monomorphic, nei-

ther psv) were used for the estimating the validation rate (proportion of polymorphic SNPs

reliably scored in a sample of individuals). Polymorphic SNPs were uploaded to EBI’s Euro-

pean Variation Archive under the study accession number PRJEB23783.

Population genetic structure

For each polymorphic SNP, minor allele frequency, and expected and observed heterozygosi-

ties (He and Ho, respectively) were estimated using the software package GeneClass2 [67].

Deviations from Hardy-Weinberg equilibrium (HWE) were evaluated for each locus using

Fisher’s exact test implemented in GENEPOP 4.0 [68] with 10,000 dememorizations, 100 batches

and 5,000 iterations per batch.

To determine the genetic structure of tench individuals, genotype data were analyzed with

STRUCTURE 2.3.4 software [69]. The number of clusters k was determined by comparing log-

likelihood ratios in 10 runs for values of k between 1 and 10. Each run started with a burn-in

period of 10,000 steps followed by 100,000 MCMC replicates. The optimal k was estimated as

proposed by [69] and [70] and bar plots were generated using POPHELPER v1.0.7 [71].

Based on this initial structure, the Bayesian likelihood method implemented in BAYESCAN

2.1 [72] was used to detect loci under natural selection (outlier loci). BAYESCAN was run with

twenty pilot runs of 5,000 iterations, an additional burn-in of 50,000 iterations and prior odds

of 10 for neutral model. Critical values were adjusted with a false discovery rate (FDR) proce-

dure (q<0.1) [73]. Results of the outlier test were used to partition the SNP dataset into neutral

and outlier loci; i.e., markers presumably under natural selection. Those loci resulting as out-

lier were removed from prospective analysis, regarding neutral variation, and annotations of

the genomic regions including those loci were re-inspected.

Finally, neutral genetic differentiation and inbreeding were assessed. Neutral genetic differ-

entiation was estimated with unbiased FST (distance matrix: pairwise difference) [74] using

ARLEQUIN v3.5 [75]. Inbreeding was estimated with FIS [74] statistic using FSTAT software [76].

The statistical significance of FST and FIS was tested by 1,000 permutations for each pairwise

comparison. In all cases with multiple comparisons, error rates were corrected using the

sequential Bonferroni procedure [77].

Results

Transcriptome and genome sequencing

In total 32 million paired-end transcriptomic reads, with an average length of 101 bp, were

sequenced (S3 Table). In the case of genome, 316 million genomic reads with a read length of

126 bp were generated, encompassing 154 million reads generated for Western pool (19.6

Gbp), and 162 million reads for Eastern pool (20.4 Gbp). GenomeScope estimated that the

Transcriptome-derived SNPs array for tench
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Tinca tinca has a maximum genome size of 778,555,248 base pairs, where 599,234,146 base

pairs (76.97%) constitute unique regions (S4 Table; S1 Fig). Overall, genome sequences consti-

tuted an estimated 51.58x coverage of the tench genome.

Transcriptome de novo assembly and annotation

Trimming of raw transcriptome reads did not result in a significant removal of reads, but 16%

of nucleotides were discarded (S5 Table). The transcriptome de novo assembly consisted of

267,058 contigs (294.7 Mbp), which are the result of potentially 174,378 genes. The length of

the assembled contigs ranged from 224 bp to 23,703 bp with an average length of 1,103 bp (S2

Fig).

Given the high number of sequences that Trinity yielded, we assessed the quality of our

transcriptome by read mapping and by the contents of Single Copy Orthologs. On the one

hand, the backmapping method achieved mapping success rates between 96.54% and 99.38%

(S6 Table), suggesting therefore a good reconstruction of the Tinca tinca transcriptome. On

the other hand, BUSCO reported that the transcriptome contains 85.9% of the Actinopterygii

BUSCOs (where 40.4% are single copies), 6.7% are fragmented, and only 7.4% are completely

missing (S7 Table). We conclude that given that even though we only sampled two tissues

(muscle and brain) of Tinca tinca, this assembly is a good representation of the transcriptome.

According to the gene-isoform distribution in S3 Fig the distribution is skewed towards

genes composed by one transcript. There are 10,705 genes of that composition (out of 174,378

genes, 86.42%, and out of 267,058 isoforms, 56.43%). The mean of the distribution is 1.53 tran-

scripts per gene. As an extreme value, there is a gene (possibly a gene family) composed of 55

transcripts.

Regarding annotation, 89,832 transcripts were annotated (33.63%) as 126,187 proteins and

32,619 genes. From these, 64,676 transcripts (105,812 proteins and 9,295 genes) had a positive

match to the UniRef90 database with blastp (S8 Table); similarly, 101,606 contigs (39,169

genes) were positively mapped with blastx (S9 Table). In both cases, top reference transcripts

belonged to the same species: Danio rerio, Astyanax mexicanus, Oncorhynchus mykiss, Oreo-
chromis niloticus, and Ictalurus punctatus (S4 and S5 Figs; S10 Table).

Overall, 67,953 contigs (77,626 proteins and 22,996 genes) were positively matched to 5,054

different protein domains according to the Pfam database (S6 Fig). The five most popular

domains were: C2H2-type zinc finger (6.19%), Immunoglobulin domain (4.02%), Ankyrin

repeat (3.22%), Leucine rich repeat (3.06%), and Zinc finger, C2H2 type (2.58%; S11 and S12

Tables).

According to the EggNOG database, 43,291 contigs (43,366 proteins and 14,714 genes) had

a match against 3,338 different elements of the EggNOG database, including Serine Threonine

protein kinase (7.63%), repeat-containing protein (3.03%), Zinc finger protein (2.95%),

Ankyrin repeat (2.47%) and GTP-binding protein (1.27%) (S7 Fig and S13 Table).

Finally, Gene Ontology (GO) analysis showed 88,031 contigs (89,014 proteins and 30,345

genes). The highest number of GO terms was assigned to biological processes (48.63%) fol-

lowed by molecular functions (29.66%) while cellular component has the least assigned terms

(21.70%; S8 Fig). The three most commonly assigned GO terms in biological process category

were genes involved in Transcription, DNA-templated (2.03%), Regulation of Transcription,

DNA-templated (1.38%) and Signal Transduction (0.73%). In the molecular function ontology,

ATP binding (5.77%), Metal ion binding (5.32%), Zinc ion binding (4.08%) and DNA binding
(4.06%) were the most represented terms. The three major assigned GO terms for cellular

component were nucleus (10.51%), cytoplasm (10.35%) and integral components of the mem-

brane (7.26%; S9–S12 Figs; S14 and S15 Tables).

Transcriptome-derived SNPs array for tench
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SNP discovery and validation

According to kallisto, a total of 262,801 contigs (out of 267,058) had an expression value above

zero transcripts per million (TPM). Therefore 98.41% of the original assembly remained valid

for further analysis. From those, 89,832 contigs were identified as having no coding potential

and were discarded. Finally, contigs representing more than one isoform were also removed.

After all these filters, the transcriptome was reduced to 18,479 contigs spanning 20.32 Mbp.

The filtered transcriptome was used as reference for mapping genome (G2T) and transcrip-

tome (T2T) trimmed reads. The trimming process did not significantly decrease the number

of transcriptome or genome reads (S16 and S17 Tables). The mapping process resulted in

19.51% of genomic reads and 22.63% of transcriptome reads assigned to the filtered transcrip-

tome (S18 Table). From these mappings, a total of 131,188 G2T SNPs were called in 15,593

transcripts (8.41 G2T SNPs/transcript; Table 1), and 98,869 T2T SNPs were called in 13,721

transcripts (7.21 T2T SNPs/transcript). Together, G2T and T2T called 169,643 SNPs in 16,263

transcripts, but only 60,414 SNPs in 11,769 transcripts (5.13 SNPs/transcript) were common

to both sets. These 60,414 SNPs represented the final set of putative SNPs discovered in the

tench transcriptome.

Regarding IEB avoidance, 4,091 transcripts out of 18,479 were signaled as not having multi-

mapped reads (those that map to more than one transcript); and a total of 2,937 transcripts

contained one or more predicted IEB. A total of 16,764 IEBs were predicted (on average 5.70

predicted IEB per transcript). These predicted IEBs were annotated and avoided during geno-

typing primer design.

A set of 96 SNPs was selected based on IEB prediction analysis for validation and genotyp-

ing on Fluidigm Genotyping System. From the 96 SNPs that were genotyped, 4 (4.17%) were

categorized as no signal, while the remaining 92 SNPs were polymorphic with >80% call rate.

Therefore, conversion and validation rates of 95.83% were achieved.

Population genetics

Mean Ho and He for the Hungarian breed were 0.508 and 0.460, respectively. Similar levels of

Ho (0.455) and He (0.458) were found in the Tabor breed. Tests of deviation from HWE for

each locus revealed no significant departure from HWE after sequential Bonferroni correction.

The STRUCTURE analysis evidenced population structure with K = 2 (Evanno method; Fig 1A),

and K = 3 (Pritchard method; Fig 1B) being the most likely number of clusters. The average of

the mean posterior probability (LnP(D)) estimated from 10 independent runs on K = 2 and

K = 3 was -16533.7 and -16176.1, respectively. These clusters clearly indicate the differences

between the two breeds, but not between the GH gene genotypes (Fig 1).

A total of six SNPs were detected as being under diversifying selection (positive alpha val-

ues); this is, they show extremely different allele frequencies in the two breeds. These outlier

Table 1. Descriptive statistics of G2T, T2T and common discovered SNPs.

G2T T2T Common

Contigs with SNPs 15,593 13,721 16,263

Number of contigs in filtered assembly 18,479 18,479 18,479

Transcripts with SNPs (%) 84.38 74.25 88.01

SNPs number 131,188 98,869 169,643

Assembly size (bp) 20,316,163 20,316,163 20,316,164

Mean mutation rate (SNPs/bp) 0.006 0.005 0.008

SNPs per transcript 8.41 0.14 0.10

https://doi.org/10.1371/journal.pone.0213992.t001

Transcriptome-derived SNPs array for tench
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SNPs were located in the following genes: MRPL32 (39S ribosomal protein L32, mitochon-

drial), CENPF (Centromere Protein F), GRM1 (Glutamate Metabotropic Receptor 1), SPRY4

(Protein sprouty homolog 4), TRIP4 (Thyroid Hormone Receptor Interactor 4) and CN080

(Uncharacterized protein C14orf80 homolog) (Table 2). Of these six SNPs, all were found to

be synonymous mutations, except interestingly for the SNP within Activating signal cointegra-
tor 1 (see Table 2) which encodes for either a Val (hydrophobic amino acid) or a Ser (polar

Fig 1. Results from STRUCTURE analysis for K = 2 (a) and K = 3 (b). Individuals corresponding to each breed

(Hungarian, Tabor) and GH gene phylogroup genotype (H: Hybrid; W: Western; E: Eastern) are separated with

vertical white bars.

https://doi.org/10.1371/journal.pone.0213992.g001

Table 2. Annotation of selected loci based top BLAST hit and GO ontology.

Locus ID Genomic BLAST Hit GO ID e-

value

Gene function

TR107177|

c0_g1_i1

Sprouty homolog 4-like GO:001602 GO:0021594GO:0030097GO:0040037GO:004874

GO:0070373

0.0E0 P: Negative regulation of fibroblast growth factor

receptor signaling pathway; P: Rhombomere

formation; P: Skeletal muscle fiber development;

P: Hemopoiesis; P: Negative regulation of ERK1

and ERK2 cascade; C: Membrane

TR57930|

c0_g1_i1

Centromere F GO:0008134GO:0042803GO:0045502 0.0E0 F: Protein homodimerization activity; F:

Transcription factor binding; F: Dynein binding

TR48380|

c0_g1_i1

39S ribosomal L32,

mitochondrial

GO:0005743GO:0005762GO:0003735GO:0016787GO:0006412 2.2 E-

105

F: Structural constituent of ribosome; C:

Mitochondrial large ribosomal subunit; C:

Mitochondrial inner membrane; F: Hydrolase

activity; P: Translation

TR71953|

c0_g1_i1

Metabotropic glutamate

receptor 1-like isoform

X1

GO:0016020GO:0004871GO:0007165 1.1E-

153

P: Signal transduction; C: Membrane; F: Signal

transducer activity

TR96558|

c0_g1_i2

Activating signal

cointegrator 1

GO:0005634GO:0003713GO:0008270GO:0006366GO:0045893 0.0E0 C: Nucleus; F: Zinc ion binding; F: Transcription

coactivator activity; P: Positive regulation of

transcription, DNA-templated; P: Transcription

from RNA polymerase II promoter

TR56671|

c0_g1_i1

Uncharacterized protein

C14orf80 homolog

isoform X1

- 0.0E0 -

https://doi.org/10.1371/journal.pone.0213992.t002
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amino acid). Since this substitutes a polar amino acid for a hydrophobic one, this SNP may

lead to a change in protein function and should be further explored. Functional annotation

revealed that most of these genes encoded proteins involved in transcription and translational

regulation and structural organization of ribosome and mitochondria. Apart from these, the

annotated gene Sprouty homolog 4-like was found to be involved in regulation of fibroblast

growth and skeletal muscle fiber development, suggesting that the studied tench breeds might

be adapted to different environments that affect growth related genes.

After removing the 6 outlier SNPs, a set composed of 86 SNP markers was used for studying

neutral genetic differentiation and inbreeding. Pairwise FST estimates, within each breed,

among E and W phylogroups and EW hybrid (H) were not significant; in contrast, all FST val-

ues were significant when pairwise comparisons between the two breeds were tested (Table 3).

Overall, FST value between the two breeds was low but significant (FST = 0.0450, p-value <

0.0001). Additionally, FIS within each breed was not significant, indicating homogeneity

within breeds. In summary, individuals within breeds show homogeneous allele frequencies

without regard to GH gene genotype, whereas individuals of the two breeds (even if they both

are a mixture of E and W phylogroup haplotypes) are genetically different. Genotyping results

of all 92 SNPs markers have also been included in the S19 Table.

Discussion

The major challenge of transcriptome-derived SNPs is marker “drop-out” during the valida-

tion step; the most significant factor is if a SNP spans an IEB. For instance, 64% of genotyping

failures have been reported in EST-derived SNPs in catfish due to the proximity of SNPs to

IEB [65]. The most evident cause for such genotyping failure is the presence of priming site at

SNPs loci leading to non-base pairing of primers or expected amplification product is too

large for amplification due to presence of intron between priming sites. Therefore, the key for

successful SNP validation is avoidance of IEBs. In this study, the approach devised by [66] and

applied successfully to European anchovy [38] was used to avoid the problem related to IEBs.

In this method, the assembled transcript sequences were aligned to genome sequences of

tench to identify the IEB. By selecting the SNPs not spanning an IEB, we obtained the highest

conversion and validation rates of transcriptome-derived SNPs obtained to date for a non-

model species.

In this study, using the validated SNPs we have demonstrated that the two tench breeds

show low but significant genetic differentiation, even with their similar genetic structure con-

cerning their phylogroup based gene pool. The ancestral populations that formed the two

tench phylogroups separated about 0.064 to 1.6 million years ago as revealed from 1.6%

sequence divergence of cytochrome b mitochondrial gene [21]. The western (W) and Eastern

Table 3. Pairwise FST (below diagonal) and p-values (above diagonal) among tench breeds (Hungarian, Tabor) and GH gene phylogroups genotype (H: Hybrid; W:

Western; E: Eastern).

Hungarian -H Hungarian -W Hungarian -E Tabor-H Tabor-W Tabor-E

Hungarian-H - 0.2022 0.1592 0.0000 0.0000 0.0000

Hungarian -W 0.0012 - 0.0429 0.0379 0.0000 0.0000

Hungarian -E 0.0025 0.0083 - 0.0787 0.0504 0.0000

Tabor-H 0.0619� 0.0000 0.0000 - 0.1973 0.3936

Tabor-W 0.0399� 0.0274� 0.0000 0.00538 - 0.0049

Tabor-E 0.0579� 0.0318� 0.0687� 0.00150 0.0218 -

� significant value

https://doi.org/10.1371/journal.pone.0213992.t003
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(E) phylogroup significantly differs also in sequences of nuclear DNA e.g. the second intron of

the actin gene, an intron of the gene coding for the ATP synthase β subunit, the first intron of

the gene coding for the S7 ribosomal protein [21] and GH gene [6]. Due to the long history of

tench phylogroup separation and individual evolution it is expected that the phylogroups

would differ significantly also in physiological and biological functions resulting from nucleo-

tide polymorphisms of functional genes. Therefore, our transcriptome-derived SNP array

could be used for screening tench populations that still contain haplotypes of pure Western

and pure Eastern phylogroup or F1 hybrid generation between pure W and E tench popula-

tions. Unfortunately, tench populations that bear pure Western haplotypes are very scarce or

even absent [21] and we did not have such population in our collection. The Hungarian and

Tabor breeds are, after several generations of mating fish with haplotypes of both phylogroups,

a mosaic of both phylogroups due to free combination of chromosomes, crossing overs

between homologous chromosomes and other possible processes that appear during formation

of gametes. Based on FST values inferred from 86 SNPs it can be indirectly assumed that the

SNPs genotypes were not significantly different for fish having Eastern, Western or hybrid GH

gene genotype [22] within both Tabor and Hungarian breed. If the rate of phylogroup intro-

gression within breeds were low, the degree of differentiation among fish displaying different

GH gene genotype would be expected due to previously mentioned divergence between phy-

logroups in other genetic markers. On the other hand, significantly different FST values were

observed between the two breeds with no matter to what GH gene genotype the fish belonged.

The within-breed gene flow is corroborated by previous studies that show no negative fitness

consequences derived from two phylogroup-mixed tench populations under cultured condi-

tions [78]. In summary, six generations of within-breed isolated reproduction under cultured

conditions allowed breed identity determination using the transcriptome-derived SNP array.

Moreover, apart from neutral levels of genetic differentiation, the SNPs in this study are

transcriptome-derived markers and their variation in genes is informative for differential selec-

tion or adaptation in each breed. In this study, high allelic differentiation between both breeds

was observed in growth-related genes, which might point to differential natural and human-

affected selection, breeding and evolutionary history of Hungarian and Tabor tench breeds

and/or stocks they were established from. Taking into account that the sequence of the GH

(growth hormone) gene has 0.8% divergence in both tench phylogroups [6], we propose the fol-

lowing hypothesis: adaptive differences between breeds arise from differential composition of

individuals from each phylogroup in each breed, giving to Hungarian and Tabor breeds differ-

ent weight to their adaptation affecting growth related genes. However, further studies with pro-

tein sequencing of genes under selection are needed to corroborate the hypothesis presented

here, as most of the SNPs found in the genes under selection have arisen due to synonymous

mutations and will not lead to a change in the protein configuration. Insignificant association

between GH gene genotype and SNP array also indicates that there is no linkage between our

SNPs and the GH gene. However, this result does not say anything about association of these

two markers to growth-related traits. It seems that effects of SNP array and GH gene genotype

polymorphism on the growth-related traits will be (if any) independent of each other.

This study represents the first large-scale sequencing effort for SNP discovery and valida-

tion in tench. Although restriction-site associated DNA sequencing (RADseq) or double digest

RADseq (ddRADseq) can generate large data set, SNPs derived from these approaches mostly

fall into non-coding or unknown regions. Transcriptome derived SNPs are directly associated

with functional regions in the genome and can give more information for 92 SNPs in coding

region than hundreds or thousands of SNPs derived from non-coding or (not identified)

regions. The validated SNPs can be used in further genetic studies for finding genes and/or

DNA sequences associated with trait of importance.
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Conclusions

The SNP discovery approach followed in the present study was developed for transcriptome-

derived SNP discovery in European anchovy [38], and Atlantic mackerel [43] with successful

conversion and validation rates. This approach can be used to discover large number of tran-

scriptome-derived SNPs in any non-model species. In addition, our approach identifies SNPs

in the transcriptome: these SNPs can be annotated and in some cases, as evidenced here, they

are under natural selection. We showed that the SNPs array in tench is strong enough to dis-

tinguish tench breeds and that it might be useful for studies focused on searching the range of

associations between DNA sequence and traits of importance. Overall, it was verified that tran-

scriptome-derived SNPs may informs us not only about neutral genetic differentiation and

population genetic structure (e.g. [37, 39]), but also about the functional role of the differences

observed between populations or ecotypes
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1  | INTRODUC TION

In the last decade, high-throughput sequencing technologies have en-
abled biologists to unravel the genetic code on a massive scale and at 
an unprecedented rate. However, sequencing and assembling whole 
genomes of nonmodel species is still not practical. Therefore, alterna-
tive approaches are needed to capture genetic variation. One approach 
commonly used in the context of population genetics is restriction 
site-associated DNA sequencing (RAD-Seq; Baird et al., 2008), which 
returns polymorphic markers at random loci across the entire genome. 
Posterior enhancements, such as RAD-Seq followed by sequence 
capture (Rapture; Ali et al., 2016), have been recently proposed as an 
efficient and cost-effective approach for genotyping thousands of 
samples and loci simultaneously (Meek & Larson, 2019).

Another successfully proven and cost-effective approach is 
to discover SNPs by sequencing both DNA and RNA and subse-
quently genotype large numbers of individuals (Kumar et al., 2019; 
Lamichhaney et al., 2012; Montes et al., 2013, 2015; Therkildsen & 
Palumbi, 2017). For these methods, attention is explicitly restricted 
to transcriptomic SNPs: Those contained inside expressed genes due 
to their higher functional relevance, rather than intergenic and in-
tronic regions. The combined approach of DNA and RNA sequences 
to SNP discovery has obtained the highest nonmodel SNP validation 
rates to date, without requiring a reference genome, and its suc-
cess is largely due to the accurate detection of intron–exon bound-
aries (IEBs), which can confound genotyping primer design (Wang 
et al., 2008; see Figure 1). The IEB detection method developed by 
Conklin, Montes, Albaina, and Estonba (2013), for example, relies on 
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Abstract
For population genetic studies in nonmodel organisms, it is important to use every 
single source of genomic information. This paper presents EXFI, a Python pipeline 
that predicts the splice graph and exon sequences using an assembled transcriptome 
and raw whole-genome sequencing reads. The main algorithm uses Bloom filters 
to remove reads that are not part of the transcriptome, to predict the intron–exon 
boundaries, to then proceed to call exons from the assembly, and to generate the un-
derlying splice graph. The results are returned in GFA1 format, which encodes both 
the predicted exon sequences and how they are connected to form transcripts. EXFI 
is written in Python, tested on Linux platforms, and the source code is available under 
the MIT License at https://github.com/jlang a/exfi.
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computing statistically significant positions in the transcript where 
many genomic reads start or end, indicating possible IEBs.

Traditional approaches to gene annotation in general, and IEB 
detection in particular, are based on the annotation of a genome 
assembly. For example, the NCBI Prokaryotic Genome Annotation 
Process (https://www.ncbi.nlm.nih.gov/genom e/annot ation_prok/
proce ss/, last accessed 2020-03-04) relies on the prediction of tran-
scribable regions based on alignments to known transcripts and pro-
teins, and ab initio predictors of coding and noncoding genes. A more 
popular solution is to align either transcriptome or RNA-Seq reads 
with a splice-aware aligner such as GMAP (Wu & Watanabe, 2005), 
and extract from the results the IEB coordinates.

An alternative approach to finding IEBs can be based on creat-
ing a splice graph, a mathematical representation of a transcriptome 
where exons are represented by nodes, IEBs as edges, transcripts 
as paths, and genes as the different connected components. This 
approach is the one first presented by ChopStitch (Khan et al., 2018) 
where Bloom filters are used to store frequent k-mers of a shotgun 
whole-genome sequencing (WGS) dataset and use it to find signals 
of splicing in every sequence of a transcriptome assembly.

This paper presents EXFI, a memory-efficient tool for predict-
ing and annotating the exons of a de novo transcriptome assembly 
through a splice graph representation. This tool works by comparing 
transcriptomic k-mers with those sequenced in a WGS experiment, 
marking potential IEBs wherever a section of a transcript is not found 
in it. To assess its performance, we compare it with ChopStitch and 
GMAP, using two synthetic datasets where references are available 
(human being and zebrafish); two fish species (Atlantic herring and 
Atlantic salmon) for which there exist reference annotations and ex-
perimental WGS datasets; and two species for which there only a 
draft genome and transcriptome are available (sugar pine and ax-
olotl). Finally, we applied EXFI to a recently published dataset on 
tench (Kumar et al., 2019) to evaluate its success in IEB detection for 
SNP discovery in exonic regions.

We expect this method to be useful not only in the context of 
the original aim, the decomposition of transcripts into exons for 
gene-targeted SNP genotyping in organisms where genomic refer-
ences are not available or not reliable, but also in the design of ar-
ray-based tools such as sequence and exome capture, exome-wide 
genotyping, and RNA expression microarrays. Finally, recent devel-
opments in selective nanopore sequencing (Payne et al., 2020) are 

very likely to increase the relevance of exome-targeted approaches 
such as the one described here.

2  | METHODS

EXFI's core programs are written in Python, working on top of 
data processing (Pandas; McKinney, 2010) and Bioinformatics 
(BioPython; Cock et al., 2009) packages, as well as highly performant 
tools for k-mer manipulation (BioBloomTools' commit 0a42916, Chu 
et al., 2014; ABySS 2.0.2, Jackman et al., 2017; BEDTools 2.27.1, 
Quinlan & Hall, 2010). Its three main programs are build_baited_
bloom_filter, build_splice_graph, and gfa1_to_fasta, to create the 
underlying data structure, to predict the splice graphs, and to write 
the exons, respectively.

2.1 | EXFI workflow

2.1.1 | Input

EXFI requires two input datasets: WGS reads and an assembled 
transcriptome in FASTQ and FASTA format, respectively. Such WGS 
reads may come from a single individual to multiple barcoded sam-
ples, even Pool-Seq approaches. The transcriptome assembly can 
be a published reference (Ensembl or NCBI Genomes, for exam-
ple), or a de novo result from short-read or long-read sequencing 
technologies.

2.1.2 | Baited bloom filter construction

A Bloom filter (BF; Bloom, 1970) is a fast and succinct data struc-
ture for set membership (i.e., to test whether a k-mer is present in a 
transcript). Bloom filters have been successfully used in many high-
throughput sequencing problems, including k-mer counting (Melsted 
& Pritchard, 2011), read compression (Benoit et al., 2015), read 
normalization (Crusoe et al., 2015), read filtering (Chu et al., 2014), 
error correction (Benoit, Lavenier, Lemaitre, & Rizk, 2014; Salmela 
& Rivals, 2014; Salmela, Walve, Rivals, & Ukkonen, 2017; Song, 
Florea, & Langmead, 2014), genome assembly (Chikhi, Limasset, 
& Medvedev, 2016; Chikhi & Rizk, 2012; Jackman et al., 2017; 
Peterlongo & Chikhi, 2012), gap filling (Paulino et al., 2015; Rizk, 
Gouin, Chikhi, & Lemaitre, 2014; Vandervalk et al., 2015), and tar-
geted gene assembly (Kucuk et al., 2017). The advantage of this data 
structure is that it is very fast and space-efficient, with the drawback 
of being probabilistic: It does not return false negatives, but it can 
produce false positives with a tunable false-positive rate (BF FPR). 
This rate, for a given dataset, depends on three parameters that are 
under our control: the k-mer length, the amount of memory, and the 
number of hash functions used.

In the human and zebrafish genomes, only 4.24% and 5.68% of 
the bases are exons, respectively (Table 1). Therefore, this Bloom 

F I G U R E  1   Two cases in primer design that can lead to 
genotyping failure: primers in different exons that require excessive 
PCR extension across an intron (top); a primer spanning an IEB will 
fail to anneal (bottom)
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filter approach can be used to remove WGS reads that are not 
exonic, and then reduce the BF FPR by nearly an order of magni-
tude. Additionally, cascading Bloom filters (Salikhov, Sacomoto, & 
Kucherov, 2014), a modification of original the data structure, stacks 
together multiple Bloom filters to keep frequent-enough k-mers and 
discard the ones produced by sequencing errors. Together, both ap-
proaches serve to filter out irrelevant but significant fractions of the 
original WGS experiment.

In EXFI, build_baited_bloom_filter uses both the transcriptome 
assembly and the WGS reads and performs the task in three steps. 
First, a Bloom filter of the transcriptome is built with biobloom-
maker. Second, each read of the WGS dataset that does not share at 
least one k-mer with the transcriptome is discarded with biobloom-
categorizer. And third, the remaining reads are used to build a cas-
cading Bloom filter with ABySS. The result is a binary file encoding 
the error-free k-mers of the reads that overlap the transcriptome.

2.1.3 | Exon and splice graph prediction

The exon and splice graph prediction procedure is carried out by 
the build_splice_graph script, which predicts in one step the exon 
sequences, the exon composition of each transcript, and the splice 
graph structure of the entire transcriptome.

First, transcriptomic k-mers are inspected sequentially: Those 
that overlap two different exons should not be present in the WGS 
dataset (Figure 2a) and therefore mark where an exon ends and the 
following starts. Then, consecutive positive k-mers that overlap by 
k − 1 bases are merged together, providing a draft exome (Figure 2b). 
The false positives that the Bloom filter produces may cause ad-
ditional nucleotides in the raw exome and disconnected exons of 
length k. To prevent downstream problems, exons of length less than 
k + q (q by default five) are filtered out (Figure 2c). Once deleted, 

a more relaxed merging step is applied when exons overlap by an 
excessive number of bases (10 by default; Figure 2d). Finally, if the 
-polish flag is specified, each pair of exons with a long-enough over-
lap is inspected for the donor/acceptor sites (usually GU/AG; 2e) and 
correctly trimmed if possible.

The primary output is a GFA1 file that encodes the inferred 
exons in terms of sequence and coordinates, the connections be-
tween them, and the transcripts as paths of exons. This type of file 
can be visualized with Bandage (Wick, Schultz, Zobel, & Holt, 2015), 
which also is helpful to manipulate exons and transcripts of interest, 
as well as to perform BLAST queries. Additionally, (gfa1_to_fasta) 
extracts the exons in FASTA format. It can also return the spliced 
transcripts, where each one of them is represented by the corre-
sponding exons separated by a predefined amount of Ns.

2.2 | Validation datasets

Four reference datasets were selected: zebrafish (Danio rerio) and 
human being (Homo sapiens) as the key species, due to the depth of 
their available annotations; and Atlantic herring (Clupea harengus) and 
Atlantic salmon (Salmo salar), both with complete assemblies and exon 
annotations. Also, Salmoniformes are known to have an additional 
genome duplication round not shared by the other fish species here 
studied (Allendorf & Thorgaard, 1984), expanding both the genome 
length and number of genes (and therefore transcriptome complex-
ity; Table 1). Additionally, to serve as a bridge between reference and 
de novo transcriptome assemblies, an RNA-Seq muscle library from 
Atlantic herring was assembled. Finally, two species without annota-
tions, sugar pine (Pinus lambertiana) and axolotl (Ambystoma mexica-
num), were added to test the upper limits of the methods studied in 
terms of genome length and sequencing effort. These two species are 
known for their large genome sizes (27 and 32 GB, respectively) due 

TA B L E  1   Experimental statistics of the studied cases

Experiment Zebrafish Human being Atl. salmon Atl. herring
Sugar 
pine Axolotl Tench

Genome type Chromosome Chromosome Chromosome Scaffold Scaffold Chromosome Not available

Genome size 
(Gbp)

1.34 3.09 2.97 0.81 27.60 32.40 0.78

Genes 25,497 21,407 79,030 25,135 Unknown Unknown Unknown

Transcriptome 
type

Reference Reference Reference Reference/de novo De novo De novo De novo

Transcripts 51,714 164,776 109,584 29,353/97,777 331,11 180,605 267,058

Transcriptome 
size (Mbp)

110.69 270.48 355.21 64.18/55.39 36.74 229.48 294.70

Exons 495,200 1,199,596 1,313,909 314,220/Unknown Unknown Unknown Unknown

Samples 2 6 20 50 1 1 10

Reads (M) 720.00 2,160.00 1,259.27 418.73 9,300.90 7,121.91 318.72

Total bases (Gbp) 72.00 216.00 125.93 41.13 1,395.13 712.19 31.87

Coverage 53.73 69.90 42.44 50.92 50.54 21.98 51.58

Note: Genome sizes are the number of characters in their corresponding reference files. All species are diploid.

Appendix B. Article 2. EXFI 113



     |  8883LANGA et AL.

to the extent of their repeat content (79% and 65.6% are transposable 
elements; Nowoshilow et al., 2018; Stevens et al., 2016).

Genomes, transcriptomes, and GFF3 annotations of D. rerio and 
H. sapiens were downloaded from Ensembl (release 91, assemblies 
GRCz10 and GRCh38, respectively; Kersey et al., 2018). Assembled 
genomes, transcriptomes, and annotations from S. salar (assembly 

GCA_000233375.4) and C. harengus (assembly GCA_000966335.1) 
were downloaded from NCBI Genome. Finally, in the case of 
A. mexicanum (assembly GCA_002915635.2) and P. lambertiana 
(GCA_001447015.2 assembly), assemblies were also downloaded 
from NCBI Genome, while their assembled transcriptomes were 
taken from the European Nucleotide Archive (accession numbers 

F I G U R E  2   Schematic representation of the computational procedure. In the building stage, a WGS reads are filtered out according to 
whether or not they share a k-mer with the transcriptome. Positive reads are inserted into the cascading Bloom filter. Only the last one is 
used for analysis. The prediction step is comprised of multiples steps in which: (a) every transcriptomic k-mer is queried one by one to the 
filtered WGS set. (b) k-mers overlap by k − 1 bases are merged together. (c) Exons that are likely to be false positives are thrown away by a 
minimum length criterion. d) Exons that overlap by too many bases (ten by default) are merged together. (e) Overlaps between pairs of exons 
are inspected to see whether it contains the AG-GT splicing signal. (f) Exons are reported. Potential applications of EXFI include exome 
variant calling, design of SNP chips, targetted sequence of the exome, expression arrays, and UCE assays
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GFZP01, Nowoshilow et al., 2018; and GEUZ01, Gonzalez-Ibeas 
et al., 2016, respectively).

With respect to humans and zebrafish, WGS reads were sim-
ulated with wgsim (Li, 2018), while for the other species, they 
were downloaded from different studies (Atlantic salmon: Kijas 
et al. (2018); Atlantic herring: Lamichhaney et al. (2012); Ambystoma 
mexicanum: Keinath et al. (2015); and Pinus lambertiana: Neale 
et al. (2014); full accession numbers available in Table S1). These as-
semblies varied in terms of both sequencing depth and individuals, 
from a 22× of a single individual in axolotl to 51× of a pool of 50 
Atlantic herring samples.

2.3 | Benchmarking metrics

The performance of EXFI was compared with two tools: GMAP (Wu 
& Watanabe, 2005) and ChopStitch (Khan et al., 2018). GMAP is a 
method used to perform gapped alignments of expressed sequence 
tags (ESTs) and assembled transcripts to a reference genome. Its 
main advantage is that is easy to use and has been used extensively 
to annotate eukaryotic genomes with PASA (Haas et al., 2003). 
ChopStitch is a tool similar to EXFI that uses Bloom filters to predict 

exons and the splice graph, using the entire WGS dataset, and differ-
ent exon prediction algorithms. Table 2 shows the main differences, 
advantages, and disadvantages between the three methods.

To compare the three methods in terms of speed and accuracy, 
two metrics were studied: one based on the recovery of the available 
annotation, and another in terms of mappability of the predicted 
exons to the genome.

For studying the recovery of the available annotation, reference 
exon coordinates in GFF format were transformed to BED, converting 
the chromosome-based coordinates to transcript-based, taking into 
account the strand and order of the exons. For example, if a pair of 
consecutive exons in transcript A in chromosome 1 are 1:1,000–1,100 
and 1:1,500–1,600, they become A:0–100 and A:100–200 with re-
spect to the transcriptome. Once converted, reference and predicted 
coordinates were compared with the BEDTools intersect subcom-
mand, requiring a mutual overlap of at least 95% of the coordinates. 
With this program, the standard classification metrics are computed: 
precision (P = TP/(TP + FP), where TP and FP are the true and false 
positives, respectively), recall (R = TP/(TP + FN), where FN are the 
false negatives), and F1 score (the harmonic mean between precision 
and recall: F1 = 2PR/(P + R)). These comparisons are provided in the 
EXFI package via the compare_to_gff3 script.

TA B L E  2   Qualitative comparison between the three methods studied: GMAP, ChopStitch, and EXFI

Software GMAP ChopStitch EXFI

Input Genome assembly (FASTA)
Transcriptome (FASTA)

WGS reads (FASTQ) Transcriptome (FASTA) WGS reads (FASTQ) Transcriptome 
(FASTA)

Output Alignments (SAM, GFF3) Exons (FASTA)
Splice graph (DOT)

Splice graph (GFA)
Exons (FASTA)
Gapped transcripts (FASTA)

Steps Genome index construction
Spliced alignment
Microexon identification

k-mer cardinality estimation
Bloom filter construction Exon prediction
Error correction
Short exon prediction Splice graph 

construction

k-mer filtering
Bloom filter construction Exon 

prediction
Splice site polishing

Conda? Yes No, but via Brew No, but via Dockerfile

Usability Easy: index and predict Easy: build and predict Easy: build and predict

Genome input Assembly WGS WGS

Sample 
variability

Genome and transcriptome may 
come from different sources

Transcriptome and WGS must come from the 
same individual

WGS reads can come from a Pool-Seq 
approach

Large 
genomes?

Yes (gmapl) No Yes

Speed Fastest (minutes) Medium (hours) Slowest (hours)

Memory 
footprint

Medium/high Medium/high Low, adaptable

Precision/recall Lowest High Highest

Mappability High High Highest

Memory–FPR 
trade-off

— Provide FPRs, then reserve optimal memory 
(may not be available)

Reserve memory, then return the FPR 
(may be too high).

Main advantage Popular: easy to install Fastest genome-free method Memory and user-friendly, most 
accurate

Main 
disadvantage

Requires a genome assembly Highest memory usage Slowest of the methods
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In the case of mappability measurements, predicted exons 
were aligned against their genomic reference with BWA MEM 
(Li, 2013), results were stored in BAM format with SAMTools (Li 
et al., 2009), and the reported statistics were obtained from the 
number of mapped exons, and the ones mapped with a perfect 
CIGAR string (all matches or with small insertions and deletions, 
but no base clipping).

2.4 | Objectives of the benchmarks

Before comparing the three methods, it was necessary to measure 
the influence of four parameters that may impact performance, 
in terms of both time and memory consumed, and the trade-off 
between precision and speed. From the two metrics described 
above, we used the annotation-based statistics as the ones that 
drove the experimental design since they showed more differ-
ences in terms of percentage points, and because mapping meth-
ods require a minimum seed length, which impacts the alignment 
of microexons.

First, the gains in terms of the BF FPR and exon prediction ca-
pabilities when reads are filtered or not were studied. Exons form 
a small fraction of a genome and only WGS reads that overlap the 
transcriptome are necessary to detect IEBs, while the remainder 
only increase the memory and BF FPR unnecessarily. The read fil-
tering step implemented in EXFI retains not only exonic reads but 
also those in the flanking regions, where donor/acceptor signals and 
small variants can be detected. Therefore, EXFI was applied with and 
without the read filtering step, fixing the k-mer length to 25 bp, to 
measure (a) how much it accelerates or slows down the pipeline, (b) 
the BF FPRs, and (c) the fitness of the predicted exons.

Second, the effects of memory usage were compared. Next-
generation sequencing projects are usually executed in high-per-
formance computing environments, where RAM memory exceeds 
orders of magnitude what can be found in desktop and laptop 
computers. Probabilistic data structures such as Bloom filters have 
promised great savings in terms of memory, and therefore enabling 
analyses outside a computing cluster. To explore accuracy under 
different memory settings, EXFI was executed using the zebrafish 
dataset multiple times by varying the size of the Bloom filters from 
4 to 60 GB in steps of 4 GB, and fixing with the k-mer length to 25 
base pairs.

Third, the trade-off in terms of precision and recall with vary-
ing BF k-mer lengths was analyzed. If kis set too low, k-mers be-
come less specific and more reads are inserted into the filter, 
increasing the BF FPR and lowering the precision, while increasing 
runtime too since there are more k-mers and reads processed. On 
the contrary, if k is set too high there will be fewer elements to 
insert, and since a significant fraction of them will contain variants 
and sequencing errors, they will be filtered by their low frequency 
(lowering the BF FPR but also the recall). To find the appropriate 
k-mer length, EXFI was run with the lowest and highest memory 

settings (4 and 60 GB) and by varying the k-mer length from 21 to 
65 using odd values.

Finally, an acceptable genome coverage is needed for a success-
ful experiment. On the one hand, a WGS experiment with little cov-
erage will make the method underperform. On the other hand, too 
much coverage will make the BF FPR larger than necessary because 
of sequencing errors. As depth increases, the total number of true 
k-mers reaches a plateau, while the number of k-mers that contain 
sequencing errors keeps growing linearly (see figure 3 in Melsted & 
Pritchard, 2011). Therefore, a central point must exist in between to 
achieve near-optimal exon precision and recall values. The zebraf-
ish datasets were sampled in 10% increments with Seqtk (Li, 2018), 
applying the procedure to each subsample, and measured the clas-
sification metrics, using both low and high memory settings and k 
fixed to 25 bp.

With respect to the other tools, GMAP version 2018.07.04 was 
executed using default parameters, and ChopStitch version 1.0.0, 
using the default k-mer length (50 bp) when possible, and varying the 
BF FPR values (and therefore different memory usages), over the six 
datasets (zebrafish, humans, and Atlantic herring), and we measured 
the performance in terms of the metrics described above: compar-
ison against the annotations and mapping against the genome. All 
programs were run on a 2× Intel Xeon E5-2620 server, running in 
total 24 2 GHz threads, with 64 GB of RAM.

2.5 | Retrospective analysis of IEB prediction in 
Tinca tinca

To further validate EXFI for downstream analysis, the method 
was applied to retrieve the set of 96 transcriptomic SNPs in tench 
(T. tinca) wherein an earlier study (Kumar et al., 2019) was ex-
plored, where 92 of 96 were successfully genotyped. EXFI was 
executed using the assembled tench transcriptome, and the raw 
genomic reads comprised of two pools of five diploid individuals 
each, with an overall genome coverage of 52×. Finally, raw reads 
were mapped to the predicted exons with Bowtie2 (Langmead 
& Salzberg, 2012), and we performed SNP calling with BCFTools 
(Li et al., 2009). To derive the genotypable regions of the exons, 
variants with a quality value below 20 were filtered out, and then 
those that were within 35 bp to another variant or a predicted exon 
boundary.

3  | RESULTS

3.1 | Human and zebrafish simulations

As a practical approach, for each species a single Illumina HiSeq 
2000 run per individual was simulated (360M PE reads), creating 
WGS datasets with coverages of 54× (2 runs, 720M PE reads) and 
70× (6 runs, 2.21B PE reads; Table 1).
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3.2 | Effects of read filtering

Filtering the reads resulted in a 68%–75% reduction of the BF FPR 
while also slightly improving all the classification metrics (Figure 3 
and Table S2). We can observe a benefit of the filtering in the low 
memory case, where the FPR fell from 32.6% to 8.1% and rose 
the F1 score from 89.8% to 94.8 when the maximum is of 95.6%. 
Additionally, we observe a slight reduction in time: from 172–186 
to 149–173 min (Table S8). Therefore, filtering improves both the 
processing time and the prediction metrics. Similar conclusions can 
be reached in the human dataset (Table S3 and Figure S1).

3.3 | Effects of memory usage

The most significant parameter that impacts the Bloom filter is its 
size. Figure 3 and Table S2 show the expected decrease in BF FPR as 
space grew, but surprisingly, the exon precision and recall increased 
very slowly. Concretely, the BF FPR varied from 8.1% to 0.4% as the 
memory increased, achieving a 95.8% precision and 93.8% recall in 
the low memory case, when in the high memory case one both val-
ues were respectively 96.6% and 94.6% (Table S2). With respect to 
the human dataset, experiments were only performed with the low 
and high memory settings, obtaining BF FPRs of 13.7% and 0.7%, 
achieving 93.1% and 94.7% precision, and 89.3% and 90.9% recall, 
respectively (Table S3 and Figure S1). Therefore, a 4 GB Bloom filter 

is enough to achieve near-optimal results. Also, it is not necessary 
to demand particularly low (5% or less) BF FPR to predict exons 
accurately.

3.4 | Effects of k-mer length

As described in Methods sections, precision and recall are related 
through the k-mer length. On the one hand, as k increases, the pre-
cision also increases until k = 47, when it starts to decrease rapidly 
(Figure 4 and Table S4). On the other hand, recall decreased almost 
from the start (4 GB: k = 25; 60 GB: k = 23). According to the F1 
statistic (the harmonic mean between precision and recall), for both 
methods, there is a window of k-mers, from 23 to 35, where this 
metric remains stable, boosting the recall when k is small, and the 
precision when k is high. Given the results, we used for the remain-
der of the analysis a k-mer length of 25 bp to keep the recall as high 
as possible while keeping precision high too, and set it as the default 
value in EXFI.

3.5 | Effects of sequencing depth

The sequencing depth increased the power of the precision up to a 
certain point (Figure 5 and Table S5). For a 16× sequencing depth, 
precision and recall already are above 90%, and maximum values 

F I G U R E  3   Classification and mapping 
rates of EXFI depending on Bloom filter 
sizes in the zebrafish dataset. Filtering 
the dataset yields better classification 
and mapping rates by lowering the FPR2. 
These values are already near-optimal 
when four Gigabytes are allocated. The 
raw mapping rates were close to 100% 
from the start for both methodologies. 
For the perfect mapping rates, we see 
EXFI achieving a 98.75% mapping rate 
from the start
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(96.7% and 94.7%, respectively) are reached when coverage is be-
tween 26× and 37×. Past that coverage window, precision and recall 
start decreasing due to sequencing errors, and unnecessarily raising 
the BF FPR. Therefore, a sequencing depth of at least 20× is good 
enough, and that optimally should be between 30× and 40× to re-
trieve exons from a transcriptome with EXFI.

3.6 | Comparison with ChopStitch and GMAP on 
simulated and real datasets

The performance of ChopStitch, EXFI, and GMAP was compared 
across six species in terms of the BF FPR and sizes, classification, 
and mappability scores. Given the results above, we chose to run 
EXFI using 4 GB of RAM, and a k-mer length of 25. For ChopStitch, 
we used the default k-mer length of 50 bp, and default BF FPRs of 
1% when possible. For GMAP, the default parameters were the ones 
used. In the case of the megagenomes, gmapl was used as the align-
ment tool.

There are several differences between EXFI and ChopStitch. 
Algorithmically, in EXFI the total amount of memory to be used is 
specified at the beginning, the number of hash functions is fixed (to 
four, fixed number in the version of ABySS used), the reads are fil-
tered and processed, and the BF FPR is returned at the end. In con-
trast, the reverse procedure is applied in ChopStitch: The desired BF 
FPRs are first specified, and the optimal sizes and number of hash 

functions are estimated from the full dataset of reads. This proce-
dure selects the optimal memory (maybe unavailable) and number of 
hash functions to work, but requires to process twice the full WGS 
reads: one for estimation and other for actual computations. On the 
other side, EXFI hashes all the WGS reads in two steps: once for the 
filtering purpose, and a second time for the remainder.

In zebrafish, we considered running EXFI and ChopStitch with 
multiple memory/BF FPR configurations (respectively 4–60 GB in 
4 GB increments, and FPR1 varying from 20% to 1% and BF FPR2 
set to 1%). In general, EXFI outperformed both methods (Figure 6 
and Table S6) and its performance remained high and constant from 
4 GB.

When comparing EXFI's low memory mode against ChopStitch 
default 1% FPR2 (and 28 GB) and GMAP (Table 3), we observe that 
with a BF FPR2 of 8% (and 4 GB), EXFI obtained a slightly better F1 
score (with better precision and worse recall) than the other two 
methods. According to the exon mappability, more than 98% of the 
predictions of both reference-free methods were perfectly matched 
to the genome, while the reference-based tool obtained 92.7%.

With respect to the human dataset, all methods obtained lower 
metrics than in the zebrafish case, due both to the higher complexity 
of the transcriptome and the length of the genome. With the de-
fault settings, EXFI outperformed both methods with an exon F1 
score of 91.2%. Due to the number of different k-mers to process, 
ChopStitch's default k-mer length value had to be lowered to 25 and 
the target BF FPR1 had to be raised to 15% in order to avoid memory 

F I G U R E  4   Precision and recall of EXFI 
when the k-mer length varies, using the 
minimum and maximum memory settings. 
As expected, the longer the k, the higher 
the precision, and the lower the recall. For 
both methods, best results are achieved 
when the k-mer length varies between 
23 and 35. Perfect mapping rates ranged 
from 97.37% to 99.95%
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allocation errors. In this case, ChopStitch obtained an F1 of 88.6%, 
and GMAP of 88.3% (Table 3, Table S7, and Figure S2).

In both datasets, GMAP obtained the fastest data structure con-
struction (24 and 53 min to index the zebrafish and human genomes; 
Table S8), followed by ChopStitch (2 hr 38 min and 4 hr 22 min) 
and EXFI (2 hr 29 min and 6 hr 18 min). On the other hand, GMAP 
finished last when predicting (more than 15 min in both cases) and 
using 24 threads, while for a single compute thread, ChopStitch was 
the fastest (3 min 41 s and 7 min 18 s in zebrafish and human cases) 
followed by EXFI (5 min 56 s and 14 min 30 s).

Similar results were obtained when analyzing the salmon tran-
scriptome (Table 3): EXFI obtained the lightest RAM consumption 
with the cost of obtaining a higher BF FPR2 (4.23%), while ChopStitch 
achieved a 1% BF FPR2 with 8.7 GB of RAM. With respect to the 
prediction of exons, EXFI obtained higher classification and mapping 
scores, followed by ChopStitch and GMAP.

In the Atlantic herring reference dataset, we observe that both 
k-mer-based methods obtained worse-than-expected F1 scores than 
GMAP when analyzing the reference transcriptome, while still ob-
taining the highest perfect mappings (in EXFI's case, the highest 
across all datasets, 99.5%). In the de novo transcriptome case, pre-
dictions of all three methods had lower mapping rates than the ref-
erence case, with ChopStitch leading the comparison with 87.1% of 
perfectly mapped transcripts, followed by EXFI (82.3%) and GMAP 
(57.8%).

Finally, for the axolotl and sugar pine megagenomes, we did not 
obtain results for all of the methods. Due to the terabase pairs se-
quenced and the size of the references, ChopStitch was only able to 
produce a Bloom filter for the axolotl, with a BF FPR2 of 20.2% and a 
k-mer length of 25 bp, and GMAP was able to build both references 
but failed to produce predictions in the axolotl case due to memory 
exhaustion. For EXFI, even though it can produce Bloom filters with 
4 GB of RAM, the BF FPR2s were too high to work (52% and 29.4%, 
respectively; data not shown), and therefore, we raised the RAM to 
60 GB to obtain reasonable FPRs. Indeed, we obtained data struc-
tures with BF FPRs of 3.1% and 2.0% in the Pine and axolotl cases 
and after 2 and 1 days of execution, respectively. In the sugar pine 
case, 90.3% of the exons were perfectly mapped to the reference 
(99.7% when clippings were allowed), while GMAP obtained lower 
results (95.7% mappable, 67.3% without trimming alignments). With 
respect to axolotl, 78.2% of EXFI's predictions were matched end 
to end to the genome (and 98.8% at least in part), while ChopStitch 
obtained a 77.2% rate (85.1% when clipping was allowed).

3.7 | Retrospective analysis in T. tinca

From the set of 266,578 input transcripts, EXFI predicted 1,072,772 
exons. In total, after quality and distance filtering, 228,931 SNPs 
and 26,169 indels were predicted suitable for genotyping. All IEBs 

F I G U R E  5   Precision and recall values 
of EXFI depending on the sequencing 
depth, using the minimum and maximum 
memory settings and the k-mer length 
fixed to 25. Both settings produced similar 
results, obtaining higher metrics when all 
the memory was used. Around 25–30× 
almost all error-free k-mers are sampled, 
and then, sequencing errors start to 
pollute the Bloom filter. Both mapping 
rates stayed above 98.7%
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proximal to the 96 SNPs described in Kumar et al. (2019) using the 
Conklin et al. (2013) method were detected by EXFI (therefore 100% 
precision over this set of SNPs). One SNP was proximal to a false-
positive EXFI IEB, due to multiple variants in a short space, indicating 
that it would not have been selected for genotyping primer design. 
Therefore, on this retrospective SNP discovery task, EXFI would re-
call 95 of 96 of the selected SNPs.

4  | DISCUSSION

We developed EXFI, a method that reliably predicts the exon se-
quences and splice graph of a species using a de novo-assembled 
transcriptome and raw WGS reads. We tested it in multiple eukary-
otic species, varying the genome and transcriptome reference sta-
tus, simulated and experimental datasets, and samples with different 
level of heterozygosity of the samples. We found out that EXFI per-
forms better in terms of memory and classification than other tools 
when describing the structural annotation of every transcript.

We studied the four principal parameters that can affect the 
prediction procedure: read filtering, memory, k-mer length, and ge-
nome coverage. First, by filtering the transcriptome, we ended up 
reducing by two-thirds the BF FPR while also slightly decreasing the 
execution time. Therefore, this reduction can be translated into a 
memory optimization. Second, using more than 4 GB of RAM (and 
higher BF FPR) yielded equally accurate predictions as using 60 GB 

(Figures 3 and 6). Thus, commodity desktop and laptop computers 
are enough to achieve accurate exon predictions on gigabase-sized 
genomes. Third, our approximation predicted a window of optimal 
k-mer length values between 23 and 35 base pairs. Finally, we show 
that 20× coverage is good enough for exon prediction, with optimal 
coverage between 30× and 40×.

We compared EXFI against ChopStitch, a similar method, and 
GMAP, a splice-aware program designed to align transcripts to a ref-
erence genome. We used datasets that vary in genome size, sequenc-
ing depth, number of individuals, and type of input transcriptome. 
When taking into account the general picture across the different 
reference species (zebrafish, humans, salmon, and herring), even 
with higher BF FPR rates, EXFI obtained better prediction metrics, 
except for the Atlantic herring (Table 3). In that case, EXFI was less 
accurate predicting exons, but in terms of mappability, it achieved 
the highest results across all datasets (99.5%). This high mappability 
result, although more optimistic than the exon precision, means that 
even if the exon prediction is not precise, it is still usable for down-
stream analysis. These perfectly matched predictions are interior 
sections of the exons rather than the full sequence, which makes 
them suitable for genotyping, array design, and sequence capture.

We also studied three situations where the input transcriptome 
was de novo-assembled from RNA-Seq reads: Atlantic herring, to 
compare the differences between reference and assembled transcrip-
tomes, and the megagenomes of axolotl and sugar pine. In terms of 
mappability, all three methods performed worse than in reference 

F I G U R E  6   Comparative on memory 
and precision/recall metrics between 
ChopStitch, EXFI, and GMAP. EXFI's 
performance remained high and constant 
from the start
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cases due to the inherent complexity of transcriptome assembly. In 
the herring case, the mappability scores fell for all methods. In the 
axolotl case, we obtained moderate results for EXFI (78.2% perfect 
mapping) and ChopStitch (71.4%). Finally, in the sugar pine dataset, 
EXFI's performance stood high (90.3%), while GMAP did moderately 
(67.3%). Interestingly, results in herring and salmon suggest that ref-
erence-free method remain accurate even when WGS datasets come 
from a Pool-Seq approach. Another lesson learned is that special care 

has to be taken regarding the input transcriptome. While the axolotl 
and sugar pine transcriptomes come from a wide variety of tissues and 
conditions and are sequenced in-depth, the herring transcriptome was 
obtained from a single tissue, where its characteristic transcripts were 
assembled in full length, but where the lowly expressed ones appear 
fragmented, and specific transcripts to other tissues are missing.

Finally, this paper also studied the performance of EXFI in 
an earlier transcriptomic SNP discovery project in tench (Kumar 

TA B L E  3   Performance of the three tools across different species

Species Method Time Memory FPR1 FPR2 Precision Recall F1 Mapped Perfect

Zebrafish ChopStitch 1 hr 41 min 
54 s

28.060 0.010 0.011 0.943 0.918 0.930 0.988 0.980

Zebrafish EXFI 2 hr 35 min 
15 s

4.177 0.256 0.081 0.958 0.938 0.948 1.000 0.987

Zebrafish GMAP 40 min 19 s 6.567 — — 0.918 0.917 0.917 0.982 0.927

Human being ChopStitch* 4 hr 28 min 
58 s

30.424 0.158 0.100 0.903 0.868 0.886 0.988 0.969

Human being EXFI 6 hr 32 min 
49 s

4.364 0.361 0.137 0.931 0.893 0.912 1.000 0.957

Human being GMAP 1 hr 11 min 
25 s

9.301 — — 0.883 0.884 0.883 0.985 0.907

Herring R. ChopStitch 49 min 53 s 5.679 0.010 0.011 0.819 0.858 0.838 0.974 0.965

Herring R. EXFI 1 hr 25 min 
6 s

4.123 0.064 0.024 0.816 0.866 0.840 1.000 0.995

Herring R. GMAP 19 min 8 s 4.707 — — 0.949 0.941 0.945 0.983 0.935

Herring A. ChopStitch 50 min 2 s 5.705 0.010 0.011 — — — 0.972 0.871

Herring A. EXFI 1 hr 32 min 
8 s

4.111 0.068 0.026 — — — 0.986 0.823

Herring A. GMAP 37 min 20 s 6.564 — — — — — 0.921 0.578

Salmon ChopStitch 2 hr 57 min 
38 s

8.657 0.010 0.010 0.883 0.887 0.885 0.985 0.975

Salmon EXFI 4 hr 49 min 
37 s

4.466 0.080 0.042 0.901 0.904 0.903 0.999 0.987

Salmon GMAP 1 hr 22 min 
15 s

9.320 — — 0.809 0.830 0.819 0.979 0.866

Sugar pine ChopStitch* — — — — — — — — —

Sugar pine EXFI 2 days 7 hr 
38 min 57 s

60.090 0.090 0.031 — — — 0.997 0.903

Sugar pine GMAP 6 hr 20 min 
13 s

55.371 — — — — — 0.956 0.673

Axolotl ChopStitch* 14 hr 29 min 
38 s

29.629 0.202 0.142 — — — 0.851 0.772

Axolotl EXFI 1 day 3 hr 
20 min 50 s

60.313 0.040 0.020 — — — 0.988 0.782

Axolotl GMAP — — — — — — — — —

Note: Best metrics across the three methods are marked in bold. Time is the sum of the walltimes at the building and prediction steps. When possible, 
the steps were run using all processors available, that is, in ChopStitch's and EXFI's build steps, and in GMAP's predict stage. Memory, expressed in 
Gigabytes, represents the peak usage in memory. FPR represents the false-positive rate of the Bloom filter used for prediction. Mapped and Perfect 
stands for the overall alignment rate of the predicted exons, allowing and not allowing clipping, respectively. EXFI was executed to use only 4 GB of 
RAM except for the megagenomes. ChopStitch with k-mer lengths of 50 bp and FPRs of 1%, except when memory usage was an issue. In the cases 
marked with asterisks, the k-mer lengths were lowered to 25 bp, and target FPR values were tested one by one in the set of 1%, 5%, 10%, 15%, and 
20%. Actual FPRs are the ones reported. In general, when a reference transcriptome was used, EXFI obtained the best precision, while ChopStitch 
obtained better recall. With respect to alignments to the genomes, EXFI obtained the best mapping rates.
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et al., 2019). EXFI was also able to find hundreds of thousands of 
SNPs across almost a million exons. With respect to the set of known 
genotyped exons, EXFI obtained 100% precision and 99% recall.

These positive results for EXFI are due to the read filtering step 
and the exon prediction rules used. The filtering step is critical in 
eukaryotic genomes because a significant fraction of the WGS data-
set is not only unnecessary but misleading. The convenience of 
the exon prediction rules is extracted from Figures 3 and 6: When 
comparing ChopStitch and EXFI without read filtering, the latter 
obtained slightly superior precision and recall due to the exon pre-
diction methods, in spite of the relatively high BF FPR (8% vs. 1%). 
Moreover, EXFI's predictions are accurate enough when working 
with relatively high BF FPR2.

Previous structural annotation algorithms rely on a whole-ge-
nome assembly followed by the mapping of RNA-Seq reads, ESTs 
and transcripts, and homology predictions against genome, tran-
scriptome, and protein databases. Our results suggest that EXFI is a 
reliable tool too while avoiding completely the step of generating a 
high-quality genome assembly.

Recent reviews have been published on RAD-Seq and Targeted 
Sequencing approaches (Harvey, Smith, Glenn, Faircloth, & 
Brumfield, 2016; Lowry et al., 2017; Meek & Larson, 2019) explain-
ing the advantages and disadvantages of all methods, with the same 
conclusion: Targeted approaches should be preferred for large quan-
tities of samples and loci. These methods have in common the en-
richment of ultraconserved elements (UCEs; Faircloth et al., 2012) 
or exons under varying selection types. EXFI can be used for both 
approaches: Conservation of exons can be measured by orthol-
ogy analysis against other exon predictions and known reference 
genomes, transcriptomes, and proteomes; and the different selec-
tive pressures can be obtained by performing variant calling on the 
exome given the set of WGS reads used in the analysis.

For optimal results, we propose a two-step experimental ap-
proach to study nonmodel exomes: an initial exploration of the 
exome structure and the variants it contains, followed by targeted 
sequencing of hundreds to thousands of samples. For the first step, 
it would be necessary to sequence RNA from as many tissues and 
development stages, aiming to get the best representation of the 
transcriptome, and to sequence between 30× and 40× of the ge-
nome, preferably from multiple individuals, to discover as many vari-
ants as possible. In this regard, Therkildsen and Palumbi (2017) have 
shown that is possible to move from pools of DNA to individually 
barcoded individuals. In a second step, a targeted approach would be 
obtained for thousands of loci and samples, leaving behind most of 
the genome and therefore being able to fit more individuals and pop-
ulations in the same sequencing assay. As it happened for Atlantic 
herring, a DNA sequencing effort initially focused on the transcrip-
tome (Lamichhaney et al., 2012) was reused years later once genome 
assembly was possible (Barrio et al., 2016).

This report has presented EXFI, a pipeline that predicts the 
splice graph and exon sequences from a transcriptome and WGS 
reads instead of a reference genome. Different parameters that af-
fect its performance were studied: read filtering, memory usage, 

k-mer length, and sequencing depth. Tests were carried out on 
zebrafish and human simulations, Pool-Seq samples of Atlantic 
salmon and Atlantic herring, and the megagenomes of the sugar 
pine and axolotl, varying all in sequencing depth, heterozygos-
ity, genome length, and complexity. A retrospective analysis of a 
recently published set of transcriptomic SNPs on tench was also 
done, obtaining 100% precision and 99% recall. It is shown that it 
is possible to perform structural annotation of a transcriptome of 
heterogeneous samples with low computational resources. Finally, 
EXFI is expected to be particularly useful for population genetic 
studies, phylogenetic relationships, and RNA expression in non-
model species.
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Abstract 
European sardine or pilchard is a planktonic small pelagic fish present from the North Sea in 

Europe to the coast of Senegal in the North of Africa, and across the Mediterranean sea to 

the Black Sea. Ecologically, sardines are an intermediary link in the trophic network, preying 

on plankton and being predated by larger fishes, marine mammals, and seabirds. This 

species is of great nutritional and economic value as a cheap but rich source of protein and 

fat. It is either consumed directly by humans or fed as fishmeal for aquaculture and farm 

animals. Despite its importance in the food basket, little is known about the molecular 

mechanisms involved in protein and lipid synthesis in this species. We collected nine tissues 

of Sardina pilchardus and reconstructed the transcriptome. In all, 198,597 transcripts were 

obtained, from which 68,031 are protein-coding. Quality assessment of the transcriptome 

was performed by back-mapping reads to the transcriptome and by searching for Single 

Copy Orthologs. Additionally, Gene Ontology and KEGG annotations were retrieved for most 

of the protein-coding genes. Finally, each library was quantified in terms of Transcripts per 

Million to disclose their expression patterns. 

Keywords 
Sardina pilchardus, European sardine, Transcriptome assembly, Annotation, Expression, 

Tissue quantification, Pathway, Gene Ontology 
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Specifications Table 
 

Subject Omics: Transcriptomics 

Specific subject area Transcriptomics, Genomics, Fisheries, Aquaculture 

Type of data Tables, Figures, FASTA Assembly, FASTQ read files 

How data were 
acquired 

Illumina HiSeq 2000 sequencing platform 

Data format Raw reads(FASTQ) 
Assembly (FASTA) 
Annotation (TSV) 
Quantification (TSV) 

Parameters for data 
collection 

Three sardines were collected by IFREMER during a scientific bottom 
trawl survey. 

Description of data 
collection 

Total RNA was collected from nine tissues: brain, eye, heart, kidney, 
liver, muscle, ovary, skin, and testes. Sequencing was performed 
using an Illumina HiSeq 2000, yielding single-stranded paired-end 
reads with a length of 101 bp. Reads were cleaned with Trimmomatic. 
Assembly was performed with Trinity. Assembly quality was assessed 
with Bowtie2 and BUSCO. Annotation was done with TransDecoder 
and Trinotate. Quantification was performed with kallisto and sleuth. 

Data source location IFREMER survey EVHOE 2015, 31-10-2015, Bay of Biscay,  47°18’ 
N, 2°46’ W         

Data accessibility Raw RNA-seq reads of Sardina pilchardus are deposited at ENA 
Bioproject PRJEB18441 
https://www.ebi.ac.uk/ena/browser/view/PRJEB18441.The following 
tissues are available: 
brain (ERR5925802; 
https://www.ebi.ac.uk/ena/browser/view/ERR5925802), 
eye (ERR5925802; 
https://www.ebi.ac.uk/ena/browser/view/ERR5925803), 
heart (ERR5925802; 
https://www.ebi.ac.uk/ena/browser/view/ERR5925804), 
kidney (ERR5925802; 
https://www.ebi.ac.uk/ena/browser/view/ERR5925805), 
liver (ERR5925802; 
https://www.ebi.ac.uk/ena/browser/view/ERR5925806), 
muscle (ERR5925802; 
https://www.ebi.ac.uk/ena/browser/view/ERR5925807),  
ovary 1 (ERR5925802; 
https://www.ebi.ac.uk/ena/browser/view/ERR5925808),  
ovary 2 (ERR5925802; 
https://www.ebi.ac.uk/ena/browser/view/ERR5925809),  
skin (ERR5925802; 
https://www.ebi.ac.uk/ena/browser/view/ERR5925810),  
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and testes (ERR5925802; 
https://www.ebi.ac.uk/ena/browser/view/ERR5925811) 
 
Supplementary data is available at Figshare under DOI 
10.6084/m9.figshare.14617149 
(https://doi.org/10.6084/m9.figshare.14617149.v1) . 
 

Value of the Data 
 We present the Illumina sequencing effort and de novo transcriptome assembly of 

Sardina pilchardus, an important small pelagic fish due to its nutritional, economic, 

and ecological value. 

 This data will facilitate genome annotation and the discovery of genes of interest for 

the aquaculture industry. This resource could serve as the basis of a SNP chip that 

could differentiate the stocks of sardines across the Atlantic Ocean and the 

Mediterranean Sea. 

 The transcriptome, annotation, and expression patterns can be used to study the 

genes and pathways involved in ω-3 fatty acid synthesis and storage. 

 The tissue quantification can be used to perform an RT-qPCR of a transcript of 

interest, using the tissue in which we know the target gene is active. 

 Comparative evolutionary studies can be done to unravel the phylogenetic 

relationship of the sardine within the Clupeiformes or other teleost species. 

 Selection signatures can be identified by investigating functional differences between 

orthologous genes in sardines and other Clupeiformes species inhabiting different 

environments. 

1. Data Description 
This dataset contains the RNA-Seq analysis of nine tissues of Sardina pilchardus. Nine 

tissues from two female and one male sardines were dissected onboard and immersed 

immediately in RNAlater. Sequencing was performed using the Illumina HiSeq 2000 

platform, yielding 56 million single-stranded paired-end reads of length 101 base pairs, a 

median quality value per sequence of 37, 5.6 million reads per sample on average, resulting 

in a total of 5.70 Gbp (Table 1). Reads were preprocessed with Trimmomatic, which slightly 

reduced the dataset to 98,09% of the reads, and the mean read length to 100.67 base pairs. 

Clean reads were assembled with Trinity. To measure the quality of the assembly, cleaned 

reads were back-mapped to the reference,  and transcripts were searched for  Actinopterygii 

Single-Copy Orthologs (SCOs). Transcripts were annotated with TransDecoder and 

Trinotate. Results of the sequencing effort and read cleaning are available in Table 1, while 

the ones of assembly, quality control and annotation are in Table 2. Figure 1 shows the most 

frequent Gene Ontology annotations received, and the coverage of the metabolome based 

on the KEGG annotations. Finally, each library was quantified with kallisto and prepared for 

differential downstream analysis with sleuth to obtain the expression patterns for each 

transcript in every tissue. The raw reads for the nine tissues of Sardina pilchardus have been 

deposited at the European Nucleotide Archive, under the umbrella project PRJEB18441, 

while each experimental run is deposited under accession numbers ERR5925802 to 
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ERR5925811 (Table 1). To our knowledge, this is one of the widest datasets not only in 

Clupeiformes but also in fish in general, only surpassed by the ones in  (1). Supplementary 

data with the raw transcriptome assembly, predicted protein-coding sequences, transcript 

annotation and tissue quantification are available at Figshare under DOI 

10.6084/m9.figshare.14617149. It includes: the assembled transcriptome (sd01-

assembly.fasta), the predicted coding-sequences (sd02-transdecoder.cds), annotation 

(sd03-trinotate.tsv) and expression profiles per tissue (sd04-tpms.tsv).  
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Table 1 

Summary of the read cleaning and backmapping of every library against the assembled 

reference. 

Library Sample 

Accession 

number 

Raw 

reads (M) 

Trimmed 

reads (M) Trimmed % 

Trimmed 

Gbp Mapped % 

Brain F1 ERR5925802 6,11 6,00 98,29 0,60 95,88 

Eye F1 ERR5925803 5,34 5,23 97,99 0,53 98,38 

Heart F1 ERR5925804 4,98 4,89 98,24 0,49 98,99 

Kidney M ERR5925805 6,68 6,56 98,18 0,66 97,20 

Liver F1 ERR5925806 4,67 4,59 98,23 0,46 98,86 

Muscle F1 ERR5925807 5,31 5,24 98,67 0,53 98,21 

Ovary 

1 F1 ERR5925808 6,64 6,50 98,00 0,66 98,03 

Ovary 

2 F2 ERR5925809 6,57 6,41 97,60 0,65 98,05 

Skin M ERR5925810 5,17 5,06 97,90 0,51 97,46 

Testes M ERR5925811 5,04 4,93 97,84 0,50 97,09 

Total   56,52 55,43 98,09 5,58 97,77 

 

Sample: sample used, M for male, F1 and F2 for the females. 

Raw: Original number of reads from the sequencer, in millions. 

Clean: number of reads free of adapters and sequencing errors, in millions. 

Clean %: Fraction of the original reads free of adapters and sequencing errors. 

Clean Gbp: Total number of error-free bases, in giga base pairs. 

Mapped %: Fraction of the trimmed reads that are back-mapped to the transcriptome. 
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Table 2 

Summary statistics of de novo transcriptome assembly, quality assessment, and annotation 

for Sardina pilchardus using nine tissues. 

 

Assembly description  

Assembled transcripts 198597 

Unigenes 149981 

Assembly length (Mbp) 149.36 

N10 3475 

N30 2080 

N50 1280 

Average contig length 752.08 

Longest contig length 10795 

GC% 48,1 

  

Quality Control  

Mapped reads 97,80% 

Actinopterygii BUSCOs 4584 

Complete, single copy 45,60% 

Complete, duplicated 27,80% 

Fragmented 11,60% 

Missing 15,00% 

  

Annotation  

Predicted ORF 68031 

Complete proteins 24187 

Contigs with match to SwissProt 67772 

Contigs with GO term 66396 

Contigs with PFAM domain 45154 

Contigs with KEGG annotation 59254 
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Figure 1 

A. Gene Ontology annotation of the Sardina pilchardus transcriptome. The figure shows 

the top ten level 2 categories within the three principal categories 

B. Expressed metabolome of Sardina pilchardus based on the KEGG annotation. 
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2. Experimental Design, Materials and Methods 

2.1 Sampling strategy 

Three individuals from the European Atlantic Ocean were collected by the IFREMER 
institute during the EVHOE scientific surveys (October 10th, 2015(2)). From these 
individuals, nine tissues (brain, eye, heart, kidney, liver, muscle, ovaries, skin, and testes) 
were dissected onboard, immediately immersed in RNAlater (Invitrogen), and stored at -
20ºC until further processing. 

2.2 RNA extraction, library construction, and sequencing 

Total RNA from nine tissues (Table 1) and three individuals were extracted using TriZol® 
Reagent (Life Technologies) and quantified with Agilent 2100 Bioanalyzer combined with 
Agilent RNA 6000 Nano chips (Agilent Technologies, Inc.) at the Gene Expression Unit 
(SGIker) of the University of the Basque Country UPV/EHU. Samples with RNA integrity 
numbers (RIN) below 8 were immediately discarded. For every tissue, the sample with the 
highest RIN was used for sequencing. The exception was testes since there was only one 
male specimen, and ovary, where both samples were used.  A multiplex sequencing library 
was prepared by labeling each sample with specific 10-mer barcoding oligonucleotides. The 
barcoded RNA-Seq libraries were sequenced using the Illumina HiSeq 2000 platform using 
one single lane. Sequencing reactions were performed with paired-end 101-bp and strand-
specific protocol at the sequencing facility of the CNAG (Centre Nacional d’Anàlisi 
Genòmica, Barcelona, Spain). Base-calling was performed using the Illumina native 
software. 

2.3 Read processing, assembly and quality control  

Raw reads were processed with Trimmomatic v0.33 (3) using a gentle procedure to remove 
adapters and low-quality bases, using the parameters 'SLIDINGWINDOW:4:5 LEADING:5 
TRAILING:5 MINLEN:25'. The trimmed reads were assembled with Trinity (4), using default 
parameters with the exception that input reads were single-stranded to optimize the 
assembly. To understand the reliability of this assembly, a two-fold approach was used to 
study its completeness and representativeness. First, the transcriptome was analyzed by 
running BUSCO (5) against the Actinopterygii (ray-finned fishes) database. This software 
compares the transcriptome against a precomputed set of proteins conserved as Single-
Copy Orthologs (SCOs) and returns how many of them are found, duplicated, fragmented or 
missing. Second, the representativeness of reference was obtained with Bowtie2 (6).  

2.4 Functional annotation and quantification 

Functional annotation of the transcriptome was performed with the execution of the protein 
prediction software TransDecoder v5.0.2 (4) followed by the annotation of both transcripts 
and proteins with Trinotate v3.0.2 (7). 
 
TransDecoder translated each transcript into the six possible amino acid sequences and 
filtered out Open Reading Frames shorter than 300 nucleotides. Afterward, each candidate 
protein was queried against the SwissProt (8) and Pfam-A (9) databases (downloaded on 
2018-10-22) and retained those hits with an E-value or domain noise cutoff less than or 
equal to 1e-5. 
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Subsequently, Trinotate was executed with default settings and using the same SwissProt 
and Pfam databases as before, and the same databases and threshold parameters for 
BLASTX, BLASTP, and hmmscan. Briefly, transcripts, predicted coding-sequences, and 
proteins are compared against the SwissProt and Pfam  databases,  and for each positive 
match, the source sequence inherits the annotation of its entry in its respective database. 
This way, sequences obtain Gene Ontology (10) and KEGG (11). Annotations were obtained 
for 55,781 proteins from at least one database. Figure 1 shows the Gene Ontology 
distribution of terms, and the parts of the metabolome covered, according to the KEGG 
annotation, and generated with the ggplot2 R package (12), and IPath3.0 (13), respectively. 

 
Trimmed reads were pseudo-aligned and quantified with kallisto v0.44.0 (14) and normalized 

Transcript per Million counts were obtained with Sleuth v0.29.0 (15). 
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Abstract

Clupeiformes  is  one  of  the  most  important  orders  of  fishes  due  to  its  ecological  and

economic importance. The plasticity that their genomes show explains the ubiquity of these

species across the globe: they occupy tropical and temperate latitudes, they are typically

marine but adaptable to freshwater. However, little is known about their concrete genetic

makeover and evolutive strategies, or how these species have become one of the richest

sources of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFAs). Here we report

the discovery of genes and families under positive selection in the Clupeiformes order. In

general,  we  found  positively  selected  portions  of  the  genome  related  to  mitochondria,

ribosomes, lysosomes, caveolae, extracellular proteins, and CD molecules. Furthermore, we
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observe  positively  selected  genes  associated  mainly  with  apolipoproteins  and  caveolae,

among  others,  indicating  that  these  fishes  have  adapted  their  molecular  machinery  to

efficiently store and transport fats across tissues. The herein applied methodology and the

obtained  results  pave  the  way  for  further  research  into  the  evolutionary  history  of

Clupeiformes, while also streamlining the study of another set of species, from raw RNA-Seq

reads to tabular results.

Translated abstract

Clupeiformes es uno de los órdenes más importantes de peces debido a su importancia

ecológica y económica. La plasticidad que sus genomas muestran explica la ubicuidad de

estas especies alrededor del mundo: ocupan latitudes tropicales y templadas, típicamente

son marinos, pero se adaptan al agua dulce. Sin embargo, poco se sabe de su composición

genética y estrategias evolutivas, o cómo estas especies se han convertido en una de las

fuentes más ricas de ácidos grasos poliinsaturados de cadena larga (ω-3 LC-PUFAs). Aquí

reportamos  el  descubrimiento  de  genes  y  familias  bajo  selección  positiva  en  el  orden

Clupeiformes. En general, descubrimos seleccionados positivamente porciones del genoma

relacionados con mitocondrias, ribosomas, lisosomas, caveolas, proteínas extracelulares, y

moléculas  CD.  Es  más,  observamos  genes  seleccionados  positivamente  asociados

principalmente con apolipoproteínas y caveolas, entre otras, indicando que estos peces han

adaptado  su  maquinaria  molecular  para  almacenar  y  transportar  eficientemente  grasas

entre los tejidos. La metodología aplicada aquí y los resultados obtenidos allanan el camino

para estudios posteriores sobre la historia evolutiva de los Clupeiformes, a la vez que agiliza

el estudio de cualquier otro conjunto de especies, desde lecturas brutas de RNA-Seq hasta

resultados en forma de tabla.

1 Introduction

Clupeiformes is an order of ray-finned fishes (Teleostei)  that contains approximately 400

species including anchovies, herrings, allis, shads, and sardines, among others (Bloom and
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Egan, 2018). These species occupy a wide range of habitats across the globe, from tropical

to  temperate  latitudes,  and  from  marine  to  freshwater.  Additionally,  they  are  keystone

species mediating between the plankton on the bottom and the predators on top of  the

trophic  web.  From  an  anthropocentric  perspective,  these  fishes  are  important  for  their

economic value due to their high content of lipids and proteins. According to the Food and

Agriculture Organization (FAO), herrings, anchovies, and sardines supposed 24% across all

reported fish catches in weight in 2018 (http://www.fao.org/fishery/statistics/global-capture-

production/query/en). Due to overfishing and global warming, the stocks of these species are

decreasing, and periodic collapses are reported with a subsequent fishing ban (ICES, 2018).

One of the reasons for the ubiquity of these species across the globe is the plasticity that

their genomes show. These fishes inhabit tropical and temperate latitudes across the globe

with some species showing a bipolar distribution such as in the genus Engraulis (e.g. (Grant

et al., 2005)). Although they are typically marine, some live in brackish and even freshwater

environments including anadromous species. Interestingly, even fully marine species such

as European anchovy (Engraulis  encrasicolus,  Linnaeus,  1758),  that  can inhabit  coastal

waters  from  0º  to  60º  at  both  hemispheres,  are  capable  of  successfully  spawning  at

extremely contrasting salinity sites, from oceanic waters to river water plumes (e.g. (Motos et

al.,  1996)).  Clupeiformes  have  also  adapted  to  forage  a  wide  variety  of  plankton  from

phytoplankton  to  mesozooplankton  (Egan  et  al.,  2018).  The  high  diversity  of  this  order

across contrasting biotic and abiotic factors makes Clupeiformes a good candidate when

looking for significant drivers of speciation, in terms of signatures of positive selection, in

fishes.

Even though their huge economic and dietary importance, with dedicated fisheries worldwide

due to their abundance and high nutritional value primarily linked to its high omega-3 long-

chain polyunsaturated fatty acid (ω-3 LC-PUFA) content (e.g.  (Machado et al., 2018)) and

their beneficial effects (Burdge, 1998; Kim and Mendis, 2006; Lemaitre et al., 2003; Ruxton

et al., 2004; Sidhu, 2003; Uauy and Valenzuela, 2000; Yokoyama et al., 2007), few genomic
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resources exist for this group. To our knowledge, only two genome assemblies are available

at Ensembl (Clupea harengus, Linnaeus, 1758, and Denticeps clupeoides, Clausen, 1959; (í

Kongsstovu et al., 2019; Kersey et al., 2018; Rhie et al., 2021)) along with two drafts for

Sardina  pilchardus (Walbaum,  1792)  (Machado  et  al.,  2018;  Louro  et  al.,  2019).

Interestingly, teleost fishes went under a whole-genome duplication (WGD) which occurred

320-350 million years ago. This initially duplicated the gene repertoire and, with time, gave

new functions to some copies -neofunctionalization-,  specialize some of  their  functions -

subfunctionalization-,  and,  most  of  the  time,  deleted  one  of  the  copies  (Nei  and

Roychoudhury, 1973; Takahata and Maruyama, 1979; Watterson, 1983; Force et al., 1999).

This phenomenon not only makes it hard to assemble the genome and transcriptome but

also to delimitate if different gene products are isoforms (i.e., are the effect of different RNA

splicing patterns) or they come from paralogous genes. In this regard, until whole-genome

assemblies  do  not  become  available  for  these  fishes,  the  cost-effective  approach  to

characterize protein-coding genes is to study the expressed messenger RNAs.

To  face  the  environmental  factors  that  perturb  homeostasis,  such  as  the  contrasting

temperature and salinity environments these species inhabit, the genome has either to ramp

up mRNA transcription to counter the external changes by producing more proteins or to

tailor mutations to synthesize more efficient proteins. To study the first strategy, the go-to

method is to perform an RNA-Seq approach on two or more conditions to characterize the

key  genes  that  are  under-  and  over-expressed.  To  address  the  second  approach,

phylogenetic tests have been developed to detect evolutionary differences across different

species. Among these, the site test  (Yang et al., 2000) was developed to detect positive

selection in a limited number of sites of a protein. Posteriorly, the branch test (Yang, 1998)

detected positive selection in a larger set of sites of a protein but over a limited amount of

time.  Finally,  the  branch-site  test  (Zhang  et  al.,  2005) was  presented  to  address  the

limitations  of  the  two  previous  methods  (Roux  et  al.,  2014).  Introduced  in  the  CodeML

module from PAML (Phylogenetic Analysis by Maximum Likelihood; (Yang, 2007), the three

different tests have been used genome- and transcriptome-wide to identify genes under the
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effect of positive selection (Roux et al., 2014; Ciezarek et al., 2016). The application of this

procedure  to  every  single  gene  and  branch  allows  us  to  discover  patterns  of  evolution

without any hypothesis in mind, and therefore unbiased in a search of a goal in particular.

In this regard, we sailed out to discover genes under positive selection in Clupeiformes that

could shed light on the biodiversity and evolutionary relationships of this group. To do so, we

downloaded  transcriptomic  data  from  publicly  available  studies  for  twelve  species,

assembled  them  de  novo when  necessary,  recovered  the  protein-coding  sequences,

clustered  them  into  orthogroups,  built  the  species  phylogenetic  tree,  and  tested  each

orthogroup for  positive  selection  using the branch-site test.  Then,  we tested each Gene

Ontology term, Reactome pathway, and HUGO Gene Nomenclature Consortium (HGNC)

gene family for overrepresentation to discover also which modules are under strong positive

selection.  Additionally,  we  recorded  which  orthogroups  are  under  selection  in  multiple

branches at once.

2 Materials and Methods

2.1 Initial transcriptomes

To guide  the transcript  clustering  step,  reference transcriptomes were downloaded  from

Ensembl  (Kersey et al., 2018) for teleosts  Astyanax mexicanus,  Danio rerio,  Gasterosteus

aculeatus,  Gadus  morhua,  Latimeria  chalumnae,  Lepisosteus  oculatus,  Oryzias  latipes,

Oreochromis niloticus,  Poecilia formosa, and Xiphophorus maculatus; and mammals Homo

sapiens and Mus musculus.

Predicted transcriptomes for  D. clupeoides and  C. harengus were downloaded from their

respective  NCBI  Genome entries  (accession  numbers available  at  Supplementary  Table

ST01). Assembled transcriptomes from Konosirus punctatus (Temminck & Schlegel, 1846)

and  Alosa pseudoharengus (Wilson, 1811) (Pasquier et al., 2016) were downloaded from
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ENA’s Transcriptome Shotgun Assembly (TSA) website. For the remainder 8 species (E.

encrasicolus,  Coilia nasus (Temminck and Schlegel, 1846),  Clupea pallasii (Valenciennes,

1847), Tenualosa ilisha (Hamilton, 1822), Alosa alosa (Linnaeus, 1758), Brevoortia tyrannus

(Latrobe,  1802),  Sardinops  sagax (Jenyns,  1842),  S.  pilchardus (Walbaum,  1792)),

transcriptomes were built by de novo assembly of previously published RNA-Seq datasets

((Roberts et al., 2012; Eldem et al., 2015; Iv et al., 2017; Zhu et al., 2017; Richards et al.,

2018; Divya et al., 2019; Langa et al., 2021); Table 1 shows the species description, source

of  samples,  and  sequencing  instruments  used;  ENA  accession  numbers  available  at

Supplementary Table ST01).

For the 454 reads dataset in C. pallasii, basecalls were corrected and converted to FASTQ

with PyroBayes 0.9  (Quinlan et  al.,  2008),  trimmed,  and cleaned for  contamination  with

SnoWhite 2.0.3 (Dlugosch et al., 2013), and assembled with gsAssembler 2.9 (Roche Ltd.).

In the case of Illumina datasets, reads were processed with Trimmomatic 0.36 (Bolger et al.,

2014) by removing characters at the 5’ and 3’ ends with quality below 20 (LEADING:20

TRAILING:20),  removing  reads  with  average  quality  below  30  (AVGQUAL:30)  and  with

length less than 32 nucleotides (MINLEN:32). Reads were normalized  in silico with khmer

2.0 (Crusoe et al., 2015), except for S. pilchardus and S. sagax, due to the low number of

bases  sequenced.  For  each  experiment,  four  hash  tables  4  GB  in  size  each  were

constructed to normalize the reads to a 20x coverage and eliminate erroneous and highly

covered 32-mers.  Finally,  transcriptomes were assembled with Trinity 2.2.0  (Haas et al.,

2013) allowing a maximum of 40 GB when counting k-mers. Both Snakemake (Köster and

Rahmann, 2012) Illumina and 454 assembly pipelines are available online at GitHub and

Figshare (see Data Accessibility section).

As a quality control measure, the completeness of each transcriptome was assessed by

searching Single Copy Orthologs with BUSCO 3.0.2 (Waterhouse et al., 2018). Briefly, this

program analyzes an input set of sequences and performs BLAST (Camacho et al., 2009)

and HMMER  (Eddy,  2011) searches against  a chosen dataset (Actinopterygii,  ray-finned

148 Appendix D. Article 4. Clupeiformes



fishes)  of  known  Single-Copy  Orthologs  (SCOs)  derived  from the  OrthoDB 8  database

(Kriventseva et al.,  2019). In the end, it  reports which SCOs were found as single-copy,

duplicated, fragmented, or missing.

2.2 Coding Sequence and protein prediction

Transcripts were inspected with TransDecoder 5.0.2 (Haas et al., 2013) to predict the coding

sequences (CDS) and protein they encode while also removing 5’ and 3’-UTR regions. This

procedure was applied to all transcriptomes (Ensembl, NCBI Genome, ENA TSA, and  de

novo assembled).  As the procedure requires  using a  single  genetic  code,  mitochondrial

transcripts were discarded in favor of mitogenomic data already published (see section 2.5).

TransDecoder, in a first  step, searches for putative ORFs with a minimum length of 300

nucleotides (100 amino-acids), and then performs homology searches with Diamond 0.9.29

(Buchfink et al., 2015) and hmmscan (Eddy, 2011) against the SwissProt  (“UniProt,” 2019)

and  Pfam-A  (El-Gebali  et  al.,  2019) databases,  respectively.  Finally,  CDS  and  protein

sequences are predicted.  To automate the procedure,  another  Snakemake pipeline  was

built, available at GitHub and Dryad (see Data Accessibility section). 

2.3 Orthology Inference and alignment refinement

To cluster and align the coding sequences obtained, we based our approach on the ones

used in  (Roux et  al.,  2014) and  (Ciezarek et  al.,  2016), which in turn are based on the

procedures  from Ensembl  Compara  (Herrero  et  al.,  2016) and Selectome  (Proux et  al.,

2009; Moretti et al., 2014).

Protein coding sequences were clustered with CD-HIT-EST 4.8.1 (Li and Godzik, 2006) with

a similarity threshold of 99.5% to remove within-species redundancy. Redundancy-free CDS

for all 24 species were clustered with OrthoFinder 2.3.3 (Emms and Kelly, 2019) to predict

orthogroups (families of homologous sequences - putative genes) across all species. This

program first performs an all-vs-all Diamond search of the translated CDS sequences, then
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normalized the results through the bit scores of the searches, taking into account sequence

lengths and phylogenetic distances, and then performed clustering of the graph induced by

the Diamond bit scores with MCL 14.137 (van Dongen and Abreu-Goodger, 2012).

To  separate  paralogous  genes  inside  each  orthogroup  with  certainty,  we  executed  the

methods  of  (Yang  and  Smith,  2014).  This  approach  consists  of  two  rounds  of  protein

realignment with MAFFT 7.464  (Katoh and Standley, 2013), column trimming with pxclsq

(from the phyx package 1.01;  (Brown et al., 2017)), tree inference with RAXML-NG 0.9.0

(Kozlov et al., 2019) using the WAG protein evolution model (Whelan and Goldman, 2001),

trimming of the tree' tips that had an absolute length of 2 or a relative length of 10 times its

sister tip (trim_tips.py), removal of tips from the same species with fewer characters while

also removing the paraphyletic ones (mask_tips_by_taxonID_transcripts.py), and removal of

deep paralogs (tips with a branch length greater than 0.5; cut_long_internal_branches.py).

After these two rounds of refinement, high-quality orthologs were predicted with the Root-to-

Tip method (prune_paralogs_RT.py), which takes into account gene duplication events, such

as the WGD that occurred in teleosts. Mammals and non-clupeid fish species were used as

outgroups and removed from the CDS/protein clusters and phylogenetic trees.

Since alignment errors are an important source of false positives in the search for Positive

Selection (Löytynoja, 2014; Redelings, 2014), a more stringent procedure consisting of two

more rounds of refinement was applied.  First,  alignments were performed with M-Coffee

11.0.8  (Wallace et  al.,  2006),  which aligned independently  each orthogroup with Muscle

3.8.31  (Edgar,  2004),  MAFFT  7.464  (Katoh  and  Standley,  2013),  T-Coffee  11.0.8

(Notredame et al., 2000), and kalign 2.04 (Lassmann et al., 2009). Then, alignments were

evaluated, and columns with a score below 9 out of 9 were removed. Finally, proteins were

back-translated to CDS, columns (codons) with occupancy below 50% were removed with

pxclsq, and rows (transcripts) rich in gaps were removed too with MaxAlign 1.1  (Gouveia-

Oliveira et al.,  2007) using default  settings. These trimmed sequences were reprocessed

then a second time.
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2.4 Phylogenetic Bayesian Tree Construction

Due to the redundancy of the genetic code, multiple codons encode the same amino acid.

Four-fold  degenerate  sites  are  the positions  in  the  third  base of  codon  alignments  that

produce the same amino acid no matter what mutation occurs in that position. Therefore, a

phylogeny built on these positions should be free from positive selection constraints (Eyre-

Walker and Keightley, 1999; Nachman and Crowell, 2000). Four-fold degenerate sites were

extracted from all  the  orthogroups  previously  aligned  and were  concatenated to  form a

supermatrix, requiring each orthogroup to contain at least four taxa. Then, columns were

removed if they had occupancy of less than 50% with pxclsq, and converted to PHYLIP

format.  ModelTest-NG  (Darriba et al.,  2020) was executed to see which evolution model

fitted best our sequence alignment. Then, the filtered supermatrix and the fittest model were

fed to RAxML-NG to obtain the maximum likelihood tree, performing also 1,000 bootstrap

replicates.  Finally,  ExaBayes  1.5  (Aberer  et  al.,  2014) was  run  to  obtain  the  Bayesian

phylogenetic  species tree,  using the previous tree as the starting tree,  four independent

MCMC independent  runs,  with  3  coupled  chains  and  1,000,000  generations  each,  and

sampling every 500 generations. Finally, sdsf and postProcParams were run to ensure that

the split frequencies, scale reduction factors, and effective sample sizes were close to zero,

one, and 200, respectively. From the bootstrap replicates, a consensus unrooted tree was

generated, and from this one, a rooted version was generated with pxrr using D. clupeoides

as the outgroup.

2.5 Detection of Positive Selection

The branch-site test  (Zhang et al., 2005) from CodeML, part of the PAML’s 4.9j package

(Yang, 2007) was the one used as the core of this manuscript. Instead of running CodeML

directly, we used the Python package ETE3 3.1.1  (Huerta-Cepas et al., 2016) due to its

convenience:  it  acts  as  an  interface  to  CodeML  through  the  command  line,

avoiding designing one control file per branch and orthogroup, parsing the very

verbose outputs of CodeML, and being able to plot each alignment, signaling p-
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values and ⍵ ratios for the different models used. To carry over the analysis,

each orthogroup had to have a minimum of two species in both the foreground

and background branches.

To do so, the aforementioned method studies the ratio between nonsynonymous

(dN) to synonymous (dS) substitutions, denoted by ⍵ (⍵ = dN/dS). On the one

hand,  the null  model  assumes that  the evolution speed ⍵ f  of  the foreground

branch is  strictly  less  than one (⍵f < 1).  On the other  hand,  the alternative

hypothesis  allows  four  situations:  0  <  ⍵background,  ⍵foreground <  1  (codons  are

conserved), ⍵foreground = ⍵background = 1 (codons are evolving neutrally), ⍵foreground > 1 =

⍵background (the  foreground  is  under  positive  selection  while  the  background  is

evolving neutrally), and ⍵foreground > 1 > ⍵background (the foreground is selected, while the

background is fixed). For each branch and ortholog analyzed, a likelihood ratio test (LRT) is

used  to  compare  whether  the  alternate  model  fits  better  than  the  null  hypothesis  by

comparing it to a χ2 test. Due to the sensitivity of the method to initial conditions (Yang and

dos  Reis,  2011),  for  every  ortholog  and  branch,  ETE3  was  executed  three  times  with

different  starting values  for ⍵0 (0.5,  1.0,  1.5).  Orthologs and branches were considered

putatively under selection if  the tests were found significant  (p-value < 0.05) in the three

different starting points.

Since alignment error is a key source of false-positives  (Markova-Raina and Petrov, 2011;

Redelings,  2014),  putatively  selected  orthogroups  were  processed  again  with  an  even

stricter approach: Guidance2 2.02  (Sela et al.,  2015), a codon-aware probabilistic aligner

that has shown to produce low rates of false positives compared to previous approaches.

This program was executed using PRANK v.170427  (Löytynoja,  2014), and running 100

bootstraps. Low-quality positions in the alignments were removed with TrimAl 1.2 (Capella-

Gutiérrez et al., 2009), using the automated feature, and taxa rich in gaps were removed too

with MaxAlign. Finally, a second step of detection of positive selection was performed, this

time with FastCodeML 1.3.0 (Valle et al., 2014), a faster implementation of the branch-site
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tests of CodeML, using also the different  starting ⍵0.  As in ETE3, both foreground and

background branches had the requirement of a minimum of two species.

Mitochondrial genes were analyzed and processed similarly. The 13 mitochondrial genes for

all clupeoid species but one (S. sagax) were downloaded from NCBI Gene and separated

into 13 different FASTA files. They were directly aligned with GUIDANCE2, trimmed with

TrimAl, filtered with MaxAlign, and searched for positive selection with ETE3, using this time

the vertebrate mitochondrial genetic code.

All p-values from the two methods (ETE3 and FastCodeML) and three starting points were

merged across all orthologs and all branches analyzed and corrected with the Benjamini-

Hochberg method.  All  ortholog-branches with all  six  corrected p-values under 0.05 were

considered to be under Positive Selection. To avoid working with multiple adjusted p-values

per starting point, for each orthogroup and branch analyzed, the maximum of the adjusted p-

values were reported.

Since synonymous-site saturation (SSS) may influence the reliability of the branch-site test

(Gharib and Robinson-Rechavi, 2013; Roux et al., 2014), CodeML’s free-ratio (b_free) and

one-ratio  models  (M0)  were run again  with ETE3 in  the selected orthogroups-branches.

Orthogroup-branches with dS > 1 in both models were considered to be under SSS, and

therefore possible false positives.

2.6 Orthogroup annotation and enrichment

Every transcript in every high-quality orthogroup was searched for homology against  the

Ensembl’s  Zebrafish  transcriptome  with  DIAMOND’s  BLASTX  implementation,  matching

each clupeid transcript to a single zebrafish transcript, and therefore a zebrafish gene via

lowest e-value. Then, a gene symbol was assigned to each orthogroup via a majority rule of

the symbols associated with its constituent transcripts. Given that Clupeiformes genes may

or may not have been conserved after the teleost WGD event, a suffix of the form “-n|m” was
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added to the associated gene symbol, indicating that such an orthogroup is the copy number

n out  of m. .  Orthogroups that did not match any zebrafish gene were simply given the

symbol “unknown” followed by a suffix. Tables with the equivalences between the Zebrafish

genes and their Gene Ontology  (Ashburner et al., 2000; “The Gene Ontology Resource,”

2019) and Reactome  (Jassal et al.,  2020) annotations were downloaded from Ensembl’s

Biomart  (Kinsella  et  al.,  2011).  Then,  each  orthogroup  inherited  the  annotations  of  its

corresponding Zebrafish gene. Additionally, gene family annotations and human to zebrafish

gene  orthologs  were  downloaded  from  the  HGNC  database  (Braschi  et  al.,  2019) and

Ensembl’s Biomart, and each clupeoid orthogroup inherited the gene family annotation of

their zebrafish ortholog, which in turn inherited it from its human equivalent. When possible,

HGNC families were subdivided into subfamilies for a more granular analysis. For example,

the  human  “Aldo-keto  reductase  family”  could  be  subdivided  into  subfamilies  “Aldo-

reductase family 1” to “Aldo-keto reductase family 7”. This division of the gene families can

discover subfamilies under positive selection while its superfamily is not.

Enrichment  of  Gene  Ontology,  Reactome,  and  HGNC  clusters  was  analyzed  with  the

Bioconductor (Huber et al., 2015) ClusterProfiler 3.16.0 package (Yu et al., 2012). This R (R

Core Team, 2020) package performs enrichment of any custom set of terms with the “enrich”

function and provides multiple forms to visualize the results.  For the three collections of

terms,  we  used  as  the  foreground  those  orthogroups  that  were  selected  and  had  an

annotation, and as the background list the set of orthogroups that were annotated. In both

cases, terms associated with between 5 and 500 terms (minGsSize = 5, maxGsSize = 500)

were kept to avoid very specific and non-specific categories, respectively. For each term, a

Fisher exact test was performed, and all p-values were corrected by the Benjamini-Hochberg

method  (Benjamini & Hochberg, 1995). Additional data processing and visualization were

done with the R Tidyverse metapackage (Wickham et al., 2019).

Finally,  we tracked the number of times an orthogroup was positively selected, to obtain

which ones are under strong evolutive pressure, even divergence.
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3 Results

3.1 Sequence assembly, protein-coding prediction

For Illumina experiments, between 5 and 66 Gbp were assembled into 107,804 to 885,281

transcripts  (Table  2).  T.  ilisha obtained  the  lowest  number  of  assembled  transcripts

(107,804) because of the low sequencing depth (6 Gbp) and being composed of a single

library (liver). In the same sense, as expected the C. pallasii 454 transcriptome yielded much

fewer transcripts (19,004) than Illumina transcriptomes.

3.2 Protein-coding prediction and initial filtering

Transdecoder predicted which sequences had a coding potential. In total, between 5,788 (C.

pallasii)  and  206,368  (E.  encrasicolus)  transcripts  were  predicted  to  be  protein-coding,

discarding between 6% (C. harengus) to 84% (S. sagax) of the input transcripts. We note

that the transcriptomes from reference species were the ones that obtained the highest rate

of conversion to CDS (94% in  C. harengus and 87% for  D. clupeoides), due to being the

product  of  an  annotation  of  a  genome  assembly  rather  than  a  de  novo transcriptome

assembly. Outside those cases, the conversion rates fell to a range between 14% (S. sagax)

to 40% (K. punctatus and A. pseudoharengus).

Results from BUSCO returned an approximation of the completeness of the transcriptome,

revealing that between 5.4% to 97.6% of the Actinopterygii Single-Copy Orthologs (SCOs)

were present in the studied transcriptomes (Table 2 and Figure 2). C. pallasii and S. sagax

obtained the lowest results (5.4% and 11.7%) due to the relatively low sequencing effort.

Nonetheless,  those  transcriptomes  were  kept  to  analyze  the  Clupeinae  and

Sardina+Sardinops branches for positive selection.  Outside the species with the genome

assembly,  S.  pilchardus obtained  the  highest  counts  for  SCOs,  followed  by  A.

pseudoharengus. We hypothesize the high results for  S. pilchardus (73%) are due to the
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width of tissues sampled, although A. alosa was sequenced with a similar tissue width but

with ten times the depth, and obtained only 32% of SCOs and, similar results were obtained

for A. pseudoharengus where the only reported tissue were gills.

Finally,  CD-HIT-EST  eliminated  the  redundancy  of  the  coding  sequences,  reducing  the

transcriptomes between 0.16% (K. punctatus) to 33.03% (D. clupeoides; Table 2). Due to

the  lack  of  a  study  associated  with  K.  punctatus,  we  suspect  that  this  published

transcriptome  was  already  clustered.  Transcriptomes  inferred  from  assembled  genomes

were the ones that benefited more from the clustering step (C. harengus and D. clupeoides;

26.13%  and  33.03%  respectively),  due  to  the  specificity  of  Ensembl's  gene  prediction

algorithms. 

3.3  Orthogroup  clustering,  refinements,  and  Species  Tree

construction

OrthoFinder initially discovered 26,020 orthogroups composed of 936,769 transcripts, which

after the different refinement steps were reduced to 19,914 high-quality orthogroups and

97,383 transcripts. From these refined orthogroups, a supermatrix of 4-fold degenerate sites

was built, composed of 15,877 loci and 1,293,781 characters and an overall occupancy of

41.98%,  with  a  widely  different  contribution  from the species:  3.87% from  C. pallasii to

72.11% of  S. pilchardus. A maximum-likelihood tree was computed with RAxML-NG, with

the evolution model proposed by ModelTest-NG (“TVM+G4”). This ML tree was used as the

starting  tree for  ExaBayes.  The resulting  bayesian  tree is  the one depicted in  Figure  1

(rooted using D. clupeoides as outgroup). The posterior probability of this tree is 1.0 and all

100  bootstrap  trees  supported  this  topology.  This  tree  separates  Clupeinae  from  the

subfamily composed of Alosinae and Dorosomatinae. 
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3.4 Testing for selection

After  building  the  Clupeiformes  species  tree,  we  tested  for  positive  selection  the  eight

branches marked in red in Figure 1 out of the possible 22. We required alignments to contain

at least 2 species both in the background and the foreground, discarding immediately the

analysis  of  the  12  terminal  branches,  the  Cluepidei  one,  and  the  one  that  separates

Brevoortia from Alosa. In the end, we tested for selection the Engraulidae and Clupeidae

families, Clupeinae,  Dorosomatinae and Alosinae subfamilies, and the aggregation of the

last  two  (Alosinae+Dorosomatinae),  and  genera  Clupea,  and  the  combinations  of

Sardina+Sardinops,  and  Alosa+Brevoortia. Given the completeness results from BUSCO,

branches Clupeinae and Sardina+Sardinops had difficulties meeting that criteria but were

analyzed nonetheless. Also, given that transcriptomes from C. harengus and D. clupeoides

are derived from genome assemblies, almost all branches have assured at least one species

in the background.

In total, 15,822 orthogroups were susceptible to be tested for selection, ranging from 483 in

Clupeinae,  to  11,349  in  “Alosinae+Dorosomatinae” due  to  the  high  number  of  species

present (Table 3).  After the two rounds of realignment,  testing for selection, and p-value

correction, 918 orthogroups (5.8%) were found to be under positive selection in any of the 8

branches analyzed. On a per-branch basis, from 23 (Clupeinae, 4.76%) to 331 orthogroups

(Alosinae and Alosinae+Dorosomatinae, 3.01% and 2.92%, respectively) were found to be

positively  selected.  Analysis  of  the  speed  of  synonymous  changes  determined  that  4

orthogroups (out of the 918) were under SSS, minimizing the presence of false positives.

3.5 Annotation

The  19,914  high-quality  orthogroups  were  annotated  by  aligning  them  with  DIAMOND

against all the zebrafish cDNA set from Ensembl. From these 19,914 orthogroups, 18,960

matched 14,116 D. rerio genes, while the remainder 954 did not show sufficient homology,

suggesting that these 954 orthogroups correspond to genes present in the Clupeiformes and
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D. rerio last common ancestor, but lost in the evolution of the latter. A non-exhaustive search

of these orthogroups suggests that 295 of these unknown orthogroups match at least one

human gene,  while  the remainder still  lack an annotation.  Also,  due to the many-to-one

assignment of orthogroups to  D. rerio genes, we inferred the duplication of some genes.

Among  them,  we  found  FO704673.1 (12  copies,  annotated  as  an  endonuclease),

zgc:100868 (10  copies,  a  peptidase  hydrolase),  bptf (10  copies,  subcomponent  of  the

nuclease  remodeling  factor),  BX546500.1 (10  copies,  another  endonuclease),  and

CR848040.3 (10 copies, a reverse transcriptase domain-containing protein; Supplementary

Table ST03). Given the clustering steps done with CD-HIT, OrthoFinder, and the subsequent

stringent  filtering  procedure  by  (Y.  Yang  &  Smith,  2014),  we  minimized  false  positive

duplications due to artifacts of alternative splicing and kept these orthogroups for the rest of

the analysis.

Regarding the unknown orthogroups,  44 out  of  965 were found under positive selection

(4.45%). Additionally, much of the genes also found under selection have been identified (for

example, si:dkeyp-84f3.5, BX901897.1, or CABZ01068246.1), but little is known about them:

they are successfully cloned mRNAs, or genes predicted ab initio whose name relates to the

contig they belong to.

3.6 Overselected GO terms, Reactome pathways, and HGNC

gene families

When taking into account the evolution across all  eight branches, we obtained eight GO

terms to be enriched after p-value correction (Table 5 and Figure 3). Six of these terms are

related to three organelles in particular: two to the mitochondrion and the electron transport

chain (ETC; “BP: mitochondrial electron transport, cytochrome c to oxygen” and “BP: ATP

synthesis  coupled  proton  transport”),  three  to  the  ribosome  (“BP:  translation”,  “CC:

ribosome”, and “MF: structural constituent of ribosome”),  and one to the lysosome (“CC:

lysosome”). The two remaining terms were associated with caveolae (“CC: caveola”), and a
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non-specific set of genes whose products are secreted outside the cell (“CC: extracellular

region”).

Concerning the Reactome pathways, two clusters with four pathways each were obtained,

both referring, as with GO terms, to the translation process ("Translation",  "Mitochondrial

translation",  "Mitochondrial  translation  elongation"  and  "Mitochondrial  translation

termination") and energy production processes, focusing again on the ETC ("The citric acid

(TCA)  cycle  and  respiratory  electron  transport",  "Respiratory  electron  transport,  ATP

synthesis  by  chemiosmotic  coupling,  and  heat  production  by  uncoupling  proteins",

"Respiratory electron transport", and "Complex I biogenesis", Table 6 and Figure 4).

Finally,  the HGNC gene family  and subfamily enrichment  revealed overrepresentation of

both  complexes  I  and  V  of  the  ETC (“NADH:ubiquinone  oxidoreductase  supernumerary

subunits”,  “Mitochondrial  complex V:  ATP synthase subunits”),  and also “CD molecules”,

“Apolipoproteins”, and the “Solute Carrier Family 25”, also known as mitochondrial carriers

(Table 7 and Figure 5).

Therefore, taking together the GO, Reactome, and HGNC results, Clupeiformes have been

shaped through positive selection on six  elements:  mitochondria,  ribosomes,  lysosomes,

caveolae, extracellular proteins, and CD molecules.

Additionally,  genes  selected  multiple  times  across  the  different  branches  were  studied.

Among them, we found orthogroups that either have been found in Zebrafish but  are of

unknown function (CR846080.1-2|2, si:ch211-15j1.5, or si:ch211-207i1.2-3|7)), or that seem

to be missing completely in that genome (unknown-565|965, unknown-422|965, or unknown-

185|965;  Table 8 and Supplementary Table ST04). Apart from this, we obtained multiple

apolipoproteins:  apoa1a-1|2 (depicted  in  Figure  6),  apoa1a-2|2,  apoa2,  apoeb-1|2,  and

apooa.  Another  example of  selection  in multiple branches is the  mylipa-1|3 gene,  which

regulates cholesterol uptake (Lindholm et al., 2009; Zelcer et al., 2009).
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4. Discussion

4.1 Pipeline construction

This paper has presented the results of a transcriptome-wide scan for positively selected

genes  in  twelve  Clupeiformes  species.  To  do  so,  we  designed  a  Snakemake  pipeline,

available  at  GitHub  and deposited at  Figshare,  based on previously  described methods

(Proux et al., 2009; Moretti et al., 2014; Roux et al., 2014; Ciezarek et al., 2016; Herrero et

al.,  2016).  This  pipeline,  which  takes  as  input  the  assembled  transcripts,  performs  the

necessary steps to cluster them into the high-quality orthogroups, computes the Bayesian

phylogenetic  species  tree  derived  from  four-fold  degenerate  sites,  and  searches  which

orthogroups are under positive selection through CodeML's branch-site test, presented in

(Zhang et al., 2005), and implemented in PAML (Z. Yang, 2007). This pipeline automates the

procedure, leaving to the user the task of providing the assembled transcriptomes and the

branches to analyze, and provides the results as tables. Additionally, due to Snakemake's

ability to manage conda environments, the installation of all required tools to perform the

analysis is simplified and automated too, and even containerization of the entire procedure,

ensuring not only reproducibility but wide applicability.  Finally,  special  attention has been

given to parallelization. Whenever possible all alignment, tree inference, and evolutionary

tests are run in parallel, and the analysis of each branch can be done in different nodes,

leveraging the power of HPC clusters. Therefore, we provide an easy to install and ready-to-

use  tool  to  search  for  signals  of  positive  selection  from  any  number  of  RNA-Seq

experiments. Complementarily, we provide two independent pipelines to perform  de novo

transcriptome assemblies with Illumina and 454 technologies, and another one to annotate

them with TransDecoder and Trinotate (see Data Accessibility section).
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4.2 Gene clustering, phylogenetic relationships, and search for

positive Selection

The results presented in this document highlight interesting aspects of molecular evolution

within the Clupeiformes order. We clustered the initial million and a half transcripts into a

total of high-quality 19,914 protein-coding orthogroups, which matched a significant fraction

of  the  25,592  protein-coding  genes  in  Zebrafish  (GRCz10).  Given  the  triple  filtering

procedure used (CD-HIT to remove redundancy within  each species,  resolution  of  gene

trees  in  OrthoFinder,  and  posterior  rounds  of  refinements),  the  probability  of  falsely

duplicated genes is very low. Also, we were not able to retrieve a Zebrafish annotation from

965  orthogroups,  suggesting  that  they  likely  are  teleost  genes  lost  in  the  evolution  of

Zebrafish (Supplementary Table ST02). A preliminary Diamond BLASTP search resulted in

282 out of the 952 unknown orthogroups with homology to the human proteome (data not

shown).

All branches from the Bayesian phylogenetic tree in Figure 1 obtained a 100% bootstrap

support and agree with the dated trees from previous works (Lavoué et al., 2014; Egan et

al.,  2018; Bloom & Egan, 2018), derived from a wide number of species but limited to a

handful  of  nuclear  and  mitochondrial  sequences.  In  turn,  it  disagrees  with  the  ones

presented in (Nelson et al., 2016) and (Whitehead et al., 1985), derived from morphological

characters  alone,  in  which  the  Tenualosa genus  is  placed  within  Alosinae  instead  of

Dososomatinae.  While the access to RNA-Seq data is becoming more common due to the

advances in sequencing technologies, the elucidation of phylogenetic relationships with the

herein presented approach, or a similar one, will likely become a new standard to complete

traditional methods (Ciezarek et al., 2016; S. Li et al., 2018; Roux et al., 2014; Spalink et al.,

2018; Wang et al., 2017). Although with a limited number of species, present data confirming

the most recent DNA-based phylogeny reconstructions suggest its huge potential.

Appendix D. Article 4. Clupeiformes 161



4.3 Categories of genes under selection

Our analysis of overrepresented GO terms, Reactome pathways, and HGNC families found

that evolution has shaped the genomes of Clupeiformes in, at least, six putative ways.

(1) The ETC within mitochondria, where complexes I (NADH:ubiquinone oxidoreductase), IV

(cytochrome c oxidase), and V (ATP Synthase) were significantly overrepresented in terms

of GO, pathways, and HGNC families. No protein in complexes II (succinate dehydrogenase)

and III (cytochrome  bc1) was positively selected in any branch. Additionally, mitochondrial

carriers were selected too according to the analysis of HGNC gene families.

(2)  The  ribosomes  and  the  translation  processes  were  selected  too,  both  nuclear  and

mitochondrial, with significantly more selected genes in the latter.

(3) The lysosome was overrepresented according to GO, although no clear pattern in the

genes  selected  was  found.  Notably,  we  find  selected  the  npc1 gene,  responsible  for

cholesterol excretion, together with npc2, although the latter lies outside this organelle.

(4) The caveolae GO term was selected, signaling cavins cavin1b-1|3, cavin1b-2|3, cavin2b,

and zgc:172270 and caveolins cav1 and cav3. Although lying outside the "Caveolae'' Gene

Ontology term, we found positively selected pacsin2, essential to caveola assembly.

(5) The cluster of differentiation (CD) molecules appeared overrepresented in HGNC. They

are cell-surface proteins used to characterize leukocytes and other immune system-relevant

cells by immunophenotyping (Chan et al., 1988). They act as cell adhesion proteins, ligands,

and receptors, and therefore participate in cell signaling (Table 7 and Figure 5). 

(6) The wide term of extracellular protein-coding genes was also overrepresented. Although

it is very generic, a pattern can be observed. Some genes were found related to immune and
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inflammatory  responses (b2ml-1|2,  ccl20a.3,  ccl34b.3,  cxcl11.1,  cxcl32b.1-2|2,  il10,  il1b),

and signal transduction (ecm1a-2|2, ecm1b, gdf3, igf2b, il10, thpo). The most outstanding

set of genes in this group are apolipoproteins that are discussed in more detail along with

other genes involved in lipid metabolism.

4.4 Lipid trafficking genes

Across our results, we observe multiple times, in terms of Gene Ontologies, HGNC families,

and gene descriptions, the presence of genes associated with lipid and lipoprotein biology.

The GO term caveola (Table 5) and HGNC family  apolipoproteins (Table 7) are the gene

groups significantly selected, although several other genes related to lipids in general, and

cholesterol  and  fatty  acids,  in  particular,  can  be  found  among  selected  genes

(Supplementary Table 3). 

Apolipoproteins are the protein components of lipoproteins, which are aggregates of lipids

and proteins needed to transport water-insoluble fats between different tissues. Although

mammalian apolipoproteins have been mostly studied, the similarity in apolipoprotein nature

and distribution  between  fish and mammals  has been long  described  (Babin  & Vernier,

1989). According to our results, selected apolipoproteins were ApoA-I and ApoA-II (apoa1a-

1|2, apoa1a-2|2, apoa2; with the first and the third selected in three branches, and the latter

with some of the lowest p-values; Table 4 and Table 8), ApoD (apoda.2), ApoE (apoeb-1|2),

and ApoO (apooa). 

Although present also in other lipoprotein types, ApoA-I and ApoA-II are the first and second

most abundant protein components of high-density lipoproteins (HDL), while ApoD is a multi-

ligand  lipid  carrier  able  to  form heterodimers  with  ApoA apolipoproteins  (Rassart  et  al.,

2020). One of the main functions of HDL is to perform reverse cholesterol transport (RCT),

i.e., the transport of excess cholesterol from peripheral tissues to the liver. In the liver, HDLs

enter caveolae and interact there with the scavenger receptor BI (SCARB1, also known as

SR-BI) which extracts esterified cholesterol from them,  (Pilch et al., 2011; Liu et al., 2013;

Appendix D. Article 4. Clupeiformes 163



Zanoni et al., 2018). Gene families caveola and apolipoproteins being selected suggests that

RCT might be a process of evolutionary interest in the Clupeiformes. The protein that links

together both, SR-BI, was present in all but one (C. pallasii) of the transcriptomes, however,

the requirement of a high-quality alignment to avoid false positives resulted in the inability to

even test this gene. Therefore, we were not able to test for positive selection of the gene

encoding SR-BI (scarb).

In  addition  to  RCT,  our  results  suggest  that  processes  related  to  cholesterol  supply  to

peripheral  cells  have  been  of  evolutionary  interest  for  Clupeiformes.  One  of  the  main

cholesterol sources for peripheral tissues are low density lipoproteins (LDL), which transport

hepatic cholesterol to peripheral tissues. Cells in need of cholesterol express LDL receptor

(LDLR)  on their  surface and internalize  LDL particles  via  clathrin-mediated  endocytosis.

LDL-containing endosomes fuse with lysosomes (where esterified cholesterol is hydrolyzed)

and cholesterol is transported to the cytosol in a process mediated by proteins Niemann-Pick

disease type C1 (NPC1) and NPC2 (Zanoni et al., 2018). Clathrin light chain B (cltb), npc1

and npc2 are among the selected genes. E3 ubiquitin ligase myosin regulatory light chain-

interacting protein (mylipa-1|3), which induces the degradation of LDL receptors (Lindholm et

al., 2009; Zelcer et al., 2009), and paraoxonase 2 (pon2-2|2), which prevents LDL and HDL

oxidation  (Aviram  et  al.,  1998;  Mackness  et  al.,  1993),  are  shown  to  be  selected  too

(Supplementary Table ST03). The other main cholesterol source is  de novo synthesis and

the enzyme catalyzing the last step of cholesterol synthesis (dhcr7) happens to be positively

selected too. 

Overall,  trafficking  of  cholesterol-rich  lipoproteins  and  cholesterol  supply  seem to  be  of

evolutionary interest for this group of animals. Cholesterol  is a precursor to other steroid

molecules (e.g. hormones, vitamin D and bile acids) and determines physical properties of

the  plasma  membrane  including  toughness,  permeability  and  fluidity.  The  possible

relationship between those cholesterol-related factors and the evolutionary success leading
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to the ubiquity of Clupeiformes remains unveiled and might be of great interest for future

research.

Sardines,  anchovies  and  herrings  are  known  for  being  a  rich  source  of  long  chain

polyunsaturated fatty acids (LC-PUFAs), in particular the ω-3 type. The consumption of ω-3

LC-PUFAs is linked to a lesser probability of cardiovascular disease in humans (Lemaitre et

al.,  2003; Yokoyama et  al.,  2007;  Jain et  al.,  2015), lesser tissue inflammation  (Uauy &

Valenzuela,  2000;  Ruxton  et  al.,  2004),  and  development  of  nervous  (Burdge,  1998),

reproductive (Sidhu, 2003) and visual systems (Kim & Mendis, 2006). Briefly, ω-3 and ω-6

LC-PUFAs are synthesized by the repetitive elongation and desaturation of saturated fatty

acids by ELOVL and FADS proteins, respectively. On the one hand, due to the loss of the

FADS1 gene in teleosts, Clupeiformes and many other fishes cannot synthesize arachidonic

and eicosapentaenoic fatty acids  (Machado et al., 2018; Garrido et al., 2019), the building

blocks  of  eicosanoid  hormones.  Therefore,  their  presence  is  exclusively  due  to  their

planktonic dietary intake. 

Anyhow, our results do show a selection of a set of genes related to fatty acid metabolism.

Those include genes involved in fatty acid elongation (elovl4b, hsd17b12a, hsd17b12b) and

desaturation  (fads2).  Fatty  acid  uptake  from  blood  (apoeb-1|2,  slc27a4-1|2)  and  their

conversion  to  the  metabolically  available  fatty  acyl-coenzyme  A  (acot18-2|3,  acsf2-1|2,

acsl5, acsm3) are also reflected in the selected gene list. Due to detergent properties of fatty

acids, cells usually store them esterified in lipids such as phospholipids and triglycerides or

they bind to carrier proteins; genes related to the synthesis (cds1, cers2b, fa2h-2|2, gpd1c)

or degradation (lipia)  of  such lipids and fatty acid carriers (acbd4,  fabp11a-1|2)  are also

present in our gene list. Finally, we have found that several genes related to mitochondrial or

peroxisomal degradation of fatty acids are also evolutionarily  selected (acadm-2|2,  ech1,

eci1, ehhadh, hadhb, slc25a20) (Supplementary Table 3).
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What is the exact role of these processes in the accumulation of ω-3 LC-PUFAs coming

from dietary intake? What is their evolutionary impact on Clupeiformes? A hint could be the

cyclical food availability, especially as latitude increases. European anchovies and sardines

are more energy-dense in higher latitudes in order to survive the winter, when plankton is

scarce or unavailable  (Gatti et al.,  2018; Huret et al., 2019). These species require rapid

storage when food is available to overwinter and mobilization during that period, to then start

spending  energy  on  reproduction  over  the  spawning  season.  Therefore  it  would  be

interesting to study the interaction between the adaptation within species across latitudes,

the seasonal environment and the reproduction cycle, which is more challenging polewards.

In conclusion, we fully automated the procedure to identify genes under positive selection

based on massive RNA-seq datasets, and applied it to the 19,914 orthogorups of twelve

Clupeiformes species.  Briefly,  we  clustered  the  transcripts  into  orthogroups  and  built  a

Bayesian phylogenetic tree. Based on this tree, each one of the orthogroups was tested for

positive selection in the principal branches within Clupeiformes. Finally, the set of positively

selected  orthogroups  were  analyzed  for  overrepresentation  of  GO  terms,  Reactome

pathways,  and HGNC gene families.  This  study  shows that  evolution  has acted on the

mechanisms of lipid  trafficking through the selection of caveolins,  cavins,  apolipoproteins

and other genes related to lipid trafficking and metabolism. It remains to study if evolution

has  adapted  this  strategy  only  in  the  fishes  herein  explored,  if  it  is  common  to  all

Clupeiformes, or if it has also happened in other teleosts rich in ω-3 type fatty acids. We

expect this document to shed light on the evolutionary relationships within Clupeiformes and

on their remarkable ecological success, and to open the door to test new hypotheses into

their evolutionary biology and ecology. Finally, the herein developed bioinformatics could be

directly applied to any other organism where RNAseq data is available to infer phylogenies

and/or look for genes and families under selection.

166 Appendix D. Article 4. Clupeiformes



Acknowledgments
The authors thank the University of the Basque Country for funding the publishing of this
article as Open Access. We would like to acknowledge the technical and human support
provided  by  IZO-SGI  SGIker  (UPV/EHU,  MICINN,  GV/EJ,  ESF).  JL  was  funded  by  the
Department of Education from the Basque Government grant PRE_2017_2_0169, and by
the Applied Genomics and Bioinformatics research group of  the Basque Country (grants
IT558-10  and  IT1233-19).  JL  would  also  like  to  thank the Computational  Phylogenetics
group from the University of Lausanne, especially Dr. Martha Serrano and Professor Nicolas
Salamin.  Additionally,  we would like to thank Dr.  Ibón Cancio,  from the Plentzia  Marine
Station.

Data Accessibility
The pipelines and datasets here used and analyzed are available at GitHub and Figshare:

- Illumina  assembly  pipeline:  https://github.com/jlanga/smsk_khmer_trinity  and
https://doi.org/10.6084/m9.figshare.15117708 

- 454  assembly  pipeline:   https://github.com/jlanga/smsk_454  and
https://doi.org/10.6084/m9.figshare.15117657

- Transcriptome  annotation  https://github.com/jlanga/smsk_trinotate  and
https://doi.org/10.6084/m9.figshare.15118347

- Clustering,  species  tree  construction  and  positive  selection  pipeline:
https://github.com/jlanga/smsk_selection  and
https://doi.org/10.6084/m9.figshare.15120243

- Input  transcriptomes,  CDS  and  protein  predictions:
https://doi.org/10.6084/m9.figshare.15147492

- Final  analysis  to  reproduce  the  tables  and  figures:
https://doi.org/10.6084/m9.figshare.15121110

- Accession numbers for raw data and the transcriptome assemblies are available in
Supplementary Table 1.

Author Contributions
J.L. and A.A. conceived and designed the study. J.L. wrote all the pipelines and analyzed 
the data. J.L., Y.R. and A.A. interpreted the results. J.L., A.A. and Y.R. wrote the manuscript 
with assistance of M.H., D.C. and A.E.

References
Aberer, A. J., Kobert, K., & Stamatakis, A. (2014). ExaBayes: Massively Parallel Bayesian 

Tree Inference for the Whole-Genome Era. Molecular Biology and Evolution, 31(10), 
2553–2556. https://doi.org/10.1093/molbev/msu236

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., 
Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., 
Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. 
M., & Sherlock, G. (2000). Gene Ontology: Tool for the unification of biology. Nature 
Genetics, 25, 25–29. https://doi.org/10.1038/75556

Aviram, M., Rosenblat, M., Bisgaier, C. L., Newton, R. S., Primo-Parmo, S. L., & La Du, B. 
N. (1998). Paraoxonase inhibits high-density lipoprotein oxidation and preserves its 
functions. A possible peroxidative role for paraoxonase. Journal of Clinical 
Investigation, 101(8), 1581–1590. https://doi.org/10.1172/JCI1649

Appendix D. Article 4. Clupeiformes 167



Babin, P. J., & Vernier, J. M. (1989). Plasma lipoproteins in fish. Journal of Lipid Research, 
30(4), 467–489.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: 
Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-
6161.1995.tb02031.x

Bloom, D. D., & Egan, J. P. (2018). Systematics of Clupeiformes and testing for ecological 
limits on species richness in a trans-marine/freshwater clade. Neotropical 
Ichthyology, 16(3). https://doi.org/10.1590/1982-0224-20180095

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina 
sequence data. Bioinformatics, 30(15), 2114–2120. 
https://doi.org/10.1093/bioinformatics/btu170

Braschi, B., Denny, P., Gray, K., Jones, T., Seal, R., Tweedie, S., Yates, B., & Bruford, E. 
(2019). Genenames.org: The HGNC and VGNC resources in 2019. Nucleic Acids 
Research, 47(D1), D786–D792. https://doi.org/10.1093/nar/gky930

Brown, J. W., Walker, J. F., & Smith, S. A. (2017). Phyx: Phylogenetic tools for unix. 
Bioinformatics, 33(12), 1886–1888. https://doi.org/10.1093/bioinformatics/btx063

Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using 
DIAMOND. Nature Methods, 12(1), 59–60. https://doi.org/10.1038/nmeth.3176

Burdge, G. C. (1998). The role of docosahexaenoic acid in brain development and fetal 
alcohol syndrome. Biochemical Society Transactions, 26(2), 246–251. 
https://doi.org/10.1042/bst0260246

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, 
T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10, 421. 
https://doi.org/10.1186/1471-2105-10-421

Chan, J. K. C., Ng, C. S., & Hui, P. K. (1988). A simple guide to the terminology and 
application of leucocyte monoclonal antibodies. Histopathology, 12(5), 461–480. 
https://doi.org/10.1111/j.1365-2559.1988.tb01967.x

Ciezarek, A. G., Dunning, L. T., Jones, C. S., Noble, L. R., Humble, E., Stefanni, S. S., & 
Savolainen, V. (2016). Substitutions in the Glycogenin-1 Gene Are Associated with 
the Evolution of Endothermy in Sharks and Tunas. Genome Biology and Evolution, 
8(9), 3011–3021. https://doi.org/10.1093/gbe/evw211

Crusoe, M. R., Alameldin, H. F., Awad, S., Boucher, E., Caldwell, A., Cartwright, R., 
Charbonneau, A., Constantinides, B., Edvenson, G., Fay, S., Fenton, J., Fenzl, T., 
Fish, J., Garcia-Gutierrez, L., Garland, P., Gluck, J., González, I., Guermond, S., 
Guo, J., … Brown, C. T. (2015). The khmer software package: Enabling efficient 
nucleotide sequence analysis. F1000Research. 
https://doi.org/10.12688/f1000research.6924.1

Darriba, D., Posada, D., Kozlov, A. M., Stamatakis, A., Morel, B., & Flouri, T. (2020). 
ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein 
Evolutionary Models. Molecular Biology and Evolution, 37(1), 291–294. 
https://doi.org/10.1093/molbev/msz189

Divya, B. K., Mohindra, V., Singh, R. K., Yadav, P., Masih, P., & Jena, J. K. (2019). Muscle 
transcriptome resource for growth, lipid metabolism and immune system in Hilsa 
shad, Tenualosa ilisha. Genes & Genomics, 41(1), 1–15. 
https://doi.org/10.1007/s13258-018-0732-y

Dlugosch, K. M., Lai, Z., Bonin, A., Hierro, J., & Rieseberg, L. H. (2013). Allele Identification 
for Transcriptome-Based Population Genomics in the Invasive Plant Centaurea 
solstitialis. G3: Genes, Genomes, Genetics, 3(2), 359–367. 
https://doi.org/10.1534/g3.112.003871

Eddy, S. R. (2011). Accelerated Profile HMM Searches. PLOS Comput Biol, 7(10), 
e1002195. https://doi.org/10.1371/journal.pcbi.1002195

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high 
throughput. Nucleic Acids Research, 32(5), 1792–1797. 
https://doi.org/10.1093/nar/gkh340

Egan, J. P., Bloom, D. D., Kuo, C.-H., Hammer, M. P., Tongnunui, P., Iglésias, S. P., 
Sheaves, M., Grudpan, C., & Simons, A. M. (2018). Phylogenetic analysis of trophic 
niche evolution reveals a latitudinal herbivory gradient in Clupeoidei (herrings, 

168 Appendix D. Article 4. Clupeiformes



anchovies, and allies). Molecular Phylogenetics and Evolution, 124, 151–161. 
https://doi.org/10.1016/j.ympev.2018.03.011

Eldem, V., Zararsız, G., Erkan, M., & Bakir, Y. (2015). De novo assembly and 
comprehensive characterization of the skeletal muscle transcriptomes of the 
European anchovy (Engraulis encrasicolus). Marine Genomics, 20, 7–9. 
https://doi.org/10.1016/j.margen.2015.01.001

El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., 
Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, E. L. L., Hirsh, L., Paladin,
L., Piovesan, D., Tosatto, S. C. E., & Finn, R. D. (2019). The Pfam protein families 
database in 2019. Nucleic Acids Research, 47(D1), D427–D432. 
https://doi.org/10.1093/nar/gky995

Emms, D. M., & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for 
comparative genomics. Genome Biology, 20(1), 238. https://doi.org/10.1186/s13059-
019-1832-y

Eyre-Walker, A., & Keightley, P. D. (1999). High genomic deleterious mutation rates in 
hominids. Nature, 397(6717), 344–347. https://doi.org/10.1038/16915

Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L., & Postlethwait, J. (1999). 
Preservation of duplicate genes by complementary, degenerative mutations. 
Genetics, 151(4), 1531–1545.

Garrido, D., Kabeya, N., Betancor, M. B., Pérez, J. A., Acosta, N. G., Tocher, D. R., 
Rodríguez, C., & Monroig, Ó. (2019). Functional diversification of teleost Fads2 fatty 
acyl desaturases occurs independently of the trophic level. Scientific Reports, 9(1), 
11199. https://doi.org/10.1038/s41598-019-47709-0

Gatti, P., Cominassi, L., Duhamel, E., Grellier, P., Le Delliou, H., Le Mestre, S., Petitgas, P., 
Rabiller, M., Spitz, J., & Huret, M. (2018). Bioenergetic condition of anchovy and 
sardine in the Bay of Biscay and English Channel. Progress in Oceanography, 166, 
129–138. https://doi.org/10.1016/j.pocean.2017.12.006

Gharib, W. H., & Robinson-Rechavi, M. (2013). The branch-site test of positive selection is 
surprisingly robust but lacks power under synonymous substitution saturation and 
variation in GC. Molecular Biology and Evolution, 30(7), 1675–1686. 
https://doi.org/10.1093/molbev/mst062

Gouveia-Oliveira, R., Sackett, P. W., & Pedersen, A. G. (2007). MaxAlign: Maximizing 
usable data in an alignment. BMC Bioinformatics, 8(1), 312. 
https://doi.org/10.1186/1471-2105-8-312

Grant, W. S., Leslie, R. W., & Bowen, B. W. (2005). Molecular genetic assessment of 
bipolarity in the anchovy genus Engraulis. Journal of Fish Biology, 67(5), 1242–1265.
https://doi.org/10.1111/j.1095-8649.2005.00820.x

Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, 
M. B., Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., 
Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., … Regev, A. 
(2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity 
platform for reference generation and analysis. Nature Protocols, 8(8), 1494–1512. 
https://doi.org/10.1038/nprot.2013.084

Herrero, J., Muffato, M., Beal, K., Fitzgerald, S., Gordon, L., Pignatelli, M., Vilella, A. J., 
Searle, S. M. J., Amode, R., Brent, S., Spooner, W., Kulesha, E., Yates, A., & Flicek, 
P. (2016). Ensembl comparative genomics resources. Database, 2016(bav096). 
https://doi.org/10.1093/database/bav096

Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. 
C., Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K. D., Irizarry, R. 
A., Lawrence, M., Love, M. I., MacDonald, J., Obenchain, V., Oleś, A. K., … Morgan, 
M. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. 
Nature Methods, 12(2), 115–121. https://doi.org/10.1038/nmeth.3252

Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: Reconstruction, Analysis, and 
Visualization of Phylogenomic Data. Molecular Biology and Evolution, 33(6), 1635–
1638. https://doi.org/10.1093/molbev/msw046

Huret, M., Tsiaras, K., Daewel, U., Skogen, M. D., Gatti, P., Petitgas, P., & Somarakis, S. 
(2019). Variation in life-history traits of European anchovy along a latitudinal gradient:
A bioenergetics modelling approach. Marine Ecology Progress Series, 617, 95–112.

Appendix D. Article 4. Clupeiformes 169



í Kongsstovu, S., Mikalsen, S.-O., Homrum, E. í, Jacobsen, J. A., Flicek, P., & Dahl, H. A. 
(2019). Using long and linked reads to improve an Atlantic herring (Clupea harengus)
genome assembly. Scientific Reports, 9(1), 17716. https://doi.org/10.1038/s41598-
019-54151-9

ICES. (2018). Report of the Working Group on Southern Horse Mackerel, Anchovy and 
Sardine (WGHANSA). ICES CM 2018/ACOM:17, 605 pp. 
http://www.ices.dk/community/groups/Pages/WGhansa.aspx

Iv, F. J. Z., Rana, S. B., Alvi, Z. A., Zhang, Z., Murphy, W., & Bentivegna, C. S. (2017). De 
Novo Assembly and Analysis of the Testes Transcriptome from the Menhaden, 
Bervoortia tyrannus. Fisheries and Aquaculture Journal, 8(1), 1–8. 
https://doi.org/10.4172/2150-3508.1000186

Jain, A. P., Aggarwal, K. K., & Zhang, P.-Y. (2015). Omega-3 fatty acids and cardiovascular 
disease. European Review for Medical and Pharmacological Sciences, 19(3), 441–
445.

Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., Sidiropoulos, K., 
Cook, J., Gillespie, M., Haw, R., Loney, F., May, B., Milacic, M., Rothfels, K., Sevilla, 
C., Shamovsky, V., Shorser, S., Varusai, T., Weiser, J., … D’Eustachio, P. (2020). 
The reactome pathway knowledgebase. Nucleic Acids Research, 48(D1), D498–
D503. https://doi.org/10.1093/nar/gkz1031

Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 
7: Improvements in Performance and Usability. Molecular Biology and Evolution, 
30(4), 772–780. https://doi.org/10.1093/molbev/mst010

Kersey, P. J., Allen, J. E., Allot, A., Barba, M., Boddu, S., Bolt, B. J., Carvalho-Silva, D., 
Christensen, M., Davis, P., Grabmueller, C., Kumar, N., Liu, Z., Maurel, T., Moore, 
B., McDowall, M. D., Maheswari, U., Naamati, G., Newman, V., Ong, C. K., … Yates,
A. (2018). Ensembl Genomes 2018: An integrated omics infrastructure for non-
vertebrate species. Nucleic Acids Research, 46(D1), D802–D808. 
https://doi.org/10.1093/nar/gkx1011

Kim, S.-K., & Mendis, E. (2006). Bioactive compounds from marine processing byproducts – 
A review. Food Research International, 39(4), 383–393. 
https://doi.org/10.1016/j.foodres.2005.10.010

Kinsella, R. J., Kähäri, A., Haider, S., Zamora, J., Proctor, G., Spudich, G., Almeida-King, J., 
Staines, D., Derwent, P., Kerhornou, A., Kersey, P., & Flicek, P. (2011). Ensembl 
BioMarts: A hub for data retrieval across taxonomic space. Database: The Journal of 
Biological Databases and Curation, 2011, bar030. 
https://doi.org/10.1093/database/bar030

Köster, J., & Rahmann, S. (2012). Snakemake—A scalable bioinformatics workflow engine. 
Bioinformatics, 28(19), 2520–2522. https://doi.org/10.1093/bioinformatics/bts480

Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A. (2019). RAxML-NG: A fast, 
scalable and user-friendly tool for maximum likelihood phylogenetic inference. 
Bioinformatics, 35(21), 4453–4455. https://doi.org/10.1093/bioinformatics/btz305

Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & 
Zdobnov, E. M. (2019). OrthoDB v10: Sampling the diversity of animal, plant, fungal, 
protist, bacterial and viral genomes for evolutionary and functional annotations of 
orthologs. Nucleic Acids Research, 47(D1), D807–D811. 
https://doi.org/10.1093/nar/gky1053

Langa, J., Huret, M., Montes, I., Conklin, D., & Estonba, A. (2021). Transcriptomic dataset 
for Sardina pilchardus: Assembly, annotation, and expression of nine tissues. 
Manuscript Submitted for Publication.

Lassmann, T., Frings, O., & Sonnhammer, E. L. L. (2009). Kalign2: High-performance 
multiple alignment of protein and nucleotide sequences allowing external features. 
Nucleic Acids Research, 37(3), 858–865. https://doi.org/10.1093/nar/gkn1006

Lavoué, S., Konstantinidis, P., Chen, W.-J., Konstantinidis, P., & Chen, W.-J. (2014, March 
14). - Progress in Clupeiform Systematics. Biology and Ecology of Sardines and 
Anchovies; CRC Press. https://doi.org/10.1201/b16682-6

Lemaitre, R. N., King, I. B., Mozaffarian, D., Kuller, L. H., Tracy, R. P., & Siscovick, D. S. 
(2003). n−3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal 
myocardial infarction in older adults: The Cardiovascular Health Study. The American

170 Appendix D. Article 4. Clupeiformes



Journal of Clinical Nutrition, 77(2), 319–325. https://doi.org/10.1093/ajcn/77.2.319
Li, S., Zhong, M., Dong, X., Jiang, X., Xu, Y., Sun, Y., Cheng, F., Li, D., Tang, K., Wang, S., 

Dai, S., & Hu, J.-Y. (2018). Comparative transcriptomics identifies patterns of 
selection in roses. BMC Plant Biology, 18(1), 1–12. https://doi.org/10.1186/s12870-
018-1585-x

Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of
protein or nucleotide sequences. Bioinformatics, 22(13), 1658–1659. 
https://doi.org/10.1093/bioinformatics/btl158

Lindholm, D., Bornhauser, B. C., & Korhonen, L. (2009). Mylip makes an Idol turn into 
regulation of LDL receptor. Cellular and Molecular Life Sciences, 66(21), 3399–3402.
https://doi.org/10.1007/s00018-009-0127-y

Liu, X., Suo, R., Xiong, S.-L., Zhang, Q.-H., & Yi, G.-H. (2013). HDL drug carriers for 
targeted therapy. Clinica Chimica Acta, 415, 94–100. 
https://doi.org/10.1016/j.cca.2012.10.008

Louro, B., De Moro, G., Garcia, C., Cox, C. J., Veríssimo, A., Sabatino, S. J., Santos, A. M., 
& Canário, A. V. M. (2019). A haplotype-resolved draft genome of the European 
sardine (Sardina pilchardus). GigaScience, 8(5). 
https://doi.org/10.1093/gigascience/giz059

Löytynoja, A. (2014). Phylogeny-aware alignment with PRANK. Methods in Molecular 
Biology (Clifton, N.J.), 1079, 155–170. https://doi.org/10.1007/978-1-62703-646-7_10

Machado, A. M., Tørresen, O. K., Kabeya, N., Couto, A., Petersen, B., Felício, M., Campos, 
P. F., Fonseca, E., Bandarra, N., Lopes-Marques, M., Ferraz, R., Ruivo, R., Fonseca,
M. M., Jentoft, S., Monroig, Ó., Da Fonseca, R. R., & C. Castro, L. F. (2018). “Out of 
the Can”: A Draft Genome Assembly, Liver Transcriptome, and Nutrigenomics of the 
European Sardine, Sardina pilchardus. Genes, 9(10), 485. 
https://doi.org/10.3390/genes9100485

Mackness, M., Arrol, S., Abbott, C., & Durrington, P. (1993). Protection of low-density 
lipoprotein against oxidative modification by high-density lipoprotein associated 
paraoxonase. Atherosclerosis, 104(1–2), 129–135. https://doi.org/10.1016/0021-
9150(93)90183-U

Markova-Raina, P., & Petrov, D. (2011). High sensitivity to aligner and high rate of false 
positives in the estimates of positive selection in the 12 Drosophila genomes. 
Genome Research, 21(6), 863–874. https://doi.org/10.1101/gr.115949.110

Moretti, S., Laurenczy, B., Gharib, W. H., Castella, B., Kuzniar, A., Schabauer, H., Studer, R.
A., Valle, M., Salamin, N., Stockinger, H., & Robinson-Rechavi, M. (2014). Selectome
update: Quality control and computational improvements to a database of positive 
selection. Nucleic Acids Research, 42(D1), D917–D921. 
https://doi.org/10.1093/nar/gkt1065

Motos, L., Uriarte, A., & Valencia, V. (1996). The spawning environment of the Bay of Biscay
anchovy (Engraulis encrasicolus L.). Scientia Marina, 60.

Nachman, M. W., & Crowell, S. L. (2000). Estimate of the mutation rate per nucleotide in 
humans. Genetics, 156(1), 297–304.

Nei, M., & Roychoudhury, A. K. (1973). Probability of Fixation and Mean Fixation Time of an 
Overdominant Mutation. Genetics, 74(2), 371–380.

Nelson, J. S., Grande, T. C., & Wilson, M. V. H. (2016). Fishes of the World: Nelson/Fishes 
of the World. John Wiley & Sons, Inc. https://doi.org/10.1002/9781119174844

Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-Coffee: A novel method for fast and 
accurate multiple sequence alignment. Journal of Molecular Biology, 302(1), 205–
217. https://doi.org/10.1006/jmbi.2000.4042

Pasquier, J., Cabau, C., Nguyen, T., Jouanno, E., Severac, D., Braasch, I., Journot, L., 
Pontarotti, P., Klopp, C., Postlethwait, J. H., Guiguen, Y., & Bobe, J. (2016). Gene 
evolution and gene expression after whole genome duplication in fish: The PhyloFish
database. BMC Genomics, 17(1), 368. https://doi.org/10.1186/s12864-016-2709-z

Pilch, P. F., Meshulam, T., Ding, S., & Liu, L. (2011). Caveolae and lipid trafficking in 
adipocytes. Clinical Lipidology, 6(1), 49–58.

Proux, E., Studer, R. A., Moretti, S., & Robinson-Rechavi, M. (2009). Selectome: A database
of positive selection. Nucleic Acids Research, 37(suppl_1), D404–D407. 
https://doi.org/10.1093/nar/gkn768

Appendix D. Article 4. Clupeiformes 171



Quinlan, A. R., Stewart, D. A., Strömberg, M. P., & Marth, G. T. (2008). Pyrobayes: An 
improved base caller for SNP discovery in pyrosequences. Nature Methods, 5(2), 
179–181. https://doi.org/10.1038/nmeth.1172

R Core Team. (2020). R: A language and environment for statistical computing [Manual]. 
https://www.R-project.org/

Rassart, E., Desmarais, F., Najyb, O., Bergeron, K.-F., & Mounier, C. (2020). Apolipoprotein 
D. Gene, 756, 144874. https://doi.org/10.1016/j.gene.2020.144874

Redelings, B. (2014). Erasing Errors due to Alignment Ambiguity When Estimating Positive 
Selection. Molecular Biology and Evolution, 31(8), 1979–1993. 
https://doi.org/10.1093/molbev/msu174

Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., Uliano-Silva, M., 
Chow, W., Fungtammasan, A., Kim, J., Lee, C., Ko, B. J., Chaisson, M., Gedman, G. 
L., Cantin, L. J., Thibaud-Nissen, F., Haggerty, L., Bista, I., Smith, M., … Jarvis, E. D.
(2021). Towards complete and error-free genome assemblies of all vertebrate 
species. Nature, 592(7856), 737–746. https://doi.org/10.1038/s41586-021-03451-0

Richards, D. J., Renaud, L., Agarwal, N., Starr Hazard, E., Hyde, J., & Hardiman, G. (2018). 
De Novo Hepatic Transcriptome Assembly and Systems Level Analysis of Three 
Species of Dietary Fish, Sardinops sagax, Scomber japonicus, and Pleuronichthys 
verticalis. Genes, 9(11), 521. https://doi.org/10.3390/genes9110521

Roberts, S. B., Hauser, L., Seeb, L. W., & Seeb, J. E. (2012). Development of Genomic 
Resources for Pacific Herring through Targeted Transcriptome Pyrosequencing. 
PLOS ONE, 7(2), e30908. https://doi.org/10.1371/journal.pone.0030908

Roux, J., Privman, E., Moretti, S., Daub, J. T., Robinson-Rechavi, M., & Keller, L. (2014). 
Patterns of Positive Selection in Seven Ant Genomes. Molecular Biology and 
Evolution, 31(7), 1661–1685. https://doi.org/10.1093/molbev/msu141

Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2004). The health 
benefits of omega-3 polyunsaturated fatty acids: A review of the evidence. Journal of 
Human Nutrition and Dietetics, 17(5), 449–459. https://doi.org/10.1111/j.1365-
277X.2004.00552.x

Sela, I., Ashkenazy, H., Katoh, K., & Pupko, T. (2015). GUIDANCE2: Accurate detection of 
unreliable alignment regions accounting for the uncertainty of multiple parameters. 
Nucleic Acids Research, 43(W1), W7–W14. https://doi.org/10.1093/nar/gkv318

Sidhu, K. S. (2003). Health benefits and potential risks related to consumption of fish or fish 
oil. Regulatory Toxicology and Pharmacology, 38(3), 336–344. 
https://doi.org/10.1016/j.yrtph.2003.07.002

Spalink, D., Stoffel, K., Walden, G. K., Hulse-Kemp, A. M., Hill, T. A., Van Deynze, A., & 
Bohs, L. (2018). Comparative transcriptomics and genomic patterns of discordance 
in Capsiceae (Solanaceae). Molecular Phylogenetics and Evolution, 126, 293–302. 
https://doi.org/10.1016/j.ympev.2018.04.030

Takahata, N., & Maruyama, T. (1979). Polymorphism and loss of duplicate gene expression: 
A theoretical study with application of tetraploid fish. Proceedings of the National 
Academy of Sciences of the United States of America, 76(9), 4521–4525.

The Gene Ontology Resource: 20 years and still GOing strong. (2019). Nucleic Acids 
Research, 47(D1), D330–D338. https://doi.org/10.1093/nar/gky1055

Uauy, R., & Valenzuela, A. (2000). Marine oils: The health benefits of n-3 fatty acids. 
Nutrition, 16(7), 680–684. https://doi.org/10.1016/S0899-9007(00)00326-9

UniProt: A worldwide hub of protein knowledge. (2019). Nucleic Acids Research, 47(D1), 
D506–D515. https://doi.org/10.1093/nar/gky1049

Valle, M., Schabauer, H., Pacher, C., Stockinger, H., Stamatakis, A., Robinson-Rechavi, M., 
& Salamin, N. (2014). Optimization strategies for fast detection of positive selection 
on phylogenetic trees. Bioinformatics, 30(8), 1129–1137. 
https://doi.org/10.1093/bioinformatics/btt760

van Dongen, S., & Abreu-Goodger, C. (2012). Using MCL to Extract Clusters from Networks.
In J. van Helden, A. Toussaint, & D. Thieffry (Eds.), Bacterial Molecular Networks: 
Methods and Protocols (pp. 281–295). Springer. https://doi.org/10.1007/978-1-
61779-361-5_15

Wallace, I. M., O’Sullivan, O., Higgins, D. G., & Notredame, C. (2006). M-Coffee: Combining 
multiple sequence alignment methods with T-Coffee. Nucleic Acids Research, 34(6), 

172 Appendix D. Article 4. Clupeiformes



1692–1699. https://doi.org/10.1093/nar/gkl091
Wang, K., Hong, W., Jiao, H., & Zhao, H. (2017). Transcriptome sequencing and 

phylogenetic analysis of four species of luminescent beetles. Scientific Reports, 7(1), 
1814. https://doi.org/10.1038/s41598-017-01835-9

Waterhouse, R. M., Seppey, M., Simão, F. A., Manni, M., Ioannidis, P., Klioutchnikov, G., 
Kriventseva, E. V., & Zdobnov, E. M. (2018). BUSCO Applications from Quality 
Assessments to Gene Prediction and Phylogenomics. Molecular Biology and 
Evolution, 35(3), 543–548. https://doi.org/10.1093/molbev/msx319

Watterson, G. A. (1983). On the Time for Gene Silencing at Duplicate Loci. Genetics, 105(3),
745–766.

Whelan, S., & Goldman, N. (2001). A General Empirical Model of Protein Evolution Derived 
from Multiple Protein Families Using a Maximum-Likelihood Approach. Molecular 
Biology and Evolution, 18(5), 691–699. 
https://doi.org/10.1093/oxfordjournals.molbev.a003851

Whitehead, P. J. P., Nelson, G. J., & Thosaporn Wongratana. (1985). Clupeoid fishes of the 
world (suborder Clupeoidei): An annotated and illustrated catalogue of the herrings, 
sardines, pilchards, sprats, shads, anchovies, and wolfherrings. United Nations 
Development Programme : Food and Agriculture Organization of the United Nations.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, 
G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. 
M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). 
Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. 
https://doi.org/10.21105/joss.01686

Yang, Y., & Smith, S. A. (2014). Orthology Inference in Nonmodel Organisms Using 
Transcriptomes and Low-Coverage Genomes: Improving Accuracy and Matrix 
Occupancy for Phylogenomics. Molecular Biology and Evolution, 31(11), 3081–3092.
https://doi.org/10.1093/molbev/msu245

Yang, Z. (1998). Likelihood ratio tests for detecting positive selection and application to 
primate lysozyme evolution. Molecular Biology and Evolution, 15(5), 568–573. 
https://doi.org/10.1093/oxfordjournals.molbev.a025957

Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology 
and Evolution, 24(8), 1586–1591. https://doi.org/10.1093/molbev/msm088

Yang, Z., & dos Reis, M. (2011). Statistical properties of the branch-site test of positive 
selection. Molecular Biology and Evolution, 28(3), 1217–1228. 
https://doi.org/10.1093/molbev/msq303

Yang, Z., Nielsen, R., Goldman, N., & Pedersen, A.-M. K. (2000). Codon-Substitution 
Models for Heterogeneous Selection Pressure at Amino Acid Sites. Genetics, 155(1),
431–449.

Yokoyama, M., Origasa, H., Matsuzaki, M., Matsuzawa, Y., Saito, Y., Ishikawa, Y., Oikawa, 
S., Sasaki, J., Hishida, H., Itakura, H., Kita, T., Kitabatake, A., Nakaya, N., Sakata, 
T., Shimada, K., & Shirato, K. (2007). Effects of eicosapentaenoic acid on major 
coronary events in hypercholesterolaemic patients (JELIS): A randomised open-
label, blinded endpoint analysis. The Lancet, 369(9567), 1090–1098. 
https://doi.org/10.1016/S0140-6736(07)60527-3

Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). clusterProfiler: An R package for 
comparing biological themes among gene clusters. OMICS: A Journal of Integrative 
Biology, 16(5), 284–287. https://doi.org/10.1089/omi.2011.0118

Zanoni, P., Velagapudi, S., Yalcinkaya, M., Rohrer, L., & von Eckardstein, A. (2018). 
Endocytosis of lipoproteins. Atherosclerosis, 275, 273–295. 
https://doi.org/10.1016/j.atherosclerosis.2018.06.881

Zelcer, N., Hong, C., Boyadjian, R., & Tontonoz, P. (2009). LXR Regulates Cholesterol 
Uptake Through Idol-Dependent Ubiquitination of the LDL Receptor. Science, 
325(5936), 100–104. https://doi.org/10.1126/science.1168974

Zhang, J., Nielsen, R., & Yang, Z. (2005). Evaluation of an Improved Branch-Site Likelihood 
Method for Detecting Positive Selection at the Molecular Level. Molecular Biology 
and Evolution, 22(12), 2472–2479. https://doi.org/10.1093/molbev/msi237

Zhu, G., Wang, L., Tang, W., Wang, X., & Wang, C. (2017). Identification of olfactory 
receptor genes in the Japanese grenadier anchovy Coilia nasus. Genes & Genomics,

Appendix D. Article 4. Clupeiformes 173



39(5), 521–532. https://doi.org/10.1007/s13258-017-0517-8

Tables

Table 1 - Species list
List  with  the  species  used for  the  analysis  of  this  paper.  Accession  numbers  for  every
sequencing run or assembly are available in Supplementary Table ST01

Suborder Family Subfamily Species Taxon id Source Tissues

Denticipitoidei Denticipitidae - Denticeps clupeoides 299321 NCBI Annotation -

Clupeoidei Engraulidae Engraulinae Engraulis encrasicolus 184585 Illumina HiSeq 2000 Muscle

Clupeoidei Engraulidae Coilinae Coilia nasus 365059
Illumina GAII / HiSeq 2000 / 
HiSeq 2500 Liver

Clupeoidei Clupeidae Clupeinae Clupea pallasii 476916 Roche 454 GS FLX Titanium Liver, testes

Clupeoidei Clupeidae Clupeinae Clupea harengus 7950 NCBI Annotation -

Clupeoidei Clupeidae Dorosomatinae Konosirus punctatus 365056 ENA TSA
Muscle, liver, gill, heart, kidney, swim 
bladder, and sexual gland

Clupeoidei Clupeidae Dorosomatinae Tenualosa ilisha 373995 Illumina HiSeq 2500 Liver

Clupeoidei Clupeidae Alosinae Brevoortia tyrannus 224708 Illumina HiSeq 2000 Testes

Clupeoidei Clupeidae Alosinae Alosa alosa 278164 Illumina HiSeq 2000

Brain, liver, gills, heart, muscle, liver, 
kidney, bones, intestine, ovary, and 
testes.

Clupeoidei Clupeidae Alosinae Alosa pseudoharengus 34774 ENA TSA Gill

Clupeoidei Clupeidae Alosinae Sardina pilchardus 27697 Illumina HiSeq 2000
brain, ovary, liver, kidney, skin, 
testes, muscle, heart, eye

Clupeoidei Clupeidae Alosinae Sardinops sagax 298279 Illumina GAIIx Liver
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Table 2 - Assembly and filtering
Assembly,  TransDecoder,  and  CD-HIT  results  and  presence  of  each  species  in  the
orthogroups tested for selection. The number of high-quality orthogroups is 19,914. BUSCO
categories consist of complete (C), either Single copy (S) or duplicated (D), fragmented (F),
and missing (M).

Species Gbp Transcripts CDS Busco Statistics CD-HIT Orthogroups

D. clupeoides - 59645 51825 C:97.6%[S:48.4%,D:49.2%],F:1.1%,M:1.3% 35228 9125

E. encrasicolus 15 719059 206368 C:60.4%[S:37.8%,D:22.6%],F:18.8%,M:20.8% 180065 10983

C. nasus 55 885281 185428 C:35.1%[S:19.1%,D:16.0%],F:27.9%,M:37.0% 147342 8628

C. pallasii 0,6 19004 5788 C:5.4%[S:5.1%,D:0.3%],F:9.0%,M:85.6% 5588 643

C. harengus - 46203 43379 C:93.0%[S:53.2%,D:39.8%],F:1.6%,M:5.4% 32042 13254

K. punctatus - 69974 28028 C:54.6%[S:52.1%,D:2.5%],F:14.9%,M:30.5% 27982 8933

T. ilisha 6 107804 27355 C:29.5%[S:24.9%,D:4.6%],F:18.0%,M:52.5% 25395 5538

B. tyrannus 18 266785 58794 C:32.1%[S:23.8%,D:8.3%],F:24.9%,M:43.0% 51959 6904

A. alosa 66 734830 160367 C:31.8%[S:17.4%,D:14.4%],F:24.9%,M:43.3% 129407 7529

A. pseudoharengus - 216529 86639 C:65.7%[S:43.2%,D:22.5%],F:15.8%,M:18.5% 81903 10127

S. pilchardus 6 198597 67993 C:73.2%[S:45.7%,D:27.5%],F:11.5%,M:15.3% 55803 13028

S. sagax 5 196984 27300 C:11.7%[S:8.9%,D:2.8%],F:21.6%,M:66.7% 24913 2691
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Table 3 - Branches analyzed
Table  with  the names of  the  branches analyzed,  species  and families  they  contain,  the
number of orthogroups analyzed, how many of them were selected and how many of them
were under synonymous site saturation (SSS).

Branch name N. species Valid alignments Under selection % selected Selected and SSS % SSS

Engraulidae 2 5130 192 3,74% 4 2,08%

Clupeinae 2 496 24 4,84% 0 0,00%

Dorosomatinae 2 2970 77 2,59% 0 0,00%

Sardina+Sardinops 2 1989 47 2,36% 0 0,00%

Alosa+Brevoortia 3 6787 148 2,18% 0 0,00%

Alosinae 5 11004 367 3,34% 1 0,27%

Alosinae+Dorosomatinae 7 11360 369 3,25% 2 0,54%

Clupeidae 9 8561 152 1,78% 0 0,00%

Total 15832 1376 8,69% 6 0,44%
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Table 4 - Top-scoring genes
List with the top 20 orthogroups ranked by the maximum corrected p-value between the
three tests  carried out  in  fastcodeml.  When the same orthogroup is  selected in  multiple
branches, multiple p-values are shown. Seven mitochondrial genes appear on the top of this
list.  Note that  Zebrafishes'  gene symbols already contain letters  a and b to differentiate
between duplicated genes

Symbol Description Orthogroup ID

Max. 
adjusted 
p-value Phylogroup Ensembl ID

trip4
thyroid hormone 
receptor interactor 4 OG0008035_1_1.inclade1.ortho1 0.00E+00 Alosa+Brevoortia ENSDARG00000098074.2

krt18a.1
keratin 18a, tandem
duplicate 1 OG0001033_1_1.inclade1.ortho1

2.22e-15, 
2.44e-15 Alosinae, Alosa+Brevoortia ENSDARG00000018404.10

BX284638.2-1|3 wu:fb95e10 OG0011449_1_1.inclade1.ortho1 1.23E-12 Dorosomatinae ENSDARG00000116871.1

si:ch211-140m22.7-2|2 si:ch211-140m22.7 OG0004030_2_1.inclade1.ortho1 1.56E-11 Alosa+Brevoortia ENSDARG00000077967.6

cylda-4|4

cylindromatosis 
(turban tumor 
syndrome), a OG0010158_1_1.inclade1.ortho1 2.21E-11 Alosinae ENSDARG00000060058.9

PRRC2B-2|2
proline-rich coiled-
coil 2B OG0016888_1_1.unrooted-ortho 2.31E-10 Alosinae ENSDARG00000079639.4

col10a1b
collagen, type X, 
alpha 1b OG0002050_1_1.inclade2.ortho1 2.43E-09 Alosinae ENSDARG00000101535.2

col4a2
collagen, type IV, 
alpha 2 OG0000218_1_1.inclade3.ortho1

5.08e-09, 
6.80e-09

Alosinae+Dorosomatinae, 
Dorosomatinae ENSDARG00000104110.2

si:ch211-209f23.6-2|3 si:ch211-209f23.6 OG0000081_2_1.inclade2.ortho1

5.40e-09, 
5.40e-09, 
5.40e-09

Alosinae+Dorosomatinae, 
Alosa+Brevoortia, Alosinae ENSDARG00000077309.3

tmprss5-3|3
transmembrane 
serine protease 5 OG0015295_1_1.inclade1.ortho1 1.03E-08 Alosa+Brevoortia ENSDARG00000087717.4

apoa2 apolipoprotein A-II OG0012288_1_1.inclade1.ortho1

3.05e-08, 
3.05e-08, 
3.05e-08

Alosinae+Dorosomatinae, Clupeidae, 
Engraulinae ENSDARG00000015866.8

gab1-2|2
GRB2-associated 
binding protein 1 OG0002631_1_1.inclade1.ortho2

6.17e-08, 
6.17e-08, 
6.17e-08

Alosinae+Dorosomatinae, Clupeidae, 
Engraulinae ENSDARG00000037018.9

ppl periplakin OG0003698_1_1.inclade1.ortho1 7.74E-08 Alosinae+Dorosomatinae ENSDARG00000101043.3

adgrg11-2|2

adhesion G protein-
coupled receptor 
G11 OG0000992_1_1.inclade2.ortho1

1.08e-07, 
1.08e-07, 
1.20e-07

Alosinae+Dorosomatinae, Alosinae, 
Alosa+Brevoortia ENSDARG00000041413.8

opn8b
opsin 8, group 
member b OG0009183_2_1.unrooted-ortho

1.27e-07, 
1.27e-07, 
1.27e-07

Alosinae+Dorosomatinae, 
Alosa+Brevoortia, Alosinae ENSDARG00000079045.5

si:ch211-207i1.2-3|7 si:ch211-207i1.2 OG0010770_1_1.inclade1.ortho1

2.06e-07, 
2.06e-07, 
2.06e-07, 
2.06e-07

Alosinae+Dorosomatinae, Alosinae, 
Clupeidae, Engraulinae ENSDARG00000030107.10

unknown-555|965 NA OG0015114_1_1.unrooted-ortho 3.17E-07 Alosa+Brevoortia NA

katnbl1-1|2
katanin p80 subunit 
B-like 1 OG0005553_1_1.inclade1.ortho1 4.85E-07 Alosinae ENSDARG00000042522.7

znf646-2|4
zinc finger protein 
646 OG0007295_1_1.inclade1.ortho1 4.99E-07 Alosinae ENSDARG00000061424.9

atp5pd

ATP synthase 
peripheral stalk 
subunit d OG0009844_1_1.inclade1.ortho1 5.29E-07 Clupeidae ENSDARG00000098355.2
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Table 5 - Enriched GO terms
List  with  the  thirteen  enriched  GO  terms  ranked  by  p-value.  Enriched  terms  relate  to
mitochondrial  functions  and  RNA processing.  Figure  3  shows  the  relationships  between
these terms and the genes involved.
GO Identifier GO Description n. genes P-value Adj. p-value Q-value Orthogroups

GO:0005576 CC: extracellular region 42 2,77E-04 4,38E-02 4,29E-02

ahsg1, apoa1a-1|2, apoa1a-2|2, apoeb-1|2, b2ml-1|
2, bdnf-1|2, c1qtnf1, C20H6orf58, c4b, ccl20a.3, 
ccl34b.3, cfap53, chia.2-2|2, col10a1b, CR848035.1,
cxcl11.1, cxcl32b.1-2|2, dcn, ecm1a-2|2, ecm1b, 
emilin1b, endouc, gdf3, hsd11b1la-2|2, hsp90ab1-2|
2, ifi30, igf2b, igfbp2a, igfbp7, il10, il1b, kazald2, 
lipia, loxl3a, mgp, npc2, olfml3b, rnaset2, scg3, tg, 
thpo, timp2a-1|4

GO:0005764 CC: lysosome 19 2,72E-05 1,08E-02 1,06E-02

ap5s1, ctsc, ctsl.1-1|7, ctsl.1-6|7, cyb561a3a, 
fuca1.2, fuca2, glmp, ifi30, litaf, mfsd8, mios, npc2, 
rab9a-2|2, rnaset2, rnf152-2|2, si:dkey-228d14.5, 
vps41, znrf2b-1|2

GO:0015986
BP: ATP synthesis 
coupled proton transport 5 2,93E-04 4,38E-02 4,29E-02

atp5f1d, atp5l, atp5pd, atp5po, si:ch211-140m22.7-
2|2

GO:0005901 CC: caveola 6 2,02E-05 1,08E-02 1,06E-02
cav1, cav3, cavin1b-1|3, cavin1b-2|3, cavin2b, 
zgc:172270

GO:0006123

BP: mitochondrial electron 
transport, cytochrome c to 
oxygen 6 2,02E-05 1,08E-02 1,06E-02 cox4i1l, COX5B, cox5b2, cox6a1, cox6a2, cycsb-1|2

GO:0006412 BP: translation 23 4,87E-05 1,46E-02 1,43E-02

eef1db, eif3hb, eif3i, eif3ja-1|3, eif5a-2|2, iars2, 
mrpl12, mrpl13, mrpl18, mrpl37, mrps18c, qars1, 
rfc1, rpl13, rpl14, rpl18, rpl23a, rps11, rps19, rps24-
2|2, rps4x, rps6-1|2, tsfm

GO:0005840 CC: ribosome 16 6,13E-05 1,46E-02 1,44E-02

mrpl12, mrpl13, mrpl18, mrpl37, mrpl39-1|2, 
mrps18c, rfc1, rpl13, rpl14, rpl18, rpl23a, rps11, 
rps19, rps24-2|2, rps4x, rps6-1|2

GO:0003735
MF: structural constituent 
of ribosome 16 2,06E-04 4,11E-02 4,03E-02

mrpl12, mrpl13, mrpl18, mrpl37, mrps18c, mrps22, 
rfc1, rpl13, rpl14, rpl18, rpl23a, rps11, rps19, rps24-
2|2, rps4x, rps6-1|2
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Table 6 - Enriched Reactome pathways
List of the thirteen enriched pathway compartments that are under selection in Clupeiformes.
Most of them relate to mitochondrial  functions and RNA processing. Figure 4 shows the
relationships between these terms and the genes involved.
Reactome ID Pathway Description n. genes P-value Adj. p-value Q-value Orthogroups

R-DRE-163200

Respiratory electron transport, 
ATP synthesis by chemiosmotic 
coupling, and heat production by 
uncoupling proteins. 15 9,73E-07 7,25E-04 7,13E-04

atp5f1d, atp5l, atp5pd, atp5po, etfdh, mt-
nd1, mt-nd3, mt-nd6, ndufa11, ndufa7, 
ndufab1a, ndufb10, ndufb2, ndufb7, ndufv2

R-DRE-1428517
The citric acid (TCA) cycle and 
respiratory electron transport 18 1,14E-04 2,13E-02 2,09E-02

atp5f1d, atp5l, atp5pd, atp5po, dlst, etfdh, 
ldha, mt-nd1, mt-nd3, mt-nd6, ndufa11, 
ndufa7, ndufab1a, ndufb10, ndufb2, ndufb7,
ndufv2, pdha1a

R-DRE-72766 Translation 26 3,51E-06 1,31E-03 1,28E-03

chchd1, eef1db, eef2b, eif3hb, eif3i, 
gadd45gip1, mrpl12, mrpl13, mrpl18, 
mrpl37, mrpl39-1|2, mrpl53, mrpl58, 
mrps18c, mrps22, mrps27, oxa1l, rpl13, 
rpl14, rpl18, rpl23a, rps11, rps19, rps24-2|2,
rps4x, rps6-1|2

R-DRE-5389840
Mitochondrial translation 
elongation 13 2,03E-04 2,49E-02 2,45E-02

chchd1, gadd45gip1, mrpl12, mrpl13, 
mrpl18, mrpl37, mrpl39-1|2, mrpl53, mrpl58,
mrps18c, mrps22, mrps27, oxa1l

R-DRE-5419276
Mitochondrial translation 
termination 13 2,34E-04 2,49E-02 2,45E-02

chchd1, gadd45gip1, mrpl12, mrpl13, 
mrpl18, mrpl37, mrpl39-1|2, mrpl53, mrpl58,
mrps18c, mrps22, mrps27, oxa1l

R-DRE-5368287 Mitochondrial translation 13 3,09E-04 2,88E-02 2,83E-02

chchd1, gadd45gip1, mrpl12, mrpl13, 
mrpl18, mrpl37, mrpl39-1|2, mrpl53, mrpl58,
mrps18c, mrps22, mrps27, oxa1l

R-DRE-611105 Respiratory electron transport 11 5,43E-05 1,35E-02 1,33E-02

etfdh, mt-nd1, mt-nd3, mt-nd6, ndufa11, 
ndufa7, ndufab1a, ndufb10, ndufb2, ndufb7,
ndufv2

R-DRE-6799198 Complex I biogenesis 10 1,55E-04 2,30E-02 2,26E-02
mt-nd1, mt-nd3, mt-nd6, ndufa11, ndufa7, 
ndufab1a, ndufb10, ndufb2, ndufb7, ndufv2
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Table 7 - Enriched HGNC families
List of the five enriched HGNC families that are under selection in Clupeiformes. They relate 
to CD molecules, mitochondrial complexes I and V, apolipoproteins, and mitochondrial 
carriers (solute carrier family 25).

HGNC family
n. 
genes P-value Adj. p-value Q-value Orthogroups

CD molecules 34 9,82E-06 2,24E-03 2,13E-03

alcama-1|2, alcama-2|2, asgrl2-1|2, bcam, cd28, cd44b, cd63-1|2, 
cd74a-2|2, cd81b, cdh2-1|2, crfb4, CU984600.1, entpd1, epcam, 
f11r.1-2|2, fut7-1|3, il13ra2, il6r-1|2, kel, mst1rb-1|2, rhag, sdc2-2|2, 
si:ch211-106j24.1-1|3, si:ch211-66e2.3-1|2, si:ch73-22o12.1-2|2, 
si:dkey-1c7.1-3|3, si:dkey-237i9.8, si:dkey-32n7.4-1|8, si:dkey-32n7.4-
4|8, slc4a1a, tfr1a, tfr1b, tnfrsf1a, tnfsf13b

Apolipoproteins 5 3,50E-04 1,99E-02 1,90E-02 apoa1a-1|2, apoa1a-2|2, apoda.2, apoeb-1|2, apooa

Mitochondrial complex V:
ATP synthase subunits 5 1,50E-04 1,71E-02 1,63E-02 atp5f1d, atp5l, atp5pd, atp5po, si:ch211-140m22.7-2|2

NADH:ubiquinone 
oxidoreductase 
supernumerary subunits 6 9,67E-04 4,41E-02 4,19E-02 ndufa11, ndufa7, ndufab1a, ndufb10, ndufb2, ndufb7

solute carrier family 25 8 2,47E-04 1,88E-02 1,78E-02
slc25a12-1|2, slc25a12-2|2, slc25a19, slc25a20, slc25a26, slc25a28, 
slc25a38b, slc25a47a-1|2
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Table 8 - Genes Under Recurrent Selection
List with the genes that were selected in at least four branches at the same time.
Orthogroup Symbol Gene Description Phylogroups Adjusted p-values Ensembl ID

CR846080.1-2|2 None

Alosinae+Dorosomatinae, 
Alosa+Brevoortia, Alosinae, 
Clupeidae, Engraulinae

1.85e-03, 1.85e-03, 1.85e-03, 
1.85e-03, 1.85e-03 ENSDARG00000076211.4

si:ch211-15j1.5 si:ch211-15j1.5
Alosinae+Dorosomatinae, Alosinae, 
Clupeidae, Engraulinae, Sardinae

2.86e-03, 2.86e-03, 2.86e-03, 
2.86e-03, 2.86e-03 ENSDARG00000091912.4

si:ch211-207i1.2-3|7 si:ch211-207i1.2
Alosinae+Dorosomatinae, Alosinae, 
Clupeidae, Engraulinae

2.06e-07, 2.06e-07, 2.06e-07, 
2.06e-07 ENSDARG00000030107.10

mylipa-1|3

myosin regulatory light 
chain interacting 
protein a

Alosinae, Clupeidae, Engraulinae, 
Alosinae+Dorosomatinae

8.25e-06, 8.25e-06, 8.25e-06, 
1.30e-05 ENSDARG00000008859.8

apoa1a-1|2 apolipoprotein A-Ia

Alosinae, Engraulinae, 
Alosinae+Dorosomatinae, 
Clupeidae

1.11e-05, 5.25e-03, 1.36e-02, 
1.36e-02 ENSDARG00000012076.9

numa1-2|2
nuclear mitotic 
apparatus protein 1

Alosinae+Dorosomatinae, Alosinae, 
Clupeidae, Engraulinae

5.27e-05, 5.27e-05, 5.27e-05, 
5.27e-05 ENSDARG00000102483.2

si:dkey-237j10.2-2|2 si:dkey-237j10.2
Alosinae+Dorosomatinae, Alosinae, 
Engraulinae, Clupeidae

1.56e-04, 1.92e-04, 1.26e-02, 
1.45e-02 ENSDARG00000094025.3

unknown-565|965 NA
Alosinae+Dorosomatinae, Alosinae, 
Clupeidae, Engraulinae

1.80e-04, 1.80e-04, 1.80e-04, 
1.95e-04 NA

si:cabz01007794.1 si:cabz01007794.1
Alosinae, Engraulinae, Clupeidae, 
Alosinae+Dorosomatinae

2.10e-04, 1.42e-03, 1.47e-03, 
3.20e-03 ENSDARG00000105590.2

si:dkeyp-121d4.3-3|6 si:dkeyp-121d4.3
Alosinae, Alosinae+Dorosomatinae, 
Clupeidae, Engraulinae

7.18e-04, 7.21e-04, 7.21e-04, 
7.21e-04 ENSDARG00000089355.3

s100w
S100 calcium binding 
protein W

Alosinae, Alosinae+Dorosomatinae, 
Clupeidae, Engraulinae

8.26e-04, 2.74e-02, 2.74e-02, 
2.74e-02 ENSDARG00000101181.2

epb41b
erythrocyte membrane 
protein band 4.1b

Alosinae+Dorosomatinae, Alosinae, 
Clupeidae, Engraulinae

2.31e-03, 2.31e-03, 2.31e-03, 
2.31e-03 ENSDARG00000029019.6

zp3a.2-1|4

zona pellucida 
glycoprotein 3a, 
tandem duplicate 2

Alosinae+Dorosomatinae, 
Clupeinae, Clupeidae, Engraulinae

2.52e-03, 1.09e-02, 2.48e-02, 
3.04e-02 ENSDARG00000042130.6

no-symbol-5|9 APC down-regulated 1

Alosa+Brevoortia, 
Alosinae+Dorosomatinae, Alosinae, 
Clupeidae

2.98e-03, 3.93e-02, 3.93e-02, 
3.93e-02 ENSDARG00000098203.2

unknown-422|965 NA
Alosinae+Dorosomatinae, Alosinae, 
Clupeidae, Engraulinae

5.17e-03, 5.17e-03, 5.17e-03, 
5.17e-03 NA

eif4g2a-2|2

eukaryotic translation 
initiation factor 4, 
gamma 2a

Alosinae+Dorosomatinae, Alosinae, 
Clupeidae, Engraulinae

8.22e-03, 8.22e-03, 8.22e-03, 
8.22e-03 ENSDARG00000020377.10

si:dkey-32n7.4-4|8 si:dkey-32n7.4
Alosinae+Dorosomatinae, Alosinae, 
Alosa+Brevoortia, Engraulinae

2.03e-02, 2.03e-02, 2.03e-02, 
2.03e-02 ENSDARG00000002956.12

unknown-185|965 NA
Alosinae+Dorosomatinae, Alosinae, 
Clupeidae, Engraulinae

3.42e-02, 3.42e-02, 3.42e-02, 
3.42e-02 NA
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Figures

Figure 1 - Phylogeny
Consensus phylogeny inferred by ExaBayes and four-fold degenerate sites. Branch length
represents  the  number  of  observed  mutations.  All  branches  obtained  100%  bootstrap
support. Branches marked in red are the ones tested for selection in the branch-site test.  
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Figure 2 - Busco
MultiQC  report  from  BUSCO  results  based  on  the  Single  Copy  Orthologs  in  the
Actinopterygii dataset.  Transcriptomes  derived  from  assembled  genomes  obtained  the
highest  results  (D.  clupeoides and  C.  harengus),  followed  by  S.  pilchardus and  A.
pseudoharengus.  The set  of  the  Actinopterygii Single  Copy Orthologs consists  of  4,584
sequences.
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Figure 3 - GO Concept Network
GO/Orthogroup concept network. Representation of the enriched GO terms derived from
Zebrafish and the orthogroups associated.  We observe three superclusters:  extracellular
proteins, lysosome, and the ribosome, and three smaller ones: mitochondrial complexes IV
and V, and caveolae.
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Figure 4 - Reactome Concept Network
Reactome  pathways  /  Orthogroup  concept  network.  Representation  of  the  enriched
Reactome  pathways  derived  from  the  annotations  for  Zebrafish  and  the  orthogroups
associated. We observe two clusters: one associated with mitochondria, a second one on
RNA translation.
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Figure 5 - HGNC concept network
HGNC family / Orthogroup concept network. Representation of the enriched gene families
derived from the human HGNG annotations inferred for the Clupeiformes orthogroups. We
observe five clusters: CD molecules, complexes I and V of the Electron Transport Chain,
apolipoproteins, and mitochondrial transporters.
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Figure 6 - Alignment of apoa1a-1|2
First 151 aligned positions of the protein  apoa1a-1|2. Branches in red in the phylogenetic
tree denote that were under selection after p-value correction. The arrow in green shows the
only  site  under  positive  selection  for  the  family  Engraulidae. Additional  branches  under
selection were Alosinae and Alosinae+Dorosomatinae (and Clupeidae due to the omission
of Clupea proteins).
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Supplementary Tables

ST01-  Transcriptome  and  RNA-Seq  dataset  accession
numbers 

ST02 - Possible duplicated genes and orthogroups without an
annotation

ST03 - Selected genes

ST04 - Genes Under Recurrent Selection
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